WO2022113808A1 - 通信装置、通信方法、及び通信システム - Google Patents

通信装置、通信方法、及び通信システム Download PDF

Info

Publication number
WO2022113808A1
WO2022113808A1 PCT/JP2021/041988 JP2021041988W WO2022113808A1 WO 2022113808 A1 WO2022113808 A1 WO 2022113808A1 JP 2021041988 W JP2021041988 W JP 2021041988W WO 2022113808 A1 WO2022113808 A1 WO 2022113808A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
unit
base station
resource
signal processing
Prior art date
Application number
PCT/JP2021/041988
Other languages
English (en)
French (fr)
Inventor
信一郎 津田
大輝 松田
Original Assignee
ソニーグループ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーグループ株式会社 filed Critical ソニーグループ株式会社
Priority to EP21897782.5A priority Critical patent/EP4255067A4/en
Priority to JP2022565241A priority patent/JPWO2022113808A1/ja
Publication of WO2022113808A1 publication Critical patent/WO2022113808A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/318Received signal strength
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0002Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate
    • H04L1/0003Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate by switching between different modulation schemes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0009Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the channel coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • H04L5/0046Determination of how many bits are transmitted on different sub-channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/006Quality of the received signal, e.g. BER, SNR, water filling

Definitions

  • This disclosure relates to communication devices, communication methods, and communication systems.
  • RAT Radio Access Technology
  • NR New Radio
  • a predetermined value corresponding to a predetermined radio quality is set for the modulation method, the coding method, and the number of layers.
  • a common modulation method, coding method, and number of layers have been used for a plurality of radio resources (for example, a plurality of resource blocks and a plurality of RBGs (Resource Block Groups)) multiplexed on the time axis.
  • the radio quality can vary from time to time, so if a common modulation method, coding method, and number of layers are used for multiple radio resources, it is possible to use values that fully consider the radio quality.
  • a modulation method with low frequency utilization efficiency may be applied to a frequency band in which a modulation method with high frequency utilization efficiency can be used. In this case, the frequency utilization efficiency is lowered more than necessary.
  • this disclosure proposes a communication device, a communication method, and a communication system capable of efficiently using the frequency.
  • the communication device of one form according to the present disclosure includes an acquisition unit that acquires information about a second resource composed of a plurality of first resources from another communication device, and the first.
  • a discriminator that determines signal processing parameters that include information about at least one of the modulation scheme, coding method, and number of layers applied to each of the first resources, based on the information about the second resource. To prepare for.
  • a plurality of components having substantially the same functional configuration may be distinguished by adding different numbers after the same reference numerals.
  • a plurality of configurations having substantially the same functional configuration are distinguished as required , such as terminal devices 40 1 , 402 , and 403.
  • terminal devices 40 1 , 402 , and 403. are simply referred to as the terminal device 40.
  • Each of one or more embodiments (including examples and modifications) described below can be implemented independently. On the other hand, at least a part of the plurality of embodiments described below may be carried out in combination with at least a part of other embodiments as appropriate. These plurality of embodiments may contain novel features that differ from each other. Therefore, these plurality of embodiments may contribute to solving different purposes or problems, and may have different effects.
  • Radio Access Technology such as LTE (Long Term Evolution) and NR (New Radio) is being studied in 3GPP (3rd Generation Partnership Project).
  • LTE and NR are a kind of cellular communication technology, and enable mobile communication of a terminal device by arranging a plurality of areas covered by a base station in a cell shape. At this time, a single base station may manage a plurality of cells.
  • LTE shall include LTE-A (LTE-Advanced), LTE-A Pro (LTE-Advanced Pro), and E-UTRA (Evolved Universal Terrestrial Radio Access).
  • NR shall include NLAT (New Radio Access Technology) and FE-UTRA (Further E-UTRA).
  • a single base station may manage a plurality of cells.
  • the cell corresponding to LTE is referred to as an LTE cell
  • the cell corresponding to NR is referred to as an NR cell.
  • NR is the next generation of LTE (5th generation: 5G) wireless access technology (RAT).
  • 5G wireless access technology
  • RAT wireless access technology
  • NR is a wireless access technology that can support various use cases including eMBB (Enhanced Mobile Broadband), mMTC (Massive Machine Type Communications) and URLLC (Ultra-Reliable and Low Latency Communications).
  • eMBB Enhanced Mobile Broadband
  • mMTC Massive Machine Type Communications
  • URLLC Ultra-Reliable and Low Latency Communications
  • 5G is expected to utilize the millimeter wave band that can secure a wide band.
  • 5G is expected to be used in industries other than telecom called vertical, for example, in the manufacturing industry, and further expansion is expected in terms of ultra-high speed, low latency, and high reliability.
  • 5G is expected to transmit 4K and 8K video due to its features of ultra-high speed, low delay, high reliability, and multiple simultaneous connections.
  • further improvement of the features of ultra-high speed, low delay / high reliability, and multiple simultaneous connections is desired for Beyond 5G and 6G, and operation in the terahertz band where a wider band can be secured is also considered. There is.
  • More frequency resources are allocated to each UE (User Equipment), but more efficient use of frequencies is lacking in order to further improve the characteristics of ultra-high speed, low delay / high reliability, and multiple simultaneous connections. I can't. However, the conventional method does not always realize more efficient use of the frequency.
  • the signal processing method for example, modulation method, coding
  • the MCS Modulation and Coding Scheme
  • TB Transport Block
  • the MCS is notified by DCI (Downlink Control Information) via PDCCH (Physical Downlink Control Channel).
  • DCI Downlink Control Information
  • PDCCH Physical Downlink Control Channel
  • MCS is notified as one of the information about TB corresponding to each of up to two codewords. That is, only the MCS applied in TB units is notified for each TB. If more frequency resources are allocated and a plurality of MCSs are applied according to the reception quality in the allocated frequency resources, there is a concern that the overhead of the information notified by DCI will increase.
  • PDSCH Physical downlink shared channel
  • the PDCCH Physical Downlink Control Channel
  • the PDCCH Physical Downlink Control Channel
  • the PDCCH is a physical channel for transmitting control information in the downlink, and is used, for example, for scheduling downlink data in the PDCCH.
  • DCI Downlink Control Information
  • PDCCH Downlink Control Information
  • Bandwidth part indicator Frequency domain response assignment
  • Time domain response assignment CBGTtranstransmission (CBGTTrans) (Modulation and Coding Scheme)
  • New data indicator RV (Redundancy Version)
  • MCS New data indicator
  • RV Redundancy Version
  • BWP BandWidth Part
  • the Bandwidth part indicator is for notifying the UE of BWP-Id in order to identify one BWP from a plurality of set BWPs.
  • the Frequency domain resource association is for notifying information on resource allocation in the frequency domain.
  • resource allocation type 0 There are two types of resource allocation: resource allocation type 0 and resource allocation type 1.
  • RBG Resource Block Group
  • rbg-Size is a parameter of the upper layer set by the size of PDSCH-Config and BWP.
  • RIV Resource Indication Value corresponding to RB Start , which is the starting RB in the continuous RB assigned to the UE, and RBs , which are the RB lengths, are notified.
  • the Time domain resource assessment provides information about resource allocation in the time domain.
  • the information regarding this resource allocation is 4-bit information indicating one of the columns of the look-up table. That is, one of the 16 columns is notified to the UE.
  • the UE Based on the specified column of the table for reference, the UE has K 0 , which is the offset of the slot, SLIV (Start and Length Indicator Value), or the symbol S which is the starting point, the allocation length L, and the PDSCH mapping type. Get parameter information.
  • the UE is set to receive code block-based transmission data from the base station by receiving the codeBlockGroupTransmission for PDSCH, which is a parameter of the upper layer.
  • codeBlockGroupTransmission for PDSCH which is a parameter of the upper layer.
  • a large size TB Transport Block
  • CBs Code Blocks
  • CBG Code Block Group
  • the CBGTI is composed of the bit lengths of the NTB and N bits, where the NTB is the value of maxNrovCodeWordsSchedulledByDCI , which is a parameter of the upper layer.
  • the bits of the CBGTI field have the first set of N bits originating from the most significant bit (MSB) corresponding to the first TB and the second set of N bits to be the second. Is assigned to correspond to the TB of.
  • the first M bits of the N bits in each set of CBGTI fields have a one-to-one correspondence with the M CBGs of the TB in order.
  • the MSB corresponds to CBG # 0.
  • the UE At the first transmission of the TB notified by the DCI's New Data Indicator field, the UE considers that all CBGs of the TB are present.
  • the UE In the retransmission of the TB notified by the New Data Indicator field of the DCI, it is considered that the UE indicates which CBG of the TB is included in the transmission data in the CBGTI field of the DCI. For example, in the UE, if the bit of the CBGTI field is "0", the corresponding CBG is not transmitted, or if the bit is "1", the corresponding CBG is transmitted, and the corresponding CBG is transmitted to this CBG. It is determined that the same CBG as the first transmission of TB is included.
  • Antenna port (s) notifies the UE of information for specifying the antenna port and the number of layers.
  • the UE identifies a table to be referenced based on the bit field length (Bit Field Length) of the notified information and two RRC (Radio Resource Control) parameters, dmrs-Type and maxLength, which are related to DMRS (DeModulation Reference Signal). Then, based on the information notified as the Antenna port (s), the antenna port and the number of layers can be specified from the DMRS port (s) of the reference table.
  • RRC Radio Resource Control
  • the UE considers that the modulation symbol having a complex value for each transmitted codeword is mapped to one or a plurality of layers out of a maximum of eight layers. In the case of 1 to 4 layers, one codeword is mapped to each layer, and in the case of 5 to 8 layers, two codewords are mapped to each layer.
  • one MCS is applied for each codeword. The MCS applied to each code word is notified to the UE as an MCS related to Transport block 1 and an MCS related to Transport block 2 included in DCI form 1-1.
  • NR employs applied modulation coding.
  • Applied modulation coding is known as a method for improving frequency utilization efficiency by applying an optimum modulation method and coding according to a dynamic channel state.
  • 32 combinations of modulation and coding are defined as MCS (Modulation and Coding Scheme).
  • FIG. 1 is an example of an MCS table for PDSCH defined by NR.
  • a combination of a modulation method and a coding method is defined.
  • Each combination of modulation method and coding can be identified by MCS index.
  • the base station applies an MCS corresponding to a smaller value index, i.e., a lower order modulation scheme and a lower code rate.
  • the base station applies an MCS corresponding to a larger value index, that is, a higher order modulation scheme and a higher code rate.
  • the TBS Transport Block Size
  • the MCS that is, the order (Q m ) and code rate (R) of the modulation method
  • the base station allocates a required number of RBs (Resource Blocks) as radio resources for sending the TBS data to the UE.
  • the information related to the RB allocation is notified to the UE by the Frequency domain resource access and the Time domain resource address of DCI. That is, one MCS is applied to the RB assigned to the UE by one DCI in codeword units.
  • FIG. 2A and 2B are diagrams showing an example of the relationship between the propagation channel and the radio resource allocation.
  • FIG. 2A is an example when the operating band of the UE is narrow
  • FIG. 2B is a case where the operating band of the UE is wide.
  • the operating band of the UE is the system band or the band of the active BWP. If a wider operating band is set in the UE, the base station can allocate a wider band RBG so that more data can be sent.
  • the propagation channel can be considered to be a characteristic of the received S / N at each frequency over the frequency.
  • the base station determines the allocation of radio resources to each UE in consideration of each propagation channel that is different for each UE. More specifically, the base station allocates an RBG (Resource Block Group) located in a frequency region where the propagation channel is good as much as possible to each UE. For example, in the case of FIG. 2A, the base station assigns an RBG composed of two resources to the UE, and in the case of FIG. 2B, the RBG composed of three resources is assigned to the UE.
  • the diagonally shaded blocks shown in FIGS. 2A and 2B indicate resources composed of consecutive REs (Resource Elements), respectively.
  • the band of RBG is relatively narrow. Therefore, the change in the received S / N of RE in the RBG becomes small.
  • the band of RBG is relatively wide. Therefore, the change in the received S / N of RE in the RBG becomes large. Therefore, when one MCS is assigned to the RBG, the MCS is determined according to the RE having the worst S / N in the band of the RBG. Therefore, in the case of FIG. 2B, the RE having the other good S / N is determined. Frequency utilization efficiency is sacrificed.
  • the signal processing method (for example, modulation method, coding) can be changed in an arbitrary unit according to the reception quality that changes within the frequency resource.
  • MCS is applied in units of TB (Transport Block), but this can be set in units smaller than TB.
  • the MCS can be changed in units smaller than the TB, so that more efficient use of the frequency is realized.
  • FIG. 3 is a diagram showing a configuration example of the communication system 1 according to the embodiment of the present disclosure.
  • the communication system 1 includes a management device 10, a base station 20, a relay station 30, and a terminal device 40.
  • the communication system 1 provides a user with a wireless network capable of mobile communication by operating the wireless communication devices constituting the communication system 1 in cooperation with each other.
  • the wireless network of this embodiment is composed of, for example, a wireless access network and a core network.
  • the wireless communication device is a device having a wireless communication function, and in the example of FIG. 3, the base station 20, the relay station 30, and the terminal device 40 are applicable.
  • the communication system 1 may include a plurality of management devices 10, a base station 20, a relay station 30, and a terminal device 40, respectively.
  • the communication system 1 includes management devices 10 1 , 102 and the like as the management device 10, and base stations 201, 202 and the like as the base station 20 , and communication system 1 Is equipped with relay stations 30 1 , 302 and the like as the relay station 30 , and is provided with terminal devices 40 1 , 402 , 403 and the like as the terminal device 40.
  • the device in the figure may be considered as a device in a logical sense. That is, a part of the device in the figure may be realized by a virtual machine (VM: Virtual Machine), a container (Container), a docker (Docker), etc., and they may be mounted on physically the same hardware.
  • VM Virtual Machine
  • Container Container
  • Docker docker
  • the communication system 1 may be compatible with wireless access technology (RAT: Radio Access Technology) such as LTE (Long Term Evolution) and NR (New Radio).
  • RAT Radio Access Technology
  • LTE and NR are a kind of cellular communication technology, and enable mobile communication of a terminal device by arranging a plurality of areas covered by a base station in a cell shape.
  • the wireless access method used by the communication system 1 is not limited to LTE and NR, and is another wireless access method such as W-CDMA (Wideband Code Division Multiple Access) and cdma2000 (Code Division Multiple Access 2000). May be good.
  • W-CDMA Wideband Code Division Multiple Access
  • cdma2000 Code Division Multiple Access 2000
  • the base station or relay station constituting the communication system 1 may be a ground station or a non-ground station.
  • the non-ground station may be a satellite station or an aircraft station. If the non-ground station is a satellite station, the communication system 1 may be a Bent-pipe (Transparent) type mobile satellite communication system.
  • the ground station (also referred to as a ground base station) means a base station (including a relay station) installed on the ground.
  • ground is a broadly defined ground that includes not only land but also underground, water, and water. In the following description, the description of "ground station” may be replaced with “gateway”.
  • the LTE base station may be referred to as eNodeB (Evolved Node B) or eNB.
  • the base station of NR may be referred to as gNodeB or gNB.
  • a terminal device also referred to as a mobile station or a terminal
  • UE User Equipment
  • the terminal device is a kind of communication device, and is also referred to as a mobile station or a terminal.
  • the concept of a communication device includes not only a portable mobile device (terminal device) such as a mobile terminal, but also a device installed in a structure or a mobile body.
  • the structure or the moving body itself may be regarded as a communication device.
  • the concept of a communication device includes not only a terminal device but also a base station and a relay station.
  • a communication device is a kind of processing device and information processing device. Further, the communication device can be paraphrased as a transmission device or a reception device.
  • each device constituting the communication system 1 will be specifically described.
  • the configuration of each device shown below is just an example.
  • the configuration of each device may be different from the configuration shown below.
  • the management device 10 is a device that manages a wireless network.
  • the management device 10 is a device that manages the communication of the base station 20.
  • the core network is an EPC (Evolved Packet Core)
  • the management device 10 is, for example, a device having a function as an MME (Mobility Management Entity).
  • the core network is a 5GC (5G Core network)
  • the management device 10 is, for example, a device having a function as an AMF (Access and Mobility Management Function) and / or an SMF (Session Management Function).
  • the functions of the management device 10 are not limited to MME, AMF, and SMF.
  • the management device 10 may be a device having functions as NSSF (Network Slice Selection Function), AUSF (Authentication Server Function), and UDM (Unified Data Management). Further, the management device 10 may be a device having a function as an HSS (Home Subscriber Server).
  • NSSF Network Slice Selection Function
  • AUSF Authentication Server Function
  • UDM Unified Data Management
  • HSS Home Subscriber Server
  • the management device 10 may have a gateway function.
  • the management device 10 may have a function as an S-GW (Serving Gateway) or a P-GW (Packet Data Network Gateway).
  • S-GW Serving Gateway
  • P-GW Packet Data Network Gateway
  • the management device 10 may have a function as an UPF (User Plane Function).
  • the core network is composed of a plurality of network functions (Network Functions), and each network function may be integrated into one physical device or distributed to a plurality of physical devices. That is, the management device 10 may be distributed and arranged in a plurality of devices. Further, this distributed arrangement may be controlled to be performed dynamically.
  • the base station 20 and the management device 10 constitute one network, and provide wireless communication services to the terminal device 40.
  • the management device 10 is connected to the Internet, and the terminal device 40 can use various services provided via the Internet via the base station 20.
  • the management device 10 does not necessarily have to be a device constituting the core network.
  • the core network is a core network of W-CDMA (Wideband Code Division Multiple Access) or cdma2000 (Code Division Multiple Access 2000).
  • the management device 10 may be a device that functions as an RNC (Radio Network Controller).
  • FIG. 4 is a diagram showing a configuration example of the management device 10 according to the embodiment of the present disclosure.
  • the management device 10 includes a communication unit 11, a storage unit 12, and a control unit 13.
  • the configuration shown in FIG. 4 is a functional configuration, and the hardware configuration may be different from this. Further, the functions of the management device 10 may be implemented statically or dynamically distributed in a plurality of physically separated configurations.
  • the management device 10 may be composed of a plurality of server devices.
  • the communication unit 11 is a communication interface for communicating with other devices.
  • the communication unit 11 may be a network interface or a device connection interface.
  • the communication unit 11 may be a LAN (Local Area Network) interface such as a NIC (Network Interface Card), or a USB interface composed of a USB (Universal Serial Bus) host controller, a USB port, or the like. It is also good.
  • the communication unit 11 may be a wired interface or a wireless interface.
  • the communication unit 11 functions as a communication means of the management device 10.
  • the communication unit 11 communicates with the base station 20 and the like according to the control of the control unit 13.
  • the storage unit 12 is a storage device capable of reading and writing data such as a DRAM (Dynamic Random Access Memory), a SRAM (Static Random Access Memory), a flash memory, and a hard disk.
  • the storage unit 12 functions as a storage means for the management device 10.
  • the storage unit 12 stores, for example, the connection state of the terminal device 40.
  • the storage unit 12 stores the state of the RRC (Radio Resource Control) of the terminal device 40, the state of the ECM (EPS Connection Management), or the state of the 5G System CM (Connection Management).
  • the storage unit 12 may function as a home memory for storing the position information of the terminal device 40.
  • the control unit 13 is a controller that controls each unit of the management device 10.
  • the control unit 13 is realized by, for example, a processor such as a CPU (Central Processing Unit) or an MPU (Micro Processing Unit).
  • the control unit 13 is realized by the processor executing various programs stored in the storage device inside the management device 10 using a RAM (Random Access Memory) or the like as a work area.
  • the control unit 13 may be realized by an integrated circuit such as an ASIC (Application Specific Integrated Circuit) or an FPGA (Field Programmable Gate Array).
  • the CPU, MPU, ASIC, and FPGA can all be regarded as controllers.
  • the base station 20 is a wireless communication device that wirelessly communicates with the terminal device 40.
  • the base station 20 may be configured to wirelessly communicate with the terminal device 40 via the relay station 30, or may be configured to directly communicate wirelessly with the terminal device 40.
  • Base station 20 is a kind of communication device. More specifically, the base station 20 is a device corresponding to a wireless base station (Base Station, Node B, eNB, gNB, etc.) or a wireless access point (Access Point).
  • the base station 20 may be a wireless relay station. Further, the base station 20 may be an optical overhanging device called RRH (Remote Radio Head). Further, the base station 20 may be a receiving station such as an FPU (Field Pickup Unit). Further, the base station 20 is an IAB (Integrated Access and Backhaul) donor node or an IAB relay node that provides a wireless access line and a wireless backhaul line by time division multiplexing, frequency division multiplexing, or spatial division multiplexing. May be good.
  • IAB Integrated Access and Backhaul
  • the wireless access technique used by the base station 20 may be a cellular communication technique or a wireless LAN technique.
  • the wireless access technique used by the base station 20 is not limited to these, and may be another wireless access technique.
  • the wireless access technique used by the base station 20 may be an LPWA (Low Power Wide Area) communication technique.
  • the wireless communication used by the base station 20 may be wireless communication using millimeter waves.
  • the wireless communication used by the base station 20 may be wireless communication using radio waves, or wireless communication using infrared rays or visible light (optical radio).
  • the base station 20 may be capable of NOMA (Non-Orthogonal Multiple Access) communication with the terminal device 40.
  • NOMA communication is communication using non-orthogonal resources (transmission, reception, or both).
  • the base station 20 may be capable of NOMA communication with another base station 20.
  • the base station 20 may be able to communicate with each other via an interface between the base station and the core network (for example, S1 Interface, etc.). This interface may be wired or wireless. Further, the base stations may be able to communicate with each other via an interface between base stations (for example, X2 Interface, S1 Interface, etc.). This interface may be wired or wireless.
  • the base station 20 may be able to communicate with each other via an interface between the base station and the core network (for example, NG Interface, S1 Interface, etc.). This interface may be wired or wireless. Further, the base stations may be able to communicate with each other via an interface between base stations (for example, Xn Interface, X2 Interface, etc.). This interface may be wired or wireless.
  • the concept of a base station includes not only a donor base station but also a relay base station (also referred to as a relay station or a relay station). Further, the concept of a base station includes not only a structure having a function of a base station but also a device installed in the structure.
  • Structures are, for example, high-rise buildings, houses, steel towers, station facilities, airport facilities, port facilities, office buildings, school buildings, hospitals, factories, commercial facilities, stadiums, and other buildings.
  • the concept of structure includes not only buildings but also structures such as tunnels, bridges, dams, walls, and iron pillars, and equipment such as cranes, gates, and windmills.
  • the concept of a structure includes not only a structure on land (above ground in a narrow sense) or in the ground, but also a structure on water such as a pier and a mega float, and an underwater structure such as an ocean observation facility.
  • a base station can be rephrased as an information processing device.
  • the base station 20 may be a donor station or a relay station (relay station). Further, the base station 20 may be a fixed station or a mobile station.
  • a mobile station is a wireless communication device (for example, a base station) configured to be mobile.
  • the base station 20 may be a device installed on the mobile body or may be the mobile body itself.
  • a relay station having mobility can be regarded as a base station 20 as a mobile station.
  • devices that are originally mobile capable such as vehicles, UAVs (Unmanned Aerial Vehicles) represented by drones, and smartphones, and that are equipped with base station functions (at least part of the base station functions) are also mobile. It corresponds to the base station 20 as a station.
  • the mobile body may be a mobile terminal such as a smartphone or a mobile phone.
  • the moving body may be a moving body (for example, a vehicle such as a car, a bicycle, a bus, a truck, a motorcycle, a train, a linear motor car, etc.) that moves on land (ground in a narrow sense), or in the ground (for example, a vehicle).
  • a moving body for example, a subway
  • a tunnel for example, a subway
  • the moving body may be a moving body moving on the water (for example, a ship such as a passenger ship, a cargo ship, a hovercraft, etc.), or a moving body moving underwater (for example, a submersible, a submarine, an unmanned submarine, etc.). It may be a submarine).
  • the moving body may be a moving body (for example, an aircraft such as an airplane, an airship, or a drone) that moves in the atmosphere.
  • a moving body for example, an aircraft such as an airplane, an airship, or a drone
  • the base station 20 may be a ground base station (ground station) installed on the ground.
  • the base station 20 may be a base station arranged in a structure on the ground, or may be a base station installed in a moving body moving on the ground.
  • the base station 20 may be an antenna installed in a structure such as a building and a signal processing device connected to the antenna.
  • the base station 20 may be a structure or a mobile body itself. "Ground" is not only on land (ground in a narrow sense) but also on the ground in a broad sense including underground, water, and water.
  • the base station 20 is not limited to the ground base station.
  • the base station 20 may be an aircraft station. From the perspective of satellite stations, aircraft stations located on Earth are ground stations.
  • the base station 20 is not limited to the ground station.
  • the base station 20 may be a non-ground base station device (non-ground station) capable of floating in the air or in space.
  • the base station 20 may be an aircraft station or a satellite station.
  • a satellite station is a satellite station that can float outside the atmosphere.
  • the satellite station may be a device mounted on a space moving body such as an artificial satellite, or may be a space moving body itself.
  • Space moving objects are moving objects that move outside the atmosphere. Examples of space moving objects include artificial celestial bodies such as artificial satellites, spacecraft, space stations, and spacecraft.
  • the satellites that serve as satellite stations are low orbit (LEO: Low Earth Orbiting) satellites, medium orbit (MEO: Medium Earth Orbiting) satellites, stationary (GEO: Geostationary Earth Orbiting) satellites, and high elliptical orbit (HEO: Highly Elliptical Orbiting) satellites. ) It may be any of the satellites.
  • the satellite station may be a device mounted on a low earth orbit satellite, a medium earth orbit satellite, a geostationary satellite, or a high elliptical orbit satellite.
  • the Aircraft Bureau is a wireless communication device that can float in the atmosphere, such as aircraft.
  • the aircraft station may be a device mounted on an aircraft or the like, or may be an aircraft itself.
  • the concept of an aircraft includes not only heavy aircraft such as airplanes and gliders, but also light aircraft such as balloons and airships.
  • the concept of an aircraft includes not only heavy aircraft and light aircraft, but also rotary-wing aircraft such as helicopters and autogyros.
  • the aircraft station (or the aircraft on which the aircraft station is mounted) may be an unmanned aerial vehicle such as a drone.
  • unmanned aerial vehicle also includes unmanned aerial vehicles (UAS: Unmanned Aircraft Systems) and tethered unmanned aerial vehicles (tethered UAS).
  • UAS Unmanned Aircraft Systems
  • tethered UAS tethered unmanned aerial vehicles
  • unmanned aerial vehicle includes a light unmanned aerial vehicle system (LTA: Lighter than Air UAS) and a heavy unmanned aerial vehicle system (HTA: Heavier than Air UAS).
  • HAPs High Altitude UAS Platforms.
  • the size of the coverage of the base station 20 may be as large as that of a macro cell or as small as that of a pico cell. Of course, the size of the coverage of the base station 20 may be extremely small, such as a femtocell. Further, the base station 20 may have a beamforming capability. In this case, the base station 20 may form a cell or a service area for each beam. Therefore, the base station 20 may be equipped with an antenna array composed of a plurality of antenna elements to provide Advanced Antenna Technology represented by MIMO (Multiple Input Multiple Output) and beamforming. ..
  • MIMO Multiple Input Multiple Output
  • FIG. 5 is a diagram showing a configuration example of the base station 20 according to the embodiment of the present disclosure.
  • the base station 20 includes a wireless communication unit 21, a storage unit 22, a control unit 23, and a calculation unit 24.
  • the configuration shown in FIG. 5 is a functional configuration, and the hardware configuration may be different from this. Further, the functions of the base station 20 may be distributed and implemented in a plurality of physically separated configurations.
  • the wireless communication unit 21 is a signal processing unit for wireless communication with another wireless communication device (for example, a terminal device 40).
  • the wireless communication unit 21 operates according to the control of the control unit 23.
  • the wireless communication unit 21 corresponds to one or a plurality of wireless access methods.
  • the wireless communication unit 21 corresponds to both NR and LTE.
  • the wireless communication unit 21 may support W-CDMA and cdma2000 in addition to NR and LTE. Further, the wireless communication unit 21 may support an automatic retransmission technique such as HARQ (Hybrid Automatic Repeat reQuest).
  • HARQ Hybrid Automatic Repeat reQuest
  • the wireless communication unit 21 includes a transmission processing unit 211, a reception processing unit 212, and an antenna 213.
  • the wireless communication unit 21 may include a plurality of transmission processing units 211, reception processing units 212, and antennas 213, respectively.
  • each unit of the wireless communication unit 21 may be individually configured for each wireless access method.
  • the transmission processing unit 211 and the reception processing unit 212 may be individually configured by LTE and NR.
  • the antenna 213 may be composed of a plurality of antenna elements (for example, a plurality of patch antennas).
  • the wireless communication unit 21 may be configured to be beamforming.
  • the wireless communication unit 21 may be configured to be capable of polarization beamforming using vertically polarized waves (V polarization) and horizontally polarized waves (H polarization).
  • the transmission processing unit 211 performs downlink control information and downlink data transmission processing.
  • the transmission processing unit 211 encodes the downlink control information and the downlink data input from the control unit 23 by using a coding method such as block coding, convolutional coding, or turbo coding.
  • the coding may be performed by a polar code (Polar code) or an LDPC code (Low Density Parity Check Code).
  • the transmission processing unit 211 modulates the coding bit by a predetermined modulation method such as BPSK, QPSK, 16QAM, 64QAM, 256QAM and the like. In this case, the signal points on the constellation do not necessarily have to be equidistant.
  • the constellation may be a non-uniform constellation (NUC: Non Uniform Constellation).
  • NUC Non Uniform Constellation
  • the transmission processing unit 211 multiplexes the modulation symbol of each channel and the downlink reference signal, and arranges them in a predetermined resource element. Then, the transmission processing unit 211 performs various signal processing on the multiplexed signal. For example, the transmission processing unit 211 converts to the frequency domain by fast Fourier transform, adds a guard interval (cyclic prefix), generates a baseband digital signal, converts to an analog signal, orthogonal modulation, up-conversion, and extra. Performs processing such as removing frequency components and amplifying power.
  • the signal generated by the transmission processing unit 211 is transmitted from the antenna 213.
  • the reception processing unit 212 processes the uplink signal received via the antenna 213. For example, the reception processing unit 212 may down-convert the uplink signal, remove unnecessary frequency components, control the amplification level, orthogonal demodulate, convert to a digital signal, remove the guard interval (cyclic prefix), and perform high speed. The frequency domain signal is extracted by Fourier transform. Then, the reception processing unit 212 separates uplink channels such as PUSCH (Physical Uplink Shared Channel) and PUCCH (Physical Uplink Control Channel) and uplink reference signals from the signals subjected to these processes.
  • PUSCH Physical Uplink Shared Channel
  • PUCCH Physical Uplink Control Channel
  • the reception processing unit 212 demodulates the received signal with respect to the modulation symbol of the uplink channel by using a modulation method such as BPSK (Binary Phase Shift Keying) or QPSK (Quadrature Phase shift Keying).
  • the modulation method used for demodulation may be 16QAM (Quadrature Amplitude Modulation), 64QAM, or 256QAM.
  • the signal points on the constellation do not necessarily have to be equidistant.
  • the constellation may be a non-uniform constellation (NUC).
  • the reception processing unit 212 performs decoding processing on the coded bits of the demodulated uplink channel.
  • the decoded uplink data and uplink control information are output to the control unit 23.
  • Antenna 213 is an antenna device (antenna unit) that mutually converts current and radio waves.
  • the antenna 213 may be composed of one antenna element (for example, one patch antenna) or may be composed of a plurality of antenna elements (for example, a plurality of patch antennas).
  • the wireless communication unit 21 may be configured to be beamforming.
  • the wireless communication unit 21 may be configured to generate a directivity beam by controlling the directivity of a radio signal using a plurality of antenna elements.
  • the antenna 213 may be a dual polarization antenna.
  • the wireless communication unit 21 may use vertical polarization (V polarization) and horizontal polarization (H polarization) in transmitting the radio signal. Then, the radio communication unit 21 may control the directivity of the radio signal transmitted by using the vertically polarized wave and the horizontally polarized wave.
  • V polarization vertical polarization
  • H polarization horizontal polarization
  • the storage unit 22 is a storage device that can read and write data such as DRAM, SRAM, flash memory, and a hard disk.
  • the storage unit 22 functions as a storage means for the base station 20.
  • the control unit 23 is a controller that controls each unit of the base station 20.
  • the control unit 23 is realized by, for example, a processor such as a CPU (Central Processing Unit) or an MPU (Micro Processing Unit).
  • the control unit 23 is realized by the processor executing various programs stored in the storage device inside the base station 20 using a RAM (Random Access Memory) or the like as a work area.
  • the control unit 23 may be realized by an integrated circuit such as an ASIC (Application Specific Integrated Circuit) or an FPGA (Field Programmable Gate Array).
  • the CPU, MPU, ASIC, and FPGA can all be regarded as controllers.
  • the control unit 23 may be realized by a GPU (Graphics Processing Unit) in addition to or instead of the CPU.
  • the control unit 23 includes an acquisition unit 231, a setting unit 232, a notification unit 233, a determination unit 234, and a communication control unit 235.
  • the notification unit can be read as the transmission unit.
  • Each block (acquisition unit 231 to communication control unit 235) constituting the control unit 23 is a functional block indicating the function of the control unit 23, respectively.
  • These functional blocks may be software blocks or hardware blocks.
  • each of the above-mentioned functional blocks may be one software module realized by software (including a microprogram), or may be one circuit block on a semiconductor chip (die).
  • each functional block may be one processor or one integrated circuit.
  • the control unit 23 may be configured in a functional unit different from the above-mentioned functional block. The method of configuring the functional block is arbitrary.
  • the calculation unit 24 processes the operations required by the transmission processing unit 211 and the reception processing unit 212 according to the instructions of the control unit 23.
  • the arithmetic unit 24 is realized by, for example, a processor such as a CPU, MPU, or GPU. It may be a processor separate from the control unit 23, or it may be a processor integrated with the control unit 23.
  • the calculation unit 24 includes a setting unit 241, a processing unit 242, and an extraction unit 243. The arithmetic unit 24 will be described in detail later.
  • the concept of a base station may consist of a set of multiple physical or logical devices.
  • the base station may be classified into a plurality of devices such as BBU (Baseband Unit) and RU (Radio Unit).
  • the base station may be interpreted as an aggregate of these plurality of devices.
  • the base station may be either BBU or RU, or both.
  • the BBU and RU may be connected by a predetermined interface (for example, eCPRI (enhanced Common Public Radio Interface)).
  • RU may be paraphrased as RRU (Remote Radio Unit) or RD (Radio DoT).
  • the RU may correspond to gNB-DU (gNB Distributed Unit) described later.
  • the BBU may be compatible with gNB-CU (gNB Central Unit), which will be described later.
  • the RU may be a device integrally formed with the antenna.
  • the antenna of the base station (for example, the antenna integrally formed with the RU) may adopt the Advanced Antenna System and support MIMO (for example, FD-MIMO) or beamforming.
  • the antenna included in the base station may include, for example, 64 transmitting antenna ports and 64 receiving antenna ports.
  • the antenna mounted on the RU may be an antenna panel composed of one or more antenna elements, and the RU may mount one or more antenna panels.
  • the RU has two types of antenna panels, a horizontally polarized antenna panel and a vertically polarized antenna panel, or two types of antenna panels, a right-handed circularly polarized antenna panel and a left-handed circularly polarized antenna panel. It may be installed. Further, the RU may form and control an independent beam for each antenna panel.
  • a plurality of base stations may be connected to each other.
  • One or more base stations may be included in a radio access network (RAN: Radio Access Network).
  • the base station may be simply referred to as a RAN, a RAN node, an AN (Access Network), or an AN node.
  • RAN in LTE may be called E-UTRAN (Enhanced Universal Terrestrial RAN).
  • RAN in NR is sometimes called NG-RAN.
  • RAN in W-CDMA (UMTS) may be referred to as UTRAN.
  • the LTE base station may be referred to as eNodeB (Evolved Node B) or eNB.
  • E-UTRAN includes one or more eNodeBs (eNBs).
  • the base station of NR may be referred to as gNodeB or gNB.
  • NG-RAN contains one or more gNBs.
  • the E-UTRAN may include a gNB (en-gNB) connected to a core network (EPC) in an LTE communication system (EPS).
  • EPC core network
  • EPS LTE communication system
  • the NG-RAN may include an ng-eNB connected to the core network 5GC in a 5G communication system (5GS).
  • 5GS 5G communication system
  • the base station When the base station is eNB, gNB, etc., the base station may be referred to as 3GPP access (3GPP Access). Further, when the base station is a wireless access point (Access Point), the base station may be referred to as non-3GPP access (Non-3GPP Access). Further, the base station may be an optical overhanging device called RRH (Remote Radio Head).
  • the base station When the base station is gNB, the base station may be a combination of the above-mentioned gNB-CU and gNB-DU, or may be one of gNB-CU and gNB-DU. You may.
  • the gNB-CU hosts a plurality of higher layers (for example, RRC, SDAP, PDCP) among the access layers (Access Stratum) for communication with the UE.
  • the gNB-DU hosts a plurality of lower layers (for example, RLC, MAC, PHY) in the access layer (Access Stratum). That is, among the messages / information described later, RRC signaling (quasi-static notification) may be generated by gNB-CU, while MAC CE and DCI (dynamic notification) may be generated by gNB-DU. ..
  • RRC configurations quadsi-static notifications
