WO2022113852A1 - Visual inspection device, visual inspection method, and visual inspection program - Google Patents

Visual inspection device, visual inspection method, and visual inspection program Download PDF

Info

Publication number
WO2022113852A1
WO2022113852A1 PCT/JP2021/042280 JP2021042280W WO2022113852A1 WO 2022113852 A1 WO2022113852 A1 WO 2022113852A1 JP 2021042280 W JP2021042280 W JP 2021042280W WO 2022113852 A1 WO2022113852 A1 WO 2022113852A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
light
subject
image pickup
visual inspection
Prior art date
Application number
PCT/JP2021/042280
Other languages
French (fr)
Japanese (ja)
Inventor
知久 小澤
昌也 守田
信介 石岡
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to JP2022565268A priority Critical patent/JPWO2022113852A1/ja
Priority to CN202180076730.8A priority patent/CN116457645A/en
Publication of WO2022113852A1 publication Critical patent/WO2022113852A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/958Inspecting transparent materials or objects, e.g. windscreens

Definitions

  • the present invention relates to a visual inspection device, a visual inspection method, and a visual inspection program.
  • Patent Document 1 an object is illuminated from a plurality of different illumination directions, and image processing is performed on a plurality of images of the object obtained by imaging each of the plurality of illumination directions by an imaging means by a control device.
  • An optical inspection method for determining the presence or absence of a defect in the object is disclosed.
  • Patent Document 2 discloses a work inspection device that inspects the appearance of a work including a curved surface.
  • This work inspection device is integrally attached to the line sensor camera having a line-shaped photographing range along the orthogonal direction orthogonal to the predetermined direction of the curved surface and the line sensor camera, and is parallel to the optical axis of the line sensor camera.
  • a telecentric lens that causes light to enter the line sensor camera, lateral lighting means that emits light from a lateral position that deviates from the front of the shooting range in the predetermined direction of the curved surface toward the shooting range, and the line.
  • the rotating means for rotating the work relative to the sensor camera and the lateral lighting means along the predetermined direction of the curved surface, and the work relative to the line sensor camera and the lateral lighting means. It is provided with an inspection control means for generating an inspection image at the time of side illumination by causing the line sensor camera to take an image of the photographing range in a state where the side lighting means is made to emit light.
  • Patent Document 3 defects on the front and back of a color filter are separated by using a reflection system light source above the surface of the color filter, a reflection optical system of the inspection camera, and a transmission optical system of the transmission system inspection camera above the surface of the color filter. The method is disclosed.
  • Patent Document 4 describes a plurality of types of light sources capable of irradiating an object to be surfaced, which is at least one of an inner peripheral surface and an outer peripheral surface of a cylindrical inspection object, and an image of the inspection object.
  • a visual inspection apparatus including an imaging inspection unit for inspecting the appearance of the inspection object based on an image of an imaging inspection range corresponding to a part of the image to be inspected in the circumferential direction is disclosed. ..
  • This visual inspection device has a positioning mechanism having an arrangement portion for positioning the inspection object at the inspection position and a rotating portion for rotating the inspection object located at the inspection position around the central axis of the cylinder. ..
  • the light source has a bar light source having an optical axis parallel to the optical axis of the imaging inspection unit and having a pair of linear light emitting units extending in parallel with each other, and the same optical axis as the optical axis of the imaging inspection unit. Moreover, a coaxial light source located between the pair of light emitting units is provided. In the positioning mechanism, the optical axis of the imaging inspection unit is orthogonal to the tangent line of the surface to be inspected within the imaging inspection range, and the pair of light emitting units of the bar light source is the imaging inspection range.
  • An imaging arrangement in which the surface to be imaged is not overlapped with the optical axis of the imaging inspection unit and the central axis is tilted at a predetermined angle with respect to the optical axis of the imaging inspection unit.
  • the inspection object is positioned at the inspection position, and the imaging inspection unit images the inspection object in synchronization with the rotation of the inspection object by the rotating unit.
  • Patent Document 1 The appearance inspection of light-transmitting members such as lenses or films has been performed visually so far. Although methods for mechanizing visual inspection have been proposed as in Patent Document 1 and Patent Document 3, it is difficult to detect various types of defects that may occur in a subject by these methods. Patent Document 2 and Patent Document 4 do not assume inspection of a member having light transmission.
  • An object of the present invention is to evaluate a subject having light transmission with high accuracy.
  • the visual inspection apparatus includes a holding portion for holding a subject, an illuminating portion capable of irradiating the holding portion with illumination light having a plurality of shapes, and an imaging unit for imaging the holding portion. Control that causes the image pickup unit to image the subject multiple times by changing the relative positions of the holding unit, the illumination unit, and the image pickup unit, and the shape of the relative position and the illumination light.
  • the processor includes the subject including the reflected light in which the illumination light is reflected by the subject, and the subject including the transmitted light in which the illumination light has passed through the subject. Is imaged by the image pickup unit.
  • the visual inspection apparatus includes a holding portion for holding a subject, an illuminating portion capable of irradiating the holding portion with illumination light having a plurality of shapes, and an imaging unit for imaging the holding portion.
  • the holding unit, the illumination unit, and the driving unit that changes the relative position of the imaging unit, and the control that changes the relative position and the shape of the illumination light so that the imaging unit images the subject a plurality of times.
  • the processor is provided with a processor for changing the positions of both the illumination unit and the image pickup unit so that the image pickup unit can image the subject.
  • the visual inspection method includes a holding portion for holding a subject, an illuminating portion capable of irradiating the holding portion with illumination light having a plurality of shapes, and an imaging unit for imaging the holding portion.
  • a visual inspection method for inspecting the appearance of a subject by using the holding unit, the illuminating unit, and the driving unit that changes the relative position of the imaging unit, wherein the relative position and the illuminating light are used.
  • a control step is provided for controlling the image pickup unit to change the shape so that the subject is imaged a plurality of times.
  • the illumination light includes the reflected light reflected by the subject and the subject.
  • the image pickup unit is made to image the subject including the transmitted light transmitted through the subject by the illumination light.
  • the visual inspection method includes a holding portion for holding a subject, an illuminating portion capable of irradiating the holding portion with illumination light having a plurality of shapes, and an imaging unit for imaging the holding portion.
  • a visual inspection method for inspecting the appearance of a subject using the holding unit, the illuminating unit, and the driving unit that changes the relative position of the imaging unit, wherein the relative position and the illuminating light are used.
  • the image pickup unit is provided with a control step for controlling the shape of the image pickup unit to image the subject a plurality of times. The subject is imaged.
  • the visual inspection program includes a holding portion for holding a subject, an illuminating portion capable of irradiating the holding portion with illumination light having a plurality of shapes, and an imaging unit for imaging the holding portion.
  • a visual inspection program for inspecting the appearance of the subject using the holding unit, the illuminating unit, and the driving unit that changes the relative position of the imaging unit, wherein the relative position and the illuminating light are used.
  • the computer is made to execute a control step of changing the shape and controlling the image pickup unit to image the subject a plurality of times.
  • the illumination light reflects the reflected light of the subject.
  • the image pickup unit is made to image the subject including the subject and the subject including the transmitted light transmitted by the illumination light through the subject.
  • the visual inspection program includes a holding portion for holding a subject, an illuminating portion capable of irradiating the holding portion with illumination light having a plurality of shapes, and an imaging unit for imaging the holding portion.
  • This is an appearance inspection program for inspecting the appearance of the subject by using the holding unit, the lighting unit, and the driving unit that changes the relative position of the imaging unit.
  • the computer is made to execute a control step of changing the shape and controlling the image pickup unit to image the subject a plurality of times. In the control step, the positions of both the illumination unit and the image pickup unit are changed.
  • the image pickup unit is used to image the subject.
  • FIG. 3 is a schematic diagram showing a light reflection region of the lens L in which a sufficient amount of reflected light of flat light is incident on the image pickup unit 30 in the state ST4 of FIG.
  • FIG. 1 is a schematic diagram showing a schematic configuration of a visual inspection apparatus 100 according to an embodiment of the present invention.
  • FIG. 1 shows a direction X, a direction Y orthogonal to the direction X, and a direction Z orthogonal to the direction X and the direction Y.
  • the visual inspection device 100 is constructed so that the direction Z coincides with the vertical direction and the opposite direction.
  • the visual inspection device 100 includes a base 11 fixed at a predetermined position in the direction Z.
  • a through hole penetrating in the direction Z is formed in the base 11, and a substantially cylindrical mounting portion 10 (an example of a holding portion in the present specification) is rotatably supported on the inner wall of the through hole. ..
  • the mounting unit 10 is a member on which the lens L as a subject to be inspected for appearance by the appearance inspection device 100 is placed.
  • the mounting portion 10 is rotatably supported around a rotation axis extending in the direction Z. When the lens L is mounted on the mounting portion 10, the optical axis K of the lens L and the rotation center of the mounting portion 10 are configured to coincide with each other.
  • the base 11 is provided with a rotation mechanism 10A for rotating the mounting portion 10.
  • the mounting portion 10 is configured to be rotatable around a rotation axis by a rotation mechanism 10A.
  • the rotation angle of the mounting portion 10 is defined as the position of the mounting portion 10.
  • the visual inspection device 100 further includes a flat light source 21 constituting a surface light source, and a flat light source drive mechanism 21A for moving the flat light source 21 in the directions X and Z and rotating the flat light source 21 around an axis Ax1 extending in the direction Y.
  • the flat light source 21 and the flat light source driving mechanism 21A are arranged on one side (upper side, first side in the drawing) of the direction Z with respect to the base 11.
  • the flat light source 21 irradiates the mounting portion 10 with flat light (plane light).
  • the configuration of the flat light source 21 is not limited as long as it irradiates planar light.
  • the flat light source 21 can be one composed of an LED (Light Lighting Diode) and a light guide, or one composed of a planar organic EL (Electroluminescence).
  • the combination of the position of the flat light source 21 in the direction X, the position of the flat light source 21 in the direction Z, and the rotation angle around the axis Ax1 of the flat light source 21 is defined as the position of the flat light source 21.
  • the visual inspection device 100 further includes a line light source 22 constituting the line light source, and a line light source drive mechanism 22A for moving the line light source 22 in the direction X and the direction Z and rotating the line light source 22 around the axis Ax2 extending in the direction Y.
  • the line light source 22 and the line light source drive mechanism 22A are arranged on the other side (lower side in the figure, second side) in the direction Z from the base 11.
  • the line light source 22 irradiates the mounting portion 10 with linear light (linear light) extending in the direction Y.
  • the configuration of the line light source 22 is not limited as long as it irradiates linear light.
  • the line light source 22 one composed of a metal halide lamp and a light guide, one composed of an LED and a light guide, and the like can be used.
  • the combination of the position of the line light source 22 in the direction X, the position of the line light source 22 in the direction Z, and the rotation angle of the line light source 22 around the axis Ax2 is defined as the position of the line light source 22.
  • the visual inspection device 100 directs the image pickup unit 30 that images the mounting section 10 and the lens L mounted on the mounting section 10, the spot light source 23 that is fixed to the image pickup section 30 and constitutes a point light source, and the image pickup section 30. Further, an image pickup unit drive mechanism 30A that moves in X and direction Z and rotates around an axis Ax3 extending in direction Y is further provided.
  • the image pickup unit 30, the spot light source 23, and the image pickup unit drive mechanism 30A are arranged on one side (upper side, first side in the drawing) of the direction Z with respect to the base 11.
  • the image pickup unit 30 includes an image pickup element and an image pickup optical system, and takes an image of the lens L mounted on the mounting unit 10 through the image pickup optical system.
  • the spot light source 23 irradiates the mounting portion 10 with point-like light (point-like light).
  • the configuration of the spot light source 23 is not limited as long as it irradiates point-like light.
  • a laser or one including an LED and an irradiation optical system can be used as the spot light source 23 .
  • the spot light source 23 is fixed to the image pickup unit 30 in a state where the optical axis thereof and the optical axis of the image pickup unit 30 intersect.
  • the image pickup unit drive mechanism 30A moves or rotates the spot light source 23 fixed to the image pickup unit 30 by moving or rotating the image pickup unit 30. Therefore, the image pickup unit drive mechanism 30A can also be said to be a spot light source drive mechanism that moves the spot light source 23 in the directions X and Z and rotates it around the axis Ax3.
  • the combination of the position of the image pickup unit 30 in the direction X, the position of the image pickup unit 30 in the direction Z, and the rotation angle of the image pickup unit 30 around the axis Ax3 is defined as the position of the image pickup unit 30.
  • the combination of the position of the spot light source 23 in the direction X, the position of the spot light source 23 in the direction Z, and the rotation angle of the spot light source 23 around the axis Ax3 is defined as the position of the spot light source 23.
  • the flat light source 21, the line light source 22, and the spot light source 23 carry light having a plurality of shapes (linear light as the first shape, planar light as the second shape, and point light as the third shape).
  • the illumination unit 20 capable of irradiating the placement unit 10 is configured.
  • any one of the flat light source 21, the line light source 22, and the spot light source 23 is controlled to irradiate light.
  • the position of the light source controlled so as to irradiate the mounting unit 10 with light is defined as the position of the illumination unit 20.
  • light may be irradiated from another light source.
  • the flat light source 21 may be used as auxiliary lighting for specifying the position of the outer peripheral portion of the lens.
  • the flat light source drive mechanism 21A, the line light source drive mechanism 22A, the image pickup unit drive mechanism 30A, and the rotation mechanism 10A constitute a drive unit that changes the relative positions of the mounting unit 10, the illumination unit 20, and the image pickup unit 30. ..
  • the flat light source drive mechanism 21A, the line light source drive mechanism 22A, and the image pickup unit drive mechanism 30A constitute a drive mechanism for moving the illumination unit 20 and the image pickup unit 30 with respect to the mounting unit 10.
  • the appearance inspection device 100 further includes a general control unit 40 that controls the whole, a position control unit 41, and a lighting control unit 42.
  • Each of the general control unit 40, the position control unit 41, and the lighting control unit 42 includes a processing unit that performs various processes, and a memory including a RAM (Random Access Memory) and a ROM (Read Only Memory).
  • the hardware structure of the processing unit is various processors as shown below.
  • the circuit configuration can be changed after manufacturing CPU (Central Processing Unit), FPGA (Field Programmable Gate Array), etc., which are general-purpose processors that execute software (programs) to perform various processes.
  • CPU Central Processing Unit
  • FPGA Field Programmable Gate Array
  • a dedicated electric circuit or the like which is a processor having a circuit configuration specially designed for executing a specific process such as a programmable logic device (PLD) which is a processor or an ASIC (Aplication Specifici Integrated Circuit). included.
  • PLD programmable logic device
  • ASIC Application Specifici Integrated Circuit
  • the processing unit may be composed of one of these various processors, or may be composed of a combination of two or more processors of the same type or different types (for example, a plurality of FPGAs or a combination of a CPU and an FPGA). You may.
  • Each processing unit of the integrated control unit 40, the position control unit 41, and the lighting control unit 42 is configured by using one or more of the above-mentioned various processors as a hardware-like structure. More specifically, the hardware-like structure of these various processors is an electric circuit (cyclery) in which circuit elements such as semiconductor elements are combined.
  • the integrated control unit 40, the position control unit 41, and the lighting control unit 42 may have a common configuration of a processing unit, a RAM, and a ROM.
  • the position control unit 41 independently drives the image pickup unit drive mechanism 30A, the flat light source drive mechanism 21A, the line light source drive mechanism 22A, and the rotation mechanism 10A in accordance with a command from the overall control unit 40.
  • the position control unit 41 operates the image pickup unit drive mechanism 30A to control the positions of the image pickup unit 30 and the spot light source 23.
  • the position control unit 41 operates the flat light source drive mechanism 21A to control the position of the flat light source 21.
  • the position control unit 41 operates the line light source drive mechanism 22A to control the position of the line light source 22.
  • the position control unit 41 operates the rotation mechanism 10A to control the position of the mounting unit 10.
  • the lighting control unit 42 individually controls the flat light source 21, the line light source 22, and the spot light source 23 according to a command from the integrated control unit 40.
  • the overall control unit 40 When performing an appearance inspection of the lens L mounted on the mounting unit 10, the overall control unit 40 at least performs a transmitted light inspection process and a first reflected light inspection process. The overall control unit 40 additionally performs a second reflected light inspection process depending on the structure of the lens L. Hereinafter, details of each inspection process will be described.
  • the transmitted light inspection process is a position control that controls the position of the line light source 22 and the position of the image pickup unit 30 to a position determined according to the lens information (information about the structure such as shape and curvature) of the lens L, and this position control.
  • Imaging control in which the line light source 22 and the imaging unit 30 whose positions are determined by the above are operated, and the lens L irradiated with the line light from the line light source 22 is imaged a plurality of times by the imaging unit 30 while rotating the mounting unit 10. This is a process including an evaluation process for evaluating the first evaluation item of the lens L based on a plurality of captured images acquired by the image pickup control.
  • the first evaluation item is scratches (linear defects), bumps (dotted or circular defects), spiders, and stains that are a complex of these defects, which are widely known as lens defects. .. Scratches, bumps, spiders, and stains are the major defects in the lens, but may be other endpoints.
  • the evaluation regarding the first evaluation item of the lens L is, for example, ranking the lens L based on the feature amount (length, width, etc.) of the scratched region detected from the captured image, and the lumps detected from the captured image.
  • the lens L is ranked based on the feature amount (size, etc.) of the region, and the lens L is ranked based on the feature amount (area, brightness, etc.) of the cloudy region detected from the captured image, and is detected from the captured image. It means to rank the lens L based on the feature amount (size, etc.) of the dirty area.
  • Ranking means classifying the lens L into ranks such as non-defective products, defective products, and products that require re-inspection.
  • the size can be calculated, for example, by (long side + short side) / 2 of the minimum rectangle surrounding the defect. Further, as the size, the area of the minimum rectangle surrounding the defect may be calculated.
  • Scratches, bumps, spiders, and stains are visually recognized by irradiating light from one side in the optical axis direction of the lens L and observing the transmitted light of this light from the other side in the optical axis direction of the lens L.
  • the region where the line light source 22 is not reflected has low brightness and is uniform if there are no scratches, bumps, spiders, or stains in the region. If scratches, bumps, spiders, or stains are present in this region, the brightness becomes high at the site where the defect is present. Therefore, in the region of the captured image that does not include the line light source 22 (the region where the line light source 22 is not reflected), the presence or absence of scratches, bumps, spiders, or stains is detected by detecting the portion where the brightness is higher than the threshold value. Can be determined. In the transmitted light inspection process, scratches, bumps, spiders, or stains are detected based on this idea, and the first evaluation item is evaluated based on the feature amount of each defect.
  • FIG. 2 is a schematic diagram showing an example of the positional relationship between the image pickup unit 30, the mounting unit 10, and the line light source 22 during the transmitted light inspection process.
  • the integrated control unit 40 performs the above position control so as to be in the state ST1 of FIG. 2, rotates the mounting unit 10 in this state ST1, and when the mounting unit 10 is in each rotation position.
  • To image the lens L the lens L is imaged once every time the mounting portion 10 is rotated by 12 degrees, and the mounting portion is rotated once. That is, in the above image pickup control, a total of 29 times of imaging are performed.
  • the imaging interval (angle) and the number of shootings can be set arbitrarily. Further, the mounting portion does not necessarily have to make one rotation.
  • the integrated control unit 40 further performs the above position control so as to be in the state ST2 of FIG. 2, in this state ST2, the mounting unit 10 is rotated once, and the mounting unit 10 is in each rotation position.
  • the overall control unit 40 detects the defect of the first evaluation item from each of the 58 captured images obtained by 29 times of imaging in the state ST1 and 29 times of the imaging in the state ST2, and is based on the detection result. Then, the lens L is ranked.
  • the optical axis of the image pickup unit 30 is parallel to the optical axis K of the lens L (in the example of FIG. 2, the positions of the directions X and Y of both optical axes match) and the line.
  • the irradiation direction of the line light from the light source 22 is inclined with respect to the optical axis K.
  • FIG. 3 shows the irradiation range AR1 to which the line light of the lens L is irradiated in the state ST1.
  • the line light is obliquely irradiated to the central portion (second region) in the direction X of the lens L.
  • the central portion is a region including the optical axis of the lens L and having a width in the direction X.
  • the line light is irradiated to the entire inspection target region (specifically, the region having an effective diameter) of the lens L.
  • the state ST2 shown in FIG. 2 is a state in which only the position of the line light source 22 is changed with respect to the state ST1.
  • FIG. 3 shows the irradiation range AR2 to which the line light of the lens L is irradiated in the state ST2.
  • the line light is obliquely irradiated to the region (first region) at one end of the direction X of the lens L.
  • the mounting portion 10 makes one rotation in the state ST2
  • the line light is irradiated to the entire peripheral region outside the radial direction of the inspection target region of the lens L.
  • the irradiation range AR1 reaches from one end to the other end in the direction Y of the lens L, but the present invention is not limited to this.
  • the irradiation range AR1 may be set at the center of the direction X and the direction Y of the lens L.
  • the mounting portion 10 makes one rotation in the state ST1a, and the mounting portion 10 makes one rotation in the state ST2, so that the entire inspection target region of the lens L can be irradiated with the line light.
  • the irradiation range AR2 may be set between one end and the center of the direction X of the lens L, for example, as in the state ST2a of FIG. Even in this case, the mounting portion 10 makes one rotation in the state ST1 or the state ST1a, and the mounting portion 10 makes one rotation in the state ST2a, so that the entire inspection target region of the lens L can be irradiated with the line light. ..
  • the position of the line light source 22 is determined so that the line light source 22 is not reflected in the irradiation range AR1 in the captured image when the lens L is imaged by the image pickup unit 30.
  • the position of such a line light source 22 varies depending on the shape of the lens L to be inspected, and is determined according to the shape of the subject.
  • the position of the line light source 22 is determined so that the line light source 22 is not reflected in the irradiation range AR2 in the image captured image when the lens L is imaged by the image pickup unit 30.
  • the position of such a line light source 22 varies depending on the shape of the lens L to be inspected, and is determined according to the shape of the subject.
  • a blind spot area that cannot be imaged by the image pickup unit 30 may occur near the peripheral edge of the inspection target area of the lens L, or an image captured by the lens L.
  • the vicinity of the peripheral edge of the inspection target region of the lens L in the above there may be a region where the brightness is not sufficiently low.
  • the position of the image pickup unit 30 and the line light source so that the vicinity of the peripheral edge of the inspection target area of the lens L can be imaged by the image pickup unit 30 and the brightness of the image captured image near this peripheral edge is sufficiently low.
  • the position of 22 is changed.
  • the overall control unit 40 tilts the optical axis of the image pickup unit 30 with respect to the optical axis K of the lens L, and the line light from the line light source 22 is the direction X of the lens L.
  • the position of the image pickup unit 30 and the position of the line light source 22 are controlled so that the region (third region) different from the state ST2 at one end is irradiated.
  • the overall control unit 40 rotates the mounting unit 10 once in this state ST3, and images the lens L when the mounting unit 10 is at each rotation position (rotation position of N times 12 degrees).
  • the integrated control unit 40 is the first from each of the 87 captured images obtained by 29 times of imaging in the state ST1, 29 times of imaging in the state ST2, and 29 times of imaging in the state ST3. A defect of one evaluation item is detected, and the lens L is ranked based on the detection result.
  • the lens may have a blind spot area that cannot be imaged by the image pickup unit 30.
  • the position of the imaging unit 30 and the position of the line light source 22 are controlled so that defects existing in the blind spot region can be imaged. Additional imaging may be performed.
  • the state ST1 in FIG. 2 shows a state in which the position of the imaging unit 30 is the first imaging position and the position of the line light source 22 is the second irradiation position.
  • the state ST2 in FIG. 2 shows a state in which the position of the imaging unit 30 is the first imaging position and the position of the line light source 22 is the first irradiation position.
  • the state ST3 in FIG. 2 shows a state in which the position of the imaging unit 30 is the second imaging position.
  • the first reflected light inspection process includes position control that controls the position of the flat light source 21 and the position of the image pickup unit 30 to positions determined according to the lens information of the lens L, and the flat light source whose position is determined by this position control.
  • Imaging control in which the image pickup unit 30 operates the 21 and the image pickup unit 30 to image the lens L irradiated with flat light a plurality of times while rotating the mounting unit 10, and a plurality of image pickup images acquired by this image pickup control.
  • This is a process including an evaluation process for evaluating the second evaluation item of the lens L based on the above.
  • the second evaluation item is coat removal (peeling of the antireflection coating provided on the outer surface), discoloration (color unevenness of the coat, or a part having an appearance different from the normal part, etc.), which is widely known as a defect of the lens. It is a defect that can be observed by the specularly reflected light. Coat removal and discoloration are the main defects of the lens, but other evaluation items may be used.
  • the evaluation regarding the second evaluation item of the lens L is, for example, ranking the lens L based on the feature amount (size) of the coat-missing region detected from the captured image, and the feature amount of the discolored region detected from the captured image. It means to rank the lens L based on (size, color information (RGB, HSV), etc.).
  • the size can be calculated, for example, by (long side + short side) / 2 of the minimum rectangle surrounding the defect. Further, as the size, the area of the minimum rectangle surrounding the defect may be calculated.
  • RGB is an abbreviation for Red, Green, and Blue.
  • HSV is an abbreviation for Hue, Saturation, and Value.
  • Coat removal and discoloration are visually recognized by irradiating light from one side in the optical axis direction of the lens L and observing the reflected light of this light from one side in the optical axis direction of the lens L.
  • the region where the flat light source 21 is reflected is in a state where there is no uneven brightness unless there is a coat omission in that region. If there is a coat omission in this region, an increase in brightness occurs at the site where the coat is missing.
  • the presence or absence of the coat omission can be determined by determining the presence or absence of the region where the brightness is equal to or higher than the threshold value.
  • the region where the flat light source 21 is reflected will be in a state where there is no luminance unevenness or color unevenness if there is no discoloration in that region. If discoloration is present in this region, uneven brightness or uneven color occurs in the presence portion. Therefore, in the region including the flat light source 21 in the captured image, the presence or absence of discoloration can be determined by determining the presence or absence of a region having a higher brightness than the periphery or a region having a color tint different from that of the periphery. In the first reflected light inspection process, coat omission and discoloration are detected based on this idea, and the second evaluation item is evaluated based on the feature amount of each defect.
  • FIG. 4 is a schematic diagram showing an example of the positional relationship between the image pickup unit 30, the mounting unit 10, and the flat light source 21 during the first reflected light inspection process.
  • the overall control unit 40 performs the above position control so as to be in the state ST4 of FIG. 4, in this state ST4, the mounting unit 10 is rotated once, and the mounting unit 10 is in each rotation position.
  • the lens L is imaged when it is at (rotation position of N times 12 degrees).
  • the overall control unit 40 performs the above position control so as to be in the state ST5 of FIG. 4, and in this state ST5, the mounting unit 10 is rotated once, and the mounting unit 10 is rotated at each rotation position (N times 12 degrees).
  • the lens L is imaged when it is in the rotational position of.
  • the overall control unit 40 detects the defect of the second evaluation item from each of the 58 captured images obtained by 29 times of imaging in the state ST4 and 29 times of the imaging in the state ST5, and is based on the detection result. Then, the lens L is ranked.
  • the optical axis of the image pickup unit 30 is tilted with respect to the optical axis K of the lens L, and the direction in which the perpendicular line of the light emitting surface of the flat light source 21 extends is tilted with respect to the optical axis K. It is in a state of being.
