WO2022113631A1 - ファン装置 - Google Patents

ファン装置 Download PDF

Info

Publication number
WO2022113631A1
WO2022113631A1 PCT/JP2021/039783 JP2021039783W WO2022113631A1 WO 2022113631 A1 WO2022113631 A1 WO 2022113631A1 JP 2021039783 W JP2021039783 W JP 2021039783W WO 2022113631 A1 WO2022113631 A1 WO 2022113631A1
Authority
WO
WIPO (PCT)
Prior art keywords
shape
region
edge
fan
fan device
Prior art date
Application number
PCT/JP2021/039783
Other languages
English (en)
French (fr)
Inventor
知美 馬場
卓也 宇佐見
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2021106503A external-priority patent/JP2022085825A/ja
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to CN202180079075.1A priority Critical patent/CN116670401A/zh
Publication of WO2022113631A1 publication Critical patent/WO2022113631A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/32Rotors specially for elastic fluids for axial flow pumps
    • F04D29/38Blades

Definitions

  • This disclosure relates to a fan device that sends out air.
  • the vehicle is equipped with a fan device for sending air through a heat exchanger such as a radiator.
  • a fan device for sending air through a heat exchanger such as a radiator.
  • the fan device includes a fan having a plurality of blades and a motor for rotating the fan.
  • Blades can be broadly classified as either swept wings or forward wings.
  • the "swept wing” is a blade having a shape in which the blade is inclined and extended in the direction opposite to the rotation direction from the inner peripheral side to the outer peripheral side.
  • Patent Document 1 describes an example of a fan device having such a swept wing blade.
  • the "forward wing” is a blade having a shape in which the blade inclines and extends in the direction of rotation as it goes from the inner peripheral side to the outer peripheral side.
  • Patent Document 2 describes an example of a fan device having such a blade of a forward wing.
  • the air volume sent from the fan device can be sufficiently secured, but in general, noise due to the operation of the fan device is more likely to occur than when the blade is a forward wing. It is known that there is a tendency to become. Further, when the blade is a forward wing, in general, the noise associated with the operation of the fan device can be suppressed as compared with the case where the blade is a swept wing, but the air volume sent from the fan device is smaller. It is known that it tends to end up.
  • the object of the present disclosure is to provide a fan device capable of suppressing the generation of noise while ensuring the air volume.
  • the fan device is a fan device that sends out air, and includes a fan having a plurality of blades and a motor for rotating the fan.
  • the edge of either the front side or the rear side of the blade along the rotation direction of the fan is defined as the shape-specific edge, and each position on the shape-specific edge.
  • the inclination angle of the straight line connecting the point corresponding to the position and the center axis of rotation is the skew angle for the position, the first region on the innermost side of the shape specific edge and the most.
  • the skew angle at each position on the shape specific edge gradually increases from the inner peripheral side to the outer peripheral side along the shape specific edge to the side opposite to the rotation direction.
  • the shape-specific edges are on the shape-specific edges as they go from the inner peripheral side to the outer peripheral side along the shape-specific edges.
  • Each blade is formed so that the skew angle at each position gradually changes toward the rotation direction side.
  • the skew angle gradually changes to the side opposite to the rotation direction as it goes to the outer peripheral side in each of the first region on the inner peripheral side and the third region on the outer peripheral side. It is shaped like a fan.
  • the shape of such a blade can be said to be a swept wing as a whole. Therefore, in the above fan device, it is possible to sufficiently secure the amount of air to be sent out.
  • the skew angle is shaped so as to gradually change toward the rotation direction side toward the outer peripheral side.
  • this second region is a portion having the characteristics of a conventional forward wing. Therefore, in the vicinity of the second region, the air flow that is sent out to the outer peripheral side along the surface of the blade is suppressed, as in the case of the conventional forward blade, while the air flow is suppressed along the rotation center axis of the fan. The flow of air as it is sent out increases. As a result, the turbulence of the air flow that causes noise is reduced, so that the generation of noise can be suppressed as compared with the conventional case.
  • a fan device capable of suppressing the generation of noise while ensuring the air volume is provided.
  • FIG. 1 is a diagram schematically showing a configuration of a fan device according to the present embodiment and a vehicle on which the fan device is mounted.
  • FIG. 2 is a diagram showing a configuration of a fan included in the fan device.
  • FIG. 3 is a diagram showing a shroud member included in the fan device.
  • FIG. 4 is a diagram for explaining a specific shape of the blade provided on the fan.
  • FIG. 5 is a diagram for explaining a specific shape of the blade provided on the fan.
  • FIG. 6 is a diagram showing an air flow in the vicinity of the fan device according to the comparative example.
  • FIG. 7 is a diagram showing an air flow in the vicinity of the fan device according to the present embodiment.
  • FIG. 8 is a diagram showing a configuration of a fan according to a comparative example.
  • FIG. 9 is a diagram showing the relationship between the shape of the blade and the performance index.
  • FIG. 10 is a diagram showing the relationship between the shape of the blade and the noise index.
  • the fan device 10 is a device mounted on the vehicle MV as shown in FIG. 1, and is configured as a device for sending out air so as to pass through the heat exchanger HT.
  • the vehicle MV includes an engine EG and a heat exchanger HT in addition to the fan device 10.
  • the engine EG is an internal combustion engine for generating a driving force of a vehicle MV.
  • the fan device 10 and the heat exchanger HT are arranged at positions on the front side of the engine EG in the internal space of the vehicle MV.
  • the heat exchanger HT is a heat exchanger, that is, a radiator for cooling the cooling water circulating with the engine EG by heat exchange with air.
  • the air used for heat exchange in the heat exchanger HT is the air introduced into the inside of the vehicle MV from the front grill FG provided on the front side of the vehicle MV. In FIG. 1, the flow of air from the front grill FG to the heat exchanger HT is indicated by an arrow.
  • the heat exchanger HT may be a heat exchanger different from the above.
  • the heat exchanger HT may be a capacitor or the like that forms a part of a vehicle air conditioner.
  • the heat exchanger HT may be a combination of a plurality of heat exchangers.
  • the fan device 10 is arranged at a position downstream of the heat exchanger HT along the direction of air flow and at a position upstream of the engine EG.
  • the fan device 10 creates an air flow through the heat exchanger HT by sending air from the front side to the rear side of the vehicle MV.
  • the configuration of the fan device 10 will be described with reference to FIGS. 1 to 3.
  • the fan device 10 includes a fan 20, a motor 30, and a shroud member 40.
  • the fan 20 is a member for creating an air flow by rotating.
  • FIG. 2 shows a state in which the fan 20 is viewed from the downstream side (that is, the rear side of the vehicle MV) along the direction in which the air is sent out.
  • the rotation direction of the fan 20 is a counterclockwise direction as indicated by the arrow AR1 in FIG.
  • the fan 20 has a hub 21, a blade 200, and a ring portion 22.
  • the hub 21 is a member formed in a substantially cylindrical shape.
  • the hub 21 is arranged so that its central axis is aligned with the front-rear direction of the vehicle MV.
  • the central axis is the rotation central axis AX of the fan 20.
  • the blade 200 is a part that functions as a wing for sending out air.
  • a plurality of blades 200 are provided in the fan 20.
  • the root of each blade 200 is connected to the side surface of the hub 21, and is formed so as to be arranged at equal or non-equal intervals along the rotation direction of the fan 20.
  • Each blade 200 extends from the side surface of the hub 21 toward the outer peripheral side.
  • the shapes of the blades 200 are the same as each other. The specific shape of the blade 200 will be described later.
  • the ring portion 22 is an annular member provided so as to connect the tips of the respective blades 200 (that is, the ends on the outer peripheral side). Each blade 200 is formed so as to extend from the hub 21 to the ring portion 22. By providing such a ring portion 22, the overall rigidity of the fan 20 is increased.
  • the motor 30 is a rotary electric machine for rotating the fan 20 around the rotation center axis AX. As shown in FIG. 1, the motor 30 is connected to the fan 20 from the front side of the vehicle MV and is supported by a stay 43 described later.
  • the shroud member 40 is a member provided to guide the air flow between the heat exchanger HT and the fan 20 and to support the motor 30.
  • FIG. 3 shows a state in which the shroud member 40 is viewed from the front side of the vehicle MV along the direction in which air is sent out.
  • the shroud member 40 has a baffle plate 41 and a stay 43.
  • the baffle plate 41 is a plate-shaped member provided so as to cover the fan 20.
