WO2022111718A1 - 一种射频通道的共享方法及相关装置 - Google Patents

一种射频通道的共享方法及相关装置 Download PDF

Info

Publication number
WO2022111718A1
WO2022111718A1 PCT/CN2021/134224 CN2021134224W WO2022111718A1 WO 2022111718 A1 WO2022111718 A1 WO 2022111718A1 CN 2021134224 W CN2021134224 W CN 2021134224W WO 2022111718 A1 WO2022111718 A1 WO 2022111718A1
Authority
WO
WIPO (PCT)
Prior art keywords
sim card
terminal
radio frequency
secondary carrier
capability
Prior art date
Application number
PCT/CN2021/134224
Other languages
English (en)
French (fr)
Inventor
沈丽
金乐
裘风光
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to US18/255,065 priority Critical patent/US20240007843A1/en
Publication of WO2022111718A1 publication Critical patent/WO2022111718A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/18Processing of user or subscriber data, e.g. subscribed services, user preferences or user profiles; Transfer of user or subscriber data
    • H04W8/183Processing at user equipment or user record carrier
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/22Processing or transfer of terminal data, e.g. status or physical capabilities
    • H04W8/24Transfer of terminal data
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/318Received signal strength
    • H04B17/328Reference signal received power [RSRP]; Reference signal received quality [RSRQ]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0011Control or signalling for completing the hand-off for data sessions of end-to-end connection
    • H04W36/0016Hand-off preparation specially adapted for end-to-end data sessions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0011Control or signalling for completing the hand-off for data sessions of end-to-end connection
    • H04W36/0027Control or signalling for completing the hand-off for data sessions of end-to-end connection for a plurality of data sessions of end-to-end connections, e.g. multi-call or multi-bearer end-to-end data connections
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0055Transmission or use of information for re-establishing the radio link
    • H04W36/0069Transmission or use of information for re-establishing the radio link in case of dual connectivity, e.g. decoupled uplink/downlink
    • H04W36/00692Transmission or use of information for re-establishing the radio link in case of dual connectivity, e.g. decoupled uplink/downlink using simultaneous multiple data streams, e.g. cooperative multipoint [CoMP], carrier aggregation [CA] or multiple input multiple output [MIMO]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/15Setup of multiple wireless link connections
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/22Processing or transfer of terminal data, e.g. status or physical capabilities

Definitions

  • the present application relates to the field of communication technologies, and in particular, to a method and related apparatus for sharing a radio frequency channel.
  • end users generally use dual-SIM or even multi-SIM mobile phones.
  • SIM subscriber identity module
  • end users can use multi-card mobile phones, insert subscriber identity module (SIM) cards of multiple operators, and select an operator with coverage in their current location for access. , increasing the likelihood of access to mobile network services.
  • different operators have different tariff policies. Users can use multi-card mobile phones to make calls using an operator's network with low call tariffs, and use an operator with low traffic tariffs for data services.
  • DSDS dual SIM dual standby
  • DSDA dual SIM dual active
  • the terminal can only use one card to provide call service and Internet data service, and the other card can only be in standby state, and cannot provide call and Internet data services.
  • the terminal can use two cards at the same time, for example, one card is used for the call service, and the other card is used for the Internet data service.
  • DSDA terminals have more powerful functions, but because they need to support dual cards to work at the same time, two sets of transceiver radio frequency channels are required, so more software and hardware resources are required.
  • the main card is usually the default card, which can support the call service and the Internet data service, and the secondary card supports the call service. Since the data volume of the call service is small, it does not need to support carrier aggregation (CA), so the secondary card only needs a small number of radio frequency channels, which reduces the complexity of the design of the radio frequency circuit of the terminal, and also reduces the cost of the terminal.
  • CA carrier aggregation
  • the main card and the secondary card have different radio frequency capabilities, when the user needs to set data services on the other card, the radio frequency capabilities of the two cards are also exchanged, and the terminal needs to reconfigure the network of the two cards. Report terminal capability information. This requires both the primary card and the secondary card of the terminal to register from the current network, and then initiate the registration process. Therefore, the handover process is slow, and the service on the terminal is easily interrupted.
  • the present application provides a method for sharing a radio frequency channel and a related device, which realizes that when a data service is switched between different SIM cards, the terminal does not need to initiate the process of de-registration and registration, which reduces the switching time and does not cause service interruption.
  • the present application provides a method for sharing a radio frequency channel, including: after a terminal receives a UE capability query signaling for a first subscriber identity module SIM card sent by a network side device, sending first UE capability information to the network side device; after receiving the UE capability query signaling of the network side device for the second SIM card, the terminal sends second UE capability information to the network side device, wherein the first UE capability information
  • the radio frequency capability information is the same as the radio frequency capability information in the capability information of the second UE;
  • the terminal receives the first RRC connection reconfiguration signaling for the first SIM card sent by the network side device, the first RRC connection reconfiguration signaling is used to add a secondary carrier to the first SIM card;
  • the terminal after adding a secondary carrier to the first SIM card in response to the first RRC connection reconfiguration signaling, receives data services and switches from the first SIM card to The switching operation of the second SIM card; in response to the switching operation, the terminal releases the radio frequency channel occupied by the secondary carrier of the first SIM card
  • the terminal can report the same radio frequency capability when each SIM card registers and report UE capability information to the network side, and dynamically allocate radio frequency channel resources to each SIM card.
  • the terminal 100 can actively request the network side to release the secondary carrier on the first SIM card through the first SIM card, and release the secondary carrier on the first SIM card.
  • the occupied radio frequency channel resources are added, and the secondary carrier is added to the second SIM card and the radio frequency channel resources required by the secondary carrier on the second SIM card are configured. In this way, when data services are switched between different SIM cards, the terminal does not need to initiate de-registration and registration processes, thereby reducing the switching time.
  • the method further includes: the terminal is based on the frequency band combination of the secondary carriers in the first RRC connection reconfiguration signaling and each The number of multiple-input multiple-output MIMO layers on each frequency band determines the radio frequency channel required by the secondary carrier of the first SIM card; when the terminal determines that the radio frequency channel not configured on the terminal includes the secondary carrier of the first SIM card When the required radio frequency channel is found, the terminal configures the required radio frequency channel for the first SIM card, and adds a secondary carrier to the first SIM card.
  • adding the secondary carrier to the first SIM card by the terminal includes: the terminal measuring the signal strength of the secondary cell of the first SIM card to be the first value; the terminal sending the first SIM card A measurement report is sent to the network side device, wherein the signal strength of the secondary cell of the first SIM card in the first measurement report is the first value, and the first measurement report is used to trigger the network side device to be the first value SIM card adds secondary carrier.
  • the method further includes: when the terminal determines that the radio frequency channel not configured on the terminal does not include the radio frequency channel required by the secondary carrier of the first SIM card, the terminal measures the first The signal strength of the secondary cell of a SIM card is the first value; the terminal sends a second measurement report to the network side device through the first SIM card, wherein the second measurement report of the secondary cell of the first SIM card
  • the signal strength is a preset value, and the preset value is smaller than the first value, and the second measurement report is used to trigger the network-side device to release the secondary carrier of the first SIM card.
  • the method further includes: in response to the handover operation, the terminal reports a third measurement report to the network side device, where the signal strength of the secondary cell of the first SIM card in the third measurement report is is a preset value, and the third measurement report is used to instruct the network side device to release the secondary carrier of the first SIM card.
  • the method further includes: the terminal determines, based on the second RRC connection reconfiguration signaling, the frequency band combination of the secondary carrier and The number of MIMO layers in each frequency band determines the radio frequency channel required by the secondary carrier of the second SIM card; when the terminal determines that the unconfigured radio frequency channel on the terminal includes the radio frequency channel required by the secondary carrier of the first SIM card When the radio frequency channel is used, the terminal configures the required radio frequency channel for the second SIM card, and adds a secondary carrier to the second SIM card.
  • the method further includes: the terminal measures that the signal strength of the secondary cell of the second SIM card is a second value; the terminal sends a fourth measurement report to the network side device through the second SIM card , wherein the signal strength of the secondary cell of the second SIM card in the fourth measurement report is the second value, and the fourth measurement report is used to trigger the network-side device to add a secondary carrier to the second SIM card.
  • the method further includes: the terminal measures that the signal strength of the secondary cell of the second SIM card is a second value; the terminal sends a fourth measurement report to the network side device through the second SIM card , wherein the signal strength of the secondary cell of the second SIM card in the fourth measurement report is the second value, and the fourth measurement report is used to trigger the network-side device to add a secondary carrier to the second SIM card.
  • the method further includes: when the terminal determines that the radio frequency channel not configured on the terminal does not include the radio frequency channel required by the secondary carrier of the second SIM card, the terminal measures the first radio frequency channel.
  • the signal strength of the secondary cell of the second SIM card is the second value; the terminal sends a fifth measurement report to the network side device through the second SIM card, wherein in the fifth measurement report, the signal strength of the secondary cell of the second SIM card
  • the signal strength is a preset value, and the preset value is smaller than the second value, and the fifth measurement report is used to trigger the network-side device to release the secondary carrier of the second SIM card.
  • the first SIM card before the terminal receives the switching operation, supports a first radio frequency capability, the second SIM card supports a second radio frequency capability, and the first radio frequency capability is stronger than the first radio frequency capability.
  • Two radio frequency capabilities the radio frequency capability information in the first UE capability information is the first radio frequency capability, and the radio frequency capability information in the second UE capability information is the first radio frequency capability; wherein, the first radio frequency capability has the ability to make the
  • the network-side device has the capability of adding a secondary carrier to the terminal, and the second radio frequency capability does not have the capability of enabling the network-side device to add a secondary carrier to the terminal.
  • the radio frequency capability information includes a combination of frequency bands supporting carrier aggregation CA and the number of MIMO layers in each frequency band, and both the first UE capability information and the second UE capability information include one or more bandEUTRA information elements and the FeatureSet information element corresponding to each bandEUTRA information element; wherein, the one or more bandEUTRA information elements are used to indicate the frequency band combination that supports CA, and the FeatureSet information element corresponding to each bandEUTRA information element is used to indicate each bandEUTRA information element.
  • the number of MIMO layers for the frequency band is used to indicate the frequency band.