  • FIG. 5 shows a light reflection region of the lens L in which the reflected light of the flat light emitted from the flat light source 21 is incident on the image pickup unit 30 in a sufficient amount in the state ST4 by the frame AR3.
  • the state ST4 there is a light reflection region in which a sufficient amount of flat light is reflected toward the image pickup unit 30 at the center of the lens L in the direction X and the direction Y.
  • the state ST5 shown in FIG. 4 is a state in which the positions of the image pickup unit 30 and the flat light source 21 are changed with respect to the state ST4.
  • FIG. 5 shows a light reflection region of the lens L in which the reflected light of the flat light emitted from the flat light source 21 is incident on the image pickup unit 30 in a sufficient amount in the state ST5 by the frame AR4.
  • the state ST5 at one end of the lens L in the direction X, there is a light reflection region in which a sufficient amount of flat light is reflected toward the image pickup unit 30.
  • the mounting portion 10 makes one rotation in the state ST5
  • a sufficient amount of reflected light can be imaged by the imaging unit 30 from the peripheral portion on the outer side in the radial direction of the inspection target region of the lens L.
  • the positions of the image pickup unit 30 and the flat light source 21 are determined so that a sufficient amount of reflected light is incident on the image pickup unit 30 from the entire inspection target area of the lens L.
  • the combination of the position of the imaging unit 30 and the position of the flat light source 21 varies depending on the shape of the lens L to be inspected, and is determined according to the shape of the subject.
  • the lens L when the lens L is a concave lens, the lens L is imaged in the states ST6 and ST7 of FIG.
  • the frame AR5 and the frame AR6 shown in FIG. 6 indicate a light reflection region of the lens L in which a sufficient amount of reflected light of the flat light emitted from the flat light source 21 is incident on the image pickup unit 30.
  • the mounting unit 10 may invert the front and back of the lens L, and then control the position of the imaging unit 30 and the position of the flat light source 21 to perform imaging.
  • the second reflected light inspection process includes a position control that controls the positions of the spot light source 23 and the image pickup unit 30 to a position determined according to the lens information of the lens L, and a spot light source 23 whose position is determined by this position control. Based on the image pickup control in which the image pickup unit 30 is operated and the lens L irradiated with the spot light is imaged a plurality of times by the image pickup unit 30 while rotating the mounting unit 10, and a plurality of image pickup images acquired by this image pickup control. This is a process including an evaluation process for evaluating the third evaluation item of the lens L.
  • the third evaluation item is a black ink defect that can occur only on a lens having a black ink part.
  • Ink defect refers to a state in which a part of the ink-painted portion is thin or peeled off.
  • the evaluation regarding the third evaluation item of the lens L means that the lens L is ranked based on the feature amount (length or area) of the black defect region detected from the captured image.
  • the black defect is visually recognized by irradiating the blackened portion of the lens L with light from one side in the optical axis direction of the lens L and observing the reflected light of this light from one side in the optical axis direction of the lens L.
  • the blackened portion in the captured image of the lens L is in a low brightness state if there is no black ink defect.
  • the brightness is increased at the location where the ink defect is present. Therefore, it is possible to determine the presence or absence of black ink defects by searching for a region having high luminance in the region including the black-painted portion of the captured image.
  • the black defect is detected based on such an idea, and the third evaluation item is evaluated based on the detection result.
  • FIG. 7 is a schematic diagram showing an example of the positional relationship between the image pickup unit 30, the mounting unit 10, and the spot light source 23 during the second reflected light inspection process.
  • the lens L shown in FIG. 7 is provided with a black-painted portion BL.
  • the overall control unit 40 performs the above position control so as to be in the state ST8 of FIG. 7, in this state ST8, the mounting unit 10 is rotated once, and the mounting unit 10 is in each rotation position.
  • the lens L is imaged when it is at (rotation position of N times 12 degrees).
  • the mounting portion 10 rotates once in the state ST8, the reflected light from the entire black-painted portion BL of the lens L can be imaged by the image pickup unit 30.
  • 12 degrees is an example, and the imaging interval (angle) and the number of shootings can be set arbitrarily.
  • the overall control unit 40 detects the defect of the third evaluation item from each of the blackened parts of the 29 images obtained by the 29 times of imaging in the state ST8, and based on the detection result, sets the lens L. Rank.
  • the lens structure has a lens structure in which the reflected light of the spot light cannot be imaged from the entire black-painted portion BL of the lens L only in the state ST8, or a part of the black-painted portion BL is totally illuminated in the state ST8. In some cases. In this case, imaging is performed under another condition in which the positions of the imaging unit 30 and the spot light source 23 are changed, for example, as in the state ST9.
  • the integrated control unit 40 detects a defect from each of the black-painted portions BL of the 58 captured images obtained by 29 times of imaging in the state ST8 and 29 times of imaging in the state ST9.
  • the lens L is ranked based on the detection result.
  • the positions of the image pickup unit 30 and the spot light source 23 are determined so that the reflected light from the entire black-painted portion BL of the lens L is incident on the image pickup unit 30.
  • the combination of the position of the imaging unit 30 and the position of the spot light source 23 varies depending on the shape of the lens L to be inspected, and is determined according to the shape of the subject.
  • FIG. 8 is a flowchart for explaining the operation of the visual inspection apparatus 100 during the transmitted light inspection process.
  • the inspection is performed under the two conditions of the state ST1 and the state ST2 shown in FIG. 2 will be described as an example.
  • the overall control unit 40 acquires the lens information of the lens L, and determines the state ST1 and the state ST2 based on the lens information. Then, the overall control unit 40 first controls the position of the image pickup unit 30 and the position of the line light source 22 so as to be in the state ST1 (step S1).
  • the overall control unit 40 rotationally drives the mounting unit 10 and causes the imaging unit 30 to take an image of the lens L mounted on the mounting unit 10 every time the rotation angle of the mounting unit 10 increases by 12 degrees.
  • the captured image of the lens L is acquired from the imaging unit 30 and saved (step S2).
  • the overall control unit 40 controls the position of the image pickup unit 30 and the position of the line light source 22 so as to be in the state ST2 (step S3).
  • the overall control unit 40 rotationally drives the mounting unit 10 and causes the imaging unit 30 to take an image of the lens L mounted on the mounting unit 10 every time the rotation angle of the mounting unit 10 increases by 12 degrees.
  • the captured image of the lens L is acquired from the imaging unit 30 and saved (step S4).
  • the overall control unit 40 has scratches and scratches based on a total of 58 captured images including the 29 captured images saved in step S2 and the 29 captured images saved in step S4.
  • the lens L is evaluated for each of the four first evaluation items of, spider, and stain (step S5).
  • the overall control unit 40 sets the reference number “N” to 1 (step S11), and for the first default area in the “N” th image taken out of the 29 images saved in step S2.
  • the defect detection process is performed (step S12).
  • the first default area is an area where the line light is not reflected in the captured image and the brightness is sufficiently low, and is predetermined according to the lens information.
  • the first default area may be an area specified by the user.
  • the defect detection process is a process of detecting a region having a brightness equal to or higher than the threshold value as a defect by binarizing or differentiating the pixel value of the first default region.
  • Defect detection processing algorithms are prepared for each defect type of scratches, bumps, spiders, and stains.
  • the integrated control unit 40 individually executes four types of defect detection processes for one captured image.
  • the integrated control unit 40 calculates the feature amount of the defect for each defect type detected in the defect detection process in step S12, and saves this (step S13).
  • the feature amount of the scratch defect detected from the Nth captured image will be referred to as the scratch feature amount Pk (N).
  • the feature amount of the lump defect detected from the Nth captured image is referred to as a lump feature amount Pb (N).
  • the feature amount of the spider defect detected from the Nth captured image is referred to as a spider feature amount Pc (N).
  • the feature amount of the stain defect detected from the Nth captured image is referred to as a stain feature amount Py (N).
  • the scratch feature amount Pk (N), the lump feature amount Pb (N), the spider feature amount Pc (N), and the stain feature amount Py (N) are collectively referred to as the feature amount P (N).
  • the integrated control unit 40 holds the maximum value of the feature amount P (N) as evaluation data (step S14).
  • the integrated control unit 40 holds the maximum value of the scratch feature amount Pk (N) as scratch evaluation data for evaluating scratch defects.
  • the integrated control unit 40 holds the maximum value of the lump feature amount Pb (N) as the lump evaluation data for evaluating the lump defect.
  • the integrated control unit 40 holds the maximum value of the spider feature amount Pc (N) as spider evaluation data for evaluating spider defects.
  • the integrated control unit 40 holds the maximum value of the stain feature amount Py (N) as stain evaluation data for evaluating stain defects.
  • the integrated control unit 40 holds, for example, the lowest value that can be considered as a feature amount as evaluation data for the defect type in which no defect is detected.
  • the overall control unit 40 increases the reference number “N” by one (step S15), and the first default area in the “N” th captured image among the 29 captured images saved in step S2. Defect detection processing is performed on the image (step S16).
  • the integrated control unit 40 calculates the feature amount P (N) of the defect for each defect type detected in the defect detection process in step S16, and saves this (step S17).
  • the overall control unit 40 determines whether or not the maximum value of the feature quantities P (N) calculated in step S17 is larger than the evaluation data for each defect type of scratches, bumps, spiders, and stains. (Step S18).
  • step S17 When there is a defect type in which the maximum value of the feature amount P (N) calculated in step S17 is larger than the evaluation data, the overall control unit 40 uses this maximum value to generate the evaluation data of the defect type. Update (step S19).
  • the integrated control unit 40 holds this maximum value as the latest scratch evaluation data.
  • the integrated control unit 40 does not update the scratch evaluation data.
  • the integrated control unit 40 When the maximum value of the stuff feature amount Pb (N) is larger than the stuff evaluation data, the integrated control unit 40 holds this maximum value as the latest stuff evaluation data. The integrated control unit 40 does not update the item evaluation data when the maximum value of the item feature amount Pb (N) is equal to or less than the item evaluation data.
  • the integrated control unit 40 When the maximum value of the spider feature amount Pc (N) is larger than the spider evaluation data, the integrated control unit 40 holds this maximum value as the latest spider evaluation data. When the maximum value of the spider feature amount Pc (N) is equal to or less than the spider evaluation data, the integrated control unit 40 does not update the spider evaluation data.
  • the overall control unit 40 holds this maximum value as the latest stain evaluation data.
  • the integrated control unit 40 does not update the stain evaluation data when the maximum value of the stain feature amount Py (N) is equal to or less than the stain evaluation data.
  • step S19 the overall control unit 40 returns the process to step S15 when the reference number “N” is less than 29 (step S20: NO), and when the reference number “N” is 29 (step S20: NO). YES), the process of step S21 is performed.
  • step S21 the overall control unit 40 sets the reference number “M” to 1.
  • step S22 the overall control unit 40 performs defect detection processing on the second predetermined area in the “M” th image captured image out of the 29 captured images saved in step S4 (step S22).
  • the second default area is an area where the line light is not reflected in the captured image and the brightness is sufficiently low, and is predetermined according to the lens information.
  • the second default area may be an area designated by the user.
  • the integrated control unit 40 calculates the feature amount of the defect for each defect type detected in the defect detection process in step S22, and saves this (step S23).
  • the feature amount of the scratch defect detected from the Mth captured image will be referred to as the scratch feature amount Pk (M).
  • the feature amount of the lump defect detected from the Mth captured image is referred to as a lump feature amount Pb (M).
  • the feature amount of the spider defect detected from the Mth captured image is referred to as a spider feature amount Pc (M).
  • the feature amount of the stain defect detected from the Mth captured image is referred to as a stain feature amount Py (M).
  • the scratch feature amount Pk (M), the lump feature amount Pb (M), the spider feature amount Pc (M), and the stain feature amount Py (M) are collectively referred to as the feature amount P (M).
  • the overall control unit 40 determines whether or not the maximum value of the feature quantities P (M) calculated in step S23 is larger than the evaluation data for each defect type of scratches, bumps, spiders, and stains. (Step S24).
  • step S23 When there is a defect type in which the maximum value of the feature amount P (M) calculated in step S23 is larger than the evaluation data, the overall control unit 40 uses this maximum value to generate the evaluation data of the defect type. Update (step S25).
  • the integrated control unit 40 holds this maximum value as the latest scratch evaluation data.
  • the integrated control unit 40 does not update the scratch evaluation data.
  • the integrated control unit 40 When the maximum value of the stuff feature amount Pb (M) is larger than the stuff evaluation data, the integrated control unit 40 holds this maximum value as the latest stuff evaluation data. The integrated control unit 40 does not update the item evaluation data when the maximum value of the item feature amount Pb (M) is equal to or less than the item evaluation data.
  • the integrated control unit 40 When the maximum value of the spider feature amount Pc (M) is larger than the spider evaluation data, the integrated control unit 40 holds this maximum value as the latest spider evaluation data. When the maximum value of the spider feature amount Pc (M) is equal to or less than the spider evaluation data, the integrated control unit 40 does not update the spider evaluation data.
  • the overall control unit 40 holds this maximum value as the latest stain evaluation data.
  • the integrated control unit 40 does not update the stain evaluation data when the maximum value of the stain feature amount Py (M) is equal to or less than the stain evaluation data.
  • step S25 when the reference number “M” is less than 29 (step S26: NO), the overall control unit 40 increases the reference number “M” by one (step S27), and then processes in step S22. Return. When the reference number “M” is 29 (step S26: YES), the overall control unit 40 performs the process of step S28.
  • step S28 the integrated control unit 40 compares the evaluation data for each defect type with the threshold value, ranks the lens L, and saves the result.
  • the overall control unit 40 has an evaluation rank of the lens L for scratch defects, an evaluation rank of lens L for scratch defects, an evaluation rank of lens L for spider defects, and an evaluation rank of lens L for stain defects. To save each.
  • FIG. 11 is a flowchart for explaining the operation of the visual inspection apparatus 100 during the first reflected light inspection process.
  • the integrated control unit 40 performs the operation shown in FIG.
  • FIG. 11 is a flowchart for explaining the operation of the visual inspection apparatus 100 during the first reflected light inspection process.
  • the inspection is performed under the two conditions of the state ST4 and the state ST5 shown in FIG. 4 will be described as an example.
  • the overall control unit 40 acquires the lens information of the lens L, and determines the state ST4 and the state ST5 based on the lens information. Then, the overall control unit 40 first controls the position of the image pickup unit 30 and the position of the flat light source 21 so as to be in the state ST4 (step S6).
  • the overall control unit 40 rotationally drives the mounting unit 10 and causes the imaging unit 30 to take an image of the lens L mounted on the mounting unit 10 every time the rotation angle of the mounting unit 10 increases by 12 degrees.
  • the captured image of the lens L is acquired from the imaging unit 30 and saved (step S7).
  • the overall control unit 40 controls the position of the image pickup unit 30 and the position of the flat light source 21 so as to be in the state ST5 (step S8).
  • the overall control unit 40 rotationally drives the mounting unit 10 and causes the imaging unit 30 to take an image of the lens L mounted on the mounting unit 10 every time the rotation angle of the mounting unit 10 increases by 12 degrees.
  • the captured image of the lens L is acquired from the imaging unit 30 and saved (step S9).
  • the general control unit 40 determines that the coat is missing based on a total of 58 captured images including the 29 captured images saved in step S7 and the 29 captured images saved in step S9.
  • the lens L is evaluated for each of the two second evaluation items of discoloration (step S10).
  • step S10 is the same as the contents shown in FIGS. 9 and 10. That is, the integrated control unit 40 holds the maximum value of the feature amounts of the coat loss defects extracted from each of the 59 captured images as the coat loss evaluation data, and is extracted from each of the 59 captured images. The maximum value of the features of the burn defect is retained as the burn evaluation data.
  • the integrated control unit 40 compares the uncoated evaluation data with the threshold value, determines the evaluation rank of the lens L for the uncoated defect, compares the discolored evaluation data with the threshold value, and compares the lens with the discolored defect.
  • the evaluation rank of L is judged, and the judgment result is saved.
  • the integrated control unit 40 determines, for example, the defect type having the worst evaluation rank, and outputs the evaluation rank of the defect type as the final result.
  • the overall control unit 40 further executes a second reflected light inspection process and also evaluates ink defects.
  • defects scratches, bumps, spiders, and defects (scratches, bumps, spiders, and scratches) that can be visually recognized by transmitting line light through the lens L and observing the region of the lens L in which the line light source 22 is not reflected are observed. Dirt) can be detected with high accuracy by the transmitted light inspection process. Further, according to the visual inspection apparatus 100, defects (coat omission and discoloration) that can be visually recognized by reflecting flat light on the lens L and observing the region of the lens L in which the flat light is reflected are first. It can be detected with high accuracy by the reflected light inspection process. Further, according to the visual inspection apparatus 100, defects (black defects) that can be visually recognized by observing the reflected light when the blackened portion of the lens L is irradiated with the spot light are highly accurate by the second reflected light inspection process. Can be detected.
  • a plurality of conditions for example, in which the combination of the relative positions of the mounting unit 10, the lighting unit 20, and the imaging unit 30 and the shape of the light emitted from the lighting unit 20 are different (for example).
  • State ST1, state ST2, state ST4, and state ST5 it cannot be detected by imaging using only single-shaped illumination light or imaging only reflected light from the subject.
  • Various kinds of defects that may occur in the lens L can be detected with high accuracy.
  • the visual inspection device 100 when evaluating the same defect type (for example, a scratch defect), 29 captured images in which the positions of the illumination unit 20 and the image pickup unit 30 are the same but the rotation positions of the mounting unit 10 are different. Scratch defects are detected from each of the above. Then, the lens L is evaluated for the scratch defect based on the maximum value among the feature quantities of all the scratch defects detected.
  • the same defect type for example, a scratch defect
  • the appearance of scratch defects existing on the lens L from the imaging unit 30 may change depending on the rotational position of the mounting unit 10. This is because the way the line light is applied to the scratch defect changes depending on the rotation position.
  • the lens L is evaluated based on the maximum value of the feature amount of the scratch defect detected from each of the 29 captured images. Therefore, even though a large scratch is present, it is possible to prevent the feature amount of the scratch from being determined as a small value. As a result, the lens L can be evaluated with high accuracy.
  • the visual inspection device 100 in order to detect a defect of the same type, two conditions (state ST1 and state ST2, or state ST4 and state ST5) in which the combination of the position of the image pickup unit 30 and the position of the illumination unit 20 are different are different. ) Is used for imaging. Therefore, a defect that cannot be detected by only one of the two conditions depending on how the light hits can be detected by the other of the two conditions. Therefore, the defect detection accuracy can be improved.
  • the subject to be inspected by the visual inspection apparatus 100 is not limited to the lens L. If it is an object having light transmission property, it is possible to detect defects of this object by placing this object on the mounting portion 10. In this case, the optical axis K of the lens L described above may be read as the central axis of this object.
  • the spot light source 23 does not have to be fixed to the image pickup unit 30.
  • a mechanism for moving the spot light source 23 in the direction X and the direction Z and rotating the spot light source 23 around an axis extending in the direction Y is separately provided.
  • the spot light source 23 may be replaced with a surface light source that irradiates surface light. Ink defects can be detected by irradiating the blackened portion of the lens L with light and imaging the reflected light of the light. Therefore, a surface light source can be used instead of the spot light source 23. In this case, the flat light source 21 may be moved to the position of the spot light source 23 during the second reflected light inspection process. By doing so, the number of light sources included in the lighting unit 20 can be reduced to two, and the device can be miniaturized and the cost can be reduced.
  • the image pickup unit 30, the flat light source 21, and the line light source 22 are movable, so that the state ST1 and the state ST2 and the state ST3 can be switched, and the state ST4 and the state ST5 can be switched.
  • a plurality of image pickup units 30, a flat light source 21, and a line light source 22 are fixedly arranged so as to be in any of the states ST1, state ST2, state ST3, state ST4, and state ST5. Select and operate one of the plurality of image pickup units 30, select and operate one of the plurality of line light sources 22, and select and operate one of the plurality of flat light sources 21. You may do so.
  • the mounting unit 10 is moved or tilted to move or tilt the state ST1, the state ST2, and the state ST3. It may be possible to switch between states ST4 and ST5. That is, any configuration may be moved as long as the relative positions of the mounting unit 10 (lens L), the lighting unit 20, and the imaging unit 30 can be changed. Further, the case where the mounting portion 10 is used as an example of the holding portion in the visual inspection apparatus 100 has been described, but if the above inspection can be performed without damaging the lens L, the holding portion is different. It may be the configuration of. For example, the holding portion may be configured to sandwich the lens.
  • the holding unit, the lighting unit, and the driving unit that changes the relative positions of the imaging unit,
  • a processor that controls the image pickup unit to image the subject a plurality of times by changing the relative position and the shape of the illumination light is provided.
  • the processor causes the image pickup unit to image the subject including the reflected light reflected by the subject and the subject including the transmitted light transmitted by the illumination light transmitted through the subject. Inspection equipment.
  • the drive unit is a visual inspection device including a rotation mechanism that rotates the holding unit to a plurality of rotation positions.
  • the drive unit is an visual inspection device including a drive mechanism for moving the illumination unit and the image pickup unit with respect to the holding unit.
  • the visual inspection apparatus according to any one of (1) to (3).
  • the side on which the image pickup unit is arranged is the first side and the side opposite to the first side is the second side with respect to the holding unit.
  • the above processor Control to image the subject by the image pickup unit in a state where the holding portion is irradiated with the illumination light of the first shape from the second side.
  • An visual inspection device that controls the image pickup unit to image the subject in a state where the holding unit is irradiated with the illumination light of the second shape from the first side.
  • the visual inspection apparatus according to any one of (1) to (3).
  • the above-mentioned multiple shapes of light include linear light, When the side on which the image pickup unit is arranged is the first side and the side opposite to the first side is the second side with respect to the holding unit.
  • the linear light is emitted from the second side,
  • the transmitted light is an appearance inspection device that is the linear light transmitted through the subject.
  • the visual inspection device When the processor irradiates the linear light, the position of the illumination unit is set to the first irradiation position where the linear light is irradiated to the first region of the end portion of the subject, and the subject. A visual inspection device that controls the second irradiation position where the linear light is irradiated to the second region away from the end portion of the above.
  • the processor irradiates the linear light from the first irradiation position to cause the image pickup unit to image the subject, and the image pickup unit uses the image pickup unit to image the subject.
  • the linear light is irradiated from the second irradiation position to cause the imaging unit to image the subject, and the imaging unit is in the second imaging position.
  • An visual inspection device that irradiates a third region different from the first region at the end portion of the subject with linear light to cause the imaging unit to image the subject.
  • the visual inspection apparatus according to any one of (1) to (8).
  • the light having a plurality of shapes includes planar light, and the light has a planar shape.
  • the reflected light is an appearance inspection device including the planar light reflected by the subject.
  • the visual inspection device is a visual inspection device that changes the combination of the planar light and the relative position to two or more types in which the position of the illumination unit and the position of the image pickup unit are different to image the subject including the reflected light. ..
  • the visual inspection apparatus according to any one of (1) to (10).
  • the subject is a lens
  • the processor is an visual inspection device that acquires information on the shape of the lens and changes the position of the illumination unit and the position of the image pickup unit according to the shape of the lens.
  • the visual inspection apparatus according to any one of (1) to (11).
  • the plurality of shapes of light include planar light, linear light, and point-like light.
  • the processor has a position of the illumination unit when irradiating the planar light, a position of the illumination unit when irradiating the linear light, and a position of the illumination unit when irradiating the point light. And, a visual inspection device that controls different positions.
  • the visual inspection apparatus includes a surface light source that irradiates planar light, a linear light source that irradiates linear light, and a point light source that irradiates point light.
  • a visual inspection device in which the point light source moves in conjunction with the image pickup unit, and the surface light source and the line light source move independently.
  • the illumination unit includes a surface light source that irradiates planar light, a linear light source that irradiates linear light, and a point light source that irradiates point light.
  • the surface light source, the line light source, and the point light source are visual inspection devices that operate independently.
  • the visual inspection apparatus according to any one of (1) to (14).
  • the drive unit includes a rotation mechanism for rotating the holding unit.
  • the processor is a visual inspection device that images a subject a plurality of times while rotating the holding unit in a state where a combination of the shape of the illumination light, the position of the lighting unit, and the position of the imaging unit is determined. ..
  • the visual inspection apparatus detects a specific part (defect area) from each of a plurality of captured images acquired from the image pickup unit for each combination having a common shape of the illumination light, and the feature amount among the detected specific parts is A visual inspection device that evaluates the subject based on the feature amount of the maximum specific part.
  • the holding unit, the lighting unit, and the driving unit that changes the relative positions of the imaging unit,
  • a processor that controls the image pickup unit to image the subject a plurality of times by changing the relative position and the shape of the illumination light is provided.
  • the processor is an appearance inspection device that changes the positions of both the illumination unit and the image pickup unit so that the image pickup unit can image the subject.
  • the processor has the illumination light of the first shape from the second side. Control to image the subject by the image pickup unit while the holding unit is irradiated with light, and by the image pickup unit while the holding unit is irradiated with the illumination light of the second shape from the first side.
  • a visual inspection device that controls and controls the imaging of the subject.
  • a holding unit that holds a subject an illuminating unit that can irradiate the holding unit with illumination light of a plurality of shapes, an imaging unit that captures the image of the holding unit, the holding unit, the illuminating unit, and A visual inspection method for inspecting the appearance of a subject using a driving unit that changes the relative position of the imaging unit.
  • a control step is provided in which the relative position and the shape of the illumination light are changed to control the image pickup unit to image the subject a plurality of times.
  • the image pickup unit is made to image the subject including the reflected light reflected by the subject and the subject including the transmitted light transmitted by the illumination light through the subject.
  • a holding unit that holds a subject, an illuminating unit that can irradiate the holding unit with illumination light of a plurality of shapes, an imaging unit that captures the image of the holding unit, the holding unit, the illuminating unit, and A visual inspection method for inspecting the appearance of a subject using a driving unit that changes the relative position of the imaging unit.
  • a control step is provided in which the relative position and the shape of the illumination light are changed to control the image pickup unit to image the subject a plurality of times.
  • a visual inspection method in which the positions of both the illumination unit and the image pickup unit are changed so that the image pickup unit can image the subject.
  • a holding unit that holds a subject an illuminating unit that can irradiate the holding unit with illumination light of a plurality of shapes, an imaging unit that captures the image of the holding unit, the holding unit, the illuminating unit, and A visual inspection program for inspecting the appearance of a subject using a driving unit that changes the relative position of the imaging unit.
  • the computer is made to execute a control step of changing the relative position and the shape of the illumination light to control the image pickup unit to image the subject a plurality of times.
  • the image pickup unit is made to image the subject including the reflected light reflected by the subject and the subject including the transmitted light transmitted by the illumination light through the subject.
  • a holding unit that holds a subject an illuminating unit that can irradiate the holding unit with illumination light of a plurality of shapes, an imaging unit that images the holding unit, the holding unit, the illuminating unit, and A visual inspection program for inspecting the appearance of a subject using a driving unit that changes the relative position of the imaging unit.
  • the computer is made to execute a control step of changing the relative position and the shape of the illumination light to control the image pickup unit to image the subject a plurality of times.
  • an appearance inspection program in which the positions of both the illumination unit and the image pickup unit are changed so that the image pickup unit can image the subject.