  • IE: cellGroupConfig some of the RRC configurations (quasi-static notifications), such as IE: cellGroupConfig, are generated by gNB-DU, and the rest of the configurations are generated by gNB-CU. May be good.
  • These configurations may be transmitted and received by the F1 interface described later.
  • the base station may be configured to be able to communicate with other base stations.
  • the base stations may be connected by an X2 interface.
  • the devices may be connected by an Xn interface.
  • the devices may be connected by the F1 interface described above.
  • the message / information described later may be transmitted between a plurality of base stations via, for example, an X2 interface, an Xn interface, or an F1 interface. ..
  • the cell provided by the base station may be called a serving cell.
  • the concept of serving cell includes PCell (Primary Cell) and SCell (Secondary Cell).
  • PCell Primary Cell
  • SCell Secondary Cell
  • the PCell provided by the MN Master Node
  • SCell Secondary Cell
  • E-UTRA-E-UTRA Dual Connectivity E-UTRA-NR Dual Connectivity
  • E-UTRA-NR Dual Connectivity with 5GC E-E-UTRA Dual Connectivity
  • NEDC NR-E-UTRA Dual Connectivity
  • the serving cell may include a PSCell (Primary Secondary Cell or Primary SCG Cell).
  • PSCell Primary Secondary Cell or Primary SCG Cell
  • the PSCell provided by the SN (Secondary Node) and zero or more SCells may be referred to as SCG (Secondary Cell Group).
  • SCG Secondary Cell Group
  • PUCCH physical uplink control channel
  • the physical uplink control channel (PUCCH) is transmitted by PCell and PSCell, but not by SCell.
  • radio link failure is also detected in PCell and PSCell, but not in SCell (it does not have to be detected).
  • PCell and PSCell have a special role in the serving cell, and therefore are also called SpCell (Special Cell).
  • One downlink component carrier and one uplink component carrier may be associated with one cell.
  • the system bandwidth corresponding to one cell may be divided into a plurality of BWPs (Bandwidth Part).
  • one or a plurality of BWPs may be set in the UE, and one BWP portion may be used in the UE as an active BWP (Active BWP).
  • the radio resources for example, frequency band, numerology (subcarrier spacing), slot format (Slot configuration) that can be used by the terminal device 40 may be different for each cell, each component carrier, or each BWP.
  • the relay station 30 is a device that serves as a relay station for the base station.
  • the relay station 30 is a kind of base station. Further, the relay station 30 is a kind of information processing device.
  • a relay station can be rephrased as a relay base station. Further, the relay station 30 may be a device called a repeater.
  • the relay station 30 can perform wireless communication such as NOMA communication with the terminal device 40.
  • the relay station 30 relays the communication between the base station 20 and the terminal device 40.
  • the relay station 30 may be configured to be capable of wireless communication with another relay station 30 and the base station 20.
  • the relay station 30 may be a ground station device or a non-ground station device.
  • the relay station 30 and the base station 20 form a radio access network RAN.
  • the relay station of the present embodiment may be a fixed device, a movable device, or a floating device. Further, the size of the coverage of the relay station of the present embodiment is not limited to a specific size. For example, the cell covered by the relay station may be a macro cell, a micro cell, or a small cell.
  • the relay station of the present embodiment is not limited to the device to be mounted as long as the relay function is satisfied.
  • the repeater may be mounted on a terminal device such as a smartphone, mounted on a car, a train, a rickshaw, a balloon, an airplane, a drone, a television or a game machine. , It may be installed in home appliances such as air conditioners, refrigerators, and lighting fixtures.
  • the configuration of the relay station 30 may be the same as the configuration of the base station 20 described above.
  • the relay station 30 may be a device installed on the mobile body or may be the mobile body itself, like the base station 20 described above.
  • the mobile body may be a mobile terminal such as a smartphone or a mobile phone.
  • the moving body may be a moving body that moves on land (ground in a narrow sense) or may be a moving body that moves in the ground.
  • the moving body may be a moving body that moves on the water or may be a moving body that moves in the water.
  • the moving body may be a moving body moving in the atmosphere or a moving body moving out of the atmosphere.
  • the base station 20 may be a ground station device or a non-ground station device.
  • the relay station 30 may be an aircraft station or a satellite station.
  • the size of the coverage of the relay station 30 may be from a large one such as a macro cell to a small one such as a pico cell, as in the base station 20. Of course, the size of the coverage of the relay station 30 may be extremely small, such as a femtocell. Further, the relay station 30 may have a beamforming capability. In this case, the relay station 30 may form a cell or a service area for each beam.
  • FIG. 6 is a diagram showing a configuration example of the relay station 30 according to the embodiment of the present disclosure.
  • the relay station 30 includes a wireless communication unit 31, a storage unit 32, a control unit 33, and a calculation unit 34.
  • the configuration shown in FIG. 6 is a functional configuration, and the hardware configuration may be different from this. Further, the functions of the relay station 30 may be distributed and implemented in a plurality of physically separated configurations.
  • the wireless communication unit 31 is a wireless communication interface that wirelessly communicates with another wireless communication device (for example, a base station 20, a terminal device 40, and another relay station 30).
  • the wireless communication unit 31 corresponds to one or a plurality of wireless access methods.
  • the wireless communication unit 31 corresponds to both NR and LTE.
  • the wireless communication unit 31 may support W-CDMA or cdma3000 in addition to NR and LTE.
  • the wireless communication unit 31 includes a transmission processing unit 311, a reception processing unit 312, and an antenna 313.
  • the wireless communication unit 31 may include a plurality of transmission processing units 311, reception processing units 312, and antennas 313, respectively.
  • each unit of the wireless communication unit 31 may be individually configured for each wireless access method.
  • the transmission processing unit 311 and the reception processing unit 312 may be individually configured by LTE and NR.
  • the configuration of the transmission processing unit 311, the reception processing unit 312, and the antenna 313 is the same as the configuration of the transmission processing unit 211, the reception processing unit 212, and the antenna 213 described above.
  • the wireless communication unit 31 may be configured to be beamforming, similarly to the wireless communication unit 21.
  • the storage unit 32 is a storage device that can read and write data such as DRAM, SRAM, flash memory, and a hard disk.
  • the storage unit 32 functions as a storage means for the relay station 30.
  • the control unit 33 is a controller that controls each unit of the relay station 30.
  • the control unit 33 is realized by, for example, a processor such as a CPU or MPU.
  • the control unit 33 is realized by the processor executing various programs stored in the storage device inside the relay station 30 with the RAM or the like as a work area.
  • the control unit 33 may be realized by an integrated circuit such as an ASIC or FPGA.
  • the CPU, MPU, ASIC, and FPGA can all be regarded as controllers.
  • the operation of the control unit 33 may be the same as the operation of each block (acquisition unit 231 to communication control unit 235) of the control unit 23 of the base station 20.
  • the calculation unit 34 processes the operations required by the transmission processing unit 211 and the reception processing unit 212 according to the instructions of the control unit 33.
  • the arithmetic unit 34 is realized by, for example, a processor such as a CPU, MPU, or GPU.
  • the processor may be a separate processor from the control unit 33, or may be a processor integrated with the control unit 33.
  • the operation of the calculation unit 34 may be the same as the operation of each block (setting unit 241 to extraction unit 243) of the calculation unit 24 of the base station 20.
  • the relay station 30 may be an IAB relay node.
  • the relay station 30 operates as an IAB-MT (Mobile Termination) for the IAB donor node that provides the backhaul, and operates as an IAB-DU (Distributed Unit) for the terminal device 40 that provides access.
  • the IAB donor node may be, for example, a base station 20, and operates as an IAB-CU (Central Unit).
  • Terminal device configuration Next, the configuration of the terminal device 40 will be described.
  • the terminal device 40 is a wireless communication device that wirelessly communicates with other communication devices such as a base station 20 and a relay station 30.
  • the terminal device 40 is, for example, a mobile phone, a smart device (smartphone or tablet), a PDA (Personal Digital Assistant), or a personal computer.
  • the terminal device 40 may be a device such as a commercial camera equipped with a communication function, or may be a motorcycle, a mobile relay vehicle, or the like equipped with a communication device such as an FPU (Field Pickup Unit). ..
  • the terminal device 40 may be an M2M (Machine to Machine) device or an IoT (Internet of Things) device.
  • the terminal device 40 may be capable of NOMA communication with the base station 20. Further, the terminal device 40 may be able to use an automatic retransmission technique such as HARQ when communicating with the base station 20. The terminal device 40 may be capable of side-link communication with another terminal device 40. The terminal device 40 may be able to use an automatic retransmission technique such as HARQ even when performing side link communication. The terminal device 40 may also be capable of NOMA communication in communication (side link) with another terminal device 40. Further, the terminal device 40 may be capable of LPWA communication with another communication device (for example, the base station 20 and the other terminal device 40). Further, the wireless communication used by the terminal device 40 may be wireless communication using millimeter waves. The wireless communication (including side link communication) used by the terminal device 40 may be wireless communication using radio waves or wireless communication using infrared rays or visible light (optical radio). good.
  • the terminal device 40 may be a mobile device.
  • the mobile device is a mobile wireless communication device.
  • the terminal device 40 may be a wireless communication device installed on the mobile body or may be the mobile body itself.
  • the terminal device 40 is mounted on a vehicle (Vehicle) such as an automobile, a bus, a truck, or a motorcycle, a vehicle moving on a rail installed on a track of a train, or the vehicle. It may be a wireless communication device.
  • the moving body may be a mobile terminal, or may be a moving body that moves on land (ground in a narrow sense), in the ground, on the water, or in the water. Further, the moving body may be a moving body that moves in the atmosphere such as a drone or a helicopter, or may be a moving body that moves outside the atmosphere such as an artificial satellite.
  • the terminal device 40 may be connected to a plurality of base stations or a plurality of cells at the same time to perform communication. For example, when one base station supports a communication area via a plurality of cells (for example, pCell, sCell), carrier aggregation (CA: Carrier Aggregation) technology or dual connectivity (DC: Dual Connectivity) technology, By the multi-connectivity (MC) technology, it is possible to bundle the plurality of cells and communicate with the base station 20 and the terminal device 40. Alternatively, the terminal device 40 and the plurality of base stations 20 can communicate with each other via the cells of different base stations 20 by the coordinated transmission / reception (CoMP: Coordinated Multi-Point Transmission and Reception) technique.
  • CoMP Coordinated Multi-Point Transmission and Reception
  • FIG. 7 is a diagram showing a configuration example of the terminal device 40 according to the embodiment of the present disclosure.
  • the terminal device 40 includes a wireless communication unit 41, a storage unit 42, and a control unit 43.
  • the configuration shown in FIG. 7 is a functional configuration, and the hardware configuration may be different from this. Further, the functions of the terminal device 40 may be distributed and implemented in a plurality of physically separated configurations.
  • the wireless communication unit 41 is a signal processing unit for wireless communication with other wireless communication devices (for example, a base station 20, a relay station 30, and another terminal device 40).
  • the wireless communication unit 41 operates according to the control of the control unit 43.
  • the wireless communication unit 41 includes a transmission processing unit 411, a reception processing unit 412, and an antenna 413.
  • the configuration of the wireless communication unit 41, the transmission processing unit 411, the reception processing unit 412, and the antenna 413 may be the same as the wireless communication unit 21, the transmission processing unit 211, the reception processing unit 212, and the antenna 213 of the base station 20. .. Further, the wireless communication unit 41 may be configured to be beamforming like the wireless communication unit 21.
  • the storage unit 42 is a storage device that can read and write data such as DRAM, SRAM, flash memory, and a hard disk.
  • the storage unit 42 functions as a storage means for the terminal device 40.
  • the control unit 43 is a controller that controls each unit of the terminal device 40.
  • the control unit 43 is realized by, for example, a processor such as a CPU or MPU.
  • the control unit 43 is realized by the processor executing various programs stored in the storage device inside the terminal device 40 with the RAM or the like as a work area.
  • the control unit 43 may be realized by an integrated circuit such as an ASIC or FPGA.
  • the CPU, MPU, ASIC, and FPGA can all be regarded as controllers. Further, the control unit 43 may be realized by the GPU in addition to or instead of the CPU.
  • the control unit 43 includes an acquisition unit 431, a setting unit 432, a discrimination unit 433, and a communication control unit 434.
  • Each block (acquisition unit 431 to communication control unit 434) constituting the control unit 43 is a functional block indicating the function of the control unit 43, respectively.
  • These functional blocks may be software blocks or hardware blocks.
  • each of the above-mentioned functional blocks may be one software module realized by software (including a microprogram), or may be one circuit block on a semiconductor chip (die).
  • each functional block may be one processor or one integrated circuit.
  • the control unit 43 may be configured in a functional unit different from the above-mentioned functional block. The method of configuring the functional block is arbitrary.
  • the calculation unit 44 processes the operations required by the transmission processing unit 411 and the reception processing unit 412 according to the instructions of the control unit 43.
  • the arithmetic unit 44 is realized by, for example, a processor such as a CPU, MPU, or GPU. It may be a processor separate from the control unit 43, or it may be a processor integrated with the control unit 43.
  • the calculation unit 44 includes a setting unit 441 and a processing unit 442. The arithmetic unit 44 will be described in detail later.
  • the configuration of the communication system 1 has been described above, but next, the configuration of the arithmetic unit that can be applied to the communication system 1 of the present embodiment will be described.
  • the arithmetic unit 34 of the relay station 30 may have the same configuration as the arithmetic unit 24 of the base station 20, or may have the same configuration as the arithmetic unit 44 of the terminal device 40.
  • the calculation unit 24 processes the operations required by the transmission processing unit 211 and the reception processing unit 212 according to the instructions of the control unit 23.
  • the arithmetic unit 24 of the present embodiment uses a learning model to generate information (for example, signal processing parameters such as a modulation method, a coding method, and the number of layers) necessary for the transmission processing unit 211 and the reception processing unit 212.
  • the learning model may be referred to as an arithmetic model.
  • FIG. 8 is a configuration example of the arithmetic unit 24 of the base station 20.
  • the calculation unit 24 includes a calculation model setting unit 241a, a calculation processing unit 242a, a signal processing parameter setting unit 241b, and a calculation model extraction unit 243a.
  • the calculation model setting unit 241a and the signal processing parameter setting unit 241b correspond to the setting unit 241 shown in FIG.
  • the arithmetic processing unit 242a corresponds to the processing unit 242 shown in FIG.
  • the calculation model extraction unit 243a corresponds to the extraction unit 243 shown in FIG.
  • the calculation model setting unit 241a sets, for example, the configuration of the neural network model based on the parameters stored in the storage unit 22.
  • the neural network model is composed of an input layer including a plurality of nodes, a hidden layer (or an intermediate layer), and a layer called an output layer, and each node is connected via an edge. Each layer has a function called an activation function, and each edge is weighted.
  • setting the configuration of the neural network model means setting the number of hidden layers (or intermediate layers), the number of nodes in each layer, and the weight of each edge in addition to the input layer and the output layer.
  • the transmission processing unit 211 notifies the terminal device 40 of the parameters for setting the configuration of this neural network model by using system information and individual signaling (dedicated signaling).
  • the neural network model is, for example, a model in a form called CNN (Convolution Neural Network), RNN (Recurrent Neural Network), or LSTM (Long Short-Term Memory).
  • CNN Convolution Neural Network
  • RNN Recurrent Neural Network
  • LSTM Long Short-Term Memory
  • the hidden layer is composed of each layer called a convolution layer and a pooling layer.
  • the convolution layer filtering is performed by the convolution operation, and data called a feature map is extracted.
  • the pooling layer the feature map information output from the convolutional layer is compressed and downsampling is performed.
  • the CNN is, for example, a feature of a radio resource in which information related to each radio resource of radio resources arranged over a frequency axis and a time axis, for example, reception strength of a reference signal is input and the output layer is composed of each radio resource. , For example, information about the propagation channel can be obtained.
  • the unit of each radio resource is, for example, a subcarrier, a resource element, a resource block, or the like.
  • RNN has a network structure in which the value of the hidden layer is recursively input to the hidden layer, and for example, short-term time series data is processed.
  • the influence of the output in the distant past can be maintained by introducing a parameter called a memory cell for holding the state of the middle layer with respect to the output of the middle layer of the RNN. That is, the LSTM processes time-series data for a longer period than the RNN.
  • the computational model is composed of one or more CNNs, RNNs, or / and LSTMs, and is subordinated or processed in parallel.
  • the arithmetic processing unit 242a acquires information related to the reception strength of the uplink reference signal acquired by the reception processing unit 212 via the control unit 23.
  • the information related to the reception strength of the uplink reference signal is information that reflects the state of the propagation channel between the base station 20 and the terminal device 40.
  • the base station 20 may acquire information reflecting the state of the propagation channel between the base station 20 and the terminal device 40 from the terminal device 40.
  • Information reflecting the state of this propagation channel is acquired by using, for example, dedicated signaling.
  • the information related to the reception strength of the uplink reference signal is used, or the propagation acquired from the terminal device 40 using individual signaling. Whether or not to use the information reflecting the state of the channel may be determined based on the duplex method applied by the wireless communication unit 21. For example, in the case of TDD (Time Division Duplex), the information related to the reception strength of the uplink reference signal is used in consideration of the reciprocity between the propagation channels of the uplink and the downlink, and the FDD (Frequency) is used. In the case of Division Duplex), information that reflects the state of the downlink propagation channel acquired from the terminal device 40 using individual signaling is used.
  • TDD Time Division Duplex
  • the arithmetic processing unit 242a acquires information related to resource allocation for transmitting downlink data, that is, PDSCH (Physical Downlink Shared Channel) from the control unit 23 to the terminal device 40.
  • the information reflecting the state of the propagation channel (for example, the information related to the reception strength of the uplink reference signal) and the information related to the resource allocation for transmitting the downlink data are the neural network set by the arithmetic model setting unit 241a. It is input to each node of the input layer of the model.
  • the uplink reference signal is, for example, DMRS (DeModulation Reference Signal), SRS (Sounding Reference Signal), or another reference signal whose characteristics of the propagation channel can be estimated.
  • the arithmetic processing unit 242a inputs necessary information into the input layer of the neural network model set by the arithmetic model setting unit 241a, and then the arithmetic is performed. The result of the calculation is reflected in the value of each node in the output layer of the neural network model.
  • the modulation parameter setting unit 241b acquires the value of each node of the output layer of the above-mentioned neural network model, and MCS (MCS) applied to each resource assigned to transmit the downlink data, that is, each resource element. That is, the order (Qm), the code rate (R)) and the number of layers (v) of the modulation method are set.
  • Information related to the order, code rate, and number of layers of the modulation method applied to each resource element set by the modulation parameter setting unit 241b is provided to the transmission processing unit 211 via the control unit 23, and the downlink data is provided. It is used for modulation processing and coding processing.
  • the arithmetic model extraction unit 243a determines parameters related to the configuration of an arithmetic model, for example, a neural network model, by a method such as machine learning (Machine Learning), deep learning (Deep Learning), or reinforcement learning (Reinforcement Learning). ..
  • the arithmetic model extraction unit 243a has frequency utilization efficiency (Spectral Efficiency) calculated based on information related to the order, code rate, and number of layers of the modulation method applied to each resource element, and the characteristics of each resource element in the propagation channel. , For example, S / N is acquired. Further, the arithmetic model extraction unit 243a acquires information related to retransmission in a TB (Transport Block), CBG (Code Block Group), or an arbitrary retransmission data unit including each resource element.
  • the information related to the retransmission is, for example, whether or not the retransmission has occurred and the forwarding of the retransmission.
  • the calculation model extraction unit 243a acquires information related to the overhead of the downlink control information used for notifying the information related to the resource allocated for sending the downlink data.
  • the information related to the overhead of the downlink control information is the number of signaling transmissions and the size of each downlink control information.
  • the arithmetic model extraction unit 243a performs machine learning, deep learning, or reinforcement for information related to frequency utilization efficiency for resource elements, S / N in the propagation channel, information related to retransmission, and information related to overhead of downlink control information. Performs learning and extracts a neural network model that is an arithmetic model.
  • reinforcement learning behaviors (settings) that maximize value through trial and error are learned. For example, reinforcement learning is performed with rewards such as the use of a higher-order modulation method, the use of a higher coding rate, the use of a larger number of layers, and the reduction of the number of retransmissions.
  • a neural network model that maximizes frequency utilization efficiency as a value is extracted.
  • a neural network model is extracted as a result of learning using a data set for learning.
  • the data set for learning includes, for example, the operating frequency which is input information, the reception strength of the reference signal, and the output information, that is, the modulation method, the coding method, the number of layers, etc., which are the setting targets for the input information.
  • a set of data consisting of signal processing parameters. The parameters related to the configuration of the neural network model extracted by the arithmetic model extraction unit 243a are stored in the storage unit 22 according to the instructions of the control unit 23.
  • the calculation unit 44 processes the operations required by the transmission processing unit 411 and the reception processing unit 412 according to the instructions of the control unit 43.
  • the arithmetic unit 44 of the present embodiment uses the learning model to generate information necessary for the transmission processing unit 411 and the reception processing unit 412 (for example, signal processing parameters such as a modulation method, a coding method, and the number of layers).
  • FIG. 9 is a configuration example of the calculation unit 44 of the terminal device 40.
  • the calculation unit 44 includes a calculation model setting unit 441a, a calculation processing unit 442a, and a signal processing parameter specifying unit 443a.
  • the calculation model setting unit 441a corresponds to the setting unit 441 shown in FIG. 7.
  • the arithmetic processing unit 442a corresponds to the processing unit 442 shown in FIG. 7.
  • the signal processing parameter specifying unit 443a corresponds to the specifying unit 443 shown in FIG. 7.
  • the calculation model setting unit 441a sets, for example, the configuration of the neural network model as a calculation model based on the parameters stored in the storage unit 42.
  • the neural network model is composed of an input layer including a plurality of nodes, a hidden layer (or an intermediate layer), and a layer called an output layer, and each node is connected via an edge.
  • Each layer has a function called an activation function, and each edge is weighted.
  • setting the configuration of the neural network model means setting the number of hidden layers (or intermediate layers), the number of nodes in each layer, and the weight of each edge in addition to the input layer and the output layer.
  • the neural network model is, for example, a model of a form called CNN, RNN, or LSTM.
  • the computational model is composed of one or more CNNs, RNNs, or / and LSTMs, and is subordinated or processed in parallel.
  • the arithmetic processing unit 442a acquires information related to the reception strength of the downlink reference signal acquired by the reception processing unit 412 via the control unit 43.
  • the information related to the reception strength of the downlink reference signal is information that reflects the state of the propagation channel between the base station 20 and the terminal device 40.
  • the downlink reference signal is, for example, DMRS (DeModulation Reference Signal), CSI-RS (Channel State Information Reference Signal), SS (Synchronization Signal), or another reference signal that can estimate the characteristics of the propagation channel. Is.
  • the arithmetic processing unit 442a acquires information related to resource allocation for receiving the PDSCH included in the DCI (Downlink Control Information) of the PDCCH acquired by the reception processing unit 412 via the control unit 43.
  • the information related to the reception strength of the downlink reference signal and the information related to the resource allocation for receiving the PDSCH are input to each node of the input layer of the neural network model set by the calculation model setting unit 441a.
  • the arithmetic processing unit 442a inputs necessary information into the input layer of the neural network model set by the arithmetic model setting unit 441a, and then the arithmetic is performed. The result of the calculation is reflected in the value of each node in the output layer of the neural network model.
  • the signal processing parameter specifying unit 443a acquires the value of each node of the output layer of the above-mentioned neural network model, and each resource assigned to receive the PDSCH, that is, the MCS applied to each resource element, that is, , The order (Qm) of the modulation method, the code rate (R), and the number of layers (v) are specified. Information on the order, code rate, and number of layers of the modulation method applied to each resource element specified by the signal processing parameter specifying unit 443a is provided to the receiving processing unit 412 via the control unit 43, and the PDSCH multiplexing is performed. It is used for separation processing, demodulation processing, and decoding processing.
  • the signal processing method can be changed in any unit according to the reception quality that changes within the frequency resource.
  • the base station 20 sets a resource unit (first resource) related to the application of a predetermined signal processing including at least one signal processing of modulation processing, coding processing, and multiplexing processing. Then, the base station 20 notifies the terminal device 40 of information regarding a second resource composed of a plurality of resource units (a plurality of first resources). For example, the information about the second resource is the information about the resource unit constituting the second resource.
  • the base station 20 determines a signal processing parameter for each resource unit (for each first resource), and executes predetermined signal processing based on the determined signal processing parameter.
  • the terminal device 40 determines the signal processing parameter for each resource unit (for each first resource) determined by the base station 20. Signal processing is executed based on the determined signal processing parameters.
  • the signal processing parameter may include information on at least one of the modulation method, the coding method, and the number of layers.
  • the modulation method corresponds to, for example, the order (Qm) shown in FIG. 1
  • the coding method corresponds to, for example, the code rate (R) shown in FIG. 1
  • MIMO is applied to the number of layers. It corresponds to the number of layers (v), which is the number of streams sent and received at the same time.
  • TB Transport Block
  • Codeword a codeword
  • MCS is applied in units of TB (Transport Block), but in this embodiment, signal processing parameters can be set in units smaller than TB.
  • 10A and 10B are examples of setting the order, code rate, and number of layers of the modulation method.
  • a resource is allocated to a UE to transmit one transport block of downlink data. More specifically, a UE is assigned three resources. Each resource consists of a series of resource elements. Alternatively, it may be composed of non-consecutive resource elements.
  • FIG. 10A is an example in which the base station 20 sets the order, code rate, and number of layers of the same modulation method for three resources.
  • the order of the modulation scheme, the code rate, and the number of layers are set based on the state of the propagation channel.
  • the base station 20 sets the order, code rate, and number of layers of the modulation scheme based on the propagation channel of the resource 2 having the lowest received S / N. For example, if MCS index 8 is used, the order of the modulation method is 2, the code rate is 602/1024, and the number of layers is 1.
  • the base station 20 applies the same settings as the resource 2 to the resource 1 and the resource 3.
  • FIG. 10B is the method of this embodiment.
  • the base station 20 sets the order of the modulation method, the code rate, and the number of layers for each resource based on the state of the propagation channel for each resource. For example, the base station 20 sets the MCS index 22 and the number of layers (v) 2 in the resource 1 based on the reception S / N of the propagation channel of the resource 1. In this case, the order of the modulation method is 6, the code rate is 666/1024, and the number of layers is 2. Further, the base station 20 sets the MCS index 8 and the number of layers (v) 1 in the resource 2 based on the reception S / N of the propagation channel of the resource 2.
  • the order of the modulation method is 2, the code rate is 602/1024, and the number of layers is 1.
  • the base station 20 sets, for example, MCS index 14 and the number of layers (v) 1 in the resource 3 based on the reception S / N of the propagation channel of the resource 3.
  • the order of the modulation method is 4, the code rate is 553/1024, and the number of layers is 1.
  • the frequency utilization efficiency of the resource 2 is the same as that of the example of FIG. 10A, but the frequency utilization efficiency of the resource 1 and the resource 3 is higher than that of the case of FIG. 10A. That is, using the technique of this embodiment, the base station 20 can transmit a larger size transport block using the same resources.
  • FIG. 11 is a flowchart showing an example of the transmission process of the base station 20 according to the first embodiment.
  • the base station 20 sets a resource unit related to the application of predetermined signal processing (modulation processing, coding processing, and multiplexing processing). Then, the base station 20 notifies the terminal device 40 of the information regarding the resource unit.
  • the base station 20 determines a signal processing parameter for each set resource unit.
  • the base station 20 executes predetermined signal processing on the transmission data based on the determined signal processing parameters (modulation method, coding method, and number of layers).
  • the setting unit 232 of the control unit 23 sets information related to the configuration of the calculation model and each coefficient of the calculation model (step S101). These pieces of information may be, for example, those extracted by the extraction unit 243 and stored in the storage unit 22.
  • the setting unit 232 sets information regarding resources for downlink data transmission (step S102). This information is notified from the base station 20 to the terminal device 40 via the downlink control information, for example.
  • the setting unit 232 may set information regarding the resource unit related to the application of the predetermined signal processing in step S102.
  • the resource unit is, for example, a component carrier, a BWP (Band Width Part), a non-orthogonal resource, a resource block (Resource Block), a resource element (Resource Element), or a subcarrier (Subcarrier).
  • the resource unit may be determined based on the calculation result of the calculation unit 44.
  • the notification unit 233 of the control unit 23 notifies the terminal device 40 of information regarding the resource unit (step S103).
  • the base station 20 may notify the information regarding the resource unit by using system information or individual signaling. That is, the base station 20 can set the same resource unit for all the terminal devices 40 in the cell, or can set individual resource units for each terminal device 40.
  • the base station 20 may dynamically change this resource unit.
  • the base station 20 may set this resource unit according to the operating frequency.
  • the operating frequency may be, for example, NR-ARFCN (NR-Absolute Radio Frequency Channel Number), band number (Band Number), frequency band classification such as FR1 and FR2, and BWP-ID.
  • the base station 20 may set a resource unit according to the type of operating frequency, for example, a licensed frequency (license frequency), a shared frequency, and a license-unnecessary frequency (unlicensed frequency).
  • the acquisition unit 231 of the control unit 23 receives the uplink reference signal from the terminal device 40 via the wireless communication unit 21. Then, the acquisition unit 231 acquires information regarding the reception strength of the uplink reference signal based on the received uplink reference signal (step S104).
  • the determination unit 234 of the control unit 23 determines the signal processing parameters (modulation method, coding method, and number of layers) to be applied to each resource unit (step S105).
  • the determination unit 234 may determine the signal processing parameters for each resource unit based on the calculation result of the calculation unit 24.
  • the setting unit 241 of the calculation unit 24 sets the calculation model based on the information set in step S101. Then, the processing unit 242 of the calculation unit 24 inputs the information regarding the resource set in step S102 and the information regarding the reception strength of the uplink reference signal acquired in step S104 into the calculation model set by the setting unit 241. The output from this calculation model becomes the signal processing parameters (modulation method, coding method, and number of layers) for each resource unit.
  • the communication control unit 235 of the control unit 23 executes predetermined signal processing (modulation processing, coding processing, and multiplexing processing) for each resource unit based on the signal processing parameters determined in step S105 (step S106). ..
  • step S102 the setting unit 232 sets the resource unit based on, for example, the information related to the QoS of the downlink data.
  • the base station 20 sets the resource unit based on the network slice to which the downlink data corresponds.
  • Network slices can be identified by S-NSSAI (Single-Network Slice Selection Assistance Information), and S-NSSAI is a mandatory (required) SST (required) consisting of 8 bits that identifies the slice type. It is composed of a set of Slice / Service Type) and an optional SD (Slice Differentiator) consisting of 24 bits for distinguishing different slices in the same SST.
  • S-NSSAI Single-Network Slice Selection Assistance Information
  • S-NSSAI Single-Network Slice Selection Assistance Information
  • the setting unit 232 may set the resource unit based on the type of the application that has activated the downlink data transmission in step S102.
  • the type of application is determined, for example, based on the application name or pre-defined identification information for identifying the application.
  • FIG. 12 is a flowchart showing an example of reception processing of the terminal device 40 according to the first embodiment.
  • the terminal device 40 acquires information on a resource unit related to the application of predetermined signal processing (multiple separation processing, demodulation processing, and decoding processing) from the base station 20.
  • the terminal device 40 determines the signal processing parameters (modulation method, coding method, and number of layers) applied to the transmission data by the base station 20 for each resource unit notified from the base station 20. Then, the terminal device 40 executes signal processing on the received data based on the determined signal processing parameters.
  • the acquisition unit 431 of the control unit 43 acquires information related to the configuration of the calculation model and each coefficient of the calculation model (step S201). These information are notified from the base station 20, for example, by system information or individual signaling.
  • the acquisition unit 431 acquires information regarding the resource allocated for receiving the downlink data (step S202). This information is notified from, for example, the base station 20 via the downlink control information.
  • the acquisition unit 431 may acquire information regarding the resource unit related to the application of the predetermined signal processing in step S202.
  • the resource unit is, for example, a component carrier, a BWP (Band Width Part), a non-orthogonal resource, a resource block (Resource Block), a resource element (Resource Element), or a subcarrier (Subcarrier).
  • the information about the resource unit may be dynamically notified information or quasi-statically notified information. For example, information regarding a resource unit may be notified by system information or dedicated signaling. Further, the terminal device 40 may acquire information regarding the resource unit when randomly accessing the base station 20.
  • the acquisition unit 431 receives the downlink reference signal from the base station 20 via the wireless communication unit 41. Then, the acquisition unit 431 acquires information regarding the reception strength of the downlink reference signal based on the received downlink reference signal (step S203).
  • the determination unit 433 of the control unit 43 determines the signal processing parameters (modulation method, coding method, and number of layers) applied to each resource unit by the base station 20 (step S204).
  • the discrimination unit 433 may discriminate the signal processing parameters for each resource unit based on the calculation result of the calculation unit 44.
  • the setting unit 441 of the calculation unit 44 sets the calculation model based on the information acquired in step S201. Then, the processing unit 442 of the calculation unit 44 inputs the information regarding the resource acquired in step S202 and the information regarding the reception strength of the downlink reference signal acquired in step S203 into the calculation model set by the setting unit 441. The output from this calculation model becomes the signal processing parameters (modulation method, coding method, and number of layers) applied to each resource by the base station 20.
  • the communication control unit 434 of the control unit 43 executes predetermined signal processing (multiple separation processing, demodulation processing, and decoding processing) for each resource unit based on the signal processing parameters determined in step S204 (step S205).
  • the terminal device 40 and the base station 20 can execute optimum coding processing, modulation processing, and multiplex processing for each resource unit. This improves frequency utilization efficiency.
  • the terminal device 40 uses an arithmetic model to determine the signal processing parameters (modulation method, coding method, and number of layers) for each resource unit set by the base station 20. Therefore, the base station 20 does not have to use the downlink control information to transmit information regarding signal processing parameters for each resource unit. As a result, the overhead of individual signaling is reduced.
  • the base station 20 on the data transmitting side determines the signal processing parameters based on the reception strength of the uplink reference signal
  • the terminal device 40 on the data receiving side determines the downlink reference signal.
  • the signal processing parameters were determined based on the reception strength of. Therefore, when the reception strength of the uplink reference signal and the reception strength of the downlink reference signal are significantly different, the signal processing parameters determined by the terminal device 40 are different from the signal processing parameters determined by the base station 20. It can be expected that it will be. Therefore, in the second embodiment, the terminal device 40 acquires the signal processing parameters related to one resource unit among the plurality of resource units from the base station 20 in advance. The terminal device 40 improves the discrimination accuracy of the signal processing parameters by using the signal processing parameters acquired in advance for the discrimination.
  • FIG. 13 is a flowchart showing an example of reception processing of the terminal device 40 according to the second embodiment.
  • the operation of the base station 20 is the same as that of the first embodiment except that the signal processing parameters relating to one resource unit are transmitted to the terminal device 40, and thus the operation is omitted.
  • the operation of the terminal device 40 will be described with reference to the flowchart of FIG.
