WO2016121878A1 - Optical appearance inspection device and optical appearance inspection system using same - Google Patents
Optical appearance inspection device and optical appearance inspection system using same Download PDFInfo
- Publication number
- WO2016121878A1 WO2016121878A1 PCT/JP2016/052513 JP2016052513W WO2016121878A1 WO 2016121878 A1 WO2016121878 A1 WO 2016121878A1 JP 2016052513 W JP2016052513 W JP 2016052513W WO 2016121878 A1 WO2016121878 A1 WO 2016121878A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- inspection object
- image
- area
- inspection
- image data
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/84—Systems specially adapted for particular applications
- G01N21/88—Investigating the presence of flaws or contamination
- G01N21/89—Investigating the presence of flaws or contamination in moving material, e.g. running paper or textiles
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/84—Systems specially adapted for particular applications
- G01N21/88—Investigating the presence of flaws or contamination
- G01N21/95—Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
- G01N21/952—Inspecting the exterior surface of cylindrical bodies or wires
Definitions
- the present invention relates to an optical appearance inspection apparatus for inspecting the appearance of various articles such as food and industrial products, and an imaging means which can be suitably used for the optical appearance inspection apparatus.
- an optical appearance inspection apparatus for analyzing the image data obtained by photographing an article and checking the presence or absence of an uneven defect such as flaws and burrs or distortion on the article surface or the presence of foreign matter visible through the surface;
- Imaging means that can be used for
- objects to be inspected such as food products such as agricultural products and processed foods, or industrial products such as resin molded products and metal products. It is practiced to photograph an article to be conveyed and analyze the photographed image data.
- Patent Document 1 Japanese Patent Application Laid-Open No. 2010-8339.
- the transparent container in order to inspect foreign matter in the powder filled in the transparent container easily and reliably, the transparent container is imparted with a vibration combining the reciprocating vibration in the longitudinal direction and the reciprocating vibration in the horizontal direction, thereby the transparent container While circulating the powder inside the powder, the powder that circulates and flows is imaged, and the foreign substance inspection method in the powder in the transparent container is proposed to inspect the presence or absence of foreign substances using the obtained image.
- inspection content ie whether to inspect the adhesion of dust, whether to inspect the presence or absence of scratches and burrs on the surface, or the presence or absence of distortion on the surface Depending on the difference, etc.
- the inspection photographing
- the inspection object is inspected from an oblique direction by changing the angle of the camera or the camera I had to shoot. Therefore, in the case of performing various surface inspections on the inspection object, it is necessary to reciprocate the inspection object a plurality of times or to provide a plurality of inspection stations for inspection.
- Patent Document 2 Japanese Patent Application Laid-Open No. 2007-333449 proposes an inspection apparatus of a back light panel which can perform performance inspection only by one reciprocation. That is, in this document, an inspection mechanism disposed in an inspection area for inspecting a plate-like object to be inspected, a mounting table on which the object to be inspected is detachably mounted, and the mounting table horizontally.
- Patent Document 3 Japanese Patent Application Laid-Open No. 2006-300913
- the imaging angle of the camera in the forward pass and return pass is automatically moved, and the angle of the positional relationship between the camera and the work is changed.
- this document proposes a light guide plate inspection apparatus having a rotary actuator and a brake that holds a plurality of line sensor cameras for light guide plate inspection from above the light guide plate loading stage and changes the imaging angle of the camera together with its structure. ing.
- Patent Document 4 Japanese Patent Laid-Open No. 2011-223233
- an objective lens and a plurality of line scan sensors disposed within the imaging depth of the objective lens and including a plurality of imaging elements are arranged in series in the scanning direction.
- An imaging unit; a plurality of sets of the line scan sensors are line sensor cameras arranged so that their imaging positions are different from each other; and imaging results of the plurality of sets of the line scan sensors are the imaging element unit
- the in-focus image extracting means for extracting an in-focus image from among the plurality of unit-captured images read out in order in the above, and the in-focus imaging for combining the extracted in-focus image to generate an in-focus image
- an imaging device provided with an image generation unit.
- the inspection target is a light guide plate and the appearance inspection in the manufacturing process is to be automated
- the transmitted illumination is used to inspect the presence or absence of carbonized foreign matter in the resin which is the manufacturing raw material and discolored defects such as undissolved.
- Patent Document 1 a plurality of cameras may be installed as disclosed in Patent Document 1 or the direction of the camera may be automatically corrected as disclosed in Patent Document 2. It has been proposed.
- the present invention provides an optical appearance inspection apparatus in which the size of the apparatus itself is reduced by reducing the number of cameras used and the number of cameras installed, and an optical appearance inspection system using the same.
- Optical type that can perform various types of inspections in a short time without requiring operation time such as moving the camera while reducing the number of cameras used as the first problem.
- a second object is to provide an appearance inspection apparatus and an optical appearance inspection system using the same.
- the inspection object is conveyed by a conveying means such as a belt conveyor, but the size, height or thickness of the inspection object is various. That is, the object to be inspected may also be a three-dimensional article such as a box-like or tubular-like one having a height at one time, or a plate-like or sheet-like article having a low height at one time. Therefore, in order to photograph an article having different height, thickness, etc. at an accurate angle, it is necessary to adjust the installation position and angle of the camera or the installation position and angle of the inspection object at each inspection. It was time and effort.
- a third object is to provide an optical appearance inspection apparatus capable of inspecting the appearance of an inspection object and an optical appearance inspection system using the same.
- an optical appearance inspection apparatus capable of inspecting various kinds of defects appearing in the appearance of the inspection object as described above by one photographing, and an optical using the same It is a fourth object to provide a visual inspection system.
- Patent Document 4 discloses that the entire surface of an imaging object having irregularities on the surface is clearly imaged by extracting and combining imaging data in focus.
- the invention according to this document has an object of clearly imaging an imaging object having surface irregularities, and a plurality of sets of line scan sensors are arranged so that their imaging positions are different from each other. It is done. Therefore, with this technology, although it is possible to acquire a photographed image of an optimum focal distance, it is not possible to acquire a photographed image for surface inspection that involves the positional relationship with the light source.
- the technology of this patent document 4 is described in the claim 4 that "each of the line scan sensors is composed of a plurality of sensor arrays read out by TDI method", and the sensor array has 256 lines. In view of the generality, in this technology, the height resolution is limited by the tilt angles and the number of lines of the plurality of imaging elements, and it is considered that the degree of freedom in following the unevenness in practical use is low.
- the surface inspection of the object to be inspected can be carried out at high speed and / or high accuracy by using a photographing means designed to secure a wide field of view and acquire an optimum image for surface inspection.
- the fifth object of the present invention is to provide an optical appearance inspection apparatus which can be used and an optical appearance inspection system using the same.
- the image data in a plurality of lines selected from inside and outside of the area illuminated by the illumination means is analyzed and judged line by line.
- the present invention provides an optical appearance inspection apparatus adapted to inspect various defects appearing in the appearance, and an optical appearance inspection system using a defect.
- the optical appearance inspection system analyzes and determines the presence or absence of the appearance defect in the inspection object using the photographing means for photographing the inspection object and the photographed image photographed by the photographing means.
- the change in brightness is analyzed to determine the presence or absence of each appearance defect in the inspection object.
- the photographing means is for photographing the inspection object to obtain a photographed image, and is configured with various imaging elements.
- the photographing means be capable of acquiring the photographed image data as electronic data. This is to smoothly perform the image analysis process in the processing means.
- the imaging device may be a CMOS image sensor or a CCD image sensor.
- a camera capable of photographing every arbitrary line like the CMOS image sensor camera is desirable.
- Such a camera capable of capturing an image for each arbitrary line can be configured to include a photodiode row in which a plurality of photodiodes are arranged in a row, and by providing a plurality of photodiode rows, the processing means can obtain The image data in can be acquired.
- a camera such as a CCD image sensor that acquires a planar photographed image
- images are extracted in multiple lines from a planar photographed image obtained by photographing an inspection object, and image data to be analyzed is acquired. You can do it.
- the photographing means a camera provided with a planar imaging element in which a plurality of photodiodes are arranged in the vertical and horizontal directions and capable of extracting an arbitrary plurality of lines in the imaging field of view. Similar to the case of using a plurality of imaging means and illumination means by passing through the imaging region without stopping the inspection object by imaging with an arbitrarily selected line even though it is a planar imaging element It is because the image of can be obtained. Also, like a camera using an image sensor for capturing a planar image, processing for extracting necessary lines (areas) after acquiring a planar captured image is unnecessary, and processing speed can be increased. It is That is, by using the photographing means using the CMOS image sensor, the inspection process can be simplified, the amount of data can be reduced, and the inspection time can be shortened.
- the imaging unit has an imaging unit for imaging a plurality of lines arranged in parallel to the scanning direction of the inspection object and an orientation orthogonal to the scanning direction for each of the plurality of lines imaged by the imaging unit (that is, imaging After comparing the color and / or brightness for each area in the longitudinal direction of the selected line, the area of a specific line is extracted based on this comparison, and this is combined to combine image data of one or more lines. It can be composed of an image processing unit to be combined.
- the imaging unit is parallel to the scanning direction of the inspection object in each of a plurality of lines respectively selected from regions with different intensities of light irradiated to the inspection object.
- image data used for surface inspection that is, image data acquired from respective regions having different intensities of irradiated light
- image data used for surface inspection that is, image data acquired from respective regions having different intensities of irradiated light
- the surface inspection can be performed reliably and accurately.
- the shooting area of the inspection object to be photographed at one time is a plurality of lines aligned in the scanning direction of the inspection object
- an area unit of the plurality of lines aligned in the scanning direction of the inspection object The inspection object can be transported at the same time, and the inspection speed can also be improved.
- the processing means acquires a photographed image photographed by the photographing means, and changes in color and / or brightness of image data in a plurality of lines respectively selected from regions having different intensities of light irradiated to the inspection object. It is an apparatus which analyzes and determines the presence or absence of each appearance defect in a test subject.
- the image data analyzed by the processing means may be an image obtained by processing the photographed image, as well as directly using the photographed image by the photographing means. That is, this processing means acquires a photographed image from the photographing means, and uses the acquired photographed image as image data to be analyzed, or performs color processing on image data generated by performing image processing on the acquired photographed image.
- the change in brightness may be analyzed to inspect the appearance defect in the inspection object. Therefore, this processing means is accompanied by a CPU (Central Processing Unit), a memory, etc. for performing image processing as necessary, in order to perform numerical calculation, information processing, device control, etc. necessary for the analysis and judgment. Configured
- the image processing on the photographed image includes extraction processing of an arbitrary area from the photographed image, coupling processing of the photographed image, and correction processing such as lightness, saturation, and contrast.
- the processing means analyzes image data of a plurality of lines.
- the image data of the plurality of lines is, as described above, image data of a plurality of lines acquired by photographing with a camera using an image sensor capable of photographing in an arbitrary plurality of lines like a CMOS image sensor
- image data of a plurality of lines acquired by extracting and extracting from a planar image captured by a camera using an image sensor for acquiring a planar image may be used.
- the processing means acquires an image photographed in a planar shape
- the extraction processing from the planar image can be executed by the processing means.
- the image data of a plurality of lines analyzed by the processing means is image data of a plurality of lines respectively selected from regions having different intensities of light irradiated to the inspection object.
- the “light irradiated to the inspection object” is light reflected by the inspection object or light transmitted through the inspection object, and the image data of the plurality of lines is the reflected light or the transmitted light. Are selected from different regions.
- the intensity of the “light irradiated to the object to be inspected” can also be measured by light directed to the object to be inspected (light to be irradiated to the object to be inspected), which is the luminance on the light irradiation side of the object to be inspected Can be specified by measuring the brightness of the reflected light or transmitted light of the test object of a single color.
- the light irradiated to the inspection object may be natural light as well as light irradiated by the illumination unit provided with the light source. Even if it is natural light, if the irradiation direction to the inspection object is specified, it is considered that the kind of appearance defect appearing in the image is different depending on which position the line-like image data is acquired. is there.
- the optical appearance inspection apparatus according to the present invention further include illumination means for irradiating the inspection object with light in order to keep the irradiation conditions such as the light irradiation position and the luminance constant. At that time, it is desirable that the image data of the plurality of lines analyzed by the processing means be respectively selected from regions having different intensities of light emitted by the illumination means.
- the illumination means can use various illuminations to illuminate the inspection object.
- the light emitted by the illumination means may be visible light or invisible light such as infrared light, ultraviolet light, and X-rays.
- the photographing means is not necessarily limited to one for photographing light in the visible light region, but includes one capable of photographing light in the invisible light region. Further, in consideration of analyzing the image data of a plurality of lines, it is preferable that the illumination means be line illumination for irradiating light in a long range.
- the extension direction of the illumination and the extension directions of the image data of the plurality of lines used for the analysis be provided parallel to each other. It is preferable that the two extending directions be orthogonal to the scanning direction of the inspection object.
- the light to be photographed by the photographing means may be light (transmitted light) obtained by transmitting the irradiated light through the inspection object or light (reflected light) reflected by the inspection object. Therefore, the inspection object to which light is irradiated may be transparent or opaque, and may be a partially transparent or partially opaque article.
- the inspection object generally, when the inspection object is transparent, it is desirable to photograph transmitted light of light irradiated to the inspection object to inspect a defect in appearance.
- the transparent inspection object causes reflected light
- the reflected light can be photographed to inspect an appearance defect.
- the inspection object is opaque, the appearance defect is inspected only by photographing the reflected light of the light irradiated to the inspection object.
- the image data of a plurality of lines analyzed by the processing unit is an area where the intensity of light emitted by the illumination unit differs. It is desirable to be selected from That is, at least the light intensity is selected from the respective regions of different light intensity, such as within the region where the illumination means is emitting light and outside the region where the illumination means is emitting light. Is desirable. This is because the types of defects that can be observed (or easily observed) differ depending on whether the illumination means is inside or outside the area where the light is illuminated. Therefore, by acquiring image data for analysis from areas inside and outside the area irradiated by the illumination means, it is possible to acquire image data that can be easily observed according to various types of defects. .
- image data in a plurality of lines analyzed by the processing means includes the area within the area irradiated with light by the irradiation means, the area outside the area irradiated with light by the irradiation means, and the boundary area of both. It is desirable to select from any two or more areas among three places.
- the optical appearance inspection apparatus further includes illumination means for irradiating the inspection object with light, and the image data in plural lines analyzed by the processing means is irradiated with light by the illumination means. At least at least a non-irradiated area in the vicinity of the contour area and not irradiated with light by the illumination means. It is desirable to be configured to be selected in any two or more regions. It is particularly desirable that the image data of the plurality of lines be selected from each of the irradiation center area, the outline area, and the non-irradiation area.
- the image data of the analysis target is acquired in relation to the irradiation area of the illumination means.
- the area can be identified. Therefore, if the irradiation area in the illumination means can be specified, the position of the image data of the line to be analyzed by the processing means can be specified.
- the specification of the irradiation area in the illumination means can be measured or set every inspection object, but in the case of inspecting a plurality of inspection objects having the same shape and size, the irradiation area in the illumination means first After that, by using the image data of a predetermined position (line), the appearance inspection of a plurality of inspection objects can be continuously performed. Therefore, in this case, first of all, in the object to be actually inspected, it is confirmed on which line it is preferable to acquire the image data to be analyzed, and then the acquisition position of the image data to be analyzed (line It is desirable to identify).
- defects concave defects such as scratches, burrs or distortion, adhesion of foreign matter, and foreign matter on the inspection object to be actually inspected
- the photographing means is a camera using an image sensor capable of photographing in any plural lines like a CMOS image sensor, it is desirable to acquire image data in the set plural lines.
- the optical appearance inspection apparatus further includes illumination means for irradiating the inspection object with light, and the image data in a plurality of lines analyzed by the processing means is applied to the inspection object. At least one of a high brightness area where the brightness of the light is the highest, a brightness change area where the brightness is rapidly changing, and a low brightness stable area where the change is stable at a brightness lower than the brightness change position. It is also desirable to configure to select within one or more regions. It is particularly desirable that the image data of the plurality of lines be selected from each of the high brightness area, the brightness change area, and the low brightness stable area.
- the area for acquiring the image data to be analyzed As described above, by setting the area for acquiring the image data to be analyzed as the high brightness area, the brightness change area, and the low brightness stable area, the brightness of the light actually irradiated is measured, and the measured data is used. It is possible to specify an area for acquiring image data to be analyzed. The measurement of the brightness of the irradiation light can be measured or set for each inspection object, but when a plurality of inspection objects of the same shape and size are inspected, the irradiation brightness is first measured. Once the line position of the image data to be analyzed is specified, thereafter, by using the image data of a predetermined position (line), it is possible to continuously inspect the appearance of a plurality of inspection objects.
- the acquisition position (line) of the image data to be analyzed is specified. Is desirable.
- defects concave defects such as flaws, burrs or distortion, foreign matter
- the photographing means is a camera using an image sensor capable of photographing in any plural lines like a CMOS image sensor, it is desirable to acquire image data in the set plural lines.
- the processing means is, as described above, in the “regions with different light intensities”, “irradiated central region, outline region, and non-irradiated region” or “high luminance region, luminance change region, and low luminance stable region” Obtain image data in multiple lines respectively, perform image processing as necessary, analyze and judge, foreign objects attached to the inspection object, discoloration etc. appearing in the appearance of the inspection object It is possible to inspect various types of defects such as defects, gentle uneven defects on the outer surface of the inspection object, and steep uneven defects such as flaws and burrs. At this time, the image data in a plurality of lines selected from each region can have different widths in each line, and any or all of the image data in a plurality of lines can be adjusted arbitrarily. it can.
- the processing means acquires image data in a plurality of lines to be analyzed from the photographed image photographed by the photographing means.
- this image data when the photographing unit is a camera using an image sensor capable of photographing in any plural lines like a CMOS image sensor, scanning of the photographing unit is performed every plural lines (the illumination unit A plurality of line-shaped images (line-shaped images extending in the direction intersecting the scanning direction) are acquired in different lines in relation to the area irradiated with light, and the scanning direction is obtained for each line. , And can be used as an expanded planar image of the entire inspection object.
- the process of developing such a line-shaped image into a plane image may be performed by a photographing unit or a processing unit.
- the photographing means is a camera using an image sensor for photographing a planar image like a CCD image sensor
- the photographed image obtained from the photographing means is a planar image.
- the processing means selects and extracts each of the predetermined areas as a line-shaped image from each of the plurality of photographed images acquired by scanning the photographing means, and this is extracted in each scanning line in the scanning direction. By connecting them, they can be developed into planar images that cover the entire inspection object, and can be used as image data to be analyzed.
- processing of extracting a plurality of regions arbitrarily specified in relation to the region irradiated with light by the illumination unit from the planar image acquired in one shooting in a line It will be necessary.
- the processing means can analyze changes in color and / or brightness in the image data acquired by the above-mentioned processing, and can judge the presence or absence of each appearance defect in the inspection object.
- the analysis of the change of the color and / or the brightness with respect to the image data can be made by judging the color and the brightness for each pixel and obtaining the amount of change with the surrounding pixels.
- the types of defects that can be inspected include all defects that can be observed from the appearance. That is, in addition to foreign matter, discoloration, and unevenness defects on the surface of the inspection object, foreign matter and discoloration defects existing inside the inspection object can also be inspected as long as they can be transmitted and observed from the appearance. Therefore, carbonized foreign matter of resin which is a manufacturing raw material, discolored defects such as undissolved, melting temperature at the time of resin molding, gentle uneven defects caused by injection pressure, and flaws caused by a mold or an ejector used for molding It is possible to inspect a defect appearing on the appearance of the inspection object such as a steep uneven defect such as a burr.
- a linear image obtained for each of a plurality of lines is developed into a planar image for each line and used as image data. Based on this image data, defects in the appearance of the inspection object are detected. In the case of inspection, it is desirable that the scanning for imaging in the imaging means be completed at one time in order to shorten the inspection time.
- the image data of different positions (lines) can be obtained in relation to the area where the illumination means is emitting light only by scanning the imaging means once. It is possible to inspect kinds of appearance defects.
- the optical appearance inspection apparatus in order to simplify and miniaturize the configuration of the apparatus itself, it is desirable that there is only one imaging means as a component. That is, it is desirable to acquire image data in a plurality of lines from a photographed image by one photographing means.
- it can also be configured using two or more photographing means. In the case of using two or more photographing means, it is possible to make the area photographed by each photographing means different.
- a plurality of imaging means can be arranged in the length direction. In this case, the areas photographed by the respective photographing means are different in the longitudinal direction of the inspection object.
- any of the imaging means may capture some of the image data in a plurality of lines necessary for the examination, and another imaging means may capture the image data in the other line.
- the photographing means be configured to synthesize optimum image data for each region where the intensity of light irradiated to the inspection object is different.
- an imaging means is an imaging means provided with an optical element in which a plurality of photodiode rows made up of a plurality of photodiodes are arranged in parallel, and imaging with a plurality of photodiode rows is made at any two or more places.
- imaging means capable of setting ROI (Reagion Of Interest) in two or more places, preferably three places in the imaging region can be realized.
- such an imaging means is an imaging means used for an optical appearance inspection apparatus that determines the presence or absence of an appearance defect from an image obtained by imaging an inspection object while scanning, and is arranged in the scanning direction of the inspection object
- the color and / or brightness of each of the shooting units shooting with a plurality of lines and the plurality of lines shot by the shooting unit are compared based on each region in the direction orthogonal to the scanning direction, and the identification is performed based on this comparison
- a photographing means for an optical appearance inspection apparatus comprising an image processing unit which extracts the line area of and combines these to combine image data of one line.
- the imaging unit in the imaging unit can be configured using an imaging element such as a CMOS image sensor or a CCD image sensor, and further includes an optical component such as a lens for condensing and imaging incident light from the inspection object.
- an imaging element such as a CMOS image sensor or a CCD image sensor
- an optical component such as a lens for condensing and imaging incident light from the inspection object.
- an imaging element in the case of a CMOS image sensor, since an image for each photodiode row is acquired, color and / or brightness comparison processing for each region aligned in the direction orthogonal to the scanning direction is performed at high speed I can do things.
- a CMOS image sensor it is necessary to execute processing such as cutting out image data for each area aligned in a direction orthogonal to the scanning direction from photographed image data.
- the image processing unit in the photographing unit can be configured using a processing device that performs image processing.
- the processing device may be provided in the same case as the imaging unit, or may be provided in a case or device other than the imaging object to process an image acquired from the imaging unit.
- an imaging unit can be embodied as a module in which an imaging unit and an image processing unit are integrated, or both may be separately provided to realize mutual cooperation processing. Therefore, a digital camera may be used as an imaging unit, and a computer may be used as an image processing unit.
- a plurality of photodiode rows arranged in a direction crossing the scanning direction are provided adjacent to each other in the scanning direction, and are arranged in the scanning direction in a plurality of photodiode rows acquired in one shooting.
- the brightness and / or color tone of the photodiodes can be compared, and an image of any photodiode can be extracted or calculated under preset conditions. Then, by connecting the extracted or calculated images together, it is possible to combine image data of one line for the imaging location. By thus generating one line of image data to be used for inspection, the accuracy of inspection can be improved, and by reducing the amount of data, the inspection speed can be increased.
- the “processing non-operation mode”, the “maximum luminance mode”, and the “minimum luminance mode” will be described in detail below. It can be configured to select from “average brightness mode”, “intermediate brightness mode” and the like.