Abstract

Provided are a visual inspection device, a visual inspection method, and a visual inspection program that make it possible to accurately evaluate a subject having optical transparency. The present invention is provided with: a mounting part (10) on which a lens L is mounted; an illumination unit that is capable of irradiating the mounting part (10) with illumination light having a plurality of shapes; an image capturing unit (30) that captures an image of the mounting part (10); a driving unit that changes the relative positions of the mounting part (10), the illumination unit (20), and the image capturing unit (30); and a processor that performs control for causing the image capturing unit (30) to capture an image of the lens L a plurality of times, while changing the relative positions and the shape of the illumination light. The processor causes the image capturing unit (30) to capture an image of the lens L including reflected light formed by reflection of the illumination light by the lens L, as well as an image of the lens L including transmitted light formed by transmission of the illumination light through the lens L.

Description

外観検査装置、外観検査方法、及び外観検査プログラムVisual inspection equipment, visual inspection method, and visual inspection program
 本発明は、外観検査装置、外観検査方法、及び外観検査プログラムに関する。 The present invention relates to a visual inspection device, a visual inspection method, and a visual inspection program.
 特許文献1には、対象物を互いに異なる複数の照明方向から照明し、撮像手段により上記複数の照明方向ごとに撮像して取得した上記対象物の複数の画像に対して制御装置により画像処理を行い、上記対象物の欠陥の有無を判定する光学検査方法が開示されている。 In Patent Document 1, an object is illuminated from a plurality of different illumination directions, and image processing is performed on a plurality of images of the object obtained by imaging each of the plurality of illumination directions by an imaging means by a control device. An optical inspection method for determining the presence or absence of a defect in the object is disclosed.
 特許文献2には、曲面を含むワークの外観を検査するワーク検査装置が開示されている。このワーク検査装置は、上記曲面の所定方向に直交する直交方向に沿ったライン状の撮影範囲を有するラインセンサカメラと、上記ラインセンサカメラに一体に取り付けられ、上記ラインセンサカメラの光軸に平行な光を上記ラインセンサカメラに入射させるテレセントリックレンズと、上記曲面の上記所定方向において上記撮影範囲の正面から外れる側方の位置から上記撮影範囲に向けて発光する側方の照明手段と、上記ラインセンサカメラと上記側方の照明手段とに対し上記ワークを上記曲面の上記所定方向に沿って相対回転させる回転手段と、上記ラインセンサカメラと上記側方の照明手段とに対し上記ワークを相対回転させると共に上記側方の照明手段を発光させた状態で上記ラインセンサカメラに上記撮影範囲を撮影させることにより、側方照明時の検査画像を生成する検査制御手段と、を備えている。 Patent Document 2 discloses a work inspection device that inspects the appearance of a work including a curved surface. This work inspection device is integrally attached to the line sensor camera having a line-shaped photographing range along the orthogonal direction orthogonal to the predetermined direction of the curved surface and the line sensor camera, and is parallel to the optical axis of the line sensor camera. A telecentric lens that causes light to enter the line sensor camera, lateral lighting means that emits light from a lateral position that deviates from the front of the shooting range in the predetermined direction of the curved surface toward the shooting range, and the line. The rotating means for rotating the work relative to the sensor camera and the lateral lighting means along the predetermined direction of the curved surface, and the work relative to the line sensor camera and the lateral lighting means. It is provided with an inspection control means for generating an inspection image at the time of side illumination by causing the line sensor camera to take an image of the photographing range in a state where the side lighting means is made to emit light.
 特許文献3には、カラーフィルタ表面の上方の反射系光源と検査カメラの反射光学系、及びカラーフィルタ表面の上方の透過系検査カメラの透過光学系を用いて、カラーフィルタ表裏の欠陥を分別する方法が開示されている。 In Patent Document 3, defects on the front and back of a color filter are separated by using a reflection system light source above the surface of the color filter, a reflection optical system of the inspection camera, and a transmission optical system of the transmission system inspection camera above the surface of the color filter. The method is disclosed.
 特許文献4には、円筒形の検査対象物の内周面及び外周面の少なくとも一方である被写面に検査光を照射可能な複数種類の光源と、上記検査対象物を撮像し、上記撮像された画像のうち上記被写面の周方向の一部分に相当する撮像検査範囲の画像に基づいて、上記検査対象物の外観を検査する撮像検査部と、を有する外観検査装置が開示されている。この外観検査装置は、上記検査対象物を検査位置に位置づける配置部と、上記検査位置に位置する上記検査対象物を上記円筒形の中心軸回りに回転させる回転部と、を有する位置決め機構を有する。上記光源は、上記撮像検査部の光軸と平行な光軸を有し且つ互いに平行に延びる一対の直線状の発光部を有するバー光源と、上記撮像検査部の光軸と同じ光軸を有し且つ上記一対の発光部の間に位置する同軸光源と、を備える。上記位置決め機構は、上記撮像検査部の光軸が上記撮像検査範囲内の上記検査対象物の被写面の接線に対して直交し、且つ上記バー光源の一対の発光部が、上記撮像検査範囲内の上記被写面と、上記撮像検査部の光軸方向に重ならない位置であり、且つ、上記中心軸が上記撮像検査部の光軸に対して所定の角度に傾いた状態である撮像配置に上記検査対象物を上記検査位置に位置づけ、上記撮像検査部は、上記回転部による検査対象物の回転と同期して上記検査対象物を撮像する。 Patent Document 4 describes a plurality of types of light sources capable of irradiating an object to be surfaced, which is at least one of an inner peripheral surface and an outer peripheral surface of a cylindrical inspection object, and an image of the inspection object. A visual inspection apparatus including an imaging inspection unit for inspecting the appearance of the inspection object based on an image of an imaging inspection range corresponding to a part of the image to be inspected in the circumferential direction is disclosed. .. This visual inspection device has a positioning mechanism having an arrangement portion for positioning the inspection object at the inspection position and a rotating portion for rotating the inspection object located at the inspection position around the central axis of the cylinder. .. The light source has a bar light source having an optical axis parallel to the optical axis of the imaging inspection unit and having a pair of linear light emitting units extending in parallel with each other, and the same optical axis as the optical axis of the imaging inspection unit. Moreover, a coaxial light source located between the pair of light emitting units is provided. In the positioning mechanism, the optical axis of the imaging inspection unit is orthogonal to the tangent line of the surface to be inspected within the imaging inspection range, and the pair of light emitting units of the bar light source is the imaging inspection range. An imaging arrangement in which the surface to be imaged is not overlapped with the optical axis of the imaging inspection unit and the central axis is tilted at a predetermined angle with respect to the optical axis of the imaging inspection unit. The inspection object is positioned at the inspection position, and the imaging inspection unit images the inspection object in synchronization with the rotation of the inspection object by the rotating unit.
日本国特開2015-206701号公報Japanese Patent Application Laid-Open No. 2015-206701 日本国特開2019-049478号公報Japanese Patent Application Laid-Open No. 2019-049478 日本国特開2011-112431号公報Japanese Patent Application Laid-Open No. 2011-11241 日本国特開2019-163953号公報Japanese Patent Application Laid-Open No. 2019-163953
 レンズ又はフィルム等の光透過性を有する部材の外観検査は、これまで目視によって行われてきた。特許文献1と特許文献3のように、外観検査を機械化する方法は提案されているが、これら方法では被検体に生じ得る多種類の欠陥を検出することが難しい。特許文献2と特許文献4は、光透過性を有する部材の検査を想定していない。 The appearance inspection of light-transmitting members such as lenses or films has been performed visually so far. Although methods for mechanizing visual inspection have been proposed as in Patent Document 1 and Patent Document 3, it is difficult to detect various types of defects that may occur in a subject by these methods. Patent Document 2 and Patent Document 4 do not assume inspection of a member having light transmission.
 本発明の目的は、光透過性を有する被検体の評価を高精度に行うことにある。 An object of the present invention is to evaluate a subject having light transmission with high accuracy.
 本発明の一態様の外観検査装置は、被検体が保持される保持部と、複数の形状の照明光を上記保持部に対して照射可能な照明部と、上記保持部を撮像する撮像部と、上記保持部、上記照明部、及び、上記撮像部の相対位置を変化させる駆動部と、上記相対位置及び上記照明光の形状を変更して上記撮像部に上記被検体を複数回撮像させる制御を行うプロセッサと、を備え、上記プロセッサは、上記照明光が上記被検体によって反射された反射光を含む上記被検体と、上記照明光が上記被検体を透過した透過光を含む上記被検体とを上記撮像部に撮像させるものである。 The visual inspection apparatus according to one aspect of the present invention includes a holding portion for holding a subject, an illuminating portion capable of irradiating the holding portion with illumination light having a plurality of shapes, and an imaging unit for imaging the holding portion. Control that causes the image pickup unit to image the subject multiple times by changing the relative positions of the holding unit, the illumination unit, and the image pickup unit, and the shape of the relative position and the illumination light. The processor includes the subject including the reflected light in which the illumination light is reflected by the subject, and the subject including the transmitted light in which the illumination light has passed through the subject. Is imaged by the image pickup unit.
 本発明の一態様の外観検査装置は、被検体が保持される保持部と、複数の形状の照明光を上記保持部に対して照射可能な照明部と、上記保持部を撮像する撮像部と、上記保持部、上記照明部、及び、上記撮像部の相対位置を変化させる駆動部と、上記相対位置及び上記照明光の形状を変更して上記撮像部に上記被検体を複数回撮像させる制御を行うプロセッサと、を備え、上記プロセッサは、上記照明部と上記撮像部の双方の位置を変更して上記撮像部に上記被検体を撮像させるものである。 The visual inspection apparatus according to one aspect of the present invention includes a holding portion for holding a subject, an illuminating portion capable of irradiating the holding portion with illumination light having a plurality of shapes, and an imaging unit for imaging the holding portion. , The holding unit, the illumination unit, and the driving unit that changes the relative position of the imaging unit, and the control that changes the relative position and the shape of the illumination light so that the imaging unit images the subject a plurality of times. The processor is provided with a processor for changing the positions of both the illumination unit and the image pickup unit so that the image pickup unit can image the subject.
 本発明の一態様の外観検査方法は、被検体が保持される保持部と、複数の形状の照明光を上記保持部に対して照射可能な照明部と、上記保持部を撮像する撮像部と、上記保持部、上記照明部、及び、上記撮像部の相対位置を変化させる駆動部と、を用いて上記被検体の外観を検査する外観検査方法であって、上記相対位置及び上記照明光の形状を変更して上記撮像部に上記被検体を複数回撮像させる制御を行う制御ステップを備え、上記制御ステップでは、上記照明光が上記被検体によって反射された反射光を含む上記被検体と、上記照明光が上記被検体を透過した透過光を含む上記被検体とを上記撮像部に撮像させるものである。 The visual inspection method according to one aspect of the present invention includes a holding portion for holding a subject, an illuminating portion capable of irradiating the holding portion with illumination light having a plurality of shapes, and an imaging unit for imaging the holding portion. A visual inspection method for inspecting the appearance of a subject by using the holding unit, the illuminating unit, and the driving unit that changes the relative position of the imaging unit, wherein the relative position and the illuminating light are used. A control step is provided for controlling the image pickup unit to change the shape so that the subject is imaged a plurality of times. In the control step, the illumination light includes the reflected light reflected by the subject and the subject. The image pickup unit is made to image the subject including the transmitted light transmitted through the subject by the illumination light.
 本発明の一態様の外観検査方法は、被検体が保持される保持部と、複数の形状の照明光を上記保持部に対して照射可能な照明部と、上記保持部を撮像する撮像部と、上記保持部、上記照明部、及び、上記撮像部の相対位置を変化させる駆動部と、を用いて上記被検体の外観を検査する外観検査方法であって、上記相対位置及び上記照明光の形状を変更して上記撮像部に上記被検体を複数回撮像させる制御を行う制御ステップを備え、上記制御ステップでは、上記照明部と上記撮像部の双方の位置を変更して上記撮像部に上記被検体を撮像させるものである。 The visual inspection method according to one aspect of the present invention includes a holding portion for holding a subject, an illuminating portion capable of irradiating the holding portion with illumination light having a plurality of shapes, and an imaging unit for imaging the holding portion. A visual inspection method for inspecting the appearance of a subject using the holding unit, the illuminating unit, and the driving unit that changes the relative position of the imaging unit, wherein the relative position and the illuminating light are used. The image pickup unit is provided with a control step for controlling the shape of the image pickup unit to image the subject a plurality of times. The subject is imaged.
 本発明の一態様の外観検査プログラムは、被検体が保持される保持部と、複数の形状の照明光を上記保持部に対して照射可能な照明部と、上記保持部を撮像する撮像部と、上記保持部、上記照明部、及び、上記撮像部の相対位置を変化させる駆動部と、を用いて上記被検体の外観を検査する外観検査プログラムであって、上記相対位置及び上記照明光の形状を変更して上記撮像部に上記被検体を複数回撮像させる制御を行う制御ステップをコンピュータに実行させるものであり、上記制御ステップでは、上記照明光が上記被検体によって反射された反射光を含む上記被検体と、上記照明光が上記被検体を透過した透過光を含む上記被検体とを上記撮像部に撮像させるものである。 The visual inspection program according to one aspect of the present invention includes a holding portion for holding a subject, an illuminating portion capable of irradiating the holding portion with illumination light having a plurality of shapes, and an imaging unit for imaging the holding portion. A visual inspection program for inspecting the appearance of the subject using the holding unit, the illuminating unit, and the driving unit that changes the relative position of the imaging unit, wherein the relative position and the illuminating light are used. The computer is made to execute a control step of changing the shape and controlling the image pickup unit to image the subject a plurality of times. In the control step, the illumination light reflects the reflected light of the subject. The image pickup unit is made to image the subject including the subject and the subject including the transmitted light transmitted by the illumination light through the subject.
 本発明の一態様の外観検査プログラムは、被検体が保持される保持部と、複数の形状の照明光を上記保持部に対して照射可能な照明部と、上記保持部を撮像する撮像部と、上記保持部、上記照明部、及び、上記撮像部の相対位置を変化させる駆動部と、を用いて上記被検体の外観を検査する外観検査プログラムであって、上記相対位置及び上記照明光の形状を変更して上記撮像部に上記被検体を複数回撮像させる制御を行う制御ステップをコンピュータに実行させるものであり、上記制御ステップでは、上記照明部と上記撮像部の双方の位置を変更して上記撮像部に上記被検体を撮像させるものである。 The visual inspection program according to one aspect of the present invention includes a holding portion for holding a subject, an illuminating portion capable of irradiating the holding portion with illumination light having a plurality of shapes, and an imaging unit for imaging the holding portion. This is an appearance inspection program for inspecting the appearance of the subject by using the holding unit, the lighting unit, and the driving unit that changes the relative position of the imaging unit. The computer is made to execute a control step of changing the shape and controlling the image pickup unit to image the subject a plurality of times. In the control step, the positions of both the illumination unit and the image pickup unit are changed. The image pickup unit is used to image the subject.
 本発明によれば、光透過性を有する被検体の評価を高精度に行うことができる。 According to the present invention, it is possible to evaluate a subject having light transmission with high accuracy.
本発明の一実施形態である外観検査装置100の概略構成を示す模式図である。It is a schematic diagram which shows the schematic structure of the appearance inspection apparatus 100 which is one Embodiment of this invention. 透過光検査処理時における撮像部30、載置部10、及びライン光源22の位置関係の一例を示す模式図である。It is a schematic diagram which shows an example of the positional relationship of the image pickup unit 30, the mounting unit 10, and the line light source 22 at the time of transmitted light inspection processing. 図2の状態ST1において、レンズLのうちのライン光が照射される範囲を示す模式図である。It is a schematic diagram which shows the range which the line light in a lens L is irradiated in the state ST1 of FIG. 第一反射光検査処理時における撮像部30、載置部10、及びフラット光源21の位置関係の一例を示す模式図である。It is a schematic diagram which shows an example of the positional relationship of the image pickup unit 30, the mounting unit 10, and the flat light source 21 at the time of the first reflected light inspection process. 図4の状態ST4において、フラット光の反射光が十分な量で撮像部30に入射されるレンズLの光反射領域を示す模式図である。FIG. 3 is a schematic diagram showing a light reflection region of the lens L in which a sufficient amount of reflected light of flat light is incident on the image pickup unit 30 in the state ST4 of FIG. レンズLが凹レンズである場合の第一反射光検査処理時における撮像部30、載置部10、及びフラット光源21の位置関係の一例を示す模式図である。It is a schematic diagram which shows an example of the positional relationship of the image pickup unit 30, the mounting unit 10, and the flat light source 21 at the time of the first reflected light inspection process when the lens L is a concave lens. 第二反射光検査処理時における撮像部30、載置部10、及びスポット光源23の位置関係の一例を示す模式図である。It is a schematic diagram which shows an example of the positional relationship of the image pickup unit 30, the mounting unit 10, and the spot light source 23 at the time of the second reflected light inspection process. 外観検査装置100の透過光検査処理時の動作を説明するためのフローチャートである。It is a flowchart for demonstrating the operation at the time of the transmitted light inspection processing of the appearance inspection apparatus 100. 図8のステップS5の詳細フローを示す図である。It is a figure which shows the detailed flow of the step S5 of FIG. 図8のステップS5の詳細フローを示す図である。It is a figure which shows the detailed flow of the step S5 of FIG. 外観検査装置100の第一反射光検査処理時の動作を説明するためのフローチャートである。It is a flowchart for demonstrating operation at the time of the 1st reflected light inspection processing of the appearance inspection apparatus 100.
 図1は、本発明の一実施形態である外観検査装置100の概略構成を示す模式図である。図1には、方向Xと、方向Xに直交する方向Yと、方向X及び方向Yに直交する方向Zとが示されている。例えば、方向Zが鉛直方向及びその反対方向と一致するように、外観検査装置100が構築される。 FIG. 1 is a schematic diagram showing a schematic configuration of a visual inspection apparatus 100 according to an embodiment of the present invention. FIG. 1 shows a direction X, a direction Y orthogonal to the direction X, and a direction Z orthogonal to the direction X and the direction Y. For example, the visual inspection device 100 is constructed so that the direction Z coincides with the vertical direction and the opposite direction.
 外観検査装置100は、方向Zにおける所定の位置に固定された基台11を備える。基台11には方向Zに貫通する貫通孔が形成されており、この貫通孔の内壁に略円筒状の載置部10(本明細書における保持部の一例)が回転自在に支持されている。載置部10は、外観検査装置100によって外観を検査する対象となる被検体としてのレンズLが載置される部材である。載置部10は、方向Zに延びる回転軸回りに回転自在に支持されている。載置部10にレンズLが載置された状態では、レンズLの光軸Kと、載置部10の回転中心とが一致するよう構成されている。 The visual inspection device 100 includes a base 11 fixed at a predetermined position in the direction Z. A through hole penetrating in the direction Z is formed in the base 11, and a substantially cylindrical mounting portion 10 (an example of a holding portion in the present specification) is rotatably supported on the inner wall of the through hole. .. The mounting unit 10 is a member on which the lens L as a subject to be inspected for appearance by the appearance inspection device 100 is placed. The mounting portion 10 is rotatably supported around a rotation axis extending in the direction Z. When the lens L is mounted on the mounting portion 10, the optical axis K of the lens L and the rotation center of the mounting portion 10 are configured to coincide with each other.
 基台11には、載置部10を回転させる回転機構10Aが設けられている。載置部10は、回転機構10Aによって、回転軸回りに回転できるように構成されている。載置部10の回転角度のことを載置部10の位置と定義する。 The base 11 is provided with a rotation mechanism 10A for rotating the mounting portion 10. The mounting portion 10 is configured to be rotatable around a rotation axis by a rotation mechanism 10A. The rotation angle of the mounting portion 10 is defined as the position of the mounting portion 10.
 外観検査装置100は、面光源を構成するフラット光源21と、フラット光源21を方向X及び方向Zに移動させ且つ方向Yに延びる軸Ax1回りに回転させるフラット光源駆動機構21Aと、を更に備える。フラット光源21及びフラット光源駆動機構21Aは、基台11よりも方向Zの一方側(図中の上側、第一側)に配置されている。 The visual inspection device 100 further includes a flat light source 21 constituting a surface light source, and a flat light source drive mechanism 21A for moving the flat light source 21 in the directions X and Z and rotating the flat light source 21 around an axis Ax1 extending in the direction Y. The flat light source 21 and the flat light source driving mechanism 21A are arranged on one side (upper side, first side in the drawing) of the direction Z with respect to the base 11.
 フラット光源21は、平面状の光(面状光)を載置部10に照射する。フラット光源21は、面状光を照射するものであれば構成は限定されない。例えば、フラット光源21は、LED(Light Emitting Diode)とライトガイドから構成されるもの、又は、平面状の有機EL(Electro Luminescence)から構成されるもの等を利用できる。 The flat light source 21 irradiates the mounting portion 10 with flat light (plane light). The configuration of the flat light source 21 is not limited as long as it irradiates planar light. For example, the flat light source 21 can be one composed of an LED (Light Lighting Diode) and a light guide, or one composed of a planar organic EL (Electroluminescence).
 以下では、フラット光源21の方向Xにおける位置、フラット光源21の方向Zにおける位置、及びフラット光源21の軸Ax1回りの回転角度の組み合わせを、フラット光源21の位置と定義する。 In the following, the combination of the position of the flat light source 21 in the direction X, the position of the flat light source 21 in the direction Z, and the rotation angle around the axis Ax1 of the flat light source 21 is defined as the position of the flat light source 21.
 外観検査装置100は、線光源を構成するライン光源22と、ライン光源22を方向X及び方向Zに移動させ且つ方向Yに延びる軸Ax2回りに回転させるライン光源駆動機構22Aと、を更に備える。ライン光源22及びライン光源駆動機構22Aは、基台11よりも方向Zの他方側(図中の下側、第二側)に配置されている。 The visual inspection device 100 further includes a line light source 22 constituting the line light source, and a line light source drive mechanism 22A for moving the line light source 22 in the direction X and the direction Z and rotating the line light source 22 around the axis Ax2 extending in the direction Y. The line light source 22 and the line light source drive mechanism 22A are arranged on the other side (lower side in the figure, second side) in the direction Z from the base 11.
 ライン光源22は、方向Yに延びる直線状の光(線状光)を載置部10に照射する。ライン光源22は、線状光を照射するものであれば構成は限定されない。例えば、ライン光源22は、メタルハライドランプとライトガイドから構成されるもの、又は、LEDとライトガイドから構成されるもの等を利用できる。 The line light source 22 irradiates the mounting portion 10 with linear light (linear light) extending in the direction Y. The configuration of the line light source 22 is not limited as long as it irradiates linear light. For example, as the line light source 22, one composed of a metal halide lamp and a light guide, one composed of an LED and a light guide, and the like can be used.
 以下では、ライン光源22の方向Xにおける位置、ライン光源22の方向Zにおける位置、及びライン光源22の軸Ax2回りの回転角度の組み合わせを、ライン光源22の位置と定義する。 In the following, the combination of the position of the line light source 22 in the direction X, the position of the line light source 22 in the direction Z, and the rotation angle of the line light source 22 around the axis Ax2 is defined as the position of the line light source 22.
