JP2009115613A - Foreign matter inspecting apparatus - Google Patents

Foreign matter inspecting apparatus Download PDF

Info

Publication number
JP2009115613A
JP2009115613A JP2007288874A JP2007288874A JP2009115613A JP 2009115613 A JP2009115613 A JP 2009115613A JP 2007288874 A JP2007288874 A JP 2007288874A JP 2007288874 A JP2007288874 A JP 2007288874A JP 2009115613 A JP2009115613 A JP 2009115613A
Authority
JP
Japan
Prior art keywords
foreign matter
sample
inspection apparatus
image
foreign
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007288874A
Other languages
Japanese (ja)
Inventor
Shozo Sakamoto
将三 阪本
Nobuyuki Nagai
信行 永井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Control Systems Corp
Original Assignee
Hitachi High Tech Control Systems Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi High Tech Control Systems Corp filed Critical Hitachi High Tech Control Systems Corp
Priority to JP2007288874A priority Critical patent/JP2009115613A/en
Publication of JP2009115613A publication Critical patent/JP2009115613A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a foreign matter inspecting apparatus capable of speedily and precisely detecting a foreign matter mixed in a sample, especially in food in the process of producing and testing the food. <P>SOLUTION: The foreign matter inspecting apparatus includes a feeding means for feeding samples continuously, a stroboscopic light source, a reflecting plate for reflecting light from the stroboscopic light source and irradiating the front and rear face of the sample indirectly, and a photographing means for photographing the samples in synchronization with the light emission of the stroboscopic light source. The photographing means photographs the sample so as to split the wavelength band of the reflection light from the sample into two or more portions, and creates an image by combining respective images or differential images, thereby highlighting the foreign matter. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、試料の製造、検査の過程において、混入した異物の検査装置に関し、特に、食品の製造、検査の過程で食品に混入した異物の高速かつ高精度な検出を可能にする異物検査装置に関する。   BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an inspection apparatus for foreign matters mixed in a process of manufacturing and inspecting a sample, and more particularly, a foreign substance inspection apparatus that enables high-speed and high-precision detection of foreign substances mixed in food during the manufacture and inspection of food. About.

試料、特に、食品の製造過程や検査過程において、金属、石、ガラス、毛髪、虫等の異物が混入するケースがあり、食品衛生上の問題となっている。このため、近年では多くの食品製造メーカが金属検査機やX検査装置を採用し、食品の製造過程において食品に混入した金属、石、ガラスの除去作業を行っている。しかしながら、上記の検査装置では毛髪や虫等の検出が非常に困難であるため、現状は作業員による目視検査に頼らざるを得ず、検査コストの増大や見逃しが問題となっている。   There are cases in which foreign substances such as metals, stones, glass, hair, insects and the like are mixed in the production process and inspection process of a sample, particularly food, which is a problem in food hygiene. For this reason, in recent years, many food manufacturers have adopted metal inspection machines and X inspection apparatuses to remove metal, stone, and glass mixed in food during the food production process. However, since it is very difficult to detect hair, insects, and the like with the above-described inspection apparatus, at present, it is necessary to rely on a visual inspection by an operator, and there is a problem of increase in inspection cost and oversight.

そこで、このような問題を解決すべく、いくつかの異物の検査方法が提案されている。製造過程で例えばベルトコンベア上を流れる食品にLEDや蛍光灯の光源を当て、異物を検知する異物検査方法が提案されている。この場合、髪の毛のような細い異物が移動すると、撮影時に画像が流れて検出感度が悪くなり、検出が困難になるという問題があった。   Therefore, in order to solve such problems, several foreign object inspection methods have been proposed. For example, a foreign matter inspection method has been proposed in which a light source such as an LED or a fluorescent lamp is applied to food flowing on a belt conveyor in the manufacturing process to detect foreign matter. In this case, if a fine foreign object such as hair moves, there is a problem in that an image flows at the time of photographing and the detection sensitivity is deteriorated, making detection difficult.

また、食品に広帯域光を照射し、可視光、近赤外光、中近赤外光の透過光画像を形成し、それぞれの画像について2値化処理し、いずれかの画像でパターンが発見された場合に、異物として検出する方法が提案されている(例えば、特許文献1参照)。しかし、このような2値化処理では、照明条件が変動した場合、二値化処理が正常に機能せず、検出困難になるといった問題がある。   In addition, food is irradiated with broadband light to form visible light, near-infrared light, and mid-near-infrared transmitted light images, each image is binarized, and a pattern is found in either image In such a case, a method for detecting a foreign object has been proposed (for example, see Patent Document 1). However, in such binarization processing, there is a problem that when the illumination condition fluctuates, the binarization processing does not function normally and it becomes difficult to detect.

また、食品と異物の可視−近赤外の吸収スペクトルを測定し、食品と異物の2次微分スペクトルを計算し、両者の間で差異のある波長を特定し、その特定波長を利用した2次微分画像を生成し、異物を検出する方法が提案されている(例えば、特許文献2参照)。しかし、このような方法では、検査対象の食品が変わる度に食品と異物の吸収スペクトルを測定し、差異のある波長を特定する作業が発生すため、手間とコストがかかるといった問題がある。   Also, the visible-near infrared absorption spectra of food and foreign substances are measured, the second derivative spectra of food and foreign substances are calculated, the wavelengths that are different between the two are identified, and the secondary using the specific wavelengths A method for generating a differential image and detecting foreign matter has been proposed (see, for example, Patent Document 2). However, in such a method, every time the food to be inspected changes, the absorption spectrum of the food and the foreign matter is measured and a wavelength having a difference is identified.

また、製造、検査過程で例えばベルトコンベア上を高速で流れている食品を検査する場合、検査対象とする領域の面積が大きくなり、可視光以外の光の撮影は現実的には困難であり、上記の方法を異物検査装置として実現するには困難がともなうと予想される。   In addition, when inspecting foods flowing at high speed on a belt conveyor in the manufacturing and inspection processes, the area of the region to be inspected becomes large, and it is actually difficult to shoot light other than visible light, It is expected that it will be difficult to implement the above method as a foreign matter inspection apparatus.

特開2001−99783号公報JP 2001-99783 A 特開2004−301690号公報JP 2004-301690 A

食品の製造、検査過程において、例えばベルトコンベア上を流れる食品に混入した異物を検出する場合、多量の食品をいかに高速でかつ誤検知のない検査をするかが重要である。   In the production and inspection process of food, for example, when detecting foreign matters mixed in food flowing on a belt conveyor, it is important how to inspect a large amount of food at high speed and without erroneous detection.

そのためには、食品の搬送速度を上げた上で、食品のすべてを検査するように検査対象領域を広くし、撮影した画像から異物を検出する画像処理速度を上げる必要がある。しかし、食品の搬送速度が速くなると画像が流れ、検査対象領域を広くすると撮影機の分解能が悪くなり、髪の毛のような細い物質を識別することは困難になる。   For this purpose, it is necessary to increase the food conveyance speed, widen the inspection target area so as to inspect all of the food, and increase the image processing speed for detecting foreign matter from the captured image. However, when the conveyance speed of food is increased, an image flows. When the inspection target area is widened, the resolution of the photographing machine is deteriorated, and it is difficult to identify a thin substance such as hair.

本発明は、試料、特に食品の製造、検査の過程で、食品に混入した異物を高速かつ高精度に検出することができる異物検査装置を提供することを目的とする。   It is an object of the present invention to provide a foreign substance inspection apparatus capable of detecting a foreign substance mixed in food in a process of manufacturing and inspecting a sample, particularly food, at high speed and with high accuracy.

上記課題を解決するために、本発明の実施態様は、連続的に試料を移送する搬送手段と、ストロボ光源と、該ストロボ光源からの光を反射して試料の表面や裏面を間接的に照射する反射板と、ストロボ光源の発光と同期して試料を撮影する撮影手段とを備え、上記撮影手段は、試料からの反射光の波長帯域を少なくとも2つ以上に分けて撮影するものであり、それぞれの画像または差分画像から組み合わせて画像を生成し、異物を強調するようにしたものである。   In order to solve the above-mentioned problems, an embodiment of the present invention includes a conveying means for continuously transferring a sample, a strobe light source, and indirectly irradiating the front and back surfaces of the sample by reflecting light from the strobe light source. And a photographing means for photographing the sample in synchronization with light emission of the strobe light source, the photographing means divides the wavelength band of the reflected light from the sample into at least two, An image is generated by combining each image or difference image, and foreign matter is emphasized.

本発明の実施態様によれば、試料、特に食品の製造、検査の過程で、食品に混入した異物を高速かつ高精度に検出することができる異物検査装置を提供することができる。   According to the embodiment of the present invention, it is possible to provide a foreign substance inspection apparatus capable of detecting a foreign substance mixed in food at high speed and with high accuracy in the process of manufacturing and inspecting a sample, particularly food.

本発明の一実施態様は、光源としてXeランプなどのストロボ光を用い、短い発光時間で瞬時に測定を行うことで、画像中の異物のブレを少なくする。   In one embodiment of the present invention, strobe light such as an Xe lamp is used as a light source, and instantaneous measurement is performed in a short light emission time, thereby reducing blurring of foreign matters in an image.