- the "processing non-processing mode” is a mode in which pixels aligned in the scanning direction are acquired as they are, and can be acquired as a monochrome image.
- “Maximum luminance mode” is image data in which pixels having the largest luminance among pixels arranged in the scanning direction are extracted from pixel columns arranged in the direction crossing the scanning direction and synthesized into one line. Is the mode to get In this mode, it is possible to generate one line of image data to be used for inspection at the maximum luminance value for bright defects.
- the “minimum luminance mode” is a mode in which pixels having the minimum luminance are extracted between the pixels arranged in the scanning direction, and image data obtained by combining the pixels into one line is acquired.
- the average luminance mode an average value of the luminances of pixels lined up in the scanning direction is calculated in pixel columns aligned in the direction crossing the scanning direction, and image data obtained by combining the calculated values into one line is acquired It is a mode. In this mode, since the average of the luminance at each pixel is calculated, it is possible to acquire a processed image roughly through a soft filter as image data for inspection.
- the photographing means be formed so that the above-mentioned mode can be set for each area where the intensity of light irradiated to the inspection object is different (that is, "partial scan area"). This is to obtain image data required for inspection more clearly in each partial scan area.
- the imaging unit be provided with an image adjusting unit that makes the offset value and / or the gain value different for each partial scan area.
- the areas where the intensity of light irradiated to the inspection object is different are different from each other because the brightness etc. required for imaging differ according to the type of defect appearing on the surface of the inspection object.
- image adjustment means for making the gain values different it is possible to obtain optimal image data required for each area. By adjusting the digital gain and the offset, it is possible to obtain an optimal image according to the color and the degree of transmission of the inspection object or the intensity (luminance) of the light to be irradiated.
- the optical appearance inspection apparatus can be configured as an optical appearance inspection system by further including a configuration for transporting an inspection object. That is, in the optical appearance inspection system configured using the optical appearance inspection apparatus according to the present invention, the inspection object moving means which further mounts the inspection object and conveys it, and the inspection The movement detection means for detecting the movement speed or movement distance of the inspection object by the object movement means, and the photographed image acquired by the processing means is calculated based on the movement speed or movement amount acquired from the movement detection means The optical appearance inspection system can be configured to acquire in association with the photographed position.
- a conveyor, a manipulator, etc. can be mentioned as this inspection object transport means.
- a rotary encoder, a linear encoder, etc. can be mentioned as a transfer detection means.
- the imaging unit constituting the optical appearance inspection apparatus captures an image at the timing at which the signal derived from the moving speed or the moving distance acquired from the transfer detecting unit is acquired, and the image of each line in the photographed image (line Image can be associated with the imaging position.
- line Image can be associated with the imaging position.
- the inspection object moving means may include holding means for suctioning the inspection object to be transported in a placed state or pressing the inspection object. This is in order to keep the distance to the imaging means constant when the inspection object is plate-like or sheet-like.
- the holding means blows downflow air against the inspection object to press the inspection object against the inspection object moving means, or the surface on which the inspection object is placed in the inspection object moving means Can be embodied as a configuration in which a minute opening is provided and the mounting surface of the inspection object is sucked from the opening.
- Such holding means is sufficient if the inspection object is in close contact with the inspection object moving means at least at the time of photographing by the photographing means.
- the thickness of the object to be inspected can also be inspected. That is, thickness measuring means for measuring the thickness of the inspection object can be further provided on the movement path of the inspection object in the inspection object moving means.
- the processing apparatus is configured to detect a defect in thickness based on the measurement value of the thickness measuring means.
- this thickness measurement means a reflection type laser displacement meter can be used, and defects in the thickness of the inspection object can be inspected from the measurement results of the thickness measurement means.
- the thickness of the inspection object can be obtained from the measurement result of the thickness measurement means, and the position of the line of the image data analyzed by the processing means (acquisition position in the photographing means) can be adjusted based on this.
- the processing means can also control the operation of each device constituting the optical appearance inspection apparatus of the present invention, and, for example, the position of the photographing means, the position and brightness of the illumination means, and the plurality analyzed by the inspection means.
- the acquisition position of the image data in the line can also be controlled.
- this processing means can determine the presence or absence of a defect in the appearance based on the acquired or processed image. In this determination, it is possible to identify an area having a difference in color tone, lightness, brightness and the like in the image, and further to determine the size of the area from the number of pixels and the like. As a result, it is possible to automatically specify an inspection object having an appearance defect based on the judgment result of the processing means.
- the inspection object which can inspect the appearance with the optical appearance inspection apparatus according to the present invention and the optical appearance inspection system using the same is not particularly limited, and agricultural products, aquatic products, or the like thereof It may be food products such as processed products, and various industrial products such as resin plates, glass plates, metal plates, electronic parts / products, optical parts / products and the like. However, it is desirable that the object to be inspected has a shape with less unevenness in appearance. For example, in a plate-like body or a cylinder, defects in the appearance can be inspected more accurately. Also, the inspection object may be transparent or opaque.
- image data in a plurality of lines can be acquired simultaneously by one imaging means, so the number of imaging means to be used can be reduced, and It is possible to reduce the number of installed devices, and thus to provide an optical appearance inspection apparatus in which the apparatus itself is miniaturized and an optical appearance inspection system using the same.
- an optical appearance inspection apparatus capable of performing various types of inspections in a short time and an optical appearance inspection system using the same are realized.
- the inspection time can be further shortened because the image processing speed is increased.
- the optical appearance inspection apparatus In addition, where the size, height or thickness of the inspection object is various, in the optical appearance inspection apparatus according to the present invention, it is necessary to select the line for acquiring the image data to be analyzed. It is not necessary to adjust the installation position and angle of the illumination means. Therefore, even when inspecting inspection objects having different sizes, heights, or thicknesses, it is not necessary to change the height or angle of the camera, the illumination, or the inspection object, which has conventionally been troublesome.
- An optical appearance inspection apparatus capable of inspecting the appearance of an inspection object and an optical appearance inspection system using the same are realized.
- optical appearance inspection apparatus since a plurality of images necessary for the appearance inspection can be obtained by one scanning by the photographing means, various types of defects appearing in the appearance of the inspection object can be obtained.
- An optical appearance inspection apparatus capable of performing inspection in one shot and an optical appearance inspection system using the same are realized.
- FIG. 1 It is a whole block diagram which shows the optical appearance inspection system comprised using the optical appearance inspection apparatus concerning this Embodiment.
- A a perspective view showing an appearance inspection station
- B an enlarged plan view of an essential part showing an irradiation condition of a light to an inspection object and a reading position to explain processing contents in the optical appearance inspection apparatus
- C processing It is a top view which shows the image data for analyzing in an apparatus.
- A An enlarged view of an essential part showing a state where a defect sample is provided on an inspection object, (B) showing how defects are seen in a region irradiated with transmitted light A schematic front view, (C) A schematic front view showing the appearance of defects in the outline of the area irradiated with transmitted light, (D) An area not irradiated with transmitted light, the appearance of defects in the area near the outline area It is a front schematic diagram which shows the direction.
- the optical appearance inspection apparatus in other embodiment is shown, (A) The principal part expansion perspective view of the said optical appearance inspection apparatus, (B) The process which extracts the line-form image in several lines from the image which image
- A An enlarged view of a main part showing the inspection object provided with a defect sample, (B) a defect in a region irradiated with light
- optical appearance inspection apparatus 50 for inspecting the appearance of industrial products (including parts)
- inspection object object W is not restricted to these, but various things are It can be targeted.
- FIG. 1 is an overall configuration diagram showing an optical appearance inspection system 60 configured using the optical appearance inspection apparatus 50 according to the present embodiment.
- the inspection object W is configured to inspect a plate-like transparent object, and as an example, a configuration suitable for inspecting the light guide plate And
- a receiving station 10 for receiving a light guide plate which is an inspection object W, and the optical appearance inspection apparatus 50 are installed to be inspected. It comprises an appearance inspection station 20 which inspects the appearance of W, a thickness inspection station 30 which inspects the thickness of the inspection object W, and an unloading station 40 which sends out the inspection object W whose inspection is completed.
- a work to be an inspection object W in the optical appearance inspection system 60 is received.
- the inspection object W is a thin plate-like light guide plate, warpage, lifting, and the like easily occur, and therefore, warpage, lifting, and the like occur in the appearance inspection station 20 and the thickness inspection station 30 which follow.
- a holding means may be realized as a structure for suctioning the inspection object W toward the inspection object moving means or a configuration for blowing air from above onto the inspection object W and pressing the inspection object movement means 11. it can.
- the holding means may be configured to hold the inspection object W only when the inspection is actually performed, such as the appearance inspection station 20 and the thickness inspection station 30, etc.
- the inspection object moving means 11 for transferring the inspection object W to each station can be used as various conveyors and the like.
- the inspection object moving means 11 for conveying the inspection object W is an appearance inspection to be described later. It is provided to pass between the imaging means 51 provided in the station 20 and the illumination means 52.
- the inspection object W is transparent, and the photographing means 51 is configured to photograph the transmitted light transmitted through the inspection object W, so the inspection object moving means 11 and the inspection It is desirable that the holding means of the object W be configured so as not to block between the photographing means 51 and the illumination means 52. This is to enable imaging of the entire inspection object W formed transparent.
- the inspection object moving means 11 is formed of a transparent material so as not to affect imaging, or is held at a position that does not affect imaging such as the side surface of the inspection object W. It may be configured to be transported, and the holding mechanism of the inspection object W may be formed of a transparent material so as not to affect imaging, or may be held by the flow of air. It can be configured.
- the appearance inspection station 20 inspects the appearance of the inspection object W.
- the optical appearance inspection apparatus 50 installed in the appearance inspection station 20 transmits light as illumination means 52 for emitting light so as to transmit the inspection object W, and the inspection object for which light is emitted by the illumination means 52
- a camera using a CMOS image sensor as the photographing unit 51 for photographing W and a photographed image photographed by the photographing unit 51 are obtained, and the inspection object W is obtained based on image data of a plurality of lines having different light intensities.
- a control device as processing means 53 for judging the presence or absence of an appearance defect is configured as a main component.
- the inspection object W in the present embodiment is a transparent product and the illumination means 52 used is transmission illumination
- the photographing means 51 is provided to face the illumination means 52
- the photographing means 51 is provided so that the photographing direction faces the irradiation direction of the illumination means 52.
- the transmitted illumination used as the illumination means 52 can emphasize the defect by irradiating the inspection object W with light.
- the illumination means 52 preferably uses an LED as a light source in order to ensure stable irradiation performance even in long-term and long-term operation, and a defect in appearance is judged based on image data of a plurality of lines. Therefore, it is desirable to use line lighting.
- the illumination means 52 may adjust the wavelength of the irradiated light arbitrarily in accordance with the material, color and the like of the inspection object W. When the inspection object W is red, light in the red wavelength region can be irradiated, and when the inspection object W is green, light in the green wavelength region can be irradiated.
- the inspection object W is formed of a material having a high reflectance such as metal or is formed of a transparent material, it is desirable to irradiate light in the blue wavelength range. This is because light in the blue wavelength range has a short wavelength and reflected light and transmitted light are easily scattered.
- the illumination means 52 be installed in the vicinity of the conveyance means.
- the illumination means 52 comprises the inspection object moving means 11. You may install so that a space
- the camera used as the imaging unit 51 includes a CMOS image sensor as an imaging device, and includes a planar imaging device in which a plurality of photodiodes are arranged in the vertical and horizontal directions.
- a CMOS image sensor as an imaging device
- a planar imaging device in which a plurality of photodiodes are arranged in the vertical and horizontal directions.
- an imaging element having 2048 pixels in the horizontal direction (the width direction with respect to the scanning direction) and 2048 pixels in the vertical direction (the scanning direction) can be used.
- the photographing means 51 provided with such an image sensor, when the visual field in the horizontal direction is 200 mm, the visual field in the vertical direction is also 200 mm. Therefore, the photodiode used for photographing in this visual field in the vertical direction
- image data in a plurality of lines can be acquired by scanning the imaging unit 51.
- the control device used as the processing means 53 acquires the photographed image photographed by the photographing means 51, analyzes the image data of a plurality of lines, and judges the presence or absence of the defect in the appearance.
- the image data used for this analysis may be obtained by using the photographed image photographed by the photographing means 51 as it is or connecting the photographed image for every plural lines and developing it into a planar image. Therefore, the processing means 53 is configured with a CPU (Central Processing Unit), a memory and the like for analyzing image data and performing numerical calculation and information processing necessary for performing image processing as necessary. .
- a computer can be used as such a processing device, but it may be a device designed to perform numerical calculation and information processing necessary for analyzing and judging defects in image processing and appearance.
- the processing means 53 can also control which line of the photodiode row arranged in the scanning direction of the photographing means 51 in the image pickup device.
- a transfer detection unit that detects the horizontal movement distance and moving speed of the inspection object W by the inspection object moving unit 11 It is desirable to provide 54.
- the transfer detection means 54 a rotary encoder, a linear encoder or the like can be used.
- the transfer detection means 54 can be installed at any place in the transport path of the inspection object W, and desirably the appearance inspection in order to accurately measure the horizontal movement distance and speed of the inspection object W It is installed at the station 20, and more preferably installed near the imaging area in the imaging means 51.
- the detection signal from the transfer detection means 54 is sent to the processing means 53 to suppress the variation of the imaging resolution due to the change of the moving speed of the inspection object W by the inspection object moving means 11.
- the position correction can be made possible.
- thickness inspection station 30 it is inspected whether thickness in inspection object W is in a predetermined range. That is, in the thickness inspection station 30, the thickness of the inspection object W transported by the inspection object moving means 11 is measured by the thickness detection means 31 formed of a reflection type laser displacement meter. The measurement result is sent to the processing means 53, and the processing means 53 can detect a defect in the thickness of the inspection object W.
- the optical appearance inspection system 60 shown in FIG. 1 is configured such that the inspection object W is particularly transparent, and a captured image is acquired by transmissive illumination. That is, the illumination means 52 is provided on the opposite side across the inspection object W. In this respect, if the inspection object W is not transparent, it is not possible to acquire image data by transmitted illumination. Therefore, when the inspection object W is opaque, as shown in FIG. 4 described later, the reflection illumination is used, and the photographing unit 51 photographs the reflected light of the light irradiated to the inspection object portion, as described above. Image data can be acquired. At that time, it is desirable that the illumination means 52 irradiate light to the inspection object W from the photographing direction by the photographing means 51, and in particular, it is preferable to irradiate light vertically above the inspection object W.
- FIG. 2 (A) is a perspective view showing the appearance inspection station 20
- FIG. 2 (B) is an enlarged plan view of the main part showing the irradiation condition of the light to the inspection object W and the reading position.
- the inspection object W is transported by the inspection object moving means 11 such as a conveyor, and the illumination means 52 is provided below the inspection object moving means 11.
- the illumination means 52 is a line illumination, and illuminates light throughout the width direction (the direction intersecting the transfer direction) of the inspection object W.
- the light of the illumination means 52 is transmitted through the inspection object W, whereby the photographing means 51 provided above the inspection object W can photograph the transmitted light of the inspection object W.
- the inspection object W passes between the illumination means 52 and the photographing means 51.
- the imaging unit 51 in the area illuminated by the transmitted light, the bright area A1, its outline area A2, and the area not irradiated with the transmitted light, and the outline area In the area A3 of the near area, the image data captured by the line extending in the width direction (the direction intersecting the scanning direction) of the inspection object W is acquired.
- the imaging in each line is performed while transporting the inspection object W, and is imaged each time it moves by the number of pixels acquired in at least one imaging.
- the transfer distance of the inspection object W is detected by the transfer detection means 54 such as the rotary encoder. Therefore, at the time when the signal indicating movement by a fixed distance is obtained from the transfer detection means 54, the photographing means 51 can take an image on a predetermined line.
- the image data D1 to D3 expanded into the surface image as shown in 2.) are formed. That is, in the area illuminated by the transmitted light, the image data D1 formed of the image obtained by photographing the bright area A1 and the image obtained by imaging the area A2 not illuminated by the transmitted light but in the vicinity of the outline area.
- the image data D2 formed as described above and the image data D3 formed of an image obtained by photographing an area A3 which is an area not irradiated with transmitted light and which is in the vicinity of the outline area are formed.
- the processing device acquires a line-shaped image every time the image pickup means 51 takes an image, and expands the image into a planar image. It may be recorded and sent to the processing means 53 after being synthesized to the plane image.
- Each plane image (image data) in each line formed in this manner is obtained by photographing a state in which the irradiation direction of light to the inspection object W is made different. Therefore, although the light can be acquired by one scan by the imaging unit 51, the same image data as in the case where the imaging unit 51 is scanned a plurality of times can be acquired by changing the irradiation angle of light.
- FIG. 3A is an enlarged view of an essential part showing a state in which a defect sample is provided on the inspection object W
- FIG. 3B is a front view showing how a defect appears in a region irradiated with transmitted light
- FIG. 3C is a schematic front view showing how defects appear in the outline of the area irradiated with transmitted light
- FIG. 3D is an area not irradiated with transmitted light 6 is a schematic front view showing how a defect appears in a region near the contour region.
- the inspection object W is transparent, and FIGS. 3B to 3D show how the transmitted light looks when it is irradiated with light.
- the inspection object W as a sample, as shown in FIG. 3A, from the top in order from the top, flaw defects F1 such as flaws present on the surface, color defects F2 in which black foreign matter is present on the surface or inner surface, surface An uneven defect F3 is formed which is composed of gentle unevenness in the above.
- the color defect F2 appears clearly in the area A1 where the light is irradiated to the back surface, The defect F1 and the uneven defect F3 do not appear clearly.
- FIG. 3C in the contour area A2, the uneven defect F3 appears clearly, while the color defect F2 and the flaw defect F1 do not appear clearly.
- FIG. 3D in the area A3 where light is not irradiated, the flaw defect F1 appears clearly, while the color defect F2 and the concavo-convex defect F3 do not appear clearly.
- the image data in the plurality of lines are respectively analyzed to obtain a plurality of images acquired in one scan.
- Image data can be used to inspect various cosmetic defects.
- the inspection object W is a transparent product, transmissive illumination is used as the illumination means 52, but when the inspection object W is opaque, the following As shown in FIG. 4, the illumination unit may be provided on the photographing unit 51 side, and the photographing unit 52 may be configured to photograph the reflected light of the light irradiated to the inspection object W.
- a camera using a CMOS image sensor is used as the photographing means 51.
- a camera using a CCD image sensor for photographing a predetermined area as a plane image may be used. In the case, image processing such as extraction of a line-shaped image as shown in FIG. 4 below is performed.
- FIG. 4 shows an optical appearance inspection apparatus 150 according to another embodiment, and the optical appearance inspection apparatus 150 is also installed in the appearance inspection station 20 of the optical appearance inspection system 60 shown in FIG. Can.
- the optical appearance inspection apparatus 150 shown in this embodiment particularly uses a camera using a CCD image sensor as the photographing means 151, and the illumination means 152 is configured to photograph reflected light, not transmitted light.
- FIG. 4 (A) is an enlarged perspective view of an essential part showing an optical appearance inspection apparatus 150 according to another embodiment
- FIG. 4 (B) is a process for extracting line-shaped images in a plurality of lines from photographed images. It is a conceptual diagram which shows the content
- FIG.4 (C) is a top view which shows the image data used as analysis object synthesize
- the inspection object W is transported by the inspection object moving means 11 such as a conveyor.
- Light is emitted from the illumination means 152 provided above the inspection object W transported.
- an area which is at least irradiated with light and which is in the vicinity of the irradiated area and which is not irradiated with light The image is taken so that the entire width direction of the inspection object W is captured.
- the captured image is associated with the transfer distance or the like measured by the transfer detection unit such as a rotary encoder, as in the above-described embodiment.
- a line-shaped image is extracted from an area set arbitrarily from an image obtained by photographing a certain area. That is, a line-shaped image is drawn from the respective lines of the area A1 illuminated by the light emitted from the illumination means 152, its outline area A2, and the area not irradiated with light but in the vicinity area A3 of the outline area. Extract (L1 to L3). That is, the linear image L1 is extracted from the area A1 illuminated by light, and the linear image L2 is extracted from the outline area A2 of the area A1 illuminated by light, and the area is not irradiated with light. A linear image L3 is extracted from the vicinity area A3 of the outline area.
- the extracted line-shaped images are connected to each other to combine image data composed of planar images as shown in FIG. 4C. That is, the image data D11 in which the linear images L1 extracted from the lighted area A1 are joined and the linear image L2 extracted from the outline area A2 of the light A1 are connected.
- the image data D12 and the image data D13 in which the linear image L3 extracted from the vicinity area A3 of the area which is not irradiated with light and is extracted are respectively synthesized. Then, it is possible to determine the presence or absence of each appearance defect in the inspection object W by analyzing the change in color and / or brightness of each of the synthesized plane images (image data).
- FIG. 5 shows how the reflected light looks when the inspection object W is irradiated with light
- FIG. 5 (A) is a main part enlarged view showing the inspection object W provided with a defect sample
- FIG. 5 (B) is a schematic front view showing the appearance of defects in the area irradiated with light
- FIG. 5 (C) shows the appearance of defects in the outline of the area irradiated with light
- FIG. 5 (D) is a schematic front view showing an appearance of a defect in a region not irradiated with light and in the vicinity of the contour region.
- FIGS. 5B to 5D show how the reflected light appears when the inspection object W is irradiated with light.
- a foreign matter defect F11 such as a black foreign matter existing on the surface
- a hole defect F12 such as a penetrating hole
- a flaw defect F13 such as a flaw is formed.
- the hole defect F12 clearly appears in the area A1 where the light is irradiated to the surface, while the foreign matter The defect F11 and the flaw defect F13 do not appear clearly.
- FIG. 5C in the contour area A2, the foreign matter defect F11 clearly appears, while the hole defect F12 and the flaw defect F13 do not clearly appear.
- FIG. 5D in the area A3 where the light is not irradiated, the flaw defect F13 clearly appears, while the foreign matter defect F11 and the pore defect F12 do not clearly appear.
- the illumination means 52 for emitting the transmission illumination can be used.
- the photographing means 51 formed of a camera using a CMOS image sensor can be used, and in this case, Can develop an image taken at each line into a plane image to inspect a defect.
- FIG. 6 is a perspective view showing an inspection method when the inspection object W is cylindrical.
- the appearance inspection can be performed by rotating the inspection object W around the axis.
- the inspection object W has a curved surface
- a camera using a CMOS image sensor as the photographing means 51
- the problem of distortion of the image on the curved surface can be eliminated, and the appearance inspection is performed more accurately.
- a camera using a CCD image sensor may be used as the photographing means.
- FIG. 7 is a perspective view showing an inspection method in the case where the inspection object W is long in the width direction, that is, in the direction orthogonal to the transfer direction.
- a plurality of imaging means 51 can be used side by side in the width direction.
- a plurality of photographing means 51 will be used.
- image data in a plurality of lines is acquired by any one imaging unit 51 in the range in any width direction.
- the imaging means 51 is arranged in a line, but may be arranged in a zigzag.
- a camera using a CCD image sensor may be used as the photographing means.
- the optical appearance inspection apparatus configured as described above, it becomes possible to simultaneously inspect all defects generated in the manufacturing process of the inspection object W in one imaging condition under one imaging condition, Further, even when the inspection object W is a product having a different thickness, image data necessary for inspection is acquired to analyze / determine defects without physically adjusting the optical system such as the photographing unit and the illumination unit. I can do things.