 外観検査装置100は、載置部10及びこれに載置されたレンズLを撮像する撮像部30と、撮像部30に固定された、点光源を構成するスポット光源23と、撮像部30を方向X及び方向Zに移動させ且つ方向Yに延びる軸Ax3回りに回転させる撮像部駆動機構30Aと、を更に備える。撮像部30、スポット光源23、及び撮像部駆動機構30Aは、基台11よりも方向Zの一方側(図中の上側、第一側)に配置されている。 The visual inspection device 100 directs the image pickup unit 30 that images the mounting section 10 and the lens L mounted on the mounting section 10, the spot light source 23 that is fixed to the image pickup section 30 and constitutes a point light source, and the image pickup section 30. Further, an image pickup unit drive mechanism 30A that moves in X and direction Z and rotates around an axis Ax3 extending in direction Y is further provided. The image pickup unit 30, the spot light source 23, and the image pickup unit drive mechanism 30A are arranged on one side (upper side, first side in the drawing) of the direction Z with respect to the base 11.
 撮像部30は、撮像素子と撮像光学系を含み、載置部10に載置されたレンズLを、撮像光学系を通して撮像する。 The image pickup unit 30 includes an image pickup element and an image pickup optical system, and takes an image of the lens L mounted on the mounting unit 10 through the image pickup optical system.
 スポット光源23は、点状の光(点状光)を載置部10に照射する。スポット光源23は、点状光を照射するものであれば構成は限定されない。例えば、スポット光源23は、レーザ又はLEDと照射光学系とを含むもの等を利用できる。スポット光源23は、その光軸と、撮像部30の光軸とが交差する状態にて、撮像部30に固定されている。 The spot light source 23 irradiates the mounting portion 10 with point-like light (point-like light). The configuration of the spot light source 23 is not limited as long as it irradiates point-like light. For example, as the spot light source 23, a laser or one including an LED and an irradiation optical system can be used. The spot light source 23 is fixed to the image pickup unit 30 in a state where the optical axis thereof and the optical axis of the image pickup unit 30 intersect.
 撮像部駆動機構30Aは、撮像部30を移動または回転させることで、撮像部30に固定されたスポット光源23を移動または回転させるものである。このため、撮像部駆動機構30Aは、スポット光源23を方向X及び方向Zに移動させ且つ軸Ax3回りに回転させるスポット光源駆動機構ということもできる。 The image pickup unit drive mechanism 30A moves or rotates the spot light source 23 fixed to the image pickup unit 30 by moving or rotating the image pickup unit 30. Therefore, the image pickup unit drive mechanism 30A can also be said to be a spot light source drive mechanism that moves the spot light source 23 in the directions X and Z and rotates it around the axis Ax3.
 以下では、撮像部30の方向Xにおける位置、撮像部30の方向Zにおける位置、及び撮像部30の軸Ax3回りの回転角度の組み合わせを、撮像部30の位置と定義する。また、スポット光源23の方向Xにおける位置、スポット光源23の方向Zにおける位置、及びスポット光源23の軸Ax3回りの回転角度の組み合わせを、スポット光源23の位置と定義する。 Hereinafter, the combination of the position of the image pickup unit 30 in the direction X, the position of the image pickup unit 30 in the direction Z, and the rotation angle of the image pickup unit 30 around the axis Ax3 is defined as the position of the image pickup unit 30. Further, the combination of the position of the spot light source 23 in the direction X, the position of the spot light source 23 in the direction Z, and the rotation angle of the spot light source 23 around the axis Ax3 is defined as the position of the spot light source 23.
 フラット光源21、ライン光源22、及びスポット光源23は、複数の形状の光(第一形状としての線状光、第二形状としての面状光、及び第三形状としての点状光)を載置部10に照射可能な照明部20を構成している。 The flat light source 21, the line light source 22, and the spot light source 23 carry light having a plurality of shapes (linear light as the first shape, planar light as the second shape, and point light as the third shape). The illumination unit 20 capable of irradiating the placement unit 10 is configured.
 詳細は後述するが、所定の評価項目についてのレンズLの外観検査を行う際には、フラット光源21、ライン光源22、及びスポット光源23のいずれか1つが光を照射する状態に制御される。以下では、フラット光源21、ライン光源22、及びスポット光源23のうち、載置部10に光を照射する状態に制御される光源の位置を、照明部20の位置と定義する。なお、以下の説明で載置部10に光を照射する状態に制御される光源に加え、別の光源から光を照射してもよい。例えば、ライン光源22の検査において、フラット光源21をレンズ外周部の位置を特定するための補助照明として使ようにしてもよい。 Although the details will be described later, when the appearance inspection of the lens L for a predetermined evaluation item is performed, any one of the flat light source 21, the line light source 22, and the spot light source 23 is controlled to irradiate light. Hereinafter, among the flat light source 21, the line light source 22, and the spot light source 23, the position of the light source controlled so as to irradiate the mounting unit 10 with light is defined as the position of the illumination unit 20. In addition to the light source controlled to irradiate the mounting portion 10 with light in the following description, light may be irradiated from another light source. For example, in the inspection of the line light source 22, the flat light source 21 may be used as auxiliary lighting for specifying the position of the outer peripheral portion of the lens.
 フラット光源駆動機構21A、ライン光源駆動機構22A、撮像部駆動機構30A、及び回転機構10Aは、載置部10、照明部20、及び撮像部30の相対位置を変化させる駆動部を構成している。フラット光源駆動機構21A、ライン光源駆動機構22A、及び撮像部駆動機構30Aは、照明部20と撮像部30を載置部10に対して移動させる駆動機構を構成している。 The flat light source drive mechanism 21A, the line light source drive mechanism 22A, the image pickup unit drive mechanism 30A, and the rotation mechanism 10A constitute a drive unit that changes the relative positions of the mounting unit 10, the illumination unit 20, and the image pickup unit 30. .. The flat light source drive mechanism 21A, the line light source drive mechanism 22A, and the image pickup unit drive mechanism 30A constitute a drive mechanism for moving the illumination unit 20 and the image pickup unit 30 with respect to the mounting unit 10.
 外観検査装置100は、全体を統括制御する統括制御部40と、位置制御部41と、照明制御部42と、を更に備える。統括制御部40、位置制御部41、及び照明制御部42の各々は、各種の処理を行う処理部と、RAM(Randam Access Memory)及びROM(Read Only Memory)を含むメモリと、を備える。処理部のハードウェア的な構造は、次に示すような各種のプロセッサである。 The appearance inspection device 100 further includes a general control unit 40 that controls the whole, a position control unit 41, and a lighting control unit 42. Each of the general control unit 40, the position control unit 41, and the lighting control unit 42 includes a processing unit that performs various processes, and a memory including a RAM (Random Access Memory) and a ROM (Read Only Memory). The hardware structure of the processing unit is various processors as shown below.
 各種のプロセッサには、ソフトウエア(プログラム)を実行して各種の処理を行う汎用的なプロセッサであるCPU(Central Processing Unit)、FPGA(Field Programmable Gate Array)等の製造後に回路構成を変更可能なプロセッサであるプログラマブルロジックデバイス(Programmable Logic Device:PLD)、又は、ASIC(Aapplication Sspecific Iintegrated Ccircuit)等の特定の処理を実行させるために専用に設計された回路構成を有するプロセッサである専用電気回路等が含まれる。 For various processors, the circuit configuration can be changed after manufacturing CPU (Central Processing Unit), FPGA (Field Programmable Gate Array), etc., which are general-purpose processors that execute software (programs) to perform various processes. A dedicated electric circuit or the like, which is a processor having a circuit configuration specially designed for executing a specific process such as a programmable logic device (PLD) which is a processor or an ASIC (Aplication Specifici Integrated Circuit). included.
 処理部は、これら各種のプロセッサのうちの1つで構成されてもよいし、同種または異種の2つ以上のプロセッサの組み合せ(例えば、複数のFPGA、又は、CPUとFPGAの組み合わせ)で構成されてもよい。統括制御部40、位置制御部41、及び照明制御部42の各々の処理部は、ハードウェア的な構造として、上記各種のプロセッサを1つ以上用いて構成される。これらの各種のプロセッサのハードウェア的な構造は、より具体的には、半導体素子などの回路素子を組み合わせた電気回路(circuitry)である。統括制御部40、位置制御部41、及び照明制御部42は、処理部、RAM、及びROMが共通化された構成であってもよい。 The processing unit may be composed of one of these various processors, or may be composed of a combination of two or more processors of the same type or different types (for example, a plurality of FPGAs or a combination of a CPU and an FPGA). You may. Each processing unit of the integrated control unit 40, the position control unit 41, and the lighting control unit 42 is configured by using one or more of the above-mentioned various processors as a hardware-like structure. More specifically, the hardware-like structure of these various processors is an electric circuit (cyclery) in which circuit elements such as semiconductor elements are combined. The integrated control unit 40, the position control unit 41, and the lighting control unit 42 may have a common configuration of a processing unit, a RAM, and a ROM.
 位置制御部41は、統括制御部40からの指令にしたがって、撮像部駆動機構30A、フラット光源駆動機構21A、ライン光源駆動機構22A、及び回転機構10Aをそれぞれ独立して駆動する。位置制御部41は、撮像部駆動機構30Aを作動させて、撮像部30及びスポット光源23の位置を制御する。位置制御部41は、フラット光源駆動機構21Aを作動させて、フラット光源21の位置を制御する。位置制御部41は、ライン光源駆動機構22Aを作動させて、ライン光源22の位置を制御する。位置制御部41は、回転機構10Aを作動させて、載置部10の位置を制御する。 The position control unit 41 independently drives the image pickup unit drive mechanism 30A, the flat light source drive mechanism 21A, the line light source drive mechanism 22A, and the rotation mechanism 10A in accordance with a command from the overall control unit 40. The position control unit 41 operates the image pickup unit drive mechanism 30A to control the positions of the image pickup unit 30 and the spot light source 23. The position control unit 41 operates the flat light source drive mechanism 21A to control the position of the flat light source 21. The position control unit 41 operates the line light source drive mechanism 22A to control the position of the line light source 22. The position control unit 41 operates the rotation mechanism 10A to control the position of the mounting unit 10.
 照明制御部42は、統括制御部40からの指令にしたがって、フラット光源21、ライン光源22、及びスポット光源23を個別に制御する。 The lighting control unit 42 individually controls the flat light source 21, the line light source 22, and the spot light source 23 according to a command from the integrated control unit 40.
 統括制御部40は、載置部10に載置されたレンズLの外観検査を行う場合には、透過光検査処理と第一反射光検査処理を少なくとも行う。統括制御部40は、レンズLの構造によっては、追加で第二反射光検査処理を行う。以下、各検査処理の詳細について説明する。 When performing an appearance inspection of the lens L mounted on the mounting unit 10, the overall control unit 40 at least performs a transmitted light inspection process and a first reflected light inspection process. The overall control unit 40 additionally performs a second reflected light inspection process depending on the structure of the lens L. Hereinafter, details of each inspection process will be described.
(透過光検査処理)
 透過光検査処理は、ライン光源22の位置と撮像部30の位置をレンズLのレンズ情報(形状及び曲率等の構造に関する情報)に応じて決められた位置に制御する位置制御と、この位置制御によって位置が決められたライン光源22と撮像部30を作動させ、ライン光源22からのライン光が照射されたレンズLを、載置部10を回転させながら撮像部30によって複数回撮像させる撮像制御と、この撮像制御によって取得される複数の撮像画像に基づいてレンズLの第一評価項目に関する評価を行う評価処理と、を含む処理である。
(Transmitted light inspection process)
The transmitted light inspection process is a position control that controls the position of the line light source 22 and the position of the image pickup unit 30 to a position determined according to the lens information (information about the structure such as shape and curvature) of the lens L, and this position control. Imaging control in which the line light source 22 and the imaging unit 30 whose positions are determined by the above are operated, and the lens L irradiated with the line light from the line light source 22 is imaged a plurality of times by the imaging unit 30 while rotating the mounting unit 10. This is a process including an evaluation process for evaluating the first evaluation item of the lens L based on a plurality of captured images acquired by the image pickup control.
 第一評価項目とは、レンズの欠陥として広く知られている、キズ(線状の欠陥)、ブツ(点状又は円状の欠陥)、クモリ、及びこれら欠陥の複合体であるヨゴレ等である。キズ、ブツ、クモリ、及びヨゴレは、レンズの主要な欠陥であるが、これ以外の評価項目であってもよい。 The first evaluation item is scratches (linear defects), bumps (dotted or circular defects), spiders, and stains that are a complex of these defects, which are widely known as lens defects. .. Scratches, bumps, spiders, and stains are the major defects in the lens, but may be other endpoints.
 レンズLの第一評価項目に関する評価とは、例えば、撮像画像から検出されたキズ領域の特徴量(長さ、幅等)に基づいて、レンズLをランク分けし、撮像画像から検出されたブツ領域の特徴量(サイズ等)に基づいてレンズLをランク分けし、撮像画像から検出されたクモリ領域の特徴量(面積、輝度等)に基づいてレンズLをランク分けし、撮像画像から検出されたヨゴレ領域の特徴量(サイズ等)に基づいてレンズLをランク分けすることを言う。ランク分けとは、レンズLを良品、不良品、再検査が必要な品などのランクに分けることを言う。サイズとは、例えば、欠陥を取り囲む最小矩形の(長辺+短辺)/2によって算出することができる。また、サイズとして、欠陥を取り囲む最小矩形の面積を算出してもよい。 The evaluation regarding the first evaluation item of the lens L is, for example, ranking the lens L based on the feature amount (length, width, etc.) of the scratched region detected from the captured image, and the lumps detected from the captured image. The lens L is ranked based on the feature amount (size, etc.) of the region, and the lens L is ranked based on the feature amount (area, brightness, etc.) of the cloudy region detected from the captured image, and is detected from the captured image. It means to rank the lens L based on the feature amount (size, etc.) of the dirty area. Ranking means classifying the lens L into ranks such as non-defective products, defective products, and products that require re-inspection. The size can be calculated, for example, by (long side + short side) / 2 of the minimum rectangle surrounding the defect. Further, as the size, the area of the minimum rectangle surrounding the defect may be calculated.
 キズ、ブツ、クモリ、及びヨゴレは、レンズLの光軸方向の一方側から光を照射し、この光の透過光をレンズLの光軸方向の他方側から観察することで視認される。 Scratches, bumps, spiders, and stains are visually recognized by irradiating light from one side in the optical axis direction of the lens L and observing the transmitted light of this light from the other side in the optical axis direction of the lens L.
 上記の撮像制御にて得られるレンズLの撮像画像において、ライン光源22が写り込まない領域は、その領域にキズ、ブツ、クモリ、又はヨゴレが存在しなければ、輝度が低く且つ均一となる。この領域にキズ、ブツ、クモリ、又はヨゴレが存在していると、その欠陥の存在部位において輝度が高くなる。したがって、撮像画像のうちのライン光源22を含まない領域(ライン光源22が写り込んでいない領域)において、輝度が閾値よりも高い部分を検出することで、キズ、ブツ、クモリ、又はヨゴレの有無を判定できる。透過光検査処理では、このような思想により、キズ、ブツ、クモリ、又はヨゴレを検出し、各欠陥の特徴量に基づいて、第一評価項目についての評価を行う。 In the captured image of the lens L obtained by the above imaging control, the region where the line light source 22 is not reflected has low brightness and is uniform if there are no scratches, bumps, spiders, or stains in the region. If scratches, bumps, spiders, or stains are present in this region, the brightness becomes high at the site where the defect is present. Therefore, in the region of the captured image that does not include the line light source 22 (the region where the line light source 22 is not reflected), the presence or absence of scratches, bumps, spiders, or stains is detected by detecting the portion where the brightness is higher than the threshold value. Can be determined. In the transmitted light inspection process, scratches, bumps, spiders, or stains are detected based on this idea, and the first evaluation item is evaluated based on the feature amount of each defect.
 図2は、透過光検査処理時における撮像部30、載置部10、及びライン光源22の位置関係の一例を示す模式図である。 FIG. 2 is a schematic diagram showing an example of the positional relationship between the image pickup unit 30, the mounting unit 10, and the line light source 22 during the transmitted light inspection process.
 透過光検査処理において、統括制御部40は、図2の状態ST1となるよう上記の位置制御を行い、この状態ST1において載置部10を回転させ、載置部10が各回転位置にあるときにレンズLを撮像させる。以下では、一例として、載置部10が12度回転する毎にレンズLの撮像が1回行われ、載置部が1回転するものとして説明する。つまり、上記の撮像制御においては、合計29回の撮像が実施される。なお、撮像の間隔(角度)及び撮影回数は、任意で設定可能である。また、載置部は必ずしも1回転する必要はない。 In the transmitted light inspection process, the integrated control unit 40 performs the above position control so as to be in the state ST1 of FIG. 2, rotates the mounting unit 10 in this state ST1, and when the mounting unit 10 is in each rotation position. To image the lens L. In the following, as an example, the lens L is imaged once every time the mounting portion 10 is rotated by 12 degrees, and the mounting portion is rotated once. That is, in the above image pickup control, a total of 29 times of imaging are performed. The imaging interval (angle) and the number of shootings can be set arbitrarily. Further, the mounting portion does not necessarily have to make one rotation.
 透過光検査処理において、統括制御部40は、更に、図2の状態ST2となるよう上記の位置制御を行い、この状態ST2において載置部10を1回転させ、載置部10が各回転位置(12度のN倍(N=1~29)の回転位置)にあるときにレンズLを撮像する。 In the transmitted light inspection process, the integrated control unit 40 further performs the above position control so as to be in the state ST2 of FIG. 2, in this state ST2, the mounting unit 10 is rotated once, and the mounting unit 10 is in each rotation position. The lens L is imaged at (rotational position of 12 degrees N times (N = 1 to 29)).
 統括制御部40は、状態ST1での29回の撮像と状態ST2での29回の撮像によって得られた58枚の撮像画像の各々から第一評価項目の欠陥を検出し、その検出結果に基づいて、レンズLをランク分けする。 The overall control unit 40 detects the defect of the first evaluation item from each of the 58 captured images obtained by 29 times of imaging in the state ST1 and 29 times of the imaging in the state ST2, and is based on the detection result. Then, the lens L is ranked.
 図2に示す状態ST1は、撮像部30の光軸がレンズLの光軸Kと平行(図2の例では双方の光軸の方向X及び方向Yの位置が一致)であり、且つ、ライン光源22からのライン光の照射方向が光軸Kに対して傾斜している状態である。 In the state ST1 shown in FIG. 2, the optical axis of the image pickup unit 30 is parallel to the optical axis K of the lens L (in the example of FIG. 2, the positions of the directions X and Y of both optical axes match) and the line. The irradiation direction of the line light from the light source 22 is inclined with respect to the optical axis K.
 図3には、状態ST1において、レンズLのうちのライン光が照射される照射範囲AR1が示されている。図3に示すように、状態ST1においては、レンズLの方向Xにおける中心部(第二領域)にライン光が斜めに照射される。中心部は、レンズLの光軸を含み且つ方向Xに幅を持つ領域である。状態ST1において載置部10が1回転することで、レンズLの検査対象領域(具体的には、有効径の領域)全体にライン光が照射されることになる。 FIG. 3 shows the irradiation range AR1 to which the line light of the lens L is irradiated in the state ST1. As shown in FIG. 3, in the state ST1, the line light is obliquely irradiated to the central portion (second region) in the direction X of the lens L. The central portion is a region including the optical axis of the lens L and having a width in the direction X. When the mounting portion 10 makes one rotation in the state ST1, the line light is irradiated to the entire inspection target region (specifically, the region having an effective diameter) of the lens L.
 図2に示す状態ST2は、状態ST1に対し、ライン光源22の位置のみが変更された状態である。図3には、状態ST2において、レンズLのうちのライン光が照射される照射範囲AR2が示されている。図3に示すように、状態ST2においては、レンズLの方向Xの一方側の端部の領域(第一領域)にライン光が斜めに照射される。状態ST2において載置部10が1回転することで、レンズLの検査対象領域の径方向外側の周辺領域全体にライン光が照射されることになる。 The state ST2 shown in FIG. 2 is a state in which only the position of the line light source 22 is changed with respect to the state ST1. FIG. 3 shows the irradiation range AR2 to which the line light of the lens L is irradiated in the state ST2. As shown in FIG. 3, in the state ST2, the line light is obliquely irradiated to the region (first region) at one end of the direction X of the lens L. When the mounting portion 10 makes one rotation in the state ST2, the line light is irradiated to the entire peripheral region outside the radial direction of the inspection target region of the lens L.
 図3の例では、照射範囲AR1がレンズLの方向Yにおける一端から他端まで達しているが、これに限らない。例えば、図3の状態ST1aのように、照射範囲AR1がレンズLの方向X及び方向Yの中心部に設定されてもよい。この場合でも、状態ST1aにおいて載置部10が1回転し、且つ、状態ST2において載置部10が1回転することで、レンズLの検査対象領域全体にライン光を照射可能である。 In the example of FIG. 3, the irradiation range AR1 reaches from one end to the other end in the direction Y of the lens L, but the present invention is not limited to this. For example, as in the state ST1a of FIG. 3, the irradiation range AR1 may be set at the center of the direction X and the direction Y of the lens L. Even in this case, the mounting portion 10 makes one rotation in the state ST1a, and the mounting portion 10 makes one rotation in the state ST2, so that the entire inspection target region of the lens L can be irradiated with the line light.
 また、照射範囲AR2は、例えば、図3の状態ST2aのように、レンズLの方向Xの一方側の端部と中心部との間に設定されてもよい。この場合でも、状態ST1又は状態ST1aにおいて載置部10が1回転し、且つ、状態ST2aにおいて載置部10が1回転することで、レンズLの検査対象領域全体にライン光を照射可能である。 Further, the irradiation range AR2 may be set between one end and the center of the direction X of the lens L, for example, as in the state ST2a of FIG. Even in this case, the mounting portion 10 makes one rotation in the state ST1 or the state ST1a, and the mounting portion 10 makes one rotation in the state ST2a, so that the entire inspection target region of the lens L can be irradiated with the line light. ..
 状態ST1では、撮像部30にてレンズLを撮像した際に、撮像画像における照射範囲AR1にライン光源22が写り込まないように、ライン光源22の位置が決められる。このようなライン光源22の位置は、検査するレンズLの形状によってさまざまであり、被検体の形状に応じて決められる。 In the state ST1, the position of the line light source 22 is determined so that the line light source 22 is not reflected in the irradiation range AR1 in the captured image when the lens L is imaged by the image pickup unit 30. The position of such a line light source 22 varies depending on the shape of the lens L to be inspected, and is determined according to the shape of the subject.
 同様に、状態ST2では、撮像部30にてレンズLを撮像した際に、撮像画像における照射範囲AR2にライン光源22が写り込まないように、ライン光源22の位置が決められる。このようなライン光源22の位置は、検査するレンズLの形状によってさまざまであり、被検体の形状に応じて決められる。 Similarly, in the state ST2, the position of the line light source 22 is determined so that the line light source 22 is not reflected in the irradiation range AR2 in the image captured image when the lens L is imaged by the image pickup unit 30. The position of such a line light source 22 varies depending on the shape of the lens L to be inspected, and is determined according to the shape of the subject.
 なお、レンズLの構造によっては、状態ST1と状態ST2のいずれにおいても、レンズLの検査対象領域の周縁付近において撮像部30によって撮像することのできない死角の領域が生じたり、レンズLの撮像画像におけるレンズLの検査対象領域の周縁付近において、輝度が十分に低くならない領域が生じたりする場合がある。そのような場合には、レンズLの検査対象領域の周縁付近が撮像部30によって撮像でき、且つ、この周縁付近の撮像画像の輝度が十分に低くなるように、撮像部30の位置とライン光源22の位置が変更される。 Depending on the structure of the lens L, in both the state ST1 and the state ST2, a blind spot area that cannot be imaged by the image pickup unit 30 may occur near the peripheral edge of the inspection target area of the lens L, or an image captured by the lens L. In the vicinity of the peripheral edge of the inspection target region of the lens L in the above, there may be a region where the brightness is not sufficiently low. In such a case, the position of the image pickup unit 30 and the line light source so that the vicinity of the peripheral edge of the inspection target area of the lens L can be imaged by the image pickup unit 30 and the brightness of the image captured image near this peripheral edge is sufficiently low. The position of 22 is changed.