  • the present application provides another method for sharing a radio frequency channel, including: after a terminal receives a UE capability query signaling for a first SIM card sent by a network side device, sending first UE capability information to the network side device, wherein the first SIM card supports the first radio frequency capability, and the first UE capability information includes the information of the first radio frequency capability; the terminal receives the UE for the second SIM card sent by the network side device After the capability query signaling, the second UE capability information is sent to the network side device, wherein the second SIM card supports the second radio frequency capability, the second UE capability information includes the information of the first radio frequency capability, and the first radio frequency capability is included in the second UE capability information.
  • a radio frequency capability is stronger than the second radio frequency capability; the terminal receives the first RRC connection reconfiguration signaling for the first SIM card sent by the network side device, and the first RRC connection reconfiguration signaling is used for the first RRC connection reconfiguration signaling
  • a SIM card adds a secondary carrier; after the terminal adds a secondary carrier to the first SIM card in response to the first RRC connection reconfiguration signaling, it receives a data service switching from the first SIM card to the second SIM card.
  • the terminal in response to the switching operation, sets the first SIM card to support the second radio frequency capability, sets the second SIM card to support the first radio frequency capability, and does not re-report the first SIM card and the second radio frequency capability
  • the UE capability information of the SIM card is sent to the network side device; the terminal releases the radio frequency channel occupied by the secondary carrier of the first SIM card; the terminal receives the second RRC connection reconfiguration of the network side device for the second SIM card signaling, the second RRC connection reconfiguration signaling is used to add a secondary carrier for the second SIM card; in response to the second RRC connection reconfiguration signaling, the terminal configures a radio frequency channel for the secondary carrier of the second SIM card , and add the secondary carrier of the second SIM card.
  • the terminal can report the same radio frequency capability, and dynamically allocate radio frequency channel resources to each SIM card.
  • the terminal switches the data service from the first SIM card to the second SIM card, the terminal 100 can actively request the network side to release the secondary carrier on the first SIM card through the first SIM card, and release the secondary carrier on the first SIM card.
  • the occupied radio frequency channel resources are added, and the secondary carrier is added to the second SIM card and the radio frequency channel resources required by the secondary carrier on the second SIM card are configured. In this way, when data services are switched between different SIM cards, the terminal does not need to initiate de-registration and registration processes, thereby reducing the switching time.
  • adding the secondary carrier to the first SIM card by the terminal includes: the terminal measuring the signal strength of the secondary cell of the first SIM card to be the first value; the terminal sending the first SIM card A measurement report is sent to the network side device, wherein the signal strength of the secondary cell of the first SIM card in the first measurement report is the first value, and the first measurement report is used to trigger the network side device to be the first value SIM card adds secondary carrier.
  • the method further includes: when the terminal determines that the radio frequency channel not configured on the terminal does not include the radio frequency channel required by the secondary carrier of the first SIM card, the terminal measures the first The signal strength of the secondary cell of a SIM card is the first value; the terminal sends a second measurement report to the network side device through the first SIM card, wherein the second measurement report of the secondary cell of the first SIM card
  • the signal strength is a preset value, and the preset value is smaller than the first value, and the second measurement report is used to trigger the network-side device to release the secondary carrier of the first SIM card.
  • the method further includes: in response to the handover operation, the terminal reports a third measurement report to the network side device, where the signal strength of the secondary cell of the first SIM card in the third measurement report is is a preset value, and the third measurement report is used to instruct the network side device to release the secondary carrier of the first SIM card.
  • the method further includes: the terminal determines, based on the second RRC connection reconfiguration signaling, the frequency band combination of the secondary carrier and The number of MIMO layers in each frequency band determines the radio frequency channel required by the secondary carrier of the second SIM card; when the terminal determines that the unconfigured radio frequency channel on the terminal includes the radio frequency channel required by the secondary carrier of the first SIM card When the radio frequency channel is used, the terminal configures the required radio frequency channel for the second SIM card, and adds a secondary carrier to the second SIM card.
  • the method further includes: the terminal measures that the signal strength of the secondary cell of the second SIM card is a second value; the terminal sends a fourth measurement report to the network side device through the second SIM card , wherein the signal strength of the secondary cell of the second SIM card in the fourth measurement report is the second value, and the fourth measurement report is used to trigger the network-side device to add a secondary carrier to the second SIM card.
  • the method further includes: when the terminal determines that the radio frequency channel not configured on the terminal does not include the radio frequency channel required by the secondary carrier of the second SIM card, the terminal measures the first radio frequency channel.
  • the signal strength of the secondary cell of the second SIM card is the second value; the terminal sends a fifth measurement report to the network side device through the second SIM card, wherein in the fifth measurement report, the signal strength of the secondary cell of the second SIM card
  • the signal strength is a preset value, and the preset value is smaller than the second value, and the fifth measurement report is used to trigger the network-side device to release the secondary carrier of the second SIM card.
  • the method further includes: the radio frequency capability information includes a combination of frequency bands supporting carrier aggregation CA and the number of MIMO layers in each frequency band, and the first UE capability information and the second UE capability information both include It includes one or more bandEUTRA information elements and a FeatureSet information element corresponding to each bandEUTRA information element; wherein, the one or more bandEUTRA information elements are used to indicate the frequency band combination that supports CA, and the FeatureSet information element corresponding to each bandEUTRA information element Used to indicate the number of MIMO layers per band.
  • the present application provides a terminal, where at least a first SIM card and a second SIM card are installed, and the terminal includes one or more processors and one or more memories.
  • the one or more memories are coupled with one or more processors, and the one or more memories are used to store computer program codes, and the computer program codes include computer instructions, when the one or more processors execute the computer instructions, the terminal can execute the above A method for sharing a radio frequency channel in any possible implementation manner of any aspect.
  • an embodiment of the present application provides a chip system, which is applied to a terminal including a first SIM card and a second SIM card, wherein the chip system includes: an application processor and a baseband processor ; the application processor and the baseband processor are configured to call and execute the instructions stored in the memory from the memory, so that the terminal executes the method for sharing the radio frequency channel in any possible implementation manner of any one of the above aspects.
  • an embodiment of the present application provides a computer storage medium, including computer instructions, when the computer instructions are run on a terminal, the terminal is made to execute the method for sharing a radio frequency channel in any of the possible implementations of any of the above aspects .
  • an embodiment of the present application provides a computer program product that, when the computer program product runs on a computer, enables the computer to execute the method for sharing a radio frequency channel in any possible implementation manner of any of the foregoing aspects.
  • FIG. 1 is a schematic diagram of a wireless access network network system architecture according to an embodiment of the present application
  • FIG. 2A is a schematic diagram of a signaling flow for a terminal to register with a network device according to an embodiment of the present application
  • 2B is a schematic diagram of a signaling flow for a terminal to deregister with a network device according to an embodiment of the present application
  • FIG. 3 is a schematic diagram of a hardware structure of a terminal according to an embodiment of the present application.
  • FIG. 4 is a schematic diagram of a hardware structure of a network device 200 according to an embodiment of the present application.
  • FIG. 5 is a schematic diagram of a hardware structure of a terminal according to another embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of a radio frequency channel provided by an embodiment of the present application.
  • FIG. 7A is a schematic structural diagram of a radio frequency channel sharing system according to an embodiment of the present application.
  • FIG. 7B is a schematic flowchart of a network device configuring a secondary carrier for a terminal according to an embodiment of the present application
  • FIG. 8 is a schematic flowchart of a method for sharing a radio frequency channel provided in an embodiment of the present application.
  • FIG. 9 is a schematic flowchart of a method for sharing a radio frequency channel provided in another embodiment of the present application.
  • 10A-10E are schematic diagrams of a group of interfaces provided in the embodiments of the present application.
  • first and second are only used for descriptive purposes, and should not be understood as implying or implying relative importance or implying the number of indicated technical features. Therefore, the features defined with “first” and “second” may explicitly or implicitly include one or more of the features. In the description of the embodiments of the present application, unless otherwise specified, the “multiple” The meaning is two or more.
  • the following introduces a network system architecture of a wireless access network provided in the embodiments of the present application.
  • FIG. 1 shows a schematic diagram of a network system architecture of a radio access network provided in an embodiment of the present application.
  • the radio access network is divided into cells, the terminal 100 in each cell and the network device 200 in the cell are linked through an air interface, and signaling and data exchange are performed through the air interface.
  • the access network may be based on a variety of access technologies, depending on the network standard used.
  • the network device 200 may be a next-generation mobile communication network.
  • the network device 200 may use an orthogonal frequency division multiplexing access (orthogonal frequency division multiplexing access, OFDMA) multiple access manner.
  • OFDMA orthogonal frequency division multiplexing access
  • the network device 200 may be a device with a wireless transceiver function.
  • the device includes but is not limited to: evolved Node B (evolved Node B, eNB), radio network controller (radio network controller, RNC), Node B (Node B, NB), base station controller (base station controller, BSC) , base transceiver station (base transceiver station, BTS), home base station (for example, home evolved NodeB, or home Node B, HNB), baseband unit (baseband unit, BBU), gNB in 5G NR network, transmission point (TRP or TP), or network nodes that constitute a gNB or transmission point, such as a baseband unit (BBU), or a distribution unit (DU), etc.
  • evolved Node B evolved Node B
  • RNC radio network controller
  • Node B Node B
  • BSC base station controller
  • base transceiver station base transceiver station
  • BTS home base station
  • home base station for example, home evolved NodeB
  • the gNB may include centralized units (CUs) and DUs.
  • the gNB may also include a radio unit (RU).
  • CU implements some functions of gNB
  • DU implements some functions of gNB, for example, CU implements radio resource control (radio resource control, RRC), packet data convergence protocol (packet data convergence protocol, PDCP) layer functions
  • DU implements wireless chain
  • the functions of the road control radio link control, RLC
  • media access control media access control
  • MAC media access control
  • PHY physical
  • the network device 200 may be a CU node, a DU node, or a device including a CU node and a DU node.
  • the CU may be divided into network devices in the access network RAN, and the CU may also be divided into network devices in a core network (core network, CN), which is not limited herein.
  • the terminal 100 may also be a user equipment (UE), an access terminal, a subscriber unit, a subscriber station, a mobile station, a mobile station, a remote station, a remote terminal, a mobile device, a user terminal, a terminal, a wireless communication device, a user agent or user device.
  • the terminal device in the embodiment of the present application may be a mobile phone (mobile phone), a tablet computer (Pad), a computer with a wireless transceiver function, a virtual reality (virtual reality, VR) terminal device, an augmented reality (augmented reality, AR) terminal Equipment, wireless terminals in industrial control, wireless terminals in self-driving, wireless terminals in remote medical, wireless terminals in smart grid, transportation security safety) in the wireless terminal and so on.