- imaging means which can be suitably used in the optical appearance inspection apparatus according to the present embodiment will be described.
- such an imaging means is configured by arranging a plurality of photodiode rows, in which a plurality of photodiodes are arranged in a direction intersecting the scanning direction, in parallel, in the scanning direction.
- FIG. 8 shows four photodiode rows made up of A to D rows, each row consisting of nine photodiodes arranged in the arrangement direction.
- the photographing means is further configured to include an image processing unit, and the image processing unit executes processing to reduce the image size of 36 pixels.
- the image processing unit executes processing to reduce the image size of 36 pixels.
- processing for calculating or extracting pixels of the brightness set in advance such as maximum brightness, minimum brightness, average brightness and the like from pixels lined in the scanning direction Run.
- one row of image data is generated by connecting the calculated or extracted pixels, and this one row of image data is used for surface inspection.
- FIG. 8 shows an arrangement of photodiodes, and when this is viewed as a pixel photographed by each photodiode, pixels having the lowest luminance are extracted.
- FIG. 8 shows an arrangement of photodiodes, and when this is viewed as a pixel photographed by each photodiode, pixels having the lowest luminance are extracted.
- FIG. 9 is a schematic view showing a process of computing or extracting one row of image data from an image obtained by actually capturing an inspection object.
- the inspection object W is photographed, and an image consisting of ten rows of pixels arranged in the scanning direction is photographed. Each row can be composed of pixels according to the optical element.
- the pixels in the respective columns aligned in the scanning direction are compared from the photographed pixels, and as shown in FIG. 9C, the pixel having the highest luminance is extracted.
- image data of one column can be generated. And since this generated image data of one row is used for inspection, the image data used for inspection can be greatly reduced and processing speed can be improved.
- the inspection speed can be increased by setting the transfer distance of the inspection object to the number of pixel rows photographed in approximately one photographing. That is, in FIG. 9, a large number of inspection objects can be inspected by transferring the inspection object by 9 pixels or 10 pixels and imaging them.
- an image of a wide range including the periphery may be obtained for any of the regions. It can.
- imaging can be performed by transferring one to five rows. Then, by extracting a pixel (a pixel set in advance as a condition) suitable for the purpose from among the photographed pixels, it is possible to acquire more accurate image data without omission of photographing. Therefore, in this case, surface inspection can be performed with high accuracy.
- the optical appearance inspection apparatus is used to inspect defects in appearance of various articles such as raw materials, agricultural products, marine products, or processed products thereof as well as industrial products.
- the inspection object W can be inspected for appearance regardless of whether it is transparent or opaque.
Landscapes
- Analytical Chemistry (AREA)
- Immunology (AREA)
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Pathology (AREA)
- General Health & Medical Sciences (AREA)
- Biochemistry (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Textile Engineering (AREA)
- Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
- Length Measuring Devices By Optical Means (AREA)
- Image Processing (AREA)
Abstract
Description
本発明は食品や工業製品などの様々な物品の外観を検査する為の光学式外観検査装置と、これに好適に使用できる撮影手段に関する。特に物品を撮影した画像データを解析して、物品表面のキズ・バリや歪み等の凹凸欠陥、或いは表面に透過して見える異物の有無を検査する為の光学式外観検査装置、及びこれに好適に使用できる撮影手段に関する。 The present invention relates to an optical appearance inspection apparatus for inspecting the appearance of various articles such as food and industrial products, and an imaging means which can be suitably used for the optical appearance inspection apparatus. In particular, it is suitable for an optical appearance inspection apparatus for analyzing the image data obtained by photographing an article and checking the presence or absence of an uneven defect such as flaws and burrs or distortion on the article surface or the presence of foreign matter visible through the surface; Imaging means that can be used for
農作物や加工食品などの食品、或いは樹脂成型品や金属加工品などの工業製品など、各種の物品(以下、「検査対象物」とも言う)の表面における欠陥を検査する為に、ベルトコンベアーなどで搬送される物品を撮影し、その撮影した画像データを解析する事が行われている。 In order to inspect defects on the surface of various articles (hereinafter, also referred to as “objects to be inspected”) such as food products such as agricultural products and processed foods, or industrial products such as resin molded products and metal products, It is practiced to photograph an article to be conveyed and analyze the photographed image data.
かかる画像データを利用して異物等の検査を行う為の装置については、本願出願人も特許文献1(特開2010-8339号公報)において提案している。この文献では、透明容器内に充填された粉末中の異物を容易且つ確実に検査する為に、前記透明容器に縦方向の往復振動と横方向の往復振動を合成した振動を与えて該透明容器内の粉末を循環流動させながら、循環流動する粉末を撮像し、得られた画像を用いて異物の有無を検査する透明容器内粉末中の異物検査方法を提案している。 The applicant of the present invention also proposes an apparatus for inspecting foreign matter and the like using such image data in Patent Document 1 (Japanese Patent Application Laid-Open No. 2010-8339). In this document, in order to inspect foreign matter in the powder filled in the transparent container easily and reliably, the transparent container is imparted with a vibration combining the reciprocating vibration in the longitudinal direction and the reciprocating vibration in the horizontal direction, thereby the transparent container While circulating the powder inside the powder, the powder that circulates and flows is imaged, and the foreign substance inspection method in the powder in the transparent container is proposed to inspect the presence or absence of foreign substances using the obtained image.
また、従前において物品の外観上の欠陥を検査する為には、検査内容(即ち、ゴミの付着を検査するのか、表面のキズやバリの有無を検査するのか、或いは表面における歪みの有無を検査するのかなどの違い)によって撮影する向き又は光の当て方を変えなければならなかった。例えば、検査対象物に付着したゴミなどの検査では、真上から検査(撮影)しなければならず、キズなどの凹凸の検査では、検査対象物かカメラの角度を変えて斜め方向から検査(撮影)しなければならなかった。この為、検査対象物に対して様々な表面検査を行う場合には、検査対象物を複数回往復させるか、複数の検査ステーションを設けて検査しなければならなかった。 In addition, in order to inspect defects in the appearance of the article in the past, inspection content (ie whether to inspect the adhesion of dust, whether to inspect the presence or absence of scratches and burrs on the surface, or the presence or absence of distortion on the surface Depending on the difference, etc.), it was necessary to change the shooting direction or the way of lighting. For example, in the inspection of dust and the like attached to the inspection object, the inspection (photographing) must be performed from directly above, and in the inspection of irregularities such as scratches, the inspection object is inspected from an oblique direction by changing the angle of the camera or the camera I had to shoot. Therefore, in the case of performing various surface inspections on the inspection object, it is necessary to reciprocate the inspection object a plurality of times or to provide a plurality of inspection stations for inspection.
そこで、特許文献2(特開2007-333449号公報)では、検査時間を短縮する為に、1往復するのみで性能検査をすることが可能なバックライトパネルの検査装置を提案している。即ち、この文献では、検査領域に配設された、板状の被検査体を検査するための検査機構と、前記被検査体が着脱可能に載置される載置台と、前記載置台を水平方向に移動させるための載置台移動手段と、前記移動手段を操作するための操作部と、前記載置台真上面から撮影するカメラと、前記載置台を斜め上面の左右から撮影する2台のカメラと、前記カメラからの映像に基づいて不良検出する検出部と、前記検出部の検出結果を表示する表示手段とで構成し、前記カメラによって被検査体を1往復移動するのみで被検査体の検査が終了するようにしている。 Therefore, in order to shorten the inspection time, Patent Document 2 (Japanese Patent Application Laid-Open No. 2007-333449) proposes an inspection apparatus of a back light panel which can perform performance inspection only by one reciprocation. That is, in this document, an inspection mechanism disposed in an inspection area for inspecting a plate-like object to be inspected, a mounting table on which the object to be inspected is detachably mounted, and the mounting table horizontally. Mounting table moving means for moving in the direction, an operation unit for operating the moving means, a camera for capturing an image from the top surface of the table, and two cameras for capturing the table from the left and right of the upper surface And a detection unit that detects defects based on an image from the camera, and a display unit that displays the detection result of the detection unit, and the test object is moved by only one reciprocation of the test object by the camera. The examination is to be finished.
また従前においては、検査する欠陥の種類により、検査(撮影)する角度を変える事を自動化する技術も提案されている。例えば特許文献3(特開2006-300913号公報)では、往路と復路でのカメラの撮像角度を自動で移動させ、カメラとワークの位置関係の角度を変えることにより、不良の形態により検査を容易にする技術が提案されている。即ち、この文献では、導光板検査用の複数のラインセンサカメラを導光板積載ステージの上から保持し、その構造体ごとカメラの撮像角度を変えるロータリアクチュエータとブレーキを持つ導光板検査装置を提案している。 Also, in the past, there has been proposed a technology for automating changing the angle to be inspected (photographed) according to the type of defect to be inspected. For example, in Patent Document 3 (Japanese Patent Application Laid-Open No. 2006-300913), the imaging angle of the camera in the forward pass and return pass is automatically moved, and the angle of the positional relationship between the camera and the work is changed. Technologies have been proposed. That is, this document proposes a light guide plate inspection apparatus having a rotary actuator and a brake that holds a plurality of line sensor cameras for light guide plate inspection from above the light guide plate loading stage and changes the imaging angle of the camera together with its structure. ing.
更に、従前においては、表面の凹凸を有する撮像対象物を鮮明に撮像することができるように工夫したラインセンサカメラを備えた撮像装置も提案されている。例えば特許文献4(特開2011-223233号公報)では、対物レンズと、前記対物レンズの結像深度内に配設され、複数の撮像素子から成るラインスキャンセンサをスキャン方向に複数組連設した撮像部とを備え、複数組の前記ラインスキャンセンサは、相互の結像位置が異なるように配設されているラインセンサカメラと、複数組の前記ラインスキャンセンサの撮像結果を、前記撮像素子単位で順に読み出す画像読出し手段と、読み出した複数の単位撮像画像のうちから合焦画像を抽出する合焦画像抽出手段と、抽出した合焦画像を合成して合焦撮像画像を生成する合焦撮像画像生成手段とを備えた撮像装置が提案されている。
Furthermore, in the past, there has been proposed an imaging apparatus provided with a line sensor camera devised so as to be able to clearly image an imaging object having surface irregularities. For example, in Patent Document 4 (Japanese Patent Laid-Open No. 2011-223233), an objective lens and a plurality of line scan sensors disposed within the imaging depth of the objective lens and including a plurality of imaging elements are arranged in series in the scanning direction. An imaging unit; a plurality of sets of the line scan sensors are line sensor cameras arranged so that their imaging positions are different from each other; and imaging results of the plurality of sets of the line scan sensors are the imaging element unit The in-focus image extracting means for extracting an in-focus image from among the plurality of unit-captured images read out in order in the above, and the in-focus imaging for combining the extracted in-focus image to generate an in-focus image There has been proposed an imaging device provided with an image generation unit.
上記の通り、物品(検査対象物)の表面に出現する欠陥を検査する場合には、表面にゴミ等が付着したか否かを検査するのか、表面のキズやバリ、或いは歪み等の凹凸を検査するのか等により、検査対象を撮影する向き又は光の当て方を変更しなければならなかった。例えば、検査対象が導光板であり、その製造工程における外観検査を自動化する場合には、製造原料である樹脂の炭化異物の有無や、未溶解などの変色した欠陥を検査する為に、透過照明を照射して撮影しなければならず、また樹脂成型時の溶解温度、射出圧力に起因するなだらかな凹凸欠陥を検査する為には、散乱照明を照射して撮影しなければならず、そして成型に使用する金型や取出し機に起因するキズ・バリ等の急峻な凹凸欠陥を検査する為には、ローアングル照明を照射して撮影しなければならなかった。よって検査する欠陥の特徴に合わせた照明条件と、それぞれの照明条件で撮像するためのカメラを用意することが必要となっていた。 As described above, when inspecting a defect appearing on the surface of an article (object to be inspected), it is inspected whether dust or the like has adhered to the surface or unevenness such as flaws, burrs or distortion of the surface Depending on whether or not to inspect, it was necessary to change the direction in which the object to be inspected is photographed or the way of applying light. For example, when the inspection target is a light guide plate and the appearance inspection in the manufacturing process is to be automated, the transmitted illumination is used to inspect the presence or absence of carbonized foreign matter in the resin which is the manufacturing raw material and discolored defects such as undissolved. In order to inspect gentle uneven defects caused by melting temperature and injection pressure at the time of resin molding, scattering illumination must be irradiated and photographed, and molding In order to inspect a steep uneven defect such as a flaw or burr due to a mold or a take-out machine to be used for, it was necessary to shoot by irradiating low angle illumination. Therefore, it has been necessary to prepare illumination conditions in accordance with the features of the defect to be inspected and cameras for imaging under the respective illumination conditions.
そこでこの問題を解決する為に、従来では、前記特許文献1で開示するように複数のカメラを設置したり、或いは特許文献2で開示するように、カメラの向きを自動修正したりすることが提案されていた。 Therefore, in order to solve this problem, conventionally, a plurality of cameras may be installed as disclosed in Patent Document 1 or the direction of the camera may be automatically corrected as disclosed in Patent Document 2. It has been proposed.
しかし、複数のカメラを使用する場合には、当然のことながらカメラの設置台数が増えてコストが増大するだけでなく、更に当該カメラの設置スペースを確保しなければならないことから、検査装置自体が大型化してしまうという問題があった。またカメラの向きを自動修正する場合には、所定の位置にカメラを移動させる為の動作時間が必要になり、検査時間が増大する事が考えられた。 However, when using a plurality of cameras, not only the number of cameras installed naturally increases the cost, but also the installation space for the cameras must be secured, so the inspection apparatus itself is There was a problem that it enlarged. Also, in the case of automatically correcting the direction of the camera, an operation time for moving the camera to a predetermined position is required, and it is considered that the inspection time increases.
そこで本発明では、使用するカメラの台数を少なくし、また当該カメラの設置台数を少なくすることで、装置自体を小型化した光学式外観検査装置、及びこれを用いた光学式外観検査システムを提供する事を第1の課題とし、更にカメラの使用台数を少なくしながらも、カメラを移動させるなどの動作時間を要せずして、様々な種類の検査を短時間で行う事ができる光学式外観検査装置、及びこれを用いた光学式外観検査システムを提供する事を第2の課題とする。 Therefore, the present invention provides an optical appearance inspection apparatus in which the size of the apparatus itself is reduced by reducing the number of cameras used and the number of cameras installed, and an optical appearance inspection system using the same. Optical type that can perform various types of inspections in a short time without requiring operation time such as moving the camera while reducing the number of cameras used as the first problem. A second object is to provide an appearance inspection apparatus and an optical appearance inspection system using the same.
また、検査対象はベルトコンベアー等の搬送手段で搬送されるところ、検査対象の大きさ、高さ又は厚さは様々である。即ち、検査対象も、ある時は高さのある箱状、筒状などの立体形状の物品であったり、また、ある時は高さの低い板状又はシート状の物品であることもある。したがって、高さや厚さ等が異なる物品を的確な角度で撮影する為には、検査の都度、カメラの設置位置や角度または検査対象物の設置位置や角度を調整しなければならず、その作業が手間になっていた。 Further, the inspection object is conveyed by a conveying means such as a belt conveyor, but the size, height or thickness of the inspection object is various. That is, the object to be inspected may also be a three-dimensional article such as a box-like or tubular-like one having a height at one time, or a plate-like or sheet-like article having a low height at one time. Therefore, in order to photograph an article having different height, thickness, etc. at an accurate angle, it is necessary to adjust the installation position and angle of the camera or the installation position and angle of the inspection object at each inspection. It was time and effort.
そこで本発明は、このような大きさ、高さ又は厚さが異なる検査対象物を検査する場合であっても、カメラ、照明、又は検査対象物の高さや角度の変更を要せずして、検査対象物の外観を検査することのできる光学式外観検査装置、及びこれを用いた光学式外観検査システムを提供する事を第3の課題とする。 Therefore, the present invention does not require changing the height or angle of the camera, the illumination, or the inspection object even when inspecting the inspection object having different sizes, heights, or thicknesses. A third object is to provide an optical appearance inspection apparatus capable of inspecting the appearance of an inspection object and an optical appearance inspection system using the same.
更に、従前においては、製造原料である樹脂の炭化異物の有無、未溶解などの変色した欠陥、樹脂成型時の溶解温度、射出圧力に起因するなだらかな凹凸欠陥、及び成型に使用する金型や取出し機に起因するキズ・バリ等の急峻な凹凸欠陥等の、検査対象物の外観に出現する欠陥を撮影画像によって検査する場合は、それぞれの欠陥ごとに、検査する為の画像を撮影しなければならなかった。 Furthermore, in the prior art, the presence or absence of carbonized foreign matter in resin which is a raw material for production, discolored defects such as undissolved, melting temperature at the time of resin molding, gentle uneven defects caused by injection pressure, molds used for molding When inspecting a defect that appears in the appearance of the object to be inspected, such as a sharp uneven defect such as a flaw or burr caused by the take-out machine, by using a photographed image, an image to be inspected must be photographed for each defect. I had to.
そこで、本発明は、前記したような検査対象物の外観に出現する様々な種類の欠陥を、1回の撮影で検査する事ができるようにした光学式外観検査装置、及びこれを用いた光学式外観検査システムを提供する事を第4の課題とする。 Therefore, according to the present invention, an optical appearance inspection apparatus capable of inspecting various kinds of defects appearing in the appearance of the inspection object as described above by one photographing, and an optical using the same It is a fourth object to provide a visual inspection system.
また、撮影画像に基づいて表面検査を行う場合には、検査対象の厚みや高さ位置が変化することにより、照射した光の透過位置や反射位置が変動してしまう事が考えられる。そこで、このような変動を無くすことが望ましく、また表面の欠陥によって生じる「照射した光の変化」は漏れなくデータとして取得する事が望ましい。 Moreover, when performing surface inspection based on a captured image, it is possible that the transmission position and reflection position of the irradiated light will be fluctuate | varied by the thickness and height position of test object changing. Therefore, it is desirable to eliminate such fluctuation, and it is also desirable to acquire "changes in the irradiated light" caused by surface defects as data without leakage.
この点、前記特許文献4では、焦点が合った撮像データを抽出・合成することにより、表面に凹凸を持った撮像対象物の表面全体を鮮明に撮像することが開示されている。しかし、この文献にかかる発明は、表面の凹凸を有する撮像対象物を鮮明に撮像する事を課題とするものであり、複数組のラインスキャンセンサは、相互の結像位置が異なるように配設されている。よって、この技術では、最適な焦点距離の撮影画像は取得できるものの、光源との位置関係が関与してくる表面検査のための撮影画像を取得する事は出来ない。また、この特許文献4の技術は、その請求項4に「前記各ラインスキャンセンサは、TDI方式で読み出される複数のセンサアレイで構成されている」と記載されており、当該センサアレイは256ラインが一般的であることを鑑みれば、この技術では、複数の撮像素子の傾き角度とライン数によって高さ分解能が制限されてしまい、実用上の凹凸追従の自由度は低いと考えられる。 In this respect, Patent Document 4 discloses that the entire surface of an imaging object having irregularities on the surface is clearly imaged by extracting and combining imaging data in focus. However, the invention according to this document has an object of clearly imaging an imaging object having surface irregularities, and a plurality of sets of line scan sensors are arranged so that their imaging positions are different from each other. It is done. Therefore, with this technology, although it is possible to acquire a photographed image of an optimum focal distance, it is not possible to acquire a photographed image for surface inspection that involves the positional relationship with the light source. Further, the technology of this patent document 4 is described in the claim 4 that "each of the line scan sensors is composed of a plurality of sensor arrays read out by TDI method", and the sensor array has 256 lines. In view of the generality, in this technology, the height resolution is limited by the tilt angles and the number of lines of the plurality of imaging elements, and it is considered that the degree of freedom in following the unevenness in practical use is low.
そこで本発明では、広い視野を確保すると共に、表面検査のための最適な画像を取得できるように工夫した撮影手段を使用し、高速及び/又は高精度で検査対象物の表面検査を行う事ができるようにした光学式外観検査装置、及びこれを用いた光学式外観検査システムを提供する事を第5の課題とする。
Therefore, in the present invention, the surface inspection of the object to be inspected can be carried out at high speed and / or high accuracy by using a photographing means designed to secure a wide field of view and acquire an optimum image for surface inspection. The fifth object of the present invention is to provide an optical appearance inspection apparatus which can be used and an optical appearance inspection system using the same.
前記課題の少なくとも何れかを解決する為に、本発明では照明手段が照射している領域の内外から選択された複数ラインにおける画像データを、ラインごとに解析・判断することで、検査対象物の外観に出現する様々な欠陥を検査するようにした光学式外観検査装置と、此れを使用した光学式外観検査システムを提供するものである。 In order to solve at least one of the above problems, according to the present invention, the image data in a plurality of lines selected from inside and outside of the area illuminated by the illumination means is analyzed and judged line by line. The present invention provides an optical appearance inspection apparatus adapted to inspect various defects appearing in the appearance, and an optical appearance inspection system using a defect.
即ち、本発明にかかる光学式外観検査システムは、検査対象物を撮影する撮影手段と、当該撮影手段が撮影した撮影画像を使用して、検査対象物における外観上の欠陥の有無を解析・判断する処理手段とからなり、当該処理手段は、撮影手段から撮影画像を取得すると共に、検査対象物に照射した光の強さが異なる領域からそれぞれ選択した複数ラインにおける画像データについて、色及び/又は明るさの変化を解析し、検査対象物における夫々の外観上の欠陥の有無を判断するように構成している。 That is, the optical appearance inspection system according to the present invention analyzes and determines the presence or absence of the appearance defect in the inspection object using the photographing means for photographing the inspection object and the photographed image photographed by the photographing means. Processing means for obtaining a photographed image from the photographing means, and processing the color and / or the image data of the plurality of lines respectively selected from the regions different in the intensity of the light irradiated to the inspection object The change in brightness is analyzed to determine the presence or absence of each appearance defect in the inspection object.
≪撮影手段について≫
上記本発明の光学式外観検査装置において、撮影手段は、検査対象物を撮影して撮影映像を取得するものであり、各種の撮像素子を伴って構成される。特にこの撮影手段は、撮影した画像データを電子データとして取得できるものが望ましい。これは処理手段における画像解析処理を円滑に行う為である。かかる撮像素子としては、CMOSイメージセンサやCCDイメージセンサであってよい。特に、当該撮影手段がCMOSイメージセンサカメラの様に任意のライン毎に撮影できるカメラが望ましい。かかる任意のラインごとに撮影可能なカメラは、複数のフォトダイオードを一列に配置したフォトダイオード列を備えて構成する事ができ、このフォトダイオード列を複数設ける事で、処理手段は、複数のラインにおける画像データを取得することができる。一方、CCDイメージセンサ等の様に面状の撮影画像を取得するカメラであれば、検査対象物を撮影した面状の撮影画像から複数ラインで画像を抜き出して、解析対象となる画像データを取得する事ができる。
«About the shooting means»
In the above-described optical appearance inspection apparatus of the present invention, the photographing means is for photographing the inspection object to obtain a photographed image, and is configured with various imaging elements. In particular, it is desirable that the photographing means be capable of acquiring the photographed image data as electronic data. This is to smoothly perform the image analysis process in the processing means. The imaging device may be a CMOS image sensor or a CCD image sensor. In particular, it is desirable that a camera capable of photographing every arbitrary line like the CMOS image sensor camera. Such a camera capable of capturing an image for each arbitrary line can be configured to include a photodiode row in which a plurality of photodiodes are arranged in a row, and by providing a plurality of photodiode rows, the processing means can obtain The image data in can be acquired. On the other hand, if it is a camera such as a CCD image sensor that acquires a planar photographed image, images are extracted in multiple lines from a planar photographed image obtained by photographing an inspection object, and image data to be analyzed is acquired. You can do it.