 統括制御部40は、例えば、図2の状態ST3に示すように、撮像部30の光軸をレンズLの光軸Kに対して傾斜させ、ライン光源22からのライン光がレンズLの方向Xの一方側の端部における状態ST2とは異なる領域(第三領域)に照射されるように、撮像部30の位置とライン光源22の位置を制御する。統括制御部40は、この状態ST3において載置部10を1回転させ、載置部10が各回転位置(12度のN倍の回転位置)にあるときにレンズLを撮像する。 For example, as shown in the state ST3 of FIG. 2, the overall control unit 40 tilts the optical axis of the image pickup unit 30 with respect to the optical axis K of the lens L, and the line light from the line light source 22 is the direction X of the lens L. The position of the image pickup unit 30 and the position of the line light source 22 are controlled so that the region (third region) different from the state ST2 at one end is irradiated. The overall control unit 40 rotates the mounting unit 10 once in this state ST3, and images the lens L when the mounting unit 10 is at each rotation position (rotation position of N times 12 degrees).
 この場合には、統括制御部40は、状態ST1での29回の撮像と状態ST2での29回の撮像と状態ST3での29回の撮像によって得られた87枚の撮像画像の各々から第一評価項目の欠陥を検出し、その検出結果に基づいて、レンズLをランク分けする。 In this case, the integrated control unit 40 is the first from each of the 87 captured images obtained by 29 times of imaging in the state ST1, 29 times of imaging in the state ST2, and 29 times of imaging in the state ST3. A defect of one evaluation item is detected, and the lens L is ranked based on the detection result.
 なお、状態ST1、状態ST2、及び状態ST3のいずれにおいても、撮像部30によって撮像できない死角の領域が生じてしまうレンズの場合もある。この場合には、載置部10においてレンズの表裏を反転させた上で、この死角の領域に存在する欠陥が撮像できるように、撮像部30の位置とライン光源22の位置を制御して、追加の撮像を行えばよい。 In any of the states ST1, the state ST2, and the state ST3, the lens may have a blind spot area that cannot be imaged by the image pickup unit 30. In this case, after inverting the front and back of the lens in the mounting portion 10, the position of the imaging unit 30 and the position of the line light source 22 are controlled so that defects existing in the blind spot region can be imaged. Additional imaging may be performed.
 図2の状態ST1は、撮像部30の位置が第一撮像位置であり、ライン光源22の位置が第二照射位置である状態を示している。図2の状態ST2は、撮像部30の位置が第一撮像位置であり、ライン光源22の位置が第一照射位置である状態を示している。図2の状態ST3は、撮像部30の位置が第二撮像位置である状態を示している。 The state ST1 in FIG. 2 shows a state in which the position of the imaging unit 30 is the first imaging position and the position of the line light source 22 is the second irradiation position. The state ST2 in FIG. 2 shows a state in which the position of the imaging unit 30 is the first imaging position and the position of the line light source 22 is the first irradiation position. The state ST3 in FIG. 2 shows a state in which the position of the imaging unit 30 is the second imaging position.
(第一反射光検査処理)
 第一反射光検査処理は、フラット光源21の位置と撮像部30の位置をレンズLのレンズ情報に応じて決められた位置に制御する位置制御と、この位置制御によって位置が決められたフラット光源21と撮像部30を作動させ、フラット光が照射されたレンズLを、載置部10を回転させながら撮像部30によって複数回撮像させる撮像制御と、この撮像制御によって取得される複数の撮像画像に基づいてレンズLの第二評価項目に関する評価を行う評価処理と、を含む処理である。
(First reflected light inspection process)
The first reflected light inspection process includes position control that controls the position of the flat light source 21 and the position of the image pickup unit 30 to positions determined according to the lens information of the lens L, and the flat light source whose position is determined by this position control. Imaging control in which the image pickup unit 30 operates the 21 and the image pickup unit 30 to image the lens L irradiated with flat light a plurality of times while rotating the mounting unit 10, and a plurality of image pickup images acquired by this image pickup control. This is a process including an evaluation process for evaluating the second evaluation item of the lens L based on the above.
 第二評価項目とは、レンズの欠陥として広く知られている、コート抜け(外表面に設けられる反射防止コートの剥がれ)、ヤケ(コートの色ムラ、または、正常部と異なる外観の箇所等)等の正反射光によって観察可能な欠陥である。コート抜け、及びヤケは、レンズの主要な欠陥であるが、これ以外の評価項目であってもよい。 The second evaluation item is coat removal (peeling of the antireflection coating provided on the outer surface), discoloration (color unevenness of the coat, or a part having an appearance different from the normal part, etc.), which is widely known as a defect of the lens. It is a defect that can be observed by the specularly reflected light. Coat removal and discoloration are the main defects of the lens, but other evaluation items may be used.
 レンズLの第二評価項目に関する評価とは、例えば、撮像画像から検出されたコート抜け領域の特徴量(サイズ)に基づいてレンズLをランク分けし、撮像画像から検出されたヤケ領域の特徴量(サイズ、カラー情報(RGB,HSV)等)に基づいてレンズLをランク分けすることを言う。サイズとは、例えば、欠陥を取り囲む最小矩形の(長辺+短辺)/2によって算出することができる。また、サイズとして、欠陥を取り囲む最小矩形の面積を算出してもよい。また、RGBとは、Red,Green,Blueの略称である。HSVとは、Hue,Saturation,Valueの略称である。 The evaluation regarding the second evaluation item of the lens L is, for example, ranking the lens L based on the feature amount (size) of the coat-missing region detected from the captured image, and the feature amount of the discolored region detected from the captured image. It means to rank the lens L based on (size, color information (RGB, HSV), etc.). The size can be calculated, for example, by (long side + short side) / 2 of the minimum rectangle surrounding the defect. Further, as the size, the area of the minimum rectangle surrounding the defect may be calculated. RGB is an abbreviation for Red, Green, and Blue. HSV is an abbreviation for Hue, Saturation, and Value.
 コート抜けとヤケは、レンズLの光軸方向の一方側から光を照射し、この光の反射光をレンズLの光軸方向の一方側から観察することで視認される。レンズLの撮像画像において、フラット光源21が写り込む領域は、その領域にコート抜けが存在しなければ、輝度ムラがない状態となる。この領域にコート抜けが存在していると、その存在部位において輝度の増大が生じる。したがって、撮像画像のうちのフラット光源21を含む領域(フラット光源21が写り込む領域)において、輝度が閾値以上となる領域の有無を判定することで、コート抜けの有無を判定できる。 Coat removal and discoloration are visually recognized by irradiating light from one side in the optical axis direction of the lens L and observing the reflected light of this light from one side in the optical axis direction of the lens L. In the captured image of the lens L, the region where the flat light source 21 is reflected is in a state where there is no uneven brightness unless there is a coat omission in that region. If there is a coat omission in this region, an increase in brightness occurs at the site where the coat is missing. Therefore, in the region including the flat light source 21 (the region in which the flat light source 21 is reflected) in the captured image, the presence or absence of the coat omission can be determined by determining the presence or absence of the region where the brightness is equal to or higher than the threshold value.
 また、レンズLの撮像画像において、フラット光源21が写り込む領域は、その領域にヤケが存在しなければ、輝度ムラ又は色ムラがない状態となる。この領域にヤケが存在していると、その存在部位において輝度ムラ又は色ムラが生じる。したがって、撮像画像のうちのフラット光源21を含む領域において、輝度が周辺よりも高い領域又は色味が周辺と異なる領域の有無を判定することで、ヤケの有無を判定できる。第一反射光検査処理では、このような思想により、コート抜けとヤケを検出し、各欠陥の特徴量に基づいて、第二評価項目についての評価を行う。 Further, in the captured image of the lens L, the region where the flat light source 21 is reflected will be in a state where there is no luminance unevenness or color unevenness if there is no discoloration in that region. If discoloration is present in this region, uneven brightness or uneven color occurs in the presence portion. Therefore, in the region including the flat light source 21 in the captured image, the presence or absence of discoloration can be determined by determining the presence or absence of a region having a higher brightness than the periphery or a region having a color tint different from that of the periphery. In the first reflected light inspection process, coat omission and discoloration are detected based on this idea, and the second evaluation item is evaluated based on the feature amount of each defect.
 図4は、第一反射光検査処理時における撮像部30、載置部10、及びフラット光源21の位置関係の一例を示す模式図である。 FIG. 4 is a schematic diagram showing an example of the positional relationship between the image pickup unit 30, the mounting unit 10, and the flat light source 21 during the first reflected light inspection process.
 第一反射光検査処理において、統括制御部40は、図4の状態ST4となるよう上記の位置制御を行い、この状態ST4において載置部10を1回転させ、載置部10が各回転位置(12度のN倍の回転位置)にあるときにレンズLを撮像する。 In the first reflected light inspection process, the overall control unit 40 performs the above position control so as to be in the state ST4 of FIG. 4, in this state ST4, the mounting unit 10 is rotated once, and the mounting unit 10 is in each rotation position. The lens L is imaged when it is at (rotation position of N times 12 degrees).
 更に、統括制御部40は、図4の状態ST5となるよう上記の位置制御を行い、この状態ST5において載置部10を1回転させ、載置部10が各回転位置(12度のN倍の回転位置)にあるときにレンズLを撮像する。 Further, the overall control unit 40 performs the above position control so as to be in the state ST5 of FIG. 4, and in this state ST5, the mounting unit 10 is rotated once, and the mounting unit 10 is rotated at each rotation position (N times 12 degrees). The lens L is imaged when it is in the rotational position of.
 統括制御部40は、状態ST4での29回の撮像と状態ST5での29回の撮像によって得られた58枚の撮像画像の各々から第二評価項目の欠陥を検出し、その検出結果に基づいて、レンズLをランク分けする。 The overall control unit 40 detects the defect of the second evaluation item from each of the 58 captured images obtained by 29 times of imaging in the state ST4 and 29 times of the imaging in the state ST5, and is based on the detection result. Then, the lens L is ranked.
 図4に示す状態ST4は、撮像部30の光軸がレンズLの光軸Kに対して傾斜し、且つ、フラット光源21の発光面の垂線の延びる方向が光軸Kに対して傾斜している状態である。 In the state ST4 shown in FIG. 4, the optical axis of the image pickup unit 30 is tilted with respect to the optical axis K of the lens L, and the direction in which the perpendicular line of the light emitting surface of the flat light source 21 extends is tilted with respect to the optical axis K. It is in a state of being.
 図5には、状態ST4において、フラット光源21から照射されるフラット光の反射光が十分な量で撮像部30に入射されるレンズLの光反射領域を枠AR3にて示している。状態ST4においては、レンズLの方向X及び方向Yにおける中心部に、十分な量のフラット光が撮像部30に向けて反射する光反射領域が存在する。状態ST4において載置部10が1回転することで、レンズLの検査対象領域のうちの径方向外側の周辺部を除く部分から、十分な量の反射光を撮像部30にて撮像できるようになる。 FIG. 5 shows a light reflection region of the lens L in which the reflected light of the flat light emitted from the flat light source 21 is incident on the image pickup unit 30 in a sufficient amount in the state ST4 by the frame AR3. In the state ST4, there is a light reflection region in which a sufficient amount of flat light is reflected toward the image pickup unit 30 at the center of the lens L in the direction X and the direction Y. By rotating the mounting portion 10 once in the state ST4, a sufficient amount of reflected light can be imaged by the imaging unit 30 from the portion of the lens L to be inspected except the peripheral portion on the outer side in the radial direction. Become.
 図4に示す状態ST5は、状態ST4に対し、撮像部30とフラット光源21の位置が変更された状態である。図5には、状態ST5において、フラット光源21から照射されるフラット光の反射光が十分な量で撮像部30に入射されるレンズLの光反射領域を枠AR4にて示している。状態ST5においては、レンズLの方向Xにおける一方の端部に、十分な量のフラット光が撮像部30に向けて反射する光反射領域が存在する。状態ST5において載置部10が1回転することで、レンズLの検査対象領域のうちの径方向外側の周辺部から、十分な量の反射光を撮像部30にて撮像できるようになる。 The state ST5 shown in FIG. 4 is a state in which the positions of the image pickup unit 30 and the flat light source 21 are changed with respect to the state ST4. FIG. 5 shows a light reflection region of the lens L in which the reflected light of the flat light emitted from the flat light source 21 is incident on the image pickup unit 30 in a sufficient amount in the state ST5 by the frame AR4. In the state ST5, at one end of the lens L in the direction X, there is a light reflection region in which a sufficient amount of flat light is reflected toward the image pickup unit 30. When the mounting portion 10 makes one rotation in the state ST5, a sufficient amount of reflected light can be imaged by the imaging unit 30 from the peripheral portion on the outer side in the radial direction of the inspection target region of the lens L.
 このように、第一反射光検査処理では、レンズLの検査対象領域全体から十分な量の反射光が撮像部30に入射されるように、撮像部30とフラット光源21の位置が決められる。このような撮像部30の位置とフラット光源21の位置の組み合わせは、検査するレンズLの形状によってさまざまであり、被検体の形状に応じて決められる。 As described above, in the first reflected light inspection process, the positions of the image pickup unit 30 and the flat light source 21 are determined so that a sufficient amount of reflected light is incident on the image pickup unit 30 from the entire inspection target area of the lens L. The combination of the position of the imaging unit 30 and the position of the flat light source 21 varies depending on the shape of the lens L to be inspected, and is determined according to the shape of the subject.
 例えば、レンズLが凹レンズである場合には、図6の状態ST6及び状態ST7にて、レンズLの撮像が行われる。図6に示した枠AR5と枠AR6は、フラット光源21から照射されるフラット光の反射光が十分な量で撮像部30に入射されるレンズLの光反射領域を示す。 For example, when the lens L is a concave lens, the lens L is imaged in the states ST6 and ST7 of FIG. The frame AR5 and the frame AR6 shown in FIG. 6 indicate a light reflection region of the lens L in which a sufficient amount of reflected light of the flat light emitted from the flat light source 21 is incident on the image pickup unit 30.
 なお、レンズLの構造によっては、光軸方向の一方の面側からの撮像だけでは、レンズLの検査対象領域の全体から十分な量の反射光を撮像部30に入射させることができない場合がある。そのような場合には、載置部10においてレンズLの表裏を反転させた上で、撮像部30の位置とフラット光源21の位置を制御して撮像を行えばよい。 Depending on the structure of the lens L, a sufficient amount of reflected light may not be incident on the image pickup unit 30 from the entire inspection target area of the lens L only by imaging from one surface side in the optical axis direction. be. In such a case, the mounting unit 10 may invert the front and back of the lens L, and then control the position of the imaging unit 30 and the position of the flat light source 21 to perform imaging.
(第二反射光検査処理)
 第二反射光検査処理は、スポット光源23及び撮像部30の位置をレンズLのレンズ情報に応じて決められた位置に制御する位置制御と、この位置制御によって位置が決められたスポット光源23と撮像部30を作動させ、スポット光が照射されたレンズLを、載置部10を回転させながら撮像部30によって複数回撮像させる撮像制御と、この撮像制御によって取得される複数の撮像画像に基づいてレンズLの第三評価項目に関する評価を行う評価処理と、を含む処理である。
(Second reflected light inspection process)
The second reflected light inspection process includes a position control that controls the positions of the spot light source 23 and the image pickup unit 30 to a position determined according to the lens information of the lens L, and a spot light source 23 whose position is determined by this position control. Based on the image pickup control in which the image pickup unit 30 is operated and the lens L irradiated with the spot light is imaged a plurality of times by the image pickup unit 30 while rotating the mounting unit 10, and a plurality of image pickup images acquired by this image pickup control. This is a process including an evaluation process for evaluating the third evaluation item of the lens L.
 第三評価項目とは、墨塗部を持つレンズにのみ発生し得る墨不良である。墨不良とは、墨塗部の一部が薄い、又は、剥がれた状態を言う。 The third evaluation item is a black ink defect that can occur only on a lens having a black ink part. Ink defect refers to a state in which a part of the ink-painted portion is thin or peeled off.
 レンズLの第三評価項目に関する評価とは、撮像画像から検出された墨不良領域の特徴量(長さ又は面積)に基づいて、レンズLをランク分けすることを言う。 The evaluation regarding the third evaluation item of the lens L means that the lens L is ranked based on the feature amount (length or area) of the black defect region detected from the captured image.
 墨不良は、レンズLの光軸方向の一方側からレンズLの墨塗部に光を照射し、この光の反射光をレンズLの光軸方向の一方側から観察することで視認される。レンズLの撮像画像における墨塗部は、墨不良が存在しなければ、輝度が低い状態となる。一方、墨不良が存在していると、その存在部位において輝度が高くなる。したがって、撮像画像のうちの墨塗部を含む領域において、輝度の高い領域を探すことで、墨不良の有無を判定できる。第二反射光検査処理では、このような思想により、墨不良を検出し、その検出結果に基づいて、第三評価項目についての評価を行う。 The black defect is visually recognized by irradiating the blackened portion of the lens L with light from one side in the optical axis direction of the lens L and observing the reflected light of this light from one side in the optical axis direction of the lens L. The blackened portion in the captured image of the lens L is in a low brightness state if there is no black ink defect. On the other hand, if a black ink defect is present, the brightness is increased at the location where the ink defect is present. Therefore, it is possible to determine the presence or absence of black ink defects by searching for a region having high luminance in the region including the black-painted portion of the captured image. In the second reflected light inspection process, the black defect is detected based on such an idea, and the third evaluation item is evaluated based on the detection result.
 図7は、第二反射光検査処理時における撮像部30、載置部10、及びスポット光源23の位置関係の一例を示す模式図である。図7に示すレンズLには墨塗部BLが設けられている。 FIG. 7 is a schematic diagram showing an example of the positional relationship between the image pickup unit 30, the mounting unit 10, and the spot light source 23 during the second reflected light inspection process. The lens L shown in FIG. 7 is provided with a black-painted portion BL.
 第二反射光検査処理において、統括制御部40は、図7の状態ST8となるよう上記の位置制御を行い、この状態ST8において載置部10を1回転させ、載置部10が各回転位置(12度のN倍の回転位置)にあるときにレンズLを撮像する。状態ST8において載置部10が1回転することで、レンズLの墨塗部BL全体からの反射光を撮像部30に撮像できるようになる。なお、上述の通り12度は一例であり、撮像の間隔(角度)及び撮影回数は、任意で設定可能である。 In the second reflected light inspection process, the overall control unit 40 performs the above position control so as to be in the state ST8 of FIG. 7, in this state ST8, the mounting unit 10 is rotated once, and the mounting unit 10 is in each rotation position. The lens L is imaged when it is at (rotation position of N times 12 degrees). When the mounting portion 10 rotates once in the state ST8, the reflected light from the entire black-painted portion BL of the lens L can be imaged by the image pickup unit 30. As described above, 12 degrees is an example, and the imaging interval (angle) and the number of shootings can be set arbitrarily.
 統括制御部40は、状態ST8での29回の撮像によって得られた29枚の撮像画像の各々の墨塗部から第三評価項目の欠陥を検出し、その検出結果に基づいて、レンズLをランク分けする。 The overall control unit 40 detects the defect of the third evaluation item from each of the blackened parts of the 29 images obtained by the 29 times of imaging in the state ST8, and based on the detection result, sets the lens L. Rank.
 なお、状態ST8だけではレンズLの墨塗部BLの全体からスポット光の反射光を撮像できなかったり、状態ST8では墨塗部BLの一部領域が全体的に光ってしまったりするレンズ構造の場合もある。この場合には、例えば状態ST9のように撮像部30及びスポット光源23の位置を変更した別の条件にて撮像が行われる。 It should be noted that the lens structure has a lens structure in which the reflected light of the spot light cannot be imaged from the entire black-painted portion BL of the lens L only in the state ST8, or a part of the black-painted portion BL is totally illuminated in the state ST8. In some cases. In this case, imaging is performed under another condition in which the positions of the imaging unit 30 and the spot light source 23 are changed, for example, as in the state ST9.
 このように、複数の状態にてレンズLを撮像することで、墨塗部BLに存在する墨不良領域(スポット光の照射によって輝度が高くなる領域)を漏れなく検出できるようになる。この場合には、統括制御部40は、状態ST8での29回の撮像と状態ST9での29回の撮像によって得られた58枚の撮像画像の各々の墨塗部BLから欠陥を検出し、その検出結果に基づいて、レンズLをランク分けする。 By imaging the lens L in a plurality of states in this way, it becomes possible to detect the black ink defect area (the area where the brightness is increased by the irradiation of the spot light) existing in the black ink portion BL without omission. In this case, the integrated control unit 40 detects a defect from each of the black-painted portions BL of the 58 captured images obtained by 29 times of imaging in the state ST8 and 29 times of imaging in the state ST9. The lens L is ranked based on the detection result.
 このように、第二反射光検査処理では、レンズLの墨塗部BL全体からの反射光が撮像部30に入射されるように、撮像部30とスポット光源23の位置が決められる。このような撮像部30の位置とスポット光源23の位置の組み合わせは、検査するレンズLの形状によってさまざまであり、被検体の形状に応じて決められる。 As described above, in the second reflected light inspection process, the positions of the image pickup unit 30 and the spot light source 23 are determined so that the reflected light from the entire black-painted portion BL of the lens L is incident on the image pickup unit 30. The combination of the position of the imaging unit 30 and the position of the spot light source 23 varies depending on the shape of the lens L to be inspected, and is determined according to the shape of the subject.
 図8は、外観検査装置100の透過光検査処理時の動作を説明するためのフローチャートである。以下では、図2に示した状態ST1と状態ST2の2つの条件で検査を行う場合を例にして説明する。 FIG. 8 is a flowchart for explaining the operation of the visual inspection apparatus 100 during the transmitted light inspection process. In the following, a case where the inspection is performed under the two conditions of the state ST1 and the state ST2 shown in FIG. 2 will be described as an example.
 統括制御部40は、レンズLのレンズ情報を取得し、このレンズ情報に基づいて、状態ST1と状態ST2を決定する。そして、統括制御部40は、まず、状態ST1となるように、撮像部30の位置とライン光源22の位置を制御する(ステップS1)。 The overall control unit 40 acquires the lens information of the lens L, and determines the state ST1 and the state ST2 based on the lens information. Then, the overall control unit 40 first controls the position of the image pickup unit 30 and the position of the line light source 22 so as to be in the state ST1 (step S1).
 次に、統括制御部40は、載置部10を回転駆動し、載置部10の回転角度が12度増えるごとに、載置部10に載置されたレンズLを撮像部30に撮像させ、撮像部30からレンズLの撮像画像を取得し、保存する(ステップS2)。 Next, the overall control unit 40 rotationally drives the mounting unit 10 and causes the imaging unit 30 to take an image of the lens L mounted on the mounting unit 10 every time the rotation angle of the mounting unit 10 increases by 12 degrees. , The captured image of the lens L is acquired from the imaging unit 30 and saved (step S2).
 次に、統括制御部40は、状態ST2となるように、撮像部30の位置とライン光源22の位置を制御する(ステップS3)。 Next, the overall control unit 40 controls the position of the image pickup unit 30 and the position of the line light source 22 so as to be in the state ST2 (step S3).
 次に、統括制御部40は、載置部10を回転駆動し、載置部10の回転角度が12度増えるごとに、載置部10に載置されたレンズLを撮像部30に撮像させ、撮像部30からレンズLの撮像画像を取得し、保存する(ステップS4)。 Next, the overall control unit 40 rotationally drives the mounting unit 10 and causes the imaging unit 30 to take an image of the lens L mounted on the mounting unit 10 every time the rotation angle of the mounting unit 10 increases by 12 degrees. , The captured image of the lens L is acquired from the imaging unit 30 and saved (step S4).
 次に、統括制御部40は、ステップS2にて保存した29枚の撮像画像と、ステップS4にて保存した29枚の撮像画像とを併せた合計58枚の撮像画像に基づいて、キズ、ブツ、クモリ、及びヨゴレの4つの第一評価項目毎に、レンズLの評価を行う(ステップS5)。 Next, the overall control unit 40 has scratches and scratches based on a total of 58 captured images including the 29 captured images saved in step S2 and the 29 captured images saved in step S4. The lens L is evaluated for each of the four first evaluation items of, spider, and stain (step S5).
 図9及び図10は、図8のステップS5の詳細を説明するためのフローチャートである。 9 and 10 are flowcharts for explaining the details of step S5 of FIG.