  • the embodiments of the present application correspond to scenarios and are not limited.
  • FIG. 2A shows a schematic diagram of a signaling flow for a terminal 100 to register with a network device 200 according to an embodiment of the present application.
  • the signaling process for the terminal 100 to register with the network device 200 includes the following steps:
  • the terminal 100 sends a radio resource control (radio resource control, RRC) connection request (RRC Connection Request) signaling to the network device 200.
  • RRC radio resource control
  • the network device 200 After receiving the RRC Connection Request signaling sent by the terminal 100, the network device 200 returns an RRC connection setup (RRC Connection Setup) signaling to the terminal 100.
  • RRC connection setup RRC Connection Setup
  • the terminal 100 may return the RRC connection setup completion signaling to the network device 200.
  • the RRC Connection Setup signaling includes non-access stratum registration request (Attach Request) signaling.
  • the network device 200 may send the UE Capability Enquiry signaling to the terminal 100 to initiate a capability inquiry process for the terminal 100.
  • the terminal 100 may send the UE Capability Information (UE Capability Information) signaling to the network device 200 to report the capability information of the terminal 100.
  • UE Capability Information UE Capability Information
  • the capability information of the terminal 100 includes radio frequency capability information.
  • the radio frequency capability information includes a combination of frequency bands supported by the terminal 100, and the number of uplink and downlink MIMO layers of each frequency band supported by the terminal under each frequency band combination.
  • the network device 200 can send a security mode command (Security Mode Command) signaling to the terminal 100 to enable the security mode control (Security Mode Control, SMC) process between the terminal 100 and the network device 200 (including the negotiation of the security algorithm used, and generate the secret key required by the corresponding security algorithm, initialize the secure interaction of messages between the network device 200 and the terminal 100, etc.).
  • a security mode command Security Mode Command
  • SMC Security Mode Control
  • the terminal 100 After the terminal 100 completes the SMC process, it will return a Security Mode Complete (Security Mdoe Complete) signaling to the network device 200 to notify the network device 200 to end the SMC process.
  • a Security Mode Complete Security Mdoe Complete
  • the network device 200 After completing the SMC process, the network device 200 sends an RRC connection reconfiguration (RRC Connection Reconfiguration) signaling to the terminal 100 to start the RRC reconfiguration process.
  • RRC connection reconfiguration RRC Connection Reconfiguration
  • the RRC connection reconfiguration signaling carries the registration acceptance (Attach Accept) signaling of the non-access stratum.
  • the registration acceptance signaling is used to notify the terminal 100 that the network device 200 accepts the registration of the terminal 100 .
  • the terminal 100 may send an RRC connection reconfiguration complete (RRC Connection Reconfiguration Complete) signaling to the network device 200.
  • RRC connection reconfiguration complete RRC Connection Reconfiguration Complete
  • the terminal 100 may send an uplink direct transfer (UL Direct Transfer) message to the network device 200.
  • the UL Direct Transfer message carries the registration completion (Attach Complete) signaling of the non-access stratum.
  • the Attach Complete signaling is used to notify the network device 200 that the current registration process of the terminal 100 has been completed.
  • FIG. 2B shows a schematic diagram of a signaling flow for deregistering the terminal 100 with the network device 200 according to an embodiment of the present application.
  • the signaling process for the terminal 100 to deregister with the network 200 may include the following steps:
  • the terminal 100 sends a Detach Request signaling to the network device 200.
  • the network device 200 After receiving the de-registration request from the terminal 100, the network device 200 clears the registration resources of the terminal 100, and returns a De-registration Accept (Detach Accept) signaling to the terminal 100.
  • a De-registration Accept (Detach Accept) signaling to the terminal 100.
  • the network device 200 re-inquires the capability information of the terminal 100 only when the terminal 100 is registered or when a cell handover occurs. Therefore, if the capabilities of the terminal 100 (eg, radio frequency capabilities, etc.) are changed, the terminal 100 needs to re-initiate the de-registration and registration procedures to have the opportunity to re-report the capability information of the terminal 100 .
  • the capabilities of the terminal 100 eg, radio frequency capabilities, etc.
  • the primary card and the secondary card on the terminal 100 have different radio frequency capabilities
  • the primary card and the secondary card of the terminal 100 have different radio frequency capabilities
  • the radio frequency capability reported by the modem module corresponding to the SIM card 1 through the UE capability information may include the following CA frequency band combinations: 1. Layer 2 MIMO capability on the B1 frequency band + B3 4-layer MIMO capability on the frequency band + CA band combination of the 4-layer MIMO capability on the B7 band; 2.
  • the SIM card 2 only supports the voice capability, and the radio frequency capability reported by the modem module corresponding to the SIM card 2 through the UE capability information can include the following CA frequency band combinations: B1 band 2-layer MIMO capability + B3 band 2-layer MIMO capability + B7 band of Layer 2 MIMO capability.
  • the network side After receiving the UE capability information of the SIM card 1, the network side can add a secondary carrier to the SIM card 1 based on the CA frequency band combination supported by the SIM card 1. After receiving the UE capability information of the SIM card 2, the network side determines that the CA frequency band combination supported on the SIM card 2 cannot support the addition of the secondary carrier of the 4-layer MIMO in the B1 frequency band + the 4-layer MIMO in the B3 frequency band.
  • the radio frequency capability of the modem module corresponding to each SIM card also follows change.
  • the terminal 100 must first initiate a deregistration process to the network side accessed by the modem module corresponding to each SIM card, and then re-register to complete the reporting of UE capability information of the modem module corresponding to each SIM card. In this way, when the data services of the primary and secondary SIM cards are switched, the switching process is slow and the data services are interrupted.
  • the terminal 100 When the terminal 100 adopts the DSDA solution, the terminal 100 needs to configure two sets of identical radio frequency channels for the main card and the auxiliary card for the main card and the auxiliary card. In this way, the RF specifications of the main card and the secondary card are the same.
  • data services are switched between the two cards, there is no need to re-report UE capability information, and there is no need to go to the registration and registration process. The switching is fast and will not cause service interruption.
  • the secondary card since the secondary card only supports voice services and requires few radio frequency channels, most of the radio frequency channels of the secondary card are in an idle state, the utilization rate of radio frequency resources is low, and the hardware cost of the terminal is high.
  • the terminal 100 adopts the DSDS solution, only one set of radio frequency resources is required because it only supports single-pass, and the card that performs the service will occupy the entire set of radio frequency resources.
  • the RF specifications of the two cards are the same.
  • data services are switched between the two cards, there is no need to re-report the terminal capabilities, and there is no need to go to the registration and registration process, and the switching is fast.
  • the terminal 100 cannot support the dual-communication capability, and when the secondary card makes a voice call, the primary card cannot perform data services.
  • the embodiment of the present application provides a method for sharing a radio frequency channel.
  • the terminal 100 can report the same radio frequency capability when the modem module corresponding to each SIM card registers and reports the UE capability information to the network side, and dynamically assigns the same radio frequency capability to each SIM card.
  • the modem module allocates radio frequency resources. When the modem module is not allocated to the radio frequency channel resources required for configuring the secondary carrier, the modem module may return a configuration failure indication message to the network side device, and notify the network side to release the secondary carrier. When the modem module is allocated to the radio frequency channel resources required for configuring the secondary carrier, the modem module can report the actual measurement value of the secondary cell signal to the network side to trigger the network side to complete adding the secondary cell for the modem module. In this way, when data services are switched between different SIM cards, the terminal does not need to initiate de-registration and registration processes, thereby reducing the switching time.
  • FIG. 3 shows a schematic structural diagram of the terminal 100 .
  • the terminal 100 shown in FIG. 3 is only an example, and the terminal 100 may have more or less components than those shown in FIG. 3 , may combine two or more components, or may have Different part configurations.
  • the various components shown in Figure 3 may be implemented in hardware, software, or a combination of hardware and software, including one or more signal processing and/or application specific integrated circuits.
  • the terminal 100 may include: a processor 110, an external memory interface 120, an internal memory 121, a universal serial bus (USB) interface 130, a charging management module 140, a power management module 141, a battery 142, an antenna 1, an antenna 2 , mobile communication module 150, wireless communication module 160, audio module 170, speaker 170A, receiver 170B, microphone 170C, headphone jack 170D, sensor module 180, buttons 190, motor 191, indicator 192, camera 193, display screen 194, and Subscriber identification module (subscriber identification module, SIM) card interface 195 and so on.
  • SIM Subscriber identification module
  • the sensor module 180 may include a pressure sensor 180A, a gyroscope sensor 180B, an air pressure sensor 180C, a magnetic sensor 180D, an acceleration sensor 180E, a distance sensor 180F, a proximity light sensor 180G, a fingerprint sensor 180H, a temperature sensor 180J, a touch sensor 180K, and ambient light. Sensor 180L, bone conduction sensor 180M, etc.
  • the structures illustrated in the embodiments of the present invention do not constitute a specific limitation on the terminal 100 .
  • the terminal 100 may include more or less components than shown, or some components may be combined, or some components may be separated, or different component arrangements.
  • the illustrated components may be implemented in hardware, software, or a combination of software and hardware.
  • the processor 110 may include one or more processing units, for example, the processor 110 may include an application processor (application processor, AP), a modem processor, a graphics processor (graphics processing unit, GPU), an image signal processor (image signal processor, ISP), controller, memory, video codec, digital signal processor (digital signal processor, DSP), baseband processor, and/or neural-network processing unit (NPU) Wait.
  • application processor application processor, AP
  • modem processor graphics processor
  • graphics processor graphics processor
  • image signal processor image signal processor
  • ISP image signal processor
  • controller memory
  • video codec digital signal processor
  • DSP digital signal processor
  • NPU neural-network processing unit
  • different processing units can be independent devices, and can also be integrated in one or more processors.
  • the controller may be the nerve center and command center of the terminal 100 .
  • the controller can generate an operation control signal according to the instruction operation code and timing signal, and complete the control of fetching and executing instructions.
  • a memory may also be provided in the processor 110 for storing instructions and data.
  • the memory in processor 110 is cache memory. This memory may hold instructions or data that have just been used or recycled by the processor 110 . If the processor 110 needs to use the instruction or data again, it can be called directly from the memory. Repeated accesses are avoided and the latency of the processor 110 is reduced, thereby increasing the efficiency of the system.
  • the processor 110 may include one or more interfaces.