特に、この撮影手段としては、フォトダイオードが縦横方向に複数配置された面状の撮像素子を備え、撮像視野内における任意の複数ラインを抜き出す事のできるカメラを使用するのが望ましい。面状の撮像素子でありながら、任意に選択したラインで撮像することにより、検査対象物を停止させることなく撮影領域を通過するだけで、複数台の撮影手段及び照明手段を用いた場合と同様の画像を得ることができる為である。また面状の画像を撮影するイメージセンサを用いたカメラの様に、面状の撮影画像を取得した後に、必要なライン(領域)を抜き出すという処理が不要になり、処理速度を高める事ができる為である。即ち、CMOSイメージセンサを用いた撮影手段を使用する事により、検査処理を単純化し、且つデータ量を減じる事ができ、そして検査時間を短縮する事ができる。 In particular, it is desirable to use, as the photographing means, a camera provided with a planar imaging element in which a plurality of photodiodes are arranged in the vertical and horizontal directions and capable of extracting an arbitrary plurality of lines in the imaging field of view. Similar to the case of using a plurality of imaging means and illumination means by passing through the imaging region without stopping the inspection object by imaging with an arbitrarily selected line even though it is a planar imaging element It is because the image of can be obtained. Also, like a camera using an image sensor for capturing a planar image, processing for extracting necessary lines (areas) after acquiring a planar captured image is unnecessary, and processing speed can be increased. It is That is, by using the photographing means using the CMOS image sensor, the inspection process can be simplified, the amount of data can be reduced, and the inspection time can be shortened.
上記撮影手段は、検査対象物の材質の違い乃至は変化、或いは検査対象の厚みや高さ位置の変化等により、照射した光の透過位置や反射位置が変動したとしても、最適な画像データを取得できるように構成するのが望ましい。その為には、例えば、走査方向に一定の幅を有する領域で検査対象物を撮影し、この撮影画像から色及び/又は明るさの変化が最適な領域を抽出且つ組み合わせて、これを表面検査に使用する画像データとする事も望ましい。 Even if the transmitting position and the reflecting position of the irradiated light are changed due to the difference or change of the material of the object to be inspected, or the change of the thickness or the height position of the object to be inspected, It is desirable to configure it so that it can be acquired. For this purpose, for example, an object to be inspected is photographed in an area having a certain width in the scanning direction, and an area where the change in color and / or brightness is optimum is extracted and combined from the photographed image, and this is subjected to surface inspection It is also desirable to use image data for
即ち、前記撮影手段は、検査対象物の走査方向に平行に並んだ複数のラインで撮影する撮影部と、撮影部が撮影した複数のラインの夫々について、走査方向に直交する向き(即ち、撮影したラインの長さ方向)の領域ごとに色及び/又は明るさを比較した上で、この比較に基づいて特定のラインの領域を抽出し、これを組み合わせて1ライン又は複数ラインの画像データを合成する画像処理部とから構成する事ができる。 That is, the imaging unit has an imaging unit for imaging a plurality of lines arranged in parallel to the scanning direction of the inspection object and an orientation orthogonal to the scanning direction for each of the plurality of lines imaged by the imaging unit (that is, imaging After comparing the color and / or brightness for each area in the longitudinal direction of the selected line, the area of a specific line is extracted based on this comparison, and this is combined to combine image data of one or more lines. It can be composed of an image processing unit to be combined.
かかる撮影手段を使用した光学式外観検査装置において、前記撮影部は、前記検査対象物に照射した光の強さが異なる領域からそれぞれ選択した複数ラインの夫々において、検査対象物の走査方向に平行に並んだ複数のラインで撮影し、前記処理手段が解析する複数ラインにおける画像データとして、それぞれ画像処理部が合成した1ライン又は複数ラインの画像データを複数使用する光学式外観検査装置とする事ができる。このように構成した光学式外観検査装置では、表面検査に使用する画像データ(即ち、照射した光の強さが異なる夫々の領域から取得した画像データ)として、検査対象物の走査方向に並んだ複数のライン同士における特定の領域の色及び/又は明るさを比較した上で、各表面検査に最適な領域画像を抽出且つ組み合わせて合成した1又は複数ラインの画像データを使用する事から、より確実且つ精度の高い表面検査を行う事ができる。また、一回で撮影する検査対象物の撮影領域を、前記検査対象物の走査方向に並んだ複数のラインとした場合には、当該検査対象物の走査方向に並んだ複数のラインの領域単位で検査対象物を移送させることができ、これにより検査速度を向上させることもできる。 In the optical appearance inspection apparatus using the imaging unit, the imaging unit is parallel to the scanning direction of the inspection object in each of a plurality of lines respectively selected from regions with different intensities of light irradiated to the inspection object. An optical appearance inspection apparatus using a plurality of image data of one line or a plurality of lines respectively synthesized by the image processing unit as image data of a plurality of lines which are photographed by a plurality of lines arranged in a row and analyzed by the processing means Can. In the optical appearance inspection apparatus configured in this manner, image data used for surface inspection (that is, image data acquired from respective regions having different intensities of irradiated light) are arranged in the scanning direction of the inspection object Since the color and / or brightness of a specific area in a plurality of lines are compared, and one or more lines of image data combined and extracted and combined with an area image optimum for each surface inspection are used, The surface inspection can be performed reliably and accurately. In addition, when the shooting area of the inspection object to be photographed at one time is a plurality of lines aligned in the scanning direction of the inspection object, an area unit of the plurality of lines aligned in the scanning direction of the inspection object The inspection object can be transported at the same time, and the inspection speed can also be improved.
≪処理手段について≫
<処理手段の構成について>
処理手段は、前記撮影手段が撮影した撮影画像を取得すると共に、検査対象物に照射した光の強さが異なる領域からそれぞれ選択した複数ラインにおける画像データについて、色及び/又は明るさの変化を解析し、検査対象物における夫々の外観上の欠陥の有無を判断する装置である。この処理手段が解析する画像データは、撮影手段による撮影画像を直接使用する他、当該撮影画像を加工した画像であって良い。即ち、この処理手段は、撮影手段から撮影画像を取得し、取得した撮影画像を解析対象となる画像データとするか、又は取得した撮影画像について画像処理を行って作成した画像データについて、色及び/又は明るさの変化を解析し、検査対象物における外観上の欠陥を検査しても良い。よって、この処理手段は、当該解析・判断に必要な数値計算や情報処理、機器制御などを行う為、及び必要に応じて画像処理を行う為のCPU(Central Processing Unit)やメモリ等を伴って構成される。なお、撮影画像に対する画像処理としては、撮影画像から任意の領域の抽出処理、撮影画像の結合処理、及び明度、彩度、コントラスト等の補正処理を含む。
«About processing means»
<About the configuration of processing means>
The processing means acquires a photographed image photographed by the photographing means, and changes in color and / or brightness of image data in a plurality of lines respectively selected from regions having different intensities of light irradiated to the inspection object. It is an apparatus which analyzes and determines the presence or absence of each appearance defect in a test subject. The image data analyzed by the processing means may be an image obtained by processing the photographed image, as well as directly using the photographed image by the photographing means. That is, this processing means acquires a photographed image from the photographing means, and uses the acquired photographed image as image data to be analyzed, or performs color processing on image data generated by performing image processing on the acquired photographed image. The change in brightness may be analyzed to inspect the appearance defect in the inspection object. Therefore, this processing means is accompanied by a CPU (Central Processing Unit), a memory, etc. for performing image processing as necessary, in order to perform numerical calculation, information processing, device control, etc. necessary for the analysis and judgment. Configured The image processing on the photographed image includes extraction processing of an arbitrary area from the photographed image, coupling processing of the photographed image, and correction processing such as lightness, saturation, and contrast.
当該処理手段は、複数ラインの画像データについて解析を行う。この複数ラインの画像データは、前記のように、CMOSイメージセンサの様に、任意の複数ラインで撮影できるイメージセンサを用いたカメラで撮影する事によって取得した複数ラインの画像データである他、CCDイメージセンサの様に、面状の画像を取得するイメージセンサを用いたカメラで撮影した面状の画像から切り出して抽出することにより取得した複数ラインの画像データであってよい。特に、処理手段が面状に撮影した画像を取得する場合には、当該面状の画像からの抽出処理は、当該処理手段で実行する事ができる。 The processing means analyzes image data of a plurality of lines. The image data of the plurality of lines is, as described above, image data of a plurality of lines acquired by photographing with a camera using an image sensor capable of photographing in an arbitrary plurality of lines like a CMOS image sensor Like the image sensor, image data of a plurality of lines acquired by extracting and extracting from a planar image captured by a camera using an image sensor for acquiring a planar image may be used. In particular, when the processing means acquires an image photographed in a planar shape, the extraction processing from the planar image can be executed by the processing means.
<処理手段が取得するラインの画像データについて>
前記処理手段が解析する複数ラインの画像データは、検査対象物に照射した光の強さが異なる領域からそれぞれ選択された複数ラインの画像データである。この「検査対象物に照射した光」とは、当該検査対象物で反射した光、又は当該検査対象物を透過した光のことであり、前記複数ラインの画像データは、当該反射光又は透過光の強さが異なる領域から夫々選択される。かかる「検査対象物に照射した光」の強さは、検査対象物に向かう光(検査対象物に照射する光)によっても測定する事ができ、これは検査対象物における光の照射側の輝度を計測するか、単一色の検査対象物の反射光又は透過光の輝度を計測する事によって特定する事ができる。
<About the image data of the line acquired by the processing means>
The image data of a plurality of lines analyzed by the processing means is image data of a plurality of lines respectively selected from regions having different intensities of light irradiated to the inspection object. The “light irradiated to the inspection object” is light reflected by the inspection object or light transmitted through the inspection object, and the image data of the plurality of lines is the reflected light or the transmitted light. Are selected from different regions. The intensity of the “light irradiated to the object to be inspected” can also be measured by light directed to the object to be inspected (light to be irradiated to the object to be inspected), which is the luminance on the light irradiation side of the object to be inspected Can be specified by measuring the brightness of the reflected light or transmitted light of the test object of a single color.
かかる検査対象物に照射した光は、光源を備えた照明手段が照射した光である他、自然光であって良い。自然光であっても、検査対象物に対する照射方向が特定されていれば、どの位置におけるライン状の画像データを取得するかによって、画像に出現する外観上の欠陥の種類が異なると考えられるためである。但し、本発明にかかる光学式外観検査装置は、光の照射位置及び輝度などの照射条件を一定に保つために、更に検査対象物に光を照射する照明手段を備える事が望ましい。その際、処理手段が解析する複数ラインの画像データは、照明手段が照射した光の強さが異なる領域から、夫々選択されるのが望ましい。 The light irradiated to the inspection object may be natural light as well as light irradiated by the illumination unit provided with the light source. Even if it is natural light, if the irradiation direction to the inspection object is specified, it is considered that the kind of appearance defect appearing in the image is different depending on which position the line-like image data is acquired. is there. However, it is desirable that the optical appearance inspection apparatus according to the present invention further include illumination means for irradiating the inspection object with light in order to keep the irradiation conditions such as the light irradiation position and the luminance constant. At that time, it is desirable that the image data of the plurality of lines analyzed by the processing means be respectively selected from regions having different intensities of light emitted by the illumination means.
上記照明手段は、検査対象物に対して光を照射する様々な照明を使用する事ができる。この照明手段が照射する光としては、可視光である他、赤外光、紫外光、X線などの不可視光であってよい。特に可視光を照射する照明手段の場合には、白色光である他、青色、緑色、赤色、黄色などの様に特定の波長域にピークを有する光を照射するものであっても良い。よって、前記撮影手段は、必ずしも可視光領域の光を撮影するものに限られず、不可視光領域の光を撮影できるものも含まれる。また、前記処理手段が複数ラインの画像データを解析する事を考慮すれば、当該照明手段は長尺な範囲に光を照射するライン照明である事が望ましい。そして、照明手段としてライン照明を使用した場合には、当該照明の延伸方向と前記解析に使用する複数ラインの画像データの延伸方向とは、相互に平行になるように設けられることが望ましく、更に、両者の延伸方向は検査対象物の走査方向に直交する向きであることが望ましい。 The illumination means can use various illuminations to illuminate the inspection object. The light emitted by the illumination means may be visible light or invisible light such as infrared light, ultraviolet light, and X-rays. In particular, in the case of illumination means for emitting visible light, in addition to white light, light having a peak in a specific wavelength range such as blue, green, red, yellow, etc. may be emitted. Therefore, the photographing means is not necessarily limited to one for photographing light in the visible light region, but includes one capable of photographing light in the invisible light region. Further, in consideration of analyzing the image data of a plurality of lines, it is preferable that the illumination means be line illumination for irradiating light in a long range. When line illumination is used as the illumination means, it is preferable that the extension direction of the illumination and the extension directions of the image data of the plurality of lines used for the analysis be provided parallel to each other. It is preferable that the two extending directions be orthogonal to the scanning direction of the inspection object.
また撮影手段が撮影する光は、照射した光が検査対象物を透過した光(透過光)であっても、検査対象物で反射した光(反射光)であっても良い。よって光が照射される検査対象物は、透明であっても不透明であっても良く、更に一部透明または一部不透明な物品であっても良い。検査対象物を撮影する際、一般的に検査対象物が透明である場合には、検査対象物に照射した光の透過光を撮影して外観上の欠陥を検査するのが望ましい。但し、当該透明な検査対象物が反射光を生じさせる場合には、この反射光を撮影して外観上の欠陥を検査する事もできる。一方で、検査対象物が不透明である場合には、専ら、検査対象物に照射した光の反射光を撮影する事により、外観上の欠陥を検査する事になる。 Further, the light to be photographed by the photographing means may be light (transmitted light) obtained by transmitting the irradiated light through the inspection object or light (reflected light) reflected by the inspection object. Therefore, the inspection object to which light is irradiated may be transparent or opaque, and may be a partially transparent or partially opaque article. When photographing an inspection object, generally, when the inspection object is transparent, it is desirable to photograph transmitted light of light irradiated to the inspection object to inspect a defect in appearance. However, in the case where the transparent inspection object causes reflected light, the reflected light can be photographed to inspect an appearance defect. On the other hand, when the inspection object is opaque, the appearance defect is inspected only by photographing the reflected light of the light irradiated to the inspection object.
上記の通り、本発明にかかる光学式外観検査装置が、前記照明手段を備えている場合には、処理手段で解析する複数ラインの画像データは、照明手段が照射した光の強さが異なる領域から選択されている事が望ましい。即ち、少なくとも、照明手段が光を照射している領域内、及び照明手段が光を照射している領域外等の様に、光の強さが異なる領域の夫々の領域から選択されている事が望ましい。これは、照明手段が光を照射している領域の内側か又は外側かによって、観察できる(又は観察しやすい)欠陥の種類が異なる為である。この為、照明手段において照射している領域の内側及び外側の領域から、解析する為の画像データを取得する事により、様々な種類の欠陥に応じて観察しやすい画像データを取得することができる。 As described above, when the optical appearance inspection apparatus according to the present invention includes the illumination unit, the image data of a plurality of lines analyzed by the processing unit is an area where the intensity of light emitted by the illumination unit differs. It is desirable to be selected from That is, at least the light intensity is selected from the respective regions of different light intensity, such as within the region where the illumination means is emitting light and outside the region where the illumination means is emitting light. Is desirable. This is because the types of defects that can be observed (or easily observed) differ depending on whether the illumination means is inside or outside the area where the light is illuminated. Therefore, by acquiring image data for analysis from areas inside and outside the area irradiated by the illumination means, it is possible to acquire image data that can be easily observed according to various types of defects. .
また、上記処理手段において解析する「複数ラインにおける画像データ」は、照射手段によって光を照射している領域内、照射手段によって光を照射している領域外の他、更に両者の境界領域も含めた三か所の内の何れか2つ以上の領域から選択されるのが望ましい。 Further, “image data in a plurality of lines” analyzed by the processing means includes the area within the area irradiated with light by the irradiation means, the area outside the area irradiated with light by the irradiation means, and the boundary area of both. It is desirable to select from any two or more areas among three places.
即ち、上記本発明にかかる光学式外観検査装置は、更に検査対象物に光を照射する照明手段を備えており、前記処理手段が解析する、複数ラインにおける画像データは、照明手段によって光が照射されている領域の中心部分である照射中心領域、照明手段によって光が照射されている領域の輪郭領域、及び当該輪郭領域の近傍であって照明手段による光が照射されていない非照射領域の少なくとも何れか2つ以上の領域内で選択されるように構成するのが望ましい。そして、当該複数ラインの画像データが、照射中心領域、輪郭領域及び非照射領域の夫々から選択されている事が特に望ましい。 That is, the optical appearance inspection apparatus according to the present invention further includes illumination means for irradiating the inspection object with light, and the image data in plural lines analyzed by the processing means is irradiated with light by the illumination means. At least at least a non-irradiated area in the vicinity of the contour area and not irradiated with light by the illumination means. It is desirable to be configured to be selected in any two or more regions. It is particularly desirable that the image data of the plurality of lines be selected from each of the irradiation center area, the outline area, and the non-irradiation area.
上記のように、解析する画像データを取得する領域を、前記照射中心領域、輪郭領域、及び非照射領域とすることにより、照明手段の照射領域との関係で、解析対象の画像データを取得する領域を特定する事ができる。したがって、照明手段における照射領域を特定できれば、処理手段が解析するラインの画像データの位置を特定する事ができる。かかる照明手段における照射領域の特定は、検査対象物ごとに都度、測定又は設定する事もできるが、形状及び大きさが同じ検査対象物を複数検査する場合には、最初に照明手段における照射領域を特定すれば、その後は、所定の位置(ライン)の画像データ使用することにより、複数の検査対象物を連続的に外観検査する事ができる。よってこの場合には、最初に、実際に検査する対象物において、どのラインで解析対象となる画像データを取得するのが良いのかを確認した上で、解析対象となる画像データの取得位置(ライン)を特定するのが望ましい。特に、輪郭領域および非照射領域において、どのラインの画像データを解析するのかを設定する場合には、実際に検査する検査対象物における欠陥(キズ、バリ又は歪みなどの凹凸欠陥、異物の付着や色の不均一などの色彩欠陥などの欠陥)が出現しやすい位置を実際に測定して特定するのが望ましい。そして、撮影手段がCMOSイメージセンサの様に、任意の複数ラインで撮影できるイメージセンサを用いたカメラである場合には、当該設定した複数ラインで画像データを取得するのが望ましい。 As described above, by setting the area for acquiring image data to be analyzed as the irradiation center area, the outline area, and the non-irradiation area, the image data of the analysis target is acquired in relation to the irradiation area of the illumination means. The area can be identified. Therefore, if the irradiation area in the illumination means can be specified, the position of the image data of the line to be analyzed by the processing means can be specified. The specification of the irradiation area in the illumination means can be measured or set every inspection object, but in the case of inspecting a plurality of inspection objects having the same shape and size, the irradiation area in the illumination means first After that, by using the image data of a predetermined position (line), the appearance inspection of a plurality of inspection objects can be continuously performed. Therefore, in this case, first of all, in the object to be actually inspected, it is confirmed on which line it is preferable to acquire the image data to be analyzed, and then the acquisition position of the image data to be analyzed (line It is desirable to identify). In particular, when setting which line of image data is to be analyzed in the contour area and the non-irradiated area, defects (concave defects such as scratches, burrs or distortion, adhesion of foreign matter, and foreign matter on the inspection object to be actually inspected) It is desirable to actually measure and specify a position where a defect such as a color non-uniformity or the like is likely to appear. When the photographing means is a camera using an image sensor capable of photographing in any plural lines like a CMOS image sensor, it is desirable to acquire image data in the set plural lines.
また、上記本発明にかかる光学式外観検査装置は、更に検査対象物に光を照射する照明手段を備えており、前記処理手段が解析する複数ラインにおける画像データは、検査対象物に照射している光の輝度が最も高い高輝度領域、当該輝度が急激に変化している輝度変化領域、及び当該輝度変化位置よりも低い輝度でその変化が安定している低輝度安定領域の少なくとも何れか2つ以上の領域内で選択するように構成する事も望ましい。そして、当該複数ラインの画像データが、高輝度領域、輝度変化領域及び低輝度安定領域の夫々から選択されている事が特に望ましい。 The optical appearance inspection apparatus according to the present invention further includes illumination means for irradiating the inspection object with light, and the image data in a plurality of lines analyzed by the processing means is applied to the inspection object. At least one of a high brightness area where the brightness of the light is the highest, a brightness change area where the brightness is rapidly changing, and a low brightness stable area where the change is stable at a brightness lower than the brightness change position. It is also desirable to configure to select within one or more regions. It is particularly desirable that the image data of the plurality of lines be selected from each of the high brightness area, the brightness change area, and the low brightness stable area.
上記のように、解析する画像データを取得する領域を、前記高輝度領域、輝度変化領域、及び低輝度安定領域とすることで、実際に照射した光の輝度を測定し、その測定データを基に、解析する画像データを取得する領域を特定する事ができる。かかる照射光の輝度の測定は、検査対象物ごとに都度、測定又は設定する事もできるが、同じ形状及び大きさの検査対象物を複数検査する場合には、最初に、照射輝度を測定して解析する画像データのライン位置を特定すれば、その後は、所定の位置(ライン)の画像データ使用することにより、複数の検査対象物を連続的に外観検査する事ができる。この場合においても、実際に検査する対象物において、どのラインで解析対象となる画像データを取得するのが良いのかを確認した上で、解析対象となる画像データの取得位置(ライン)を特定するのが望ましい。特に、輝度変化領域および低輝度安定領域において、どのラインの画像データを解析するのかを設定する場合には、実際に検査する検査対象物における欠陥(キズ、バリ又は歪みなどの凹凸欠陥、異物の付着や色の不均一などの色彩欠陥などの欠陥)が見えやすい位置を実際に測定して特定するのが望ましい。そして、撮影手段がCMOSイメージセンサの様に、任意の複数ラインで撮影できるイメージセンサを用いたカメラである場合には、当該設定した複数ラインで画像データを取得するのが望ましい。 As described above, by setting the area for acquiring the image data to be analyzed as the high brightness area, the brightness change area, and the low brightness stable area, the brightness of the light actually irradiated is measured, and the measured data is used. It is possible to specify an area for acquiring image data to be analyzed. The measurement of the brightness of the irradiation light can be measured or set for each inspection object, but when a plurality of inspection objects of the same shape and size are inspected, the irradiation brightness is first measured. Once the line position of the image data to be analyzed is specified, thereafter, by using the image data of a predetermined position (line), it is possible to continuously inspect the appearance of a plurality of inspection objects. Also in this case, in the target to be actually inspected, after confirming which line it is better to acquire the image data to be analyzed, the acquisition position (line) of the image data to be analyzed is specified. Is desirable. In particular, when setting which line of image data is to be analyzed in the luminance change region and the low luminance stable region, defects (concave defects such as flaws, burrs or distortion, foreign matter) on the inspection object to be actually inspected It is desirable to actually measure and identify a position where it is easy to see defects such as adhesion and color defects such as uneven color. When the photographing means is a camera using an image sensor capable of photographing in any plural lines like a CMOS image sensor, it is desirable to acquire image data in the set plural lines.