  • the baffle plate 41 is formed so that the outer shape when viewed along the direction in which air is sent out is substantially rectangular.
  • the fan device 10 is mounted on the vehicle MV with the long side of the baffle plate 41 along the left-right direction of the vehicle MV and the short side of the baffle plate 41 along the vertical direction.
  • the baffle plate 41 is formed with a circular opening 42 for passing air.
  • the opening 42 When viewed along the direction in which air is sent out, the opening 42 is formed at a position overlapping the fan 20. At this time, the center of the opening 42 coincides with the rotation center axis AX of the fan 20.
  • the diameter of the opening 42 is substantially the same as the diameter of the ring portion 22 of the fan 20, the diameters of the openings 42 may be different from each other.
  • the outer shape of the baffle plate 41 When viewed along the direction in which the air is sent out, the outer shape of the baffle plate 41 is almost the same as the outer shape of the heat exchanger HT on the front side.
  • a protruding wall 45 is formed on the baffle plate 41.
  • the projecting wall 45 is an annular wall provided so as to project from the outer peripheral side end of the baffle plate 41 toward the heat exchanger HT on the front side.
  • the fan device 10 is installed with the tip of the protruding wall 45 in contact with the heat exchanger HT over the entire circumference. Therefore, the space between the baffle plate 41 and the heat exchanger HT is partitioned from the outside by the protruding wall 45.
  • the stay 43 is a rod-shaped member formed so as to extend from the edge of the opening 42 toward the motor holding portion 44 inside.
  • a plurality of stays 43 are provided, and these are arranged so as to be lined up along the edge of the opening 42.
  • the motor holding portion 44 is a portion for accommodating and holding the motor 30 inside the motor holding portion 44.
  • the motor holding portion 44 is a substantially cylindrical container, and the portion on the back side of the paper surface in FIG. 3 is open. The motor 30 is inserted and held inside the motor holding portion 44 from the portion opened in this way.
  • the end of each stay 43 is connected to the side surface of the motor holding portion 44.
  • the motor 30 is supported by the respective stays 43 while being held inside the motor holding portion 44.
  • the stay 43 is arranged at a position on the upstream side of the fan 20 along the direction in which the air is sent out.
  • FIG. 4 is an enlarged view showing a part of the fan 20 shown in FIG.
  • edge of the blade 200 that is rearward along the rotation direction of the fan 20 (that is, the edge opposite to the rotation direction). ) Will also be referred to as "edge 210" below. Further, the edge of the blade 200 that is on the front side along the rotation direction of the fan 20 (that is, the edge on the rotation direction side) is also referred to as "edge 220" below.
  • the edge 210 corresponds to the "shape-specific edge" in the present embodiment.
  • the point P0 shown in FIG. 4 is a point indicating the position on the innermost peripheral side (that is, the end on the rotation center axis AX side) among the edges 210 which are shape-specific edges.
  • the point P10 shown in the figure is a point indicating the position on the outermost peripheral side of the edge 210 which is the shape-specific edge.
  • the edge 210 extends in a curved line in the range from points P0 to P10.
  • the straight line connecting the rotation center axis AX and the point P0 in FIG. 4 is also referred to as "reference line L0" below.
  • the inclination angle of the straight line connecting the point corresponding to the position and the rotation center axis AX with respect to the reference line L0 is defined as the "skew angle" for the position. Is defined.
  • the reference line L0 can also be said to be a line having a skew angle of 0 degrees.
  • the straight line connecting the point P1 on the edge 210 and the rotation center axis AX is shown as the line L1.
  • ⁇ 1 which is the inclination angle of the line L1 with respect to the reference line L0
  • ⁇ 2 which is the inclination angle of the line L2 with respect to the reference line L0
  • ⁇ 2 which is the inclination angle of the line L2 with respect to the reference line L0
  • the skew angle is defined as the inclination angle of the line L1 or the like with respect to the reference line L0.
  • the reference of the skew angle may be a line different from the reference line L0 as described above.
  • the tilt angle of the straight line connecting the point corresponding to the position on the edge 210 and the rotation center axis AX with respect to the horizontal plane may be defined as the skew angle.
  • the shape of the edge 210 described below will be expressed in the same manner.
  • the skew angle is not limited to the positions of the points P1 and P2 shown in FIG. 4, and can be obtained for each position on the edge 210 which is a shape-specific edge.
  • FIG. 5 is a graph showing the distribution of skew angles at each position. “X” shown on the horizontal axis of the graph is a coordinate indicating each position on the edge 210. Specifically, the distance from the side surface of the hub 21 to each position on the edge 210 (straight line distance along the radial direction) is represented as the coordinate x of each position.
  • the direction in which the skew angle corresponding to each position on the edge 210 is inclined toward the side opposite to the rotation direction with respect to the reference line L0 is positive.
  • ⁇ 1 and ⁇ 2 in FIG. 4 are both positive values.
  • edges 210 which are shape-specific edges, in the range where the x-coordinate is from 0 to x1, the top of the edge 210 goes from the inner peripheral side to the outer peripheral side along the edge 210.
  • the skew angle at each position gradually changes to the side opposite to the direction of rotation.
  • the range is the region on the innermost side of the edge 210, and corresponds to the "first region" in the present embodiment.
  • edges 210 which are shape-specific edges, even in the range where the x-coordinate is from x2 to x3, each position on the edge 210 goes from the inner peripheral side to the outer peripheral side along the edge 210 in the same manner as described above.
  • the skew angle in is gradually changed to the side opposite to the rotation direction.
  • the range is the region on the outermost periphery of the edge 210, and corresponds to the "third region" in the present embodiment.
  • the edge 210 which is a shape-specific edge, in the range where the x coordinate is from x1 to x2, the skew angle at each position on the edge 210 rotates from the inner peripheral side to the outer peripheral side along the edge 210. It gradually changes to the direction side.
  • the range is a region between the first region and the third region of the edge 210, and corresponds to the “second region” in the present embodiment.
  • each blade 200 is formed so that the skew angle at each position on the edge 210 gradually changes in the direction opposite to the direction of rotation. Further, in the second region of the edge 210 between the first region and the third region, the skew angle at each position on the edge 210 increases from the inner peripheral side to the outer peripheral side along the edge 210. Each blade 200 is formed so as to gradually change toward the rotation direction side.
  • Such a shape of the blade 200 is also expressed as a shape having a characteristic as a swept wing in the first region and a third region and a characteristic as a forward wing in the second region in between. can do.
  • the skew angle is a negative value in the vicinity of the portion where the x coordinate is x2. That is, a part of the edge 210, which is the shape-specific edge, crosses the reference line L0 in FIG. 4 and enters the rotation direction side.
  • the shape may be such that the entire edge 210, which is the shape-specific edge, is contained on the side opposite to the rotation direction from the reference line L0.
  • FIG. 6 schematically shows the air flow during operation of the fan device 10A according to the comparative example.
  • This comparative example differs from the present embodiment only in the shape of the blade 200A provided on the fan 20A.
  • the shape of the fan 20A is drawn from the same viewpoint as in FIG.
  • the edge 210A on the rear side in the rotation direction and the edge 220A on the front side in the rotation direction are both from the inner peripheral side to the outer peripheral side. , It extends at an angle opposite to the direction of rotation. That is, in this comparative example, each blade 200A is formed as a swept wing similar to the conventional one. In other words, the blade 200A of this comparative example is not provided with a portion corresponding to the second region in the present embodiment.
  • Both the surface S1 and the surface S2 shown in FIG. 6 are virtual planes for illustrating the air flow in the vicinity of the fan device 10A.
  • Both the surface S1 and the surface S2 are planes including the rotation center axis AX, and intersect each other perpendicularly on the rotation center axis AX.
  • Arrows AR21 and AR22 in FIG. 6 schematically represent the flow of air on the surfaces S1 and S2.
  • the arrow AR10 shown in FIG. 6 represents the flow of air sent out from the rotating blade 200A in the direction along the rotation center axis AX. This flow is also referred to as "mainstream" below.
  • mainstream the flow rate of the mainstream as indicated by the arrow AR10 becomes large, so that the air volume sent from the fan device 10A should be sufficiently secured. Can be done.