  • the interface may include an integrated circuit (inter-integrated circuit, I2C) interface, an integrated circuit built-in audio (inter-integrated circuit sound, I2S) interface, a pulse code modulation (pulse code modulation, PCM) interface, a universal asynchronous transceiver (universal asynchronous transmitter) receiver/transmitter, UART) interface, mobile industry processor interface (MIPI), general-purpose input/output (GPIO) interface, subscriber identity module (SIM) interface, and / or universal serial bus (universal serial bus, USB) interface, etc.
  • I2C integrated circuit
  • I2S integrated circuit built-in audio
  • PCM pulse code modulation
  • PCM pulse code modulation
  • UART universal asynchronous transceiver
  • MIPI mobile industry processor interface
  • GPIO general-purpose input/output
  • SIM subscriber identity module
  • USB universal serial bus
  • the interface connection relationship between the modules illustrated in the embodiment of the present invention is only a schematic illustration, and does not constitute a structural limitation of the terminal 100 .
  • the terminal 100 may also adopt different interface connection manners in the foregoing embodiments, or a combination of multiple interface connection manners.
  • the charging management module 140 is used to receive charging input from the charger.
  • the charger may be a wireless charger or a wired charger.
  • the charging management module 140 may receive charging input from the wired charger through the USB interface 130 .
  • the charging management module 140 may receive wireless charging input through the wireless charging coil of the terminal 100 . While the charging management module 140 charges the battery 142 , it can also supply power to the electronic device through the power management module 141 .
  • the power management module 141 is used for connecting the battery 142 , the charging management module 140 and the processor 110 .
  • the power management module 141 receives input from the battery 142 and/or the charging management module 140 and supplies power to the processor 110 , the internal memory 121 , the external memory, the display screen 194 , the camera 193 , and the wireless communication module 160 .
  • the power management module 141 can also be used to monitor parameters such as battery capacity, battery cycle times, battery health status (leakage, impedance).
  • the power management module 141 may also be provided in the processor 110 .
  • the power management module 141 and the charging management module 140 may also be provided in the same device.
  • the wireless communication function of the terminal 100 may be implemented by the antenna 1, the antenna 2, the mobile communication module 150, the wireless communication module 160, the modulation and demodulation processor, the baseband processor, and the like.
  • Antenna 1 and Antenna 2 are used to transmit and receive electromagnetic wave signals.
  • Each antenna in terminal 100 may be used to cover a single or multiple communication frequency bands. Different antennas can also be reused to improve antenna utilization.
  • the antenna 1 can be multiplexed as a diversity antenna of the wireless local area network. In other embodiments, the antenna may be used in conjunction with a tuning switch.
  • the mobile communication module 150 may provide a wireless communication solution including 2G/3G/4G/5G, etc. applied on the terminal 100 .
  • the mobile communication module 150 may include at least one filter, switch, power amplifier, low noise amplifier (LNA) and the like.
  • the mobile communication module 150 can receive electromagnetic waves from the antenna 1, filter and amplify the received electromagnetic waves, and transmit them to the modulation and demodulation processor for demodulation.
  • the mobile communication module 150 can also amplify the signal modulated by the modulation and demodulation processor, and then turn it into an electromagnetic wave for radiation through the antenna 1 .
  • at least part of the functional modules of the mobile communication module 150 may be provided in the processor 110 .
  • at least part of the functional modules of the mobile communication module 150 may be provided in the same device as at least part of the modules of the processor 110 .
  • the modem processor may include a modulator and a demodulator.
  • the modulator is used to modulate the low frequency baseband signal to be sent into a medium and high frequency signal.
  • the demodulator is used to demodulate the received electromagnetic wave signal into a low frequency baseband signal.
  • the demodulator then transmits the demodulated low-frequency baseband signal to the baseband processor for processing.
  • the low frequency baseband signal is processed by the baseband processor and passed to the application processor.
  • the application processor outputs sound signals through audio devices (not limited to the speaker 170A, the receiver 170B, etc.), or displays images or videos through the display screen 194 .
  • the modem processor may be a stand-alone device.
  • the modem processor may be independent of the processor 110, and may be provided in the same device as the mobile communication module 150 or other functional modules.
  • the wireless communication module 160 can provide applications on the terminal 100 including wireless local area networks (WLAN) (such as wireless fidelity (Wi-Fi) network), bluetooth (BT), global navigation satellite system (global navigation satellite system, GNSS), frequency modulation (frequency modulation, FM), near field communication technology (near field communication, NFC), infrared technology (infrared, IR) and other wireless communication solutions.
  • WLAN wireless local area networks
  • BT wireless fidelity
  • GNSS global navigation satellite system
  • frequency modulation frequency modulation, FM
  • NFC near field communication technology
  • infrared technology infrared, IR
  • the wireless communication module 160 may be one or more devices integrating at least one communication processing module.
  • the wireless communication module 160 receives electromagnetic waves via the antenna 2 , frequency modulates and filters the electromagnetic wave signals, and sends the processed signals to the processor 110 .
  • the wireless communication module 160 can also receive the signal to be sent from the processor 110 , perform frequency modulation on it, amplify it, and convert it into electromagnetic waves for
  • the antenna 1 of the terminal 100 is coupled with the mobile communication module 150, and the antenna 2 is coupled with the wireless communication module 160, so that the terminal 100 can communicate with the network and other devices through wireless communication technology.
  • the wireless communication technology may include global system for mobile communications (GSM), general packet radio service (GPRS), code division multiple access (CDMA), broadband Code Division Multiple Access (WCDMA), Time Division Code Division Multiple Access (TD-SCDMA), Long Term Evolution (LTE), BT, GNSS, WLAN, NFC , FM, and/or IR technology, etc.
  • the GNSS may include global positioning system (global positioning system, GPS), global navigation satellite system (global navigation satellite system, GLONASS), Beidou navigation satellite system (beidou navigation satellite system, BDS), quasi-zenith satellite system (quasi -zenith satellite system, QZSS) and/or satellite based augmentation systems (SBAS).
  • global positioning system global positioning system, GPS
  • global navigation satellite system global navigation satellite system, GLONASS
  • Beidou navigation satellite system beidou navigation satellite system, BDS
  • quasi-zenith satellite system quadsi -zenith satellite system, QZSS
  • SBAS satellite based augmentation systems
  • the terminal 100 implements a display function through a GPU, a display screen 194, an application processor, and the like.
  • the GPU is a microprocessor for image processing, and is connected to the display screen 194 and the application processor.
  • the GPU is used to perform mathematical and geometric calculations for graphics rendering.
  • Processor 110 may include one or more GPUs that execute program instructions to generate or alter display information.
  • Display screen 194 is used to display images, videos, and the like.
  • Display screen 194 includes a display panel.
  • the display panel can be a liquid crystal display (LCD), an organic light-emitting diode (OLED), an active-matrix organic light-emitting diode or an active-matrix organic light-emitting diode (active-matrix organic light).
  • LED diode AMOLED
  • flexible light-emitting diode flexible light-emitting diode (flex light-emitting diode, FLED), Miniled, MicroLed, Micro-oLed, quantum dot light-emitting diode (quantum dot light emitting diodes, QLED) and so on.
  • the terminal 100 may include one or L display screens 194 , where L is a positive integer greater than one.
  • the terminal 100 can realize the shooting function through the ISP, the camera 193, the video codec, the GPU, the display screen 194 and the application processor.
  • the ISP is used to process the data fed back by the camera 193 .
  • the shutter is opened, the light is transmitted to the camera photosensitive element through the lens, the light signal is converted into an electrical signal, and the camera photosensitive element transmits the electrical signal to the ISP for processing, and converts it into an image visible to the naked eye.
  • ISP can also perform algorithm optimization on image noise, brightness, and skin tone.
  • ISP can also optimize the exposure, color temperature and other parameters of the shooting scene.
  • the ISP may be provided in the camera 193 .
  • Camera 193 is used to capture still images or video.
  • the object is projected through the lens to generate an optical image onto the photosensitive element.
  • the photosensitive element can be a charge coupled device (CCD) or a complementary metal-oxide-semiconductor (CMOS) phototransistor.
  • CMOS complementary metal-oxide-semiconductor
  • the photosensitive element converts the optical signal into an electrical signal, and then transmits the electrical signal to the ISP to convert it into a digital image signal.
  • the ISP outputs the digital image signal to the DSP for processing.
  • DSP converts digital image signals into standard RGB, YUV and other formats of image signals.
  • the terminal 100 may include 1 or N cameras 193 , where N is a positive integer greater than 1.
  • a digital signal processor is used to process digital signals, in addition to processing digital image signals, it can also process other digital signals. For example, when the terminal 100 selects a frequency point, the digital signal processor is used to perform Fourier transform on the energy of the frequency point, and so on.
  • Video codecs are used to compress or decompress digital video.
  • Terminal 100 may support one or more video codecs.
  • the terminal 100 can play or record videos in various encoding formats, for example, moving picture experts group (moving picture experts group, MPEG) 1, MPEG2, MPEG3, MPEG4, and so on.
  • MPEG moving picture experts group
  • the NPU is a neural-network (NN) computing processor.
  • NN neural-network
  • Applications such as intelligent cognition of the terminal 100 can be implemented through the NPU, such as image recognition, face recognition, speech recognition, text understanding, and the like.
  • the external memory interface 120 can be used to connect an external memory card, such as a Micro SD card, to expand the storage capacity of the terminal 100.
  • the external memory card communicates with the processor 110 through the external memory interface 120 to realize the data storage function. For example to save files like music, video etc in external memory card.
  • Internal memory 121 may be used to store computer executable program code, which includes instructions.
  • the processor 110 executes various functional applications and data processing of the terminal 100 by executing the instructions stored in the internal memory 121 .
  • the internal memory 121 may include a storage program area and a storage data area.
  • the storage program area can store an operating system, an application program required for at least one function (such as a sound playback function, an image playback function, etc.), and the like.
  • the storage data area may store data (such as audio data, phone book, etc.) created during the use of the terminal 100 and the like.
  • the internal memory 121 may include high-speed random access memory, and may also include non-volatile memory, such as at least one magnetic disk storage device, flash memory device, universal flash storage (UFS), and the like.
  • the terminal 100 may implement audio functions through an audio module 170, a speaker 170A, a receiver 170B, a microphone 170C, an earphone interface 170D, an application processor, and the like. Such as music playback, recording, etc.
  • the audio module 170 is used for converting digital audio information into analog audio signal output, and also for converting analog audio input into digital audio signal.
  • Speaker 170A also referred to as a “speaker” is used to convert audio electrical signals into sound signals.