また、波長帯域ごとに分離した各画像やその差分画像を使用することにより、誤検知や検知欠落が少なくなる。さらには、画像から特異な領域を抽出し、その領域のみを検査対象とすることにより、高速な検知を行うことができる。   In addition, by using each image separated for each wavelength band and its difference image, false detection and missing detection are reduced. Furthermore, it is possible to perform high-speed detection by extracting a specific area from the image and setting only that area as an inspection target.

本実施例では、光としてLEDや蛍光灯に比べて、発光量が1桁から2桁多いストロボ光を用いる。ストロボ光の光源は、可視領域では比較的平坦な周波数分布を持つXeランプなどを用いる。   In this embodiment, strobe light having a light emission amount that is one to two orders of magnitude greater than that of an LED or fluorescent lamp is used as light. The strobe light source is an Xe lamp having a relatively flat frequency distribution in the visible region.

ストロボ光を用いることにより、短い発光時間で瞬時に測定を行うことができるため、食品が高速に移動しても、画像のブレがほとんどなくなる。また、発光量が多いためのぎらつきは、ストロボ光を食品へ直接照射するのではなく、反射板を用いて間接照明にすることで抑えることができる。   By using strobe light, measurement can be performed instantaneously in a short light emission time, so that even if the food moves at high speed, there is almost no blurring of the image. Further, glare due to a large amount of emitted light can be suppressed by using indirect illumination using a reflector, instead of directly irradiating food with strobe light.

異物の検出は、波長帯域ごとに分離した各画像や、その差分画像を用い、異物と食品の分光特性の差異から、輝度変化のある領域を抽出することで、異物を識別可能とする。   The detection of a foreign object makes it possible to identify the foreign object by extracting a region having a luminance change from the difference between the spectral characteristics of the foreign object and the food using each image separated for each wavelength band and the difference image thereof.

以下、図面を用いて、本発明の一実施例を説明する。   Hereinafter, an embodiment of the present invention will be described with reference to the drawings.

図1は、食品の製造過程の一部に異物検査装置を設置したシステムの構成を示す構成図である。   FIG. 1 is a configuration diagram showing a configuration of a system in which a foreign substance inspection apparatus is installed in a part of a food production process.

図1(a)において、異物検査装置1は、食品供給装置20から供給された検査対象である試料4を検査し、検査結果に従って仕分け手段19で試料4が仕分けされる。検査の結果、試料4に異物が混入していると判定された場合には、その試料4は、トレイ21へ収納され、異物混入のない良品と区別される。   In FIG. 1A, the foreign matter inspection apparatus 1 inspects the sample 4 to be inspected supplied from the food supply apparatus 20, and the sample 4 is sorted by the sorting means 19 according to the inspection result. As a result of the inspection, if it is determined that foreign matter is mixed in the sample 4, the sample 4 is stored in the tray 21 and is distinguished from a non-defective product that does not contain foreign matter.

異物検査装置1には、搬送手段2が設けられ、搬送手段2の上に重ならないように置かれた試料4が移動する間に検査のための光が照射される。搬送手段2は、例えば一定幅を持つベルトで構成されたベルトコンベアであり、モータなどの搬送駆動装置3によって駆動される。   The foreign matter inspection apparatus 1 is provided with a transport unit 2 and irradiates light for inspection while the sample 4 placed so as not to overlap the transport unit 2 moves. The conveying means 2 is a belt conveyor configured by a belt having a constant width, for example, and is driven by a conveying driving device 3 such as a motor.

搬送手段2の上の試料4に光を照射するための光源ユニット5が搬送手段2を覆うように設けられ、試料4に光が照射される。   A light source unit 5 for irradiating the sample 4 on the transport unit 2 with light is provided so as to cover the transport unit 2, and the sample 4 is irradiated with light.

図1(b)は、光源ユニット5の断面図であり、図1(a)中に白矢印で示した試料4が搬送される方向から見たものである。   FIG. 1B is a cross-sectional view of the light source unit 5 as viewed from the direction in which the sample 4 indicated by the white arrow in FIG. 1A is conveyed.

光源ユニット5の内部に、搬送手段2のベルトの両端に、移動方向に沿ってストロボ光源11a、11bを配置している。ストロボ光の発光量が多いためのぎらつきは、ストロボ光を食品へ直接照射するのではなく、反射板を用いて間接照明にすることで抑えるようにしている。   In the light source unit 5, strobe light sources 11a and 11b are arranged along the moving direction at both ends of the belt of the conveying means 2. The glare caused by the large amount of stroboscopic light emission is suppressed by indirect illumination using a reflector instead of directly irradiating the stroboscopic light on food.

ストロボ光源11a、11bの発光部はほぼ上向きに光が出るようにカバーを取付けて試料4から隠れるように設置され、光が試料4に直接当らないようにしている。反射板12は、ストロボ光源11a、11bから出た光を反射して、間接的に試料4へ照射されるようにする。   The light emitting portions of the strobe light sources 11 a and 11 b are installed so as to be hidden from the sample 4 by attaching a cover so that light is emitted almost upward, so that the light does not directly hit the sample 4. The reflecting plate 12 reflects the light emitted from the strobe light sources 11a and 11b so that the sample 4 is irradiated indirectly.

反射板12は、試料4の搬送方向に沿った半円筒形状とし、光が試料4にできるだけ均一に当るようにしている。   The reflector 12 has a semi-cylindrical shape along the conveyance direction of the sample 4 so that light strikes the sample 4 as uniformly as possible.

なお、試料4で反射した反射光13を撮影するときは、カメラ等の撮影手段6のレンズ10の下方に試料4がきたときなので、反射板12を試料4の撮影位置を中心とする半球形状とすれば、より多くの間接照明光を試料4へ照射することができる。   Note that when the reflected light 13 reflected by the sample 4 is photographed when the sample 4 comes below the lens 10 of the photographing means 6 such as a camera, the reflecting plate 12 has a hemispherical shape centered on the photographing position of the sample 4. If so, the sample 4 can be irradiated with more indirect illumination light.

図1(a)に戻って、反射板12の上方に撮影手段6が設けられ、レンズ10の下方の試料4を撮影する。撮影手段6もストロボ光源11a,11bの光が直接入らないような位置としている。   Returning to FIG. 1A, the photographing means 6 is provided above the reflecting plate 12 to photograph the sample 4 below the lens 10. The photographing means 6 is also positioned so that the light from the strobe light sources 11a and 11b does not enter directly.

撮影手段6は、レンズ10と、フィルタ9と、光を分光するためのプリズム7と、1つ以上の撮像素子8とで構成される。試料4からの反射光13は、レンズ10を経由し、プリズム7で3つの波長帯域に分光され、それぞれCCDやCMOS等の撮像素子8で受光される。   The photographing means 6 includes a lens 10, a filter 9, a prism 7 for splitting light, and one or more image sensors 8. The reflected light 13 from the sample 4 is split into three wavelength bands by the prism 7 via the lens 10 and is received by the image pickup device 8 such as a CCD or CMOS.

3つの波長帯域は、主に赤(R)、緑(G)、青(B)である。分光する波長帯は、特にこのRGBにこだわらなくても、2つ以上の波長帯域に分光できれば、本発明における異物判別を行える。また、必要に応じ、レンズ10の前段にフィルタ9を設け、不要な波長を取り除いてもよい。   The three wavelength bands are mainly red (R), green (G), and blue (B). Even if the wavelength band to be dispersed is not particularly concerned with RGB, foreign substance discrimination in the present invention can be performed as long as it can be divided into two or more wavelength bands. Further, if necessary, a filter 9 may be provided in front of the lens 10 to remove unnecessary wavelengths.

撮像素子8で受光された画像は、異物検出手段16に設けられた画像間演算手段15に導かれ、それぞれの画像から特異な輝度値変化分を抽出する。その後、異物検出手段16にて、特異な輝度値変化分から異物の検出を行う。   The image received by the image sensor 8 is guided to an inter-image calculation unit 15 provided in the foreign object detection unit 16 and a specific luminance value change is extracted from each image. Thereafter, the foreign matter detection means 16 detects the foreign matter from the specific change in luminance value.

異物検出手段16はコンピュータであり、入力された画像データに対し、定められたプログラムに従って演算処理を行い、その結果を接続されたディスプレイ17に表示する。また、異物検出手段16には制御手段18が接続され、異物を検出した後の対象試料4を仕分けする仕分け手段19の制御を行う。   The foreign object detection means 16 is a computer, performs arithmetic processing on the input image data according to a predetermined program, and displays the result on the connected display 17. Further, the control unit 18 is connected to the foreign matter detection unit 16 to control the sorting unit 19 that sorts the target sample 4 after the foreign matter is detected.

また、制御手段18は、異物検出手段16から送信される指令データに従って、撮影手段6による撮影の制御、ストロボ光源11a、11bの発光と撮影の同期をとるための制御、搬送手段2の搬送速度と撮影タイミングの制御を行う。   Further, the control means 18 controls the photographing by the photographing means 6 according to the command data transmitted from the foreign matter detecting means 16, the control for synchronizing the light emission and photographing with the strobe light sources 11a and 11b, and the conveying speed of the conveying means 2. And control the shooting timing.