  • the arrow AR11 shown in FIG. 6 represents a flow of air that is sent out to the outer peripheral side along the surface of the blade 200A.
  • the flow is also referred to as "diagonal flow” below.
  • the flow rate of the oblique flow as indicated by the arrow AR11 is also large.
  • the shape of the blade 200 is a shape having the first region, the second region, and the third region described above.
  • FIG. 7 schematically shows the flow of air during the operation of the fan device 10 according to the present embodiment by the same method as in FIG.
  • the shape of the blade 200 of the fan device 10 has characteristics as a swept wing in both the first region on the inner peripheral side and the third region on the outer peripheral side. Therefore, the blade 200 can be said to be a swept wing as a whole. Therefore, during the operation of the fan device 10, as shown by the arrow AR10 in FIG. 7, the mainstream becomes as large as in the case of the comparative example. Therefore, even in this embodiment, it is possible to sufficiently secure the air volume sent from the fan device 10.
  • the portion surrounded by the dotted line DL1 in FIG. 7 is the portion of the blade 200 corresponding to the second region.
  • the shape of the portion is a shape having characteristics as a forward wing. Therefore, in this portion, the oblique flow as shown by the arrow AR11 in FIG. 6 is less likely to occur, and the main flow as shown by the arrow AR12 in FIG. 7 is likely to occur.
  • the vortex and air retention caused by the oblique flow are caused in the configuration in which the stay 43 is arranged on the upstream side of the fan 20 as in the present embodiment. Especially likely to occur. Therefore, in the fan device 10 having the structure in which the stay 43 is arranged at a position upstream of the fan 20 along the direction in which the air is sent out, the shape of the blade 200 as in the present embodiment is adopted. The effect of is particularly large. However, even in a fan device having a configuration in which the stay 43 is arranged at a position downstream of the fan 20 along the direction in which air is sent out, the shape of the blade 200 as in the present embodiment can be adopted. Needless to say.
  • the rear edge 210 along the rotation direction is used as the shape-specific edge, and the shape of the shape-specific edge is defined as the first region and the second region. , And a shape having a third region.
  • the shape of the edge 220 on the opposite side of the shape-specific edge along the rotation direction is substantially the same as that of the edge 210, as shown in FIG. 4 and the like.
  • a serration 221 composed of a plurality of irregularities is formed on the portion of the edge 220 near the end on the outer peripheral side.
  • the shape of the edge 220 also has a first region, a second region, and a third region like the edge 210. In this way, the shape of the blade 200 may be such that both the edge 210 and the edge 220 are shape-specific edges.
  • the serration may be formed on the edge 210 instead of the edge 220.
  • the edge 220 is a shape-specific edge having a first region, a second region, and a third region.
  • the shape-specific edge may be at least one of the rear edge 210 and the front edge 220 along the rotation direction.
  • a further specific shape of the blade 200 will be described.
  • the value obtained by dividing the distance by the distance along the radial direction from one end to the other end of the shape-specific edge is defined as the "span value" for the position.
  • the “end of the shape-specific edge on the rotation center axis AX side” in the above is the point P0 in the example of FIG.
  • the “distance along the radial direction from one end to the other end of the shape-specific edge” is the distance along the radial direction from the point P0 to the point P10 in the example of FIG. That is, it is the distance obtained by subtracting the distance from the rotation center axis AX to the point P0 from the distance from the rotation center axis AX to the point P10.
  • the above span value is a coordinate obtained by dimensionlessly expressing the distance along the radial direction from the side surface of the hub 21 to each position on the edge 210 so as to be a value in the range of 0 to 1. You can also.
  • the span value of the point P0 is 0, and the span value of the point P10 is 1.
  • the present inventors have a span value at a position at the boundary between the first region and the second region (x1 in FIG. 5), and a span at a position at the boundary between the second region and the third region (x2 in FIG. 5).
  • the performance of the blades 200 having various shapes was verified while individually changing the value and the skew angle at each position. As a result, it was found that it is desirable to suppress each parameter within the following range in order to suppress the noise of the fan device 10 more than before and to secure a larger air volume of the fan device 10 than before.
  • the numerical value of the "skew angle" in the following description is a numerical value when the skew angle is an angle with respect to the reference line L0 in FIG.
  • Span value of the position (x1 in FIG. 5) at the boundary between the first region and the second region within the range of 0.1 to 0.4.
  • Span value of the position (x2 in FIG. 5) at the boundary between the second region and the third region Within the range of 0.4 to 0.6.
  • Skew angle at the position (x1 in FIG. 5) at the boundary between the first region and the second region within the range of 4 degrees to 12 degrees.
  • Skew angle at the position (x2 in FIG. 5) at the boundary between the second region and the third region within the range of 2 degrees to 7 degrees.
  • Skew angle at the position (x3 in FIG. 5) at the end of the shape-specific edge farther from the rotation center axis AX within the range of 16 degrees to 20 degrees.
  • the "position at the boundary between the first region and the second region (x1 in FIG. 5)” is also referred to as “position X1”
  • the “position at the boundary between the second region and the third region” is also referred to.
  • “(X2 in FIG. 5)” is also referred to as “position X2”
  • “the position of the shape-specific edge that is farther from the rotation center axis AX (x3 in FIG. 5)” is referred to as "position”.
  • X3 the position of the shape-specific edge that is farther from the rotation center axis AX (x3 in FIG. 5)
  • FIG. 9 shows the relationship between the span value (horizontal axis) of the position X2 and the performance index (vertical axis) of the fan device 10.
  • the "performance index” is an index indicating the air volume sent from the fan device 10, and the larger the air volume, the larger the performance index.
  • the line L1 in FIG. 9 shows a performance index when the skew angle at the position X1 is 4 degrees.
  • Line L2 in FIG. 9 shows a performance index when the skew angle at position X1 is 12 degrees. As shown in FIG. 9, the larger the skew angle at the position X1, the larger the performance index of the fan device 10.
  • “Th1” in FIG. 9 represents a performance index in a conventional product as in the comparative example of FIG.
  • the span value at position X2 is in the range of 0.4 to 0.6, it can be seen that the performance index is improved as compared with the conventional case. .. Therefore, as shown in (2) above, the span value of the position X2 is preferably in the range of 0.4 to 0.6, and as shown in (3) above, the position.
  • the skew angle of X1 is preferably 4 degrees or more.
  • FIG. 10 shows the relationship between the skew angle (horizontal axis) at the position X1 and the noise index (vertical axis) of the fan device 10.
  • the "noise index” is an index indicating the quiet performance of the fan device 10, and the smaller the sound during the operation of the fan device 10, the larger the noise index.
  • the line L3 in FIG. 10 shows the noise index when the span value of the position X1 is 0.4.
  • the line L4 in FIG. 10 shows the noise index when the span value of the position X1 is 0.1. As shown in FIG. 10, the smaller the span value of the position X1, the larger the noise index of the fan device 10.
  • “Th2” in FIG. 10 represents a noise index in a conventional product as in the comparative example of FIG.
  • the span value of the position X1 is 0.4 (line L3), if the skew angle at the position X1 is in the range of 12 degrees or less, it can be seen that the noise index is improved as compared with the conventional case. Therefore, as shown in (1) above, the span value of position X1 is preferably 0.4 or less, and as shown in (3) above, the skew angle of position X1 is 12. It is preferably less than or equal to the degree.
  • FIG. 11 shows the relationship between each position (horizontal axis) of the edge 210, which is a shape-specific edge, and the width (vertical axis) along the circumferential direction of the blade 200 at that position.
  • the shape of the blade 200 when the serration 221 is not formed on the edge 210 is not formed on the edge 210.
  • the width along the circumferential direction of the blade 200 also increases. That is, the width of the blade 200 along the circumferential direction becomes larger toward the outer peripheral side. With such a configuration, the performance index of the fan device 10 can be further improved.
  • the circumferential direction of the blade 200 is in the range excluding the portion where the serration 221 is formed (the range on the inner peripheral side of the serration 221).
  • the width along the line may be increased toward the outer peripheral side.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