  • the receiver 170B also referred to as “earpiece”, is used to convert audio electrical signals into sound signals.
  • the microphone 170C also called “microphone” or “microphone”, is used to convert sound signals into electrical signals.
  • the pressure sensor 180A When the pressure sensor 180A is used to sense the pressure signal, the pressure signal can be converted into an electrical signal.
  • the pressure sensor 180A may be provided on the display screen 194 .
  • the gyro sensor 180B may be used to determine the motion attitude of the terminal 100 .
  • the air pressure sensor 180C is used to measure air pressure.
  • the magnetic sensor 180D includes a Hall sensor, and the opening and closing of the flip holster can be detected by the magnetic sensor 180D.
  • the acceleration sensor 180E can detect the magnitude of the acceleration of the terminal 100 in various directions (generally three axes).
  • Distance sensor 180F for measuring distance.
  • Proximity light sensor 180G can also be used in holster mode, pocket mode automatically unlocks and locks the screen.
  • the ambient light sensor 180L is used to sense ambient light brightness.
  • the fingerprint sensor 180H is used to collect fingerprints.
  • the temperature sensor 180J is used to detect the temperature.
  • Touch sensor 180K also called “touch panel”.
  • the touch sensor 180K may be disposed on the display screen 194 , and the touch sensor 180K and the display screen 194 form a touch screen, also called a “touch screen”.
  • the touch sensor 180K is used to detect a touch operation on or near it.
  • the touch sensor can pass the detected touch operation to the application processor to determine the type of touch event.
  • Visual output related to touch operations may be provided through display screen 194 .
  • the touch sensor 180K may also be disposed on the surface of the terminal 100, which is different from the position where the display screen 194 is located.
  • the bone conduction sensor 180M can acquire vibration signals.
  • the keys 190 include a power-on key, a volume key, and the like.
  • Motor 191 can generate vibrating cues.
  • the indicator 192 can be an indicator light, which can be used to indicate the charging state, the change of the power, and can also be used to indicate a message, a missed call, a notification, and the like.
  • the SIM card interface 195 is used to connect a SIM card.
  • the SIM card can be contacted and separated from the terminal 100 by inserting into the SIM card interface 195 or pulling out from the SIM card interface 195 .
  • the terminal 100 can support N SIM card interfaces, where N is a positive integer greater than or equal to 2.
  • the SIM card interface 195 can support Nano SIM card, Micro SIM card, SIM card and so on. Multiple cards can be inserted into the same SIM card interface 195 at the same time. The types of the plurality of cards may be the same or different.
  • the SIM card interface 195 can also be compatible with different types of SIM cards.
  • the SIM card interface 195 is also compatible with external memory cards.
  • the terminal 100 interacts with the network through the SIM card to realize functions such as calls and data communication.
  • the terminal 100 employs an eSIM, ie an embedded SIM card.
  • the eSIM card can be embedded in the terminal 100 and cannot be separated from the terminal 100 .
  • FIG. 4 shows a schematic structural diagram of a network device 200 provided by an embodiment of the present application.
  • network device 200 may include: one or more processors 201 , memory 202 , network interface 203 , transmitter 205 , receiver 206 , coupler 207 , and antenna 208 . These components may be connected through the bus 204 or in other ways, and FIG. 4 takes the connection through the bus as an example. in,
  • the network interface 203 may be used by the network device 200 to communicate with other communication devices (eg, other network devices).
  • the transmitter 205 can be used to perform transmission processing, such as signal modulation, on the signal output by the processor 201 .
  • the receiver 206 is operable to receive and process the mobile communication signals received by the antenna 208 . such as signal demodulation.
  • the transmitter 205 and the receiver 206 may be one or more.
  • Antenna 208 may be used to convert electromagnetic energy in a transmission line to electromagnetic waves in free space, or to convert electromagnetic waves in free space to electromagnetic energy in a transmission line.
  • the coupler 207 may be used to multiplex the mobile communication signal for distribution to a plurality of receivers 206 .
  • the memory 202 can be coupled with the processor 201 through a bus 204 or an input/output port, and the memory 202 can also be integrated with the processor 201 .
  • Memory 302 may be used to store various software programs and/or sets of instructions.
  • memory 202 may include high-speed random access memory, and may also include non-volatile memory, such as one or more magnetic disk storage devices, flash memory devices, or other non-volatile solid-state storage devices.
  • the memory 202 may store an operating system, such as an embedded operating system such as uCOS, VxWorks, RTLinux, and the like.
  • the memory 202 may also store network communication programs that can be used to communicate with one or more additional devices, one or more terminals, one or more network devices.
  • the processor 201 may be configured to read and execute computer-readable instructions.
  • the processor 301 may be configured to call a program stored in the memory 202, such as an implementation program on the network device 200 side of the method for sharing a radio frequency channel provided by one or more embodiments of the present application, and execute the instructions contained in the program .
  • the network device 200 shown in FIG. 4 is only an implementation manner of the embodiments of the present application. In practical applications, the network device 200 may further include more or fewer components, which is not limited here.
  • the following introduces a schematic structural diagram of a terminal 100 provided in another embodiment of the present application.
  • the terminal 100 may include a processor 501, a memory 502, a transmit (TX) signal processing unit 503, a receive (RX) signal processing unit 504, n transmit (TX) radio frequency channels, m receive RF channels and t antennas. Among them, n, m, t are positive integers.
  • the processor 501, the memory 502, the transmit (TX) signal processing unit 503, and the receive (RX) signal processing unit 504 may be connected through a communication bus.
  • the memory 502 may include static memory for storing executable codes and data, or may include dynamic memory for storing instructions and dynamic data.
  • the processor 501 can be used to control the TX signal processing unit 503 and the RX signal processing unit to send and receive signals in a predefined manner.
  • the processor 501 may be configured to dynamically allocate the modem module applied for by each SIM card and the radio frequency channel resources applied by each modem module.
  • the modem module applied for by each SIM card and the radio frequency channel resources applied by each modem module For the specific content of dynamically allocating the modem module applied for by each SIM card and the radio frequency channel resources applied by each modem module, reference may be made to the embodiments shown in FIG. 7A and FIG. 7B described later, which will not be repeated here.
  • the TX signal processing unit 503 can be used to realize various signal processing functions of signal transmission.
  • the RX signal processing unit 504 can be used to realize various signal processing functions of signal reception.
  • the TX signal processing unit 503 and the RX signal processing unit 504 may be connected to an antenna through a TX radio frequency channel and an RX radio frequency channel, respectively.
  • the TX RF channel modulates the baseband signal to the carrier frequency and sends it out through the antenna.
  • the RX radio frequency channel demodulates the radio frequency signal received from the antenna array into a baseband signal, which is processed by the RX signal processing unit 504 .
  • Some antennas can be configured to transmit and receive simultaneously, so they can be connected to both the TX RF channel and the RX RF channel at the same time. Some antennas are configured for reception only and are therefore only connected to the RX RF channel.
  • the TX radio frequency channel and the RX radio frequency channel can be connected to any antenna.
  • the TX radio frequency channel 1 and the RX radio frequency channel 1 are connected to the antenna 2, which can be flexibly configured according to service requirements.
  • FIG. 6 shows a schematic structural diagram of a radio frequency channel provided in an embodiment of the present application.
  • the digital signal output by the TX signal processing unit 503 is converted into a low-frequency analog signal through digital-to-analog conversion, and then the low-frequency analog signal is modulated onto a carrier wave through a mixer.
  • the carrier signal is generated by a phase-locked loop.
  • the modulated high-frequency signal is amplified by the power amplifier and sent out through the antenna.
  • the high-frequency signal received by the antenna is amplified by the low-noise amplifier, and then passed through the mixer to down-convert the high-frequency analog signal to a low-frequency analog signal. After analog-to-digital conversion, it is converted into a digital signal and sent to the RX signal processing unit 504 for signal reception processing.
  • the terminal 100 may share the same radio frequency channel or use different radio frequency channels in different frequency bands. If the uplink or the downlink supports Multi-Input Multi-Output (Multi-Input Multi-Output, MIMO), the terminal 100 needs multiple uplink or downlink radio frequency channels. For example, if the terminal 100 supports downlink 4-layer MIMO capability in a certain frequency band, the terminal 100 needs to have 4 receiving channels in this frequency band. If the terminal 100 supports carrier aggregation (CA) or dual connectivity (DC), the terminal 100 needs to simultaneously support multiple reception or transmission paths.
  • MIMO Multi-Input Multi-Output
  • the terminal 100 needs 4 receiving paths of the B1 frequency band and 4 receiving channels of the B3 frequency band path.
  • FIG. 7A shows a schematic structural diagram of a radio frequency channel sharing system provided by an embodiment of the present application.
  • the terminal 100 includes M SIM cards, a modem resource allocation module 701 , a modem resource pool 702 , a radio frequency channel allocation module 703 , and a radio frequency channel resource pool 704 .
  • the modem resource pool 702 may include N modem modules.
  • the radio frequency channel resource pool 704 may include P transmit radio frequency channels and Q receive radio frequency channels.
  • M is a positive integer greater than or equal to 2
  • N is a positive integer greater than or equal to 2
  • both P and Q are positive integers greater than 2.
  • the baseband chip on the terminal 100 may include protocol stacks of different access standards.
  • the baseband chip on the terminal 100 may include a 5G protocol stack, a 4G (LTE) protocol stack, and a 3G protocol stack. stack, 2G protocol stack.
  • the baseband chip can be divided into multiple modem modules based on each protocol stack, and the modem module can modulate the low-frequency baseband signal to be sent into a medium-high-frequency signal or demodulate the received electromagnetic wave signal into a low-frequency baseband based on the corresponding protocol stack. Signal.
  • the baseband chip on the terminal 100 can work on modem module 1 and modem module 2 of the 5G protocol stack.
  • the terminal 100 can configure the modem module 1 for the SIM card 1
  • the terminal 100 can configure the modem module 2 for the SIM card 2 .
  • the SIM card can apply to the modem resource allocation module 701 for a modem module.
  • One modem module corresponds to one wireless access standard.
  • the SIM card can apply to the modem resource allocation module for a modem module of the corresponding standard.
  • modem module 1 can work in the LTE network access mode
  • modem module 2 can work in the 5G NR network access mode.
  • SIM card 1 works in the LTE network access mode
  • SIM card 1 can apply to the modem resource allocation module
  • the SIM card 1 can apply to the modem resource allocation module 2 from the modem resource allocation module.