図2は、ストロボ発光と撮影のタイミングを示すタイムチャートである。タイミングの制御は、図1(a)に示した異物検出手段16から送信される指令データに従って、制御手段18により実行される。   FIG. 2 is a time chart showing the timing of flash emission and shooting. The timing control is executed by the control means 18 in accordance with the command data transmitted from the foreign object detection means 16 shown in FIG.

図2(a)において、搬送手段2により試料4は速度Vで移動しており、撮影手段6により一定の範囲、すなわち撮影エリア30a、30bを撮影するものとする。撮影幅Aは、撮影漏れをなくすために、撮影時間T=A/Vのタイミングで撮影する。   In FIG. 2A, the sample 4 is moved at the speed V by the conveying means 2, and a certain range, that is, photographing areas 30a and 30b are photographed by the photographing means 6. The shooting width A is shot at the timing of shooting time T = A / V in order to eliminate omission of shooting.

図2(b)は、露光に必要な露光時間t1を示し、従来の場合は、LEDや蛍光灯を常時点灯しておき、必要な光量31を得るために、撮影手段6の露光時間t1を長くすることで対応していた。   FIG. 2 (b) shows the exposure time t1 required for exposure. In the conventional case, the exposure time t1 of the photographing means 6 is used in order to obtain the required light quantity 31 by always lighting the LED and the fluorescent lamp. It was supported by making it longer.

LEDや蛍光灯は光強度が低いため、露光時間t1を長くしないと異物を識別できるだけの光量31が得られない。しかし、露光時間t1を長くすると、異物が流れた状態の画像となってしまう可能性があり、調整が困難であった。   Since the light intensity of the LED or the fluorescent lamp is low, a light quantity 31 sufficient to identify a foreign object cannot be obtained unless the exposure time t1 is increased. However, if the exposure time t1 is lengthened, there is a possibility that an image in which foreign matter has flowed may occur, and adjustment is difficult.

図3は、露光時間を変えて髪の毛を撮影したときの画像の例を示す図であり、図3(a)は、従来のLEDや蛍光灯を常時点灯しておき、露光時間t1を長くしたときの例、図3(b)は、本発明のストロボ光を用いた例である。   FIG. 3 is a diagram showing an example of an image when the hair is photographed while changing the exposure time. FIG. 3A shows that the conventional LED or fluorescent lamp is always turned on to increase the exposure time t1. FIG. 3B is an example using the strobe light of the present invention.

図3(a)に示すように、髪の毛などの線状異物35は画像が流れて、異物像36は、速度Vと露光時間t1の積で求められる長さに引き伸ばされた形状になる。そして、広がった面積分の輝度が低下し、撮影感度が極端に悪くなる欠点がある。   As shown in FIG. 3A, an image flows through the linear foreign matter 35 such as hair, and the foreign matter image 36 has a shape stretched to a length determined by the product of the speed V and the exposure time t1. Further, there is a drawback that the luminance for the expanded area is lowered and the photographing sensitivity is extremely deteriorated.

例えば、線状異物35の幅が50μm、移動速度Vが200mm/s、露光時間t1が1msとすると、引き延ばされた長さV・t1は200μmとなり、元の幅50μmの4倍に広がる。   For example, if the width of the linear foreign material 35 is 50 μm, the moving speed V is 200 mm / s, and the exposure time t1 is 1 ms, the extended length V · t1 is 200 μm, which is four times the original width 50 μm. .

そして、輝度値は4分の1に低下し、形状が崩れるので、異物の識別が困難になってしまう。髪の毛のように細い異物や、小さい異物ほどこの影響が大きくなり、しかも、移動速度Vが大きくなるにつれて輝度値の低下が大きくなるので、従来の方式では、異物の検出がほとんどできなくなる。   And since a luminance value falls to 1/4 and a shape collapse | crumbles, it will become difficult to identify a foreign material. This effect is greater for thin foreign objects such as hair and small foreign objects, and the decrease in luminance value increases as the moving speed V increases. Therefore, the conventional method can hardly detect foreign objects.

また、光量を得るためにレンズ10の絞りを大きくすると、光量は増えるが焦点深度が浅くなるため、撮影エリア全体の焦点を合せることが困難になり、光量と焦点深度のバランスをとるのが困難であった。   Further, if the aperture of the lens 10 is increased in order to obtain the amount of light, the amount of light increases, but the depth of focus becomes shallow. Therefore, it becomes difficult to focus the entire photographing area, and it is difficult to balance the amount of light and the depth of focus. Met.

本発明の実施例では、光源として、発光輝度がLEDや蛍光灯に比べ1桁から2桁大きいストロボ光源を用いた。   In the embodiment of the present invention, a strobe light source having a light emission luminance that is one to two digits larger than that of an LED or a fluorescent lamp is used as the light source.

例えば、Xeストロボ光源は、波長帯域が300から900nmの可視光範囲で比較的平坦な特性を持つ。図2(a)に示した撮影エリア30a,30bを撮影するために、従来と同じく、撮影時間T=A/Vのタイミングで撮影する。   For example, the Xe strobe light source has a relatively flat characteristic in the visible light range where the wavelength band is 300 to 900 nm. In order to photograph the photographing areas 30a and 30b shown in FIG. 2A, photographing is performed at a timing of photographing time T = A / V as in the conventional case.

一方、図2(c)に示すように、ストロボを、発光時間t2と、周期T=A/Vで発光させ、光量32を得る。ストロボ光源は、発光輝度がLEDや蛍光灯に比べ1桁から2桁大きいので、図2(b)に示す露光時間t1は、少なくともストロボの発光時間t2より長ければ撮影可能であるので任意の値でよく、上限は撮影エリアの撮影幅Aである。   On the other hand, as shown in FIG. 2C, the strobe is caused to emit light at a light emission time t2 and a cycle T = A / V, and a light quantity 32 is obtained. Since the strobe light source has a light emission luminance that is one to two orders of magnitude higher than that of an LED or a fluorescent lamp, the exposure time t1 shown in FIG. 2B can be taken as long as it is at least longer than the light emission time t2 of the strobe. The upper limit is the shooting width A of the shooting area.

ストロボは輝度強度が大きいため、発光時間を従来のLEDや蛍光灯などの光源に比べ、1桁から2桁小さくできる。そのため、図3(b)示すように、髪の毛などの線状異物35は、画像がほとんど流れず、原形の異物の形状に近い異物像37になる。   Since the strobe has a high luminance intensity, the light emission time can be reduced by one to two digits compared to conventional light sources such as LEDs and fluorescent lamps. For this reason, as shown in FIG. 3B, the linear foreign matter 35 such as the hair hardly has an image and becomes a foreign matter image 37 close to the shape of the original foreign matter.

したがって、輝度低下が少なく、異物検出の感度が悪くなることはない。例えば、異物の幅が50μm、移動速度Vが200mm/s、発光時間t2が0.05msとすると、引き延ばされた長さV・t2は10μmとなり、元の異物のたかだか1.2倍の幅の広がりに抑えられている。   Accordingly, there is little decrease in luminance, and the foreign object detection sensitivity does not deteriorate. For example, if the width of the foreign matter is 50 μm, the moving speed V is 200 mm / s, and the light emission time t2 is 0.05 ms, the extended length V · t2 is 10 μm, which is at most 1.2 times that of the original foreign matter. The breadth is suppressed.

このように、輝度も落ちず、形状も変わらないので、髪の毛のような細い異物、小さい異物を、移動速度が速くても検出することができる。また、輝度が高いことから反射光の光量が大きく、レンズ10の絞りを絞って焦点深度を深くすることができるため、撮影エリア全体の焦点がぼけることも防止できる。さらに、瞬時に高輝度で撮影するため、振動や、外から進入する光などの外乱の影響も受けにくいという利点がある。   In this way, since the luminance does not decrease and the shape does not change, it is possible to detect fine foreign matters such as hair and small foreign matters even if the moving speed is high. Further, since the luminance is high, the amount of reflected light is large, and the aperture of the lens 10 can be narrowed to increase the depth of focus, so that it is possible to prevent the entire photographing area from being out of focus. Furthermore, since shooting is performed with high brightness instantaneously, there is an advantage that it is not easily affected by disturbances such as vibration and light entering from the outside.

ストロボ光源は光量が大きいので、試料に直接照射すると試料の表面にテカリやぎらつきが発生し、本来の試料や異物の正しい分光反射が得られないことがある。そのため、反射板12を設け、反射板12で反射した照明光を試料4に間接的に照射する方法を取る。   Since the strobe light source has a large amount of light, shining or glare occurs on the surface of the sample directly when irradiated on the sample, and the correct spectral reflection of the original sample or foreign matter may not be obtained. Therefore, a method is provided in which the reflecting plate 12 is provided and the sample 4 is indirectly irradiated with the illumination light reflected by the reflecting plate 12.

また、試料4の影は撮影像として、異物と認識したりするので、できるだけ影をなくすために照明光が試料4に各方向からできるだけ均一に当たるように、反射板12を半円筒形状や半球形状とすることが望ましい。   In addition, since the shadow of the sample 4 is recognized as a foreign object as a captured image, the reflector 12 is formed in a semi-cylindrical shape or a hemispherical shape so that the illumination light strikes the sample 4 as uniformly as possible from each direction in order to eliminate the shadow as much as possible. Is desirable.