ファン装置(10)は、複数のブレード(200)を有するファン(20)を備える。 前記ブレードの形状特定縁(210)のうち、最も内周側にある第1領域、及び最も外周側にある第3領域のそれぞれにおいては、前記形状特定縁に沿って内周側から外周側へ行くに従って、前記形状特定縁の上の各位置におけるスキュー角度が、回転方向とは逆側へと次第に変化して行き、 前記形状特定縁のうち、前記第1領域と前記第3領域の間にある第2領域においては、前記形状特定縁に沿って内周側から外周側へ行くに従って、前記形状特定縁の上の各位置におけるスキュー角度が、回転方向側へと次第に変化して行くように、それぞれの前記ブレードが形成されている。

Description

ファン装置 関連出願の相互参照
 本出願は、2020年11月27日に出願された日本国特許出願2020-196736号と、2021年6月28日に出願された日本国特許出願2021-106503号と、に基づくものであって、その優先権の利益を主張するものであり、その特許出願の全ての内容が、参照により本明細書に組み込まれる。
 本開示は、空気を送り出すファン装置に関する。
 例えば車両には、ラジエータ等の熱交換器を通るように空気を送り出すためのファン装置が設けられる。下記特許文献1に示されるように、ファン装置は、複数のブレードを有するファンと、ファンを回転させるためのモータとを備えている。
 ブレードの形状としては、これまでに様々なものが提案されている。ブレードは、大きくは後退翼と前進翼のいずれかに分類することができる。「後退翼」とは、内周側から外周側に行くに従って、ブレードがその回転方向とは逆側に傾斜して伸びるような形状を有するブレードである。下記特許文献1には、このような後退翼のブレードを有するファン装置の一例が記載されている。
 「前進翼」とは、内周側から外周側に行くに従って、ブレードがその回転方向側に傾斜して伸びるような形状を有するブレードである。下記特許文献2には、このような前進翼のブレードを有するファン装置の一例が記載されている。
特開2016-180362号公報 特許第3978083号公報
 ブレードを後退翼とした場合には、ファン装置から送り出される風量を十分に確保することができる一方で、一般的に、前進翼とした場合に比べて、ファン装置の動作に伴う騒音が生じやすくなる傾向があることが知られている。また、ブレードを前進翼とした場合には、一般的に、後退翼とした場合に比べて、ファン装置の動作に伴う騒音を抑えることができる一方で、ファン装置から送り出される風量が小さくなってしまう傾向があることが知られている。
 本開示は、風量を確保しながらも、騒音の発生を抑制することのできるファン装置を提供することを目的とする。
 本開示に係るファン装置は、空気を送り出すファン装置であって、複数のブレードを有するファンと、ファンを回転させるモータと、を備える。ファンをその回転中心軸に沿って見た場合において、ブレードのうち、ファンの回転方向に沿った前方側もしくは後方側のいずれか一方の縁を形状特定縁とし、形状特定縁の上の各位置について、当該位置に対応する点と回転中心軸とを結ぶ直線の傾斜角度を、当該位置についてのスキュー角度としたときに、形状特定縁のうち、最も内周側にある第1領域、及び最も外周側にある第3領域のそれぞれにおいては、形状特定縁に沿って内周側から外周側へ行くに従って、形状特定縁の上の各位置におけるスキュー角度が、回転方向とは逆側へと次第に変化して行き、形状特定縁のうち、第1領域と第3領域の間にある第2領域においては、形状特定縁に沿って内周側から外周側へ行くに従って、形状特定縁の上の各位置におけるスキュー角度が、回転方向側へと次第に変化して行くように、それぞれのブレードが形成されている。
 このような構成のファン装置のブレードは、内周側の第1領域、及び、外周側の第3領域のそれぞれにおいて、スキュー角度が、外周側に行くに従って回転方向とは逆側へと次第に変化して行くような形状となっている。このようなブレードの形状は、全体では後退翼といえるものである。従って、上記ファン装置では、送り出される風量を十分に確保することができる。
 上記ファン装置のブレードのうち、第1領域と第3領域の間にある第2領域においては、スキュー角度が、外周側に行くに従って回転方向側へと次第に変化して行くような形状となっている。この第2領域は、従来のような前進翼としての特性を有している部分、ということができる。このため、第2領域の近傍では、従来の前進翼と同様に、ブレードの表面に沿って外周側へと送り出されるような空気の流れが抑制される一方で、ファンの回転中心軸に沿って送り出されるような空気の流れが増加する。その結果、騒音の原因となる空気流の乱れが低減されるので、従来に比べて騒音の発生を抑制することができる。
 本開示によれば、風量を確保しながらも、騒音の発生を抑制することのできるファン装置が提供される。
図1は、本実施形態に係るファン装置、及びこれが搭載された車両の構成を模式的に示す図である。 図2は、ファン装置が備えるファンの構成を示す図である。 図3は、ファン装置が備えるシュラウド部材を示す図である。 図4は、ファンに設けられたブレードの具体的な形状について説明するための図である。 図5は、ファンに設けられたブレードの具体的な形状について説明するための図である。 図6は、比較例に係るファン装置の近傍における空気の流れを示す図である。 図7は、本実施形態に係るファン装置の近傍における空気の流れを示す図である。 図8は、比較例に係るファンの構成を示す図である。 図9は、ブレードの形状と性能指標との関係を示す図である。 図10は、ブレードの形状と騒音指標との関係を示す図である。 図11は、各位置におけるブレードの幅を示す図である。
 以下、添付図面を参照しながら本実施形態について説明する。説明の理解を容易にするため、各図面において同一の構成要素に対しては可能な限り同一の符号を付して、重複する説明は省略する。
 本実施形態に係るファン装置10は、図1に示されるように車両MVに搭載される装置であって、熱交換器HTを通るように空気を送り出すための装置として構成されている。
 先ず車両MVの構成について説明する。車両MVは、ファン装置10の他に、エンジンEGと、熱交換器HTと、を備えている。エンジンEGは、車両MVの駆動力を生じさせるための内燃機関である。ファン装置10及び熱交換器HTは、車両MVの内部空間のうち、エンジンEGよりも前方側となる位置に配置されている。
 熱交換器HTは、エンジンEGとの間で循環する冷却水を、空気との熱交換によって冷却するための熱交換器、すなわちラジエータである。熱交換器HTにおける熱交換に供される空気は、車両MVの前方側に設けられたフロントグリルFGから、車両MVの内側へと導入された空気である。図1では、フロントグリルFGから熱交換器HTへと向かう空気の流れが矢印で示されている。
 尚、熱交換器HTは、上記とは異なる熱交換器であってもよい。例えば、熱交換器HTは、車両用空調装置の一部をなすコンデンサ等であってもよい。また、熱交換器HTが、複数の熱交換器を組み合わせたものであってもよい。
 本実施形態に係るファン装置10は、空気の流れる方向に沿って熱交換器HTよりも下流側となる位置であり、且つエンジンEGよりも上流側となる位置に配置されている。ファン装置10は、車両MVの前方側から後方側に向かって空気を送り出すことにより、熱交換器HTを通る空気の流れを作り出すものである。
 図1乃至図3を参照しながら、ファン装置10の構成について説明する。ファン装置10は、ファン20と、モータ30と、シュラウド部材40と、を備えている。
 ファン20は、回転することによって空気の流れを作り出すための部材である。図2には、ファン20を、空気の送り出される方向に沿って下流側(つまり、車両MVの後方側)から見た状態が示されている。ファン20の回転方向は、図2においては矢印AR1で示されるような反時計回り方向である。図2に示されるように、ファン20は、ハブ21と、ブレード200と、リング部22と、を有している。