  • the following processing is executed, for example, by the control unit 43 and the calculation unit 44 of the terminal device 40.
  • the acquisition unit 431 of the control unit 43 acquires information related to the configuration of the calculation model and each coefficient of the calculation model (step S301). Then, the acquisition unit 431 acquires information about the resource allocated for receiving the downlink data (step S302). In step S302, the acquisition unit 431 may acquire information regarding the resource unit related to the application of the predetermined signal processing.
  • the predetermined signal processing includes at least one of multiplex separation processing, demodulation processing, and decoding processing.
  • the acquisition unit 431 receives the downlink reference signal from the base station 20 via the wireless communication unit 41. Then, the acquisition unit 431 acquires information regarding the reception strength of the downlink reference signal based on the received downlink reference signal (step S303).
  • the acquisition unit 431 acquires information regarding the signal processing parameters applied to one resource unit among the plurality of resource units (step S304).
  • the acquisition unit 431 may acquire this information via the downlink control information.
  • the "plurality of resource units” is, for example, a plurality of resource units constituting the resources allocated for receiving the downlink data.
  • the "resource unit” is, for example, a component carrier, a BWP (BandWidth Part), a non-orthogonal resource, a resource block, a resource element, or a subcarrier.
  • the information about the signal processing parameters includes information about at least one of the modulation scheme, the coding method, and the number of layers.
  • the determination unit 433 of the control unit 43 determines the signal processing parameters (modulation method, coding method, and number of layers) applied to each resource unit by the base station 20 (step S305).
  • the discrimination unit 433 may discriminate the signal processing parameters for each resource unit based on the calculation result of the calculation unit 44.
  • the setting unit 441 of the calculation unit 44 sets the calculation model based on the information acquired in step S301. Then, the processing unit 442 of the calculation unit 44 inputs the information regarding the resource acquired in step S302 and the information regarding the reception strength of the downlink reference signal acquired in step S303 into the calculation model set by the setting unit 441. The output from this calculation model becomes the signal processing parameters (modulation method, coding method, and number of layers) applied to each resource by the base station 20.
  • the information acquired in step S304 (information about the signal processing parameters applied to one resource unit) can give a reference in the calculation by the calculation model or can be information for calibration. By using this reference information, the terminal device 40 can relatively specify information about signal processing parameters applied to other resource units.
  • the determination unit 433 is the corresponding resource of the signal processing parameter (signal processing parameter applied to one resource unit) acquired in step S304 and the signal processing parameter for each resource unit output from the calculation unit 44. Compare the signal processing parameters of the units. Then, if the two are the same, the discrimination unit 433 uses the signal processing parameter for each resource unit output from the calculation unit 44 as the discrimination result as it is. On the other hand, if the two do not match, the discrimination unit 433 causes the calculation unit 44 to perform the calculation again by fine-tuning the information regarding the reception strength of the downlink reference signal input to the calculation model. At this time, the acquisition unit 431 may reacquire the information regarding the reception strength of the downlink reference signal. The acquisition unit 431 may reacquire the information related to the configuration of the calculation model and each coefficient of the calculation model. The determination unit 433 repeats this until they match.
  • the calculation model may be configured so that the signal processing parameters (signal processing parameters applied to one resource unit) acquired in step S304 can be input.
  • the processing unit 442 of the calculation unit 44 includes information on the resource acquired in step S302, information on the reception strength of the downlink reference signal acquired in step S303, one resource unit acquired in step S304, and this resource.
  • the signal processing parameters applied to the units are input to the calculation model set by the setting unit 441. Also with this, the discrimination unit 433 can discriminate the signal processing parameters for each resource unit.
  • the communication control unit 434 of the control unit 43 executes predetermined signal processing (multiple separation processing, demodulation processing, and decoding processing) for each resource unit based on the signal processing parameters determined in step S305 (step S306).
  • the acquisition unit 431 may acquire TBS in addition to or instead of acquiring information regarding signal processing parameters applied to one resource unit.
  • the acquired TBS is input to the calculation model set by the setting unit 441 in order to determine the signal processing parameters (modulation method, coding method, and number of layers) applied to each resource unit in step S305.
  • the terminal device 40 acquires some information of the signal processing parameters to be discriminated from the base station 20 in advance.
  • the terminal device 40 improves the discrimination accuracy of the signal processing parameters by using the information acquired in advance for the discrimination.
  • FIG. 14 is a flowchart showing an example of reception processing of the terminal device 40 according to the third embodiment.
  • the operation of the base station 20 is the same as that of the first embodiment except that some information of the signal processing parameters is transmitted to the terminal device 40, and thus the operation is omitted.
  • the operation of the terminal device 40 will be described with reference to the flowchart of FIG.
  • the following processing is executed, for example, by the control unit 43 and the calculation unit 44 of the terminal device 40.
  • the acquisition unit 431 of the control unit 43 acquires information related to the configuration of the calculation model and each coefficient of the calculation model (step S401). Then, the acquisition unit 431 acquires information about the resource allocated for receiving the downlink data (step S402). In step S402, the acquisition unit 431 may acquire information regarding the resource unit related to the application of the predetermined signal processing.
  • the predetermined signal processing includes at least one of multiplex separation processing, demodulation processing, and decoding processing.
  • the acquisition unit 431 receives the downlink reference signal from the base station 20 via the wireless communication unit 41. Then, the acquisition unit 431 acquires information regarding the reception strength of the downlink reference signal based on the received downlink reference signal (step S403).
  • the acquisition unit 431 is information on one parameter (hereinafter, referred to as a predetermined parameter) among a plurality of types of parameters included in the signal processing parameter, and is information on all predetermined parameters in a plurality of resource units.
  • a predetermined parameter may include a modulation method, a coding method, and the number of layers.
  • the predetermined parameter may be one of a modulation method, a coding method, and the number of layers.
  • the predetermined parameters may all have the same value in a plurality of resource units.
  • the other parameters of the plurality of types of parameters may have different values for each resource unit.
  • the code rate may be the same value for all resource units, and other parameters (modulation method and number of layers) may be different values for each resource unit.
  • the predetermined parameter is not limited to the code rate, and may be a modulation method or the number of layers.
  • the determination unit 433 of the control unit 43 determines the signal processing parameters (modulation method, coding method, and number of layers) applied to each resource unit by the base station 20 (step S405).
  • the discrimination unit 433 may discriminate the signal processing parameters for each resource unit based on the calculation result of the calculation unit 44.
  • the setting unit 441 of the calculation unit 44 sets the calculation model based on the information acquired in step S401. Then, the processing unit 442 of the calculation unit 44 inputs the information regarding the resource acquired in step S402 and the information regarding the reception strength of the downlink reference signal acquired in step S403 into the calculation model set by the setting unit 441. The output from this calculation model becomes the signal processing parameters (modulation method, coding method, and number of layers) applied to each resource by the base station 20.
  • the information acquired in step S404 (information on all predetermined parameters of a plurality of resource units) can be information that gives a reference in the calculation by the calculation model.
  • the terminal device 40 can relatively specify information about signal processing parameters applied to other resource units.
  • the discrimination unit 433 sets a predetermined parameter among the signal processing parameters (all predetermined parameters of the plurality of resource units) acquired in step S404 and the signal processing parameters for each resource unit output from the calculation unit 44. compare. Then, if the two are the same, the discrimination unit 433 uses the signal processing parameter for each resource unit output from the calculation unit 44 as the discrimination result as it is. On the other hand, if the two do not match, the discrimination unit 433 causes the calculation unit 44 to perform the calculation again by fine-tuning the information regarding the reception strength of the downlink reference signal input to the calculation model. At this time, the acquisition unit 431 may reacquire the information regarding the reception strength of the downlink reference signal. The acquisition unit 431 may reacquire the information related to the configuration of the calculation model and each coefficient of the calculation model. The determination unit 433 repeats this until they match.
  • the calculation model may be configured so that the signal processing parameters (all predetermined parameters of a plurality of resource units) acquired in step S404 can be input. Then, the processing unit 442 of the calculation unit 44 sets the information regarding the resource acquired in step S402, the information regarding the reception strength of the downlink reference signal acquired in step S403, and the predetermined parameter acquired in step S404. Input to the calculation model set by 441. Also with this, the discrimination unit 433 can discriminate the signal processing parameters for each resource unit.
  • the base station 20 may set one predetermined parameter for all of the plurality of resource units.
  • the predetermined parameter is the modulation method, for example, 16QAM having a degree of 4 is set.
  • the predetermined parameter is a code rate, for example, a range of 378/1024 or more and 438/1024 is set. If the predetermined parameter is the number of layers, for example, one layer is set.
  • the communication control unit 434 of the control unit 43 executes predetermined signal processing (multiple separation processing, demodulation processing, and decoding processing) for each resource unit based on the signal processing parameters determined in step S405 (step S406).
  • the terminal device 40 acquires information characteristic of the signal processing parameter to be discriminated (for example, the number of adjacent resource units to which the same signal processing parameter is applied) from the base station 20 in advance. I will do it.
  • the terminal device 40 improves the discrimination accuracy of the signal processing parameters by using the information acquired in advance for the discrimination.
  • FIG. 15 is a flowchart showing an example of reception processing of the terminal device 40 according to the fourth embodiment.
  • the operation of the base station 20 is the same as that of the first embodiment except that the information characteristic of the signal processing parameters is transmitted to the terminal device 40, and thus the operation is omitted.
  • the operation of the terminal device 40 will be described with reference to the flowchart of FIG.
  • the following processing is executed, for example, by the control unit 43 and the calculation unit 44 of the terminal device 40.
  • the acquisition unit 431 of the control unit 43 acquires information related to the configuration of the calculation model and each coefficient of the calculation model (step S501). Then, the acquisition unit 431 acquires information about the resource allocated for receiving the downlink data (step S502). In step S502, the acquisition unit 431 may acquire information regarding the resource unit related to the application of the predetermined signal processing.
  • the predetermined signal processing includes at least one of multiplex separation processing, demodulation processing, and decoding processing.
  • the acquisition unit 431 receives the downlink reference signal from the base station 20 via the wireless communication unit 41. Then, the acquisition unit 431 acquires information regarding the reception strength of the downlink reference signal based on the received downlink reference signal (step S503).
  • the acquisition unit 431 acquires information on the number of adjacent resource units to which the same signal processing parameters are applied from the base station 20 (step S504). For example, when the same signal processing parameters (for example, modulation method, coding method, and number of layers) are applied to four adjacent resource elements, the acquisition unit 431 sets the number of consecutive resource units to 4. To get.
  • the same signal processing parameters for example, modulation method, coding method, and number of layers
  • the determination unit 433 of the control unit 43 determines the signal processing parameters (modulation method, coding method, and number of layers) applied to each resource unit by the base station 20 (step S505).
  • the discrimination unit 433 may discriminate the signal processing parameters for each resource unit based on the calculation result of the calculation unit 44.
  • the setting unit 441 of the calculation unit 44 sets the calculation model based on the information acquired in step S501. Then, the processing unit 442 of the calculation unit 44 inputs the information regarding the resource acquired in step S502 and the information regarding the reception strength of the downlink reference signal acquired in step S503 into the calculation model set by the setting unit 441. The output from this calculation model becomes the signal processing parameters (modulation method, coding method, and number of layers) applied to each resource by the base station 20.
  • the information acquired in step S504 (information regarding the number of adjacent resource units to which the same signal processing parameter is applied) can be information that gives a reference in the calculation by the calculation model.
  • the terminal device 40 can relatively specify information about signal processing parameters applied to other resource units.
  • the discrimination unit 433 among the signal processing parameters for each resource unit output from the calculation unit 44, does the same signal processing parameter exist in the number acquired in step S504 (hereinafter referred to as a predetermined number)? Determine. If a predetermined number of the same signal processing parameters exist, the determination unit 433 uses the signal processing parameters for each resource unit output from the calculation unit 44 as the determination result as it is. On the other hand, if a predetermined number does not exist, the discrimination unit 433 causes the calculation unit 44 to perform the calculation again by finely adjusting the information regarding the reception strength of the downlink reference signal input to the calculation model. At this time, the acquisition unit 431 may reacquire the information regarding the reception strength of the downlink reference signal. The acquisition unit 431 may reacquire the information related to the configuration of the calculation model and each coefficient of the calculation model. The determination unit 433 repeats this until they match.
  • the calculation model may be configured so that the signal processing parameters acquired in step S504 (information regarding the number of adjacent resource units to which the same signal processing parameters are applied) can be input. Then, the processing unit 442 of the calculation unit 44 sets the information regarding the resource acquired in step S402, the information regarding the reception strength of the downlink reference signal acquired in step S403, and the information acquired in step S504 by the setting unit 441. Input to the set calculation model. Also with this, the discrimination unit 433 can discriminate the signal processing parameters for each resource unit.
  • the communication control unit 434 of the control unit 43 executes predetermined signal processing (multiple separation processing, demodulation processing, and decoding processing) for each resource unit based on the signal processing parameters determined in step S505 (step S406).
  • FIG. 16A and 16B are diagrams showing the relationship between mobility and propagation channels.
  • FIG. 16A is a diagram showing the state of the propagation channel when the moving speed of the terminal device 40 is 3 km / h
  • FIG. 16B is a diagram showing the state of the propagation channel when the moving speed is 300 km / h.
  • the change in the state of the propagation channel in the time direction due to fading is small.
  • the change in the state of the propagation channel in the time direction due to fading is large, and the frequency of the drop of the reception S / N called the notch is also changing. Therefore, when different signal processing parameters (modulation method, coding method, and number of layers) are applied for each finer resource unit, the change in notch frequency due to this fading deteriorates the reception performance of the terminal device 40. There is a concern that it will be invited.
  • the base station 20 controls the resource unit according to the mobility of the terminal device 40. For example, when the mobility of the terminal device 40 is determined to be smaller than a predetermined reference (for example, in the case of FIG. 16A), the base station 20 reduces the resource unit so that the frequency can be used efficiently. On the other hand, when it is determined that the mobility of the terminal device 40 is larger than a predetermined reference (for example, in the case of FIG. 16B), the base station 20 increases the resource unit to absorb the influence of fading.
  • a predetermined reference for example, in the case of FIG. 16A
  • the base station 20 increases the resource unit to absorb the influence of fading.
  • FIG. 17 is a flowchart showing an example of the transmission process of the base station 20 according to the fifth embodiment.
  • the operation of the terminal device 40 is the same as that of the first to fourth embodiments except that the information regarding the mobility of the terminal device 40 is transmitted to the base station 20, and thus is omitted.
  • the operation of the base station 20 will be described with reference to the flowchart of FIG. The following processing is executed, for example, by the control unit 23 and the calculation unit 24 of the base station 20.
  • the setting unit 232 of the control unit 23 sets information related to the configuration of the calculation model and each coefficient of the calculation model (step S601).
  • the acquisition unit 231 of the control unit 23 acquires information regarding the mobility of the terminal device 40 via the wireless communication unit 21 (step S602).
  • Various methods can be considered as a method for acquiring information on mobility.
  • a method in which the terminal device 40 reports the information related to mobility to the base station 20 can be considered.
  • the information regarding mobility reported by the terminal device 40 may be the UE mobility status.
  • the UE mobility status transitions to the Normal-mobility status, the Medium-mobility status, or the High-mobility status according to the number of cell changes that occur within the specified period.
  • the terminal device 40 when the terminal device 40 is equipped with GNSS (Global Navigation Satellite System) represented by GPS (Global Positioning System), the terminal device 40 detects its own position in a fixed or variable cycle. Then, the movement speed is calculated based on the change in position. Then, the terminal device 40 may report the calculated movement speed as information related to mobility.
  • GNSS Global Navigation Satellite System
  • the terminal device 40 or a device equipped with the terminal device 40 for example, a vehicle
  • the terminal device 40 reports the detected moving speed as information on mobility. You may.
  • the base station 20 calculates the mobility of the terminal device 40 is also conceivable.
  • the base station 20 acquires information related to the dynamic position of the terminal device 40 via the LMF (Location Management Function) and calculates the mobility of the terminal device 40.
  • LMF Location Management Function
  • LMF is OTDOA (Observed Time Difference Of Arrival), Multi-RTT (Round Trip Time), DL AoD (Downlink Angle-of-Departure), DL TDOA (Downlink Time Difference of Arrival), UL TDOA (Uplink Time) ), UL AoA (Angle of Arrival), or a positioning technique using a CID (Cell ID) to acquire information related to the position of the terminal device 40.
  • OTDOA Observed Time Difference Of Arrival
  • Multi-RTT Round Trip Time
  • DL AoD Downlink Angle-of-Departure
  • DL TDOA Downlink Time Difference of Arrival
  • UL TDOA Uplink Time
  • UL AoA Angle of Arrival
  • CID Cell ID
  • the terminal device 40 receives downlink PRS (Positioning Reference Signal) from a plurality of TPs (Transmission Points), and measured values related to Physical cell ID, Global cell ID, TP ID, and PRS timing. Is reported to the LMF via the LPP (LTE Positioning Protocol), and the LMF calculates the position of the terminal device 40 based on the information on the known coordinates of each TP measured and the relative timing of the reported PRS. ..
  • PRS Physical Cell ID
  • LPP LTE Positioning Protocol
  • the LMF calculates the position of the terminal device 40 based on the information on the known coordinates of the ng-eNB or gNB and the following measurement results reported from the terminal device 40.
  • the terminal device 40 uses, for example, ECGI (Evolved Cell Global Identifier) or Physical Cell ID, RSRP (Reference Signal Received Power), RSRQ (Reference Signal Received Quality), and UE Rx-Tx time difference as the LMF. Report.
  • the UE Rx-Tx time difference is defined as the time difference between the timing received by the terminal device 40 and the timing of transmission.
  • the acquisition unit 231 may acquire information on mobility by using an arithmetic model.
  • the arithmetic unit 24 of the base station 20 inputs the reception strength of the uplink reference signal assigned over the frequency axis and the time axis to the CNN.
  • the CNN outputs information about mobility based on the characteristics of two-dimensional information about the reception strength of the uplink reference signal.
  • the acquisition unit 231 acquires the output information as information related to the mobility of the terminal device 40.
  • the setting unit 232 sets information regarding resources for downlink data transmission (step S603). This information is notified from the base station 20 to the terminal device 40 via the downlink control information, for example.
  • the setting unit 232 may set information regarding the resource unit related to the application of the predetermined signal processing in step S603. At this time, the setting unit 232 sets a resource unit to which different signal processing parameters (modulation method, coding method, and number of layers) are applied based on the mobility of the terminal device 40.
  • the setting unit 232 sets a small resource unit when the mobility of the terminal device 40 is small, and sets a large resource unit when the mobility of the terminal device 40 is large.
  • the notification unit 233 of the control unit 23 notifies the terminal device 40 of information regarding the resource unit (step S604). Then, the acquisition unit 231 of the control unit 23 receives the uplink reference signal from the terminal device 40 via the wireless communication unit 21. Then, the acquisition unit 231 acquires information regarding the reception strength of the uplink reference signal based on the received uplink reference signal (step S605).
  • the determination unit 234 of the control unit 23 determines the signal processing parameters (modulation method, coding method, and number of layers) to be applied to each resource unit (step S606). At this time, the determination unit 234 may determine the signal processing parameter for each resource unit based on the calculation result of the calculation unit 24.
  • the communication control unit 235 of the control unit 23 executes predetermined signal processing (modulation processing, coding processing, and multiplexing processing) for each resource unit based on the signal processing parameters determined in step S606 (step). S607).
  • step S604 the notification unit 233 of the control unit 23 notifies the terminal device 40 of information regarding the resource unit corresponding to the plurality of mobility, and the same signal processing parameter is used based on the mobility detected by the terminal device 40.
  • the terminal device 40 may determine the resource unit to which the above is applied.
  • the embodiment in which the signal processing parameters are determined by the mobility of the terminal device 40 has been shown, but the mobility information of the base station 20 and the attributes of the base station 20 may be used to determine the signal processing parameters.
  • the mobility information of the base station 20 and the attribute information of the base station 20 such as a low orbit satellite, a geostationary satellite, and a ground base station may be used to determine the signal processing parameters. Further, these pieces of information may be notified to the terminal device 40.
  • the base station 20 executed the downlink data transmission process
  • the terminal device 40 executed the downlink data reception process.
  • the above-mentioned Examples 1 to 5 can be modified to send and receive uplink data.
  • the base station 20 sets a resource unit related to the application of predetermined signal processing (for example, modulation processing, coding processing, and multiplexing processing), and notifies the terminal device 40.
  • the terminal device 40 acquires information about the resources allocated for transmitting uplink data and the resource unit from the base station, and applies signal processing parameters (for example, modulation method, etc.) to the resources allocated for each resource unit. Specify the coding method and the number of layers).
  • the terminal device 40 may specify the signal processing parameter by using the calculation model.
  • the terminal device 40 performs signal processing of uplink data using the signal processing parameters for each specified resource unit.
  • the base station 20 determines the signal processing parameter for each resource unit.
  • the base station 20 may determine the signal processing parameters by using the calculation model. Then, the base station 20 performs signal processing of the uplink data received from the terminal device 40 by using the determined signal processing parameters for each resource unit. Also in the case of this modification, the optimum coding process, modulation process, and multiplex process can be executed for each resource unit. This improves frequency utilization efficiency.
  • the base station 20 executed the relink data transmission process
  • the terminal device 40 executed the downlink data reception process.
  • the above-mentioned Examples 1 to 5 can be modified to send and receive side link data.
  • the terminal device 40 sets a resource unit related to the application of predetermined signal processing (for example, modulation processing, coding processing, and multiplexing processing), and notifies another terminal device xx.
  • Another terminal device xx acquires information about the resources allocated for transmitting side link data and the resource unit from the terminal device 40, and applies signal processing parameters (for example, for example) to the resources allocated to each resource unit. Modulation method, coding method, and number of layers) are specified.
  • another terminal device xx may specify the signal processing parameter by using the calculation model.
  • another terminal device xx performs signal processing of the side link data using the signal processing parameters for each specified resource unit.
  • the terminal device 40 determines the signal processing parameter for each resource unit.
  • the terminal device 40 may determine the signal processing parameter using the calculation model. Then, the terminal device 40 performs signal processing of the side link data received from another terminal device xx by using the signal processing parameter for each resource unit determined. Also in the case of this modification, the optimum coding process, modulation process, and multiplex process can be executed for each resource unit. This improves frequency utilization efficiency.
  • the terminal device 40 when the terminal device 40 receives the downlink data corresponding to one TB (Transport Block), it is applied to the downlink data by using an arithmetic model or the like. I identified the signal processing parameters that I have. However, the method by which the terminal device 40 determines the signal processing parameter is not limited to this. For example, the base station 20 may notify the terminal device 40 of the signal processing parameters applied to the downlink data for each TB or each resource.
  • the terminal device 40 specifies the signal processing parameter by itself or acquires the signal processing parameter from the base station 20 may be dynamically and selectively controlled based on the notification from the base station 20. good.
  • the base station 20 sets this reception method based on the UE Radio Capacity information sent from the terminal device 40. That is, the terminal device 40 may specify and receive the applied signal processing parameters by itself without notifying the UE Radio Capability information of the signal processing parameters applied to each resource unit by the base station 20. It contains information on whether or not it has the capabilities it can. Then, the terminal device 40 determines the signal processing parameter based on the set reception method.
  • the operating frequency is NR-ARFCN (NR-Absolute Radio Frequency Channel Number), band number (Band Number), frequency band classification such as FR1 and FR2, BWP-ID, or type of operating frequency, for example, license. It may be classified into frequency (licensed frequency), shared frequency, and unlicensed frequency (unlicensed frequency).
  • NR-ARFCN NR-Absolute Radio Frequency Channel Number
  • Band Number Band Number
  • BWP-ID frequency band classification
  • type of operating frequency for example, license. It may be classified into frequency (licensed frequency), shared frequency, and unlicensed frequency (unlicensed frequency).
  • the base station 20 determines the resource unit, but the terminal device 40 or the relay station 30 may determine the resource unit.
  • a device other than the communication device for example, the base station 20, the relay station 30, and the terminal device 40
  • the management device 10 may determine a resource unit used for communication between the base station 20 and the terminal device 40. Then, the management device 10 may notify the base station 20 and / or the terminal device 40 of the determined signal processing method. The base station 20 and / or the terminal device 40 may determine a resource unit to be used for communication based on the resource unit information notified from the management device 10.
  • the management device 10 may store the capability information regarding the resource unit of the terminal device 40.
  • the capability information may include information indicating whether or not the terminal device 40 can change the resource unit.
  • the management device 10 may notify the base station 20 of the capability information.
  • the base station 20 may determine the notification method and the resource unit of the signal processing parameters used in the communication with the terminal device 40 based on the capability information received from the management device 10.
  • the base station 20 determines the signal processing parameters (for example, the modulation method, the coding method, and the number of layers) based on the information on the state of the propagation channel.
  • the information on the state of the propagation channel is not limited to the S / N of the uplink reference signal.
  • the base station 20 may be a measurement result of a downlink reference signal fed back from the terminal device 40.
  • the control device for controlling the management device 10, the base station 20, the relay station 30, and the terminal device 40 of the present embodiment may be realized by a dedicated computer system or a general-purpose computer system.
  • a communication program for executing the above operation is stored and distributed in a computer-readable recording medium such as an optical disk, a semiconductor memory, a magnetic tape, or a flexible disk.
  • the control device is configured by installing the program in a computer and executing the above-mentioned processing.
  • the control device may be an external device (for example, a personal computer) of the management device 10, the base station 20, the relay station 30, and the terminal device 40.
  • the control device includes a management device 10, a base station 20, a relay station 30, a device inside the terminal device 40 (for example, a control unit 13, a control unit 23, a control unit 33, a control unit 43, a calculation unit 24, and a calculation unit). 34, the calculation unit 44) may be used.
  • the above communication program may be stored in a disk device provided in a server device on a network such as the Internet so that it can be downloaded to a computer or the like.
  • the above-mentioned functions may be realized by cooperation between the OS (Operating System) and the application software.
  • the part other than the OS may be stored in a medium and distributed, or the part other than the OS may be stored in the server device so that it can be downloaded to a computer or the like.
  • each component of each device shown in the figure is a functional concept, and does not necessarily have to be physically configured as shown in the figure. That is, the specific form of distribution / integration of each device is not limited to the one shown in the figure, and all or part of them may be functionally or physically distributed / physically in arbitrary units according to various loads and usage conditions. Can be integrated and configured. The configuration by this distribution / integration may be dynamically performed.
  • the present embodiment includes a device or any configuration constituting the system, for example, a processor as a system LSI (Large Scale Integration), a module using a plurality of processors, a unit using a plurality of modules, and a unit. It can also be implemented as a set or the like (that is, a configuration of a part of the device) to which other functions are added.
  • a processor as a system LSI (Large Scale Integration)
  • a module using a plurality of processors a unit using a plurality of modules
  • a unit that is, a configuration of a part of the device
  • the system means a set of a plurality of components (devices, modules (parts), etc.), and it does not matter whether all the components are in the same housing. Therefore, a plurality of devices housed in separate housings and connected via a network, and a device in which a plurality of modules are housed in one housing are both systems. ..
  • the present embodiment can have a cloud computing configuration in which one function is shared by a plurality of devices via a network and jointly processed.
  • the base station 20 relates to the application of a predetermined signal processing including at least one signal processing of modulation processing, coding processing, and multiplexing processing.
  • a predetermined signal processing including at least one signal processing of modulation processing, coding processing, and multiplexing processing.
  • the base station 20 notifies the terminal device 40 of the information regarding the resource unit.
  • the terminal device 40 acquires information about a resource unit related to the application of a predetermined signal processing from the base station 20, and includes at least one information of a modulation method, a coding method, and the number of layers for each resource unit. Determine the signal processing parameters.
  • the base station 20 and the terminal device 40 can change the signal processing parameters in any unit (for example, a unit smaller than TB), so that the reception quality can be improved within the frequency resource assigned to one TB, for example. Even if a situation that changes significantly occurs, communication can be performed with the optimum signal processing parameters. As a result, more efficient use of frequency is achieved.
  • the “determine” in the present specification may be “specified”. Further, these may be “identify”, “select”, “be expected”, “interpret”, and “assume”.
  • the present technology can also have the following configurations.
  • An acquisition unit that acquires information about a second resource consisting of a plurality of first resources from other communication devices, and an acquisition unit.
  • a discriminator that determines signal processing parameters that include information about at least one of a modulation scheme, a coding method, and the number of layers applied to each of the first resources, based on the information about the second resource.
  • the acquisition unit acquires information on the state of the propagation channel used for wireless communication, and obtains information.
  • the discriminating unit discriminates the signal processing parameter for each of the first resources based on the information regarding the state of the propagation channel.
  • the communication device according to (1) above.
  • the acquisition unit acquires information on the reception strength of the reference signal transmitted via the propagation channel as information on the state of the propagation channel.
  • the discriminating unit discriminates the signal processing parameter for each of the first resources based on the information regarding the reception strength of the reference signal.
  • the other communication device is a base station that sets the signal processing parameters for each of the first resources and transmits downlink data.
  • the discriminating unit discriminates the signal processing parameters set by the base station for each of the first resources based on the information regarding the reception strength of the reference signal transmitted from the base station via the propagation channel.
  • the acquisition unit acquires from the base station information about an arithmetic model in which information on reception strength of a reference signal transmitted via the propagation channel is at least input and information on signal processing parameters is at least output.
  • the discriminating unit inputs information on the reception strength of the reference signal transmitted from the base station via the propagation channel to the calculation model, so that the signal set by the base station for each of the first resources. Determine processing parameters, The communication device according to (4) above.
  • the acquisition unit acquires information regarding the signal processing parameter applied to the first resource of one of the plurality of first resources from the base station.
  • the discriminating unit includes information on the reception strength of a reference signal transmitted from the base station via the propagation channel, and the signal applied to the first resource of one of the plurality of first resources.
  • the acquisition unit is information on a predetermined parameter which is one of a plurality of types of parameters included in the signal processing parameter, and information on all the predetermined parameters of the plurality of first resources. Obtained from the base station
  • the discriminating unit is based on information about the reception strength of a reference signal transmitted from the base station via the propagation channel and information about all the signal processing parameters of the plurality of first resources. Determine the signal processing parameters set by the base station for each of the first resources.
  • the communication device according to (5) above.
  • the predetermined parameter is one of a modulation method, a coding method, and the number of layers.
  • the communication device according to (7) above.
  • the predetermined parameters are all the same value in the plurality of first resources.
  • the acquisition unit acquires information from the base station regarding the number of adjacent first resources to which the same signal processing parameters are applied.
  • the discriminator includes information about the reception strength of a reference signal transmitted from the base station over the propagation channel and information about the number of adjacent first resources to which the same signal processing parameters apply. By inputting to the calculation model, the signal processing parameters set by the base station for each of the first resources are determined.
  • the communication device according to (5) above.
  • the first resource is a subcarrier, a resource element, or a resource block.
  • the discriminating unit discriminates at least one of the modulation method, the coding method, and the number of layers to be applied for each subcarrier, resource element, or resource block.
  • the communication device according to any one of (1) to (10) above.
  • the acquisition unit acquires information related to the first resource via system information or dedicated signaling.
  • the communication device according to any one of (1) to (11).
  • (13) Contains information about at least one of a modulation scheme, a coding method, and a number of layers applied to each of the first resources based on information about a second resource composed of a plurality of first resources.
  • a transmitter that transmits information about the second resource to another communication device that determines signal processing parameters.
  • the acquisition unit which acquires information on the mobility of the other communication device, is provided.
  • the setting unit sets the first resource having a different size depending on the mobility of the other communication device.
  • Each of the first resources includes a modulation scheme, a coding method, and a determination unit for determining signal processing parameters including at least one of the number of layers.
  • the other communication device is a terminal device that receives downlink data transmitted by the communication device.
  • the determination unit sets the signal processing for each of the first resources when transmitting the downlink data based on the information regarding the reception strength of the reference signal transmitted from the terminal device via the propagation channel. Determine the parameters, The communication device according to (15) above.
  • the base station is A transmission unit for transmitting information about a second resource composed of a plurality of first resources to the terminal device is provided.
  • the terminal device is An acquisition unit that acquires information about a second resource composed of a plurality of first resources from the base station, and an acquisition unit.
  • a discriminator that determines signal processing parameters that include information about at least one of a modulation scheme, a coding method, and the number of layers applied to each of the first resources, based on the information about the second resource. And, with Communications system.
  • Communication system 10 Management device 20 Base station 30 Relay station 40 Terminal device 11 Communication unit 21, 31, 41 Wireless communication unit 12, 22, 32, 42 Storage unit 13, 23, 33, 43 Control unit 24, 34, 44 Calculation Unit 211, 311, 411 Transmission processing unit 212, 312, 412 Reception processing unit 213, 313, 413 Antenna 231, 431 Acquisition unit 232, 241 432, 441 Setting unit 233 Notification unit 234 Decision unit 235, 434 Communication control unit 433 Discrimination unit 242, 442 Processing unit 243 Extraction unit 443 Specific unit