図4、図5は、図1(b)と同じく、光源ユニット5の断面図であり、試料4に多くの照明光を照射するための構造を示す例である。   4 and 5 are cross-sectional views of the light source unit 5 as in FIG. 1B, and are examples showing structures for irradiating the sample 4 with a large amount of illumination light.

試料4に高さがあると影が出やすいので、図4に示すように、試料4の側面に光を当てるように補助の反射板12a,12bを設け、影をなくすようにする。さらに、この補助の反射板12a,12bにスリットを設けて櫛状とし、スリットの幅等を変えることで反射面積を変えるようにすることで、試料4の側面からの光量を調整することができる。   If the sample 4 has a height, a shadow is likely to appear. Therefore, as shown in FIG. 4, auxiliary reflectors 12a and 12b are provided so as to shine light on the side surface of the sample 4 so as to eliminate the shadow. Furthermore, the light quantity from the side surface of the sample 4 can be adjusted by providing the auxiliary reflectors 12a and 12b with a slit and changing the reflection area by changing the slit width and the like. .

また、図5に示すように、搬送手段2のベルトをある程度透過する光を、ベルトの下側から当てるように光源22を設けてもよい。ただし、この場合、ストロボ光源11a,11bの光量とのバランスを考慮して光源22の光量を選択する必要がある。また、搬送手段2のベルトを透過させるので、ベルトの構造に配慮する必要がある。   In addition, as shown in FIG. 5, a light source 22 may be provided so that light transmitted through the belt of the conveying unit 2 to some extent is applied from below the belt. However, in this case, it is necessary to select the light amount of the light source 22 in consideration of the balance with the light amounts of the strobe light sources 11a and 11b. Moreover, since the belt of the conveying means 2 is transmitted, it is necessary to consider the belt structure.

異物検出後の試料4の仕分けは、図1(a)に示した制御手段18と仕分け手段19によって行われる。異物検出の位置は異物検出手段16によって、図2(a)に示した撮像エリア30a内の位置を算出し、その位置から仕分け手段19までの距離が計算できる。   The sorting of the sample 4 after the detection of the foreign matter is performed by the control means 18 and the sorting means 19 shown in FIG. The position of foreign matter detection can be calculated by the foreign matter detection means 16 in the imaging area 30a shown in FIG. 2A, and the distance from the position to the sorting means 19 can be calculated.

搬送速度Vから仕分け手段19までの時間を割り出し、仕分け手段19の上に対象の試料4がきたら仕分け機構を動作させ、トレイ21に収納する。また、搬送手段2の搬送駆動装置3にエンコーダを付け、そのパルスから距離を算出することも可能である。   The time from the conveying speed V to the sorting means 19 is determined, and when the target sample 4 comes on the sorting means 19, the sorting mechanism is operated and stored in the tray 21. It is also possible to attach an encoder to the transport driving device 3 of the transport means 2 and calculate the distance from the pulse.

図6は、仕分け手段とトレイの一部の斜視図である。   FIG. 6 is a perspective view of part of the sorting means and the tray.

図1(b)に示した搬送手段2の横方向に多くの試料4が並び、しかも異物が付着した試料4がそのうち1つだけであった場合に、仕分け手段19が単純に上下するだけであると、横に並んだ良品の試料4も一緒にトレイ21に収納されてしまうことになり、無駄が発生してしまう。   When many samples 4 are arranged in the lateral direction of the conveying means 2 shown in FIG. 1B and only one of the samples 4 is attached with foreign matter, the sorting means 19 simply moves up and down. In this case, the non-defective samples 4 arranged side by side are also stored in the tray 21 and waste is generated.

そこで、図6に示すように、エアー42を試料4に吹付けることで、異物が付着した試料を異物トレイ43へ、良品の試料をトレイ44へ収納するようにする。   Therefore, as shown in FIG. 6, the air 42 is blown onto the sample 4 so that the sample to which foreign matter is attached is stored in the foreign matter tray 43 and the non-defective sample is stored in the tray 44.

搬送手段2の出口は、試料4がトレイ44に落下して収納されるようになっている。また、搬送手段2とトレイ44の間には、エアーノズル40を搬送手段2のベルト幅方向(Y軸方向とする)に複数個並べ、それぞれのエアーノズル40が電磁弁41でエアー42の噴出し量を制御できるようにしている。エアー42の噴出しにより飛ばされた試料4及び線状異物35は、異物トレイ43に収納される。   At the outlet of the conveying means 2, the sample 4 is dropped and stored in the tray 44. A plurality of air nozzles 40 are arranged in the belt width direction (Y-axis direction) of the conveying means 2 between the conveying means 2 and the tray 44, and each air nozzle 40 ejects air 42 by the electromagnetic valve 41. The amount can be controlled. The sample 4 and the linear foreign matter 35 that are blown off by the ejection of the air 42 are stored in the foreign matter tray 43.

搬送された試料4に線状異物35が検出されると、制御手段18で搬送方向(X軸方向とする)とY軸方向の位置を計算し、搬送手段2の出口で、その試料4のX座標とY座標に対応したエアーノズル40がエアー42を噴出する。エアー42をかけられた試料4と線状異物35は、異物トレイ43に収納される。エアー42が噴出した部位は試料4のX座標とY座標の位置のみなので、良品と異物が付着した試料4とを区別して、良品の試料4は異物トレイ43でなくトレイ44へ収納することができる。   When the linear foreign matter 35 is detected in the transported sample 4, the position of the transport direction (X-axis direction) and the Y-axis direction are calculated by the control means 18, and at the outlet of the transport means 2, The air nozzle 40 corresponding to the X coordinate and the Y coordinate ejects air 42. The sample 4 and the linear foreign matter 35 to which the air 42 is applied are stored in the foreign matter tray 43. Since the portion where the air 42 is ejected is only the X-coordinate and Y-coordinate positions of the sample 4, the non-defective product 4 can be stored in the tray 44 instead of the foreign material tray 43 by distinguishing between the non-defective product 4 and the sample 4 to which foreign matter has adhered. it can.

図7は、食品供給装置と搬送手段の一部の斜視図である。   FIG. 7 is a perspective view of a part of the food supply device and the conveying means.

図1(a)に示した異物検査装置1は、主に線状異物を検査するものなので、線状でない異物や食品に表面張力で付着している液体は検出するのが困難である。   Since the foreign substance inspection apparatus 1 shown in FIG. 1A mainly inspects linear foreign substances, it is difficult to detect non-linear foreign substances and liquids adhering to foods due to surface tension.

したがって、これらの異物を事前に除去しておくことが望ましい。食品供給装置20には試料4が搭載されているが、線状異物35、小異物38、水分などの液体39も一緒に搭載されている場合、搬送手段2に試料4を供給する手前の位置で、小異物38や液体39が通過可能なスリット51を食品供給装置20の幅方向に設ける。   Therefore, it is desirable to remove these foreign substances in advance. Although the sample 4 is mounted on the food supply device 20, when a linear foreign material 35, a small foreign material 38, and a liquid 39 such as moisture are also mounted together, the position before the sample 4 is supplied to the conveying means 2. Thus, a slit 51 through which the small foreign matter 38 and the liquid 39 can pass is provided in the width direction of the food supply device 20.

そして、食品供給装置20に振動を加えて、スリット51から小異物38や液体39が取り除かれるようにする。取り除かれた小異物38や液体39は異物受け52に集められる。   Then, the food supply apparatus 20 is vibrated so that the small foreign matter 38 and the liquid 39 are removed from the slit 51. The removed small foreign matter 38 and liquid 39 are collected in the foreign matter receptacle 52.

図8は、異物からの反射光の波長と反射率の関係を表すグラフである。   FIG. 8 is a graph showing the relationship between the wavelength of reflected light from a foreign object and the reflectance.

図1(a)に示した撮影手段6は、レンズ10と、受光した光を分光するためのプリズム7と、1つ以上の撮像素子8とから構成され、試料4からの反射光13はレンズ10を経由し、プリズム7で赤(R)、緑(G)、青(B)の3つの波長帯域に分光され、それぞれの波長帯域がCCDやCMOS等の撮像素子8で受光される。   The imaging means 6 shown in FIG. 1A includes a lens 10, a prism 7 for splitting received light, and one or more imaging elements 8, and reflected light 13 from the sample 4 is a lens. 10, the light is split into three wavelength bands of red (R), green (G), and blue (B) by the prism 7, and each wavelength band is received by an image sensor 8 such as a CCD or CMOS.

なお、プリズム7と撮像素子8とが一体になったカメラも市販されているので、これを使用してもよい。   A camera in which the prism 7 and the image sensor 8 are integrated is also commercially available, and may be used.

図8において、一般的に食品62の特性は、波長により反射率の山谷があるが、髪の毛のような異物は、比較的平坦な反射率を示す。また、異物A60は反射率が高く、異物B61は反射率が低いものであるとする。図中、Bは青、Gは緑、Rは赤の波長領域を示す。   In FIG. 8, the characteristic of the food 62 generally has a reflectance valley depending on the wavelength, but a foreign substance such as hair shows a relatively flat reflectance. Further, it is assumed that the foreign matter A60 has a high reflectance and the foreign matter B61 has a low reflectance. In the figure, B represents blue, G represents green, and R represents red.