 ハブ21は、概ね円筒形状に形成された部材である。ハブ21は、その中心軸を車両MVの前後方向に沿わせた状態で配置されている。当該中心軸は、ファン20の回転中心軸AXとなっている。
 ブレード200は、空気を送り出すための翼として機能する部分である。ブレード200は、ファン20において複数枚設けられている。それぞれのブレード200は、その根元がハブ21の側面に接続されており、ファン20の回転方向に沿って等間隔又は不等間隔で並ぶように形成されている。それぞれのブレード200は、ハブ21の側面から外周側に向かって伸びている。それぞれのブレード200の形状は互いに同一である。ブレード200の具体的な形状については後に説明する。
 リング部22は、それぞれのブレード200の先端(つまり外周側の端部)を繋ぐように設けられた円環状の部材である。それぞれのブレード200は、ハブ21からリング部22まで伸びるように形成されている。このようなリング部22が設けられることにより、ファン20の全体の剛性が高められている。
 モータ30は、ファン20を回転中心軸AXの周りに回転させるための回転電機である。図1に示されるように、モータ30は、ファン20に対して車両MVの前方側から接続されており、後述のステー43によって支持されている。
 シュラウド部材40は、熱交換器HTとファン20との間における空気の流れを案内し、且つ、モータ30を支持するために設けられた部材である。図3には、シュラウド部材40を、空気の送り出される方向に沿って、車両MVの前方側から見た状態が示されている。シュラウド部材40は、導風板41と、ステー43と、を有している。
 導風板41は、ファン20を覆うように設けられた板状の部材である。導風板41は、空気の送り出される方向に沿って見た場合の外形が、概ね長方形となるように形成されている。ファン装置10は、導風板41の長辺を車両MVの左右方向に沿わせ、導風板41の短辺を上下方向に沿わせた状態で、車両MVに搭載されている。
 導風板41には、空気を通すための円形の開口42が形成されている。空気の送り出される方向に沿って見た場合には、開口42は、ファン20と重なる位置に形成されている。このとき、開口42の中心は、ファン20の回転中心軸AXと一致している。尚、開口42の直径は、ファン20が有するリング部22の直径と概ね同一となっているのであるが、それぞれの直径が互いに異なっている構成としてもよい。
 空気の送り出される方向に沿って見た場合には、導風板41の外形は、前方側にある熱交換器HTの外形と概ね一致している。導風板41には、突出壁45が形成されている。突出壁45は、導風板41の外周側端部から、前方側の熱交換器HTに向かって突出するように設けられた環状の壁である。ファン装置10は、突出壁45の先端を、全周に亘って熱交換器HTに当接させた状態で設置されている。このため、導風板41と熱交換器HTとの間の空間は、突出壁45によって外部から仕切られた状態となっている。
 ステー43は、開口42の縁から、内側にあるモータ保持部44に向かって伸びるように形成された棒状の部材である。ステー43は複数設けられており、これらが開口42の縁に沿って並ぶように配置されている。モータ保持部44は、その内側においてモータ30を収容し保持するための部分である。モータ保持部44は、概ね円筒状の容器となっており、図3における紙面奥側の部分が開放されている。モータ30は、このように開放された部分から、モータ保持部44の内側に挿入され保持されている。それぞれのステー43の端部はモータ保持部44の側面に繋がっている。
 このように、モータ30は、モータ保持部44の内側に保持された状態で、それぞれのステー43によって支持されている。図1に示されるように、ステー43は、空気の送り出される方向に沿って、ファン20よりも上流側となる位置に配置されている。
 ファン20が備えるブレード200の具体的な形状について、図4を参照しながら説明する。図4は、図3に示されるファン20の一部を拡大して示す図である。
 図4のように、ファン20を回転中心軸AXに沿って見た場合において、ブレード200のうち、ファン20の回転方向に沿って後方側となる縁(つまり、回転方向とは逆側の縁)のことを、以下では「縁210」とも称する。また、ブレード200のうち、ファン20の回転方向に沿って前方側となる縁(つまり、回転方向側の縁)のことを、以下では「縁220」とも称する。
 以下においては、ブレード200が有する一対の縁210、220のうち、縁210の形状について詳細に説明し、これによりブレード200の具体的な形状を特定して行くこととする。縁210は、本実施形態における「形状特定縁」に該当する。
 図4に示される点P0は、形状特定縁である縁210のうち、最も内周側となる位置(つまり、回転中心軸AX側の端部)を示す点である。また、同図に示される点P10は、形状特定縁である縁210のうち、最も外周側となる位置を示す点である。縁210は、点P0からP10までの範囲において曲線状に伸びている。
 説明の便宜上、図4において回転中心軸AXと点P0とを結ぶ直線のことを、以下では「基準線L0」とも称する。また、形状特定縁である縁210の上の各位置について、当該位置に対応する点と回転中心軸AXとを結ぶ直線の、基準線L0に対する傾斜角度のことを、当該位置についての「スキュー角度」と定義する。基準線L0は、スキュー角度が0度となる線、ということもできる。
 例えば図4では、縁210の上の点P1と、回転中心軸AXとを結ぶ直線が、線L1として示されている。基準線L0に対する線L1の傾斜角度であるθ1が、点P1の位置についてのスキュー角度ということになる。同様に、図4では、縁210の上の点P2と、回転中心軸AXとを結ぶ直線が、線L2として示されている。基準線L0に対する線L2の傾斜角度であるθ2が、点P2の位置についてのスキュー角度ということになる。
 本実施形態では、スキュー角度を、基準線L0に対する線L1等の傾斜角度として定義している。しかしながら、スキュー角度の基準となるのは、上記のような基準線L0とは異なる線としてもよい。例えば、縁210の上の位置に対応する点と回転中心軸AXとを結ぶ直線の、水平面に対する傾斜角度のことを、スキュー角度と定義してもよい。どのような線を基準としてスキュー角度を定義した場合であっても、以下に説明する縁210の形状は同様に表現されることとなる。
 スキュー角度は、図4に示される点P1や点P2の位置に限らず、形状特定縁である縁210の上の各位置について得ることができる。図5は、各位置におけるスキュー角度の分布をグラフとして描いたものである。当該グラフの横軸に示される「x」は、縁210の上の各位置を示す座標である。具体的には、ハブ21の側面から縁210上の各位置までの距離(径方向に沿った直線距離)が、当該各位置の座標xとして表されている。図5におけるx=0の位置は、図4の点P0に対応する位置である。図5におけるx=x3の位置は、図4の点P10に対応する位置である。
 図5の縦軸では、縁210の上の各位置に対応するスキュー角度が、基準線L0に対して回転方向とは逆側に向かって傾斜するような方向が正とされている。スキュー角度の方向をこのように定義した場合には、例えば、図4のθ1及びθ2はいずれも正値となる。
 図5に示されるように、形状特定縁である縁210のうち、x座標が0からx1までの範囲においては、縁210に沿って内周側から外周側へ行くに従って、縁210の上の各位置におけるスキュー角度が、回転方向とは逆側へと次第に変化して行く。当該範囲は、縁210のうち最も内周側にある領域であり、本実施形態における「第1領域」に該当する。