  • the terminal 100 can receive the user's operation and set the working mode of each SIM card.
  • the terminal 100 has a SIM card 1 and a SIM card 2, and the terminal 100 can set the SIM card 1 to work in the LTE network wireless access standard in response to the received user operation, and the SIM card 2 to work in the 5G NR network wireless access standard.
  • the terminal 100 may, in response to the received user operation, set both the SIM card 1 and the SIM card 2 to work in the 5G NR network wireless access standard, and so on.
  • each modem module and the radio frequency channel allocation module 703 and the radio frequency channel resource pool 704 may include the following steps:
  • the radio frequency channel allocation module 703 can send the radio frequency capability information of the terminal 100 to each modem module.
  • the radio frequency capability information of the terminal 100 includes a frequency band combination that the terminal 100 supports carrier aggregation (carrier aggregation, CA) and MIMO capability information of each frequency band combination.
  • carrier aggregation carrier aggregation, CA
  • MIMO capability information of each frequency band combination carrier aggregation, CA
  • the RF specifications received by each modem module are the same.
  • the radio frequency channel resources required by the terminal 100 are 4 receiving channels of the B1 frequency band and 4 receiving channels of the B3 frequency band.
  • the modem module can apply to the radio frequency channel allocation module 703 for radio frequency channel resources (including transmitting radio frequency channels and receiving radio frequency channels).
  • the process of configuring the secondary carrier for the terminal 100 by the network device 200 may include:
  • the network device 200 sends the RRC Connection Reconfiguration signaling to the terminal 100, and the RRC Connection Reconfiguration signaling can be used to configure the terminal 100 to measure the signal of the secondary cell on the secondary carrier.
  • the terminal 100 After receiving the RRC Connection Reconfiguration signaling, the terminal 100 can complete the measurement configuration, and return the RRC Connection Reconfigure signaling to the network device 200.
  • the terminal 100 may periodically measure the signal quality of the secondary cell according to the measurement configuration, and report the signal measurement value of the secondary cell to the network device 200 .
  • the measurement parameter of the signal quality of the secondary cell may include the reference signal receiving power (RSRP) of the secondary cell, and/or the signal to interference plus noise ratio (signal to interference plus noise ratio, SINR), and/or Or reference signal received power (reference signal receiving quality, RSRQ).
  • RSRP reference signal receiving power
  • SINR signal to interference plus noise ratio
  • RSRQ reference signal received power
  • the network device 200 can use RRC Connection Reconfiguration signaling with a specific field (for example, the sCellToAddMoList field) to set the The terminal 100 is configured to add a secondary carrier.
  • a specific field for example, the sCellToAddMoList field
  • the terminal 100 may report the event according to the measurement configuration of the secondary cell, the terminal 100 may measure the signal quality of the secondary cell, and determine whether the signal quality of the secondary cell is higher than a certain threshold, and if so, the terminal 100
  • the specified event eg, "A2" event
  • the network device 200 may configure the terminal 100 to add secondary carriers through RRC Connection Reconfiguration signaling with a specific field (for example, the sCellToAddMoList field). If the terminal 100 determines whether the signal quality of the secondary cell is not higher than a certain threshold, the terminal 100 does not report the specified event to the network device 200 in the measurement report. After the network device 200 does not identify the specified event from the measurement report, it releases the terminal 100 to add the secondary carrier.
  • the terminal 100 After receiving the RRC Connection Reconfiguration signaling for configuring the secondary carrier, the terminal 100 can complete the addition of the secondary carrier, and return the RRC Connection Reconfiguration signaling to the network device 200.
  • the terminal 100 may continuously and periodically measure the signal quality of the secondary cell after completing the addition of the secondary carrier, and report the measurement value of the secondary cell to the network device 200 .
  • the radio frequency channel allocation module 703 may allocate radio frequency channel resources to the modem module applying for resources based on some allocation policies, and return a success or failure instruction to the modem module. After successfully allocating the radio frequency channel to the modem module, the radio frequency channel allocation module 703 may also return the identifier of the radio frequency channel allocated to the modem module (for example, the port number of the radio frequency channel) to the modem module.
  • the radio frequency channel allocation module 703 can allocate radio frequency channel resources to the modem module according to the following strategy:
  • the radio frequency channel allocation module 703 can determine whether the SIM card corresponding to the modem module is set to support data services, and if so, the radio frequency channel allocation module 703 can return The success command is given to the modem module.
  • the radio frequency channel allocation module 703 may return a failure instruction to the modem module.
  • the terminal 100 does not need to re-initiate the process of de-registration and re-registration, and the data service is quickly switched between different SIM cards without causing interruption of the data service.
  • the radio frequency channel allocation module 703 can determine whether the idle radio frequency channel resource includes the radio frequency channel resource applied by the modem module for the secondary carrier, and if so, the radio frequency channel allocation Module 703 may return a success command to the modem module. If the idle (ie, unoccupied) radio frequency channel resources do not include the radio frequency channel resources requested by the modem module for the secondary carrier, the radio frequency channel allocation module 703 may return a failure instruction to the modem module.
  • the radio frequency channel allocation module 703 can return a successful command, until the idle radio frequency channel resources are exhausted, and return a failure command.
  • the modem module that applies for the RF channel resources first will configure the RF channel first, so that the RF channel resources can be dynamically shared among SIM cards and allocated on demand.
  • a secondary carrier is configured for a modem on the network side, it indicates that a large amount of data needs to be transmitted on the modem, which improves the utilization rate of radio frequency channel resources.
  • the radio frequency channel allocation module 703 can determine whether the idle radio frequency channel resource includes the radio frequency channel resource applied by the modem module for the secondary carrier, and if so, the radio frequency channel allocation Module 703 may return a success command to the modem module.
  • the radio frequency channel allocation module 703 can determine whether the priority of the modem module applying for the radio frequency channel resources is high according to the priority order of the modem modules Based on the priority of the modem module that has applied for the radio frequency channel resource, if yes, the radio frequency channel allocation module 703 can release the radio frequency channel resource applied for by the modem module with the low priority for the secondary carrier, and allocate the released radio frequency channel resource to the radio frequency channel resource.
  • the terminal 100 has a SIM card 1 , a SIM card 2 , and a SIM card 3 .
  • the SIM card 1 is configured with a modem module 1
  • the SIM card 2 is configured with a modem module 2
  • the SIM card 3 is configured with a modem module 3 .
  • Modem module 1 applies for 2 transmit RF channels and 2 receive RF channels for the secondary carrier
  • modem module 2 applies for 2 transmit RF channels and 2 receive RF channels for the secondary carrier.
  • the modem module 3 receives the RRC signaling for adding the secondary carrier sent by the network side, and in response to the RRC signaling, the modem module 3 can apply to the radio frequency channel allocation module 703 for radio frequency channel resources for the secondary carrier.
  • modem module 3 needs to apply for 2 transmit RF channels and 2 receive RF channels for the secondary carrier, and the priority order of each modem module is: modem module 3 is greater than modem module 2 and modem module 1 is greater, then the RF channel allocation module 703 can Instruct modem module 1 to release the 2 transmit RF channels and 2 receive RF channels occupied by the secondary carrier, and allocate the released 2 transmit RF channels and 2 receive RF channels to modem module 3.
  • modem module 3 needs to apply for 2 transmit RF channels and 2 receive RF channels for the secondary carrier, and the priority order of each modem module is: modem module 3 is greater than modem module 1 is greater than modem module 2, then the RF channel allocation module 703 can Instruct the modem module 2 to release the 2 transmit RF channels and the 2 receive RF channels occupied by the secondary carrier, and allocate the released 2 transmit RF channels and 2 receive RF channels to the modem module 3.
  • the RF channel allocation module 703 can request the modem module 3 Returns a failure instruction to notify the modem module 3 that the allocation of radio frequency channel resources fails.
  • the RF channel allocation module 703 can instruct modem module 1 Release the 2 transmit radio frequency channels and the 2 receive radio frequency channels occupied by the secondary carrier, and instruct the modem module 2 to release the 2 transmit radio frequency channels and 2 receive radio frequency channels occupied by the secondary carrier.
  • the radio frequency channel allocation module 703 can allocate the released four transmit radio frequency channels and the four receive radio frequency channels to the modem module 3 .
  • the radio frequency channel allocation module 703 can determine the priority of each modem module in any of the following ways:
  • the radio frequency channel allocation module 703 may determine the priority of the modem module based on the reference signal receiving power (reference signal receiving power, RSRP)/signal to interference plus noise ratio (signal to interference plus noise ratio, SINR) of each modem module on the primary cell class. Wherein, the higher the RSRP/SINR on the primary cell, the higher the priority of the modem module.
  • RSRP reference signal receiving power
  • SINR signal to interference plus noise ratio
  • the radio frequency channel allocation module 703 may determine the priority order of the modem module based on the uplink rate or downlink rate of the modem module on the primary cell.
  • the priority of the modem module includes the uplink priority of the modem module and the downlink priority of the modem module.
  • the radio frequency channel allocation module 703 can determine the uplink priority order of each modem module according to the uplink rate of each modem module in the primary cell, and allocate transmitting radio frequency channel resources to each modem module according to the uplink priority order of each modem module.
  • the radio frequency channel allocation module 703 can determine the downlink priority order of each modem module according to the downlink rate of each modem module in the primary cell, and allocate receiving radio frequency channel resources to each modem module according to the downlink priority order of each modem module.
  • the higher the downlink rate of the primary cell the higher the downlink priority of the modem module.
  • the higher the uplink rate of the primary cell the higher the uplink priority of the modem module.
  • the radio frequency channel allocation module 703 may allocate radio frequency channel resources to each modem module based on the modem priority order preset by the user.
  • the user can manually set the priority of the SIM card, and the priority of the SIM card represents the priority of the modem module corresponding to the SIM card.
  • the user sets SIM card 1 to support data services and SIM card 2 to only support voice services. Therefore, the priority of the modem module corresponding to SIM card 1 is greater than that of the modem module corresponding to SIM card 2 .
  • the radio frequency channel allocation module 703 may allocate the radio frequency channel resource based on the priority of the modem module.
  • the radio frequency channel resources are insufficient, the overall communication performance of the terminal 100 can be guaranteed to be optimal.
  • the modem module can configure the radio frequency channel and add a secondary carrier based on the identifier of the radio frequency channel returned by the radio frequency channel allocation module 703 . If the radio frequency channel allocation module 703 fails to allocate the radio frequency channel to the modem module, the modem module does not add the secondary carrier, and reports the measurement value of the secondary carrier cell as a preset value (eg -141dBm), triggering the network side to release the secondary carrier.