<処理手段での画像データの処理・検査について>
前記処理手段は、上記のように「光の強さが異なる領域」、「照射中心領域、輪郭領域、及び非照射領域」、又は「高輝度領域、輝度変化領域、及び低輝度安定領域」において、夫々複数ラインにおける画像データを取得し、必要に応じて画像処理を行って、解析・判断する事により、検査対象物に付着した異物や、検査対象物の外観に出現している変色等の欠陥、検査対象物の外面におけるなだらかな凹凸欠陥、及びキズ・バリ等の急峻な凹凸欠陥等、異なる種類の様々な欠損を検査する事ができる。この時、夫々の領域から選択される複数ラインにおける画像データは、夫々のラインにおいて幅を異ならせることができ、また複数ラインにおける画像データの何れか又は全てのライン幅を任意に調整する事もできる。
<About processing and inspection of image data by processing means>
The processing means is, as described above, in the “regions with different light intensities”, “irradiated central region, outline region, and non-irradiated region” or “high luminance region, luminance change region, and low luminance stable region” Obtain image data in multiple lines respectively, perform image processing as necessary, analyze and judge, foreign objects attached to the inspection object, discoloration etc. appearing in the appearance of the inspection object It is possible to inspect various types of defects such as defects, gentle uneven defects on the outer surface of the inspection object, and steep uneven defects such as flaws and burrs. At this time, the image data in a plurality of lines selected from each region can have different widths in each line, and any or all of the image data in a plurality of lines can be adjusted arbitrarily. it can.
即ち、処理手段は、撮影手段が撮影した撮影画像から、解析対象となる複数ラインにおける画像データを取得する。この画像データとしては、撮影手段がCMOSイメージセンサの様に、任意の複数ラインで撮影できるイメージセンサを用いたカメラである場合には、撮影手段を走査させることにより、複数ラインごと(照明手段で光を照射している領域との関係で相互に異なるライン)に、ライン状の画像(走査方向と交差する向きに延伸するライン状の画像)を複数取得し、これを各ラインごとに走査方向に結合して、検査対象物全体を映し出した面画像として展開したものを使用する事ができる。かかるライン状の画像を面画像に展開する処理は、撮影手段で行っても、処理手段で行っても良い。 That is, the processing means acquires image data in a plurality of lines to be analyzed from the photographed image photographed by the photographing means. As this image data, when the photographing unit is a camera using an image sensor capable of photographing in any plural lines like a CMOS image sensor, scanning of the photographing unit is performed every plural lines (the illumination unit A plurality of line-shaped images (line-shaped images extending in the direction intersecting the scanning direction) are acquired in different lines in relation to the area irradiated with light, and the scanning direction is obtained for each line. , And can be used as an expanded planar image of the entire inspection object. The process of developing such a line-shaped image into a plane image may be performed by a photographing unit or a processing unit.
一方、撮影手段がCCDイメージセンサの様に面状の画像を撮影するイメージセンサを用いたカメラである場合には、撮影手段から取得する撮影画像は、面状の画像となる。そこで処理手段は、撮影手段を走査させることにより取得した複数の撮影画像の夫々から、前記所定の領域をライン状の画像として夫々選択して抽出し、これを抽出したラインごとに、走査方向に繋げて、検査対象物全体をカバーするような面画像に展開し、これを解析対象の画像データとする事ができる。但し、この場合には、1回の撮影で取得した面状の画像から、照明手段で光を照射している領域との関係で任意に特定された複数の領域をライン状に抽出する処理が必要になる。 On the other hand, when the photographing means is a camera using an image sensor for photographing a planar image like a CCD image sensor, the photographed image obtained from the photographing means is a planar image. Then, the processing means selects and extracts each of the predetermined areas as a line-shaped image from each of the plurality of photographed images acquired by scanning the photographing means, and this is extracted in each scanning line in the scanning direction. By connecting them, they can be developed into planar images that cover the entire inspection object, and can be used as image data to be analyzed. However, in this case, processing of extracting a plurality of regions arbitrarily specified in relation to the region irradiated with light by the illumination unit from the planar image acquired in one shooting in a line It will be necessary.
そして処理手段では、上記の処理によって取得した画像データにおいて、色及び/又は明るさの変化を解析し、検査対象物における夫々の外観上の欠陥の有無を判断することができる。この画像データに対する色及び/又は明るさの変化の解析は、画素ごとに色や明るさを判断して周囲の画素との変化量を得る事で判断できる。 Then, the processing means can analyze changes in color and / or brightness in the image data acquired by the above-mentioned processing, and can judge the presence or absence of each appearance defect in the inspection object. The analysis of the change of the color and / or the brightness with respect to the image data can be made by judging the color and the brightness for each pixel and obtaining the amount of change with the surrounding pixels.
ここで、検査できる欠陥の種類は、その欠陥が外観から観察できるものであればすべて含む。即ち、検査対象物の表面における異物、変色、及び凹凸の欠陥の他、透過して外観から観察できる限りにおいて、検査対象物の内部に存在する異物や変色の欠陥も検査する事ができる。よって、製造原料である樹脂の炭化異物、未溶解などの変色した欠陥、樹脂成型時の溶解温度、射出圧力に起因するなだらかな凹凸欠陥、及び成型に使用する金型や取出し機に起因するキズ・バリ等の急峻な凹凸欠陥等の検査対象物の外観に出現する欠陥を検査する事ができる。 Here, the types of defects that can be inspected include all defects that can be observed from the appearance. That is, in addition to foreign matter, discoloration, and unevenness defects on the surface of the inspection object, foreign matter and discoloration defects existing inside the inspection object can also be inspected as long as they can be transmitted and observed from the appearance. Therefore, carbonized foreign matter of resin which is a manufacturing raw material, discolored defects such as undissolved, melting temperature at the time of resin molding, gentle uneven defects caused by injection pressure, and flaws caused by a mold or an ejector used for molding It is possible to inspect a defect appearing on the appearance of the inspection object such as a steep uneven defect such as a burr.
≪望ましい実施形態≫
上記のように、複数のライン毎に取得したライン状の画像を、各ラインごとに面画像に展開したものを画像データとして使用し、この画像データに基づいて、検査対象物における外観の欠陥を検査する場合には、前記撮影手段における撮影の為の走査は、検査時間を短縮する為に、1回で完了する事が望ましい。本発明においては、撮影手段を1回走査させるだけで、照明手段が光を照射している領域との関係で異なる位置(ライン)の画像データを取得できる事から、1回の走査で様々な種類の外観上の欠陥を検査する事ができる。
<< Preferred Embodiment >>
As described above, a linear image obtained for each of a plurality of lines is developed into a planar image for each line and used as image data. Based on this image data, defects in the appearance of the inspection object are detected. In the case of inspection, it is desirable that the scanning for imaging in the imaging means be completed at one time in order to shorten the inspection time. In the present invention, the image data of different positions (lines) can be obtained in relation to the area where the illumination means is emitting light only by scanning the imaging means once. It is possible to inspect kinds of appearance defects.
更に、本発明にかかる光学式外観検査装置では、装置自体の構成を簡易且つ小型化する為に、構成要素となる撮影手段は1つであることが望ましい。即ち、1つの撮影手段による撮影画像から、複数ラインにおける画像データを取得するのが望ましい。但し、2つ以上の撮影手段を用いて構成する事もできる。2つ以上の撮影手段を用いる場合には、夫々の撮影手段が撮影する領域を異ならせることができる。具体的には、撮影手段の走査方向に直行する向きの長さ(撮影領域の幅方向長さ)が長い場合には、その長さ方向に複数の撮影手段を並べることができる。この場合、夫々の撮影手段が撮影する領域を検査対象物の長さ方向に異なることになる。また、何れかの撮影手段が、検査に必要となる複数ラインにおける画像データの内の幾つかを撮影し、他の撮影手段で、その他のラインにおける画像データを撮影する事もできる。 Furthermore, in the optical appearance inspection apparatus according to the present invention, in order to simplify and miniaturize the configuration of the apparatus itself, it is desirable that there is only one imaging means as a component. That is, it is desirable to acquire image data in a plurality of lines from a photographed image by one photographing means. However, it can also be configured using two or more photographing means. In the case of using two or more photographing means, it is possible to make the area photographed by each photographing means different. Specifically, when the length in the direction orthogonal to the scanning direction of the imaging means (the length in the width direction of the imaging area) is long, a plurality of imaging means can be arranged in the length direction. In this case, the areas photographed by the respective photographing means are different in the longitudinal direction of the inspection object. Also, any of the imaging means may capture some of the image data in a plurality of lines necessary for the examination, and another imaging means may capture the image data in the other line.
また、本実施の形態において、上記撮影手段は、検査対象物に照射した光の強さが異なる領域ごとに最適な画像データを合成するように構成されている事が望ましい。かかる撮影手段は、複数のフォトダイオードからなるフォトダイオード列を、平行に複数配列してなる光学素子を具えた撮影手段であって、任意の2か所以上において、複数のフォトダイオード列での撮影を実現することのできるようにした撮影手段、換言すれば撮影領域の2か所以上、望ましくは3か所においてROI(Reagion Of Interest)を設定できるようにした撮影手段により実現する事ができる。 Further, in the present embodiment, it is desirable that the photographing means be configured to synthesize optimum image data for each region where the intensity of light irradiated to the inspection object is different. Such an imaging means is an imaging means provided with an optical element in which a plurality of photodiode rows made up of a plurality of photodiodes are arranged in parallel, and imaging with a plurality of photodiode rows is made at any two or more places. In other words, imaging means capable of setting ROI (Reagion Of Interest) in two or more places, preferably three places in the imaging region can be realized.
よって、かかる撮影手段は、走査しながら検査対象物を撮影した画像から外観上の欠陥の有無を判断する光学式外観検査装置に使用する撮影手段であって、検査対象物の走査方向に並んだ複数のラインで撮影する撮影部と、撮影部が撮影した複数のラインの夫々について、走査方向に直交する向きの領域ごとに色及び/又は明るさを比較した上で、この比較に基づいて特定のラインの領域を抽出し、これを組み合わせて1ラインの画像データを合成する画像処理部とからなる光学式外観検査装置用の撮影手段とすることができる。 Therefore, such an imaging means is an imaging means used for an optical appearance inspection apparatus that determines the presence or absence of an appearance defect from an image obtained by imaging an inspection object while scanning, and is arranged in the scanning direction of the inspection object The color and / or brightness of each of the shooting units shooting with a plurality of lines and the plurality of lines shot by the shooting unit are compared based on each region in the direction orthogonal to the scanning direction, and the identification is performed based on this comparison It is possible to obtain a photographing means for an optical appearance inspection apparatus comprising an image processing unit which extracts the line area of and combines these to combine image data of one line.
上記撮影手段における撮像部は、CMOSイメージセンサやCCDイメージセンサ等の撮像素子を用いて構成する事ができ、更に検査対象物からの入射光を集光・結像するレンズなどの光学部品を伴って構成する事ができる。かかる撮像素子に関し、CMOSイメージセンサであれば、フォトダイオード列ごとの画像を取得することから、走査方向に直交する向きに並んだ領域ごとの色及び/又は明るさの比較処理を高速で実行する事ができる。一方で、CMOSイメージセンサを使用した場合には、撮影した画像データから、走査方向に直交する向きに並んだ領域ごとに画像データを切り出す処理等を実行することが必要になる。 The imaging unit in the imaging unit can be configured using an imaging element such as a CMOS image sensor or a CCD image sensor, and further includes an optical component such as a lens for condensing and imaging incident light from the inspection object. Can be configured. With regard to such an imaging element, in the case of a CMOS image sensor, since an image for each photodiode row is acquired, color and / or brightness comparison processing for each region aligned in the direction orthogonal to the scanning direction is performed at high speed I can do things. On the other hand, when a CMOS image sensor is used, it is necessary to execute processing such as cutting out image data for each area aligned in a direction orthogonal to the scanning direction from photographed image data.
また、上記撮影手段における画像処理部は、画像処理を行う処理装置を用いて構成する事ができる。この処理装置は前記撮像部と同じ筐体内に設けても良い他、当該撮像物とは別の筐体又は装置に設けて、前記撮像部から取得した画像を処理するように構成する事もできる。即ち、かかる撮影手段は、撮像部と画像処理部とを一体化したモジュールとして具体化できる他、両者が別々に設けられて相互に連携処理を実現するように構成しても良い。よって、撮像部としてデジタルカメラを使用し、画像処理部としてコンピュータを使用しても良い。 In addition, the image processing unit in the photographing unit can be configured using a processing device that performs image processing. The processing device may be provided in the same case as the imaging unit, or may be provided in a case or device other than the imaging object to process an image acquired from the imaging unit. . That is, such an imaging unit can be embodied as a module in which an imaging unit and an image processing unit are integrated, or both may be separately provided to realize mutual cooperation processing. Therefore, a digital camera may be used as an imaging unit, and a computer may be used as an image processing unit.
上記の撮影手段では、走査方向に対して交差する向きに配列したフォトダイオード列を、走査方向に隣合せて複数列設け、一回の撮影で取得した複数のフォトダイオード列における、走査方向に並んだフォトダイオード同士の明るさ及び/又は色合いを比較して、予め設定した条件で任意のフォトダイオードの画像を抽出乃至は演算することができる。そして抽出乃至は演算した画像同士を繋ぎ合わせる事により、当該撮影箇所についての1ラインの画像データを合成する事ができる。このようにして検査に使用する1ラインの画像データを生成する事により、検査の精度を向上させ、またデータ量を減じる事によって検査スピードを速める事ができる。 In the above imaging means, a plurality of photodiode rows arranged in a direction crossing the scanning direction are provided adjacent to each other in the scanning direction, and are arranged in the scanning direction in a plurality of photodiode rows acquired in one shooting. The brightness and / or color tone of the photodiodes can be compared, and an image of any photodiode can be extracted or calculated under preset conditions. Then, by connecting the extracted or calculated images together, it is possible to combine image data of one line for the imaging location. By thus generating one line of image data to be used for inspection, the accuracy of inspection can be improved, and by reducing the amount of data, the inspection speed can be increased.
また、走査方向に並んだフォトダイオードの画像(画素単位の画像)を抽出乃至は演算する条件としては、以下に詳述する「処理無しモード」、「最大輝度モード」、「最小輝度モード」、「平均輝度モード」、「中間輝度モード」等から選択するように構成する事ができる。 Further, as a condition for extracting or calculating the image of the photodiode (pixel-based image) arranged in the scanning direction, the “processing non-operation mode”, the “maximum luminance mode”, and the “minimum luminance mode” will be described in detail below. It can be configured to select from "average brightness mode", "intermediate brightness mode" and the like.
「処理無しモード」は、走査方向に並んだ画素を、そのまま取得するモードであり、モノクロ画像として取得する事ができる。
「最大輝度モード」は、走査方向に交差する向きで並んでいる画素列同士において、走査方向に並んだ画素同士で輝度が最大となる画素を抽出して、これを1ラインに合成した画像データを取得するモードである。このモードでは、明欠陥を対象とした最高輝度値で検査に使用する1ラインの画像データを生成する事ができる。
「最小輝度モード」は、前記走査方向に並んだ画素同士で輝度が最小となる画素を抽出して、これを1ラインに合成した画像データを取得するモードである。このモードでは、暗欠陥を対象とした最低輝度値で検査に使用する1ラインの画像データを生成する事ができる。
「平均輝度モード」は、走査方向に交差する向きで並んでいる画素列同士において、走査方向に並んだ画素同士の輝度の平均値を算出し、これを1ラインに合成した画像データを取得するモードである。このモードは各画素における輝度の平均を算出している事から、おおよそソフトフィルターを介したような処理画像を検査用の画像データとして取得する事ができる。
The "processing non-processing mode" is a mode in which pixels aligned in the scanning direction are acquired as they are, and can be acquired as a monochrome image.
“Maximum luminance mode” is image data in which pixels having the largest luminance among pixels arranged in the scanning direction are extracted from pixel columns arranged in the direction crossing the scanning direction and synthesized into one line. Is the mode to get In this mode, it is possible to generate one line of image data to be used for inspection at the maximum luminance value for bright defects.
The “minimum luminance mode” is a mode in which pixels having the minimum luminance are extracted between the pixels arranged in the scanning direction, and image data obtained by combining the pixels into one line is acquired. In this mode, it is possible to generate one line of image data to be used for inspection with the lowest luminance value for dark defects.
In the "average luminance mode", an average value of the luminances of pixels lined up in the scanning direction is calculated in pixel columns aligned in the direction crossing the scanning direction, and image data obtained by combining the calculated values into one line is acquired It is a mode. In this mode, since the average of the luminance at each pixel is calculated, it is possible to acquire a processed image roughly through a soft filter as image data for inspection.
「中間輝度モード」前記走査方向に並んだ画素同士で輝度が中間になる画素を抽出して、これを1ラインに合成した画像データを取得するモードである。このモードでは、輝度が平均の画素を取得するので、スパイクノイズを除去した画像データを取得する事ができる。特に「平均輝度モード」では画像がぼやける場合であっても、鮮明な画像データを取得する事ができる。 [Intermediate luminance mode] In this mode, pixels in which the luminance is intermediate between pixels arranged in the scanning direction are extracted, and image data obtained by synthesizing the pixels into one line is acquired. In this mode, since pixels with average brightness are acquired, it is possible to acquire image data from which spike noise has been removed. Particularly in the "average luminance mode", clear image data can be acquired even when the image is blurred.
また、撮影手段は、前記検査対象物に照射した光の強さが異なる領域(即ち、「パーシャルスキャン領域」)ごとに、上記のモードを設定する事ができるように形成する事が望ましい。各パーシャルスキャン領域において、検査に必要な画像データをより鮮明に取得する為である。また、当該撮影手段は、前記パーシャルスキャン領域ごとに、オフセット値及び/又はゲイン値を異ならせる画像調整手段を備える事が望ましい。前記検査対象物に照射した光の強さが異なる領域は、検査対象物の表面に出現する欠陥の種類に応じて撮影に必要な明るさ等が異なることから、各領域ごとにオフセット値及び/又はゲイン値を異ならせる画像調整手段を設ける事で、各領域で要求される最適な画像データを取得する事ができる。デジタルゲインやオフセットを調整することにより、検査対象物の色や透過度、或いは照射する光の強さ(輝度)に応じて最適な画像を取得することができる。 Further, it is desirable that the photographing means be formed so that the above-mentioned mode can be set for each area where the intensity of light irradiated to the inspection object is different (that is, "partial scan area"). This is to obtain image data required for inspection more clearly in each partial scan area. In addition, it is desirable that the imaging unit be provided with an image adjusting unit that makes the offset value and / or the gain value different for each partial scan area. The areas where the intensity of light irradiated to the inspection object is different are different from each other because the brightness etc. required for imaging differ according to the type of defect appearing on the surface of the inspection object. Alternatively, by providing image adjustment means for making the gain values different, it is possible to obtain optimal image data required for each area. By adjusting the digital gain and the offset, it is possible to obtain an optimal image according to the color and the degree of transmission of the inspection object or the intensity (luminance) of the light to be irradiated.
≪光学式外観検査システムについて≫
また、本発明にかかる光学式外観検査装置では、更に検査対象物を搬送する為の構成などを伴う事で、光学式外観検査システムとする事ができる。即ち、前記本発明にかかる光学式外観検査装置を用いて構成された光学式外観検査システムであって、更に、検査対象物を載せ置いて此れを搬送する検査対象物移動手段と、当該検査対象移動手段による検査対象物の移動速度又は移動距離を検出する移送検出手段とを備えており、前記処理手段が取得した撮影画像は、移送検出手段から取得した移動速度又は移動量に基づいて算出した撮影位置と関連付けて取得するように構成した光学式外観検査システムとする事ができる。
«About the optical appearance inspection system»
In addition, the optical appearance inspection apparatus according to the present invention can be configured as an optical appearance inspection system by further including a configuration for transporting an inspection object. That is, in the optical appearance inspection system configured using the optical appearance inspection apparatus according to the present invention, the inspection object moving means which further mounts the inspection object and conveys it, and the inspection The movement detection means for detecting the movement speed or movement distance of the inspection object by the object movement means, and the photographed image acquired by the processing means is calculated based on the movement speed or movement amount acquired from the movement detection means The optical appearance inspection system can be configured to acquire in association with the photographed position.
かかる検査対象移送手段としては、コンベアーやマニピュレーター等を挙げる事ができる。また移送検出手段としては、ロータリーエンコーダやリニアエンコーダなどを挙げる事ができる。そして光学式外観検査装置を構成する撮影手段は、移送検出手段から取得した移動速度又は移動距離に起因する信号を取得したタイミングで画像を撮影する事で、この撮影画像における各ラインの画像(ライン状の画像)を撮影位置に関連付けることができる。その結果、検査対象物移動手段における検査対象物の移動速度の変動による撮像分解能のばらつきを抑制すると共に、取得した複数のライン状の画像から面画像を展開する際に、その位置補正が可能となる。 A conveyor, a manipulator, etc. can be mentioned as this inspection object transport means. Moreover, a rotary encoder, a linear encoder, etc. can be mentioned as a transfer detection means. Then, the imaging unit constituting the optical appearance inspection apparatus captures an image at the timing at which the signal derived from the moving speed or the moving distance acquired from the transfer detecting unit is acquired, and the image of each line in the photographed image (line Image can be associated with the imaging position. As a result, it is possible to suppress the variation in imaging resolution due to the fluctuation of the moving speed of the inspection object in the inspection object moving means, and to correct the position when developing a plane image from a plurality of acquired line images Become.
そして上記光学式外観検査システムにおいて、前記検査対象物移動手段は、載置した状態で搬送する検査対象物を吸引するか又は当該検査対象物を押し当てる保持手段を備えることができる。検査対象物が板状又はシート状である場合に、撮影手段との距離を一定に保つためである。かかる保持手段は、検査対象物に対してダウンフローのエアーを吹き付けて、当該検査対象物を検査対象物移動手段に押し付ける構成、又は検査対象物移動手段において検査対象物を載置している面に微細な開口を設けて、当該開口から検査対象物の載置面を吸引する構成として具体化できる。かかる保持手段は、少なくとも撮影手段による撮影時に、検査対象物を検査対象物移動手段に密着させておけば足りる。 In the above-described optical appearance inspection system, the inspection object moving means may include holding means for suctioning the inspection object to be transported in a placed state or pressing the inspection object. This is in order to keep the distance to the imaging means constant when the inspection object is plate-like or sheet-like. The holding means blows downflow air against the inspection object to press the inspection object against the inspection object moving means, or the surface on which the inspection object is placed in the inspection object moving means Can be embodied as a configuration in which a minute opening is provided and the mounting surface of the inspection object is sucked from the opening. Such holding means is sufficient if the inspection object is in close contact with the inspection object moving means at least at the time of photographing by the photographing means.
また、本発明にかかる光学式外観検査システムでは、更に、検査対象物の厚みも検査できるように構成する事ができる。即ち、前記検査対象物移動手段における検査対象物の移動経路上には、更に、前記検査対象物の厚みを計測するための厚み計測手段を設けることができる。そして前記処理装置は、この当該厚み計測手段の計測値に基づいて、厚みの不良を検出するように構成するのが望ましい。 Further, in the optical appearance inspection system according to the present invention, the thickness of the object to be inspected can also be inspected. That is, thickness measuring means for measuring the thickness of the inspection object can be further provided on the movement path of the inspection object in the inspection object moving means. Preferably, the processing apparatus is configured to detect a defect in thickness based on the measurement value of the thickness measuring means.