 統括制御部40は、参照番号“N”を1に設定し(ステップS11)、ステップS2にて保存した29枚の撮像画像のうちの“N”枚目の撮像画像における第一既定領域に対して欠陥検出処理を行う(ステップS12)。 The overall control unit 40 sets the reference number “N” to 1 (step S11), and for the first default area in the “N” th image taken out of the 29 images saved in step S2. The defect detection process is performed (step S12).
 第一既定領域とは、撮像画像においてライン光が写り込んでいない、輝度の十分に低くなっている領域であり、レンズ情報に応じて予め決められる。第一既定領域は、ユーザから指定された領域としてもよい。 The first default area is an area where the line light is not reflected in the captured image and the brightness is sufficiently low, and is predetermined according to the lens information. The first default area may be an area specified by the user.
 欠陥検出処理は、第一既定領域の画素値の2値化又は微分処理を行うことで、閾値以上の輝度の領域を欠陥として検出する処理である。欠陥検出処理のアルゴリズムは、キズ、ブツ、クモリ、及びヨゴレの欠陥種別毎に用意されている。統括制御部40は、1つの撮像画像に対して4種類の欠陥検出処理を個別に実行する。 The defect detection process is a process of detecting a region having a brightness equal to or higher than the threshold value as a defect by binarizing or differentiating the pixel value of the first default region. Defect detection processing algorithms are prepared for each defect type of scratches, bumps, spiders, and stains. The integrated control unit 40 individually executes four types of defect detection processes for one captured image.
 次に、統括制御部40は、ステップS12の欠陥検出処理にて検出した欠陥種別毎の欠陥の特徴量を算出して、これを保存する(ステップS13)。 Next, the integrated control unit 40 calculates the feature amount of the defect for each defect type detected in the defect detection process in step S12, and saves this (step S13).
 以下では、N枚目の撮像画像から検出したキズ欠陥の特徴量のことをキズ特徴量Pk(N)と記載する。N枚目の撮像画像から検出したブツ欠陥の特徴量のことをブツ特徴量Pb(N)と記載する。N枚目の撮像画像から検出したクモリ欠陥の特徴量のことをクモリ特徴量Pc(N)と記載する。N枚目の撮像画像から検出したヨゴレ欠陥の特徴量のことをヨゴレ特徴量Py(N)と記載する。キズ特徴量Pk(N)、ブツ特徴量Pb(N)、クモリ特徴量Pc(N)、及びヨゴレ特徴量Py(N)を総称して特徴量P(N)と記載する。 In the following, the feature amount of the scratch defect detected from the Nth captured image will be referred to as the scratch feature amount Pk (N). The feature amount of the lump defect detected from the Nth captured image is referred to as a lump feature amount Pb (N). The feature amount of the spider defect detected from the Nth captured image is referred to as a spider feature amount Pc (N). The feature amount of the stain defect detected from the Nth captured image is referred to as a stain feature amount Py (N). The scratch feature amount Pk (N), the lump feature amount Pb (N), the spider feature amount Pc (N), and the stain feature amount Py (N) are collectively referred to as the feature amount P (N).
 次に、統括制御部40は、特徴量P(N)のうちの最大値を評価データとして保持する(ステップS14)。 Next, the integrated control unit 40 holds the maximum value of the feature amount P (N) as evaluation data (step S14).
 具体的には、統括制御部40は、キズ特徴量Pk(N)のうちの最大値を、キズ欠陥を評価するためのキズ評価データとして保持する。統括制御部40は、ブツ特徴量Pb(N)のうちの最大値を、ブツ欠陥を評価するためのブツ評価データとして保持する。統括制御部40は、クモリ特徴量Pc(N)のうちの最大値を、クモリ欠陥を評価するためのクモリ評価データとして保持する。統括制御部40は、ヨゴレ特徴量Py(N)のうちの最大値を、ヨゴレ欠陥を評価するためのヨゴレ評価データとして保持する。統括制御部40は、欠陥が検出されなかった欠陥種別については、例えば特徴量として考えられる最低値を評価データとして保持する。 Specifically, the integrated control unit 40 holds the maximum value of the scratch feature amount Pk (N) as scratch evaluation data for evaluating scratch defects. The integrated control unit 40 holds the maximum value of the lump feature amount Pb (N) as the lump evaluation data for evaluating the lump defect. The integrated control unit 40 holds the maximum value of the spider feature amount Pc (N) as spider evaluation data for evaluating spider defects. The integrated control unit 40 holds the maximum value of the stain feature amount Py (N) as stain evaluation data for evaluating stain defects. The integrated control unit 40 holds, for example, the lowest value that can be considered as a feature amount as evaluation data for the defect type in which no defect is detected.
 次に、統括制御部40は、参照番号“N”を1つ増やし(ステップS15)、ステップS2にて保存した29枚の撮像画像のうちの“N”枚目の撮像画像における第一既定領域に対して欠陥検出処理を行う(ステップS16)。 Next, the overall control unit 40 increases the reference number “N” by one (step S15), and the first default area in the “N” th captured image among the 29 captured images saved in step S2. Defect detection processing is performed on the image (step S16).
 次に、統括制御部40は、ステップS16の欠陥検出処理にて検出した欠陥種別毎の欠陥の特徴量P(N)を算出して、これを保存する(ステップS17)。 Next, the integrated control unit 40 calculates the feature amount P (N) of the defect for each defect type detected in the defect detection process in step S16, and saves this (step S17).
 次に、統括制御部40は、キズ、ブツ、クモリ、及びヨゴレの欠陥種別毎に、ステップS17にて算出した特徴量P(N)のうちの最大値が評価データよりも大きいかどうかを判定する(ステップS18)。 Next, the overall control unit 40 determines whether or not the maximum value of the feature quantities P (N) calculated in step S17 is larger than the evaluation data for each defect type of scratches, bumps, spiders, and stains. (Step S18).
 統括制御部40は、ステップS17にて算出した特徴量P(N)のうちの最大値が評価データよりも大きい欠陥種別が存在する場合には、この最大値によって、その欠陥種別の評価データを更新する(ステップS19)。 When there is a defect type in which the maximum value of the feature amount P (N) calculated in step S17 is larger than the evaluation data, the overall control unit 40 uses this maximum value to generate the evaluation data of the defect type. Update (step S19).
 具体的には、統括制御部40は、キズ特徴量Pk(N)のうちの最大値がキズ評価データよりも大きい場合には、この最大値を最新のキズ評価データとして保持する。統括制御部40は、キズ特徴量Pk(N)のうちの最大値がキズ評価データ以下の場合には、キズ評価データの更新は行わない。 Specifically, when the maximum value of the scratch feature amount Pk (N) is larger than the scratch evaluation data, the integrated control unit 40 holds this maximum value as the latest scratch evaluation data. When the maximum value of the scratch feature amount Pk (N) is equal to or less than the scratch evaluation data, the integrated control unit 40 does not update the scratch evaluation data.
 統括制御部40は、ブツ特徴量Pb(N)のうちの最大値がブツ評価データよりも大きい場合には、この最大値を最新のブツ評価データとして保持する。統括制御部40は、ブツ特徴量Pb(N)のうちの最大値がブツ評価データ以下の場合には、ブツ評価データの更新は行わない。 When the maximum value of the stuff feature amount Pb (N) is larger than the stuff evaluation data, the integrated control unit 40 holds this maximum value as the latest stuff evaluation data. The integrated control unit 40 does not update the item evaluation data when the maximum value of the item feature amount Pb (N) is equal to or less than the item evaluation data.
 統括制御部40は、クモリ特徴量Pc(N)のうちの最大値がクモリ評価データよりも大きい場合には、この最大値を最新のクモリ評価データとして保持する。統括制御部40は、クモリ特徴量Pc(N)のうちの最大値がクモリ評価データ以下の場合には、クモリ評価データの更新は行わない。 When the maximum value of the spider feature amount Pc (N) is larger than the spider evaluation data, the integrated control unit 40 holds this maximum value as the latest spider evaluation data. When the maximum value of the spider feature amount Pc (N) is equal to or less than the spider evaluation data, the integrated control unit 40 does not update the spider evaluation data.
 統括制御部40は、ヨゴレ特徴量Py(N)のうちの最大値がヨゴレ評価データよりも大きい場合には、この最大値を最新のヨゴレ評価データとして保持する。統括制御部40は、ヨゴレ特徴量Py(N)のうちの最大値がヨゴレ評価データ以下の場合には、ヨゴレ評価データの更新は行わない。 When the maximum value of the stain feature amount Py (N) is larger than the stain evaluation data, the overall control unit 40 holds this maximum value as the latest stain evaluation data. The integrated control unit 40 does not update the stain evaluation data when the maximum value of the stain feature amount Py (N) is equal to or less than the stain evaluation data.
 ステップS19の後、統括制御部40は、参照番号“N”が29未満の場合(ステップS20:NO)にはステップS15に処理を戻し、参照番号“N”が29である場合(ステップS20:YES)にはステップS21の処理を行う。 After step S19, the overall control unit 40 returns the process to step S15 when the reference number “N” is less than 29 (step S20: NO), and when the reference number “N” is 29 (step S20: NO). YES), the process of step S21 is performed.
 ステップS21において、統括制御部40は、参照番号“M”を1に設定する。次に、統括制御部40は、ステップS4にて保存した29枚の撮像画像のうちの“M”枚目の撮像画像における第二既定領域に対して欠陥検出処理を行う(ステップS22)。 In step S21, the overall control unit 40 sets the reference number “M” to 1. Next, the overall control unit 40 performs defect detection processing on the second predetermined area in the “M” th image captured image out of the 29 captured images saved in step S4 (step S22).
 第二既定領域は、第一既定領域と同様、撮像画像においてライン光が写り込んでいない、輝度の十分に低くなっている領域であり、レンズ情報に応じて予め決められる。第二既定領域は、ユーザから指定された領域としてもよい。 Similar to the first default area, the second default area is an area where the line light is not reflected in the captured image and the brightness is sufficiently low, and is predetermined according to the lens information. The second default area may be an area designated by the user.
 次に、統括制御部40は、ステップS22の欠陥検出処理にて検出した欠陥種別毎の欠陥の特徴量を算出して、これを保存する(ステップS23)。 Next, the integrated control unit 40 calculates the feature amount of the defect for each defect type detected in the defect detection process in step S22, and saves this (step S23).
 以下では、M枚目の撮像画像から検出したキズ欠陥の特徴量のことをキズ特徴量Pk(M)と記載する。M枚目の撮像画像から検出したブツ欠陥の特徴量のことをブツ特徴量Pb(M)と記載する。M枚目の撮像画像から検出したクモリ欠陥の特徴量のことをクモリ特徴量Pc(M)と記載する。M枚目の撮像画像から検出したヨゴレ欠陥の特徴量のことをヨゴレ特徴量Py(M)と記載する。キズ特徴量Pk(M)、ブツ特徴量Pb(M)、クモリ特徴量Pc(M)、及びヨゴレ特徴量Py(M)を総称して特徴量P(M)と記載する。 In the following, the feature amount of the scratch defect detected from the Mth captured image will be referred to as the scratch feature amount Pk (M). The feature amount of the lump defect detected from the Mth captured image is referred to as a lump feature amount Pb (M). The feature amount of the spider defect detected from the Mth captured image is referred to as a spider feature amount Pc (M). The feature amount of the stain defect detected from the Mth captured image is referred to as a stain feature amount Py (M). The scratch feature amount Pk (M), the lump feature amount Pb (M), the spider feature amount Pc (M), and the stain feature amount Py (M) are collectively referred to as the feature amount P (M).
 次に、統括制御部40は、キズ、ブツ、クモリ、及びヨゴレの欠陥種別毎に、ステップS23にて算出した特徴量P(M)のうちの最大値が評価データよりも大きいかどうかを判定する(ステップS24)。 Next, the overall control unit 40 determines whether or not the maximum value of the feature quantities P (M) calculated in step S23 is larger than the evaluation data for each defect type of scratches, bumps, spiders, and stains. (Step S24).
 統括制御部40は、ステップS23にて算出した特徴量P(M)のうちの最大値が評価データよりも大きい欠陥種別が存在する場合には、この最大値によって、その欠陥種別の評価データを更新する(ステップS25)。 When there is a defect type in which the maximum value of the feature amount P (M) calculated in step S23 is larger than the evaluation data, the overall control unit 40 uses this maximum value to generate the evaluation data of the defect type. Update (step S25).
 具体的には、統括制御部40は、キズ特徴量Pk(M)のうちの最大値がキズ評価データよりも大きい場合には、この最大値を最新のキズ評価データとして保持する。統括制御部40は、キズ特徴量Pk(M)のうちの最大値がキズ評価データ以下の場合には、キズ評価データの更新は行わない。 Specifically, when the maximum value of the scratch feature amount Pk (M) is larger than the scratch evaluation data, the integrated control unit 40 holds this maximum value as the latest scratch evaluation data. When the maximum value of the scratch feature amount Pk (M) is equal to or less than the scratch evaluation data, the integrated control unit 40 does not update the scratch evaluation data.
 統括制御部40は、ブツ特徴量Pb(M)のうちの最大値がブツ評価データよりも大きい場合には、この最大値を最新のブツ評価データとして保持する。統括制御部40は、ブツ特徴量Pb(M)のうちの最大値がブツ評価データ以下の場合には、ブツ評価データの更新は行わない。 When the maximum value of the stuff feature amount Pb (M) is larger than the stuff evaluation data, the integrated control unit 40 holds this maximum value as the latest stuff evaluation data. The integrated control unit 40 does not update the item evaluation data when the maximum value of the item feature amount Pb (M) is equal to or less than the item evaluation data.
 統括制御部40は、クモリ特徴量Pc(M)のうちの最大値がクモリ評価データよりも大きい場合には、この最大値を最新のクモリ評価データとして保持する。統括制御部40は、クモリ特徴量Pc(M)のうちの最大値がクモリ評価データ以下の場合には、クモリ評価データの更新は行わない。 When the maximum value of the spider feature amount Pc (M) is larger than the spider evaluation data, the integrated control unit 40 holds this maximum value as the latest spider evaluation data. When the maximum value of the spider feature amount Pc (M) is equal to or less than the spider evaluation data, the integrated control unit 40 does not update the spider evaluation data.
 統括制御部40は、ヨゴレ特徴量Py(M)のうちの最大値がヨゴレ評価データよりも大きい場合には、この最大値を最新のヨゴレ評価データとして保持する。統括制御部40は、ヨゴレ特徴量Py(M)のうちの最大値がヨゴレ評価データ以下の場合には、ヨゴレ評価データの更新は行わない。 When the maximum value of the stain feature amount Py (M) is larger than the stain evaluation data, the overall control unit 40 holds this maximum value as the latest stain evaluation data. The integrated control unit 40 does not update the stain evaluation data when the maximum value of the stain feature amount Py (M) is equal to or less than the stain evaluation data.
 ステップS25の後、統括制御部40は、参照番号“M”が29未満の場合(ステップS26:NO)には、参照番号“M”を1つ増やし(ステップS27)、その後、ステップS22に処理を戻す。統括制御部40は、参照番号“M”が29である場合(ステップS26:YES)にはステップS28の処理を行う。 After step S25, when the reference number “M” is less than 29 (step S26: NO), the overall control unit 40 increases the reference number “M” by one (step S27), and then processes in step S22. Return. When the reference number “M” is 29 (step S26: YES), the overall control unit 40 performs the process of step S28.
 ステップS28において、統括制御部40は、欠陥種別毎の評価データを閾値と比較してレンズLをランク分けし、その結果を保存する。具体的には、統括制御部40は、キズ欠陥についてのレンズLの評価ランク、ブツ欠陥についてのレンズLの評価ランク、クモリ欠陥についてのレンズLの評価ランク、及びヨゴレ欠陥に関するレンズLの評価ランクをそれぞれ保存する。 In step S28, the integrated control unit 40 compares the evaluation data for each defect type with the threshold value, ranks the lens L, and saves the result. Specifically, the overall control unit 40 has an evaluation rank of the lens L for scratch defects, an evaluation rank of lens L for scratch defects, an evaluation rank of lens L for spider defects, and an evaluation rank of lens L for stain defects. To save each.
 図8の動作の後、統括制御部40は、図11に示す動作を行う。図11は、外観検査装置100の第一反射光検査処理時の動作を説明するためのフローチャートである。以下では、図4に示した状態ST4と状態ST5の2つの条件で検査を行う場合を例にして説明する。 After the operation shown in FIG. 8, the integrated control unit 40 performs the operation shown in FIG. FIG. 11 is a flowchart for explaining the operation of the visual inspection apparatus 100 during the first reflected light inspection process. In the following, a case where the inspection is performed under the two conditions of the state ST4 and the state ST5 shown in FIG. 4 will be described as an example.
 統括制御部40は、レンズLのレンズ情報を取得し、このレンズ情報に基づいて、状態ST4と状態ST5を決定する。そして、統括制御部40は、まず、状態ST4となるように、撮像部30の位置とフラット光源21の位置を制御する(ステップS6)。 The overall control unit 40 acquires the lens information of the lens L, and determines the state ST4 and the state ST5 based on the lens information. Then, the overall control unit 40 first controls the position of the image pickup unit 30 and the position of the flat light source 21 so as to be in the state ST4 (step S6).
 次に、統括制御部40は、載置部10を回転駆動し、載置部10の回転角度が12度増えるごとに、載置部10に載置されたレンズLを撮像部30に撮像させ、撮像部30からレンズLの撮像画像を取得し、保存する(ステップS7)。 Next, the overall control unit 40 rotationally drives the mounting unit 10 and causes the imaging unit 30 to take an image of the lens L mounted on the mounting unit 10 every time the rotation angle of the mounting unit 10 increases by 12 degrees. , The captured image of the lens L is acquired from the imaging unit 30 and saved (step S7).
 次に、統括制御部40は、状態ST5となるように、撮像部30の位置とフラット光源21の位置を制御する(ステップS8)。 Next, the overall control unit 40 controls the position of the image pickup unit 30 and the position of the flat light source 21 so as to be in the state ST5 (step S8).
 次に、統括制御部40は、載置部10を回転駆動し、載置部10の回転角度が12度増えるごとに、載置部10に載置されたレンズLを撮像部30に撮像させ、撮像部30からレンズLの撮像画像を取得し、保存する(ステップS9)。 Next, the overall control unit 40 rotationally drives the mounting unit 10 and causes the imaging unit 30 to take an image of the lens L mounted on the mounting unit 10 every time the rotation angle of the mounting unit 10 increases by 12 degrees. , The captured image of the lens L is acquired from the imaging unit 30 and saved (step S9).
 次に、統括制御部40は、ステップS7にて保存した29枚の撮像画像と、ステップS9にて保存した29枚の撮像画像とを併せた合計58枚の撮像画像に基づいて、コート抜けとヤケの2つの第二評価項目毎に、レンズLの評価を行う(ステップS10)。 Next, the general control unit 40 determines that the coat is missing based on a total of 58 captured images including the 29 captured images saved in step S7 and the 29 captured images saved in step S9. The lens L is evaluated for each of the two second evaluation items of discoloration (step S10).
 ステップS10の処理は、図9及び図10に示した内容と同様である。すなわち、統括制御部40は、59枚の撮像画像の各々から抽出されたコート抜け欠陥の特徴量のうちの最大値をコート抜け評価データとして保持し、59枚の撮像画像の各々から抽出されたヤケ欠陥の特徴量のうちの最大値をヤケ評価データとして保持する。 The process of step S10 is the same as the contents shown in FIGS. 9 and 10. That is, the integrated control unit 40 holds the maximum value of the feature amounts of the coat loss defects extracted from each of the 59 captured images as the coat loss evaluation data, and is extracted from each of the 59 captured images. The maximum value of the features of the burn defect is retained as the burn evaluation data.
 そして、統括制御部40は、このコート抜け評価データと閾値を比較して、コート抜け欠陥についてのレンズLの評価ランクを判定し、このヤケ評価データと閾値を比較して、ヤケ欠陥についてのレンズLの評価ランクを判定し、判定結果を保存する。 Then, the integrated control unit 40 compares the uncoated evaluation data with the threshold value, determines the evaluation rank of the lens L for the uncoated defect, compares the discolored evaluation data with the threshold value, and compares the lens with the discolored defect. The evaluation rank of L is judged, and the judgment result is saved.
 図8及び図11の動作の終了後、統括制御部40は、例えば、評価ランクが最も悪い欠陥種別を判定し、その欠陥種別の評価ランクを最終結果として出力する。 After the operation of FIGS. 8 and 11 is completed, the integrated control unit 40 determines, for example, the defect type having the worst evaluation rank, and outputs the evaluation rank of the defect type as the final result.
 なお、統括制御部40は、レンズLの構造によっては、更に、第二反射光検査処理を実行し、墨不良についての評価も行う。 Note that, depending on the structure of the lens L, the overall control unit 40 further executes a second reflected light inspection process and also evaluates ink defects.
 以上の外観検査装置100によれば、レンズLにライン光を透過させ、且つ、ライン光源22が写り込まないレンズLの領域を観察することで視認可能となる欠陥(キズ、ブツ、クモリ、及びヨゴレ)を透過光検査処理によって高精度に検出することができる。また、外観検査装置100によれば、レンズLにフラット光を反射させ、且つ、そのフラット光が写り込むレンズLの領域を観察することで視認可能となる欠陥(コート抜け及びヤケ)を第一反射光検査処理によって高精度に検出することができる。また、外観検査装置100によれば、レンズLの墨塗部にスポット光を照射したときの反射光を観察することで視認可能となる欠陥(墨不良)を第二反射光検査処理によって高精度に検出することができる。 According to the above-mentioned visual inspection apparatus 100, defects (scratches, bumps, spiders, and defects (scratches, bumps, spiders, and scratches) that can be visually recognized by transmitting line light through the lens L and observing the region of the lens L in which the line light source 22 is not reflected are observed. Dirt) can be detected with high accuracy by the transmitted light inspection process. Further, according to the visual inspection apparatus 100, defects (coat omission and discoloration) that can be visually recognized by reflecting flat light on the lens L and observing the region of the lens L in which the flat light is reflected are first. It can be detected with high accuracy by the reflected light inspection process. Further, according to the visual inspection apparatus 100, defects (black defects) that can be visually recognized by observing the reflected light when the blackened portion of the lens L is irradiated with the spot light are highly accurate by the second reflected light inspection process. Can be detected.
 このように、外観検査装置100によれば、載置部10、照明部20、及び撮像部30の相対位置と、照明部20から照射される光の形状との組み合わせが異なる複数の条件(例えば、状態ST1、状態ST2、状態ST4、及び状態ST5)にてレンズLを撮像することにより、単一形状の照明光だけを用いた撮像又は被検体からの反射光のみを撮像する構成では検出できない、レンズLに生じ得る多種類の欠陥を高精度に検出することができる。 As described above, according to the visual inspection apparatus 100, a plurality of conditions (for example,) in which the combination of the relative positions of the mounting unit 10, the lighting unit 20, and the imaging unit 30 and the shape of the light emitted from the lighting unit 20 are different (for example). , State ST1, state ST2, state ST4, and state ST5), it cannot be detected by imaging using only single-shaped illumination light or imaging only reflected light from the subject. , Various kinds of defects that may occur in the lens L can be detected with high accuracy.
 また、外観検査装置100では、同じ欠陥種別(例えばキズ欠陥)についての評価を行うにあたり、照明部20と撮像部30の位置は同じものの、載置部10の回転位置が異なる29枚の撮像画像の各々からキズ欠陥が検出される。そして、検出された全てのキズ欠陥の特徴量のうちの最大値に基づいて、キズ欠陥についてのレンズLの評価が行われる。 Further, in the visual inspection device 100, when evaluating the same defect type (for example, a scratch defect), 29 captured images in which the positions of the illumination unit 20 and the image pickup unit 30 are the same but the rotation positions of the mounting unit 10 are different. Scratch defects are detected from each of the above. Then, the lens L is evaluated for the scratch defect based on the maximum value among the feature quantities of all the scratch defects detected.
 レンズLに存在するキズ欠陥の撮像部30からの見え方は、載置部10の回転位置によって変化する可能性がある。これは、そのキズ欠陥に対するライン光の照射のされ方が回転位置によって変化するためである。外観検査装置100によれば、29枚の撮像画像の各々から検出したキズ欠陥の特徴量の最大値に基づいてレンズLの評価を行う。このため、大きなキズが存在しているにもかかわらず、そのキズの特徴量が小さい値として判断されるのを防ぐことができる。この結果、レンズLの評価を高精度に行うことができる。 The appearance of scratch defects existing on the lens L from the imaging unit 30 may change depending on the rotational position of the mounting unit 10. This is because the way the line light is applied to the scratch defect changes depending on the rotation position. According to the visual inspection apparatus 100, the lens L is evaluated based on the maximum value of the feature amount of the scratch defect detected from each of the 29 captured images. Therefore, even though a large scratch is present, it is possible to prevent the feature amount of the scratch from being determined as a small value. As a result, the lens L can be evaluated with high accuracy.
 また、外観検査装置100では、同じ種別の欠陥を検出するために、撮像部30の位置と照明部20の位置の組み合わせが異なる2つの条件(状態ST1と状態ST2、又は、状態ST4と状態ST5)によって撮像が行われる。このため、光の当たり方によって2つの条件のうちの一方だけでは検出できない欠陥を、2つの条件のうちの他方の条件によって検出できるようになる。したがって、欠陥の検出精度を高めることができる。 Further, in the visual inspection device 100, in order to detect a defect of the same type, two conditions (state ST1 and state ST2, or state ST4 and state ST5) in which the combination of the position of the image pickup unit 30 and the position of the illumination unit 20 are different are different. ) Is used for imaging. Therefore, a defect that cannot be detected by only one of the two conditions depending on how the light hits can be detected by the other of the two conditions. Therefore, the defect detection accuracy can be improved.