  • a preset value eg -141dBm
  • the embodiment of the present application provides a radio frequency channel sharing system.
  • the terminal 100 can report the same radio frequency capability, and dynamically report the same radio frequency capability to each modem module. Allocate radio resources.
  • the modem module may return a configuration failure indication message to the network side device, and notify the network side to release the secondary carrier.
  • the modem module can report the actual measurement value of the secondary cell signal to the network side to trigger the network side to complete adding the secondary cell for the modem module. In this way, when data services are switched between different SIM cards, the terminal does not need to initiate de-registration and registration processes, thereby reducing the switching time.
  • the following describes a method for sharing a radio frequency channel provided in an embodiment of the present application.
  • FIG. 8 shows a schematic flowchart of a method for sharing a radio frequency channel provided in an embodiment of the present application.
  • the terminal 100 includes at least two SIM cards (including the first SIM card and the second SIM card), and at least two modem modules (including the first modem). module and the second modem module). Among them, each SIM card corresponds to a modem module.
  • the terminal 100 includes two SIM cards as an example for description. For example, the terminal 100 assigns the first SIM card to the first modem module, assigns the second SIM card to the second modem module, and so on.
  • the first modem module may communicate with the network device 210 and the second modem module may communicate with the network device 220 .
  • the network device 210 and the network device 220 may be collectively referred to as network-side devices.
  • the method includes:
  • the network device 210 sends UE Capability Enquiry (UE Capability Enquiry) signaling for the first SIM card to the terminal 100, where the UE Capability Enquiry signaling is used to query the capabilities of the terminal 100.
  • UE Capability Enquiry UE Capability Enquiry
  • the network device 210 may send the UE capability query signaling for the first SIM card to the terminal 100. Specifically, after the terminal 100 searches for the network to be accessed by the SIM card 1 when the terminal 100 is powered on, restarted, or disabled in the airplane mode, it can send an RRC connection request signaling for the first SIM card to the network device 210 . After receiving the RRC connection request signaling for the first SIM card, the network device 210 may return the RRC connection establishment signaling for the first SIM card to the terminal 100 .
  • the terminal 100 may send the RRC connection establishment completion signaling (carrying registration request signaling) for the first SIM card to the network device 210 to trigger the first SIM card to be established. registration process.
  • the network device 210 may send the UE capability query signaling for the first SIM card to the terminal 100 .
  • the terminal 100 sends first UE capability information (UE Capability Information) to the network device 210, where the first UE capability information includes radio frequency capability information 1.
  • UE Capability Information UE Capability Information
  • the first UE capability information includes radio frequency capability information 1 and other capability information.
  • the radio frequency capability information 1 is carried in a frequency band combination list (Band Combination List) field in the first UE capability information.
  • the Band Combination List field includes the frequency band combinations supported by the terminal 100, the number of carriers supported by each frequency band under each frequency band combination, and the MIMO capability of each carrier (also referred to as the number of MIMO layers).
  • the signaling format of the Band Combination List field may be as follows:
  • the above-mentioned Band Combination List field may include a plurality of frequency band parameter (BandParameters) fields, the BandParameters field may be used to indicate the frequency band that supports CA on the terminal 100, and the plurality of BandParameters fields indicate that the terminal 100 supports the frequency band combination of CA.
  • BandParameters frequency band parameter
  • the BandParameters field may include the following information elements:
  • each frequency band can be an LTE or NR frequency band.
  • the bandEUTRA cell indicates an LTE frequency band. For example, when the value of the bandEUTRA cell is "1", it indicates the LTE B1 frequency band; when the value of the bandEUTRA cell is "2", it indicates the LTE B2 frequency band.
  • the bandNR cell can be used to indicate an NR frequency band. For example, when the value of the bandNR cell is "1", it represents the n1 band of NR; when the value of the bandNR cell is "2", it represents the NR n2 band.
  • the ca-BandwidthClassDL-EUTRA information element may be used to indicate the downlink aggregation type of the LTE frequency band
  • the ca-BandwidthClassDL-NR information element may be used to indicate the downlink aggregation type of the NR frequency band.
  • the ca-BandwidthClassDL-EUTRA cell or ca-BandwidthClassDL-NR cell when the value of the ca-BandwidthClassDL-EUTRA cell or ca-BandwidthClassDL-NR cell is "A" or "a”, it indicates a single carrier; the ca-BandwidthClassDL-EUTRA cell or ca-BandwidthClassDL-NR cell When the value is "B” or "b", it indicates two consecutive carrier aggregation in the frequency band.
  • the FeatureSetCombination information element in the above Band Combination List field indicates a feature set (Feature Set) combination (FeatureSetCombination), which contains the information elements downlinkSetEUTRA/downlinkSetNR and uplinkSetEUTRA/ uplinkSetNR.
  • the FeatureSetCombination information element may be as follows:
  • the downlink and uplink FeatureSet information elements of each frequency band indicate the MIMO capability (ie, the number of MIMO layers) of each carrier in the frequency band.
  • the featureSetListPerDownlinkCC information element and the featureSetListPerUplinkCC information element respectively indicate the feature set of each carrier in the downlink and uplink.
  • the downlink feature setting (FeatureSetDownLink) cell and the uplink feature setting (FeatureSetUpLink) cell of each frequency band may be as follows:
  • the featureSetListPerDownlinkCC cell and the featureSetListPerUplinkCC cell may be as follows:
  • the MIMO capability of each carrier is indicated.
  • the maxNumberMIMO-LayersCB-PUSCH information element and the maxNumberMIMO-LayersNonCB-PUSCH information element represent the MIMO capability in a codebook-based or non-codebook-based MIMO manner, respectively.
  • the maxNumberMIMO-LayersPDSCH information element indicates the MIMO capability.
  • the frequency band list (bandList) cell may include 3 bandEUTRA cells (including bandEUTRA cell 1, bandEUTRA cell 2 and bandEUTRA cell 3) and the corresponding FeatureSet cells (including FeatureSet cell 1) respectively. , FeatureSet information element 2, FeatureSet information element 3).
  • bandEUTRA cell 1 may be "1”
  • the value of bandEUTRA cell 2 may be "3”
  • the value of bandEUTRA cell 3 may be "7".
  • bandEUTRA cell 1 corresponds to FeatureSet cell 1
  • the value of maxNumberMIMO-LayersPDSCH cell in FeatureSet cell 1 is "4"
  • bandEUTRA cell 2 corresponds to FeatureSet cell 2
  • the maxNumberMIMO-LayersPDSCH cell in FeatureSet cell 2 has a value of "4".
  • the value is "4"
  • the bandEUTRA information element 3 corresponds to the FeatureSet information element 3
  • the value of the maxNumberMIMO-LayersPDSCH information element in the FeatureSet information element 3 is "4".
  • the terminal 100 may generate the frequency band combination capability supported by the terminal 100 according to the radio frequency capability of the terminal 100, where the frequency band combination capability includes the CA capability and the number of MIMO layers. After the radio frequency channel design of the terminal 100 is determined, the frequency band combination capability supported by the terminal 100 is also determined. Alternatively, the radio frequency channel of the terminal 100 may be designed based on the band combination capability of the CA supported by the terminal 100 .
  • the terminal 100 can write the frequency band combination capability it supports into the configuration file. When the terminal 100 reports the UE capability information, the terminal 100 can read the frequency band combination capability from the configuration file and assemble it into UE Capability Information signaling. Capability Information signaling is reported to the network side.
  • the terminal 100 may send the UE Capability Information signaling carrying the frequency band combination capability to the network device 210 through the modem module corresponding to the first SIM card.
  • the terminal 100 may send the UE Capability Information signaling carrying the frequency band combination capability to the network device 220 through the modem module corresponding to the second SIM card.
  • the network device 220 sends the UE capability query signaling for the second SIM card to the terminal 100.
  • the terminal 100 sends the second UE capability information to the network device 220 , where the second UE capability information includes radio frequency capability information 2 , and the radio frequency capability information 2 is the same as the radio frequency capability information 1 .
  • the process for the terminal 100 to send the second UE capability information to the network device 220 may refer to the process for the terminal 100 to send the first UE capability information to the network device 210 in the foregoing step S802, which will not be repeated here.
  • the radio frequency capability information in the UE capability information returned by the terminal 100 to the network side is the same as the above-mentioned radio frequency capability information 1 and radio frequency capability information 2.
  • the terminal 100 when the terminal 100 has radio frequency channels (which can be used for sending and receiving), there are four radio frequency channels on the B1 frequency band, four radio frequency channels on the B3 frequency band, and four radio frequency channels on the B7 frequency band.
  • the terminal 100 is configured with a first SIM card and a second SIM card, wherein the first SIM card is a data service card, which supports data services and voice calls, and the second SIM card only supports voice calls (including VoLTE or VoNR) and does not support data business. Both the first SIM card and the second SIM card support and report the following frequency band combinations in the UE capability information:
  • each SIM card reports the maximum radio frequency capability of the terminal 100 when reporting the UE capability information to the network side. That is, the radio frequency capability information in the UE capability information reported by each SIM card is: the 4-layer MIMO capability on the B1 frequency band + the 4-layer MIMO capability on the B3 frequency band + the 4-layer MIMO capability on the B7 frequency band.
  • the first SIM card when the first SIM card is a data service card and supports data services and voice communication services, the first SIM card may support the first radio frequency capability, and the second SIM card may support the second radio frequency capability, wherein the first SIM card The radio frequency capability is stronger than the second radio frequency capability.
  • the radio frequency capability information of the first SIM card and the second SIM card reported by the terminal 100 is the first radio frequency capability.
  • the first radio frequency capability may have the capability of enabling the network side device to add a secondary carrier to the terminal, and the second radio frequency capability may not have the capability of enabling the network side device to add a secondary carrier to the terminal ability.
  • the first radio frequency capability is stronger than the second radio frequency capability may refer to that the frequency band and/or the number of MIMO layers supporting CA in the first radio frequency capability is greater than that of the second radio frequency capability.
  • the first radio frequency capability may be the 4-layer MIMO capability on the B1 frequency band + the 4-layer MIMO capability on the B3 frequency band + the 4-layer MIMO capability on the B7 frequency band
  • the second radio frequency capability may be the B1 frequency band.