かかる厚み計測手段としては、反射型のレーザー変位計を用いることができ、当該厚み計測手段の計測結果から、検査対象物における厚みの不良を検査する事ができる。また、この厚み計測手段の計測結果から、検査対象物の厚みを取得し、これに基づいて処理手段が解析する画像データのラインの位置(撮影手段における取得位置)を調整することもできる。 As this thickness measurement means, a reflection type laser displacement meter can be used, and defects in the thickness of the inspection object can be inspected from the measurement results of the thickness measurement means. In addition, the thickness of the inspection object can be obtained from the measurement result of the thickness measurement means, and the position of the line of the image data analyzed by the processing means (acquisition position in the photographing means) can be adjusted based on this.
なお、上記処理手段は、本発明の光学式外観検査装置を構成する各機器の動作などを制御する事もでき、例えば撮影手段の位置、照明手段の位置や明るさ、検査手段が解析する複数ラインにおける画像データの取得位置等を制御する事もできる。また、この処理手段は、取得又は加工した画像に基づいて、外観における欠陥の有無を判断する事ができる。かかる判断に際しては、画像における色調、明度、輝度等の違いが有る領域を特定し、更に当該領域の大きさを画素数などから特定することにより判断する事ができる。その結果、当該処理手段における判断結果に基づいて、外観上の欠陥を有する検査対象物を自動的に特定する事ができる。 The processing means can also control the operation of each device constituting the optical appearance inspection apparatus of the present invention, and, for example, the position of the photographing means, the position and brightness of the illumination means, and the plurality analyzed by the inspection means. The acquisition position of the image data in the line can also be controlled. Further, this processing means can determine the presence or absence of a defect in the appearance based on the acquired or processed image. In this determination, it is possible to identify an area having a difference in color tone, lightness, brightness and the like in the image, and further to determine the size of the area from the number of pixels and the like. As a result, it is possible to automatically specify an inspection object having an appearance defect based on the judgment result of the processing means.
そして、本発明にかかる光学式外観検査装置、及びこれを用いた光学式外観検査システムで外観を検査する事の出来る検査対象物は、特に制限されるものではなく、農作物や水産物、或いはこれらの加工品などの食品や、樹脂板、ガラス板、金属板、電子部品・製品、光学部品・製品などの各種工業製品であってよい。但し、当該検査対象物は、外観において凹凸の少ない形状であることが望ましく、例えば板状体、筒体において、より正確に外観の欠陥を検査する事ができる。また、検査対象物は透明であっても不透明であっても良い。 And the inspection object which can inspect the appearance with the optical appearance inspection apparatus according to the present invention and the optical appearance inspection system using the same is not particularly limited, and agricultural products, aquatic products, or the like thereof It may be food products such as processed products, and various industrial products such as resin plates, glass plates, metal plates, electronic parts / products, optical parts / products and the like. However, it is desirable that the object to be inspected has a shape with less unevenness in appearance. For example, in a plate-like body or a cylinder, defects in the appearance can be inspected more accurately. Also, the inspection object may be transparent or opaque.
上記本発明にかかる光学式外観検査装置によれば、1つの撮影手段で、同時に、複数ラインにおける画像データを取得する事ができる為、使用する撮影手段の台数を少なくし、また当該撮影手段の設置台数を少なくすることができ、よって装置自体を小型化した光学式外観検査装置、及びこれを用いた光学式外観検査システムを提供する事ができる。 According to the above-described optical appearance inspection apparatus according to the present invention, image data in a plurality of lines can be acquired simultaneously by one imaging means, so the number of imaging means to be used can be reduced, and It is possible to reduce the number of installed devices, and thus to provide an optical appearance inspection apparatus in which the apparatus itself is miniaturized and an optical appearance inspection system using the same.
また、外観検査を行うに際して必要となる複数の画像データを取得する際には、撮影手段や照明手段を移動させる必要はない事から、これらの光学機器を移動させるなどの動作時間を要せずして、様々な種類の検査を短時間で行う事ができる光学式外観検査装置、及びこれを用いた光学式外観検査システムが実現する。特に撮影手段として、CMOSイメージセンサの様に、任意のラインで撮影できるイメージセンサを用いたカメラを使用した場合には、画像処理速度が高まる事から、検査時間を一層短縮化できる。 In addition, when acquiring a plurality of image data necessary for the appearance inspection, it is not necessary to move the photographing means and the illumination means, and therefore, it is not necessary to operate the optical devices. Thus, an optical appearance inspection apparatus capable of performing various types of inspections in a short time and an optical appearance inspection system using the same are realized. In particular, when a camera using an image sensor capable of photographing at an arbitrary line, such as a CMOS image sensor, is used as a photographing means, the inspection time can be further shortened because the image processing speed is increased.
また、検査対象物の大きさ、高さ又は厚さは様々である所、本発明にかかる光学式外観検査装置では、解析する画像データを取得するラインを選択するだけで、都度、撮影手段や照明手段の設置位置や角度の調整を不要とする事ができる。よって、大きさ、高さ又は厚さが異なる検査対象物を検査する場合であっても、従来は面倒であったカメラ、照明、又は検査対象物の高さや角度の変更の必要性を無くして検査対象物の外観を検査することのできる光学式外観検査装置、及びこれを用いた光学式外観検査システムが実現する。 In addition, where the size, height or thickness of the inspection object is various, in the optical appearance inspection apparatus according to the present invention, it is necessary to select the line for acquiring the image data to be analyzed. It is not necessary to adjust the installation position and angle of the illumination means. Therefore, even when inspecting inspection objects having different sizes, heights, or thicknesses, it is not necessary to change the height or angle of the camera, the illumination, or the inspection object, which has conventionally been troublesome. An optical appearance inspection apparatus capable of inspecting the appearance of an inspection object and an optical appearance inspection system using the same are realized.
そして本発明にかかる光学式外観検査装置では、撮影手段における1回の走査で、外観検査に必要な複数の画像を取得できることから、検査対象物の外観に出現する様々な種類の欠陥を、1回の撮影で検査する事ができるようにした光学式外観検査装置、及びこれを用いた光学式外観検査システムが実現する。 In the optical appearance inspection apparatus according to the present invention, since a plurality of images necessary for the appearance inspection can be obtained by one scanning by the photographing means, various types of defects appearing in the appearance of the inspection object can be obtained. An optical appearance inspection apparatus capable of performing inspection in one shot and an optical appearance inspection system using the same are realized.
以下、本発明にかかる光学式外観検査装置の幾つかの実施の形態について、図面を参照しながら説明する。特に、以下の実施の形態では、工業製品(部品を含む)の外観を検査する為の光学式外観検査装置50として具体的に示すが、検査対象物Wはこれらに限らず、様々なものを対象とする事ができる。
Hereinafter, several embodiments of the optical appearance inspection apparatus according to the present invention will be described with reference to the drawings. In particular, in the following embodiment, although it shows concretely as optical
図1は、本実施の形態にかかる光学式外観検査装置50を用いて構成した光学式外観検査システム60を示す全体構成図である。特に本実施の形態では、検査対象物Wとして、板状であって且つ透明に形成されているものを検査するように構成しており、その一例として、導光板を検査するのに適した構成としている。
FIG. 1 is an overall configuration diagram showing an optical
図1に示す様に、この実施の形態に示す光学式外観検査システム60は、検査対象物Wである導光板を受け取る受領ステーション10と、前記光学式外観検査装置50が設置されて検査対象物Wの外観を検査する外観検査ステーション20と、検査対象物Wの厚みを検査する厚み検査ステーション30と、検査が完了した検査対象物Wを送り出す搬出ステーション40により構成している。
As shown in FIG. 1, in the optical
上記受領ステーション10では、この光学式外観検査システム60での検査対象物Wとなるワークを受領する。本実施の形態では、検査対象物Wが薄板状の導光板であることから、反りや浮き等が生じやすく、よってこの反りや浮き等が、その後に続く外観検査ステーション20及び厚み検査ステーション30における検査に悪影響を与える事の無いように、検査対象物Wは、保持手段(図示せず)によって、検査対象物移動手段11に密着されていることが望ましい。かかる保持手段は、検査対象物Wを検査対象物移動手段側に吸引する構造、又は検査対象物Wに対して上方からエアーを吹き付けて検査対象物移動手段11に押し当てる構成として実現する事ができる。そして、当該受領ステーション10で受け渡された検査対象物Wは、保持手段で保持された状態で、その後に続く外観検査ステーション20、厚み検査ステーション30を水平移動し、搬出ステーション40に到達する。なお、この保持手段は、外観検査ステーション20及び厚み検査ステーション30など、実際に検査を行う領域、更には検査を行っている時だけ、検査対象物Wを保持するように構成する事もできる。
At the receiving
また検査対象物Wを各ステーションに移送する為の検査対象物移動手段11として、各種のコンベアー等を使用する事ができる。特に、本実施の形態における検査対象物Wは透明であり、使用している照明手段52は透過照明であることから、検査対象物Wを搬送する検査対象物移動手段11は、後述する外観検査ステーション20に設けられる撮影手段51と照明手段52との間を通過するように設けられている。
In addition, various conveyors and the like can be used as the inspection object moving means 11 for transferring the inspection object W to each station. In particular, since the inspection object W in the present embodiment is transparent and the illumination means 52 used is transmission illumination, the inspection object moving means 11 for conveying the inspection object W is an appearance inspection to be described later. It is provided to pass between the imaging means 51 provided in the
また、前記の通り検査対象物Wが透明であって、撮影手段51は、検査対象物Wを透過した透過光を撮影するように構成されていることから、前記検査対象物移動手段11及び検査対象物Wの保持手段は、撮影手段51と照明手段52との間を遮る事の無いように構成する事が望ましい。透明に形成されている検査対象物Wの全体を撮像可能なようにする為である。具体的には、前記検査対象物移動手段11は、撮影に影響を与えないように透明な材料で形成するか、又は検査対象物Wの側面等、撮影に影響を与えない場所を保持して搬送するように構成することができ、また検査対象物Wの保持機構は、撮影に影響を与えないように透明な材料で形成するか、又はエアーの流れによって検査対象物Wを保持するように構成することができる。
Further, as described above, the inspection object W is transparent, and the photographing
前記外観検査ステーション20では、検査対象物Wにおける外観の検査を行う。この外観検査ステーション20に設置される光学式外観検査装置50は、検査対象物Wを透過するように光を照射する照明手段52としての透過照明と、照明手段52で光を照射した検査対象物Wを撮影する撮影手段51としてのCMOSイメージセンサを用いたカメラと、撮影手段51が撮影した撮影画像を取得して、光の強さが異なる複数ラインの画像データに基づいて検査対象物Wにおける外観上の欠陥の有無を判断する処理手段53としての制御装置とを主要な構成要素として構成している。
The
特に本実施の形態における検査対象物Wは透明な製品であり、使用している照明手段52は透過照明であることから、撮影手段51は、照明手段52と対向するように設けられており、望ましくは、当該撮影手段51は、その撮影方向が、前記照明手段52の照射方向と正対するように設けられる。
In particular, since the inspection object W in the present embodiment is a transparent product and the illumination means 52 used is transmission illumination, the photographing
前記照明手段52として使用している透過照明は、検査対象物Wに光を照射する事により、その欠陥を強調することができる。かかる照明手段52は、長時間・長期間での運用でも安定した照射性能を確保する為に、LEDを光源とすることが望ましく、複数ラインの画像データに基づいて外観上の欠陥を判断する事から、ライン照明を使用する事が望ましい。また、この照明手段52は、検査対象物Wの材質や色などに応じて、照射した光の波長を任意に調整しても良い。検査対象物Wが赤色であれば赤色波長領域の光を照射し、検査対象物Wが緑色であれば緑色波長領域の光を照射することができる。また検査対象物Wが金属などの様に反射率が高い材料で形成されている場合や、透明な材料で形成されている場合には、青色波長領域の光を照射するのが望ましい。青色波長領域の光は、波長が短く、反射光や透過光が散乱しやすいためである。 The transmitted illumination used as the illumination means 52 can emphasize the defect by irradiating the inspection object W with light. The illumination means 52 preferably uses an LED as a light source in order to ensure stable irradiation performance even in long-term and long-term operation, and a defect in appearance is judged based on image data of a plurality of lines. Therefore, it is desirable to use line lighting. In addition, the illumination means 52 may adjust the wavelength of the irradiated light arbitrarily in accordance with the material, color and the like of the inspection object W. When the inspection object W is red, light in the red wavelength region can be irradiated, and when the inspection object W is green, light in the green wavelength region can be irradiated. When the inspection object W is formed of a material having a high reflectance such as metal or is formed of a transparent material, it is desirable to irradiate light in the blue wavelength range. This is because light in the blue wavelength range has a short wavelength and reflected light and transmitted light are easily scattered.
かかる照明手段52は、検査対象物移動手段11によって搬送される検査対象物Wを明確に照らすために、搬送手段の近傍に設置するのが望ましい。但し、当該照明手段52が照射している領域の輪郭の幅を調整する為、或いは照射している領域の輝度を調整する為に、当該照明手段52は、前記検査対象物移動手段11との間隔を任意に調整できるように設置しても良い。
In order to clearly illuminate the inspection object W conveyed by the inspection
また、撮影手段51として使用しているカメラは、撮像素子としてCMOSイメージセンサを備えており、フォトダイオードが縦横方向に複数配置された面状の撮像素子を備えている。例えば横方向(走査方向に対する幅方向)2048画素、縦方向(走査方向)2048画素の撮像素子を使用する事ができる。このようなイメージセンサを備えた撮影手段51において、横方向の視野を200mmとした場合には、縦方向の視野も200mmとなることから、この縦方向の視野内で、撮影に使用するフォトダイオード列を複数指定すれば、当該撮影手段51を走査させることにより、複数ラインにおける画像データを取得する事ができる。また、この縦方向の視野内において、撮影に使用するフォトダイオード列の位置(ライン)を変更すれば、あたかも複数のラインセンサを使用しているように動作させることができ、また画角の開き角度によって角度を変更しているような動作を行う事ができる。
The camera used as the
そして、処理手段53として使用されている制御装置は、撮影手段51が撮影した撮影画像を取得し、複数ラインの画像データをそれぞれ解析して、外観における欠陥の有無を判断する。この解析に使用する画像データは、撮影手段51が撮影した撮影画像をそのまま使用する他、当該撮影画像を複数ラインごとに繋ぎ合わせて面画像に展開したものであって良い。よってこの処理手段53は、画像データを解析すると共に、必要に応じて画像処理を行う為に必要な数値計算や情報処理を行う為のCPU(Central Processing Unit)及びメモリ等を伴って構成される。かかる処理装置としては、コンピュータを使用する事ができるが、画像処理及び外観上の欠陥を解析・判断する為に必要な数値計算や情報処理を行う為に設計された装置であっても良い。そしてこの処理手段53は、前記撮像素子において、撮影手段51の走査方向に並んだフォトダイオード列の何れの列で撮影するかについても制御することができる。
Then, the control device used as the processing means 53 acquires the photographed image photographed by the photographing
また、撮影手段51から取得した撮影画像を、検査対象物Wの撮影位置と相関させる為に、前記検査対象物移動手段11による検査対象物Wの水平移動距離や移動速度を検出する移送検出手段54を設けるのが望ましい。かかる移送検出手段54としては、ロータリーエンコーダやリニアエンコーダ等を使用する事ができる。そしてこの移送検出手段54は、検査対象物Wの搬送経路における何れかの場所に設置する事ができ、望ましくは検査対象物Wの水平移動距離や速度を正確に計測する為に、当該外観検査ステーション20に設置し、特に望ましくは撮影手段51における撮影領域の近傍に設置する。そして、この移送検出手段54による検出信号を処理手段53に送ることにより、検査対象物移動手段11による検査対象物Wの移動速度の変動による撮像分解能のばらつきを抑制すると共に、撮影手段51においてライン状に取得した画像を、解析に使用する画像データ(面画像)に展開する際に、その位置補正を可能とすることができる。
In addition, in order to correlate the photographed image acquired from the photographing
そして厚み検査ステーション30では、検査対象物Wにおける厚みが既定の範囲内か否かを検査する。即ち、この厚み検査ステーション30には、検査対象物移動手段11によって搬送されてきた検査対象物Wの厚みを、反射型のレーザー変位計からなる厚み検出手段31で計測する。この計測結果は、前記処理手段53に送られ、当該処理手段53において検査対象物Wの厚みの不良を検出する事ができる。
And in
なお、図1に示した光学式外観検査システム60は、特に検査対象物Wが透明であって、透過照明により撮影画像を取得するように構成している。即ち、照明手段52は、検査対象物Wを挟んで反対側に設けている。この点、仮に検査対象物Wが透明でない場合には、透過照明によって画像データを取得する事は出来ない。よって、検査対象物Wが不透明な場合には、後述する図4に示す様に、反射照明を使用し、撮影手段51は検査対象部に照射した光の反射光を撮影する事により、前記の画像データを取得する事ができる。その際、照明手段52は、撮影手段51による撮影方向から検査対象物Wに対して光を照射する事が望ましく、特に検査対象物Wの鉛直上方から光を照射するのが望ましい。
The optical
次に、図2を参照しながら、前記外観検査ステーション20における光学式外観検査装置50での処理内容を説明する。図2(A)は外観検査ステーション20を示す斜視図であり、図2(B)は検査対象物Wに対する光の照射具合と読み取り位置を示す要部拡大平面図であり、図2(C)は処理装置において解析する為の画像データを示す平面図である。
Next, the processing contents of the optical
先ず、この外観検査ステーション20では、検査対象物Wは、コンベアー等の検査対象物移動手段11によって搬送されており、当該検査対象物移動手段11の下方には照明手段52が設けられている。この照明手段52はライン照明であって、検査対象物Wの幅方向(移送方向に対して交差する向き)全体にわたって光を照射する。この照明手段52の光は、検査対象物Wを透過しており、これにより検査対象物Wの上方に設けられた撮影手段51は検査対象物Wの透過光を撮影する事ができる。そして検査対象物Wは照明手段52と撮影手段51との間を通過する。
First, in the
図2(B)に示す様に、撮影手段51では、透過光によって照らされている領域において、明るい領域A1と、その輪郭領域A2と、透過光によって照射されていない領域であって輪郭領域の近傍領域の領域A3において、検査対象物Wの幅方向(走査方向と交差する方向)に延伸するラインで撮影した画像データを取得する。各ラインにおける撮影は、検査対象物Wを移送しながら行われ、少なくとも1回の撮影で取得する画素数分移動するごとに撮影される。この検査対象物Wの移送距離は、前記ロータリーエンコーダ等の移送検出手段54により検出される。よって一定距離移動したとの信号を移送検出手段54から取得した時点で、前記撮影手段51は所定のラインにおける画像を撮影する事ができる。
As shown in FIG. 2B, in the
そして、図2(B)に示した各ラインにおける撮影が、検査対象物Wの全体について行われた後に、検査対象が移動するごとに撮影したライン状の画像を繋ぎ合わせて、図2(C)に示すような面画像に展開した画像データD1~D3を形成する。即ち、透過光によって照らされている領域において、明るい領域A1を撮影した画像で形成した画像データD1と、透過光によって照射されていない領域であって輪郭領域の近傍領域の領域A2を撮影した画像で形成した画像データD2と、透過光によって照射されていない領域であって輪郭領域の近傍領域の領域A3を撮影した画像で形成した画像データD3とを形成する。かかる画像データの形成は、撮影手段51が撮影するごとに、処理装置はライン状の画像を取得して、これを面画像に展開する他、撮影ごとのライン状の画像データを撮影手段51において記録しておき、面画像に合成したのちに処理手段53に送るようにしても良い。このように形成した各ラインにおける夫々の面画像(画像データ)は、検査対象物Wに対する光の照射方向を異ならせた状態を撮影したものとなる。よって、撮影手段51における1回の走査で取得可能でありながらも、光の照射角度を異ならせて、撮影手段51を複数回走査させた場合と同じ画像データを取得する事ができる。
Then, after the imaging in each line shown in FIG. 2 (B) is performed for the entire inspection object W, the line-shaped images taken each time the inspection object moves are joined together, as shown in FIG. The image data D1 to D3 expanded into the surface image as shown in 2.) are formed. That is, in the area illuminated by the transmitted light, the image data D1 formed of the image obtained by photographing the bright area A1 and the image obtained by imaging the area A2 not illuminated by the transmitted light but in the vicinity of the outline area The image data D2 formed as described above and the image data D3 formed of an image obtained by photographing an area A3 which is an area not irradiated with transmitted light and which is in the vicinity of the outline area are formed. In the formation of such image data, the processing device acquires a line-shaped image every time the image pickup means 51 takes an image, and expands the image into a planar image. It may be recorded and sent to the processing means 53 after being synthesized to the plane image. Each plane image (image data) in each line formed in this manner is obtained by photographing a state in which the irradiation direction of light to the inspection object W is made different. Therefore, although the light can be acquired by one scan by the
次に、図3を参照しながら、光の照射具合が異なっている複数ラインにおける画像データを使用する事により、様々な欠陥を検査する例を説明する。図3(A)は検査対象物Wに欠陥のサンプルを設けた状態を示す要部拡大図であり、図3(B)は、透過光が照射されている領域における欠陥の見え方を示す正面略図であり、図3(C)は、透過光が照射されている領域の輪郭における欠陥の見え方を示す正面略図であり、図3(D)は、透過光が照射されていない領域であって、輪郭領域の近傍領域における欠陥の見え方を示す正面略図である。 Next, referring to FIG. 3, an example of inspecting various defects by using image data in a plurality of lines having different light irradiation conditions will be described. FIG. 3A is an enlarged view of an essential part showing a state in which a defect sample is provided on the inspection object W, and FIG. 3B is a front view showing how a defect appears in a region irradiated with transmitted light. FIG. 3C is a schematic front view showing how defects appear in the outline of the area irradiated with transmitted light, and FIG. 3D is an area not irradiated with transmitted light 6 is a schematic front view showing how a defect appears in a region near the contour region.
この例では、検査対象物Wは透明であって、図3(B)~(D)では、検査対象物Wに光を照射した時の透過光における見え方を示したものである。検査対象物Wには、サンプルとして、図3(A)に示す様に、上から順に、表面に存在するキズ等のキズ欠陥F1、表面又は内面に黒色の異物が存在する色欠陥F2、表面におけるなだらかな凹凸からなる凹凸欠陥F3を形成している。 In this example, the inspection object W is transparent, and FIGS. 3B to 3D show how the transmitted light looks when it is irradiated with light. In the inspection object W, as a sample, as shown in FIG. 3A, from the top in order from the top, flaw defects F1 such as flaws present on the surface, color defects F2 in which black foreign matter is present on the surface or inner surface, surface An uneven defect F3 is formed which is composed of gentle unevenness in the above.