 また、形状特定縁である縁210のうち、x座標がx2からx3までの範囲においても上記と同様に、縁210に沿って内周側から外周側へ行くに従って、縁210の上の各位置におけるスキュー角度が、回転方向とは逆側へと次第に変化して行く。当該範囲は、縁210のうち最も外周側にある領域であり、本実施形態における「第3領域」に該当する。
 形状特定縁である縁210のうち、x座標がx1からx2までの範囲においては、縁210に沿って内周側から外周側へ行くに従って、縁210の上の各位置におけるスキュー角度が、回転方向側へと次第に変化して行く。当該範囲は、縁210のうち第1領域と第3領域との間にある領域であり、本実施形態における「第2領域」に該当する。
 このように、形状特定縁である縁210のうち、最も内周側にある第1領域、及び最も外周側にある第3領域のそれぞれにおいては、縁210に沿って内周側から外周側へ行くに従って、縁210の上の各位置におけるスキュー角度が、回転方向とは逆側へと次第に変化して行くように、それぞれのブレード200が形成されている。また、縁210のうち、第1領域と第3領域の間にある第2領域においては、縁210に沿って内周側から外周側へ行くに従って、縁210の上の各位置におけるスキュー角度が、回転方向側へと次第に変化して行くように、それぞれのブレード200が形成されている。
 このようなブレード200の形状は、第1領域及び第3領域においては後退翼としての特性を有しており、その間の第2領域においては前進翼としての特性を有している形状、とも表現することができる。尚、図5の例においては、x座標がx2となる部分の近傍において、スキュー角度が負値となっている。つまり、形状特定縁である縁210の一部が、図4の基準線L0を超えて回転方向側へと入り込んでいる。このような態様に替えて、形状特定縁である縁210の全体が、基準線L0よりも回転方向とは反対側に収まっているような形状としてもよい。
 ブレード200をこのような形状としたことの利点について説明する。図6には、比較例に係るファン装置10Aの、動作中における空気の流れが模式的に表されている。この比較例では、ファン20Aに設けられたブレード200Aの形状においてのみ本実施形態と異なっている。図8には、ファン20Aの形状が、図2と同様の視点で描かれている。図8に示されるように、ブレード200Aのうち回転方向に沿って後方側となる縁210A、及び回転方向に沿って前方側となる縁220Aは、いずれも、内周側から外周側に行くに従って、回転方向とは逆側に傾斜して伸びている。つまり、この比較例では、それぞれのブレード200Aが従来と同様の後退翼として形成されている。換言すれば、この比較例のブレード200Aには、本実施形態における第2領域に対応する部分が設けられていない。
 図6に示される面S1及び面S2は、いずれも、ファン装置10Aの近傍における空気の流れを図示するための仮想的な平面である。面S1及び面S2は、いずれも回転中心軸AXを含む平面となっており、回転中心軸AXにおいて互いに垂直に交差している。図6の矢印AR21及び矢印AR22は、面S1及び面S2における空気の流れを模式的に表している。
 図6に示される矢印AR10は、回転するブレード200Aから、回転中心軸AXに沿う方向に送り出される空気の流れを表している。当該流れのことを、以下では「主流」とも称する。よく知られているように、ブレード200Aが後退翼として形成されている場合には、矢印AR10で示されるような主流の流量が大きくなるので、ファン装置10Aから送り出される風量を十分に確保することができる。
 図6に示される矢印AR11は、ブレード200Aの表面に沿って外周側へと送り出されるような空気の流れを表している。当該流れのことを、以下では「斜流」とも称する。ブレード200Aが後退翼として形成されている場合には、矢印AR11で示されるような斜流の流量も大きくなる。
 回転しているブレード200Aの近傍においては、矢印AR21で示されるように、回転中心軸AXに沿ってハブ21に向かうような空気の逆流が生じる。このような状況の下で、矢印AR11で示されるような上記の斜流が生じると、矢印AR22で示されるような渦が生じたり、一部における空気の滞留が生じたりすることにより、空気の流れに乱れが生じやすくなる。その結果として、後退翼として形成されたブレード200Aからは、ファン装置10Aの動作に伴って比較的大きな騒音が生じてしまう傾向がある。
 この比較例のように、従来と同様の後退翼としてブレード200Aを形成した場合には、風量を十分に確保することができる一方で、騒音が大きくなるという問題が生じやすくなる。そこで、本実施形態に係るファン装置10では、このような騒音を低減するために、ブレード200の形状を、先に述べた第1領域、第2領域、及び第3領域を有する形状としている。
 図7には、本実施形態に係るファン装置10の動作中における空気の流れが、図6と同様の方法により模式的に表されている。
 先に述べたように、ファン装置10が有するブレード200の形状は、内周側の第1領域、及び、外周側の第3領域においては、いずれも後退翼としての特性を有している。このため、ブレード200は、全体としては概ね後退翼といえるものである。従って、ファン装置10の動作中においては、図7の矢印AR10で示されるように、比較例の場合と同程度に主流が大きくなる。このため、本実施形態でも、ファン装置10から送り出される風量を十分に確保することができる。
 図7において点線DL1で囲まれている部分は、ブレード200のうち、第2領域に対応する部分である。先に述べたように、当該部分の形状は、前進翼としての特性を有している形状となっている。このため、当該部分では、図6の矢印AR11で示されるような斜流が生じにくくなっており、図7の矢印AR12で示されるような主流が生じやすくなっている。
 図7の例においても、矢印AR31で示されるように、回転中心軸AXに沿ってハブ21に向かうような空気の逆流が生じる。しかしながら、本実施形態では、第2領域を設けることによって斜流が抑制されているので、斜流に起因した渦や空気の滞留が生じにくい。矢印AR31で示されるように逆流する空気は、矢印AR12で示される主流と合流しながら、矢印AR32で示されるようにスムーズにその流れ方向を変化させる。その結果、本実施形態に係るファン装置10では、従来における前進翼の場合と同様に風量を確保しながらも、騒音の発生を抑制することが可能となっている。
 尚、図6を参照しながら説明したような、斜流に起因した渦や空気の滞留は、本実施形態のように、ステー43がファン20よりも上流側となる位置に配置された構成において特に生じやすい。従って、ステー43が、空気の送り出される方向に沿ってファン20よりも上流側となる位置に配置されている構成のファン装置10においては、本実施形態のようなブレード200の形状を採用することの効果が特に大きくなる。ただし、ステー43が、空気の送り出される方向に沿ってファン20よりも下流側となる位置に配置されている構成のファン装置においても、本実施形態のようなブレード200の形状を採用し得ることは言うまでもない。
 本実施形態では、ブレード200が有する一対の縁210、220のうち、回転方向に沿った後方側の縁210を形状特定縁としており、当該形状特定縁の形状を、第1領域、第2領域、及び第3領域を有する形状としている。
 ブレード200のうち、回転方向に沿って形状特定縁とは反対側にある縁220の形状は、図4等に示されるように、縁210と概ね同様の形状となっている。ただし、縁220のうち外周側の端部近傍となる部分には、複数の凹凸からなるセレーション221が形成されている。これにより、ファン20の回転中における騒音が更に抑制されている。仮に、縁220にセレーション221が形成されていない場合には、縁220の形状も、縁210と同様に第1領域、第2領域、及び第3領域を有する形状となる。このように、縁210及び縁220の両方が形状特定縁となるような、ブレード200の形状としてもよい。