図9は、撮像素子8で撮影した異物の画像の例を示す画面図で、図9(a)はB画面、図9(b)はG画面、図9(c)はG画面とB画面の差をとったG−B画面である。   FIG. 9 is a screen diagram illustrating an example of a foreign object image captured by the image sensor 8. FIG. 9A is a B screen, FIG. 9B is a G screen, and FIG. 9C is a G screen and a B screen. It is GB screen which took the difference of.

撮像素子8で撮影したR画像、G画像、B画像は、画像間演算手段15に送信され、それぞれの画像が生成される。また、画像は微小な画素から構成されているので、画像同士の差を演算することもできる。   The R image, G image, and B image captured by the image sensor 8 are transmitted to the inter-image calculating means 15 to generate respective images. Moreover, since the image is composed of minute pixels, the difference between the images can also be calculated.

図9(a)に示すB画面において、画像全体は食品62aの表面であり、その上に異物60aと異物61aが付着している。食品62aの明るさに比べて、異物60aは明るく、異物61aは暗い輝度で撮影されている。   In the screen B shown in FIG. 9A, the entire image is the surface of the food 62a, and the foreign matter 60a and the foreign matter 61a are attached thereon. The foreign object 60a is brighter than the food 62a, and the foreign object 61a is photographed with darker brightness.

図9(b)に示すG画面は、食品62bは図9(a)に示した食品62aよりも暗くなり、食品62bに比べて、異物60bは明るく、異物61bは暗い輝度で撮影されている。   In the G screen shown in FIG. 9B, the food 62b is darker than the food 62a shown in FIG. 9A, and the foreign object 60b is brighter and the foreign object 61b is taken with darker brightness than the food 62b. .

図8に示すように、異物A60と食品62の反射率が、青(B)の波長帯域では近接し、B画面では両者の識別が困難になる可能性がある。図9(c)は図9(a)に示したB画面と図9(b)に示したG画面の差をとった画面であり、異物と食品の反射率が近接して識別が困難になることを防ぐことができる。   As shown in FIG. 8, the reflectances of the foreign matter A60 and the food 62 are close to each other in the blue (B) wavelength band, and it may be difficult to identify them on the B screen. FIG. 9 (c) is a screen obtained by taking the difference between the B screen shown in FIG. 9 (a) and the G screen shown in FIG. 9 (b). Can be prevented.

図8において、B波長帯域とG波長帯域において、異物A60と異物B61の反射率はあまり変わらないが、食品62の反射率は大きく変わっている。   In FIG. 8, in the B wavelength band and the G wavelength band, the reflectance of the foreign matter A60 and the foreign matter B61 does not change much, but the reflectance of the food 62 greatly changes.

したがって、B画面とG画面の差をとると、異物A60と異物B61は反射率の差が小さいのに対して、食品62の反射率の差が大きく、図9(c)に示すように、G−B画面では、差が小さい異物60cと異物61cと、差が大きい食品62cとはコントラストが強調されるので、異物60cと異物61cを容易に識別することができる。   Therefore, taking the difference between the B screen and the G screen, the foreign matter A60 and the foreign matter B61 have a small difference in reflectance, whereas the difference in the reflectance of the food 62 is large, as shown in FIG. On the GB screen, the foreign matter 60c and the foreign matter 61c having a small difference and the food 62c having a large difference are emphasized, so that the foreign matter 60c and the foreign matter 61c can be easily identified.

画面の差分では、反射率の特性に従って、明るいか暗いかのいずれかになるので、画像処理で行われる2値化処理には非常に都合のいい手法である。   Since the difference between the screens is either bright or dark according to the reflectance characteristics, it is a very convenient technique for the binarization process performed in the image processing.

上記の例では、B波長帯域と、G波長帯域に着目して説明したが、R波長帯域についても同様である。図8の例では、B波長帯域とR波長帯域が類似の特性を示しているので、G画面とR画面の差をとっても、G画面とB画面の差の場合と同じ結果を得ることができる。   In the above example, the description has been given focusing on the B wavelength band and the G wavelength band, but the same applies to the R wavelength band. In the example of FIG. 8, since the B wavelength band and the R wavelength band show similar characteristics, even if the difference between the G screen and the R screen is taken, the same result as in the case of the difference between the G screen and the B screen can be obtained. .

図10は、図8と同じく、異物からの反射光の波長と反射率の関係を表すグラフであるが、食品62の反射率特性が異なり、波長を変えても平坦な特性を有している場合の例である。   FIG. 10 is a graph showing the relationship between the wavelength of reflected light from a foreign object and the reflectance as in FIG. 8, but the reflectance characteristics of the food 62 are different, and the characteristics are flat even when the wavelength is changed. This is an example.

また、図11は、撮像素子8で撮影した異物の画像の例を示す画面図で、図11(a)はB画面、図11(b)はG画面、図11(c)はG画面とB画面の差をとったG−B画面である。   FIG. 11 is a screen diagram illustrating an example of a foreign object image captured by the image sensor 8. FIG. 11A is a B screen, FIG. 11B is a G screen, and FIG. 11C is a G screen. It is a GB screen obtained by taking the difference between the B screens.

図11(a)に示すB画面では、食品62dと異物61dの反射率の差が大きいので、異物61dが識別できる。食品62dと異物60dの反射率の差も大きいが、いずれも反射率が大きいので、コントラストが明確でなくなるが、一応異物60dは識別できる。   In the screen B shown in FIG. 11A, the difference in reflectance between the food 62d and the foreign matter 61d is large, so that the foreign matter 61d can be identified. The difference in reflectance between the food 62d and the foreign matter 60d is also large, but since both have high reflectance, the contrast is not clear, but the foreign matter 60d can be identified once.

図11(b)に示すG画面でも同様に、食品62eと異物61eの反射率の差が大きいので、異物61eが識別でき、食品62eと異物60eの反射率の差も大きいので、異物60eが識別できる。   Similarly, in the G screen shown in FIG. 11B, since the difference in reflectance between the food 62e and the foreign matter 61e is large, the foreign matter 61e can be identified, and the difference in reflectance between the food 62e and the foreign matter 60e is also large. Can be identified.

一方、図11(c)に示すG−B画面では、図10からわかるように、食品62f、異物60f、異物61fのいずれも、B波長帯域とG波長帯域の反射率の差が小さいので、それぞれの差は同程度になり、識別できなくなってしまう。   On the other hand, in the GB screen shown in FIG. 11 (c), as can be seen from FIG. 10, the difference in reflectance between the B wavelength band and the G wavelength band is small for each of the food 62f, the foreign object 60f, and the foreign object 61f. Each difference becomes the same level and cannot be identified.

食品は、様々な成分や色を有しているので、R,G,Bそれぞれの波長帯域の画面と、相互の差をとった画面の中から、食品と異物を識別するのに適切な画面をはじめに選択し、その後、その画面に着目して検査を行う。   Since food has various components and colors, it is suitable for identifying food and foreign substances from the screens of the R, G, and B wavelength bands and the screens that have taken the differences between them. Is selected first, and then the inspection is performed by paying attention to the screen.

このようにすれば、多くの画面を一度に見る手間が省けるので、見逃し等の誤りを防止することができる。   In this way, the trouble of viewing many screens at a time can be saved, and errors such as oversight can be prevented.

図12は、図8と同じく、異物からの反射光の波長と反射率の関係を表すグラフ、図13は、図9と同じく、撮像素子で撮影した異物の画像の例を示す画面図である。   FIG. 12 is a graph showing the relationship between the wavelength of reflected light from a foreign object and the reflectance, as in FIG. 8, and FIG. 13 is a screen diagram showing an example of an image of a foreign object photographed by the image sensor as in FIG. .

食品が、ひとつの成分や表面でできているとは限らず、ひとつの食品の表面の反射率特性が複数ある場合、例えば、図12に示すように、食品62の反射率の特性が、イ、ロ、ハの3種類である場合を考える。B波長帯域では、黒い四角印で示す異物B61の反射率よりも、白い四角印で示す異物A60の反射率の方に、食品62のイの反射率が近接している。   If the food is not necessarily composed of one component or the surface, and there are a plurality of reflectance characteristics on the surface of one food, for example, as shown in FIG. Suppose that there are three types, B, C. In the B wavelength band, the reflectance of the food 62 is closer to the reflectance of the foreign matter A60 indicated by the white square mark than the reflectance of the foreign matter B61 indicated by the black square mark.

したがって、B画面では、異物B61は識別できるが、異物A60は識別が難しいであろうと予測できる。   Therefore, on the B screen, the foreign object B61 can be identified, but the foreign object A60 can be predicted to be difficult to identify.

図13に示すように、G−B画面の差分画面では、食品62の特性イとロは、異物60gと異物61gに比べてコントラストが高くなるが、食品62の特性ハは、異物60gと異物61gと同等の輝度差分となるため、コントラストが付きにくい。   As shown in FIG. 13, in the difference screen of the GB screen, the characteristics A and B of the food 62 are higher in contrast than the foreign objects 60 g and 61 g, but the characteristics C of the food 62 are different from the foreign objects 60 g and the foreign objects. Since the luminance difference is equivalent to 61 g, it is difficult to add contrast.