Landscapes

  • Engineering & Computer Science (AREA)
  • Quality & Reliability (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

通信装置は、複数の第一のリソースから構成される第二のリソースに関する情報を他の通信装置から取得する取得部と、前記第二のリソースに関する情報に基づいて、前記第一のリソース毎に適用される、変調方式、符号化方法、及びレイヤ数のうちの少なくとも1つに関する情報を含む信号処理パラメータを判別する判別部と、を備える。

Description

通信装置、通信方法、及び通信システム
 本開示は、通信装置、通信方法、及び通信システムに関する。
 通信技術の進展による通信需要の増大に伴い、電波資源の枯渇が問題になっている。近年、NR(New Radio)等の次世代の無線アクセス技術(RAT:Radio Access Technology)を用いた様々なユースケースが提案されており、各システムにおいて十分なリソースを確保するためにも、周波数の効率的利用が重要となっている。
特開2013-157695号公報 特開2020-99091号公報
 3GPPでは変調方式、符号化方法、及びレイヤ数は、所定の無線品質に対応する所定の値が定められている。従来技術では、時間軸多重された複数の無線リソース(例えば、複数のリソースブロック、複数のRBG(Resource Block Group)に対して、共通した変調方式、符号化方法、及びレイヤ数が用いられていた。しかしながら、無線品質は時間ごとに異なりうるため、複数の無線リソースに対して、共通した変調方式、符号化方法、及びレイヤ数を用いると、十分に無線品質を考慮した値を使用することができず、周波数利用効率が高い変調方法が使用可能な周波数帯にまで、周波数利用効率が低い変調方法を適用する場合がある。この場合、周波数利用効率が必要以上に低下する。
 そこで、本開示では、周波数の効率的利用が可能な通信装置、通信方法、及び通信システムを提案する。
 なお、上記課題又は目的は、本明細書に開示される複数の実施形態が解決し得、又は達成し得る複数の課題又は目的の1つに過ぎない。
 上記の課題を解決するために、本開示に係る一形態の通信装置は、複数の第一のリソースから構成される第二のリソースに関する情報を他の通信装置から取得する取得部と、前記第二のリソースに関する情報に基づいて、前記第一のリソース毎に適用される、変調方式、符号化方法、及びレイヤ数のうちの少なくとも1つに関する情報を含む信号処理パラメータを判別する判別部と、を備える。
NRで定義されているPDSCH用のMCSテーブルの一例である。 伝搬チャネルと無線リソース割り当ての関係の一例を示す図である。 伝搬チャネルと無線リソース割り当ての関係の一例を示す図である。 本開示の実施形態に係る通信システムの構成例を示す図である。 本開示の実施形態に係る管理装置の構成例を示す図である。 本開示の実施形態に係る基地局の構成例を示す図である。 本開示の実施形態に係る中継局の構成例を示す図である。 本開示の実施形態に係る端末装置の構成例を示す図である。 基地局の演算部の構成例である。 端末装置の演算部の構成例である。 変調方式の次数、コードレート、及びレイヤ数の設定の一例である。 変調方式の次数、コードレート、及びレイヤ数の設定の一例である。 第1の実施例に係る基地局の送信処理の一例を示すフローチャートである。 第1の実施例に係る端末装置の受信処理の一例を示すフローチャートである。 第2の実施例に係る端末装置の受信処理の一例を示すフローチャートである。 第3の実施例に係る端末装置の受信処理の一例を示すフローチャートである。 第4の実施例に係る端末装置の受信処理の一例を示すフローチャートである。 モビリティと伝搬チャネルの関係を示す図である。 モビリティと伝搬チャネルの関係を示す図である。 第5の実施例に係る基地局の送信処理の一例を示すフローチャートである。
 以下に、本開示の実施形態について図面に基づいて詳細に説明する。なお、以下の各実施形態において、同一の部位には同一の符号を付することにより重複する説明を省略する。
 また、本明細書及び図面において、実質的に同一の機能構成を有する複数の構成要素を、同一の符号の後に異なる数字を付して区別する場合もある。例えば、実質的に同一の機能構成を有する複数の構成を、必要に応じて端末装置40、40、及び40のように区別する。ただし、実質的に同一の機能構成を有する複数の構成要素の各々を特に区別する必要がない場合、同一符号のみを付する。例えば、端末装置40、40、及び40を特に区別する必要が無い場合には、単に端末装置40と称する。
 以下に説明される1又は複数の実施形態(実施例、変形例を含む)は、各々が独立に実施されることが可能である。一方で、以下に説明される複数の実施形態は少なくとも一部が他の実施形態の少なくとも一部と適宜組み合わせて実施されてもよい。これら複数の実施形態は、互いに異なる新規な特徴を含み得る。したがって、これら複数の実施形態は、互いに異なる目的又は課題を解決することに寄与し得、互いに異なる効果を奏し得る。
 また、以下に示す項目順序に従って本開示を説明する。
  1.概要
  2.通信システムの構成
   2-1.通信システムの全体構成
   2-2.管理装置の構成
   2-3.基地局の構成
   2-4.中継局の構成
   2-5.端末装置の構成
  3.演算部の構成例
   3-1.基地局の演算部の構成例
   3-2.端末装置の演算部の構成例
  4.本実施形態の処理
   4-1.処理の概要
   4-2.第1の実施例
   4-3.第2の実施例
   4-4.第3の実施例
   4-5.第4の実施例
   4-6.第5の実施例
  5.変形例
  6.むすび
<<1.概要>>
<1-1.課題の概要>
 LTE(Long Term Evolution)、NR(New Radio)等の無線アクセス技術(RAT:Radio Access Technology)が3GPP(3rd Generation Partnership Project)で検討されている。LTE及びNRは、セルラー通信技術の一種であり、基地局がカバーするエリアをセル状に複数配置することで端末装置の移動通信を可能にする。このとき、単一の基地局は複数のセルを管理してもよい。
 なお、以下の説明では、「LTE」には、LTE-A(LTE-Advanced)、LTE-A Pro(LTE-Advanced Pro)、及びE-UTRA(Evolved Universal Terrestrial Radio Access)が含まれるものとする。また、NRには、NRAT(New Radio Access Technology)、及びFE-UTRA(Further E-UTRA)が含まれるものとする。なお、単一の基地局は複数のセルを管理してもよい。以下の説明において、LTEに対応するセルはLTEセルと呼称され、NRに対応するセルはNRセルと呼称される。
 NRは、LTEの次の世代(第5世代:5G)の無線アクセス技術(RAT)である。NRは、eMBB(Enhanced Mobile Broadband)、mMTC(Massive Machine Type Communications)及びURLLC(Ultra-Reliable and Low Latency Communications)を含む様々なユースケースに対応できる無線アクセス技術である。NRは、これらのユースケースにおける利用シナリオ、要求条件、及び配置シナリオなどに対応する技術フレームワークを目指して検討されている。5Gでは広い帯域を確保できるミリ波帯の活用が期待されている。また、5Gでは、バーティカルと呼ばれるテレコム以外の産業、例えば、製造業での活用が期待され、超高速、或いは、低遅延・高信頼に関してさらなる拡張が行われる見通しである。
 5Gでは、超高速、低遅延・高信頼、多数同時接続という特徴から、4Kや8Kの動画の伝送が期待されている。今後、Beyond5G、さらには、6Gに向けて、超高速、低遅延・高信頼、多数同時接続という特徴のさらなる向上が望まれており、より広い帯域が確保できるテラヘルツ帯での動作も考えられている。
 各UE(User Equipment)には、より多くの周波数リソースが割り当てられるが、超高速、低遅延・高信頼、多数同時接続という特徴のさらなる向上のためには、周波数の更なる効率的利用が欠かせない。しかしながら、従来の方法では、周波数の更なる効率的利用が実現するとは限らない。
 周波数の更なる効率的利用のため、伝搬チャネルの状態に合わせて信号処理方法(例えば、変調方法、コーディング)を変化させることが考えられる。例えば、従来の技術では、MCS(Modulation and Coding Scheme)をTB(Transport Block)単位で変化させることが可能である。しかし、この方法の場合、1つのTBに割り当てられる周波数リソース内で受信品質が大きく変化した場合、基地局は、せっかく周波数利用効率の高いMCSを適用する余地があるにも関わらず、周波数リソース内の受信品質の低いところに合わせてMCSを選択せざるを得ない。こうなると、周波数の利用効率は低下する。
 なお、従来の技術では、MCSは、PDCCH(Physical Downlink Control Channel)を介してDCI(Downlink Control Information)で通知される。1つのDCIでは最大2つのコードワード(codeword)のそれぞれに対応するTBに関する情報の1つとして、MCSが通知される。つまり、各TBに関してTB単位で適用されるMCSのみが通知される。より多くの周波数リソースを割り当て、かつ、割り当てられた周波数リソース内の受信品質に合わせて複数のMCSを適用しようとすると、DCIで通知する情報のオーバーヘッド増加が懸念される。
<1-2.課題の詳細>
 以下、上記課題をより詳しく説明する。
 PDSCH(Physical downlink shared channel)は、ダウンリンクにおけるユーザーデータ(ダウンリンク・データ)を伝送するための物理チャンネルである。PDCCH(Physical Downlink Control Channel)は、ダウンリンクにおける制御情報を伝送するための物理チャンネルであり、例えば、PDSCHのダウンリンクデータをスケジュールするために使われる。
 DCI(Downlink Control Information)は、PDCCHを介して送られ、無線リソースを動的、若しくは、セミパーシステント(Semi-Persistent)に割り当てるために使われる。例えば、無線リソースを動的に割り当てるために用いられるDCI format 1_1では、Bandwidth part indicator、Frequency domain resource assignment、Time domain resource assignment、CBGTI (CBG transmission information)、Antenna port(s)、Transport block 1に関するMCS(Modulation and Coding Scheme)、New data indicator、及び、RV(Redundancy Version)、Transport block 2に関するMCS、New data indicator、及び、RV等が通知される。
 5Gの無線部の総称であるNR(New Radio)では、1キャリア(コンポーネントキャリア)当たりの帯域幅が広くなるため、狭い帯域幅のみをサポートするUEが当該キャリアを介して通信ができるように、BWP(BandWidth Part)という仕組みが導入されている。コンポーネントキャリアに1つ以上のBWPを設定することができるが、ある時点では1つのBWPのみがアクティブとなる。
 Bandwidth part indicatorは、複数設定されるBWPから1つのBWPを識別するためにBWP-IdをUEに通知するためのものである。
 Frequency domain resource assignmentは、周波数ドメインにおけるリソース割り当てに関する情報を通知するためのものである。リソース割り当てには、resource allocation type 0とresource allocation type 1の2種類がある。
 Resource allocation type 0では、UEに割り当てられたRBG(Resource Block Group)を示すビットマップの情報が通知される。ここで、RBGは、連続するRB(Resource Block)のセットであり、PDSCH-ConfigとBWPのサイズで設定される上位レイヤのパラメータであるrbg-Sizeによって定義される。
 Resource allocation type 1では、UEに割り当てられた連続するRBにおける起点のRBであるRBStartに相当するRIV(Resource Indication Value)とRB長であるLRBsが通知される。
 Time domain resource assignmentは、時間ドメインにおけるリソース割り当てに関する情報を通知する。このリソース割り当てに関する情報は、参照用のテーブル(look-up table)の列の1つを示す4ビットの情報である。つまり、16列の内の1つの列がUEに通知される。UEは、参照用のテーブルの指定された列に基づいて、スロットのオフセットであるK0、SLIV(Start and Length Indicator Value)、或いは、起点となるシンボルSと割り当て長L、PDSCH mapping typeの各パラメータの情報を取得する。
 UEは、上位レイヤのパラメータであるPDSCH用のcodeBlockGroupTransmissionを受信することによって、基地局からのコードブロックベースの送信データを受信するように設定される。5G NRでは、大きなサイズのTB(Transport Block)を小さなCB(Code Block)に分割し、CBをさらにCBG(Code Block Group)としてグループ化する。UEは、CBGをデコードして、CBG毎にHARQ(Hybrid Automatic Repeat Request)を返信することができるため、基地局は、大きなサイズのTB単位でなく、小さなCBG単位で再送を行うことができる。
 CBGTIは、NTB・Nビットのビット長から構成され、ここで、NTBは、上位レイヤのパラメータであるmaxNrofCodeWordsScheduledByDCIの値である。NTBが2の場合には、CBGTIフィールドのビットは、最上位ビット(MSB)を起点とするNビットの最初のセットが第1のTBに対応し、Nビットの第2のセットが第2のTBに対応するように割り当てられる。
 CBGTIフィールドのそれぞれのセットのNビットの最初のMビットは、TBのM個のCBGと順序通りに1対1の対応を持つ。なお、MSBは、CBG#0に対応する。DCIのNew Data Indicator fieldで通知されるTBの最初の送信では、UEはTBの全てのCBGがあるものと考える。
 DCIのNew Data Indicator fieldで通知されるTBの再送では、UEは、DCIのCBGTIフィールドがTBのどのCBGが送信データに含まれているかを指示しているものと考える。例えば、UEは、CBGTIフィールドのビットが“0”の場合は、対応するCBGが送信されていない、或いは、ビットが“1”の場合は、対応するCBGが送信されていて、このCBGにはTBの最初の送信と同じCBGが含まれているものと判断する。
 Antenna port(s)は、アンテナポートとレイヤ数を特定するための情報をUEに通知する。UEは、通知された情報のビットフィールド長(Bit Field Length)と、DMRS(DeModulation Reference Signal)に関連するdmrs-TypeとmaxLengthという2つのRRC(Radio Resource Control)パラメータに基づいて参照するテーブルを特定し、Antenna port(s)として通知された情報に基づいて、参照テーブルのDMRS port(s)からアンテナポートとレイヤ数を特定することができる。
 また、UEは、送信されるそれぞれのコードワード(codeword)のための複素の値を持つ変調シンボルが、最大8レイヤあるうちの1、若しくは、複数のレイヤにマッピングされているものと考える。1から4レイヤの場合には、1つのコードワード、5レイヤから8レイヤの場合には、2つコードワードが各レイヤにマッピングされる。ここで、コードワード毎に1つのMCSが適用されている。この各コードワードに適用されているMCSは、DCI format 1_1に含まれるTransport block 1に関するMCS、Transport block 2に関するMCSとして、UEに通知される。
 LTE同様、NRでは、適用変調符号化が採用されている。適用変調符号化は、動的なチャネル状態に応じて、最適な変調方式と符号化を適用することで、周波数利用効率を改善する手法として知られている。NRでは、32通りの変調方式(Modulation)と符号化(Coding)の組み合わせがMCS(Modulation and Coding Scheme)として定義されている。
 図1は、NRで定義されているPDSCH用のMCSテーブルの一例である。図1に示すMCSテーブルでは、変調方式と符号化の組み合わせが定義されている。MCS indexによって変調方式と符号化の各組み合わせ識別することができる。チャネル状態の良くない無線リソースに対しては、基地局は、より小さい値のindexに対応するMCS、つまり、より低い次数の変調方式とより低いコードレートを適用する。一方、チャネル状態の良い無線リソースに対しては、基地局は、より大きい値のindexに対応するMCS、つまり、より高い次数の変調方式とより高いコードレートを適用する。これにより、伝送における誤りの低減と周波数利用効率の向上とのトレードオフが実現される。
 TBS(Transport Block Size)は、MCS(つまり、変調方式の次数(Q)とコードレート(R))とレイヤ数(v)によって一義的に決まる。基地局は、UEにこのTBSのデータを送るための無線リソースとして、必要な数のRB(Resource Block)を割り当てる。なお、RBの割り当てに係る情報は、上述のように、DCIのFrequency domain resource assignment、及びTime domain resource assignmentによってUEに通知される。つまり、1つのDCIでUEに割り当てられるRBには、コードワード単位では1つのMCSが適用される。
 図2A及び図2Bは、伝搬チャネルと無線リソース割り当ての関係の一例を示す図である。図2Aは、UEの動作帯域が狭い場合の例であり、図2Bは、UEの動作帯域が広い場合である。ここで、UEの動作帯域は、システム帯域、若しくは、アクティブなBWPの帯域である。より広い動作帯域がUEに設定させれば、基地局はより多くのデータを送れるように広い帯域のRBGを割り当てることができる。なお、伝搬チャネルは、周波数にわたる各周波数における受信S/Nの特性であると考えることができる。
 基地局は、複数のUEを多元接続する際、UE毎に異なる各伝搬チャネルを考慮して各UEに対する無線リソースの割り当てを決定する。より具体的には、基地局は、極力、伝搬チャネルの良い周波数領域に位置するRBG(Resource Block Group)を各UEに割り当てる。例えば、図2Aの場合には、基地局は、2つのリソースで構成されるRBGをUEに割り当てており、図2Bの場合には、3つのリソースで構成されるRBGをUEに割り当てている。なお、図2A及び図2Bに示す斜線のブロックは、それぞれ連続するRE(Resource Element)で構成されるリソースを示している。
 上述したように、図2Aの場合、RBGの帯域は比較的狭い。そのため、RBG内のREの受信S/Nの変化は小さくなる。一方、図2Bの場合には、RBGの帯域は比較的広い。そのため、RBG内のREの受信S/Nの変化は大きくなる。よって、RBGに1つのMCSを割り当てる場合、RBGの帯域内で最もS/Nの悪いREに合わせてMCSを決定することになるため、図2Bの場合には他のS/Nの良いREの周波数利用効率が犠牲になる。
<1-3.解決手段>
 そこで、本実施形態では、周波数リソース内で変化する受信品質に応じて、任意の単位で、信号処理方法(例えば、変調方法、コーディング)を変化できるようにする。例えば、従来の技術では、MCSをTB(Transport Block)単位で適用しているが、これをTBよりも小さな単位で設定できるようにする。これにより、1つのTBに割り当てられる周波数リソース内で受信品質が大きく変化しても、TBより小さな単位でMCSを変化させることができるので、周波数の更なる効率的利用が実現する。
 以上、本実施形態の概要を述べたが、以下、本実施形態に係る通信システムを詳細に説明する。
<<2.通信システムの構成>>
 以下、図面を参照しながら通信システム1の構成を具体的に説明する。
<2-1.通信システムの全体構成>
 図3は、本開示の実施形態に係る通信システム1の構成例を示す図である。通信システム1は、管理装置10と、基地局20と、中継局30と、端末装置40と、を備える。通信システム1は、通信システム1を構成する各無線通信装置が連携して動作することで、ユーザに対し、移動通信が可能な無線ネットワークを提供する。本実施形態の無線ネットワークは、例えば、無線アクセスネットワークとコアネットワークとで構成される。なお、本実施形態において、無線通信装置は、無線通信の機能を有する装置のことであり、図3の例では、基地局20、中継局30、及び端末装置40が該当する。
 通信システム1は、管理装置10、基地局20、中継局30、及び端末装置40をそれぞれ複数備えていてもよい。図3の例では、通信システム1は、管理装置10として管理装置10、10等を備えており、基地局20として基地局20、20等を備えている、また、通信システム1は、中継局30として中継局30、30等を備えており、端末装置40として端末装置40、40、40等を備えている。
 なお、図中の装置は、論理的な意味での装置と考えてもよい。つまり、同図の装置の一部が仮想マシン(VM:Virtual Machine)、コンテナ(Container)、ドッカー(Docker)などで実現され、それらが物理的に同一のハードウェア上で実装されてもよい。
 なお、通信システム1は、LTE(Long Term Evolution)、NR(New Radio)等の無線アクセス技術(RAT:Radio Access Technology)に対応していてもよい。LTE及びNRは、セルラー通信技術の一種であり、基地局がカバーするエリアをセル状に複数配置することで端末装置の移動通信を可能にする。
 なお、通信システム1が使用する無線アクセス方式は、LTE、NRに限定されず、W-CDMA(Wideband Code Division Multiple Access)、cdma2000(Code Division Multiple Access 2000)等の他の無線アクセス方式であってもよい。
 また、通信システム1を構成する基地局又は中継局は、地上局であってもよいし、非地上局であってもよい。非地上局は、衛星局であってもよいし、航空機局であってもよい。非地上局が衛星局なのであれば、通信システム1は、Bent-pipe(Transparent)型の移動衛星通信システムであってもよい。
 なお、本実施形態において、地上局(地上基地局ともいう。)とは、地上に設置される基地局(中継局を含む。)のことをいう。ここで、「地上」は、陸上のみならず、地中、水上、水中も含む広義の地上である。なお、以下の説明において、「地上局」の記載は、「ゲートウェイ」に置き換えてもよい。
 なお、LTEの基地局は、eNodeB(Evolved Node B)又はeNBと称されることがある。また、NRの基地局は、gNodeB又はgNBと称されることがある。また、LTE及びNRでは、端末装置(移動局、又は端末ともいう。)はUE(User Equipment)と称されることがある。なお、端末装置は、通信装置の一種であり、移動局、又は端末とも称される。
 本実施形態において、通信装置という概念には、携帯端末等の持ち運び可能な移動体装置(端末装置)のみならず、構造物や移動体に設置される装置も含まれる。構造物や移動体そのものを通信装置とみなしてもよい。また、通信装置という概念には、端末装置のみならず、基地局及び中継局も含まれる。通信装置は、処理装置及び情報処理装置の一種である。また、通信装置は、送信装置又は受信装置と言い換えることが可能である。
 以下、通信システム1を構成する各装置の構成を具体的に説明する。なお、以下に示す各装置の構成はあくまで一例である。各装置の構成は、以下に示す構成とは異なっていてもよい。
<2-2.管理装置の構成>
 次に、管理装置10の構成を説明する。
 管理装置10は、無線ネットワークを管理する装置である。例えば、管理装置10は基地局20の通信を管理する装置である。コアネットワークがEPC(Evolved Packet Core)であれば、管理装置10は、例えば、MME(Mobility Management Entity)としての機能を有する装置である。また、コアネットワークが5GC(5G Core network)であれば、管理装置10は、例えば、AMF(Access and Mobility Management Function)及び/又はSMF(Session Management Function)としての機能を有する装置である。勿論、管理装置10が有する機能は、MME、AMF、及びSMFに限られない。例えば、コアネットワークが5GCであれば、管理装置10は、NSSF(Network Slice Selection Function)、AUSF(Authentication Server Function)、UDM(Unified Data Management)としての機能を有する装置であってもよい。また、管理装置10は、HSS(Home Subscriber Server)としての機能を有する装置であってもよい。
 なお、管理装置10はゲートウェイの機能を有していてもよい。例えば、コアネットワークがEPCであれば、管理装置10は、S-GW(Serving Gateway)やP-GW(Packet Data Network Gateway)としての機能を有していてもよい。また、コアネットワークが5GCであれば、管理装置10は、UPF(User Plane Function)としての機能を有していてもよい。
 コアネットワークは、複数のネットワーク機能(Network Function)から構成され、各ネットワーク機能は、1つの物理的な装置に集約されてもよいし、複数の物理的な装置に分散されてもよい。つまり、管理装置10は、複数の装置に分散配置され得る。さらに、この分散配置は動的に実行されるように制御されてもよい。基地局20、及び管理装置10は、1つネットワークを構成し、端末装置40に無線通信サービスを提供する。管理装置10はインターネットと接続され、端末装置40は、基地局20を介して、インターネット介して提供される各種サービスを利用することができる。
 なお、管理装置10は必ずしもコアネットワークを構成する装置でなくてもよい。例えば、コアネットワークがW-CDMA(Wideband Code Division Multiple Access)やcdma2000(Code Division Multiple Access 2000)のコアネットワークであるとする。このとき、管理装置10はRNC(Radio Network Controller)として機能する装置であってもよい。
 図4は、本開示の実施形態に係る管理装置10の構成例を示す図である。管理装置10は、通信部11と、記憶部12と、制御部13と、を備える。なお、図4に示した構成は機能的な構成であり、ハードウェア構成はこれとは異なっていてもよい。また、管理装置10の機能は、複数の物理的に分離された構成に静的、或いは、動的に分散して実装されてもよい。例えば、管理装置10は、複数のサーバ装置により構成されていてもよい。
 通信部11は、他の装置と通信するための通信インタフェースである。通信部11は、ネットワークインタフェースであってもよいし、機器接続インタフェースであってもよい。例えば、通信部11は、NIC(Network Interface Card)等のLAN(Local Area Network)インタフェースであってもよいし、USB(Universal Serial Bus)ホストコントローラ、USBポート等により構成されるUSBインタフェースであってもよい。また、通信部11は、有線インタフェースであってもよいし、無線インタフェースであってもよい。通信部11は、管理装置10の通信手段として機能する。通信部11は、制御部13の制御に従って基地局20等と通信する。
 記憶部12は、DRAM(Dynamic Random Access Memory)、SRAM(Static Random Access Memory)、フラッシュメモリ、ハードディスク等のデータ読み書き可能な記憶装置である。記憶部12は、管理装置10の記憶手段として機能する。記憶部12は、例えば、端末装置40の接続状態を記憶する。例えば、記憶部12は、端末装置40のRRC(Radio Resource Control)の状態やECM(EPS Connection Management)、或いは、5G System CM(Connection Management)の状態を記憶する。記憶部12は、端末装置40の位置情報を記憶するホームメモリとして機能してもよい。
 制御部13は、管理装置10の各部を制御するコントローラ(controller)である。制御部13は、例えば、CPU(Central Processing Unit)、MPU(Micro Processing Unit)等のプロセッサにより実現される。例えば、制御部13は、管理装置10内部の記憶装置に記憶されている各種プログラムを、プロセッサがRAM(Random Access Memory)等を作業領域として実行することにより実現される。なお、制御部13は、ASIC(Application Specific Integrated Circuit)やFPGA(Field Programmable Gate Array)等の集積回路により実現されてもよい。CPU、MPU、ASIC、及びFPGAは何れもコントローラとみなすことができる。
<2-3.基地局の構成>
 次に、基地局20の構成を説明する。
 基地局20は、端末装置40と無線通信する無線通信装置である。基地局20は、端末装置40と、中継局30を介して無線通信するよう構成されていてもよいし、端末装置40と、直接、無線通信するよう構成されていてもよい。
 基地局20は通信装置の一種である。より具体的には、基地局20は、無線基地局(Base Station、Node B、eNB、gNB、など)或いは無線アクセスポイント(Access Point)に相当する装置である。基地局20は、無線リレー局であってもよい。また、基地局20は、RRH(Remote Radio Head)と呼ばれる光張り出し装置であってもよい。また、基地局20は、FPU(Field Pickup Unit)等の受信局であってもよい。また、基地局20は、無線アクセス回線と無線バックホール回線を時分割多重、周波数分割多重、或いは、空間分割多重で提供するIAB(Integrated Access and Backhaul)ドナーノード、或いは、IABリレーノードであってもよい。
 なお、基地局20が使用する無線アクセス技術は、セルラー通信技術であってもよいし、無線LAN技術であってもよい。勿論、基地局20が使用する無線アクセス技術は、これらに限定されず、他の無線アクセス技術であってもよい。例えば、基地局20が使用する無線アクセス技術は、LPWA(Low Power Wide Area)通信技術であってもよい。勿論、基地局20が使用する無線通信は、ミリ波を使った無線通信であってもよい。また、基地局20が使用する無線通信は、電波を使った無線通信であってもよいし、赤外線や可視光を使った無線通信(光無線)であってもよい。
 基地局20は、端末装置40とNOMA(Non-Orthogonal Multiple Access)通信が可能であってもよい。ここで、NOMA通信は、非直交リソースを使った通信(送信、受信、或いはその双方)のことである。なお、基地局20は、他の基地局20とNOMA通信可能であってもよい。
 なお、基地局20は、基地局-コアネットワーク間インタフェース(例えば、S1 Interface等)を介してお互いに通信可能であってもよい。このインタフェースは、有線及び無線のいずれであってもよい。また、基地局は、基地局間インタフェース(例えば、X2 Interface、S1 Interface等)を介して互いに通信可能であってもよい。このインタフェースは、有線及び無線のいずれであってもよい。
 なお、基地局20は、基地局-コアネットワーク間インタフェース(例えば、NG Interface、S1 Interface等)を介してお互いに通信可能であってもよい。このインタフェースは、有線及び無線のいずれであってもよい。また、基地局は、基地局間インタフェース(例えば、Xn Interface、X2 Interface等)を介して互いに通信可能であってもよい。このインタフェースは、有線及び無線のいずれであってもよい。
 なお、基地局(基地局装置ともいう。)という概念には、ドナー基地局のみならず、リレー基地局(中継局、或いは中継局ともいう。)も含まれる。また、基地局という概念には、基地局の機能を備えた構造物(Structure)のみならず、構造物に設置される装置も含まれる。
 構造物は、例えば、高層ビル、家屋、鉄塔、駅施設、空港施設、港湾施設、オフィスビル、校舎、病院、工場、商業施設、スタジアム等の建物である。なお、構造物という概念には、建物のみならず、トンネル、橋梁、ダム、塀、鉄柱等の構築物(Non-building structure)や、クレーン、門、風車等の設備も含まれる。また、構造物という概念には、陸上(狭義の地上)又は地中の構造物のみならず、桟橋、メガフロート等の水上の構造物や、海洋観測設備等の水中の構造物も含まれる。基地局は、情報処理装置と言い換えることができる。
 基地局20は、ドナー局であってもよいし、リレー局(中継局)であってもよい。また、基地局20は、固定局であってもよいし、移動局であってもよい。移動局は、移動可能に構成された無線通信装置(例えば、基地局)である。このとき、基地局20は、移動体に設置される装置であってもよいし、移動体そのものであってもよい。例えば、移動能力(Mobility)をもつリレー局は、移動局としての基地局20とみなすことができる。また、車両、ドローンに代表されるUAV(Unmanned Aerial Vehicle)、スマートフォンなど、もともと移動能力がある装置であって、基地局の機能(少なくとも基地局の機能の一部)を搭載した装置も、移動局としての基地局20に該当する。