このような欠陥を形成したサンプル検査対象物Wでは、図3(B)に示すように、裏面に光が照射されている領域A1では、色欠陥F2が明瞭に出現しており、一方でキズ欠陥F1や凹凸欠陥F3は明瞭には出現していない。また図3(C)に示すように、輪郭領域A2では、凹凸欠陥F3が明瞭に出現しており、一方で色欠陥F2やキズ欠陥F1は明瞭には出現していない。そして図3(D)に示すように、光が照射されていない領域A3では、キズ欠陥F1が明瞭に出現しており、一方で色欠陥F2や凹凸欠陥F3は明瞭には出現していない。 In the sample inspection object W in which such a defect is formed, as shown in FIG. 3 (B), the color defect F2 appears clearly in the area A1 where the light is irradiated to the back surface, The defect F1 and the uneven defect F3 do not appear clearly. Further, as shown in FIG. 3C, in the contour area A2, the uneven defect F3 appears clearly, while the color defect F2 and the flaw defect F1 do not appear clearly. Then, as shown in FIG. 3D, in the area A3 where light is not irradiated, the flaw defect F1 appears clearly, while the color defect F2 and the concavo-convex defect F3 do not appear clearly.
このように、光を照射している領域との関係において、明瞭に出現する欠陥の種類が異なる事から、前記複数ラインにおける画像データをそれぞれ解析する事により、1回の走査で取得した複数の画像データを使用して、様々な外観上の欠陥を検査する事ができる。 As described above, since the types of defects that appear clearly in the relationship with the area irradiated with light are different, the image data in the plurality of lines are respectively analyzed to obtain a plurality of images acquired in one scan. Image data can be used to inspect various cosmetic defects.
なお、上記の実施の形態では、検査対象物Wが透明な製品であることから、照明手段52として透過照明を使用しているが、当該検査対象物Wが不透明である場合には、以下の図4に示す様に、照明手段を撮影手段51側に設け、撮影手段52は検査対象物Wに照射された光の反射光を撮影するようにしても良い。また、上記の実施の形態では、撮影手段51としてCMOSイメージセンサを使用したカメラを用いているが、所定のエリアを面画像で撮影するCCDイメージセンサを使用したカメラを使用する事もでき、この場合には、以下の図4に示すようなライン状の画像の抽出等の画像処理を行う。
In the above embodiment, since the inspection object W is a transparent product, transmissive illumination is used as the illumination means 52, but when the inspection object W is opaque, the following As shown in FIG. 4, the illumination unit may be provided on the photographing
図4は他の実施の形態における光学式外観検査装置150を示しており、当該光学式外観検査装置150も、前記図1に示した光学式外観検査システム60の外観検査ステーション20に設置する事ができる。この実施の形態に示す光学式外観検査装置150は、特に撮影手段151としてCCDイメージセンサを用いたカメラを使用し、また照明手段152は透過光ではなく反射光を撮影するように構成している。図4(A)は他の実施の形態にかかる光学式外観検査装置150を示す要部拡大斜視図であり、図4(B)は撮影した画像から複数ラインにおいてライン状の画像を抽出する処理内容を示す概念図であり、図4(C)は、ライン状の画像から合成した、解析対象となる画像データを示す平面図である。
FIG. 4 shows an optical
この実施の形態においても、検査対象物Wは、コンベアー等の検査対象物移動手段11によって搬送される。搬送されてきた検査対象物Wに対しては、その上方に設けられた照明手段152から光を照射している。そして、照明手段152と同様に検査対象物Wの上方に設けた撮影手段151では、少なくとも光で照射している照射範囲と、当該照射範囲の近傍であって、光が照射されていない領域を含んで、検査対象物Wの幅方向全体が写るようにして画像を撮影する。この撮影した画像は、前述の実施の形態と同じように、ロータリーエンコーダ等の移送検出手段が計測した移送距離等と関連付けられている。 Also in this embodiment, the inspection object W is transported by the inspection object moving means 11 such as a conveyor. Light is emitted from the illumination means 152 provided above the inspection object W transported. Then, in the photographing means 151 provided above the inspection object W in the same manner as the illumination means 152, an area which is at least irradiated with light and which is in the vicinity of the irradiated area and which is not irradiated with light The image is taken so that the entire width direction of the inspection object W is captured. The captured image is associated with the transfer distance or the like measured by the transfer detection unit such as a rotary encoder, as in the above-described embodiment.
そして一定のエリアを撮影した画像から、図4(B)に示す様に、任意に設定した領域内から、ライン状の画像を抽出する。即ち、照明手段152から照射された光で照らされている領域A1、その輪郭領域A2と、光が照射されていない領域であって輪郭領域の近傍領域A3の夫々のラインから、ライン状の画像(L1~L3)を抽出する。即ち、光で照らされている領域A1からライン状の画像L1を抜き出し、光で照らされている領域A1の輪郭領域A2からライン状の画像L2を抜き出し、光が照射されていない領域であって輪郭領域の近傍領域A3からライン状の画像L3を抜き出す。 Then, as shown in FIG. 4B, a line-shaped image is extracted from an area set arbitrarily from an image obtained by photographing a certain area. That is, a line-shaped image is drawn from the respective lines of the area A1 illuminated by the light emitted from the illumination means 152, its outline area A2, and the area not irradiated with light but in the vicinity area A3 of the outline area. Extract (L1 to L3). That is, the linear image L1 is extracted from the area A1 illuminated by light, and the linear image L2 is extracted from the outline area A2 of the area A1 illuminated by light, and the area is not irradiated with light. A linear image L3 is extracted from the vicinity area A3 of the outline area.
そして抽出したライン状の画像を、それぞれ繋ぎ合わせて、図4(C)に示すような面画像からなる画像データを夫々合成する。即ち、光で照らされている領域A1から抜き出したライン状の画像L1を繋ぎ合わせた画像データD11と、光で照らされている領域A1の輪郭領域A2から抜き出したライン状の画像L2を繋ぎ合わせた画像データD12と、光が照射されていない領域であって輪郭領域の近傍領域A3から抜き出したライン状の画像L3を繋ぎ合わせた画像データD13とを、それぞれ合成する。そして、この合成した夫々の面画像(画像データ)について、色及び/又は明るさの変化を解析することで、検査対象物Wにおける夫々の外観上の欠陥の有無を判断する事ができる。 Then, the extracted line-shaped images are connected to each other to combine image data composed of planar images as shown in FIG. 4C. That is, the image data D11 in which the linear images L1 extracted from the lighted area A1 are joined and the linear image L2 extracted from the outline area A2 of the light A1 are connected. The image data D12 and the image data D13 in which the linear image L3 extracted from the vicinity area A3 of the area which is not irradiated with light and is extracted are respectively synthesized. Then, it is possible to determine the presence or absence of each appearance defect in the inspection object W by analyzing the change in color and / or brightness of each of the synthesized plane images (image data).
次に、図5を参照しながら、検査対象物Wが不透明である場合における欠陥の見え方を説明する。図5は検査対象物Wに光を照射した時の反射光の見え方を示すものであり、図5(A)は検査対象物Wに欠陥のサンプルを設けた状態を示す要部拡大図であり、図5(B)は、光が照射されている領域における欠陥の見え方を示す正面略図であり、図5(C)は、光が照射されている領域の輪郭における欠陥の見え方を示す正面略図であり、図5(D)は、光が照射されていない領域であって、輪郭領域の近傍領域における欠陥の見え方を示す正面略図である。 Next, with reference to FIG. 5, the appearance of a defect when the inspection object W is opaque will be described. FIG. 5 shows how the reflected light looks when the inspection object W is irradiated with light, and FIG. 5 (A) is a main part enlarged view showing the inspection object W provided with a defect sample. FIG. 5 (B) is a schematic front view showing the appearance of defects in the area irradiated with light, and FIG. 5 (C) shows the appearance of defects in the outline of the area irradiated with light. FIG. 5 (D) is a schematic front view showing an appearance of a defect in a region not irradiated with light and in the vicinity of the contour region.
この例では、検査対象物Wは不透明であって、図5(B)~(D)では、検査対象物Wに光を照射した時の反射光における見え方を示したものである。検査対象物Wには、サンプルとして、図5(A)に示す様に、上から順に、表面に存在する黒色の異物等の異物欠陥F11、貫通する孔等の孔欠陥F12、表面に存在するキズ等のキズ欠陥F13を形成している。 In this example, the inspection object W is opaque, and FIGS. 5B to 5D show how the reflected light appears when the inspection object W is irradiated with light. In the inspection object W, as shown in FIG. 5A as a sample, in order from the top, a foreign matter defect F11 such as a black foreign matter existing on the surface, a hole defect F12 such as a penetrating hole, and the like A flaw defect F13 such as a flaw is formed.
このような欠陥を形成したサンプル検査対象物Wでは、図5(B)に示すように、表面に光が照射されている領域A1では、孔欠陥F12が明瞭に出現しており、一方で異物欠陥F11やキズ欠陥F13は明瞭には出現していない。また図5(C)に示すように、輪郭領域A2では、異物欠陥F11が明瞭に出現しており、一方で孔欠陥F12やキズ欠陥F13は明瞭には出現していない。そして図5(D)に示すように、光が照射されていない領域A3では、キズ欠陥F13が明瞭に出現しており、一方で異物欠陥F11や孔欠陥F12は明瞭には出現していない。 In the sample inspection object W in which such a defect is formed, as shown in FIG. 5B, the hole defect F12 clearly appears in the area A1 where the light is irradiated to the surface, while the foreign matter The defect F11 and the flaw defect F13 do not appear clearly. Further, as shown in FIG. 5C, in the contour area A2, the foreign matter defect F11 clearly appears, while the hole defect F12 and the flaw defect F13 do not clearly appear. Then, as shown in FIG. 5D, in the area A3 where the light is not irradiated, the flaw defect F13 clearly appears, while the foreign matter defect F11 and the pore defect F12 do not clearly appear.
このように、検査対象が不透明であっても、反射光を撮影する事により、光を照射している領域との関係において、明瞭に出現する欠陥の種類が異なることになる。よって前記複数ラインにおける画像データをそれぞれ解析する事により、1回の走査で取得した複数の画像データを使用して、様々な外観上の欠陥を検査する事ができる。 As described above, even if the inspection target is opaque, by photographing the reflected light, the types of defects that clearly appear differ in relation to the area irradiated with the light. Therefore, by analyzing the image data in each of the plurality of lines, it is possible to inspect various appearance defects using a plurality of image data acquired in one scan.
なお、本実施の形態では、検査対象物Wが不透明な場合について説明したが、透明な場合には、前記図2に示したように、透過照明を照射する照明手段52を使用することができる。また、本実施の形態に示す様に、検査対象物Wが不透明な場合であっても、前述のようにCMOSイメージセンサを使用したカメラからなる撮影手段51を使用することができ、この場合には各ラインにおいて撮影した画像を面画像に展開して、欠陥を検査する事ができる。 In the present embodiment, the case where the inspection object W is opaque has been described, but in the case of transparency, as shown in FIG. 2, the illumination means 52 for emitting the transmission illumination can be used. . Further, as described in the present embodiment, even when the inspection object W is opaque, as described above, the photographing means 51 formed of a camera using a CMOS image sensor can be used, and in this case, Can develop an image taken at each line into a plane image to inspect a defect.
図6は、検査対象物Wが円柱状である場合における検査方法を示す斜視図である。この図に示す様に、検査対象が筒状であって、その周面における外観を検査する場合には、検査対象物Wを軸周りに回転させることにより、外観検査を行う事ができる。特に検査対象物Wが曲面を有する場合には、撮影手段51としてCMOSイメージセンサを使用したカメラを用いる事で、曲面における画像の歪みの問題を解消する事ができ、より正確に外観検査を行う事ができる。但し、この実施の形態においても、撮影手段としてはCCDイメージセンサを使用したカメラを用いても良い。
FIG. 6 is a perspective view showing an inspection method when the inspection object W is cylindrical. As shown in this figure, when the inspection object is cylindrical and the appearance on the circumferential surface is inspected, the appearance inspection can be performed by rotating the inspection object W around the axis. In particular, when the inspection object W has a curved surface, by using a camera using a CMOS image sensor as the photographing
図7は、検査対象物Wが幅方向に長尺な場合、即ち移送方向に直行する向きに長尺である場合の検査方法を示す斜視図である。この図に示す様に、検査対象が幅広である場合には、撮影手段51を幅方向に複数並べて使用する事ができる。この場合においては、複数台の撮影手段51を使用する事になる。但し、何れかの幅方向の範囲は、何れか1つの撮影手段51によって、複数ラインにおける画像データが取得される。この図7では、撮影手段51は一列に配置しているが、千鳥状に配置しても良い。但し、幅方向において撮影領域に隙間が生じることなく、かつ後から連結できるように、撮影範囲を特定できることが必要である。但し、この実施の形態においても、撮影手段としてはCCDイメージセンサを使用したカメラを用いても良い。
FIG. 7 is a perspective view showing an inspection method in the case where the inspection object W is long in the width direction, that is, in the direction orthogonal to the transfer direction. As shown in this figure, when the inspection object is wide, a plurality of imaging means 51 can be used side by side in the width direction. In this case, a plurality of photographing
以上のように構成した光学式外観検査装置によれば、検査対象物Wの製造工程において生じるすべての欠陥を、一つの撮像条件で、一回の撮像で、同時に検査することが可能になり、また検査対象物Wが、厚みが異なる製品の場合でも、撮影手段や照明手段などの光学系を物理的に調整することなく、検査に必要な画像データを取得して、欠陥を解析・判断する事ができる。 According to the optical appearance inspection apparatus configured as described above, it becomes possible to simultaneously inspect all defects generated in the manufacturing process of the inspection object W in one imaging condition under one imaging condition, Further, even when the inspection object W is a product having a different thickness, image data necessary for inspection is acquired to analyze / determine defects without physically adjusting the optical system such as the photographing unit and the illumination unit. I can do things.
次に、図8及び9を参照しながら、本実施の形態にかかる光学式外観検査装置で好適に使用可能な撮影手段について説明する。かかる撮影手段は、図8に示す様に、走査方向に交差する向きに複数のフォトダイオードを配列したフォトダイオード列を、平行な状態で、走査方向に複数並べて構成している。図8には、A~D列からなる4列のフォトダイオード列を示しており、各列は配列方向に並んだ9個のフォトダイオードで構成されている。このように構成した撮影手段で撮影する事により、4列×9個の合計36画素の画像を撮影する事ができる。 Next, referring to FIGS. 8 and 9, imaging means which can be suitably used in the optical appearance inspection apparatus according to the present embodiment will be described. As shown in FIG. 8, such an imaging means is configured by arranging a plurality of photodiode rows, in which a plurality of photodiodes are arranged in a direction intersecting the scanning direction, in parallel, in the scanning direction. FIG. 8 shows four photodiode rows made up of A to D rows, each row consisting of nine photodiodes arranged in the arrangement direction. By photographing with the photographing means configured in this way, it is possible to photograph an image of 36 columns in total of 4 columns × 9.
特に、この実施の形態にかかる撮影手段は、更に画像処理部を伴って構成されており、この画像処理部によって、36画素の画像サイズを小さくする処理を実行する。具体的には、走査方向に並んでいる画素から、最大輝度、最小輝度、平均輝度等の予め設定した条件の輝度の画素を算出乃至は抽出する処理を、配列方向に並んだすべての画素について実行する。そして、この条件によって演算乃至は抽出した画素を連結した1列の画像データを生成し、この1列の画像データを表面検査に使用する。図8はフォトダイオードの配列を示しているが、これを各フォトダイオードが撮影した画素として見た場合に、輝度が最も低い画素を抽出する。図8において、フォトダイオードの配列を画素の配列として見た場合、A1~D1の画素において最も輝度が低いB1画素を抽出し、隣に配列されたA2~D2の画素においても、最も輝度が低いC2画素を抽出する。そしてこのような演算乃至は抽出処理をA9~D9の画素まで実行し、B1、C2、A3、B4、C5、D6、B7、C8、A9の画素からなる1列の画像データを生成する。その結果36画素の画像を9画素の画像データに合成することができ、よってデータ量を減じ、処理速度を高める事ができる。なお、かかる画素の抽出は、処理手段において実行する事もできる。 In particular, the photographing means according to this embodiment is further configured to include an image processing unit, and the image processing unit executes processing to reduce the image size of 36 pixels. Specifically, for all pixels lined in the arrangement direction, processing for calculating or extracting pixels of the brightness set in advance such as maximum brightness, minimum brightness, average brightness and the like from pixels lined in the scanning direction Run. Then, according to this condition, one row of image data is generated by connecting the calculated or extracted pixels, and this one row of image data is used for surface inspection. FIG. 8 shows an arrangement of photodiodes, and when this is viewed as a pixel photographed by each photodiode, pixels having the lowest luminance are extracted. In FIG. 8, when the photodiode array is viewed as an array of pixels, the B1 pixel having the lowest luminance is extracted in the pixels A1 to D1 and the luminance is the lowest also in the pixels A2 to D2 arranged next to each other. Extract C2 pixels. Then, such calculation or extraction processing is executed up to the pixels A9 to D9 to generate one line of image data composed of the pixels B1, C2, A3, B4, C5, D6, B7, C8 and A9. As a result, an image of 36 pixels can be synthesized into image data of 9 pixels, thereby reducing the amount of data and increasing the processing speed. Note that such pixel extraction can also be performed by the processing means.
図9は、実際に検査対象物を撮影した画像から、1列の画像データを演算乃至は抽出する処理を示す略図である。図9(A)に示す様に、検査対象物Wを撮影して、走査方向に並んだ10列の画素からなる画像を撮影する。各列は光学素子に応じた画素で構成する事ができる。そして図9(B)に示す様に、この撮影した画素から、走査方向に並んだ各列の画素を比較して、図9(C)に示す様に、最も輝度が高い画素を抽出する。この処理を各列における画素の配列方向まで実施し、抽出した画素を1列に組み合わせることにより、1列の画像データを生成する事ができる。そして、この生成した1列の画像データを検査に使用する事から、検査に使用する画像データを大幅に低減し、処理速度を向上させることができる。 FIG. 9 is a schematic view showing a process of computing or extracting one row of image data from an image obtained by actually capturing an inspection object. As shown in FIG. 9A, the inspection object W is photographed, and an image consisting of ten rows of pixels arranged in the scanning direction is photographed. Each row can be composed of pixels according to the optical element. Then, as shown in FIG. 9B, the pixels in the respective columns aligned in the scanning direction are compared from the photographed pixels, and as shown in FIG. 9C, the pixel having the highest luminance is extracted. By performing this process up to the arrangement direction of the pixels in each column and combining the extracted pixels into one column, image data of one column can be generated. And since this generated image data of one row is used for inspection, the image data used for inspection can be greatly reduced and processing speed can be improved.
このような撮影手段を使用した検査装置では、検査対象物の移送距離を、おおよそ1回の撮影で撮影した画素列分とすることにより、検査スピードを高める事ができる。即ち、図9では9画素分または10画素分ずつ検査対象物を移送させて撮影する事により、1回の撮影ごとの移送距離を大きくして大量の検査対象物を検査する事ができる。 In the inspection apparatus using such a photographing means, the inspection speed can be increased by setting the transfer distance of the inspection object to the number of pixel rows photographed in approximately one photographing. That is, in FIG. 9, a large number of inspection objects can be inspected by transferring the inspection object by 9 pixels or 10 pixels and imaging them.
一方で、検査対象物の移送距離を、1回の撮影で撮影した画素列よりも短くした場合には、何れかの領域については、その周辺を含めた広い範囲についての画像を取得することができる。例えば、図9に示す様に走査方向に10列のフォトダイオード列が並んでいる場合には、1乃至は5列づつ移送させて撮影を行うことができる。そして、この撮影画素の中から目的に合った画素(予め条件設定した画素)を抽出することから、撮影漏れの無い、より精度の高い画像データを取得する事ができる。よって、この場合には、表面検査を高精度に実施する事ができる。
On the other hand, in the case where the transfer distance of the inspection object is shorter than the pixel row captured in one shooting, an image of a wide range including the periphery may be obtained for any of the regions. it can. For example, as shown in FIG. 9, when ten photodiode rows are arranged in the scanning direction, imaging can be performed by transferring one to five rows. Then, by extracting a pixel (a pixel set in advance as a condition) suitable for the purpose from among the photographed pixels, it is possible to acquire more accurate image data without omission of photographing. Therefore, in this case, surface inspection can be performed with high accuracy.
上記本発明にかかる光学式外観検査装置は、工業製品のみならず、原材料や、農作物、水産物、或いはこれらの加工品など、様々な物品について、その外観上の欠陥を検査する為に利用する事ができる。そして、検査対象物Wは、透明であっても不透明であっても、外観検査を行う事ができる。 The optical appearance inspection apparatus according to the present invention is used to inspect defects in appearance of various articles such as raw materials, agricultural products, marine products, or processed products thereof as well as industrial products. Can. The inspection object W can be inspected for appearance regardless of whether it is transparent or opaque.
10 受領ステーション
11 検査対象物移動手段
20 外観検査ステーション
30 検査ステーション
31 検出手段
40 搬出ステーション
50,150 光学式外観検査装置
51,151 撮影手段
52,152 照明手段
53 処理手段
54 移送検出手段
60 光学式外観検査システム
W 検査対象物
10 Receiving Station
11 inspection object moving means
20 Appearance inspection station
30 inspection station
31 Detection means
40 unloading station
50, 150 Optical appearance inspection device
51, 151 shooting means
52, 152 Lighting means
53 Processing means
54 Transfer detection means
60 Optical appearance inspection system
W inspection object
Claims (12)
当該撮影手段が撮影した撮影画像を使用して、検査対象物における外観上の欠陥の有無を解析・判断する処理手段とからなり、
当該処理手段は、撮影手段から撮影画像を取得すると共に、検査対象物に照射した光の強さが異なる領域からそれぞれ選択した複数ラインにおける画像データについて、色及び/又は明るさの変化を解析し、検査対象物における夫々の外観上の欠陥の有無を判断する事を特徴とする、光学式外観検査装置。
A photographing means for photographing an inspection object;
And processing means for analyzing and judging the presence or absence of an appearance defect in the inspection object using the photographed image photographed by the photographing means;
The processing means acquires a photographed image from the photographing means, and analyzes changes in color and / or brightness of image data in a plurality of lines respectively selected from regions different in the intensity of light irradiated to the inspection object. An optical appearance inspection apparatus characterized by judging the presence or absence of each appearance defect in an inspection object.
前記処理手段が解析する複数ラインにおける画像データは、照明手段において照射している領域内、及び照明手段において照射している領域外の夫々の領域から選択されている、請求項1に記載の光学式外観検査装置。
Furthermore, illumination means for irradiating light to the inspection object is provided,
2. The optical system according to claim 1, wherein the image data in the plurality of lines analyzed by the processing means is selected from each of an area within the area illuminated by the illumination means and an area outside the area illuminated by the illumination means. Type appearance inspection device.
前記処理手段が解析する、複数ラインにおける画像データは、照明手段によって光が照射されている領域の中心部分である照射中心領域、照明手段によって光が照射されている領域の輪郭領域、及び当該輪郭領域の近傍であって照明手段による光で照射されていない非照射領域の少なくとも何れか2つ以上の領域内で選択されている、請求項1に記載の光学式外観検査装置。
Furthermore, illumination means for irradiating light to the inspection object is provided,
The image data in a plurality of lines analyzed by the processing means includes an irradiation central area which is a central portion of an area irradiated with light by the illumination means, an outline area of an area irradiated with light by the illumination means, and the outline The optical appearance inspection apparatus according to claim 1, wherein the optical appearance inspection apparatus is selected in at least any two or more areas of the non-irradiated area near the area and not irradiated with the light by the illumination means.