そこで、B画面を見ると、異物60hと異物61hの輝度値は食品62の特性ハと明らかに輝度が異なるので、食品62の特性ハと異物60h、異物61hとを識別できる。そこで、G−B画面とB画面を合成した画面を作ると、食品62の背景から異物60iと異物61iを識別することができる。   Therefore, when the screen B is viewed, the luminance values of the foreign matter 60h and the foreign matter 61h are clearly different from the characteristic value of the food item 62, so that the characteristic value of the food item 62 can be distinguished from the foreign matter 60h and the foreign matter 61h. Therefore, by creating a screen that combines the G-B screen and the B screen, the foreign matter 60 i and the foreign matter 61 i can be identified from the background of the food 62.

ここでは、異物を明るい画像として捕らえるために、輝度の低い異物61iは反転して暗明を逆転し、合成すれば明るい輝度として捕らえることができる。   Here, in order to capture a foreign object as a bright image, the low-intensity foreign object 61i can be inverted to reverse the darkness, and can be captured as a bright luminance if synthesized.

上記の例の図13では、容易な理解のために、B画面だけでも異物を検出できるように見えるが、実際には、食品表面の反射率が一定であることは少なく、例のように単純ではないので、B画面、G画面、R画面などの単色画面、単色画面間の差画面、差画面と単色画面の合成画面を生成して試し検査を行い、適切な画面を選択する。   In FIG. 13 of the above example, for easy understanding, it seems that the foreign object can be detected only by the B screen, but in reality, the reflectance of the food surface is rarely constant, and it is as simple as the example. Therefore, a monochrome screen such as a B screen, a G screen, and an R screen, a difference screen between the monochrome screens, and a composite screen of the difference screen and the monochrome screen are generated and a trial inspection is performed, and an appropriate screen is selected.

異物の反射率の特性が予めわかっている場合は、試料との差が明確に識別できる画面を選択し、この画面だけを見るようにすれば、複数の画面を注視するよりも、異物の見逃し等の誤りを防止することができる。   If the reflectance characteristics of the foreign material are known in advance, selecting a screen that can clearly distinguish the difference from the sample and looking only at this screen will allow you to miss the foreign material rather than gazing at multiple screens. Etc. can be prevented.

また、ここでは、B画面、G画面、R画面などの可視光の3つの波長帯域を例としてあげたが、異物を識別できるものであれば、紫外光、近赤外光、赤外光でも構わない。また、波長領域を絞って単波長毎に分けた分光特性から特徴のある波長を複数抽出し、画面の差分や合成を行ってもよい。   Here, the three wavelength bands of visible light such as the B screen, the G screen, and the R screen are given as examples. However, as long as foreign substances can be identified, ultraviolet light, near infrared light, and infrared light can be used. I do not care. Further, a plurality of characteristic wavelengths may be extracted from spectral characteristics divided for each single wavelength by narrowing down the wavelength region, and screen differences or synthesis may be performed.

図14は、図(b)と同じく、光源ユニット5の断面図であり、波長の分光の一例を示すものである。   FIG. 14 is a cross-sectional view of the light source unit 5 similar to FIG.

撮影手段6の主な構成は、短波長の光を反射するとともに長波長を透過するダイクロックミラー71と、短波長の光を撮影するカメラ70aと、長波長の光を撮影するカメラ70bと、焦点を合せるためのレンズ10と、それらを固定するとともに外光が入らないようにした暗室72とであり、得られた画像を画像間演算手段15へ送り、差分画像や合成画像を生成することにより、異物を検出する。   The main configuration of the imaging means 6 includes a dichroic mirror 71 that reflects short wavelength light and transmits long wavelength, a camera 70a that images short wavelength light, and a camera 70b that images long wavelength light, A lens 10 for focusing, and a dark room 72 that fixes them and prevents external light from entering, and sends the obtained image to the inter-image calculation means 15 to generate a difference image or a composite image. To detect foreign matter.

試料4からの反射光13のうち、ダイクロックミラー71により反射された短波長光13aはレンズ10を透過してカメラ70aで撮像され、ダイクロックミラー71を透過した長波長反射光13bはカメラ70bにて撮像される。波長の境界は、試料である食品と異物が識別できるような分光区分になるように任意に決めればよい。   Of the reflected light 13 from the sample 4, the short wavelength light 13a reflected by the dichroic mirror 71 is transmitted through the lens 10 and picked up by the camera 70a, and the long wavelength reflected light 13b transmitted through the dichroic mirror 71 is the camera 70b. The image is taken. The wavelength boundary may be arbitrarily determined so as to be a spectral division that can identify food as a sample and foreign substances.

図15は、波長と波長感度の関係を示すグラフで、試料4からの反射光が、太線で示す波長で短波長側の特性aと長波長側の特性bとに分けられ、それぞれの特性から生成される画面を用いて、異物の識別を行う。   FIG. 15 is a graph showing the relationship between the wavelength and the wavelength sensitivity, and the reflected light from the sample 4 is divided into the short wavelength side characteristic a and the long wavelength side characteristic b at the wavelength indicated by the thick line. The foreign object is identified using the generated screen.

図16は、図(b)と同じく、光源ユニット5の断面図であり、図15に示した例をさらに発展させ、撮影手段6にダイクロックミラー71を2つ設けたものである。   FIG. 16 is a cross-sectional view of the light source unit 5, as in FIG. 16B, in which the example shown in FIG. 15 is further developed and two dichroic mirrors 71 are provided in the photographing means 6.

試料4からの反射光13のうち、ダイクロックミラー71aにより反射された短波長光13aは、カメラ70aで撮像される。ダイクロックミラー71aを透過した反射光のうち、中波長光13bはダイクロックミラー71bにて反射され、カメラ70bで撮像される。ダイクロックミラー71bを透過した長波長光13cはカメラ70cにより撮像される。   Of the reflected light 13 from the sample 4, the short wavelength light 13a reflected by the dichroic mirror 71a is imaged by the camera 70a. Of the reflected light transmitted through the dichroic mirror 71a, the medium wavelength light 13b is reflected by the dichroic mirror 71b and imaged by the camera 70b. The long wavelength light 13c transmitted through the dichroic mirror 71b is imaged by the camera 70c.

図17は、波長と波長感度の関係を示すグラフで、試料4からの反射光が、太線で示す波長で短波長側の特性aと中波長側の特性bと長波長側の特性cとに分けられ、それぞれの特性から生成される画面を用いて、異物の識別を行う。   FIG. 17 is a graph showing the relationship between wavelength and wavelength sensitivity. The reflected light from the sample 4 is divided into a characteristic a on the short wavelength side, a characteristic b on the medium wavelength side, and a characteristic c on the long wavelength side at the wavelength indicated by the thick line. Foreign objects are identified using screens that are divided and generated from the respective characteristics.

波長の境界は、試料である食品と異物が識別できるような分光区分になるように任意に決めればよい。反射光の分光は、ダイクロックミラーのかわりにハーフミラーやプリズムでもよい。   The wavelength boundary may be arbitrarily determined so as to be a spectral division that can identify food as a sample and foreign substances. The reflected light spectrum may be a half mirror or a prism instead of the dichroic mirror.

試料に付着する異物が、試料のおおよそ同じところに付着しやすい場合には、試料の全体でなく、付着しやすい特異な領域に絞って異物の識別のための画面を取得することにより、画像処理にかかる処理時間が短くなる。   If foreign matter adhering to the sample is likely to adhere to the same part of the sample, image processing is performed by acquiring a screen for identifying foreign matters by focusing on a specific region that is easy to attach instead of the entire sample. The processing time required for is shortened.

また、画像信号を微分すれば、変化の大きいところ、すなわち異物のエッジが強調されるので、異物を容易に識別することができる。また、例えば、髪の毛のように細長い線状の異物を検出するには、対象領域の中から明暗の2値化処理後、ある一定長さ以上のものを選択する線分による検出が可能である。   Further, if the image signal is differentiated, the place where the change is large, that is, the edge of the foreign matter is emphasized, so that the foreign matter can be easily identified. In addition, for example, in order to detect a long and thin line-like foreign object such as hair, after a binarization process of light and dark from a target region, detection by a line segment that selects a certain length or more is possible. .

ただし、この場合、長い線状の異物が切れて短くなって検出できなくなることがある。それを防ぐために、線が切れていても連続性があると判断した場合は、画像処理上で線同士を接続することで、細長い線状の異物として検出することができる。   However, in this case, a long linear foreign object may be cut off and become short and cannot be detected. In order to prevent this, if it is determined that there is continuity even if the line is broken, it can be detected as an elongated linear foreign object by connecting the lines in image processing.