 ここで、移動体は、スマートフォンや携帯電話等のモバイル端末であってもよい。また、移動体は、陸上(狭義の地上)を移動する移動体(例えば、自動車、自転車、バス、トラック、自動二輪車、列車、リニアモーターカー等の車両)であってもよいし、地中(例えば、トンネル内)を移動する移動体(例えば、地下鉄)であってもよい。
 また、移動体は、水上を移動する移動体(例えば、旅客船、貨物船、ホバークラフト等の船舶)であってもよいし、水中を移動する移動体(例えば、潜水艇、潜水艦、無人潜水機等の潜水船)であってもよい。
 なお、移動体は、大気圏内を移動する移動体(例えば、飛行機、飛行船、ドローン等の航空機)であってもよい。
 また、基地局20は、地上に設置される地上基地局(地上局)であってもよい。例えば、基地局20は、地上の構造物に配置される基地局であってもよいし、地上を移動する移動体に設置される基地局であってもよい。より具体的には、基地局20は、ビル等の構造物に設置されたアンテナ及びそのアンテナに接続する信号処理装置であってもよい。勿論、基地局20は、構造物や移動体そのものであってもよい。「地上」は、陸上(狭義の地上)のみならず、地中、水上、水中も含む広義の地上である。なお、基地局20は、地上基地局に限られない。例えば、通信システム1を衛星通信システムとする場合、基地局20は、航空機局であってもよい。衛星局から見れば、地球に位置する航空機局は地上局である。
 なお、基地局20は、地上局に限られない。基地局20は、空中又は宇宙を浮遊可能な非地上基地局装置(非地上局)であってもよい。例えば、基地局20は、航空機局や衛星局であってもよい。
 衛星局は、大気圏外を浮遊可能な衛星局である。衛星局は、人工衛星等の宇宙移動体に搭載される装置であってもよいし、宇宙移動体そのものであってもよい。宇宙移動体は、大気圏外を移動する移動体である。宇宙移動体としては、人工衛星、宇宙船、宇宙ステーション、探査機等の人工天体が挙げられる。
 なお、衛星局となる衛星は、低軌道(LEO:Low Earth Orbiting)衛星、中軌道(MEO:Medium Earth Orbiting)衛星、静止(GEO:Geostationary Earth Orbiting)衛星、高楕円軌道(HEO:Highly Elliptical Orbiting)衛星の何れであってもよい。勿論、衛星局は、低軌道衛星、中軌道衛星、静止衛星、又は高楕円軌道衛星に搭載される装置であってもよい。
 航空機局は、航空機等、大気圏内を浮遊可能な無線通信装置である。航空機局は、航空機等に搭載される装置であってもよいし、航空機そのものであってもよい。なお、航空機という概念には、飛行機、グライダー等の重航空機のみならず、気球、飛行船等の軽航空機も含まれる。また、航空機という概念には、重航空機や軽航空機のみならず、ヘリコプターやオートジャイロ等の回転翼機も含まれる。なお、航空機局(又は、航空機局が搭載される航空機)は、ドローン等の無人航空機であってもよい。
 なお、無人航空機という概念には、無人航空システム(UAS:Unmanned Aircraft Systems)、つなぎ無人航空システム(tethered UAS)も含まれる。また、無人航空機という概念には、軽無人航空システム(LTA:Lighter than Air UAS)、重無人航空システム(HTA:Heavier than Air UAS)が含まれる。その他、無人航空機という概念には、高高度無人航空システムプラットフォーム(HAPs:High Altitude UAS Platforms)も含まれる。
 基地局20のカバレッジの大きさは、マクロセルのような大きなものから、ピコセルのような小さなものであってもよい。勿論、基地局20のカバレッジの大きさは、フェムトセルのような極めて小さなものであってもよい。また、基地局20はビームフォーミングの能力を有していてもよい。この場合、基地局20はビームごとにセルやサービスエリアが形成されてもよい。そのために、基地局20は、複数のアンテナ素子から構成されるアンテナアレーを装備して、MIMO(Multiple Input Multiple Output)やビームフォーミングに代表されるAdvanced Antenna Technologyを提供するよう構成されていてもよい。
 図5は、本開示の実施形態に係る基地局20の構成例を示す図である。基地局20は、無線通信部21と、記憶部22と、制御部23と、演算部24と、を備える。なお、図5に示した構成は機能的な構成であり、ハードウェア構成はこれとは異なっていてもよい。また、基地局20の機能は、複数の物理的に分離された構成に分散して実装されてもよい。
 無線通信部21は、他の無線通信装置(例えば、端末装置40)と無線通信するための信号処理部である。無線通信部21は、制御部23の制御に従って動作する。無線通信部21は1又は複数の無線アクセス方式に対応する。例えば、無線通信部21は、NR及びLTEの双方に対応する。無線通信部21は、NRやLTEに加えて、W-CDMAやcdma2000に対応していてもよい。また、無線通信部21は、HARQ(Hybrid Automatic Repeat reQuest)等の自動再送技術に対応していてもよい。
 無線通信部21は、送信処理部211、受信処理部212、アンテナ213を備える。無線通信部21は、送信処理部211、受信処理部212、及びアンテナ213をそれぞれ複数備えていてもよい。なお、無線通信部21が複数の無線アクセス方式に対応する場合、無線通信部21の各部は、無線アクセス方式毎に個別に構成されうる。例えば、送信処理部211及び受信処理部212は、LTEとNRとで個別に構成されてもよい。また、アンテナ213は複数のアンテナ素子(例えば、複数のパッチアンテナ)で構成されていてもよい。この場合、無線通信部21は、ビームフォーミング可能に構成されていてもよい。無線通信部21は、垂直偏波(V偏波)と水平偏波(H偏波)とを使用した偏波ビームフォーミング可能に構成されていてもよい。
 送信処理部211は、下りリンク制御情報及び下りリンクデータの送信処理を行う。例えば、送信処理部211は、制御部23から入力された下りリンク制御情報及び下りリンクデータを、ブロック符号化、畳み込み符号化、ターボ符号化等の符号化方式を用いて符号化を行う。ここで、符号化は、ポーラ符号(Polar code)による符号化、LDPC符号(Low Density Parity Check Code)による符号化を行ってもよい。そして、送信処理部211は、符号化ビットをBPSK、QPSK、16QAM、64QAM、256QAM等の所定の変調方式で変調する。この場合、コンステレーション上の信号点は必ずしも等距離である必要はない。コンステレーションは、不均一コンステレーション(NUC:Non Uniform Constellation)であってもよい。そして、送信処理部211は、各チャネルの変調シンボルと下りリンク参照信号とを多重化し、所定のリソースエレメントに配置する。そして、送信処理部211は、多重化した信号に対して、各種信号処理を行う。例えば、送信処理部211は、高速フーリエ変換による周波数領域への変換、ガードインターバル(サイクリックプレフィックス)の付加、ベースバンドのデジタル信号の生成、アナログ信号への変換、直交変調、アップコンバート、余分な周波数成分の除去、電力の増幅等の処理を行う。送信処理部211で生成された信号は、アンテナ213から送信される。
 受信処理部212は、アンテナ213を介して受信された上りリンク信号の処理を行う。例えば、受信処理部212は、上りリンク信号に対して、ダウンコンバート、不要な周波数成分の除去、増幅レベルの制御、直交復調、デジタル信号への変換、ガードインターバル(サイクリックプレフィックス)の除去、高速フーリエ変換による周波数領域信号の抽出等を行う。そして、受信処理部212は、これらの処理が行われた信号から、PUSCH(Physical Uplink Shared Channel)、PUCCH(Physical Uplink Control Channel)等の上りリンクチャネル及び上りリンク参照信号を分離する。また、受信処理部212は、上りリンクチャネルの変調シンボルに対して、BPSK(Binary Phase Shift Keying)、QPSK(Quadrature Phase shift Keying)等の変調方式を使って受信信号の復調を行う。復調に使用される変調方式は、16QAM(Quadrature Amplitude Modulation)、64QAM、又は256QAMであってもよい。この場合、コンステレーション上の信号点は必ずしも等距離である必要はない。コンステレーションは、不均一コンステレーション(NUC)であってもよい。そして、受信処理部212は、復調された上りリンクチャネルの符号化ビットに対して、復号処理を行う。復号された上りリンクデータ及び上りリンク制御情報は制御部23へ出力される。
 アンテナ213は、電流と電波を相互に変換するアンテナ装置(アンテナ部)である。アンテナ213は、1つのアンテナ素子(例えば、1つのパッチアンテナ)で構成されていてもよいし、複数のアンテナ素子(例えば、複数のパッチアンテナ)で構成されていてもよい。アンテナ213が複数のアンテナ素子で構成される場合、無線通信部21は、ビームフォーミング可能に構成されていてもよい。例えば、無線通信部21は、複数のアンテナ素子を使って無線信号の指向性を制御することで、指向性ビームを生成するよう構成されていてもよい。なお、アンテナ213は、デュアル偏波アンテナであってもよい。アンテナ213がデュアル偏波アンテナの場合、無線通信部21は、無線信号の送信にあたり、垂直偏波(V偏波)と水平偏波(H偏波)とを使用してもよい。そして、無線通信部21は、垂直偏波と水平偏波とを使って送信される無線信号の指向性を制御してもよい。
 記憶部22は、DRAM、SRAM、フラッシュメモリ、ハードディスク等のデータ読み書き可能な記憶装置である。記憶部22は、基地局20の記憶手段として機能する。
 制御部23は、基地局20の各部を制御するコントローラ(controller)である。制御部23は、例えば、CPU(Central Processing Unit)、MPU(Micro Processing Unit)等のプロセッサにより実現される。例えば、制御部23は、基地局20内部の記憶装置に記憶されている各種プログラムを、プロセッサがRAM(Random Access Memory)等を作業領域として実行することにより実現される。なお、制御部23は、ASIC(Application Specific Integrated Circuit)やFPGA(Field Programmable Gate Array)等の集積回路により実現されてもよい。CPU、MPU、ASIC、及びFPGAは何れもコントローラとみなすことができる。また、制御部23は、CPUに加えて、或いは代えて、GPU(Graphics Processing Unit)により実現されてもよい。
 制御部23は、取得部231と、設定部232と、通知部233と、決定部234と、通信制御部235と、を備える。通知部は送信部と読み替えることが可能である。制御部23を構成する各ブロック(取得部231~通信制御部235)はそれぞれ制御部23の機能を示す機能ブロックである。これら機能ブロックはソフトウェアブロックであってもよいし、ハードウェアブロックであってもよい。例えば、上述の機能ブロックが、それぞれ、ソフトウェア(マイクロプログラムを含む。)で実現される1つのソフトウェアモジュールであってもよいし、半導体チップ(ダイ)上の1つの回路ブロックであってもよい。勿論、各機能ブロックがそれぞれ1つのプロセッサ又は1つの集積回路であってもよい。制御部23は上述の機能ブロックとは異なる機能単位で構成されていてもよい。機能ブロックの構成方法は任意である。
 演算部24は、制御部23の指示に従って、送信処理部211や受信処理部212に必要な演算を処理する。演算部24は、例えば、CPU、MPU、GPU等のプロセッサにより実現される。制御部23とは別体のプロセッサであってもよいし、制御部23と一体のプロセッサであってもよい。演算部24は、設定部241と、処理部242と、抽出部243を備える。演算部24については後に詳述する。
 いくつかの実施形態において、基地局という概念は、複数の物理的又は論理的装置の集合で構成されていてもよい。例えば、本実施形態において基地局は、BBU(Baseband Unit)及びRU(Radio Unit)等の複数の装置に区別されてもよい。そして、基地局は、これら複数の装置の集合体として解釈されてもよい。また、基地局は、BBU及びRUのうちいずれかであってもよいし、両方であってもよい。BBUとRUは、所定のインタフェース(例えば、eCPRI(enhanced Common Public Radio Interface))で接続されていてもよい。なお、RUはRRU(Remote Radio Unit)又はRD(Radio DoT)と言い換えてもよい。また、RUは後述するgNB-DU(gNB Distributed Unit)に対応していてもよい。さらにBBUは、後述するgNB-CU(gNB Central Unit)に対応していてもよい。さらに、RUはアンテナと一体的に形成された装置であってもよい。基地局が有するアンテナ(例えば、RUと一体的に形成されたアンテナ)はAdvanced Antenna Systemを採用し、MIMO(例えば、FD-MIMO)やビームフォーミングをサポートしていてもよい。また、基地局が有するアンテナは、例えば、64個の送信用アンテナポート及び64個の受信用アンテナポートを備えていてもよい。
 また、RUに搭載されるアンテナは、1つ以上のアンテナ素子から構成されるアンテナパネルであってもよく、RUは、1つ以上のアンテナパネルを搭載してもよい。例えば、RUは、水平偏波のアンテナパネルと垂直偏波のアンテナパネルの2種類のアンテナパネル、或いは、右旋円偏波のアンテナパネルと左旋円偏波のアンテナパネルの2種類のアンテナパネルを搭載してもよい。また、RUは、アンテナパネル毎に独立したビームを形成し、制御してもよい。
 なお、基地局は、複数が互いに接続されていてもよい。1又は複数の基地局は無線アクセスネットワーク(RAN:Radio Access Network)に含まれていてもよい。この場合、基地局は単にRAN、RANノード、AN(Access Network)、ANノードと称されることがある。なお、LTEにおけるRANはE-UTRAN(Enhanced Universal Terrestrial RAN)と呼ばれることがある。また、NRにおけるRANはNG-RANと呼ばれることがある。また、W-CDMA(UMTS)におけるRANはUTRANと呼ばれることがある。
 なお、LTEの基地局は、eNodeB(Evolved Node B)又はeNBと称されることがある。このとき、E-UTRANは1又は複数のeNodeB(eNB)を含む。また、NRの基地局は、gNodeB又はgNBと称されることがある。このとき、NG-RANは1又は複数のgNBを含む。E-UTRANは、LTEの通信システム(EPS)におけるコアネットワーク(EPC)に接続されたgNB(en-gNB)を含んでいてもよい。同様にNG-RANは5G通信システム(5GS)におけるコアネットワーク5GCに接続されたng-eNBを含んでいてもよい。
 なお、基地局がeNB、gNBなどである場合、基地局は、3GPPアクセス(3GPP Access)と称されることがある。また、基地局が無線アクセスポイント(Access Point)である場合、基地局は、非3GPPアクセス(Non-3GPP Access)と称されることがある。さらに、基地局は、RRH(Remote Radio Head)と呼ばれる光張り出し装置であってもよい。また、基地局がgNBである場合、基地局は、前述したgNB-CUとgNB-DUとを組み合わせたものであってもよいし、gNB-CUとgNB-DUとのうちのいずれかであってもよい。
 ここで、gNB-CUは、UEとの通信のために、アクセス層(Access Stratum)のうち、複数の上位レイヤ(例えば、RRC、SDAP、PDCP)をホストする。一方、gNB-DUは、アクセス層(Access Stratum)のうち、複数の下位レイヤ(例えば、RLC、MAC、PHY)をホストする。すなわち、後述されるメッセージ/情報のうち、RRCシグナリング(準静的な通知)はgNB-CUで生成され、一方でMAC CEやDCI(動的な通知)はgNB-DUで生成されてもよい。又は、RRCコンフィギュレーション(準静的な通知)のうち、例えばIE:cellGroupConfigなどの一部のコンフィギュレーション(configuration)についてはgNB-DUで生成され、残りのコンフィギュレーションはgNB-CUで生成されてもよい。これらのコンフィギュレーションは、後述されるF1インタフェースで送受信されてもよい。
 なお、基地局は、他の基地局と通信可能に構成されていてもよい。例えば、複数の基地局装置がeNB同士又はeNBとen-gNBの組み合わせである場合、当該基地局間はX2インタフェースで接続されてもよい。また、複数の基地局がgNB同士又はgn-eNBとgNBの組み合わせである場合、当該装置間はXnインタフェースで接続されてもよい。また、複数の基地局がgNB-CUとgNB-DUの組み合わせである場合、当該装置間は前述したF1インタフェースで接続されてもよい。後述されるメッセージ/情報(例えば、RRCシグナリング、MAC CE(MAC Control Element)、又はDCI)は、複数基地局間で、例えばX2インタフェース、Xnインタフェース、又はF1インタフェースを介して、送信されてもよい。
 基地局により提供されるセルはサービングセル(Serving cell)と呼ばれることがある。サービングセルという概念には、PCell(Primary Cell)及びSCell(Secondary Cell)が含まれる。デュアルコネクティビティがUE(例えば、端末装置40)に設定される場合、MN(Master Node)によって提供されるPCell、及びゼロ又は1以上のSCellはマスターセルグループ(Master Cell Group)と呼ばれることがある。デュアルコネクティビティの例として、E-UTRA-E-UTRA Dual Connectivity、E-UTRA-NR Dual Connectivity(ENDC)、E-UTRA-NR Dual Connectivity with 5GC、NR-E-UTRA Dual Connectivity(NEDC)、NR-NR Dual Connectivityが挙げられる。
 なお、サービングセルはPSCell(Primary Secondary Cell、又は、Primary SCG Cell)を含んでもよい。デュアルコネクティビティがUEに設定される場合、SN(Secondary Node)によって提供されるPSCell、及びゼロ又は1以上のSCellは、SCG(Secondary Cell Group)と呼ばれることがある。特別な設定(例えば、PUCCH on SCell)がされていない限り、物理上りリンク制御チャネル(PUCCH)はPCell及びPSCellで送信されるが、SCellでは送信されない。また、無線リンク障害(Radio Link Failure)もPCell及びPSCellでは検出されるが、SCellでは検出されない(検出しなくてよい)。このようにPCell及びPSCellは、サービングセルの中で特別な役割を持つため、SpCell(Special Cell)とも呼ばれる。
 1つのセルには、1つのダウンリンクコンポーネントキャリアと1つのアップリンクコンポーネントキャリアが対応付けられていてもよい。また、1つのセルに対応するシステム帯域幅は、複数のBWP(Bandwidth Part)に分割されてもよい。この場合、1又は複数のBWPがUEに設定され、1つのBWP分がアクティブBWP(Active BWP)として、UEに使用されてもよい。また、セル毎、コンポーネントキャリア毎又はBWP毎に、端末装置40が使用できる無線資源(例えば、周波数帯域、ヌメロロジー(サブキャリアスペーシング)、スロットフォーマット(Slot configuration)が異なっていてもよい。
<2-4.中継局の構成>
 次に、中継局30の構成を説明する。
 中継局30は、基地局の中継局となる装置である。中継局30は、基地局の一種である。また、中継局30は情報処理装置の一種である。中継局は、リレー基地局と言い換えることができる。また、中継局30は、リピーター(Repeater)と呼ばれる装置であってもよい。
 中継局30は、端末装置40とNOMA通信等の無線通信をすることが可能である。中継局30は、基地局20と端末装置40との通信を中継する。なお、中継局30は、他の中継局30及び基地局20と無線通信可能に構成されていてもよい。中継局30は、地上局装置であってもよいし、非地上局装置であってもよい。中継局30は基地局20とともに無線アクセスネットワークRANを構成する。
 なお、本実施形態の中継局は、固定された装置であっても、可動する装置であっても、浮遊可能な装置であってもよい。また、本実施形態の中継局のカバレッジの大きさは特定の大きさに限定されない。例えば、中継局がカバーするセルは、マクロセルであっても、ミクロセルであっても、スモールセルであってもよい。
 また、本実施形態の中継局は、中継の機能が満たされるのであれば、搭載される装置に限定されない。例えば、当該中継機は、スマートフォン等の端末装置に搭載されてもよいし、自動車、列車や人力車に搭載されてもよいし、気球や飛行機、ドローンに搭載されてもよいし、テレビやゲーム機、エアコン、冷蔵庫、照明器具などの家電に搭載されてもよい。
 その他、中継局30の構成は上述した基地局20の構成と同様であってもよい。例えば、中継局30は、上述した基地局20と同様に、移動体に設置される装置であってもよいし、移動体そのものであってもよい。移動体は、上述したように、スマートフォンや携帯電話等のモバイル端末であってもよい。また、移動体は、陸上(狭義の地上)を移動する移動体であってもよいし、地中を移動する移動体であってもよい。勿論、移動体は、水上を移動する移動体であってもよいし、水中を移動する移動体であってもよい。その他、移動体は、大気圏内を移動する移動体であってもよいし、大気圏外を移動する移動体であってもよい。また、基地局20は、地上局装置であってもよいし、非地上局装置であってもよい。このとき、中継局30は、航空機局や衛星局であってもよい。
 また、中継局30のカバレッジの大きさは、基地局20と同様に、マクロセルのような大きなものから、ピコセルのような小さなものであってもよい。勿論、中継局30のカバレッジの大きさは、フェムトセルのような極めて小さなものであってもよい。また、中継局30はビームフォーミングの能力を有していてもよい。この場合、中継局30はビームごとにセルやサービスエリアが形成されてもよい。
 図6は、本開示の実施形態に係る中継局30の構成例を示す図である。中継局30は、無線通信部31と、記憶部32と、制御部33と、演算部34と、を備える。なお、図6に示した構成は機能的な構成であり、ハードウェア構成はこれとは異なっていてもよい。また、中継局30の機能は、複数の物理的に分離された構成に分散して実装されてもよい。
 無線通信部31は、他の無線通信装置(例えば、基地局20、端末装置40、他の中継局30)と無線通信する無線通信インタフェースである。無線通信部31は1又は複数の無線アクセス方式に対応する。例えば、無線通信部31は、NR及びLTEの双方に対応する。無線通信部31は、NRやLTEに加えて、W-CDMAやcdma3000に対応していてもよい。無線通信部31は、送信処理部311、受信処理部312、アンテナ313を備える。無線通信部31は、送信処理部311、受信処理部312、及びアンテナ313をそれぞれ複数備えていてもよい。なお、無線通信部31が複数の無線アクセス方式に対応する場合、無線通信部31の各部は、無線アクセス方式毎に個別に構成されうる。例えば、送信処理部311及び受信処理部312は、LTEとNRとで個別に構成されてもよい。送信処理部311、受信処理部312、及びアンテナ313の構成は、上述の送信処理部211、受信処理部212、及びアンテナ213の構成と同様である。なお、無線通信部31は、無線通信部21と同様に、ビームフォーミング可能に構成されていてもよい。
 記憶部32は、DRAM、SRAM、フラッシュメモリ、ハードディスク等のデータ読み書き可能な記憶装置である。記憶部32は、中継局30の記憶手段として機能する。
 制御部33は、中継局30の各部を制御するコントローラである。制御部33は、例えば、CPU、MPU等のプロセッサにより実現される。例えば、制御部33は、中継局30内部の記憶装置に記憶されている各種プログラムを、プロセッサがRAM等を作業領域として実行することにより実現される。なお、制御部33は、ASICやFPGA等の集積回路により実現されてもよい。CPU、MPU、ASIC、及びFPGAは何れもコントローラとみなすことができる。制御部33の動作は、基地局20の制御部23の各ブロック(取得部231~通信制御部235)の動作と同じであってもよい。
 演算部34は、制御部33の指示に従って、送信処理部211や受信処理部212に必要な演算を処理する。演算部34は、例えば、CPU、MPU、GPU等のプロセッサにより実現される。制御部33とは別体のプロセッサであってもよいし、制御部33と一体のプロセッサであってもよい。演算部34の動作は、基地局20の演算部24の各ブロック(設定部241~抽出部243)の動作と同じであってもよい。
 なお、中継局30は、IABリレーノードであってもよい。中継局30は、バックホールを提供するIABドナーノードに対してIAB-MT(Mobile Termination)として動作し、アクセスを提供する端末装置40に対しては、IAB-DU(Distributed Unit)として動作する。IABドナーノードは、例えば、基地局20でもよく、IAB-CU(Central Unit)として動作する。
<2-5.端末装置の構成>
 次に、端末装置40の構成を説明する。
 端末装置40は、基地局20、中継局30等の他の通信装置と無線通信する無線通信装置である。端末装置40は、例えば、携帯電話、スマートデバイス(スマートフォン、又はタブレット)、PDA(Personal Digital Assistant)、パーソナルコンピュータである。また、端末装置40は、通信機能が具備された業務用カメラといった機器であってもよいし、FPU(Field Pickup Unit)等の通信機器が搭載されたバイクや移動中継車等であってもよい。また、端末装置40は、M2M(Machine to Machine)デバイス、又はIoT(Internet of Things)デバイスであってもよい。
 なお、端末装置40は、基地局20とNOMA通信が可能であってもよい。また、端末装置40は、基地局20と通信する際、HARQ等の自動再送技術を使用可能であってもよい。端末装置40は、他の端末装置40とサイドリンク通信が可能であってもよい。端末装置40は、サイドリンク通信を行う際も、HARQ等の自動再送技術を使用可能であってもよい。なお、端末装置40は、他の端末装置40との通信(サイドリンク)においてもNOMA通信が可能であってもよい。また、端末装置40は、他の通信装置(例えば、基地局20、及び他の端末装置40)とLPWA通信が可能であってもよい。また、端末装置40が使用する無線通信は、ミリ波を使った無線通信であってもよい。なお、端末装置40が使用する無線通信(サイドリンク通信を含む。)は、電波を使った無線通信であってもよいし、赤外線や可視光を使った無線通信(光無線)であってもよい。
 また、端末装置40は、移動体装置であってもよい。移動体装置は、移動可能な無線通信装置である。このとき、端末装置40は、移動体に設置される無線通信装置であってもよいし、移動体そのものであってもよい。例えば、端末装置40は、自動車、バス、トラック、自動二輪車等の道路上を移動する車両(Vehicle)、列車等の軌道に設置されたレール上を移動する車両、或いは、当該車両に搭載された無線通信装置であってもよい。なお、移動体は、モバイル端末であってもよいし、陸上(狭義の地上)、地中、水上、或いは、水中を移動する移動体であってもよい。また、移動体は、ドローン、ヘリコプター等の大気圏内を移動する移動体であってもよいし、人工衛星等の大気圏外を移動する移動体であってもよい。
 端末装置40は、同時に複数の基地局または複数のセルと接続して通信を実施してもよい。例えば、1つの基地局が複数のセル(例えば、pCell、sCell)を介して通信エリアをサポートしている場合に、キャリアアグリゲーション(CA:Carrier Aggregation)技術やデュアルコネクティビティ(DC:Dual Connectivity)技術、マルチコネクティビティ(MC:Multi-Connectivity)技術によって、それら複数のセルを束ねて基地局20と端末装置40とで通信することが可能である。或いは、異なる基地局20のセルを介して、協調送受信(CoMP:Coordinated Multi-Point Transmission and Reception)技術によって、端末装置40とそれら複数の基地局20が通信することも可能である。
 図7は、本開示の実施形態に係る端末装置40の構成例を示す図である。端末装置40は、無線通信部41と、記憶部42と、制御部43と、を備える。なお、図7に示した構成は機能的な構成であり、ハードウェア構成はこれとは異なっていてもよい。また、端末装置40の機能は、複数の物理的に分離された構成に分散して実装されてもよい。
 無線通信部41は、他の無線通信装置(例えば、基地局20、中継局30、及び他の端末装置40)と無線通信するための信号処理部である。無線通信部41は、制御部43の制御に従って動作する。無線通信部41は、送信処理部411と、受信処理部412と、アンテナ413とを備える。無線通信部41、送信処理部411、受信処理部412、及びアンテナ413の構成は、基地局20の無線通信部21、送信処理部211、受信処理部212及びアンテナ213と同様であってもよい。また、無線通信部41は、無線通信部21と同様に、ビームフォーミング可能に構成されていてもよい。
 記憶部42は、DRAM、SRAM、フラッシュメモリ、ハードディスク等のデータ読み書き可能な記憶装置である。記憶部42は、端末装置40の記憶手段として機能する。
 制御部43は、端末装置40の各部を制御するコントローラである。制御部43は、例えば、CPU、MPU等のプロセッサにより実現される。例えば、制御部43は、端末装置40内部の記憶装置に記憶されている各種プログラムを、プロセッサがRAM等を作業領域として実行することにより実現される。なお、制御部43は、ASICやFPGA等の集積回路により実現されてもよい。CPU、MPU、ASIC、及びFPGAは何れもコントローラとみなすことができる。また、制御部43は、CPUに加えて、或いは代えて、GPUにより実現されてもよい。
 制御部43は、取得部431と、設定部432と、判別部433と、通信制御部434と、を備える。制御部43を構成する各ブロック(取得部431~通信制御部434)はそれぞれ制御部43の機能を示す機能ブロックである。これら機能ブロックはソフトウェアブロックであってもよいし、ハードウェアブロックであってもよい。例えば、上述の機能ブロックが、それぞれ、ソフトウェア(マイクロプログラムを含む。)で実現される1つのソフトウェアモジュールであってもよいし、半導体チップ(ダイ)上の1つの回路ブロックであってもよい。勿論、各機能ブロックがそれぞれ1つのプロセッサ又は1つの集積回路であってもよい。制御部43は上述の機能ブロックとは異なる機能単位で構成されていてもよい。機能ブロックの構成方法は任意である。
 演算部44は、制御部43の指示に従って、送信処理部411や受信処理部412に必要な演算を処理する。演算部44は、例えば、CPU、MPU、GPU等のプロセッサにより実現される。制御部43とは別体のプロセッサであってもよいし、制御部43と一体のプロセッサであってもよい。演算部44は、設定部441と、処理部442と、を備える。演算部44については後に詳述する。
<<3.演算部の構成>>
 以上、通信システム1の構成について説明したが、次に、本実施形態の通信システム1で適用され得る演算部の構成について説明する。なお、中継局30の演算部34は、基地局20の演算部24と同じ構成であってもよいし、端末装置40の演算部44と同じ構成であってもよい。
<3-1.基地局の演算部の構成例>
 まず、基地局20の演算部24を説明する。
 演算部24は、制御部23の指示に従って、送信処理部211や受信処理部212に必要な演算を処理する。本実施形態の演算部24は、学習モデルを使って送信処理部211や受信処理部212に必要な情報(例えば、変調方式、符号化方法、レイヤ数等の信号処理パラメータ)を生成する。以下の説明では、学習モデルのことを演算モデルということがある。
 図8は、基地局20の演算部24の構成例である。演算部24は、演算モデル設定部241aと、演算処理部242aと、信号処理パラメータ設定部241bと、演算モデル抽出部243aと、を備える。演算モデル設定部241aと信号処理パラメータ設定部241bが、図5に示す設定部241に相当する。また、演算処理部242aは、図5に示す処理部242に相当する。また、演算モデル抽出部243aは、図5に示す抽出部243に相当する。
 演算モデル設定部241aは、記憶部22に記憶されているパラメータに基づいて、例えば、ニューラルネットワークモデルの構成を設定する。ニューラルネットワークモデルは、複数のノードを含む入力層、隠れ層(又は、中間層)、出力層と呼ばれる層から構成され、各ノードはエッジを介して接続されている。各層は、活性化関数と呼ばれる関数を持ち、各エッジは重み付けされる。深層学習によるニューラルネットワークモデルでは、複数の隠れ層から構成される。よって、ニューラルネットワークモデルの構成を設定するとは、入力層、出力層に加えた、隠れ層(又は、中間層)の層数、各層のノード数、各エッジの重みを設定することである。送信処理部211は、このニューラルネットワークモデルの構成を設定するためのパラメータを、システム情報や個別シグナリング(dedicated signalling)を使って端末装置40に通知する。