 セレーションが、縁220ではなく縁210に形成されている構成としてもよい。この場合、縁220が、第1領域、第2領域、及び第3領域を有する形状特定縁ということになる。このように、形状特定縁は、回転方向に沿った後方側の縁210、及び、前方側の縁220のうち、少なくともいずれか一方の縁であればよい。
 ブレード200の更なる具体的な形状について説明する。説明の便宜上、以下では、回転中心軸AXに沿って見た場合における形状特定縁の上の各位置について、形状特定縁のうち回転中心軸AX側の端部から当該位置までの径方向に沿った距離を、形状特定縁の一端から他端までの径方向に沿った距離、で除して得られる値のことを、当該位置についての「スパン値」と定義する。
 上記における「形状特定縁のうち回転中心軸AX側の端部」とは、図4の例では、点P0のことである。「形状特定縁の一端から他端までの径方向に沿った距離」とは、図4の例では、点P0から点P10までの径方向に沿った距離のことである。つまり、回転中心軸AXから点P10までの距離から、回転中心軸AXから点P0までの距離を差し引いた距離である。
 上記のスパン値は、ハブ21の側面から縁210の上の各位置までの径方向に沿った距離を、0から1までの範囲の値となるように無次元化して表した座標、ということもできる。図4の例では、点P0のスパン値は0であり、点P10のスパン値は1である。
 本発明者らは、第1領域と第2領域との境界となる位置(図5のx1)のスパン値、第2領域と第3領域との境界となる位置(図5のx2)のスパン値、及び、各位置におけるスキュー角、のそれぞれを個別に変化させながら、様々な形状のブレード200についてその性能の検証を行った。その結果、ファン装置10の騒音を従来よりも抑制し、且つ、ファン装置10の風量を従来よりも多く確保するためには、各パラメータを以下の範囲に抑えることが望ましい、という知見を得ている。尚、以下の説明における「スキュー角度」の数値は、スキュー角度を、図4の基準線L0に対する角度とした場合における数値である。
 (1)第1領域と第2領域との境界となる位置(図5のx1)のスパン値:0.1から0.4の範囲内。
 (2)第2領域と第3領域との境界となる位置(図5のx2)のスパン値:0.4から0.6の範囲内。
 (3)第1領域と第2領域との境界となる位置(図5のx1)のスキュー角:4度から12度の範囲内。
 (4)第2領域と第3領域との境界となる位置(図5のx2)のスキュー角:2度から7度の範囲内。
 (5)形状特定縁のうち、回転中心軸AXから遠い方の端部となる位置(図5のx3)のスキュー角度:16度から20度の範囲内。
 以下においては、「第1領域と第2領域との境界となる位置(図5のx1)」のことを「位置X1」とも表記し、「第2領域と第3領域との境界となる位置(図5のx2)」のことを「位置X2」とも表記し、「形状特定縁のうち、回転中心軸AXから遠い方の端部となる位置(図5のx3)」のことを「位置X3」とも表記する。
 図9には、位置X2のスパン値(横軸)と、ファン装置10の性能指標(縦軸)との関係が示されている。「性能指標」とは、ファン装置10から送り出される風量を示す指標であって、風量が大きいほど性能指標も大きくなる。
 図9の線L1は、位置X1におけるスキュー角度が4度である場合の性能指標を示している。図9の線L2は、位置X1におけるスキュー角度が12度である場合の性能指標を示している。図9に示されるように、位置X1におけるスキュー角度が大きくなる程、ファン装置10の性能指標は大きくなっている。
 図9の「Th1」は、図8の比較例のような従来品における性能指標を表している。位置X1におけるスキュー角度が4度である場合(線L1)であっても、位置X2のスパン値が0.4から0.6の範囲であれば、従来よりも性能指標が向上することがわかる。このため、上記の(2)に示されるように、位置X2のスパン値は0.4から0.6の範囲内であることが好ましく、且つ、上記の(3)に示されるように、位置X1のスキュー角度は4度以上とすることが好ましい。
 図10には、位置X1におけるスキュー角度(横軸)と、ファン装置10の騒音指標(縦軸)との関係が示されている。「騒音指標」とは、ファン装置10の静音性能を示す指標であって、ファン装置10の動作中における音が小さいほど騒音指標は大きくなる。
 図10の線L3は、位置X1のスパン値が0.4である場合の騒音指標を示している。図10の線L4は、位置X1のスパン値が0.1である場合の騒音指標を示している。図10に示されるように、位置X1のスパン値が小さくなる程、ファン装置10の騒音指標は大きくなっている。
 図10の「Th2」は、図8の比較例のような従来品における騒音指標を表している。位置X1のスパン値が0.4である場合(線L3)であっても、位置X1におけるスキュー角度が12度以下の範囲であれば、従来よりも騒音指標が向上することがわかる。このため、上記の(1)に示されるように、位置X1のスパン値は0.4以下とすることが好ましく、且つ、上記の(3)に示されるように、位置X1のスキュー角度は12度以下とすることが好ましい。
 以上においては、上記の(1)乃至(5)で示される各パラメータの数値範囲のうち、一部の値についてのみその根拠を説明している。尚、上記各パラメータは複雑に絡み合っており、一部のパラメータの数値が、他のパラメータの適正範囲に影響を及ぼす。例えば図9の例において、位置X1におけるスキュー角度が4度よりも小さい場合には、性能指標を示すグラフは線L1よりも下方側となるので、位置X2のスパン値の適正範囲は、上記の(2)で示される範囲よりも狭くなってしまう。
 上記の(1)乃至(5)で示される各パラメータの根拠を全て示そうとすると、本発明者らが行った全通りの形状の組み合わせによるデータの全てを列挙する必要があり現実的ではないため、上記で説明された以外のパラメータについてはデータの提示を割愛する。いずれにしても、本発明者らは、上記の(1)乃至(5)で示される数値範囲に収まっているのであれば、各パラメータの値をどのように選択したとしても、性能指標及び騒音指標の両方が従来以上となることを確認している。
 尚、位置X1のスパン値及び位置X2のスパン値のうち、一方を0.4とした場合には、他方を0.4とは異なる値とすることで、第2領域を確保しておくことが好ましい。
 図11には、形状特定縁である縁210の各位置(横軸)と、当該位置におけるブレード200の周方向に沿った幅(縦軸)との関係が示されている。ただし、図11に示されるのは、縁210にセレーション221が形成されていない場合におけるブレード200の形状である。
 図11に示されるブレード200の形状においては、上記位置のスパン値が大きくなるに従って、ブレード200の周方向に沿った幅も大きくなっている。つまり、ブレード200の周方向に沿った幅が、外周側に行く程大きくなっている。このような構成とすることで、ファン装置10の性能指標を更に向上させることができる。
 本実施形態のように、ブレード200にセレーション221が形成されている構成においては、セレーション221が形成されている部分を除く範囲(セレーション221よりも内周側の範囲)において、ブレード200の周方向に沿った幅が、外周側に行く程大きくなっている構成とすればよい。
 以上、具体例を参照しつつ本実施形態について説明した。しかし、本開示はこれらの具体例に限定されるものではない。これら具体例に、当業者が適宜設計変更を加えたものも、本開示の特徴を備えている限り、本開示の範囲に包含される。前述した各具体例が備える各要素およびその配置、条件、形状などは、例示したものに限定されるわけではなく適宜変更することができる。前述した各具体例が備える各要素は、技術的な矛盾が生じない限り、適宜組み合わせを変えることができる。