食品の製造過程の一部に異物検査装置を設置したシステムの構成を示す構成図。The block diagram which shows the structure of the system which installed the foreign material inspection apparatus in a part of manufacturing process of foodstuffs. ストロボ発光と撮影のタイミングを示すタイムチャート。A time chart showing the timing of flash emission and shooting. 露光時間を変えて髪の毛を撮影したときの画像の例を示す図。The figure which shows the example of an image when changing the exposure time and image | photographing the hair. 光源ユニットの断面図。Sectional drawing of a light source unit. 光源ユニットの断面図。Sectional drawing of a light source unit. 仕分け手段とトレイの一部の斜視図。The perspective view of a part of sorting means and tray. 食品供給装置と搬送手段の一部の斜視図。The perspective view of a part of food supply apparatus and a conveyance means. 異物からの反射光の波長と反射率の関係を表すグラフ。The graph showing the relationship between the wavelength of the reflected light from a foreign material, and a reflectance. 撮像素子で撮影した異物の画像の例を示す画面図。The screen figure which shows the example of the image of the foreign material image | photographed with the image pick-up element. 異物からの反射光の波長と反射率の関係を表すグラフ。The graph showing the relationship between the wavelength of the reflected light from a foreign material, and a reflectance. 撮像素子で撮影した異物の画像の例を示す画面図。The screen figure which shows the example of the image of the foreign material image | photographed with the image pick-up element. 異物からの反射光の波長と反射率の関係を表すグラフ。The graph showing the relationship between the wavelength of the reflected light from a foreign material, and a reflectance. 撮像素子で撮影した異物の画像の例を示す画面図。The screen figure which shows the example of the image of the foreign material image | photographed with the image pick-up element. 光源ユニットの断面図。Sectional drawing of a light source unit. 波長と波長感度の関係を示すグラフ。The graph which shows the relationship between a wavelength and wavelength sensitivity. 光源ユニットの断面図。Sectional drawing of a light source unit. 波長と波長感度の関係を示すグラフ。The graph which shows the relationship between a wavelength and wavelength sensitivity.

符号の説明Explanation of symbols

1…異物検査装置、2…搬送手段、3…搬送駆動装置、4…試料、5…光源ユニット、6…撮影手段、7…プリズム、8…撮像素子、9…フィルタ、10…レンズ、11a…ストロボ光源、11b…ストロボ光源、12…反射板、13…反射光、15…画像間演算手段、16…異物検出手段、17…ディスプレイ、18…・制御手段、19…仕分け手段、20…食品供給装置、21…トレイ、22…光源、30a…撮影エリア、30b…撮影エリア、31…光量、32…光量、35…線状異物、36…異物像、37…異物像、38…小異物、39…液体、40…エアーノズル、41…電磁弁、42…エアー、43…異物トレイ、44…トレイ、51…スリット、52…異物受け、60…異物A、61…異物B、62…食品、70a…カメラ、70b…カメラ、70c…カメラ、71…ダイクロックミラー、72…暗室。   DESCRIPTION OF SYMBOLS 1 ... Foreign substance inspection apparatus, 2 ... Conveyance means, 3 ... Conveyance drive apparatus, 4 ... Sample, 5 ... Light source unit, 6 ... Imaging means, 7 ... Prism, 8 ... Imaging element, 9 ... Filter, 10 ... Lens, 11a ... Strobe light source, 11b ... Strobe light source, 12 ... reflector, 13 ... reflected light, 15 ... image calculation means, 16 ... foreign matter detection means, 17 ... display, 18 ... control means, 19 ... sorting means, 20 ... food supply Apparatus, 21 ... Tray, 22 ... Light source, 30a ... Shooting area, 30b ... Shooting area, 31 ... Light quantity, 32 ... Light quantity, 35 ... Linear foreign matter, 36 ... Foreign object image, 37 ... Foreign object image, 38 ... Small foreign matter, 39 ... Liquid, 40 ... Air nozzle, 41 ... Solenoid valve, 42 ... Air, 43 ... Foreign matter tray, 44 ... Tray, 51 ... Slit, 52 ... Foreign matter receptacle, 60 ... Foreign matter A, 61 ... Foreign matter B, 62 ... Food, 70a …camera, 0b ... camera, 70c ... camera, 71 ... die clock mirror, 72 ... dark room.

Claims (9)

連続的に試料を移送する搬送手段と、ストロボ光源と、該ストロボ光源からの光を反射して前記試料の表面や裏面を間接的に照射する反射板と、前記試料からの反射光の波長帯域を少なくとも2つ以上に分けて前記ストロボ光源の発光と同期して前記試料を撮影する撮影手段と、該撮影手段で撮影された複数の画像から生成される差画像、または前記複数の画像のうち少なくともひとつの画像と前記差画像の合成画像を生成しディスプレイへ表示させる演算手段とを備えたことを特徴とする異物検査装置。   Conveying means for continuously transferring the sample, a strobe light source, a reflector that reflects light from the strobe light source and indirectly irradiates the front and back surfaces of the sample, and a wavelength band of reflected light from the sample A photographing means for photographing the sample in synchronism with light emission of the strobe light source, and difference images generated from a plurality of images photographed by the photographing means, or among the plurality of images A foreign matter inspection apparatus comprising: a calculation unit that generates a composite image of at least one image and the difference image and displays the composite image on a display. 請求項1記載の異物検査装置において、
前記複数の画像、前記差画像、前記合成画像のうち、前記試料と前記異物とが識別可能なコントラストを有する画像が選択されて、前記試料の検査に用いられることを特徴とする異物検査装置。
The foreign matter inspection apparatus according to claim 1,
An apparatus for inspecting foreign matter, wherein an image having a contrast capable of discriminating between the sample and the foreign matter is selected from the plurality of images, the difference image, and the composite image, and used for the inspection of the sample.
請求項1記載の異物検査装置において、
前記反射板と前記試料との間に、さらに補助の反射板を設けたことを特徴とする異物検査装置。
The foreign matter inspection apparatus according to claim 1,
A foreign matter inspection apparatus, wherein an auxiliary reflecting plate is further provided between the reflecting plate and the sample.
請求項1記載の異物検査装置において、
前記試料を前記搬送手段を介して照射する光源を設けたことを特徴とする異物検査装置。
The foreign matter inspection apparatus according to claim 1,
A foreign matter inspection apparatus comprising a light source for irradiating the sample through the transport unit.
請求項1記載の異物検査装置において、
前記複数の画像、前記差画像、前記合成画像のうち少なくともひとつが選択されて、前記試料の検査に用いられることを特徴とする異物検査装置。
The foreign matter inspection apparatus according to claim 1,
At least one of the plurality of images, the difference image, and the composite image is selected and used for the inspection of the sample.
請求項1記載の異物検査装置において、
前記複数の画像は、赤色波長帯域、緑色波長帯域、青色波長帯域の画像であることを特徴とする異物検査装置。
The foreign matter inspection apparatus according to claim 1,
The foreign substance inspection apparatus, wherein the plurality of images are images of a red wavelength band, a green wavelength band, and a blue wavelength band.
請求項1記載の異物検査装置において、
前記試料からの反射光をダイクロックミラーで分光することを特徴とする異物検査装置。
The foreign matter inspection apparatus according to claim 1,
A foreign matter inspection apparatus, wherein the reflected light from the sample is dispersed with a dichroic mirror.
請求項1記載の異物検査装置において、
前記反射板は、半円筒形状であることを特徴とする異物検査装置。
The foreign matter inspection apparatus according to claim 1,
The foreign object inspection apparatus, wherein the reflection plate has a semi-cylindrical shape.
請求項1記載の異物検査装置において、
前記反射板は、半球形状であることを特徴とする異物検査装置。
The foreign matter inspection apparatus according to claim 1,
The foreign object inspection apparatus, wherein the reflector is hemispherical.
JP2007288874A 2007-11-06 2007-11-06 Foreign matter inspecting apparatus Pending JP2009115613A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007288874A JP2009115613A (en) 2007-11-06 2007-11-06 Foreign matter inspecting apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007288874A JP2009115613A (en) 2007-11-06 2007-11-06 Foreign matter inspecting apparatus

Publications (1)

Publication Number Publication Date
JP2009115613A true JP2009115613A (en) 2009-05-28

Family

ID=40782906

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007288874A Pending JP2009115613A (en) 2007-11-06 2007-11-06 Foreign matter inspecting apparatus

Country Status (1)

Country Link
JP (1) JP2009115613A (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011039946A1 (en) * 2009-09-29 2011-04-07 株式会社 日立ハイテクノロジーズ Inspection apparatus and inspection method
JP2013117463A (en) * 2011-12-05 2013-06-13 Ihi Corp Flaw detection device and flaw detection method of inspection object surface
JP2013224948A (en) * 2013-06-06 2013-10-31 Hitachi High-Technologies Corp Inspection device and alignment device
ITMI20121299A1 (en) * 2012-07-25 2014-01-26 Mondial Marmi S R L APPARATUS TO ACQUIRE A PLURALITY OF SURFACE IMAGES OF AT LEAST ONE BODY AND RELATIVE METHOD
WO2014209043A1 (en) * 2013-06-27 2014-12-31 파크시스템스 주식회사 Image acquiring method and image acquiring apparatus using same
WO2017029980A1 (en) * 2015-08-18 2017-02-23 荏原実業株式会社 Fluorescence visualization device, fluorescence visualization method, and computer program
JP2017111085A (en) * 2015-12-18 2017-06-22 株式会社流通システム設計 Food product inspection system and food product inspection method
WO2018038123A1 (en) * 2016-08-22 2018-03-01 キユーピー株式会社 Food inspecting device, food inspecting method, and learning method for identification means of food inspecting device
JP2018186735A (en) * 2017-04-28 2018-11-29 パナソニックIpマネジメント株式会社 Unnecessary object detecting system, unnecessary object removing system, processing system, program, and unnecessary object detecting method
KR20190052336A (en) * 2017-11-08 2019-05-16 고려대학교 산학협력단 Microscope system
WO2019131945A1 (en) * 2017-12-27 2019-07-04 キューピー株式会社 Food inspection device, food inspection method, and learning method for food reconstruction neural network of food inspection device
WO2019151394A1 (en) * 2018-01-31 2019-08-08 株式会社ニチレイフーズ Food inspection assistance system, food inspection assistance device, and computer program
JP2020034549A (en) * 2018-08-30 2020-03-05 ザ・ボーイング・カンパニーThe Boeing Company Compact automated inspection for foreign materials during manufacture of large composite
JP2020176952A (en) * 2019-04-19 2020-10-29 キヤノン株式会社 Electronic device and control method thereof
JP2020183917A (en) * 2019-05-09 2020-11-12 アンリツ株式会社 Article inspection device and article inspection method
JP2021516332A (en) * 2018-03-07 2021-07-01 ガーディアン・グラス・エルエルシーGuardian Glass, Llc Methods and systems for detecting inclusions in float glass based on wavelength (s) analysis
WO2023080385A1 (en) * 2021-11-03 2023-05-11 ㈜레이텍 Multifunctional complex foreign matter inspection device employing terahertz technology and hyperspectral technology