前記処理手段が解析する、複数ラインにおける画像データは、検査対象物に照射している光の輝度が最も高い高輝度領域、当該輝度が急激に変化している輝度変化領域、及び当該輝度変化位置よりも低い輝度でその変化が安定している低輝度安定領域の少なくとも何れか2つ以上の領域内で選択されている、請求項1に記載の光学式外観検査装置。
Furthermore, illumination means for irradiating light to the inspection object is provided,
The image data in a plurality of lines analyzed by the processing means is a high brightness area where the brightness of light irradiating the inspection object is the highest, a brightness change area where the brightness changes rapidly, and the brightness change position The optical appearance inspection apparatus according to claim 1, wherein the optical appearance inspection apparatus is selected in at least any two or more areas of a low luminance stable area where the change is stable at lower luminance.
前記処理手段における複数ラインにおける画像データの取得は、撮影手段における1回の走査によって取得される、請求項1~4の何れか一項に記載の光学式外観検査装置。
The image data to be analyzed by the processing means is obtained by scanning a photographing means to obtain a plurality of line-like images respectively taken on a plurality of lines, and combining and developing this for each line. It is an image,
The optical appearance inspection apparatus according to any one of claims 1 to 4, wherein acquisition of image data in a plurality of lines in the processing means is acquired by one scan in an imaging means.
前記処理手段が解析する複数ラインにおける画像データは、撮影手段の走査方向に異なる複数の位置で、当該走査方向と交差する向きに延伸するライン状に撮影された画像を結合して展開した面画像である、請求項1~5の何れか一項に記載の光学式外観検査装置。
The photographing means is an image sensor camera which scans the inspection object in a predetermined direction,
The image data in a plurality of lines analyzed by the processing means is a plane image obtained by combining images taken in a line shape extending in a direction crossing the scanning direction at a plurality of different positions in the scanning direction of the photographing means The optical appearance inspection apparatus according to any one of claims 1 to 5, which is
検査対象物の走査方向に並んだ複数のラインで撮影する撮影部と、
撮影部が撮影した複数のラインの夫々について、走査方向に直交する向きの領域ごとに色及び/又は明るさを比較した上で、この比較に基づいて特定のラインの領域を抽出し、これを組み合わせて1ラインの画像データを合成する画像処理部とからなり、
前記撮影部は、前記検査対象物に照射した光の強さが異なる領域からそれぞれ選択した複数ラインの夫々において、検査対象物の走査方向に並んだ複数のラインで撮影し、
前記処理手段が解析する複数ラインにおける画像データとして、それぞれ画像処理部が合成した1ラインの画像データを複数使用する、請求項1~6の何れか一項に記載の光学式外観検査装置。
The photographing means is
An imaging unit for imaging a plurality of lines aligned in the scanning direction of the inspection object;
The color and / or brightness of each of the plurality of lines photographed by the photographing unit are compared for each area in the direction orthogonal to the scanning direction, and then the area of the specific line is extracted based on the comparison. And an image processing unit that combines the image data of one line,
The imaging unit performs imaging with a plurality of lines arranged in the scanning direction of the inspection object, in each of a plurality of lines respectively selected from regions with different intensities of light irradiated to the inspection object.
The optical appearance inspection apparatus according to any one of claims 1 to 6, wherein a plurality of image data of one line synthesized by the image processing unit are used as the image data of the plurality of lines analyzed by the processing means.
The image pickup means according to any one of claims 1 to 7, wherein the photographing means comprises an image adjustment means for making the offset value and / or the gain value different for each area where the intensity of the light irradiated to the inspection object is different. Optical appearance inspection device.
更に、検査対象物を載せ置いて此れを搬送する検査対象物移動手段と、当該検査対象移動手段による検査対象物の移動速度又は移動距離を検出する移送検出手段とを備えており、
前記処理手段が取得した撮影画像は、移送検出手段から取得した移動速度又は移動量に基づいて算出した撮影位置と関連付けられている事を特徴とする、光学式外観検査システム。
An optical appearance inspection system configured using the optical appearance inspection apparatus according to any one of claims 1 to 8, comprising:
The apparatus further comprises inspection object moving means for carrying the inspection object by placing the inspection object thereon, and transfer detection means for detecting the moving speed or movement distance of the inspection object by the inspection object moving means.
The optical appearance inspection system according to claim 1, wherein the photographed image acquired by the processing means is associated with the photographing position calculated based on the movement speed or movement amount acquired from the transfer detection means.
前記検査対象物移動手段における検査対象物の移動経路上には、前記検査対象物の厚みを計測するための厚み計測手段が設けられており、
前記処理手段は、当該厚み計測手段の計測値に基づいて厚みの不良を検出する、請求項9に記載の光学式外観検査システム。
The inspection object moving means is provided with a holding means for suctioning or pressing the inspection object to be placed and transported.
Thickness measuring means for measuring the thickness of the inspection object is provided on the movement path of the inspection object in the inspection object moving means,
The optical appearance inspection system according to claim 9, wherein the processing means detects a defect in thickness based on a measurement value of the thickness measurement means.
複数のフォトダイオードからなるフォトダイオード列を平行に複数配列してなる光学素子を具えており、当該光学素子における任意の2か所以上において、複数のフォトダイオード列での撮影を実現することのできるようにしたことを特徴とする、光学式外観検査装置用の撮影手段。
An imaging unit for use in an optical appearance inspection apparatus that determines the presence or absence of an appearance defect from an image obtained by capturing an inspection object while scanning.
It comprises an optical element in which a plurality of photodiode rows composed of a plurality of photodiodes are arranged in parallel, and imaging with a plurality of photodiode rows can be realized in any two or more places in the optical element An imaging means for an optical appearance inspection apparatus, characterized in that
検査対象物の走査方向に並んだ複数のラインで撮影する撮影部と、
撮影部が撮影した複数のラインの夫々について、走査方向に直交する向きの領域ごとに色及び/又は明るさを比較した上で、この比較に基づいて特定のラインの領域を抽出し、これを組み合わせて1ラインの画像データを合成する画像処理部とからなることを特徴とする、光学式外観検査装置用の撮影手段。 An imaging unit for use in an optical appearance inspection apparatus that determines the presence or absence of an appearance defect from an image obtained by capturing an inspection object while scanning.
An imaging unit for imaging a plurality of lines aligned in the scanning direction of the inspection object;
The color and / or brightness of each of the plurality of lines photographed by the photographing unit are compared for each area in the direction orthogonal to the scanning direction, and then the area of the specific line is extracted based on the comparison. An imaging unit for an optical appearance inspection apparatus, comprising: an image processing unit that combines the image data of one line and combines the image data.
Priority Applications (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2016572149A JP7026309B2 (en) | 2015-01-29 | 2016-01-28 | Optical visual inspection device and optical visual inspection system using it |
| KR1020177004451A KR20170107952A (en) | 2015-01-29 | 2016-01-28 | Optical appearance inspection device and optical appearance inspection system using same |
| CN201680002266.7A CN106662537A (en) | 2015-01-29 | 2016-01-28 | Optical appearance inspection device and optical appearance inspection system using same |
Applications Claiming Priority (4)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2015-016090 | 2015-01-29 | ||
| JP2015016090 | 2015-01-29 | ||
| JP2015125742 | 2015-06-23 | ||
| JP2015-125742 | 2015-06-23 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| WO2016121878A1 true WO2016121878A1 (en) | 2016-08-04 |
Family
ID=56543483
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/JP2016/052513 Ceased WO2016121878A1 (en) | 2015-01-29 | 2016-01-28 | Optical appearance inspection device and optical appearance inspection system using same |
Country Status (4)
| Country | Link |
|---|---|
| JP (1) | JP7026309B2 (en) |
| KR (1) | KR20170107952A (en) |
| CN (1) | CN106662537A (en) |
| WO (1) | WO2016121878A1 (en) |
Cited By (15)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2019023587A (en) * | 2017-07-24 | 2019-02-14 | 住友化学株式会社 | Defect inspection system and defect inspection method |
| JP2019023589A (en) * | 2017-07-24 | 2019-02-14 | 住友化学株式会社 | Defect inspection system and defect inspection method |
| JP2019023588A (en) * | 2017-07-24 | 2019-02-14 | 住友化学株式会社 | Defect inspection system and defect inspection method |
| CN109709106A (en) * | 2017-10-26 | 2019-05-03 | 海因里希·格奥尔格机械制造有限公司 | Inspection system and method for analyzing defects |
| JP2019211310A (en) * | 2018-06-04 | 2019-12-12 | 日本製鉄株式会社 | Surface property inspection method and surface property inspection device |
| EP3557217A4 (en) * | 2016-12-15 | 2020-05-20 | Omron Corporation | INSPECTION DEVICE, INSPECTION PROCEDURE AND PROGRAM |
| CN111566469A (en) * | 2018-02-05 | 2020-08-21 | 株式会社斯库林集团 | Image acquisition device, image acquisition method, and inspection device |
| CN112014410A (en) * | 2019-05-31 | 2020-12-01 | 泰克元有限公司 | Inspection device for electronic component handling equipment |
| JP2021004769A (en) * | 2019-06-25 | 2021-01-14 | 住友金属鉱山株式会社 | Inspection apparatus of substrate and inspection method of substrate |
| JP2021139777A (en) * | 2020-03-06 | 2021-09-16 | フロンティアシステム株式会社 | Surface inspection device |
| JPWO2022113867A1 (en) * | 2020-11-30 | 2022-06-02 | ||
| JP2023527474A (en) * | 2020-05-26 | 2023-06-28 | シン アドバンスド システムズ グループ ソシエダッド リミターダ | Surface defect inspection device, vehicle body surface defect inspection line and surface defect inspection method |
| CN117288761A (en) * | 2023-11-27 | 2023-12-26 | 天津市海迅科技发展有限公司 | Flaw detection classification evaluation method and system based on test materials |
| JP2024010293A (en) * | 2022-07-12 | 2024-01-24 | 株式会社エイチアンドエフ | Surface inspection device and detection processing method using the same |
| JP7495163B1 (en) | 2023-03-08 | 2024-06-04 | 株式会社ヒューテック | Defect imaging device and detail imaging device used therein |
Families Citing this family (19)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN109328455B (en) * | 2017-12-27 | 2020-10-16 | 深圳配天智能技术研究院有限公司 | Image acquisition device and image acquisition method |
| JP6969439B2 (en) * | 2018-02-23 | 2021-11-24 | オムロン株式会社 | Visual inspection device and lighting condition setting method for visual inspection device |
| JP6754155B1 (en) * | 2018-10-01 | 2020-09-09 | 株式会社 システムスクエア | Teacher data generator, inspection device and computer program |
| KR102121142B1 (en) * | 2019-02-26 | 2020-06-10 | (주)다원엔지니어링 | Home appliance surface inspection apparatus |
| CN110186930B (en) * | 2019-05-27 | 2021-09-03 | 武汉中导光电设备有限公司 | Optical imaging detection method and device |
| JP6752941B1 (en) * | 2019-06-17 | 2020-09-09 | Ckd株式会社 | Inspection equipment, packaging material manufacturing equipment and packaging material manufacturing method |
| CN114128417B (en) * | 2019-07-26 | 2024-03-12 | 株式会社富士 | Substrate alignment operation system |
| DE102019128503A1 (en) * | 2019-10-22 | 2021-04-22 | Krones Aktiengesellschaft | Method and device for the optical inspection of containers |
| JP7111275B2 (en) * | 2020-03-05 | 2022-08-02 | 株式会社サタケ | optical sorter |
| KR102836802B1 (en) * | 2020-03-13 | 2025-07-23 | (주)테크윙 | Photographing apparatus for processing equipment of electronic components |
| KR102268909B1 (en) * | 2020-04-10 | 2021-06-23 | 코그넥스코오포레이션 | Inspection method based on edge field and deep learning |
| KR102292547B1 (en) * | 2020-04-10 | 2021-08-20 | 코그넥스코오포레이션 | Optic system using dynamic diffuser |
| JP7447661B2 (en) * | 2020-04-23 | 2024-03-12 | Tdk株式会社 | Arrangement detection device and load port for plate-shaped objects |
| CN116635720A (en) * | 2020-12-11 | 2023-08-22 | 株式会社堀场制作所 | Inspection device, information processing method and program |
| KR102477530B1 (en) * | 2020-12-21 | 2022-12-15 | 일진하이솔루스 주식회사 | Apparatus for mesuring amount of hydrogen permeated on surface of pressure vessel |
| JP7482824B2 (en) * | 2021-04-15 | 2024-05-14 | Towa株式会社 | Resin molding device and method for manufacturing resin molded product |
| KR102746425B1 (en) * | 2022-02-03 | 2024-12-26 | 주식회사 러닝비전 | Apparatus for inspecting defect |
| CN116295614A (en) * | 2023-02-09 | 2023-06-23 | 徐州徐工矿业机械有限公司 | Remove broken line belt material quality detecting system based on foreign matter detects and point cloud concatenation |
| KR102810413B1 (en) * | 2024-09-30 | 2025-05-22 | (주)인스케이프 | Multi field layer inspection method for surface of cylindrical object |
Citations (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2003329612A (en) * | 2002-05-16 | 2003-11-19 | Asahi Glass Co Ltd | Inspection method for inspection object |
| JP2005140537A (en) * | 2003-11-04 | 2005-06-02 | West Japan Railway Co | Shape-measuring device using line sensor and method for the same |
| JP2007040853A (en) * | 2005-08-03 | 2007-02-15 | Showa Denko Kk | Surface inspection method and surface inspection device |
| WO2009016924A1 (en) * | 2007-07-27 | 2009-02-05 | Omron Corporation | Three-dimensional shape measuring device, three-dimensional shape measuring method, three-dimensional shape measuring program, and recording medium |
| JP2010107250A (en) * | 2008-10-28 | 2010-05-13 | Saki Corp:Kk | Device of inspecting inspection object |
| JP2012132836A (en) * | 2010-12-22 | 2012-07-12 | Yamaha Motor Co Ltd | Three-dimensional shape measuring apparatus, component transfer apparatus and three-dimensional shape measuring method |
| JP2014130130A (en) * | 2013-09-30 | 2014-07-10 | Djtech Co Ltd | Inspection apparatus |
Family Cites Families (10)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP4215473B2 (en) * | 2002-09-13 | 2009-01-28 | 株式会社リコー | Image input method, image input apparatus, and image input program |
| CN100376889C (en) * | 2004-12-31 | 2008-03-26 | 张健 | Intelligent digital graphics context detection system and detection method |
| JP2006300913A (en) * | 2005-04-20 | 2006-11-02 | Selcon Technologies Inc | Appearance inspection apparatus of light guide plate |
| JP2007333449A (en) * | 2006-06-13 | 2007-12-27 | Heiwa Tokei Mfg Co Ltd | Inspection system |
| JP4726983B2 (en) * | 2009-10-30 | 2011-07-20 | 住友化学株式会社 | Defect inspection system, and defect inspection imaging apparatus, defect inspection image processing apparatus, defect inspection image processing program, recording medium, and defect inspection image processing method used therefor |
| JP2011223233A (en) * | 2010-04-08 | 2011-11-04 | Seiko Epson Corp | Line sensor camera and imaging device provided with the same |
| JP5854501B2 (en) * | 2011-11-17 | 2016-02-09 | 東レエンジニアリング株式会社 | Automatic visual inspection equipment |
| JP5882730B2 (en) * | 2011-12-28 | 2016-03-09 | 株式会社ブリヂストン | Appearance inspection apparatus and appearance inspection method |
| JP2013250214A (en) * | 2012-06-01 | 2013-12-12 | Olympus Corp | Substrate inspection apparatus and substrate inspection method |
| WO2014104375A1 (en) * | 2012-12-31 | 2014-07-03 | 株式会社Djtech | Inspection device |
-
2016
- 2016-01-28 CN CN201680002266.7A patent/CN106662537A/en active Pending
- 2016-01-28 WO PCT/JP2016/052513 patent/WO2016121878A1/en not_active Ceased
- 2016-01-28 JP JP2016572149A patent/JP7026309B2/en active Active
- 2016-01-28 KR KR1020177004451A patent/KR20170107952A/en not_active Ceased
Patent Citations (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2003329612A (en) * | 2002-05-16 | 2003-11-19 | Asahi Glass Co Ltd | Inspection method for inspection object |
| JP2005140537A (en) * | 2003-11-04 | 2005-06-02 | West Japan Railway Co | Shape-measuring device using line sensor and method for the same |
| JP2007040853A (en) * | 2005-08-03 | 2007-02-15 | Showa Denko Kk | Surface inspection method and surface inspection device |
| WO2009016924A1 (en) * | 2007-07-27 | 2009-02-05 | Omron Corporation | Three-dimensional shape measuring device, three-dimensional shape measuring method, three-dimensional shape measuring program, and recording medium |
| JP2010107250A (en) * | 2008-10-28 | 2010-05-13 | Saki Corp:Kk | Device of inspecting inspection object |
| JP2012132836A (en) * | 2010-12-22 | 2012-07-12 | Yamaha Motor Co Ltd | Three-dimensional shape measuring apparatus, component transfer apparatus and three-dimensional shape measuring method |
| JP2014130130A (en) * | 2013-09-30 | 2014-07-10 | Djtech Co Ltd | Inspection apparatus |
Cited By (25)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP3557217A4 (en) * | 2016-12-15 | 2020-05-20 | Omron Corporation | INSPECTION DEVICE, INSPECTION PROCEDURE AND PROGRAM |
| TWI788387B (en) * | 2017-07-24 | 2023-01-01 | 日商住友化學股份有限公司 | Defect inspection system and defect inspection method |
| JP2019023589A (en) * | 2017-07-24 | 2019-02-14 | 住友化学株式会社 | Defect inspection system and defect inspection method |
| JP2019023588A (en) * | 2017-07-24 | 2019-02-14 | 住友化学株式会社 | Defect inspection system and defect inspection method |
| JP2019023587A (en) * | 2017-07-24 | 2019-02-14 | 住友化学株式会社 | Defect inspection system and defect inspection method |
| TWI797145B (en) * | 2017-07-24 | 2023-04-01 | 日商住友化學股份有限公司 | Defect inspection system and defect inspection method |
| CN109709106A (en) * | 2017-10-26 | 2019-05-03 | 海因里希·格奥尔格机械制造有限公司 | Inspection system and method for analyzing defects |
| JP2019194557A (en) * | 2017-10-26 | 2019-11-07 | ハインリヒ ゲオルク ゲーエムベーハー マシーネンファブリークHeinrich Georg GmbH Maschinenfabrik | Inspection system and defect analysis method |
| CN109709106B (en) * | 2017-10-26 | 2023-09-19 | 海因里希·格奥尔格机械制造有限公司 | Inspection system and method for analyzing defects |
| CN111566469B (en) * | 2018-02-05 | 2023-09-12 | 株式会社斯库林集团 | Image acquisition device, image acquisition method, and inspection device |
| CN111566469A (en) * | 2018-02-05 | 2020-08-21 | 株式会社斯库林集团 | Image acquisition device, image acquisition method, and inspection device |
| JP2019211310A (en) * | 2018-06-04 | 2019-12-12 | 日本製鉄株式会社 | Surface property inspection method and surface property inspection device |
| JP7159624B2 (en) | 2018-06-04 | 2022-10-25 | 日本製鉄株式会社 | Surface texture inspection method and surface texture inspection device |
| CN112014410A (en) * | 2019-05-31 | 2020-12-01 | 泰克元有限公司 | Inspection device for electronic component handling equipment |
| JP2021004769A (en) * | 2019-06-25 | 2021-01-14 | 住友金属鉱山株式会社 | Inspection apparatus of substrate and inspection method of substrate |
| JP2021185389A (en) * | 2020-03-06 | 2021-12-09 | フロンティアシステム株式会社 | Surface inspection device |
| JP2021139777A (en) * | 2020-03-06 | 2021-09-16 | フロンティアシステム株式会社 | Surface inspection device |
| JP2023527474A (en) * | 2020-05-26 | 2023-06-28 | シン アドバンスド システムズ グループ ソシエダッド リミターダ | Surface defect inspection device, vehicle body surface defect inspection line and surface defect inspection method |
| JP7248201B2 (en) | 2020-11-30 | 2023-03-29 | コニカミノルタ株式会社 | Analyzers, inspection systems, and learning devices |
| JPWO2022113867A1 (en) * | 2020-11-30 | 2022-06-02 | ||
| JP2024010293A (en) * | 2022-07-12 | 2024-01-24 | 株式会社エイチアンドエフ | Surface inspection device and detection processing method using the same |
| JP7543345B2 (en) | 2022-07-12 | 2024-09-02 | 株式会社エイチアンドエフ | Surface inspection device and detection processing method using the same |
| JP7495163B1 (en) | 2023-03-08 | 2024-06-04 | 株式会社ヒューテック | Defect imaging device and detail imaging device used therein |
| CN117288761A (en) * | 2023-11-27 | 2023-12-26 | 天津市海迅科技发展有限公司 | Flaw detection classification evaluation method and system based on test materials |
| CN117288761B (en) * | 2023-11-27 | 2024-02-06 | 天津市海迅科技发展有限公司 | Flaw detection classification evaluation method and system based on test materials |
Also Published As
| Publication number | Publication date |
|---|---|
| JPWO2016121878A1 (en) | 2018-01-11 |
| KR20170107952A (en) | 2017-09-26 |
| CN106662537A (en) | 2017-05-10 |
| JP7026309B2 (en) | 2022-02-28 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| JP7026309B2 (en) | Optical visual inspection device and optical visual inspection system using it | |
| CN110595999B (en) | an image acquisition system | |
| KR102339677B1 (en) | optical inspection device | |
| US7551274B1 (en) | Defect detection lighting system and methods for large glass sheets | |
| JP5670915B2 (en) | Appearance inspection device | |
| JP2002513463A (en) | System and method for detecting stress in a molded container | |
| US10887500B2 (en) | Optical inspection system | |
| EP2401603A1 (en) | System and method for detecting defects of substrate | |
| AU2006333500A1 (en) | Apparatus and methods for inspecting a composite structure for defects | |
| JP5654486B2 (en) | Appearance inspection device | |
| KR20110128139A (en) | Appearance inspection device | |
| TW201629474A (en) | Inspection device | |
| JP2008286646A (en) | Surface flaw inspection device | |
| KR20170119952A (en) | Inspecting apparatus for product appearance and inspection method for product appearance using the same | |
| JP2004245695A (en) | Image processing method and foreign substance detection apparatus | |
| CN107110790A (en) | Optical detection system | |
| JP5787668B2 (en) | Defect detection device | |
| JP5959430B2 (en) | Bottle cap appearance inspection device and appearance inspection method | |
| KR20210148782A (en) | Detection Device for Surface Defects of Material | |
| KR101485425B1 (en) | Cover-glass Analysis Apparatus | |
| KR102528464B1 (en) | Vision Inspecting Apparatus | |
| KR100710703B1 (en) | Semiconductor lead frame plating line width measurement inspection device and method | |
| KR101124566B1 (en) | Apparatus for examining a wafer | |
| JP2009168615A (en) | Visual inspection apparatus and visual inspection method | |
| JP2000346813A (en) | Inspection device for surface of article |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16743481 Country of ref document: EP Kind code of ref document: A1 |
|
| ENP | Entry into the national phase |
Ref document number: 20177004451 Country of ref document: KR Kind code of ref document: A |
|
| ENP | Entry into the national phase |
Ref document number: 2016572149 Country of ref document: JP Kind code of ref document: A |
|
| NENP | Non-entry into the national phase |
Ref country code: DE |
|
| 122 | Ep: pct application non-entry in european phase |
Ref document number: 16743481 Country of ref document: EP Kind code of ref document: A1 |