(変形例)
 以下、外観検査装置100の変形例について説明する。
 外観検査装置100が検査対象とする被検体はレンズLに限らない。光透過性を持つ物体であれば、この物体を載置部10に載置することで、この物体の欠陥検出が可能である。この場合、前述してきたレンズLの光軸Kは、この物体の中心軸と読み替えればよい。
(Modification example)
Hereinafter, a modification of the visual inspection device 100 will be described.
The subject to be inspected by the visual inspection apparatus 100 is not limited to the lens L. If it is an object having light transmission property, it is possible to detect defects of this object by placing this object on the mounting portion 10. In this case, the optical axis K of the lens L described above may be read as the central axis of this object.
 外観検査装置100において、スポット光源23は、撮像部30に固定されていなくてもよい。この場合、スポット光源23を方向X及び方向Zに移動し且つ方向Yに延びる軸回りに回転させる機構が別途設けられる。なお、スポット光源23が撮像部30に固定された図1に示す構成とすることで、スポット光源23を移動させる機構を省略でき、装置の小型化と低コスト化を実現できる。 In the visual inspection device 100, the spot light source 23 does not have to be fixed to the image pickup unit 30. In this case, a mechanism for moving the spot light source 23 in the direction X and the direction Z and rotating the spot light source 23 around an axis extending in the direction Y is separately provided. By adopting the configuration shown in FIG. 1 in which the spot light source 23 is fixed to the image pickup unit 30, the mechanism for moving the spot light source 23 can be omitted, and the device can be downsized and the cost can be reduced.
 外観検査装置100において、スポット光源23は、面状光を照射する面光源に置き換えてもよい。墨不良は、レンズLの墨塗部に光を照射し、その光の反射光を撮像すれば検出可能である。そのため、スポット光源23の代わりに、面光源を用いることもできる。この場合、第二反射光検査処理時には、フラット光源21をスポット光源23の位置にまで移動させるようにしてもよい。このようにすることで、照明部20に含まれる光源の数を2つにすることができ、装置の小型化と低コスト化が可能になる。 In the appearance inspection device 100, the spot light source 23 may be replaced with a surface light source that irradiates surface light. Ink defects can be detected by irradiating the blackened portion of the lens L with light and imaging the reflected light of the light. Therefore, a surface light source can be used instead of the spot light source 23. In this case, the flat light source 21 may be moved to the position of the spot light source 23 during the second reflected light inspection process. By doing so, the number of light sources included in the lighting unit 20 can be reduced to two, and the device can be miniaturized and the cost can be reduced.
 外観検査装置100では、撮像部30とフラット光源21とライン光源22をそれぞれ移動可能とすることで、状態ST1と状態ST2と状態ST3の切り替えや、状態ST4と状態ST5の切り替え等を可能にしている。この変形例として、撮像部30とフラット光源21とライン光源22をそれぞれ複数個、固定配置し、状態ST1、状態ST2、状態ST3、状態ST4、及び状態ST5のいずれかの状態となるように、複数の撮像部30のうちの1つを選択して作動させ、複数のライン光源22のうちの1つを選択して作動させ、複数のフラット光源21のうちの1つを選択して作動させるようにしてもよい。また、別の変形例として、撮像部30とフラット光源21とライン光源22を移動することに加えてまたは代えて、載置部10を移動または傾斜させることにより、状態ST1と状態ST2と状態ST3の切り替えや、状態ST4と状態ST5の切り替え等を可能にしてもよい。すなわち、載置部10(レンズL)、照明部20、及び撮像部30の相対位置を変化させることができればどの構成を移動させてもよい。また、外観検査装置100において、保持部の一例として載置部10を用いた場合を説明したが、レンズLに傷等を与えず上記の検査をすることが可能であれば、保持部は別の構成であってもよい。例えば、保持部は、レンズを挟持する構成であってもよい。 In the visual inspection device 100, the image pickup unit 30, the flat light source 21, and the line light source 22 are movable, so that the state ST1 and the state ST2 and the state ST3 can be switched, and the state ST4 and the state ST5 can be switched. There is. As a modification of this, a plurality of image pickup units 30, a flat light source 21, and a line light source 22 are fixedly arranged so as to be in any of the states ST1, state ST2, state ST3, state ST4, and state ST5. Select and operate one of the plurality of image pickup units 30, select and operate one of the plurality of line light sources 22, and select and operate one of the plurality of flat light sources 21. You may do so. Further, as another modification, in addition to or instead of moving the image pickup unit 30, the flat light source 21, and the line light source 22, the mounting unit 10 is moved or tilted to move or tilt the state ST1, the state ST2, and the state ST3. It may be possible to switch between states ST4 and ST5. That is, any configuration may be moved as long as the relative positions of the mounting unit 10 (lens L), the lighting unit 20, and the imaging unit 30 can be changed. Further, the case where the mounting portion 10 is used as an example of the holding portion in the visual inspection apparatus 100 has been described, but if the above inspection can be performed without damaging the lens L, the holding portion is different. It may be the configuration of. For example, the holding portion may be configured to sandwich the lens.
 以上のように、本明細書には少なくとも以下の事項が記載されている。なお、括弧内には、上記した実施形態において対応する構成要素等を示しているが、これに限定されるものではない。 As described above, at least the following items are described in this specification. The components and the like corresponding to the above-described embodiments are shown in parentheses, but the present invention is not limited thereto.
(1)
 被検体が保持される保持部と、
 複数の形状の照明光を上記保持部に対して照射可能な照明部と、
 上記保持部を撮像する撮像部と、
 上記保持部、上記照明部、及び、上記撮像部の相対位置を変化させる駆動部と、
 上記相対位置及び上記照明光の形状を変更して上記撮像部に上記被検体を複数回撮像させる制御を行うプロセッサと、を備え、
 上記プロセッサは、上記照明光が上記被検体によって反射された反射光を含む上記被検体と、上記照明光が上記被検体を透過した透過光を含む上記被検体とを上記撮像部に撮像させる外観検査装置。
(1)
The holding part where the subject is held and
An illumination unit that can irradiate the holding unit with illumination light of multiple shapes,
An imaging unit that captures the image of the holding unit, and an imaging unit that captures images.
The holding unit, the lighting unit, and the driving unit that changes the relative positions of the imaging unit,
A processor that controls the image pickup unit to image the subject a plurality of times by changing the relative position and the shape of the illumination light is provided.
The processor causes the image pickup unit to image the subject including the reflected light reflected by the subject and the subject including the transmitted light transmitted by the illumination light transmitted through the subject. Inspection equipment.
(2)
 (1)記載の外観検査装置であって、
 上記駆動部は、上記保持部を複数の回転位置に回転させる回転機構を含む外観検査装置。
(2)
(1) The visual inspection device according to the above.
The drive unit is a visual inspection device including a rotation mechanism that rotates the holding unit to a plurality of rotation positions.
(3)
 (1)又は(2)記載の外観検査装置であって、
 上記駆動部は、上記照明部と上記撮像部を上記保持部に対して移動させる駆動機構を含む外観検査装置。
(3)
The visual inspection device according to (1) or (2).
The drive unit is an visual inspection device including a drive mechanism for moving the illumination unit and the image pickup unit with respect to the holding unit.
(4)
 (1)から(3)のいずれか1つに記載の外観検査装置であって、
 上記保持部に対して上記撮像部が配置される側を第一側、上記第一側と逆側を第二側とした場合に、
 上記プロセッサは、
 上記第二側から第一形状の照明光を上記保持部へ照射させた状態にて上記撮像部により上記被検体を撮像させる制御と、
 上記第一側から第二形状の照明光を上記保持部へ照射させた状態にて上記撮像部により上記被検体を撮像させる制御と、を行う外観検査装置。
(4)
The visual inspection apparatus according to any one of (1) to (3).
When the side on which the image pickup unit is arranged is the first side and the side opposite to the first side is the second side with respect to the holding unit.
The above processor
Control to image the subject by the image pickup unit in a state where the holding portion is irradiated with the illumination light of the first shape from the second side.
An visual inspection device that controls the image pickup unit to image the subject in a state where the holding unit is irradiated with the illumination light of the second shape from the first side.
(5)
 (1)から(3)のいずれか1つに記載の外観検査装置であって、
 上記複数の形状の光には線状光が含まれ、
 上記保持部に対して上記撮像部が配置される側を第一側、上記第一側と逆側を第二側とした場合に、
 上記線状光は上記第二側から照射され、
 上記透過光は、上記被検体を透過した上記線状光である外観検査装置。
(5)
The visual inspection apparatus according to any one of (1) to (3).
The above-mentioned multiple shapes of light include linear light,
When the side on which the image pickup unit is arranged is the first side and the side opposite to the first side is the second side with respect to the holding unit.
The linear light is emitted from the second side,
The transmitted light is an appearance inspection device that is the linear light transmitted through the subject.
(6)
 (5)記載の外観検査装置であって、
 上記プロセッサは、上記線状光を照射させる場合には、上記照明部の位置を、上記被検体の端部の第一領域に上記線状光が照射される第一照射位置と、上記被検体の上記端部から離れた第二領域に上記線状光が照射される第二照射位置とに制御する外観検査装置。
(6)
(5) The visual inspection device according to the above.
When the processor irradiates the linear light, the position of the illumination unit is set to the first irradiation position where the linear light is irradiated to the first region of the end portion of the subject, and the subject. A visual inspection device that controls the second irradiation position where the linear light is irradiated to the second region away from the end portion of the above.
(7)
 (6)記載の外観検査装置であって、
 上記プロセッサは、上記線状光を照射させる場合には、上記撮像部の位置を、上記撮像部の光軸と上記被検体の中心軸とが平行になる第一撮像位置と、上記光軸が上記中心軸に対して傾斜する第二撮像位置のうち少なくとも上記第一撮像位置に制御する外観検査装置。
(7)
(6) The visual inspection device according to the above.
When the processor irradiates the linear light, the position of the image pickup unit is set to the first image pickup position where the optical axis of the image pickup unit is parallel to the central axis of the subject and the optical axis. An visual inspection device that controls at least the first imaging position among the second imaging positions tilted with respect to the central axis.
(8)
 (7)記載の外観検査装置であって、
 上記プロセッサは、上記撮像部が上記第一撮像位置にある状態にて、上記第一照射位置から上記線状光を照射させて上記撮像部に上記被検体を撮像させ、上記撮像部が上記第一撮像位置にある状態にて、上記第二照射位置から上記線状光を照射させて上記撮像部に上記被検体を撮像させ、上記撮像部が上記第二撮像位置にある状態にて、上記線状光を上記被検体の上記端部における上記第一領域とは異なる第三領域に照射させて上記撮像部に上記被検体を撮像させる外観検査装置。
(8)
(7) The visual inspection device according to the above.
In the state where the image pickup unit is in the first image pickup position, the processor irradiates the linear light from the first irradiation position to cause the image pickup unit to image the subject, and the image pickup unit uses the image pickup unit to image the subject. In the state of being in one imaging position, the linear light is irradiated from the second irradiation position to cause the imaging unit to image the subject, and the imaging unit is in the second imaging position. An visual inspection device that irradiates a third region different from the first region at the end portion of the subject with linear light to cause the imaging unit to image the subject.
(9)
 (1)から(8)のいずれか1つに記載の外観検査装置であって、
 上記複数の形状の光には面状光が含まれ、
 上記反射光は、上記被検体によって反射された上記面状光を含む外観検査装置。
(9)
The visual inspection apparatus according to any one of (1) to (8).
The light having a plurality of shapes includes planar light, and the light has a planar shape.
The reflected light is an appearance inspection device including the planar light reflected by the subject.
(10)
 (9)記載の外観検査装置であって、
 上記プロセッサは、上記面状光と上記相対位置の組み合わせを、上記照明部の位置及び上記撮像部の位置が異なる2種類以上に変更して上記反射光を含む上記被検体を撮像させる外観検査装置。
(10)
(9) The visual inspection device according to the above.
The processor is a visual inspection device that changes the combination of the planar light and the relative position to two or more types in which the position of the illumination unit and the position of the image pickup unit are different to image the subject including the reflected light. ..
(11)
 (1)から(10)のいずれか1つに記載の外観検査装置であって、
 上記被検体はレンズであり、
 上記プロセッサは、上記レンズの形状に関する情報を取得し、上記レンズの形状に応じて上記照明部の位置及び上記撮像部の位置を変更する外観検査装置。
(11)
The visual inspection apparatus according to any one of (1) to (10).
The subject is a lens,
The processor is an visual inspection device that acquires information on the shape of the lens and changes the position of the illumination unit and the position of the image pickup unit according to the shape of the lens.
(12)
 (1)から(11)のいずれか1つに記載の外観検査装置であって、
 上記複数の形状の光には、面状光、線状光、及び点状光が含まれ、
 上記プロセッサは、上記面状光を照射する場合の上記照明部の位置と、上記線状光を照射する場合の上記照明部の位置と、上記点状光を照射する場合の上記照明部の位置と、を異なる位置に制御する外観検査装置。
(12)
The visual inspection apparatus according to any one of (1) to (11).
The plurality of shapes of light include planar light, linear light, and point-like light.
The processor has a position of the illumination unit when irradiating the planar light, a position of the illumination unit when irradiating the linear light, and a position of the illumination unit when irradiating the point light. And, a visual inspection device that controls different positions.
(13)
 (1)から(12)のいずれか1つに記載の外観検査装置であって、
 上記照明部は、面状光を照射する面光源と、線状光を照射する線光源と、点状光を照射する点光源と、を含み、
 上記点光源は上記撮像部と連動して動き、上記面光源と上記線光源は独立して動く外観検査装置。
(13)
The visual inspection apparatus according to any one of (1) to (12).
The illumination unit includes a surface light source that irradiates planar light, a linear light source that irradiates linear light, and a point light source that irradiates point light.
A visual inspection device in which the point light source moves in conjunction with the image pickup unit, and the surface light source and the line light source move independently.
(14)
 (1)から(12)のいずれか1つに記載の外観検査装置であって、
 上記照明部は、面状光を照射する面光源と、線状光を照射する線光源と、点状光を照射する点光源と、を含み、
 上記面光源、上記線光源、および上記点光源は独立して動く外観検査装置。
(14)
The visual inspection apparatus according to any one of (1) to (12).
The illumination unit includes a surface light source that irradiates planar light, a linear light source that irradiates linear light, and a point light source that irradiates point light.
The surface light source, the line light source, and the point light source are visual inspection devices that operate independently.
(15)
 (1)から(14)のいずれか1つに記載の外観検査装置であって、
 上記駆動部は、上記保持部を回転させる回転機構を含み、
 上記プロセッサは、上記照明光の形状と上記照明部の位置と上記撮像部の位置の組み合わせが決められた状態にて、上記保持部を回転させながら、上記被検体を複数回撮像させる外観検査装置。
(15)
The visual inspection apparatus according to any one of (1) to (14).
The drive unit includes a rotation mechanism for rotating the holding unit.
The processor is a visual inspection device that images a subject a plurality of times while rotating the holding unit in a state where a combination of the shape of the illumination light, the position of the lighting unit, and the position of the imaging unit is determined. ..
(16)
 (15)記載の外観検査装置であって、
 上記プロセッサは、上記照明光の形状が共通の上記組み合わせ毎に上記撮像部から取得した複数の撮像画像の各々から特定部位(欠陥領域)の検出を行い、検出した上記特定部位のうち特徴量が最大となる特定部位のその特徴量に基づいて、上記被検体の評価を行う外観検査装置。
(16)
(15) The visual inspection apparatus according to the above.
The processor detects a specific part (defect area) from each of a plurality of captured images acquired from the image pickup unit for each combination having a common shape of the illumination light, and the feature amount among the detected specific parts is A visual inspection device that evaluates the subject based on the feature amount of the maximum specific part.
(17)
 被検体が保持される保持部と、
 複数の形状の照明光を上記保持部に対して照射可能な照明部と、
 上記保持部を撮像する撮像部と、
 上記保持部、上記照明部、及び、上記撮像部の相対位置を変化させる駆動部と、
 上記相対位置及び上記照明光の形状を変更して上記撮像部に上記被検体を複数回撮像させる制御を行うプロセッサと、を備え、
 上記プロセッサは、上記照明部と上記撮像部の双方の位置を変更して上記撮像部に上記被検体を撮像させる外観検査装置。
(17)
The holding part where the subject is held and
An illumination unit that can irradiate the holding unit with illumination light of multiple shapes,
An imaging unit that captures the image of the holding unit, and an imaging unit that captures images.
The holding unit, the lighting unit, and the driving unit that changes the relative positions of the imaging unit,
A processor that controls the image pickup unit to image the subject a plurality of times by changing the relative position and the shape of the illumination light is provided.
The processor is an appearance inspection device that changes the positions of both the illumination unit and the image pickup unit so that the image pickup unit can image the subject.
(18)
 (17)記載の外観検査装置であって、
 上記保持部に対して上記撮像部が配置される側を第一側、上記第一側と逆側を第二側とした場合に、上記プロセッサは、上記第二側から第一形状の照明光を上記保持部へ照射させた状態にて上記撮像部により上記被検体を撮像させる制御と、上記第一側から第二形状の照明光を上記保持部へ照射させた状態にて上記撮像部により上記被検体を撮像させる制御と、を行う外観検査装置。
(18)
(17) The visual inspection apparatus according to the above.
When the side on which the image pickup unit is arranged is the first side and the side opposite to the first side is the second side with respect to the holding unit, the processor has the illumination light of the first shape from the second side. Control to image the subject by the image pickup unit while the holding unit is irradiated with light, and by the image pickup unit while the holding unit is irradiated with the illumination light of the second shape from the first side. A visual inspection device that controls and controls the imaging of the subject.
(19)
 被検体が保持される保持部と、複数の形状の照明光を上記保持部に対して照射可能な照明部と、上記保持部を撮像する撮像部と、上記保持部、上記照明部、及び、上記撮像部の相対位置を変化させる駆動部と、を用いて上記被検体の外観を検査する外観検査方法であって、
 上記相対位置及び上記照明光の形状を変更して上記撮像部に上記被検体を複数回撮像させる制御を行う制御ステップを備え、
 上記制御ステップでは、上記照明光が上記被検体によって反射された反射光を含む上記被検体と、上記照明光が上記被検体を透過した透過光を含む上記被検体とを上記撮像部に撮像させる外観検査方法。
(19)
A holding unit that holds a subject, an illuminating unit that can irradiate the holding unit with illumination light of a plurality of shapes, an imaging unit that captures the image of the holding unit, the holding unit, the illuminating unit, and A visual inspection method for inspecting the appearance of a subject using a driving unit that changes the relative position of the imaging unit.
A control step is provided in which the relative position and the shape of the illumination light are changed to control the image pickup unit to image the subject a plurality of times.
In the control step, the image pickup unit is made to image the subject including the reflected light reflected by the subject and the subject including the transmitted light transmitted by the illumination light through the subject. Visual inspection method.
(20)
 被検体が保持される保持部と、複数の形状の照明光を上記保持部に対して照射可能な照明部と、上記保持部を撮像する撮像部と、上記保持部、上記照明部、及び、上記撮像部の相対位置を変化させる駆動部と、を用いて上記被検体の外観を検査する外観検査方法であって、
 上記相対位置及び上記照明光の形状を変更して上記撮像部に上記被検体を複数回撮像させる制御を行う制御ステップを備え、
 上記制御ステップでは、上記照明部と上記撮像部の双方の位置を変更して上記撮像部に上記被検体を撮像させる外観検査方法。
(20)
A holding unit that holds a subject, an illuminating unit that can irradiate the holding unit with illumination light of a plurality of shapes, an imaging unit that captures the image of the holding unit, the holding unit, the illuminating unit, and A visual inspection method for inspecting the appearance of a subject using a driving unit that changes the relative position of the imaging unit.
A control step is provided in which the relative position and the shape of the illumination light are changed to control the image pickup unit to image the subject a plurality of times.
In the control step, a visual inspection method in which the positions of both the illumination unit and the image pickup unit are changed so that the image pickup unit can image the subject.
(21)
 被検体が保持される保持部と、複数の形状の照明光を上記保持部に対して照射可能な照明部と、上記保持部を撮像する撮像部と、上記保持部、上記照明部、及び、上記撮像部の相対位置を変化させる駆動部と、を用いて上記被検体の外観を検査する外観検査プログラムであって、
 上記相対位置及び上記照明光の形状を変更して上記撮像部に上記被検体を複数回撮像させる制御を行う制御ステップをコンピュータに実行させるものであり、
 上記制御ステップでは、上記照明光が上記被検体によって反射された反射光を含む上記被検体と、上記照明光が上記被検体を透過した透過光を含む上記被検体とを上記撮像部に撮像させる外観検査プログラム。
(21)
A holding unit that holds a subject, an illuminating unit that can irradiate the holding unit with illumination light of a plurality of shapes, an imaging unit that captures the image of the holding unit, the holding unit, the illuminating unit, and A visual inspection program for inspecting the appearance of a subject using a driving unit that changes the relative position of the imaging unit.
The computer is made to execute a control step of changing the relative position and the shape of the illumination light to control the image pickup unit to image the subject a plurality of times.
In the control step, the image pickup unit is made to image the subject including the reflected light reflected by the subject and the subject including the transmitted light transmitted by the illumination light through the subject. Visual inspection program.
(22)
 被検体が保持される保持部と、複数の形状の照明光を上記保持部に対して照射可能な照明部と、上記保持部を撮像する撮像部と、上記保持部、上記照明部、及び、上記撮像部の相対位置を変化させる駆動部と、を用いて上記被検体の外観を検査する外観検査プログラムであって、
 上記相対位置及び上記照明光の形状を変更して上記撮像部に上記被検体を複数回撮像させる制御を行う制御ステップをコンピュータに実行させるものであり、
 上記制御ステップでは、上記照明部と上記撮像部の双方の位置を変更して上記撮像部に上記被検体を撮像させる外観検査プログラム。
(22)
A holding unit that holds a subject, an illuminating unit that can irradiate the holding unit with illumination light of a plurality of shapes, an imaging unit that images the holding unit, the holding unit, the illuminating unit, and A visual inspection program for inspecting the appearance of a subject using a driving unit that changes the relative position of the imaging unit.
The computer is made to execute a control step of changing the relative position and the shape of the illumination light to control the image pickup unit to image the subject a plurality of times.
In the control step, an appearance inspection program in which the positions of both the illumination unit and the image pickup unit are changed so that the image pickup unit can image the subject.
 以上、図面を参照しながら各種の実施の形態について説明したが、本発明はかかる例に限定されないことは言うまでもない。当業者であれば、特許請求の範囲に記載された範疇内において、各種の変更例又は修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。また、発明の趣旨を逸脱しない範囲において、上記実施の形態における各構成要素を任意に組み合わせてもよい。 Although various embodiments have been described above with reference to the drawings, it goes without saying that the present invention is not limited to such examples. It is clear that a person skilled in the art can come up with various modifications or modifications within the scope of the claims, which naturally belong to the technical scope of the present invention. Understood. Further, each component in the above-described embodiment may be arbitrarily combined as long as the gist of the invention is not deviated.
 なお、本出願は、2020年11月27日出願の日本特許出願(特願2020-197622)に基づくものであり、その内容は本出願の中に参照として援用される。 Note that this application is based on a Japanese patent application filed on November 27, 2020 (Japanese Patent Application No. 2020-197622), the contents of which are incorporated herein by reference.
AR1,AR2 照射範囲
AR3,AR4,AR5,AR6 枠
10A 回転機構
10 載置部
11 基台
20 照明部
21 フラット光源
21A フラット光源駆動機構
22 ライン光源
22A ライン光源駆動機構
23 スポット光源
30 撮像部
30A 撮像部駆動機構
40 統括制御部
41 位置制御部
42 照明制御部
100 外観検査装置
L レンズ
Ax1,Ax2,Ax3 軸
K 光軸
BL 墨塗部