 ニューラルネットワークモデルは、例えば、CNN(Convolution Neural Network)、RNN(Recurrent Neural Network)、又はLSTM(Long Short-Term Memory)と呼ばれる形態のモデルである。勿論、ニューラルネットワークモデルはこれらのモデルに限定されない。
 CNNでは、隠れ層は畳み込み層(Convolution Layer)とプーリング層(Pooling Layer)と呼ばれる各層から構成される。畳み込み層では、畳み込み演算によるフィルタリングを施し、特徴マップと呼ばれるデータを抽出する。プーリング層では、畳込み層から出力された特徴マップの情報を圧縮し、ダウンサンプリング(down sampling)を施す。CNNは、例えば、周波数軸と時間軸にわたって配置している無線リソースの各無線リソースに係る情報、例えば、参照信号の受信強度が入力され、出力層として各無線リソースで構成される無線リソースの特徴、例えば、伝搬チャネルに係る情報を得ることができる。ここで、各無線リソースの単位は、例えば、サブキャリア、リソースエレメント、リソースブロック等である。
 RNNでは、隠れ層の値が再帰的に隠れ層に入力されるネットワーク構造を有し、例えば、短期間の時系列のデータが処理される。
 LSTMでは、RNNの中間層出力に対して、メモリセルと呼ばれる中間層の状態を保持するパラメータを導入することにより、遠い過去の出力の影響を保持することができる。つまり、LSTMは、RNNに比べてより長い期間の時系列のデータが処理される。
演算モデルは、1つ以上のCNN、RNN、或いは/及び、LSTMから構成され、従属、或いは、並列に処理される。
 演算処理部242aは、制御部23を介して受信処理部212が取得した上りリンク参照信号の受信強度に係る情報を取得する。この上りリンク参照信号の受信強度に係る情報は、基地局20と端末装置40の間の伝搬チャネルの状態を反映した情報である。
 また、基地局20は、基地局20と端末装置40の間の伝搬チャネルの状態を反映した情報を端末装置40から取得するようにしてもよい。この伝搬チャネルの状態を反映した情報は、例えば、個別シグナリング(dedicated signalling)を使って取得される。
 なお、基地局20と端末装置40の間の伝搬チャネルの状態を反映した情報として、上りリンク参照信号の受信強度に係る情報を用いるか、或いは、端末装置40から個別シグナリングを使って取得した伝搬チャネルの状態を反映した情報を用いるかを、無線通信部21が適用する複信方式に基づいて決定するようにしてもよい。例えば、TDD(Time Division Duplex)の場合には、上りリンクと下りリンクの伝搬チャネル間のレシプロシティ(reciprocity)を勘案して、上りリンク参照信号の受信強度に係る情報を利用し、FDD(Frequency Division Duplex)の場合には、端末装置40から個別シグナリングを使って取得した下りリンクの伝搬チャネルの状態を反映した情報を用いる。
 演算処理部242aは、制御部23から端末装置40に下りリンクデータ、つまり、PDSCH(Physical Downlink Shared Channel)を送信するためのリソース割り当てに係る情報を取得する。前述の伝搬チャネルの状態を反映した情報(例えば、上りリンク参照信号の受信強度に係る情報)と下りリンクデータを送信するためのリソース割り当てに係る情報は、演算モデル設定部241aが設定したニューラルネットワークモデルの入力層の各ノードに入力される。ここで、上りリンク参照信号は、例えば、DMRS(DeModulation Reference Signal)、SRS(Sounding Reference Signal)、或いは、伝搬チャネルの特性を推定することができる他の参照信号である。
 演算処理部242aは、演算モデル設定部241aが設定したニューラルネットワークモデルの入力層に必要な情報を入力した後、演算が行われる。演算の結果は、ニューラルネットワークモデルの出力層の各ノードの値に反映される。
 変調パラメータ設定部241bは、前述のニューラルネットワークモデルの出力層の各ノードの値を取得して、下りリンクデータを送信するために割り当てられた各リソース、つまり、各リソースエレメントに適用されるMCS(つまり、変調方式の次数(Qm)とコードレート(R))とレイヤ数(v)を設定する。
 この変調パラメータ設定部241bが設定した各リソースエレメントに適用される変調方式の次数、コードレート、及びレイヤ数に係る情報は、制御部23を介して送信処理部211に提供され、下りリンクデータの変調処理、符号化処理に利用される。
 演算モデル抽出部243aは、演算モデル、例えば、ニューラルネットワークモデルの構成に係るパラメータを、機械学習(Machine Learning)、深層学習(Deep Learning)、或いは、強化学習(Reinforcement Learning)等の方法で決定する。
 演算モデル抽出部243aは、各リソースエレメントに適用した変調方式の次数、コードレート、及びレイヤ数に係る情報に基づいて算出される周波数利用効率(Spectral Efficiency)と、伝搬チャネルにおける各リソースエレメントの特性、例えば、S/Nを取得する。さらに、演算モデル抽出部243aは、各リソースエレメントを含むTB(Transport Block)、CBG(Code Block Group)、或いは、任意の再送データの単位における再送に係る情報を取得する。ここで、再送に係る情報は、例えば、再送の発生の有無と、再送の回送である。また、演算モデル抽出部243aは、下りリンクデータを送るために割り当てたリソースに係る情報を通知するために使用された下りリンク制御情報のオーバーヘッドに係る情報を取得する。ここで、下りリンク制御情報のオーバーヘッドに係る情報は、シグナリングの送信回数や、各下りリンク制御情報のサイズである。
 演算モデル抽出部243aは、リソースエレメントに対する周波数利用効率、伝搬チャネルにおけるS/N、再送に係る情報、及び、下りリンク制御情報のオーバーヘッドに係る情報に対して、機械学習、深層学習、或いは、強化学習を実行し、演算モデルであるニューラルネットワークモデルを抽出する。強化学習では、試行錯誤を通じて価値が最大化するような行動(設定)が学習される。例えば、より高い次数の変調方式の使用、より高いコーディングレートの使用、より多くのレイヤ数の使用、再送回数の低減等を報酬として強化学習が行われる。学習の結果、例えば、価値として周波数利用効率が最大となるニューラルネットワークモデルが抽出される。また、機械学習、或いは、深層学習では、学習用のデータセットを使った学習の結果として、ニューラルネットワークモデルが抽出される。ここで、学習用のデータセットは、例えば、入力情報である動作周波数、参照信号の受信強度等と出力情報、つまり、その入力情報に対する設定目標となる変調方式、符号化方法、レイヤ数等の信号処理パラメータから構成されるデータのセットである。演算モデル抽出部243aで抽出されたニューラルネットワークモデルの構成に係るパラメータは、制御部23の指示に従って記憶部22に記憶される。
<3-2.端末装置の演算部の構成例>
 まず、端末装置40の演算部44を説明する。
 演算部44は、制御部43の指示に従って、送信処理部411や受信処理部412に必要な演算を処理する。本実施形態の演算部44は、学習モデルを使って送信処理部411や受信処理部412に必要な情報(例えば、変調方式、符号化方法、レイヤ数等の信号処理パラメータ)を生成する。
 図9は、端末装置40の演算部44の構成例である。演算部44は、演算モデル設定部441aと、演算処理部442aと、信号処理パラメータ特定部443aと、を備える。演算モデル設定部441aは、図7に示す設定部441に相当する。また、演算処理部442aは、図7に示す処理部442に相当する。また、信号処理パラメータ特定部443aは、図7に示す特定部443に相当する。
 演算モデル設定部441aは、記憶部42に記憶されているパラメータに基づいて、例えば、演算モデルとしてニューラルネットワークモデルの構成を設定する。ニューラルネットワークモデルは、複数のノードを含む入力層、隠れ層(又は、中間層)、出力層と呼ばれる層から構成され、各ノードはエッジを介して接続されている。各層は、活性化関数と呼ばれる関数を持ち、各エッジは重み付けされる。深層学習によるニューラルネットワークモデルでは、複数の隠れ層から構成される。よって、ニューラルネットワークモデルの構成を設定するとは、入力層、出力層に加えた、隠れ層(又は、中間層)の層数、各層のノード数、各エッジの重みを設定することである。
 ニューラルネットワークモデルは、例えば、CNN、RNN、LSTMと呼ばれる形態のモデルである。演算モデルは、1つ以上のCNN、RNN、或いは/及び、LSTMから構成され、従属、或いは、並列に処理される。
 演算処理部442aは、制御部43を介して受信処理部412が取得した下りリンク参照信号の受信強度に係る情報を取得する。この下りリンク参照信号の受信強度に係る情報は、基地局20と端末装置40の間の伝搬チャネルの状態を反映した情報である。ここで、下りリンク参照信号は、例えば、DMRS(DeModulation Reference Signal)、CSI-RS(Channel State Information Reference Signal)、SS(Synchronization Signal)或いは、伝搬チャネルの特性を推定することができる他の参照信号である。さらに、演算処理部442aは、制御部43を介して受信処理部412が取得したPDCCHのDCI(Downlink Control Information)に含まれるPDSCHを受信するためのリソース割り当てに係る情報を取得する。この下りリンク参照信号の受信強度に係る情報とPDSCHを受信するためのリソース割り当てに係る情報は、演算モデル設定部441aが設定したニューラルネットワークモデルの入力層の各ノードに入力される。
 演算処理部442aは、演算モデル設定部441aが設定したニューラルネットワークモデルの入力層に必要な情報を入力した後、演算が行われる。演算の結果は、ニューラルネットワークモデルの出力層の各ノードの値に反映される。
 信号処理パラメータ特定部443aは、前述のニューラルネットワークモデルの出力層の各ノードの値を取得して、PDSCHを受信するために割り当てられた各リソース、つまり、各リソースエレメントに適用されるMCS、つまり、変調方式の次数(Qm)とコードレート(R)と、レイヤ数(v)を特定する。この信号処理パラメータ特定部443aが特定した各リソースエレメントに適用される変調方式の次数、コードレート、及びレイヤ数に係る情報は、制御部43を介して受信処理部412に提供され、PDSCHの多重分離処理、復調処理、及び復号処理に利用される。
<<4.本実施形態の処理>>
 以上、演算部の構成について説明したが、次に、本実施形態の信号処理について説明する。
<4-1.処理の概要>
 まず、本実施形態の処理の概要を説明する。
 本実施形態では、周波数リソース内で変化する受信品質に応じて、任意の単位で、信号処理方法を変更できるようにする。例えば、基地局20は、変調処理、符号化処理、及び多重化処理のうちの少なくとも1つの信号処理を含む所定の信号処理の適用に係るリソース単位(第一のリソース)を設定する。そして、基地局20は、複数のリソース単位(複数の第一のリソース)で構成される第二のリソースに関する情報を端末装置40に通知する。例えば、第二のリソースに関する情報は、第2のリソースを構成するリソース単位に関する情報である。基地局20は、リソース単位毎(第一のリソース毎)に信号処理パラメータを決定し、決定した信号処理パラメータに基づいて所定の信号処理を実行する。端末装置40は、基地局20により決められたリソース単位毎(第一のリソース毎)に、信号処理パラメータを判別する。判別した信号処理パラメータに基づいて信号処理を実行する。
 信号処理パラメータには、変調方式、符号化方法、及びレイヤ数のうちの少なくとも1つの情報が含まれていてもよい。ここで、変調方式は、例えば、図1に示す次数(Qm)に対応し、符号化方法は、例えば、図1に示すコードレート(R)に対応し、レイヤ数は、MIMOを適用して同時に送受信するストリームの数であるレイヤ数(v)に対応する。
 以降の説明において、TB(Transport Block)は、Codewordと読み替えてもよい。
 従来の技術では、MCSをTB(Transport Block)単位で適用しているが、本実施形態では信号処理パラメータをTBよりも小さな単位で設定できるようにする。図10A及び図10Bは、変調方式の次数、コードレート、及びレイヤ数の設定の一例である。ここでは、下りリンクデータの1つのトランスポートブロックを送信するために、あるUEにリソースが割り当てられている。より具体的には、あるUEに、3つのリソースが割り当てられている。各リソースは、連続するリソースエレメントで構成されている。または、連続しないリソースエレメントで構成されていてもよい。
 図10Aは、基地局20が、3つのリソースに対して同一の変調方式の次数、コードレート、及びレイヤ数を設定する例である。変調方式の次数、コードレート、及びレイヤ数は、伝搬チャネルの状態に基づいて設定される。図10Aの例では、基地局20は、受信S/Nが最も低くなるリソース2の伝搬チャネルに基づいて変調方式の次数、コードレート、及びレイヤ数を設定する。例えば、MCS index 8であるとすれば、変調方式の次数は2、コードレートは602/1024、レイヤ数は1となる。図10Aの例では、基地局20は、リソース1、及びリソース3にもリソース2と同じ設定を適用する。
 図10Bは、本実施例の手法である。図10Bの例では、基地局20は、リソース毎の伝搬チャネルの状態に基づいて、リソース毎に変調方式の次数、コードレート、及びレイヤ数を設定する。例えば、基地局20は、リソース1には、リソース1の伝搬チャネルの受信S/Nに基づいて、MCS index 22とレイヤ数(v) 2を設定する。この場合、変調方式の次数は6、コードレートは666/1024、レイヤ数は2となる。また、基地局20は、リソース2には、リソース2の伝搬チャネルの受信S/Nに基づいて、MCS index 8とレイヤ数(v) 1を設定する。この場合、変調方式の次数は2、コードレートは602/1024、レイヤ数は1となる。また、基地局20は、リソース3には、リソース3の伝搬チャネルの受信S/Nに基づいて、例えば、MCS index 14とレイヤ数(v) 1を設定する。この場合、変調方式の次数は4、コードレートは553/1024、レイヤ数は1となる。
 図10Bの場合、リソース2の周波数利用効率は図10Aの例と同じであるものの、リソース1、及び、リソース3の周波数利用効率は、図10Aの場合よりも向上している。すなわち、本実施形態の技術を使用すれば、基地局20は、同じリソースを使ってより大きなサイズのトランスポートブロックを送信することができる。
<4-2.第1の実施例>
 本実施形態の処理の概要を述べたが、次に第1の実施例に係る通信システム1の動作を説明する。
<5-2-1.基地局の動作>
 まず、第1の実施例に係る基地局20の動作を説明する。
 図11は、第1の実施例に係る基地局20の送信処理の一例を示すフローチャートである。基地局20は、所定の信号処理(変調処理、符号化処理、及び多重化処理)の適用に係るリソース単位を設定する。そして、基地局20は、リソース単位に関する情報を端末装置40に通知する。基地局20は、設定したリソース単位毎に信号処理パラメータを決定する。基地局20は、決定した信号処理パラメータ(変調方式、符号化方法、及びレイヤ数)に基づいて送信データに所定の信号処理を実行する。
 以下、図11のフローチャートを参照しながら基地局20の動作を説明する。以下の処理は、例えば、基地局20の制御部23及び演算部24で実行される。
 まず、制御部23の設定部232は、演算モデルの構成と演算モデルの各係数に係る情報を設定する(ステップS101)。これらの情報は、例えば、抽出部243が抽出し、記憶部22に格納したものであってもよい。
 次に、設定部232は、ダウンリンクのデータ送信のためのリソースに関する情報を設定する(ステップS102)。この情報は、例えば、基地局20からダウンリンク制御情報を介して端末装置40に通知される。
 なお、設定部232は、ステップS102で、所定の信号処理の適用に係るリソース単位に関する情報を設定してもよい。リソース単位は、例えば、コンポーネントキャリア、BWP(Band Width Part)、非直交リソース、リソースブロック(Resource Block)、リソースエレメント(Resource Element)、或いはサブキャリア(Subcarrier)である。リソース単位は、演算部44の演算結果に基づいて決定されたものであってもよい。
 制御部23の通知部233は、リソース単位に関する情報を端末装置40に通知する(ステップS103)。このとき、基地局20は、リソース単位に関する情報を、システム情報や個別シグナリング(dedicated signaling)を使って通知してもよい。つまり、基地局20は、セル内の全ての端末装置40に対して同一のリソースの単位設定することもできるし、端末装置40毎に個別のリソースの単位を設定することもできる。なお、基地局20は、動的にこのリソース単位を変更してもよい。また、基地局20は、動作周波数に応じてこのリソース単位を設定するようにしてもよい。ここで、動作周波数は、例えば、NR-ARFCN(NR- Absolute Radio Frequency Channel Number)、バンド番号(Band Number)、FR1、FR2といった周波数帯の分類、BWP-IDであってもよい。さらに、基地局20は、動作周波数の種類、例えば、免許周波数(ライセンス周波数)、共用周波数、免許不要周波数(アンライセンス周波数)の分類に応じてリソース単位を設定するようにしてもよい。
 次に、制御部23の取得部231は、無線通信部21を介して端末装置40からアップリンク参照信号を受信する。そして、取得部231は、受信したアップリンク参照信号に基づいて、アップリンク参照信号の受信強度に関する情報を取得する(ステップS104)。
 そして、制御部23の決定部234は、各リソース単位に適用する信号処理パラメータ(変調方式、符号化方法、及び、レイヤ数)を決定する(ステップS105)。決定部234は、リソース単位毎の信号処理パラメータを演算部24の演算結果に基づき決定してもよい。
 例えば、演算部24の設定部241は、ステップS101で設定された情報に基づいて、演算モデルを設定する。そして、演算部24の処理部242は、ステップS102で設定されたリソースに関する情報と、ステップS104で取得したアップリンク参照信号の受信強度に関する情報とを、設定部241が設定した演算モデル入力する。この演算モデルからの出力が、リソース単位毎の信号処理パラメータ(変調方式、符号化方法、及び、レイヤ数)となる。
 制御部23の通信制御部235は、ステップS105で決定した信号処理パラメータに基づいて、リソース単位毎に所定の信号処理(変調処理、符号化処理、及び多重化処理)を実行する(ステップS106)。
 なお、設定部232は、ステップS102において、例えば、ダウンリンクのデータのQoSに係る情報に基づいてリソース単位を設定する。或いは、基地局20は、ダウンリンクのデータが対応するネットワークスライスに基づいてリソース単位を設定する。
 ネットワークスライスは、S-NSSAI(Single-Network Slice Selection Assistance Information)によって識別することができ、S-NSSAIは、スライスの型(slice type)を識別する8ビットから成るmandatory(必須の)のSST(Slice/Service Type)と、同一のSSTの中で異なるスライスを区別するための24ビットから成るoptional(任意の)のSD(Slice Differentiator)の組で構成される。ここで、標準化されているSSTの値として、1:eMBB、2:URLLC、3:MIoT、4:V2Xがそれぞれ規定されている。
 また、設定部232は、ステップS102において、ダウンリンクのデータ送信を起動したアプリケーションの種類に基づいてリソース単位を設定してもよい。アプリケーションの種類は、例えば、アプリケーション名、或いは、アプリケーションを識別するためにあらかじめ規定された識別情報に基づいて判別される。
<5-2-2.端末装置の動作>
 次に、第1の実施例に係る端末装置40の動作を説明する。
 図12は、第1の実施例に係る端末装置40の受信処理の一例を示すフローチャートである。端末装置40は、所定の信号処理(多重分離処理、復調処理、及び復号処理)の適用に係るリソース単位に関する情報を基地局20から取得する。端末装置40は、基地局20から通知されたリソース単位毎に、基地局20が送信データに適用した信号処理パラメータ(変調方式、符号化方法、及びレイヤ数)を判別する。そして、端末装置40は、判別した信号処理パラメータに基づいて受信データに信号処理を実行する。
 以下、図12のフローチャートを参照しながら端末装置40の動作を説明する。以下の処理は、例えば、端末装置40の制御部43及び演算部44で実行される。
 まず、制御部43の取得部431は、演算モデルの構成と演算モデルの各係数に係る情報を取得する(ステップS201)。これらの情報は、例えば、基地局20からシステム情報や個別シグナリングにより通知される。
 次に、取得部431は、ダウンリンクのデータの受信のために割り当てられたリソースに関する情報を取得する(ステップS202)。この情報は、例えば、基地局20からダウンリンク制御情報を介して通知される。
 なお、取得部431は、ステップS202で、所定の信号処理の適用に係るリソース単位に関する情報を取得してもよい。リソース単位は、例えば、コンポーネントキャリア、BWP(Band Width Part)、非直交リソース、リソースブロック(Resource Block)、リソースエレメント(Resource Element)、或いはサブキャリア(Subcarrier)である。ここで、リソース単位に関する情報は、動的に通知される情報であってもよいし、準静的に通知される情報であってもよい。例えば、リソース単位に関する情報は、システム情報や個別シグナリング(dedicated signaling)により通知されてもよい。また、端末装置40は、リソース単位に関する情報を、基地局20にランダムアクセスする際に取得してもよい。
 次に、取得部431は、無線通信部41を介して基地局20からダウンリンク参照信号を受信する。そして、取得部431は、受信したダウンリンク参照信号に基づいて、ダウンリンク参照信号の受信強度に関する情報を取得する(ステップS203)。
 そして、制御部43の判別部433は、基地局20が各リソース単位に適用した信号処理パラメータ(変調方式、符号化方法、及び、レイヤ数)を判別する(ステップS204)。ここで、判別部433は、リソース単位毎の信号処理パラメータを演算部44の演算結果に基づき判別してもよい。
 例えば、演算部44の設定部441は、ステップS201で取得した情報に基づいて、演算モデルを設定する。そして、演算部44の処理部442は、ステップS202で取得したリソースに関する情報と、ステップS203で取得したダウンリンク参照信号の受信強度に関する情報とを、設定部441が設定した演算モデルに入力する。この演算モデルからの出力が、基地局20が各リソース単位に適用した信号処理パラメータ(変調方式、符号化方法、及び、レイヤ数)となる。
 制御部43の通信制御部434は、ステップS204で判別した信号処理パラメータに基づいて、リソース単位毎に所定の信号処理(多重分離処理、復調処理、及び復号処理)を実行する(ステップS205)。
 本実施例によれば、端末装置40がより広帯域な周波数帯で動作し、基地局20がダウンリンクのデータ送信のためにより多くの無線リソースを割り当てる場合であっても、端末装置40及び基地局20は、リソース単位毎に、最適な符号化処理、変調処理、及び多重処理を実行できる。これにより、周波数利用効率が向上する。
 また、端末装置40は、演算モデルを使って、基地局20が設定したリソース単位毎の信号処理パラメータ(変調方式、符号化方法、及び、レイヤ数)を判別している。そのため、基地局20は、ダウンリンク制御情報を使って、リソース単位毎の信号処理パラメータに関する情報を送信しなくてもよくなる。この結果、個別シグナリングのオーバーヘッドが削減される。
<4-3.第2の実施例>
 次に、第2の実施例を説明する。
 第1の実施例では、データの送信側となる基地局20は、アップリンク参照信号の受信強度に基づいて信号処理パラメータを決定し、データの受信側となる端末装置40は、ダウンリンク参照信号の受信強度に基づいて信号処理パラメータを決定した。そのため、アップリンク参照信号の受信強度とダウンリンク参照信号の受信強度が大きく異なっている場合には、端末装置40が判別した信号処理パラメータが、基地局20が決定した信号処理パラメータと異なるものとなることも想定され得る。そこで、第2の実施例では、端末装置40は、複数のリソース単位のうちの1つのリソース単位に関する信号処理パラメータを基地局20から予め取得しておく。端末装置40は、予め取得しておいた信号処理パラメータを判別に利用することで、信号処理パラメータの判別精度を向上させる。
 図13は、第2の実施例に係る端末装置40の受信処理の一例を示すフローチャートである。なお、基地局20の動作は、1つのリソース単位に関する信号処理パラメータを端末装置40に送信する以外は、実施形態1と同じであるので省略する。以下、図13のフローチャートを参照しながら端末装置40の動作を説明する。以下の処理は、例えば、端末装置40の制御部43及び演算部44で実行される。
 まず、制御部43の取得部431は、演算モデルの構成と演算モデルの各係数に係る情報を取得する(ステップS301)。そして、取得部431は、ダウンリンクデータの受信のために割り当てられたリソースに関する情報を取得する(ステップS302)。取得部431は、ステップS302で、所定の信号処理の適用に係るリソース単位に関する情報を取得してもよい。ここで所定の信号処理には、多重分離処理、復調処理、及び復号処理の少なくとも1つが含まれる。
 その後、取得部431は、無線通信部41を介して基地局20からダウンリンク参照信号を受信する。そして、取得部431は、受信したダウンリンク参照信号に基づいて、ダウンリンク参照信号の受信強度に関する情報を取得する(ステップS303)。
 さらに、取得部431は、複数のリソース単位のうちの1つのリソース単位に適用された信号処理パラメータに関する情報を取得する(ステップS304)。取得部431は、この情報を、ダウンリンク制御情報を介して取得してもよい。なお、「複数のリソース単位」は、例えば、ダウンリンクデータの受信のために割り当てられたリソースを構成する複数のリソース単位である。「リソース単位」は、例えば、コンポーネントキャリア、BWP(Band Width Part)、非直交リソース、リソースブロック、リソースエレメント、或いはサブキャリアである。上述したように、信号処理パラメータに関する情報には、変調方式、符号化方法、及び、レイヤ数のうちの少なくとも1つの情報が含まれる。
 そして、制御部43の判別部433は、基地局20が各リソース単位に適用した信号処理パラメータ(変調方式、符号化方法、及び、レイヤ数)を判別する(ステップS305)。ここで、判別部433は、リソース単位毎の信号処理パラメータを演算部44の演算結果に基づき判別してもよい。
 例えば、演算部44の設定部441は、ステップS301で取得した情報に基づいて、演算モデルを設定する。そして、演算部44の処理部442は、ステップS302で取得したリソースに関する情報と、ステップS303で取得したダウンリンク参照信号の受信強度に関する情報とを、設定部441が設定した演算モデルに入力する。この演算モデルからの出力が、基地局20が各リソース単位に適用した信号処理パラメータ(変調方式、符号化方法、及び、レイヤ数)となる。
 ここで、ステップS304で取得した情報(1つのリソース単位に適用された信号処理パラメータに関する情報)は、演算モデルによる演算において基準を与える、或いは、キャリブレーションのための情報となり得る。この基準となる情報を使用することで、端末装置40は、他のリソース単位に適用された信号処理パラメータに関する情報を相対的に特定できる。
 例えば、判別部433は、ステップS304で取得した信号処理パラメータ(1つのリソース単位に適用された信号処理パラメータ)と、演算部44から出力されたリソース単位毎の信号処理パラメータのうちの該当のリソース単位の信号処理パラメータを比較する。そして、判別部433は、両者が一致していれば、演算部44から出力されたリソース単位毎の信号処理パラメータをそのまま判別結果とする。一方、判別部433は、両者が一致していなければ、演算モデルに入力するダウンリンク参照信号の受信強度に関する情報を微調整する等により、再度、演算部44に演算し直しをさせる。このとき、取得部431は、再度、ダウンリンク参照信号の受信強度に関する情報を取得し直してもよい。取得部431は、再度、演算モデルの構成と演算モデルの各係数に係る情報を取得し直してもよい。判別部433は、両者が一致するまでこれを繰り返す。
 なお、演算モデルは、ステップS304で取得した信号処理パラメータ(1つのリソース単位に適用された信号処理パラメータ)を入力できるよう構成されていてもよい。そして、演算部44の処理部442は、ステップS302で取得したリソースに関する情報と、ステップS303で取得したダウンリンク参照信号の受信強度に関する情報と、ステップS304で取得した1つのリソース単位と、このリソース単位に適用された信号処理パラメータとを、設定部441が設定した演算モデルに入力する。これによっても、判別部433は、リソース単位毎の信号処理パラメータを判別できる。
 制御部43の通信制御部434は、ステップS305で判別した信号処理パラメータに基づいて、リソース単位毎に所定の信号処理(多重分離処理、復調処理、及び復号処理)を実行する(ステップS306)。
 なお、ステップS304において、取得部431は、1つのリソース単位に適用された信号処理パラメータに関する情報を取得することに加えて、或いは代えて、TBSを取得するようにしてもよい。この取得したTBSは、ステップS305において、各リソース単位に適用した信号処理パラメータ(変調方式、符号化方法、及び、レイヤ数)を判別するために設定部441が設定した演算モデルに入力される。
 本実施例によれば、第1の実施例の効果に加え、各リソース単位に適用される信号処理パラメータ(変調方式、符号化方法、及び、レイヤ数)の判別精度の向上が期待できる。
<4-4.第3の実施例>
 次に、第3の実施例を説明する。
 上述したように、端末装置40が判別した信号処理パラメータが、基地局20が決定した信号処理パラメータと異なることも想定され得る。第3の実施例でも、端末装置40は、判別対象となる信号処理パラメータのうちの一部の情報を基地局20から予め取得しておく。端末装置40は、予め取得しておいた情報を判別に利用することで、信号処理パラメータの判別精度を向上させる。
 図14は、第3の実施例に係る端末装置40の受信処理の一例を示すフローチャートである。なお、基地局20の動作は、信号処理パラメータのうちの一部の情報を端末装置40に送信する以外は、実施形態1と同じであるので省略する。以下、図14のフローチャートを参照しながら端末装置40の動作を説明する。以下の処理は、例えば、端末装置40の制御部43及び演算部44で実行される。
 まず、制御部43の取得部431は、演算モデルの構成と演算モデルの各係数に係る情報を取得する(ステップS401)。そして、取得部431は、ダウンリンクデータの受信のために割り当てられたリソースに関する情報を取得する(ステップS402)。取得部431は、ステップS402で、所定の信号処理の適用に係るリソース単位に関する情報を取得してもよい。ここで所定の信号処理には、多重分離処理、復調処理、及び復号処理の少なくとも1つが含まれる。
 その後、取得部431は、無線通信部41を介して基地局20からダウンリンク参照信号を受信する。そして、取得部431は、受信したダウンリンク参照信号に基づいて、ダウンリンク参照信号の受信強度に関する情報を取得する(ステップS403)。
 さらに、取得部431は、信号処理パラメータに含まれる複数種のパラメータのうちの1のパラメータ(以下、所定のパラメータという。)に関する情報であって、複数のリソース単位の全ての所定のパラメータに関する情報を基地局20から取得する(ステップS404)。このとき、複数種のパラメータには、変調方式、符号化方法、及びレイヤ数が含まれていてもよい。そして、所定のパラメータは、変調方式、符号化方法、及びレイヤ数のうちの1つであってもよい。
 なお、所定のパラメータは、複数のリソース単位で全て同一の値であってもよい。このとき、複数種のパラメータの他のパラメータは、リソース単位毎に異なる値であってもよい。例えば、全てのリソース単位でコードレートは同一の値であり、他のパラメータ(変調方式、及びレイヤ数)は、リソース単位で異なる値であってもよい。勿論、所定のパラメータはコードレートに限定されず、変調方式、又はレイヤ数であってもよい。所定のパラメータを複数のリソース単位で同一の値とすることで、個別シグナリングのオーバーヘッドが削減できる。
 そして、制御部43の判別部433は、基地局20が各リソース単位に適用した信号処理パラメータ(変調方式、符号化方法、及び、レイヤ数)を判別する(ステップS405)。ここで、判別部433は、リソース単位毎の信号処理パラメータを演算部44の演算結果に基づき判別してもよい。
 例えば、演算部44の設定部441は、ステップS401で取得した情報に基づいて、演算モデルを設定する。そして、演算部44の処理部442は、ステップS402で取得したリソースに関する情報と、ステップS403で取得したダウンリンク参照信号の受信強度に関する情報とを、設定部441が設定した演算モデルに入力する。この演算モデルからの出力が、基地局20が各リソース単位に適用した信号処理パラメータ(変調方式、符号化方法、及び、レイヤ数)となる。
 ここで、ステップS404で取得した情報(複数のリソース単位の全ての所定のパラメータに関する情報)は、演算モデルによる演算において基準を与える情報となり得る。この基準となる情報を使用することで、端末装置40は、他のリソース単位に適用された信号処理パラメータに関する情報を相対的に特定できる。