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6468644A (en) * 1987-09-09 1989-03-14 Omron Tateisi Electronics Co Wrinkle inspecting device for internal wall surface of cap or the like
JPH09318553A (en) * 1996-05-30 1997-12-12 Fujitsu Ltd Inspection method of substrate
JPH10170450A (en) * 1996-12-06 1998-06-26 Lion Eng Kk Visual inspection apparatus for article
JP2001124702A (en) * 1999-10-28 2001-05-11 Rozefu Technol:Kk Beltlike sheet-inspecting device
JP2002263585A (en) * 2001-03-13 2002-09-17 Kubota Corp Granular material classifying apparatus and granular material treating apparatus
JP2007178407A (en) * 2005-12-28 2007-07-12 Yamatake Corp Foreign matter intrusion inspection method for inspection object, and device used therefor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6468644A (en) * 1987-09-09 1989-03-14 Omron Tateisi Electronics Co Wrinkle inspecting device for internal wall surface of cap or the like
JPH09318553A (en) * 1996-05-30 1997-12-12 Fujitsu Ltd Inspection method of substrate
JPH10170450A (en) * 1996-12-06 1998-06-26 Lion Eng Kk Visual inspection apparatus for article
JP2001124702A (en) * 1999-10-28 2001-05-11 Rozefu Technol:Kk Beltlike sheet-inspecting device
JP2002263585A (en) * 2001-03-13 2002-09-17 Kubota Corp Granular material classifying apparatus and granular material treating apparatus
JP2007178407A (en) * 2005-12-28 2007-07-12 Yamatake Corp Foreign matter intrusion inspection method for inspection object, and device used therefor

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011075280A (en) * 2009-09-29 2011-04-14 Hitachi High-Technologies Corp Inspection device and inspection method
WO2011039946A1 (en) * 2009-09-29 2011-04-07 株式会社 日立ハイテクノロジーズ Inspection apparatus and inspection method
JP2013117463A (en) * 2011-12-05 2013-06-13 Ihi Corp Flaw detection device and flaw detection method of inspection object surface
ITMI20121299A1 (en) * 2012-07-25 2014-01-26 Mondial Marmi S R L APPARATUS TO ACQUIRE A PLURALITY OF SURFACE IMAGES OF AT LEAST ONE BODY AND RELATIVE METHOD
JP2013224948A (en) * 2013-06-06 2013-10-31 Hitachi High-Technologies Corp Inspection device and alignment device
US10133052B2 (en) 2013-06-27 2018-11-20 Park Systems Corp. Image acquiring method and image acquiring apparatus using the same
WO2014209043A1 (en) * 2013-06-27 2014-12-31 파크시스템스 주식회사 Image acquiring method and image acquiring apparatus using same
WO2017029980A1 (en) * 2015-08-18 2017-02-23 荏原実業株式会社 Fluorescence visualization device, fluorescence visualization method, and computer program
JPWO2017029980A1 (en) * 2015-08-18 2018-05-31 荏原実業株式会社 Fluorescence visualization apparatus, fluorescence visualization method and computer program
JP2017111085A (en) * 2015-12-18 2017-06-22 株式会社流通システム設計 Food product inspection system and food product inspection method
WO2018038123A1 (en) * 2016-08-22 2018-03-01 キユーピー株式会社 Food inspecting device, food inspecting method, and learning method for identification means of food inspecting device
JPWO2018038123A1 (en) * 2016-08-22 2018-08-30 キユーピー株式会社 Food inspection device, food inspection method, and learning method of food inspection device identification means
CN109791111A (en) * 2016-08-22 2019-05-21 丘比株式会社 The learning method of the identification mechanism of food inspection device, food inspection method and food inspection device
US11079334B2 (en) 2016-08-22 2021-08-03 Kewpie Corporation Food inspection apparatus, method of inspecting food, and method of learning in identification unit of food inspection apparatus
CN109791111B (en) * 2016-08-22 2022-01-11 丘比株式会社 Food inspection device, food inspection method, and method for learning identification means of food inspection device
JP2019174481A (en) * 2016-08-22 2019-10-10 キユーピー株式会社 Inspection device and learning method of identification means of the same
JP2018186735A (en) * 2017-04-28 2018-11-29 パナソニックIpマネジメント株式会社 Unnecessary object detecting system, unnecessary object removing system, processing system, program, and unnecessary object detecting method
KR20190052336A (en) * 2017-11-08 2019-05-16 고려대학교 산학협력단 Microscope system
KR101987548B1 (en) * 2017-11-08 2019-06-10 고려대학교 산학협력단 Microscope system
WO2019131945A1 (en) * 2017-12-27 2019-07-04 キューピー株式会社 Food inspection device, food inspection method, and learning method for food reconstruction neural network of food inspection device
CN111684268A (en) * 2018-01-31 2020-09-18 株式会社日冷食品 Food inspection support system, food inspection support device, and computer program
JPWO2019151394A1 (en) * 2018-01-31 2020-12-03 株式会社ニチレイフーズ Food inspection assistance system, food inspection assistance device, and computer program
WO2019151394A1 (en) * 2018-01-31 2019-08-08 株式会社ニチレイフーズ Food inspection assistance system, food inspection assistance device, and computer program
JP7317702B2 (en) 2018-01-31 2023-07-31 株式会社ニチレイフーズ Food Inspection Auxiliary System, Food Inspection Auxiliary Device, and Computer Program
CN111684268B (en) * 2018-01-31 2023-10-20 株式会社日冷食品 Food inspection assistance system, food inspection assistance device, and computer program
US11830179B2 (en) 2018-01-31 2023-11-28 Nichirei Foods Inc. Food inspection assisting system, food inspection assisting apparatus and computer program
JP7391173B2 (en) 2018-01-31 2023-12-04 株式会社ニチレイフーズ Food inspection aid system, food inspection aid device, and computer program
JP2021516332A (en) * 2018-03-07 2021-07-01 ガーディアン・グラス・エルエルシーGuardian Glass, Llc Methods and systems for detecting inclusions in float glass based on wavelength (s) analysis
JP2020034549A (en) * 2018-08-30 2020-03-05 ザ・ボーイング・カンパニーThe Boeing Company Compact automated inspection for foreign materials during manufacture of large composite
JP2020176952A (en) * 2019-04-19 2020-10-29 キヤノン株式会社 Electronic device and control method thereof
JP2020183917A (en) * 2019-05-09 2020-11-12 アンリツ株式会社 Article inspection device and article inspection method
WO2023080385A1 (en) * 2021-11-03 2023-05-11 ㈜레이텍 Multifunctional complex foreign matter inspection device employing terahertz technology and hyperspectral technology

Similar Documents

Publication Publication Date Title
JP2009115613A (en) Foreign matter inspecting apparatus
JP6945245B2 (en) Visual inspection equipment
JP7391173B2 (en) Food inspection aid system, food inspection aid device, and computer program
JP4719284B2 (en) Surface inspection device
AU2006333500B2 (en) Apparatus and methods for inspecting a composite structure for defects
US7382457B2 (en) Illumination system for material inspection
WO2016121878A1 (en) Optical appearance inspection device and optical appearance inspection system using same
US20140152808A1 (en) Method and device for the reliable detection of material defects in transparent material
JP5009663B2 (en) Appearance inspection system
CN108490001B (en) Inspection of contact lenses in plastic housings
JP2002139451A (en) Surface inspection apparatus
JP2008249568A (en) Visual examination device
KR101203210B1 (en) Apparatus for inspecting defects
TWI495867B (en) Application of repeated exposure to multiple exposure image blending detection method
KR101630596B1 (en) Photographing apparatus for bottom of car and operating method thereof
JP2010156620A (en) Inspection apparatus
JP6699694B2 (en) Inspection system, inspection method
CN115427790A (en) System and method for imaging a reflective object
JP6260175B2 (en) Sign panel inspection system, sign panel inspection method
TWI753131B (en) detection device
JP2004146108A (en) Phosphor inspection method and device
KR200328026Y1 (en) Apparatus for examining surface of semiconductor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091104

A131 Notification of reasons for refusal

Effective date: 20111108

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120221

A02 Decision of refusal

Effective date: 20120619

Free format text: JAPANESE INTERMEDIATE CODE: A02