Claims (9)

  1.  空気を送り出すファン装置(10)であって、
     複数のブレード(200)を有するファン(20)と、
     前記ファンを回転させるモータ(30)と、を備え、
     前記ファンをその回転中心軸(AX)に沿って見た場合において、
     前記ブレードのうち、前記ファンの回転方向に沿った前方側もしくは後方側のいずれか一方の縁を形状特定縁(210)とし、
     前記形状特定縁の上の各位置について、当該位置に対応する点と前記回転中心軸とを結ぶ直線の傾斜角度を、当該位置についてのスキュー角度としたときに、
     前記形状特定縁のうち、最も内周側にある第1領域、及び最も外周側にある第3領域のそれぞれにおいては、前記形状特定縁に沿って内周側から外周側へ行くに従って、前記形状特定縁の上の各位置における前記スキュー角度が、前記回転方向とは逆側へと次第に変化して行き、
     前記形状特定縁のうち、前記第1領域と前記第3領域の間にある第2領域においては、前記形状特定縁に沿って内周側から外周側へ行くに従って、前記形状特定縁の上の各位置における前記スキュー角度が、前記回転方向側へと次第に変化して行くように、それぞれの前記ブレードが形成されているファン装置。
  2.  前記形状特定縁の上の各位置について、前記形状特定縁のうち前記回転中心軸側の端部から当該位置までの径方向に沿った距離を、前記形状特定縁の一端から他端までの径方向に沿った距離、で除して得られる値のことを、当該位置についてのスパン値としたときに、
     前記第1領域と前記第2領域との境界となる位置の前記スパン値が、0.1から0.4の範囲内であり、且つ、
     前記第2領域と前記第3領域との境界となる位置の前記スパン値が、0.4から0.6の範囲内である、請求項1に記載のファン装置。
  3.  前記回転中心軸に沿って見た場合において、
     前記回転中心軸と、前記形状特定縁のうち前記回転中心軸側の端部と、を結ぶ直線を、前記スキュー角度が0度となる基準線としたときに、
     前記第1領域と前記第2領域との境界となる位置の前記スキュー角度が、4度から12度の範囲内であり、且つ、
     前記第2領域と前記第3領域との境界となる位置の前記スキュー角度が、2度から7度の範囲内である、請求項1又は2に記載のファン装置。
  4.  前記形状特定縁のうち、前記回転中心軸から遠い方の端部となる位置の前記スキュー角度が、16度から20度の範囲内である、請求項3に記載のファン装置。
  5.  前記モータを支持するための複数のステー(43)を更に備え、
     前記ステーは、空気の送り出される方向に沿って前記ファンよりも上流側となる位置に配置されている、請求項1乃至4のいずれか1項に記載のファン装置。
  6.  それぞれの前記ブレードの先端を繋ぐように形成されたリング部(22)を更に備える、請求項1乃至5のいずれか1項に記載のファン装置。
  7.  前記ブレードのうち、前記回転方向に沿って前記形状特定縁とは反対側にある縁(220)には、複数の凹凸からなるセレーション(221)が形成されている、請求項1乃至6のいずれか1項に記載のファン装置。
  8.  前記ブレードの周方向に沿った幅が、外周側に行く程大きくなっている、請求項1乃至6のいずれか1項に記載のファン装置。
  9.  前記ブレードのうち、前記セレーションが形成されていない部分においては、前記ブレードの周方向に沿った幅が、外周側に行く程大きくなっている、請求項7に記載のファン装置。
PCT/JP2021/039783 2020-11-27 2021-10-28 ファン装置 WO2022113631A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202180079075.1A CN116670401A (zh) 2020-11-27 2021-10-28 风扇装置

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2020-196736 2020-11-27
JP2020196736 2020-11-27
JP2021106503A JP2022085825A (ja) 2020-11-27 2021-06-28 ファン装置
JP2021-106503 2021-06-28

Publications (1)

Publication Number Publication Date
WO2022113631A1 true WO2022113631A1 (ja) 2022-06-02

Family

ID=81755746

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/039783 WO2022113631A1 (ja) 2020-11-27 2021-10-28 ファン装置

Country Status (1)

Country Link
WO (1) WO2022113631A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4737077A (en) * 1986-09-12 1988-04-12 Aciers Et Outillage Peugeot Profiled blade of a fan and its application in motor-driven ventilating devices
JP2001073995A (ja) * 1999-09-03 2001-03-21 Daikin Ind Ltd 送風機用羽根車
EP1669610A1 (en) * 2004-12-13 2006-06-14 Faz Elektrik Motor Makina Sanayi ve Ticaret A.S. Axial fan
JP2017110555A (ja) * 2015-12-16 2017-06-22 株式会社デンソー 送風機
US20180127085A1 (en) * 2016-11-07 2018-05-10 Troy Churchill Propeller

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4737077A (en) * 1986-09-12 1988-04-12 Aciers Et Outillage Peugeot Profiled blade of a fan and its application in motor-driven ventilating devices
JP2001073995A (ja) * 1999-09-03 2001-03-21 Daikin Ind Ltd 送風機用羽根車
EP1669610A1 (en) * 2004-12-13 2006-06-14 Faz Elektrik Motor Makina Sanayi ve Ticaret A.S. Axial fan
JP2017110555A (ja) * 2015-12-16 2017-06-22 株式会社デンソー 送風機
US20180127085A1 (en) * 2016-11-07 2018-05-10 Troy Churchill Propeller

Similar Documents

Publication Publication Date Title
JP5829809B2 (ja) ハイブリッド流ファン装置
JP5549772B2 (ja) プロペラファン及びこれを備える空気調和機
JP5689538B2 (ja) 車両用空気調和装置の室外冷却ユニット
JP5933721B2 (ja) プロペラファン、プロペラファンを備えた送風機、プロペラファンを備えた空気調和機、プロペラファンを備えた室外機、および、プロペラファンを備えた給湯器用室外機
EP2570677B1 (en) Axial flow blower
JP5984159B2 (ja) プロペラファン、プロペラファンを備えた送風機、プロペラファンを備えた空気調和機、プロペラファンを備えた室外機、および、プロペラファンを備えた給湯器用室外機
JP6604981B2 (ja) 軸流送風機の羽根車、及び軸流送風機
WO2022113631A1 (ja) ファン装置
JP2022085825A (ja) ファン装置
CN107906046A (zh) 一种风扇叶轮
KR101745904B1 (ko) 이중 날개가 형성된 냉각팬
JPH08240197A (ja) 軸流ファン
JP2010150945A (ja) 軸流ファンおよび空気調和機の室外機
CN112050296B (zh) 空气调节机
CN116670401A (zh) 风扇装置
JPWO2018131077A1 (ja) 空気調和機の室外機
WO2022097504A1 (ja) ファン装置
CN207334935U (zh) 一种新型高效的hvac内机
JP2016183643A (ja) プロペラファン
JP6625291B1 (ja) 羽根車、送風機及び空気調和機
CN217713032U (zh) 离心式风扇
KR101826348B1 (ko) 횡류팬 및 이를 구비한 공기 조화기
JP7052541B2 (ja) ファン装置
CN217518946U (zh) 一种冷却风扇
US20240035486A1 (en) Centrifugal fan

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21897607

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180079075.1

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21897607

Country of ref document: EP

Kind code of ref document: A1