 
AR1, AR2 Irradiation range AR3, AR4, AR5, AR6 Frame 10A Rotation mechanism 10 Mounting unit 11 Base 20 Lighting unit 21 Flat light source 21A Flat light source drive mechanism 22 Line light source 22A Line light source drive mechanism 23 Spot light source 30 Imaging unit 30A Imaging Unit drive mechanism 40 General control unit 41 Position control unit 42 Lighting control unit 100 Visual inspection device L Lens Ax1, Ax2, Ax3 Axis K Optical axis BL Black

Claims (22)

  1.  被検体が保持される保持部と、
     複数の形状の照明光を前記保持部に対して照射可能な照明部と、
     前記保持部を撮像する撮像部と、
     前記保持部、前記照明部、及び、前記撮像部の相対位置を変化させる駆動部と、
     前記相対位置及び前記照明光の形状を変更して前記撮像部に前記被検体を複数回撮像させる制御を行うプロセッサと、を備え、
     前記プロセッサは、前記照明光が前記被検体によって反射された反射光を含む前記被検体と、前記照明光が前記被検体を透過した透過光を含む前記被検体とを前記撮像部に撮像させる外観検査装置。
    The holding part where the subject is held and
    An illumination unit capable of irradiating the holding unit with illumination light of a plurality of shapes, and an illumination unit.
    An imaging unit that captures the image of the holding unit,
    A driving unit that changes the relative positions of the holding unit, the lighting unit, and the imaging unit.
    A processor that controls the image pickup unit to image the subject a plurality of times by changing the relative position and the shape of the illumination light is provided.
    The processor causes the image pickup unit to image the subject including the reflected light whose illumination light is reflected by the subject and the subject including the transmitted light transmitted by the illumination light through the subject. Inspection equipment.
  2.  請求項1記載の外観検査装置であって、
     前記駆動部は、前記保持部を複数の回転位置に回転させる回転機構を含む外観検査装置。
    The visual inspection apparatus according to claim 1.
    The drive unit is an visual inspection device including a rotation mechanism that rotates the holding unit to a plurality of rotation positions.
  3.  請求項1又は2記載の外観検査装置であって、
     前記駆動部は、前記照明部と前記撮像部を前記保持部に対して移動させる駆動機構を含む外観検査装置。
    The visual inspection apparatus according to claim 1 or 2.
    The drive unit is an visual inspection device including a drive mechanism for moving the illumination unit and the image pickup unit with respect to the holding unit.
  4.  請求項1から3のいずれか1項記載の外観検査装置であって、
     前記保持部に対して前記撮像部が配置される側を第一側、前記第一側と逆側を第二側とした場合に、
     前記プロセッサは、
     前記第二側から第一形状の照明光を前記保持部へ照射させた状態にて前記撮像部により前記被検体を撮像させる制御と、
     前記第一側から第二形状の照明光を前記保持部へ照射させた状態にて前記撮像部により前記被検体を撮像させる制御と、を行う外観検査装置。
    The visual inspection apparatus according to any one of claims 1 to 3.
    When the side on which the image pickup unit is arranged is the first side and the side opposite to the first side is the second side with respect to the holding unit.
    The processor
    Control to image the subject by the image pickup unit in a state where the holding portion is irradiated with the illumination light of the first shape from the second side.
    An visual inspection apparatus that controls the image pickup unit to image the subject in a state where the holding portion is irradiated with the illumination light of the second shape from the first side.
  5.  請求項1から3のいずれか1項記載の外観検査装置であって、
     前記複数の形状の光には線状光が含まれ、
     前記保持部に対して前記撮像部が配置される側を第一側、前記第一側と逆側を第二側とした場合に、
     前記線状光は前記第二側から照射され、
     前記透過光は、前記被検体を透過した前記線状光である外観検査装置。
    The visual inspection apparatus according to any one of claims 1 to 3.
    The plurality of shapes of light include linear light, and the light has a linear shape.
    When the side on which the image pickup unit is arranged is the first side and the side opposite to the first side is the second side with respect to the holding unit.
    The linear light is emitted from the second side and
    The transmitted light is an appearance inspection device that is the linear light transmitted through the subject.
  6.  請求項5記載の外観検査装置であって、
     前記プロセッサは、前記線状光を照射させる場合には、前記照明部の位置を、前記被検体の端部の第一領域に前記線状光が照射される第一照射位置と、前記被検体の前記端部から離れた第二領域に前記線状光が照射される第二照射位置とに制御する外観検査装置。
    The visual inspection apparatus according to claim 5.
    When the processor irradiates the linear light, the position of the illumination unit is set to the first irradiation position where the linear light is irradiated to the first region of the end portion of the subject, and the subject. A visual inspection device that controls the second irradiation position where the linear light is irradiated to the second region away from the end portion of the above.
  7.  請求項6記載の外観検査装置であって、
     前記プロセッサは、前記線状光を照射させる場合には、前記撮像部の位置を、前記撮像部の光軸と前記被検体の中心軸とが平行になる第一撮像位置と、前記光軸が前記中心軸に対して傾斜する第二撮像位置のうち少なくとも前記第一撮像位置に制御する外観検査装置。
    The visual inspection apparatus according to claim 6.
    When the processor irradiates the linear light, the position of the image pickup unit is set to the first image pickup position where the optical axis of the image pickup unit is parallel to the central axis of the subject and the optical axis. A visual inspection device that controls at least the first imaging position among the second imaging positions tilted with respect to the central axis.
  8.  請求項7記載の外観検査装置であって、
     前記プロセッサは、前記撮像部が前記第一撮像位置にある状態にて、前記第一照射位置から前記線状光を照射させて前記撮像部に前記被検体を撮像させ、前記撮像部が前記第一撮像位置にある状態にて、前記第二照射位置から前記線状光を照射させて前記撮像部に前記被検体を撮像させ、前記撮像部が前記第二撮像位置にある状態にて、前記線状光を前記被検体の前記端部における前記第一領域とは異なる第三領域に照射させて前記撮像部に前記被検体を撮像させる外観検査装置。
    The visual inspection apparatus according to claim 7.
    The processor irradiates the linear light from the first irradiation position with the image pickup unit in the first image pickup position to cause the image pickup unit to image the subject, and the image pickup unit performs the first image pickup unit. In the state of being in one imaging position, the linear light is irradiated from the second irradiation position to cause the imaging unit to image the subject, and the imaging unit is in the second imaging position. An visual inspection device that irradiates a third region different from the first region at the end of the subject with linear light to cause the imaging unit to image the subject.
  9.  請求項1から8のいずれか1項記載の外観検査装置であって、
     前記複数の形状の光には面状光が含まれ、
     前記反射光は、前記被検体によって反射された前記面状光を含む外観検査装置。
    The visual inspection apparatus according to any one of claims 1 to 8.
    The plurality of shapes of light include planar light, and the light has a planar shape.
    The reflected light is an appearance inspection device including the planar light reflected by the subject.
  10.  請求項9記載の外観検査装置であって、
     前記プロセッサは、前記面状光と前記相対位置の組み合わせを、前記照明部の位置及び前記撮像部の位置が異なる2種類以上に変更して前記反射光を含む前記被検体を撮像させる外観検査装置。
    The visual inspection apparatus according to claim 9, wherein the visual inspection apparatus is used.
    The processor is an appearance inspection device that changes the combination of the planar light and the relative position to two or more types in which the position of the illumination unit and the position of the image pickup unit are different to image the subject including the reflected light. ..
  11.  請求項1から10のいずれか1項記載の外観検査装置であって、
     前記被検体はレンズであり、
     前記プロセッサは、前記レンズの形状に関する情報を取得し、前記レンズの形状に応じて前記照明部の位置及び前記撮像部の位置を変更する外観検査装置。
    The visual inspection apparatus according to any one of claims 1 to 10.
    The subject is a lens
    The processor is an visual inspection device that acquires information on the shape of the lens and changes the position of the illumination unit and the position of the image pickup unit according to the shape of the lens.
  12.  請求項1から11のいずれか1項記載の外観検査装置であって、
     前記複数の形状の光には、面状光、線状光、及び点状光が含まれ、
     前記プロセッサは、前記面状光を照射する場合の前記照明部の位置と、前記線状光を照射する場合の前記照明部の位置と、前記点状光を照射する場合の前記照明部の位置と、を異なる位置に制御する外観検査装置。
    The visual inspection apparatus according to any one of claims 1 to 11.
    The plurality of shapes of light include planar light, linear light, and point-like light.
    The processor has a position of the illumination unit when irradiating the planar light, a position of the illumination unit when irradiating the linear light, and a position of the illumination unit when irradiating the point light. And, a visual inspection device that controls different positions.
  13.  請求項1から12のいずれか1項記載の外観検査装置であって、
     前記照明部は、面状光を照射する面光源と、線状光を照射する線光源と、点状光を照射する点光源と、を含み、
     前記点光源は前記撮像部と連動して動き、前記面光源と前記線光源は独立して動く外観検査装置。
    The visual inspection apparatus according to any one of claims 1 to 12.
    The illumination unit includes a surface light source that irradiates planar light, a linear light source that irradiates linear light, and a point light source that irradiates point light.
    A visual inspection device in which the point light source moves in conjunction with the image pickup unit, and the surface light source and the line light source move independently.
  14.  請求項1から12のいずれか1項記載の外観検査装置であって、
     前記照明部は、面状光を照射する面光源と、線状光を照射する線光源と、点状光を照射する点光源と、を含み、
     前記面光源、前記線光源、および前記点光源は独立して動く外観検査装置。
    The visual inspection apparatus according to any one of claims 1 to 12.
    The illumination unit includes a surface light source that irradiates planar light, a linear light source that irradiates linear light, and a point light source that irradiates point light.
    A visual inspection device in which the surface light source, the line light source, and the point light source move independently.
  15.  請求項1から14のいずれか1項記載の外観検査装置であって、
     前記駆動部は、前記保持部を回転させる回転機構を含み、
     前記プロセッサは、前記照明光の形状と前記照明部の位置と前記撮像部の位置の組み合わせが決められた状態にて、前記保持部を回転させながら、前記被検体を複数回撮像させる外観検査装置。
    The visual inspection apparatus according to any one of claims 1 to 14.
    The drive unit includes a rotation mechanism for rotating the holding unit.
    The processor is a visual inspection device that images a subject a plurality of times while rotating the holding unit in a state where a combination of the shape of the illumination light, the position of the lighting unit, and the position of the imaging unit is determined. ..
  16.  請求項15記載の外観検査装置であって、
     前記プロセッサは、前記照明光の形状が共通の前記組み合わせ毎に前記撮像部から取得した複数の撮像画像の各々から特定部位の検出を行い、検出した前記特定部位のうち特徴量が最大となる特定部位の当該特徴量に基づいて、前記被検体の評価を行う外観検査装置。
    The visual inspection apparatus according to claim 15, wherein
    The processor detects a specific part from each of a plurality of captured images acquired from the image pickup unit for each combination having a common shape of the illumination light, and specifies that the feature amount is the largest among the detected specific parts. A visual inspection device that evaluates the subject based on the feature amount of the site.
  17.  被検体が保持される保持部と、
     複数の形状の照明光を前記保持部に対して照射可能な照明部と、
     前記保持部を撮像する撮像部と、
     前記保持部、前記照明部、及び、前記撮像部の相対位置を変化させる駆動部と、
     前記相対位置及び前記照明光の形状を変更して前記撮像部に前記被検体を複数回撮像させる制御を行うプロセッサと、を備え、
     前記プロセッサは、前記照明部と前記撮像部の双方の位置を変更して前記撮像部に前記被検体を撮像させる外観検査装置。
    The holding part where the subject is held and
    An illumination unit capable of irradiating the holding unit with illumination light of a plurality of shapes, and an illumination unit.
    An imaging unit that captures the image of the holding unit,
    A driving unit that changes the relative positions of the holding unit, the lighting unit, and the imaging unit.
    A processor that controls the image pickup unit to image the subject a plurality of times by changing the relative position and the shape of the illumination light is provided.
    The processor is an appearance inspection device that changes the positions of both the illumination unit and the image pickup unit so that the image pickup unit can image the subject.
  18.  請求項17記載の外観検査装置であって、
     前記保持部に対して前記撮像部が配置される側を第一側、前記第一側と逆側を第二側とした場合に、前記プロセッサは、前記第二側から第一形状の照明光を前記保持部へ照射させた状態にて前記撮像部により前記被検体を撮像させる制御と、前記第一側から第二形状の照明光を前記保持部へ照射させた状態にて前記撮像部により前記被検体を撮像させる制御と、を行う外観検査装置。
    The visual inspection apparatus according to claim 17.
    When the side on which the image pickup unit is arranged is the first side and the side opposite to the first side is the second side with respect to the holding unit, the processor has the illumination light of the first shape from the second side. Control to image the subject by the image pickup unit while the holding unit is irradiated with light, and by the image pickup unit while the holding unit is irradiated with illumination light of the second shape from the first side. A visual inspection device that controls and controls the imaging of the subject.
  19.  被検体が保持される保持部と、複数の形状の照明光を前記保持部に対して照射可能な照明部と、前記保持部を撮像する撮像部と、前記保持部、前記照明部、及び、前記撮像部の相対位置を変化させる駆動部と、を用いて前記被検体の外観を検査する外観検査方法であって、
     前記相対位置及び前記照明光の形状を変更して前記撮像部に前記被検体を複数回撮像させる制御を行う制御ステップを備え、
     前記制御ステップでは、前記照明光が前記被検体によって反射された反射光を含む前記被検体と、前記照明光が前記被検体を透過した透過光を含む前記被検体とを前記撮像部に撮像させる外観検査方法。
    A holding unit that holds a subject, an illuminating unit that can irradiate the holding unit with illumination light of a plurality of shapes, an imaging unit that images the holding unit, the holding unit, the illuminating unit, and A visual inspection method for inspecting the appearance of a subject using a driving unit that changes the relative position of the imaging unit.
    A control step is provided in which the relative position and the shape of the illumination light are changed to control the image pickup unit to image the subject a plurality of times.
    In the control step, the image pickup unit is made to image the subject including the reflected light reflected by the subject and the subject including the transmitted light transmitted by the illumination light through the subject. Visual inspection method.
  20.  被検体が保持される保持部と、複数の形状の照明光を前記保持部に対して照射可能な照明部と、前記保持部を撮像する撮像部と、前記保持部、前記照明部、及び、前記撮像部の相対位置を変化させる駆動部と、を用いて前記被検体の外観を検査する外観検査方法であって、
     前記相対位置及び前記照明光の形状を変更して前記撮像部に前記被検体を複数回撮像させる制御を行う制御ステップを備え、
     前記制御ステップでは、前記照明部と前記撮像部の双方の位置を変更して前記撮像部に前記被検体を撮像させる外観検査方法。
    A holding unit that holds a subject, an illuminating unit that can irradiate the holding unit with illumination light of a plurality of shapes, an imaging unit that images the holding unit, the holding unit, the illuminating unit, and A visual inspection method for inspecting the appearance of a subject using a driving unit that changes the relative position of the imaging unit.
    A control step is provided in which the relative position and the shape of the illumination light are changed to control the image pickup unit to image the subject a plurality of times.
    In the control step, a visual inspection method in which the positions of both the illumination unit and the image pickup unit are changed so that the image pickup unit can image the subject.
  21.  被検体が保持される保持部と、複数の形状の照明光を前記保持部に対して照射可能な照明部と、前記保持部を撮像する撮像部と、前記保持部、前記照明部、及び、前記撮像部の相対位置を変化させる駆動部と、を用いて前記被検体の外観を検査する外観検査プログラムであって、
     前記相対位置及び前記照明光の形状を変更して前記撮像部に前記被検体を複数回撮像させる制御を行う制御ステップをコンピュータに実行させるものであり、
     前記制御ステップでは、前記照明光が前記被検体によって反射された反射光を含む前記被検体と、前記照明光が前記被検体を透過した透過光を含む前記被検体とを前記撮像部に撮像させる外観検査プログラム。
    A holding unit that holds a subject, an illuminating unit that can irradiate the holding unit with illumination light of a plurality of shapes, an imaging unit that images the holding unit, the holding unit, the illuminating unit, and A visual inspection program for inspecting the appearance of a subject using a driving unit that changes the relative position of the imaging unit.
    The computer is made to execute a control step of changing the relative position and the shape of the illumination light to control the image pickup unit to image the subject a plurality of times.
    In the control step, the image pickup unit is made to image the subject including the reflected light reflected by the subject and the subject including the transmitted light transmitted by the illumination light through the subject. Visual inspection program.
  22.  被検体が保持される保持部と、複数の形状の照明光を前記保持部に対して照射可能な照明部と、前記保持部を撮像する撮像部と、前記保持部、前記照明部、及び、前記撮像部の相対位置を変化させる駆動部と、を用いて前記被検体の外観を検査する外観検査プログラムであって、
     前記相対位置及び前記照明光の形状を変更して前記撮像部に前記被検体を複数回撮像させる制御を行う制御ステップをコンピュータに実行させるものであり、
     前記制御ステップでは、前記照明部と前記撮像部の双方の位置を変更して前記撮像部に前記被検体を撮像させる外観検査プログラム。

     
    A holding unit that holds a subject, an illuminating unit that can irradiate the holding unit with illumination light of a plurality of shapes, an imaging unit that images the holding unit, the holding unit, the illuminating unit, and A visual inspection program for inspecting the appearance of a subject using a driving unit that changes the relative position of the imaging unit.
    The computer is made to execute a control step of changing the relative position and the shape of the illumination light to control the image pickup unit to image the subject a plurality of times.
    In the control step, an appearance inspection program in which the positions of both the illumination unit and the image pickup unit are changed so that the image pickup unit can image the subject.

PCT/JP2021/042280 2020-11-27 2021-11-17 Visual inspection device, visual inspection method, and visual inspection program WO2022113852A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022565268A JPWO2022113852A1 (en) 2020-11-27 2021-11-17
CN202180076730.8A CN116457645A (en) 2020-11-27 2021-11-17 Appearance inspection device, appearance inspection method, and appearance inspection program

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020197622 2020-11-27
JP2020-197622 2020-11-27

Publications (1)

Publication Number Publication Date
WO2022113852A1 true WO2022113852A1 (en) 2022-06-02

Family

ID=81754588

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/042280 WO2022113852A1 (en) 2020-11-27 2021-11-17 Visual inspection device, visual inspection method, and visual inspection program

Country Status (3)

Country Link
JP (1) JPWO2022113852A1 (en)
CN (1) CN116457645A (en)
WO (1) WO2022113852A1 (en)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1062354A (en) * 1996-08-20 1998-03-06 Nachi Fujikoshi Corp Device and method of inspecting transparent plate for defect
JP2001235853A (en) * 1999-10-13 2001-08-31 Applied Materials Inc Method and device for reticle inspection using aerial image
JP2002005853A (en) * 2000-06-20 2002-01-09 Canon Inc Lens inspecting apparatus
JP2008032433A (en) * 2006-07-26 2008-02-14 Olympus Corp Substrate inspection device
JP2008076218A (en) * 2006-09-21 2008-04-03 Olympus Corp Visual inspection apparatus
JP2010256340A (en) * 2009-03-31 2010-11-11 Hitachi High-Technologies Corp High-speed inspection method and apparatus of the same
JP2013108816A (en) * 2011-11-18 2013-06-06 N Tech:Kk Container inspection apparatus
WO2014050609A1 (en) * 2012-09-28 2014-04-03 Jx日鉱日石エネルギー株式会社 Device for inspecting substrate having irregular rough surface and inspection method using same
JP2017032369A (en) * 2015-07-31 2017-02-09 株式会社ニューフレアテクノロジー Pattern inspection device and pattern inspection method
JP2017062160A (en) * 2015-09-24 2017-03-30 アイシン精機株式会社 Defect inspection device and defect inspection method
WO2017170402A1 (en) * 2016-03-31 2017-10-05 パナソニックIpマネジメント株式会社 Inspecting method, inspection system and manufacturing method
JP2020042035A (en) * 2019-11-13 2020-03-19 株式会社ニューフレアテクノロジー Pattern inspection device and pattern inspection method

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1062354A (en) * 1996-08-20 1998-03-06 Nachi Fujikoshi Corp Device and method of inspecting transparent plate for defect
JP2001235853A (en) * 1999-10-13 2001-08-31 Applied Materials Inc Method and device for reticle inspection using aerial image
JP2002005853A (en) * 2000-06-20 2002-01-09 Canon Inc Lens inspecting apparatus
JP2008032433A (en) * 2006-07-26 2008-02-14 Olympus Corp Substrate inspection device
JP2008076218A (en) * 2006-09-21 2008-04-03 Olympus Corp Visual inspection apparatus
JP2010256340A (en) * 2009-03-31 2010-11-11 Hitachi High-Technologies Corp High-speed inspection method and apparatus of the same
JP2013108816A (en) * 2011-11-18 2013-06-06 N Tech:Kk Container inspection apparatus
WO2014050609A1 (en) * 2012-09-28 2014-04-03 Jx日鉱日石エネルギー株式会社 Device for inspecting substrate having irregular rough surface and inspection method using same
JP2017032369A (en) * 2015-07-31 2017-02-09 株式会社ニューフレアテクノロジー Pattern inspection device and pattern inspection method
JP2017062160A (en) * 2015-09-24 2017-03-30 アイシン精機株式会社 Defect inspection device and defect inspection method
WO2017170402A1 (en) * 2016-03-31 2017-10-05 パナソニックIpマネジメント株式会社 Inspecting method, inspection system and manufacturing method
JP2020042035A (en) * 2019-11-13 2020-03-19 株式会社ニューフレアテクノロジー Pattern inspection device and pattern inspection method

Also Published As

Publication number Publication date
CN116457645A (en) 2023-07-18
JPWO2022113852A1 (en) 2022-06-02

Similar Documents

Publication Publication Date Title
JP6945245B2 (en) Visual inspection equipment
US8426223B2 (en) Wafer edge inspection
KR101951576B1 (en) Inspection device and inspection method
TWI558996B (en) System and method for capturing illumination reflected in multiple directions
JP4514007B2 (en) Method and apparatus for inspecting appearance of subject
JP4719284B2 (en) Surface inspection device
US20090116727A1 (en) Apparatus and Method for Wafer Edge Defects Detection
US9013688B2 (en) Method for optical inspection, detection and analysis of double sided wafer macro defects
JP6759812B2 (en) Defect inspection equipment and defect inspection method
TWI773032B (en) An arched illumination device, an imaging system with the same and a method for imaging
JP2009513984A (en) Apparatus and method for inspecting a composite structure for defects
JP2009115613A (en) Foreign matter inspecting apparatus
US20170053394A1 (en) Inspection apparatus, inspection method, and article manufacturing method
KR100281881B1 (en) cream solder inspection apparatus and the method thereof
JP2008032433A (en) Substrate inspection device
CN110073203A (en) The method and apparatus for checking the defect in transparent substrate
WO2003034049A1 (en) Automatic inspection apparatus and method for detection of anomalies in a 3-dimensional translucent object
JP4755040B2 (en) Scratch inspection device, scratch inspection method
JP2011208941A (en) Flaw inspection device and flaw inspection method
WO2022113852A1 (en) Visual inspection device, visual inspection method, and visual inspection program
KR20120136654A (en) Inspection device of illumination and inspection method of illumination
KR20180136421A (en) System and method for defect detection
JPH11326236A (en) Surface layer defect-detection device
KR101403926B1 (en) Apparatus for inspecting curved surface
JP2011196897A (en) Inspection device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21897826

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022565268

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202180076730.8

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21897826

Country of ref document: EP

Kind code of ref document: A1