 例えば、判別部433は、ステップS404で取得した信号処理パラメータ(複数のリソース単位の全ての所定のパラメータ)と、演算部44から出力されたリソース単位毎の信号処理パラメータのうちの所定のパラメータを比較する。そして、判別部433は、両者が一致していれば、演算部44から出力されたリソース単位毎の信号処理パラメータをそのまま判別結果とする。一方、判別部433は、両者が一致していなければ、演算モデルに入力するダウンリンク参照信号の受信強度に関する情報を微調整する等により、再度、演算部44に演算し直しをさせる。このとき、取得部431は、再度、ダウンリンク参照信号の受信強度に関する情報を取得し直してもよい。取得部431は、再度、演算モデルの構成と演算モデルの各係数に係る情報を取得し直してもよい。判別部433は、両者が一致するまでこれを繰り返す。
 なお、演算モデルは、ステップS404で取得した信号処理パラメータ(複数のリソース単位の全ての所定のパラメータ)を入力できるよう構成されていてもよい。そして、演算部44の処理部442は、ステップS402で取得したリソースに関する情報と、ステップS403で取得したダウンリンク参照信号の受信強度に関する情報と、ステップS404で取得した所定のパラメータとを、設定部441が設定した演算モデルに入力する。これによっても、判別部433は、リソース単位毎の信号処理パラメータを判別できる。
 さらに、基地局20は、複数のリソース単位の全てに1つの所定のパラメータを設定するようにしてもよい。所定のパラメータが変調方式である場合には、例えば、次数が4の16QAMを設定する。所定パラメータがコードレートの場合には、例えば、378/1024以上438/1024の範囲を設定する。所定のパラメータがレイヤ数であれば、例えば、1レイヤを設定する。
 制御部43の通信制御部434は、ステップS405で判別した信号処理パラメータに基づいて、リソース単位毎に所定の信号処理(多重分離処理、復調処理、及び復号処理)を実行する(ステップS406)。
 本実施例によれば、第1の実施例の効果に加え、各リソース単位に適用される信号処理パラメータ(変調方式、符号化方法、及び、レイヤ数)の判別精度の向上が期待できる。
<4-5.第4の実施例>
 次に、第4の実施例を説明する。
 上述したように、端末装置40が判別した信号処理パラメータが、基地局20が決定した信号処理パラメータと異なることも想定され得る。第4の実施例では、端末装置40は、判別対象となる信号処理パラメータの特徴となる情報(例えば、同一の信号処理パラメータが適用される隣接するリソース単位の数)を基地局20から予め取得しておく。端末装置40は、予め取得しておいた情報を判別に利用することで、信号処理パラメータの判別精度を向上させる。
 図15は、第4の実施例に係る端末装置40の受信処理の一例を示すフローチャートである。なお、基地局20の動作は、信号処理パラメータの特徴となる情報を端末装置40に送信する以外は、実施形態1と同じであるので省略する。以下、図15のフローチャートを参照しながら端末装置40の動作を説明する。以下の処理は、例えば、端末装置40の制御部43及び演算部44で実行される。
 まず、制御部43の取得部431は、演算モデルの構成と演算モデルの各係数に係る情報を取得する(ステップS501)。そして、取得部431は、ダウンリンクデータの受信のために割り当てられたリソースに関する情報を取得する(ステップS502)。取得部431は、ステップS502で、所定の信号処理の適用に係るリソース単位に関する情報を取得してもよい。ここで所定の信号処理には、多重分離処理、復調処理、及び復号処理の少なくとも1つが含まれる。
 その後、取得部431は、無線通信部41を介して基地局20からダウンリンク参照信号を受信する。そして、取得部431は、受信したダウンリンク参照信号に基づいて、ダウンリンク参照信号の受信強度に関する情報を取得する(ステップS503)。
 さらに、取得部431は同一の信号処理パラメータが適用される隣接するリソース単位の数に関する情報を基地局20から取得する(ステップS504)。例えば、隣接する4つのリソースエレメントに同一の信号処理パラメータ(例えば、変調方式、符号化方法、及び、レイヤ数)が適用される場合には、取得部431は、連続するリソース単位の数として4を取得する。
 そして、制御部43の判別部433は、基地局20が各リソース単位に適用した信号処理パラメータ(変調方式、符号化方法、及び、レイヤ数)を判別する(ステップS505)。ここで、判別部433は、リソース単位毎の信号処理パラメータを演算部44の演算結果に基づき判別してもよい。
 例えば、演算部44の設定部441は、ステップS501で取得した情報に基づいて、演算モデルを設定する。そして、演算部44の処理部442は、ステップS502で取得したリソースに関する情報と、ステップS503で取得したダウンリンク参照信号の受信強度に関する情報とを、設定部441が設定した演算モデルに入力する。この演算モデルからの出力が、基地局20が各リソース単位に適用した信号処理パラメータ(変調方式、符号化方法、及び、レイヤ数)となる。
 ここで、ステップS504で取得した情報(同一の信号処理パラメータが適用される隣接するリソース単位の数に関する情報)は、演算モデルによる演算において基準を与える情報となり得る。この基準となる情報を使用することで、端末装置40は、他のリソース単位に適用された信号処理パラメータに関する情報を相対的に特定できる。
 例えば、判別部433は、演算部44から出力されたリソース単位毎の信号処理パラメータのうちに、同一の信号処理パラメータが、ステップS504で取得した数(以下、所定数という。)存在しているか判別する。判別部433は、同一の信号処理パラメータが所定数存在していれば、演算部44から出力されたリソース単位毎の信号処理パラメータをそのまま判別結果とする。一方、判別部433は、所定数存在していなければ、演算モデルに入力するダウンリンク参照信号の受信強度に関する情報を微調整する等により、再度、演算部44に演算し直しをさせる。このとき、取得部431は、再度、ダウンリンク参照信号の受信強度に関する情報を取得し直してもよい。取得部431は、再度、演算モデルの構成と演算モデルの各係数に係る情報を取得し直してもよい。判別部433は、両者が一致するまでこれを繰り返す。
 なお、演算モデルは、ステップS504で取得した信号処理パラメータ(同一の信号処理パラメータが適用される隣接するリソース単位の数に関する情報)を入力できるよう構成されていてもよい。そして、演算部44の処理部442は、ステップS402で取得したリソースに関する情報と、ステップS403で取得したダウンリンク参照信号の受信強度に関する情報と、ステップS504で取得した情報とを、設定部441が設定した演算モデルに入力する。これによっても、判別部433は、リソース単位毎の信号処理パラメータを判別できる。
 制御部43の通信制御部434は、ステップS505で判別した信号処理パラメータに基づいて、リソース単位毎に所定の信号処理(多重分離処理、復調処理、及び復号処理)を実行する(ステップS406)。
 本実施例によれば、第1の実施例の効果に加え、各リソース単位に適用される信号処理パラメータ(変調方式、符号化方法、及び、レイヤ数)の判別精度の向上が期待できる。
<4-6.第5の実施例>
 次に、第5の実施例を説明する。
 伝搬チャネルの状態は、端末装置40のモビリティによって異なるものとなる。図16A及び図16Bは、モビリティと伝搬チャネルの関係を示す図である。図16Aは、端末装置40の移動速度が3km/hの場合の伝搬チャネルの状態を示す図であり、図16Bは、移動速度が300km/hの場合の伝搬チャネルの状態を示す図である。
 図16Aの例では、フェーディングによる時間方向での伝搬チャネルの状態の変化は少なくなっている。一方、図16Bの例では、フェーディングによる時間方向での伝搬チャネルの状態の変化が大きくなっており、ノッチと呼ばれる受信S/Nの落ち込みの周波数も変化している。よって、より細かいリソース単位毎に異なる信号処理パラメータ(変調方式、符号化方法、及び、レイヤ数)を適用する場合、このフェーディングによるノッチの周波数の変化が、端末装置40の受信性能の劣化を招く懸念がある。
 そこで、第5の実施例では、基地局20が、端末装置40のモビリティに応じて、リソース単位を制御する。例えば、基地局20は、端末装置40のモビリティが所定の基準より小さいと判断される場合(例えば、図16Aの場合)、周波数を効率的に利用できるよう、リソース単位を小さくする。一方、端末装置40のモビリティが所定の基準より大きいと判断される場合(例えば、図16Bの場合)、基地局20は、リソース単位を大きくして、フェーディングの影響を吸収する。
 図17は、第5の実施例に係る基地局20の送信処理の一例を示すフローチャートである。なお、端末装置40の動作は、端末装置40のモビリティに関する情報を基地局20に送信する以外は、実施形態1~4と同じであるので省略する。以下、図17のフローチャートを参照しながら基地局20の動作を説明する。以下の処理は、例えば、基地局20の制御部23及び演算部24で実行される。
 まず、制御部23の設定部232は、演算モデルの構成と演算モデルの各係数に係る情報を設定する(ステップS601)。
 続いて、制御部23の取得部231は、無線通信部21を介して端末装置40のモビリティに関する情報を取得する(ステップS602)。モビリティに関する情報を取得する方法としては、種々の方法が考えられる。
 例えば、モビリティに係る情報を取得する方法として、端末装置40が基地局20にモビリティに係る情報を報告する方法が考えられる。
 このとき、端末装置40が報告するモビリティに関する情報は、UE mobility stateであってもよい。UE mobility stateは、指定された期間内に発生するセルチェンジの数に応じて、Normal-mobility state、Medium-mobility state、或いは、High-mobility stateに遷移する。
 また、端末装置40がGPS(Global Positioning System)に代表されるGNSS(Global Navigation Satellite System)を装備している場合には、端末装置40は、固定、若しくは、可変の周期で自身の位置を検出し、位置の変化に基づいて移動速度を算出する。そして、端末装置40は、算出した移動速度をモビリティに係る情報として報告してもよい。なお、端末装置40、若しくは、端末装置40を装備した装置(例えば車両)が移動速度を検出する機能を有している場合には、端末装置40は、検出した移動速度をモビリティに関する情報として報告してもよい。
 また、モビリティに係る情報を取得する方法として、基地局20が端末装置40のモビリティを算出する方法も考えられる。例えば、基地局20は、LMF(Location Management Function)を介して端末装置40の動的な位置に係る情報を取得して、端末装置40のモビリティを算出する。
 LMFは、OTDOA(Observed Time Difference Of Arrival)、Multi-RTT(Round Trip Time)、DL AoD(Downlink Angle-of-Departure)、DL TDOA(Downlink Time Difference of Arrival)、UL TDOA(Uplink Time Difference of Arrival)、UL AoA(Angle of Arrival)と呼ばれるポジショニング技法、或いは、CID(Cell ID)を使ったポジショニング技法で端末装置40の位置に係る情報を取得する。
 例えば、OTDOAにおいては、端末装置40は複数のTP(Transmission Point)からダウンリンクのPRS(Positioning Reference Signal)を受信し、Physical cell ID、Global cell ID、TP ID、及び、PRSのタイミングに関する測定値をLPP(LTE Positioning Protocol)を介してLMFに報告することによって、LMFが測定された各TPの既知の座標に関する情報と、報告されたPRSの相対タイミングに基づいて端末装置40の位置を計算する。
 例えば、CIDを使ったポジショニングでは、LMFは、ng-eNB、或いは、gNBの既知の座標に関する情報と、端末装置40から報告される以下の測定結果に基づいて端末装置40の位置を計算する。端末装置40は、例えば、ECGI(Evolved Cell Global Identifier)、或いは、Physical Cell IDと、RSRP(Reference Signal Received Power)、RSRQ(Reference Signal Received Quality)、UE Rx-Tx time differenceに関する測定結果をLMFに報告する。ここで、UE Rx-Tx time differenceは、端末装置40が受信したタイミングと送信したタイミングとの時間差として定義されている。
 また、取得部231は、演算モデルを使用してモビリティに関する情報を取得してもよい。例えば、基地局20の演算部24は、周波数軸と時間軸にわたって割り当てられた上りリンク参照信号の受信強度をCNNに入力する。CNNは、上りリンク参照信号の受信強度に関する2次元の情報の特徴に基づいて、モビリティに関する情報を出力する。取得部231は、出力された情報を端末装置40のモビリティに関する情報として取得する。
 次に、設定部232は、ダウンリンクのデータ送信のためのリソースに関する情報を設定する(ステップS603)。この情報は、例えば、基地局20からダウンリンク制御情報を介して端末装置40に通知される。
 なお、設定部232は、ステップS603で、所定の信号処理の適用に係るリソース単位に関する情報を設定してもよい。このとき、設定部232は、端末装置40のモビリティに基づいて、異なる信号処理パラメータ(変調方式、符号化方法、及び、レイヤ数)を適用するリソース単位を設定する。ここで、設定部232は、端末装置40のモビリティが小さい場合には、小さいリソース単位を設定し、端末装置40のモビリティが大きい場合には、大きいリソース単位を設定する。
 制御部23の通知部233は、リソース単位に関する情報を端末装置40に通知する(ステップS604)。そして、制御部23の取得部231は、無線通信部21を介して端末装置40からアップリンク参照信号を受信する。そして、取得部231は、受信したアップリンク参照信号に基づいて、アップリンク参照信号の受信強度に関する情報を取得する(ステップS605)。
 そして、制御部23の決定部234は、各リソース単位に適用する信号処理パラメータ(変調方式、符号化方法、及び、レイヤ数)を決定する(ステップS606)。このとき決定部234は、リソース単位毎の信号処理パラメータを演算部24の演算結果に基づき決定してもよい。
 そして、制御部23の通信制御部235は、ステップS606で決定した信号処理パラメータに基づいて、リソース単位毎に所定の信号処理(変調処理、符号化処理、及び多重化処理)を実行する(ステップS607)。
 なお、ステップS604において、制御部23の通知部233は、複数のモビリティに応じたリソース単位に関する情報を端末装置40に通知して、端末装置40が検出したモビリティに基づいて、同一の信号処理パラメータが適用されるリソース単位を端末装置40が決定するようにしてもよい。
 ここまで、端末装置40のモビリティによって信号処理パラメータを決定する実施例を示したが、基地局20のモビリティ情報や基地局20の属性を信号処理パラメータの決定に利用してもよい。例えば、低軌道衛星が基地局20である場合、低軌道衛星は上空を高速で移動しているため、フェーディングによる時間方向での伝搬チャネルの状態の変化は大きくなる。そこで、基地局20のモビリティ情報や、例えば低軌道衛星や静止衛星、地上基地局などの基地局20の属性情報を、信号処理パラメータの決定に使用してもよい。また、これらの情報は、端末装置40に通知されてもよい。
 本実施例によれば、フェーディングの影響を低減した送受信が可能となる。
<<5.変形例>>
 上述の実施形態は一例を示したものであり、種々の変更及び応用が可能である。
 例えば、上述の実施例1~5では、基地局20はダウンリンクデータの送信処理を実行し、端末装置40はダウンリンクデータの受信処理を実行した。しかしながら、上述の実施例1~5は、アップリンクデータの送受信にも変形可能である。
 例えば、基地局20は、所定の信号処理(例えば、変調処理、符号化処理、及び多重化処理)の適用に係るリソース単位を設定し、端末装置40に通知する。端末装置40は、アップリンクデータの送信のために割り当てられたリソースとリソース単位に関する情報を基地局から取得するとともに、リソース単位毎に割り当てられたリソースに適用する信号処理パラメータ(例えば、変調方式、符号化方法、及びレイヤ数)を特定する。このとき、端末装置40は、演算モデルを使用して信号処理パラメータを特定してもよい。そして、端末装置40は、特定したリソース単位毎の信号処理パラメータを使用してアップリンクデータの信号処理を行う。そして、基地局20は、リソース単位毎に信号処理パラメータを判別する。このとき、基地局20は、演算モデルを使用して信号処理パラメータを判別してもよい。そして、基地局20は、判別したリソース単位毎の信号処理パラメータを使用して、端末装置40から受信したアップリンクデータの信号処理を行う。この変形例の場合も、リソース単位毎に、最適な符号化処理、変調処理、及び多重処理を実行できる。これにより、周波数利用効率が向上する。
 例えば、上述の実施例1~5では、基地局20は再リンクデータの送信処理を実行し、端末装置40はダウンリンクデータの受信処理を実行した。しかしながら、上述の実施例1~5は、サイドリンクデータの送受信にも変形可能である。
 例えば、端末装置40は、所定の信号処理(例えば、変調処理、符号化処理、及び多重化処理)の適用に係るリソース単位を設定し、別の端末装置xxに通知する。別の端末装置xxは、サイドリンクデータの送信のために割り当てられたリソースとリソース単位に関する情報を端末装置40から取得するとともに、リソース単位毎に割り当てられたリソースに適用する信号処理パラメータ(例えば、変調方式、符号化方法、及びレイヤ数)を特定する。このとき、別の端末装置xxは、演算モデルを使用して信号処理パラメータを特定してもよい。そして、別の端末装置xxは、特定したリソース単位毎の信号処理パラメータを使用してサイドリンクデータの信号処理を行う。そして、端末装置40は、リソース単位毎に信号処理パラメータを判別する。このとき、端末装置40は、演算モデルを使用して信号処理パラメータを判別してもよい。そして、端末装置40は、判別したリソース単位毎の信号処理パラメータを使用して、別の端末装置xxから受信したサイドリンクデータの信号処理を行う。この変形例の場合も、リソース単位毎に、最適な符号化処理、変調処理、及び多重処理を実行できる。これにより、周波数利用効率が向上する。
 また、上述の実施例1~5では、端末装置40は、1つのTB(Transport Block)に対応するダウンリンクデータを受信する際に、演算モデル等を使用して、ダウンリンクデータに適用されている信号処理パラメータを自ら特定した。しかしながら、端末装置40が信号処理パラメータを判別する方法はこれに限定されない。例えば、基地局20が、ダウンリンクデータに適用される信号処理パラメータを、TB毎に、又はリソース単位毎に端末装置40に通知してもよい。
 なお、端末装置40が自ら信号処理パラメータを特定するか、基地局20から信号処理パラメータを取得するかは、基地局20からの通知に基づいて、動的、かつ、選択的に制御されてもよい。例えば、基地局20は、端末装置40から送られるUE Radio Capability情報に基づいて、この受信方法を設定する。つまり、UE Radio Capability情報には、基地局20が各リソース単位に適用される信号処理パラメータを通知せずに、端末装置40が、自ら、適用された信号処理パラメータを特定して受信することができるケイパビリティを有するか、否かの情報が含まれる。そして、端末装置40は、設定された受信方法に基づいて、信号処理パラメータを判別する。
 また、端末装置40が自ら信号処理パラメータを特定するか、基地局20から信号処理パラメータを取得するかは、動作周波数に応じて制御されてもよい。ここで、動作周波数は、NR-ARFCN(NR- Absolute Radio Frequency Channel Number)、バンド番号(Band Number)、FR1、FR2といった周波数帯の分類、BWP-ID、或いは、動作周波数の種類、例えば、免許周波数(ライセンス周波数)、共用周波数、免許不要周波数(アンライセンス周波数)の分類であってもよい。
 また、上述の各実施例では、基地局20がリソース単位を決定するものとしたが、端末装置40又は中継局30がリソース単位を決定してもよい。また、信号処理を行う通信装置(例えば、基地局20、中継局30、及び端末装置40)とは別の装置がリソース単位を決定してもよい。例えば、管理装置10が基地局20と端末装置40との通信で使用されるリソース単位を決定してもよい。そして、管理装置10は決定した信号処理方式を基地局20及び/又は端末装置40に通知してもよい。基地局20及び/又は端末装置40は、管理装置10から通知されたリソース単位の情報に基づいて、通信に使用するリソース単位を決定してもよい。
 また、管理装置10は、端末装置40のリソース単位に関するケイパビリティ情報を記憶してもよい。このとき、ケイパビリティ情報には、端末装置40がリソース単位を変更可能か否かを示す情報が含まれていてもよい。そして、管理装置10は、ケイパビリティ情報を基地局20に通知してもよい。そして、基地局20は、管理装置10から受信したケイパビリティ情報に基づいて端末装置40との通信で使用する信号処理パラメータの通知方法とリソース単位を決定してもよい。
 また、上述の実施形態では、基地局20は、伝搬チャネルの状態の情報に基づいて、信号処理パラメータ(例えば、変調方式、符号化方法、及びレイヤ数)を決定した。ここで、伝搬チャネルの状態の情報は、アップリンクの参照信号のS/Nに限られない。例えば、基地局20は、端末装置40からフィードバックされたダウンリンクの参照信号の測定結果であってもよい。
 本実施形態の管理装置10、基地局20、中継局30、端末装置40、を制御する制御装置は、専用のコンピュータシステムにより実現してもよいし、汎用のコンピュータシステムによって実現してもよい。
 例えば、上述の動作を実行するための通信プログラムを、光ディスク、半導体メモリ、磁気テープ、フレキシブルディスク等のコンピュータ読み取り可能な記録媒体に格納して配布する。そして、例えば、該プログラムをコンピュータにインストールし、上述の処理を実行することによって制御装置を構成する。このとき、制御装置は、管理装置10、基地局20、中継局30、端末装置40の外部の装置(例えば、パーソナルコンピュータ)であってもよい。また、制御装置は、管理装置10、基地局20、中継局30、端末装置40の内部の装置(例えば、制御部13、制御部23、制御部33、制御部43、演算部24、演算部34、演算部44)であってもよい。
 また、上記通信プログラムをインターネット等のネットワーク上のサーバ装置が備えるディスク装置に格納しておき、コンピュータにダウンロード等できるようにしてもよい。また、上述の機能を、OS(Operating System)とアプリケーションソフトとの協働により実現してもよい。この場合には、OS以外の部分を媒体に格納して配布してもよいし、OS以外の部分をサーバ装置に格納しておき、コンピュータにダウンロード等できるようにしてもよい。
 また、上記実施形態において説明した各処理のうち、自動的に行われるものとして説明した処理の全部又は一部を手動的に行うこともでき、あるいは、手動的に行われるものとして説明した処理の全部又は一部を公知の方法で自動的に行うこともできる。この他、上記文書中や図面中で示した処理手順、具体的名称、各種のデータやパラメータを含む情報については、特記する場合を除いて任意に変更することができる。例えば、各図に示した各種情報は、図示した情報に限られない。
 また、図示した各装置の各構成要素は機能概念的なものであり、必ずしも物理的に図示の如く構成されていることを要しない。すなわち、各装置の分散・統合の具体的形態は図示のものに限られず、その全部又は一部を、各種の負荷や使用状況などに応じて、任意の単位で機能的又は物理的に分散・統合して構成することができる。なお、この分散・統合による構成は動的に行われてもよい。
 また、上述の実施形態は、処理内容を矛盾させない領域で適宜組み合わせることが可能である。また、上述の実施形態のフローチャートに示された各ステップは、適宜順序を変更することが可能である。
 また、例えば、本実施形態は、装置またはシステムを構成するあらゆる構成、例えば、システムLSI(Large Scale Integration)等としてのプロセッサ、複数のプロセッサ等を用いるモジュール、複数のモジュール等を用いるユニット、ユニットにさらにその他の機能を付加したセット等(すなわち、装置の一部の構成)として実施することもできる。
 なお、本実施形態において、システムとは、複数の構成要素(装置、モジュール(部品)等)の集合を意味し、全ての構成要素が同一筐体中にあるか否かは問わない。したがって、別個の筐体に収納され、ネットワークを介して接続されている複数の装置、及び、1つの筐体の中に複数のモジュールが収納されている1つの装置は、いずれも、システムである。
 また、例えば、本実施形態は、1つの機能を、ネットワークを介して複数の装置で分担、共同して処理するクラウドコンピューティングの構成をとることができる。
<<6.むすび>>
 以上説明したように、本開示の一実施形態によれば、基地局20は、変調処理、符号化処理、及び多重化処理のうちの少なくとも1つの信号処理を含む所定の信号処理の適用に係るリソース単位を設定する。そして、基地局20は、リソース単位に関する情報を端末装置40に通知する。端末装置40は、所定の信号処理の適用に係るリソース単位に関する情報を基地局20から取得し、このリソース単位毎に、変調方式、符号化方法、及びレイヤ数のうちの少なくとも1つの情報を含む信号処理パラメータを判別する。
 これにより、基地局20及び端末装置40は、任意の単位(例えば、TBより小さな単位)で信号処理パラメータを変化させることができるので、例えば、1つのTBに割り当てられる周波数リソース内で受信品質が大きく変化するような事態が発生しても、最適な信号処理パラメータで通信することができる。結果として、周波数の更なる効率的利用が実現する。
 以上、本開示の各実施形態について説明したが、本開示の技術的範囲は、上述の各実施形態そのままに限定されるものではなく、本開示の要旨を逸脱しない範囲において種々の変更が可能である。また、異なる実施形態及び変形例にわたる構成要素を適宜組み合わせてもよい。
 また、本明細書に記載された各実施形態における効果はあくまで例示であって限定されるものでは無く、他の効果があってもよい。
 本明細書における「判別する(determine)」は「特定する」であっても良い。また、これらは、「識別する(identify)」「選択する(select)」「推測する(be expected)」「解釈する(interpret)」「仮定する(assume)」であっても良い。
 なお、本技術は以下のような構成も取ることができる。
(1)
 複数の第一のリソースから構成される第二のリソースに関する情報を他の通信装置から取得する取得部と、
 前記第二のリソースに関する情報に基づいて、前記第一のリソース毎に適用される、変調方式、符号化方法、及びレイヤ数のうちの少なくとも1つに関する情報を含む信号処理パラメータを判別する判別部と、
 を備える通信装置。
(2)
 前記取得部は、無線通信に使用される伝搬チャネルの状態に関する情報を取得し、
 前記判別部は、前記伝搬チャネルの状態に関する情報に基づいて、前記第一のリソース毎に前記信号処理パラメータを判別する、
 前記(1)に記載の通信装置。
(3)
 前記取得部は、前記伝搬チャネルの状態に関する情報として、前記伝搬チャネルを介して送信される参照信号の受信強度に関する情報を取得し、
 前記判別部は、前記参照信号の受信強度に関する情報に基づいて、前記第一のリソース毎に前記信号処理パラメータを判別する、
 前記(2)に記載の通信装置。
(4)
 前記他の通信装置は、前記第一のリソース毎に前記信号処理パラメータを設定してダウンリンクデータを送信する基地局であり、
 前記判別部は、前記基地局から前記伝搬チャネルを介して送信される参照信号の受信強度に関する情報に基づいて、前記基地局が前記第一のリソースそれぞれに設定した前記信号処理パラメータを判別する、
 前記(3)に記載の通信装置。
(5)
 前記取得部は、前記伝搬チャネルを介して送信される参照信号の受信強度に関する情報を少なくとも入力とし、前記信号処理パラメータに関する情報を少なくとも出力とする演算モデルに関する情報を前記基地局から取得し、
 前記判別部は、前記基地局から前記伝搬チャネルを介して送信される参照信号の受信強度に関する情報を前記演算モデルに入力することにより、前記基地局が前記第一のリソースそれぞれに設定した前記信号処理パラメータを判別する、
 前記(4)に記載の通信装置。
(6)
 前記取得部は、前記複数の第一のリソースのうちの1つの前記第一のリソースに適用される前記信号処理パラメータに関する情報を前記基地局から取得し、
 前記判別部は、前記基地局から前記伝搬チャネルを介して送信される参照信号の受信強度に関する情報と、前記複数の第一のリソースのうちの1つの前記第一のリソースに適用される前記信号処理パラメータに関する情報と、に基づいて、前記基地局が前記第一のリソースそれぞれに設定した前記信号処理パラメータを判別する、
 前記(5)に記載の通信装置。
(7)
 前記取得部は、前記信号処理パラメータに含まれる複数種のパラメータのうちの1つのパラメータである所定のパラメータに関する情報であって、前記複数の第一のリソースの全ての前記所定のパラメータに関する情報を前記基地局から取得し、
 前記判別部は、前記基地局から前記伝搬チャネルを介して送信される参照信号の受信強度に関する情報と、前記複数の第一のリソースの全ての前記信号処理パラメータに関する情報と、に基づいて、前記基地局が前記第一のリソースそれぞれに設定した前記信号処理パラメータを判別する、
 前記(5)に記載の通信装置。
(8)
 前記所定のパラメータは、変調方式、符号化方法、及びレイヤ数のうちの1つである、
 前記(7)に記載の通信装置。
(9)
 前記所定のパラメータは、前記複数の第一のリソースで全て同一の値である、
 前記(7)又は(8)に記載の通信装置。
(10)
 前記取得部は、同一の前記信号処理パラメータが適用される隣接する第一のリソースの数に関する情報を前記基地局から取得し、
 前記判別部は、前記基地局から前記伝搬チャネルを介して送信される参照信号の受信強度に関する情報と、同一の前記信号処理パラメータが適用される隣接する第一のリソースの数に関する情報と、を前記演算モデルに入力することにより、前記基地局が前記第一のリソースそれぞれに設定した前記信号処理パラメータを判別する、
 前記(5)に記載の通信装置。
(11)
 前記第一のリソースは、サブキャリア、リソースエレメント(Resource Element)、若しくは、リソースブロック(Resource Block)であり、
 前記判別部は、前記サブキャリア、リソースエレメント、若しくは、リソースブロック毎に、適用する変調方式、符号化方法、及びレイヤ数のうちの少なくとも1つを判別する、
 前記(1)~(10)のいずれか1項に記載の通信装置。
(12)
 前記取得部は、システム情報(System Information)、若しくは、個別シグナリング(Dedicated Signaling)を介して前記第一のリソースに係る情報を取得する、
 前記(1)~(11)のいずれか1項に記載の通信装置。
(13)
 複数の第一のリソースから構成される第二のリソースに関する情報に基づいて前記第一のリソース毎に適用される、変調方式、符号化方法、及びレイヤ数のうちの少なくとも1つに関する情報を含む信号処理パラメータを判別する他の通信装置に対して、前記第二のリソースに関する情報を送信する送信部、
 を備える通信装置。
(14)
 前記他の通信装置のモビリティに関する情報を取得する取得部、を備え、
 前記設定部は、前記他の通信装置のモビリティに応じて異なる大きさの前記第一のリソースを設定する、
 前記(13)に記載の通信装置。
(15)
 前記第一のリソース毎に、変調方式、符号化方法、及びレイヤ数のうちの少なくとも1つを含む信号処理パラメータを決定する決定部、を備える、
 前記(13)又は(14)に記載の通信装置。
(16)
 前記他の通信装置は、前記通信装置が送信するダウンリンクデータを受信する端末装置であり、
 前記決定部は、前記端末装置から伝搬チャネルを介して送信される参照信号の受信強度に関する情報に基づいて、前記ダウンリンクデータの送信の際に、前記第一のリソースそれぞれに設定する前記信号処理パラメータを決定する、
 前記(15)に記載の通信装置。
(17)
 複数の第一のリソースから構成される第二のリソースに関する情報を他の通信装置から取得し、
 前記第二のリソースに関する情報に基づいて、前記第一のリソース毎に適用される、変調方式、符号化方法、及びレイヤ数のうちの少なくとも1つに関する情報を含む信号処理パラメータを判別する、
 通信方法。
(18)
 複数の第一のリソースから構成される第二のリソースに関する情報に基づいて前記第一のリソース毎に適用される、変調方式、符号化方法、及びレイヤ数のうちの少なくとも1つに関する情報を含む信号処理パラメータを判別する他の通信装置に対して、前記第二のリソースに関する情報を送信する、
 通信方法。
(19)
 基地局と端末装置とを備える通信システムであって、
 前記基地局は、
 複数の第一のリソースから構成される第二のリソースに関する情報を前記端末装置に送信する送信部、を備え、
 前記端末装置は、
 複数の第一のリソースから構成される第二のリソースに関する情報を前記基地局から取得する取得部と、
 前記第二のリソースに関する情報に基づいて、前記第一のリソース毎に適用される、変調方式、符号化方法、及びレイヤ数のうちの少なくとも1つに関する情報を含む信号処理パラメータを判別する判別部と、を備える、
 通信システム。
 1 通信システム
 10 管理装置
 20 基地局
 30 中継局
 40 端末装置
 11 通信部
 21、31、41 無線通信部
 12、22、32、42 記憶部
 13、23、33、43 制御部
 24、34、44 演算部
 211、311、411 送信処理部
 212、312、412 受信処理部
 213、313、413 アンテナ
 231、431 取得部
 232、241、432、441 設定部
 233 通知部
 234 決定部
 235、434 通信制御部
 433 判別部
 242、442 処理部
 243 抽出部
 443 特定部

Claims (19)

  1.  複数の第一のリソースから構成される第二のリソースに関する情報を他の通信装置から取得する取得部と、
     前記第二のリソースに関する情報に基づいて、前記第一のリソース毎に適用される、変調方式、符号化方法、及びレイヤ数のうちの少なくとも1つに関する情報を含む信号処理パラメータを判別する判別部と、
     を備える通信装置。
  2.  前記取得部は、無線通信に使用される伝搬チャネルの状態に関する情報を取得し、
     前記判別部は、前記伝搬チャネルの状態に関する情報に基づいて、前記第一のリソース毎に前記信号処理パラメータを判別する、
     請求項1に記載の通信装置。
  3.  前記取得部は、前記伝搬チャネルの状態に関する情報として、前記伝搬チャネルを介して送信される参照信号の受信強度に関する情報を取得し、
     前記判別部は、前記参照信号の受信強度に関する情報に基づいて、前記第一のリソース毎に前記信号処理パラメータを判別する、
     請求項2に記載の通信装置。
  4.  前記他の通信装置は、前記第一のリソース毎に前記信号処理パラメータを設定してダウンリンクデータを送信する基地局であり、
     前記判別部は、前記基地局から前記伝搬チャネルを介して送信される参照信号の受信強度に関する情報に基づいて、前記基地局が前記第一のリソースそれぞれに設定した前記信号処理パラメータを判別する、
     請求項3に記載の通信装置。
  5.  前記取得部は、前記伝搬チャネルを介して送信される参照信号の受信強度に関する情報を少なくとも入力とし、前記信号処理パラメータに関する情報を少なくとも出力とする演算モデルに関する情報を前記基地局から取得し、
     前記判別部は、前記基地局から前記伝搬チャネルを介して送信される参照信号の受信強度に関する情報を前記演算モデルに入力することにより、前記基地局が前記第一のリソースそれぞれに設定した前記信号処理パラメータを判別する、
     請求項4に記載の通信装置。
  6.  前記取得部は、前記複数の第一のリソースのうちの1つの前記第一のリソースに適用される前記信号処理パラメータに関する情報を前記基地局から取得し、
     前記判別部は、前記基地局から前記伝搬チャネルを介して送信される参照信号の受信強度に関する情報と、前記複数の第一のリソースのうちの1つの前記第一のリソースに適用される前記信号処理パラメータに関する情報と、に基づいて、前記基地局が前記第一のリソースそれぞれに設定した前記信号処理パラメータを判別する、
     請求項5に記載の通信装置。
  7.  前記取得部は、前記信号処理パラメータに含まれる複数種のパラメータのうちの1つのパラメータである所定のパラメータに関する情報であって、前記複数の第一のリソースの全ての前記所定のパラメータに関する情報を前記基地局から取得し、
     前記判別部は、前記基地局から前記伝搬チャネルを介して送信される参照信号の受信強度に関する情報と、前記複数の第一のリソースの全ての前記信号処理パラメータに関する情報と、に基づいて、前記基地局が前記第一のリソースそれぞれに設定した前記信号処理パラメータを判別する、
     請求項5に記載の通信装置。
  8.  前記所定のパラメータは、変調方式、符号化方法、及びレイヤ数のうちの1つである、
     請求項7に記載の通信装置。
  9.  前記所定のパラメータは、前記複数の第一のリソースで全て同一の値である、
     請求項7に記載の通信装置。
  10.  前記取得部は、同一の前記信号処理パラメータが適用される隣接する第一のリソースの数に関する情報を前記基地局から取得し、
     前記判別部は、前記基地局から前記伝搬チャネルを介して送信される参照信号の受信強度に関する情報と、同一の前記信号処理パラメータが適用される隣接する第一のリソースの数に関する情報と、を前記演算モデルに入力することにより、前記基地局が前記第一のリソースそれぞれに設定した前記信号処理パラメータを判別する、
     請求項5に記載の通信装置。
  11.  前記第一のリソースは、サブキャリア、リソースエレメント(Resource Element)、若しくは、リソースブロック(Resource Block)であり、
     前記判別部は、前記サブキャリア、リソースエレメント、若しくは、リソースブロック毎に、適用する変調方式、符号化方法、及びレイヤ数のうちの少なくとも1つを判別する、
     請求項1に記載の通信装置。
  12.  前記取得部は、システム情報(System Information)、若しくは、個別シグナリング(Dedicated Signaling)を介して前記第一のリソースに係る情報を取得する、
     請求項1に記載の通信装置。
  13.  複数の第一のリソースから構成される第二のリソースに関する情報に基づいて前記第一のリソース毎に適用される、変調方式、符号化方法、及びレイヤ数のうちの少なくとも1つに関する情報を含む信号処理パラメータを判別する他の通信装置に対して、前記第二のリソースに関する情報を送信する送信部、
     を備える通信装置。
  14.  前記他の通信装置のモビリティに関する情報を取得する取得部、を備え、
     前記設定部は、前記他の通信装置のモビリティに応じて異なる大きさの前記第一のリソースを設定する、
     請求項13に記載の通信装置。
  15.  前記第一のリソース毎に、変調方式、符号化方法、及びレイヤ数のうちの少なくとも1つを含む信号処理パラメータを決定する決定部、を備える、
     請求項13に記載の通信装置。
  16.  前記他の通信装置は、前記通信装置が送信するダウンリンクデータを受信する端末装置であり、
     前記決定部は、前記端末装置から伝搬チャネルを介して送信される参照信号の受信強度に関する情報に基づいて、前記ダウンリンクデータの送信の際に、前記第一のリソースそれぞれに設定する前記信号処理パラメータを決定する、
     請求項15に記載の通信装置。
  17.  複数の第一のリソースから構成される第二のリソースに関する情報を他の通信装置から取得し、
     前記第二のリソースに関する情報に基づいて、前記第一のリソース毎に適用される、変調方式、符号化方法、及びレイヤ数のうちの少なくとも1つに関する情報を含む信号処理パラメータを判別する、
     通信方法。
  18.  複数の第一のリソースから構成される第二のリソースに関する情報に基づいて前記第一のリソース毎に適用される、変調方式、符号化方法、及びレイヤ数のうちの少なくとも1つに関する情報を含む信号処理パラメータを判別する他の通信装置に対して、前記第二のリソースに関する情報を送信する、
     通信方法。
  19.  基地局と端末装置とを備える通信システムであって、
     前記基地局は、
     複数の第一のリソースから構成される第二のリソースに関する情報を前記端末装置に送信する送信部、を備え、
     前記端末装置は、
     複数の第一のリソースから構成される第二のリソースに関する情報を前記基地局から取得する取得部と、
     前記第二のリソースに関する情報に基づいて、前記第一のリソース毎に適用される、変調方式、符号化方法、及びレイヤ数のうちの少なくとも1つに関する情報を含む信号処理パラメータを判別する判別部と、を備える、
     通信システム。
PCT/JP2021/041988 2020-11-25 2021-11-16 通信装置、通信方法、及び通信システム WO2022113808A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP21897782.5A EP4255067A4 (en) 2020-11-25 2021-11-16 COMMUNICATION DEVICE, COMMUNICATION METHOD AND COMMUNICATION SYSTEM
JP2022565241A JPWO2022113808A1 (ja) 2020-11-25 2021-11-16

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020195379 2020-11-25
JP2020-195379 2020-11-25

Publications (1)

Publication Number Publication Date
WO2022113808A1 true WO2022113808A1 (ja) 2022-06-02

Family

ID=81755954

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/041988 WO2022113808A1 (ja) 2020-11-25 2021-11-16 通信装置、通信方法、及び通信システム

Country Status (3)

Country Link
EP (1) EP4255067A4 (ja)
JP (1) JPWO2022113808A1 (ja)
WO (1) WO2022113808A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013157695A (ja) 2012-01-27 2013-08-15 Sharp Corp 通信システム、移動局装置、基地局装置、通信方法および集積回路
JP2015530044A (ja) * 2012-09-28 2015-10-08 インテル コーポレイション チャネル状態情報(csi)フィードバックのための強化された干渉測定の方法
US20160156430A1 (en) * 2014-12-02 2016-06-02 Cisco Technology, Inc. Link adaptation based on neighboring cell transmission information
JP2017022427A (ja) * 2013-11-07 2017-01-26 シャープ株式会社 通信システム、基地局装置、および端末装置
JP2019501558A (ja) * 2015-10-23 2019-01-17 華為技術有限公司Huawei Technologies Co.,Ltd. 候補ニューメロロジーの重複セットを使用して搬送波を設定するためのシステム及び方法
JP2020099091A (ja) 2013-01-11 2020-06-25 インターデイジタル パテント ホールディングス インコーポレイテッド 適応変調のためのシステムおよび方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007080727A1 (ja) * 2005-12-09 2007-07-19 Mitsubishi Electric Corporation 通信方法および通信装置
US10873488B2 (en) * 2019-01-22 2020-12-22 Qualcomm Incorporated Intra-packet rate adaptation for high capacity

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013157695A (ja) 2012-01-27 2013-08-15 Sharp Corp 通信システム、移動局装置、基地局装置、通信方法および集積回路
JP2015530044A (ja) * 2012-09-28 2015-10-08 インテル コーポレイション チャネル状態情報(csi)フィードバックのための強化された干渉測定の方法
JP2020099091A (ja) 2013-01-11 2020-06-25 インターデイジタル パテント ホールディングス インコーポレイテッド 適応変調のためのシステムおよび方法
JP2017022427A (ja) * 2013-11-07 2017-01-26 シャープ株式会社 通信システム、基地局装置、および端末装置
US20160156430A1 (en) * 2014-12-02 2016-06-02 Cisco Technology, Inc. Link adaptation based on neighboring cell transmission information
JP2019501558A (ja) * 2015-10-23 2019-01-17 華為技術有限公司Huawei Technologies Co.,Ltd. 候補ニューメロロジーの重複セットを使用して搬送波を設定するためのシステム及び方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4255067A4

Also Published As

Publication number Publication date
JPWO2022113808A1 (ja) 2022-06-02
EP4255067A1 (en) 2023-10-04
EP4255067A4 (en) 2024-05-29

Similar Documents

Publication Publication Date Title
WO2022113809A1 (ja) 通信装置、通信方法、基地局、及び基地局の方法
WO2021117373A1 (ja) 情報処理装置、情報処理方法、端末装置、基地局装置、及びプログラム
WO2020235327A1 (ja) 通信装置及び通信方法
KR20230031225A (ko) 활성화 및 시그널링에 의한 대역폭 부분 스위칭
US20240015052A1 (en) Communication device, communication method, and communication system
WO2022131100A1 (ja) 通信装置、及び通信方法
CN112106417B (zh) 一种通信方法及装置
WO2022113808A1 (ja) 通信装置、通信方法、及び通信システム
WO2024219407A1 (en) Relay device, communication device, and communication method
WO2024116871A1 (ja) 端末装置、基地局、及び通信システム
WO2024219408A1 (en) Relay device, communication device, and communication method
WO2023127173A1 (ja) 通信方法、通信装置、及び通信システム
WO2023166969A1 (ja) 通信装置、及び通信方法
WO2024018780A1 (ja) 端末装置、情報処理装置、及び通信方法
WO2021070631A1 (ja) 端末装置、基地局および通信制御方法
WO2024157737A1 (ja) 基地局、通信システム及び通信方法
US12088412B2 (en) Communication device and communication method
JP7533468B2 (ja) 通信装置、基地局装置、及び通信方法
WO2024166691A1 (ja) 端末装置、及び通信方法
EP4432760A1 (en) Communication device and communication method
US20240283468A1 (en) Communication device and communication method
EP4318994A1 (en) Communication device, communication method, and communication system
JP2024155575A (ja) 中継装置、通信装置および通信方法
WO2023248888A1 (ja) 通信装置、通信方法、及び通信システム
JP2024155574A (ja) 中継装置、通信装置および通信方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21897782

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022565241

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021897782

Country of ref document: EP

Effective date: 20230626