  • the network device 210 sends the RRC connection reconfiguration signaling 1 (which may be referred to as the first RRC connection reconfiguration signaling) to the terminal 100, where the RRC connection reconfiguration signaling 1 includes each secondary carrier on the first SIM card The maximum number of MIMO layers.
  • the terminal 100 determines, based on the maximum number of MIMO layers of each secondary carrier in the RRC connection reconfiguration signaling 1, the radio frequency channel resources required by the secondary carrier of the first SIM card.
  • the RRC connection reconfiguration signaling 1 may include the maximum number of MIMO layers of the B3 frequency band secondary carrier and the maximum MIMO layer of the B7 frequency band secondary carrier in the downlink of the first SIM card, and the downlink B3 frequency band secondary carrier.
  • the maximum number of MIMO layers is 4, and the maximum number of MIMO layers for the downlink B7 frequency band secondary carrier is 4.
  • the radio frequency channel resources required by the secondary carrier of the first SIM card are four receiving radio frequency channels in the B3 frequency band and four receiving radio frequency channels in the B7 frequency band.
  • the terminal 100 determines whether the radio frequency channel resources required by the secondary carrier are successfully allocated to the first SIM card.
  • step S808 the terminal 100 configures the radio frequency channel resources required by the secondary carrier for the first SIM card, and measures the signal strength of the secondary cell of the first SIM card to be the first value.
  • the idle radio frequency channel resources of the terminal 100 may include 4 radio frequency channels on the B1 frequency band, 4 radio frequency channels on the B3 frequency band, and 4 radio frequency channels on the B7 frequency band. for sending and receiving signals.
  • the radio frequency channel resources required by the secondary carrier of the first SIM card may include four radio frequency channels of the B3 frequency band. If the idle radio frequency channel resources of the terminal 100 include radio frequency channel resources required by the secondary carrier of the first SIM card, the terminal 100 may configure four radio frequency channels of the B3 frequency band for the secondary carrier of the first SIM card.
  • radio frequency channel resources required by the terminal 100 to allocate the secondary carrier to the first SIM card reference may be made to the foregoing embodiment shown in FIG. 7A , which will not be repeated here.
  • the terminal 100 sends a measurement report 1 (which may be referred to as a first measurement report) to the network device 210, where the signal quality of the secondary cell in the measurement report 1 is the first value.
  • a measurement report 1 (which may be referred to as a first measurement report)
  • the network device 210 where the signal quality of the secondary cell in the measurement report 1 is the first value.
  • the network device 210 After receiving the measurement report 1, if the first value is greater than the signal value threshold, the network device 210 adds a secondary carrier to the first SIM card of the terminal 100.
  • the terminal 100 may report the event according to the measurement configuration of the secondary cell, the terminal 100 may measure the signal quality of the secondary cell on the first SIM card, and determine whether the signal quality of the secondary cell on the first SIM card is higher than that of the signal If the value is the threshold value, the terminal 100 can report the specified event (for example, the "A2" event) to the network device 210 through the measurement report 1.
  • the network device 210 After the network device 210 identifies the specified event (eg, "A2" event) from the measurement report 1, the network device 210 can configure the first configuration for the terminal 100 through RRC Connection Reconfiguration signaling with a specific field (eg, the sCellToAddMoList field).
  • a SIM card adds a secondary carrier.
  • the measurement parameter of the signal quality of the secondary cell of the first SIM card may include RSRP, and/or SINR, and/or RSRQ of the secondary cell.
  • the terminal 100 determines that the idle radio frequency channel resources on the terminal 100 do not include the radio frequency channel resources required by the first SIM card, the terminal 100 sends a measurement report 2 (which may be referred to as a second measurement report) to the network device 210, wherein,
  • the signal strength of the secondary cell in the measurement report 2 is a preset value (for example, -141 dBm), and the preset value is smaller than the aforementioned signal value threshold.
  • the network device 210 may release the secondary carrier added for the first SIM card.
  • the terminal 100 may report the event according to the measurement configuration of the secondary cell.
  • the terminal 100 may determine that the above Whether the preset value is higher than the signal value threshold, if not, the terminal 100 does not report the specified event (eg, "A2" event) to the network device 210 in the measurement report 4 .
  • the network device 210 releases the secondary carrier added for the first SIM card of the terminal 100 after the specified event is not identified from the measurement report 4 .
  • the measurement parameter of the signal quality of the secondary cell of the first SIM card may include RSRP, and/or SINR, and/or RSRQ of the secondary cell.
  • the preset value of the RSRP of the secondary cell of the first SIM card may be -156dBm
  • the preset value of the RSRQ of the secondary cell may be -43
  • the preset value of the SINR of the secondary cell may be -23.
  • the terminal 100 when the terminal 100 inserts dual SIM cards and the dual SIM cards access the LTE or NR network at the same time, the terminal 100 reports the UE capability on the network side corresponding to the two SIM cards
  • the frequency band combination supported in the information is consistent with the MIMO capability of each frequency band combination.
  • the network side configures a secondary carrier for the maximum radio frequency specification of two SIM cards at the same time and sends downlink data on the secondary carrier, the secondary carrier of the two SIM cards Some of the secondary carriers have all errors in the uplink and downlink, and at the same time, the terminal 100 reports that the measurement values of the secondary cells on these secondary carriers on the network side are close to the lowest value (for example, -141dBm).
  • the following describes a method for sharing a radio frequency channel provided in another embodiment of the present application.
  • FIG. 9 shows a schematic flowchart of a method for sharing a radio frequency channel provided in an embodiment of the present application.
  • the terminal 100 includes at least two SIM cards (including the first SIM card and the second SIM card), and at least two modem modules (including the first modem). module and the second modem module). Among them, each SIM card corresponds to a modem module.
  • the terminal 100 includes two SIM cards as an example for description. For example, the terminal 100 assigns the first SIM card to the first modem module, assigns the second SIM card to the second modem module, and so on.
  • the first modem module can communicate with the network device 210 and the second modem module can communicate with the network device 220 .
  • the hardware structure of the network device 210 and the network device 220 can be referred to the text description for the network device 200 in FIG. 4 , which is not repeated here.
  • the network device 210 and the network device 220 may be collectively referred to as network-side devices.
  • the method includes:
  • the network device 210 adds a secondary carrier to the first SIM card of the terminal 100.
  • the first SIM card is set as a card supporting data services, and the network device 210 has added a secondary carrier to the first SIM card.
  • the second SIM card is set as a card that only supports voice services, and the network device 220 has not yet added a secondary carrier to the second SIM card.
  • the process of adding the secondary carrier to the first SIM card by the network device 210 may refer to the foregoing embodiment shown in FIG. 7B , which will not be repeated here.
  • the terminal 100 receives a service switching operation of switching the data service from the first SIM card to the second SIM card.
  • the terminal 100 displays an interface 1010 of a home screen, and the interface 1010 displays a page on which application icons are placed, and the page includes a plurality of application icons (such as weather application icons, stock application icon, calculator application icon, settings application icon 1011, mail application icon, music application icon, video application icon, browser application icon, map application icon, gallery application icon, etc.).
  • a page indicator is also displayed below the multiple application icons to indicate the total number of pages on the home screen and the positional relationship between the currently displayed page and other pages.
  • the interface 1010 of the home screen may include three pages, and a white dot in the page indicator may indicate that the currently displayed page is the rightmost page among the three pages.
  • tray icons eg, dialer application icon, message application icon, contact application icon, camera application icon
  • tray icons eg, dialer application icon, message application icon, contact application icon, camera application icon
  • a status bar 1012 may also be displayed on the interface 1010, and the status bar 1012 may include time information, battery level information, the operator name of the network connected to each SIM card, the working standard of each SIM card, and the download of data services speed etc.
  • the operator name of the network accessed by the first SIM card is "China Mobile”
  • the working standard of the first SIM card is the 5G network access standard
  • the operator name of the network accessed by the second SIM card is "China Unicom”
  • the working mode of the second SIM card is the 5G network access mode, wherein the current first SIM card is set as a card that supports data services, the download speed of the data services on the first SIM card is “10MB/s”, and the first SIM card is set as a card that supports data services.
  • the second SIM card is set as a card that only supports voice services.
  • the status bar 1012 can be displayed on the top of the screen of the terminal 100 all the time.
  • the terminal 100 may receive an operation (eg, click) performed by the user on the setting application icon 1011, and in response to the operation, the terminal 100 may display the setting interface 1020 as shown in FIG. 10B.
  • an operation eg, click
  • the setting interface 1020 includes a mobile network setting bar 1021 and other setting bars (eg, a WLAN setting bar, a Bluetooth setting bar, a battery setting bar, a display setting bar, a sound setting bar, a storage setting bar, etc.) .
  • other setting bars eg, a WLAN setting bar, a Bluetooth setting bar, a battery setting bar, a display setting bar, a sound setting bar, a storage setting bar, etc.
  • the terminal 100 may receive an operation for the mobile network setting bar 1021, and in response to the operation, the terminal 100 may display a mobile network setting interface 1030 as shown in FIG. 10C.
  • the mobile network setting interface 1030 includes a SIM card management setting bar 1031 and other setting bars (eg, airplane mode setting bar, mobile data setting bar, personal hotspot setting bar, traffic management bar, etc.).
  • other setting bars eg, airplane mode setting bar, mobile data setting bar, personal hotspot setting bar, traffic management bar, etc.
  • the terminal 100 may receive an operation (eg, a single click) on the SIM card management setting bar 1031, and in response to the operation, the terminal 100 may display the SIM card management interface 1040 as shown in FIG. 10D.
  • an operation eg, a single click
  • the SIM card management interface 1040 includes a plurality of SIM card setting columns (eg, SIM card 1 setting column and SIM card 2 setting column), data service setting column 1041 and so on.
  • SIM card 1 setting column and SIM card 2 setting column the default data service of the current terminal 100 is set on the SIM card 1, therefore, the selection control 1042 corresponding to the SIM card 1 in the data service setting column 1041 is in an enabled state, and the selection control 1043 corresponding to the SIM card 2 is in a disabled state.
  • the download speed of the data service on the SIM card 1 in the status bar 1012 is "10MB/s", and the SIM card 2 does not support data services but only supports voice services.
  • the terminal 100 may receive an operation (eg, single click) acting on the selection control 1042 in the data service setting bar 1041 , and in response to the operation, the terminal 100 may switch the data service from SIM card 1 to SIM card 2 .
  • an operation eg, single click
  • the terminal 100 can switch the selection control 1042 corresponding to the SIM card 1 to the disabled state, and switch the selection control corresponding to the SIM card 2 to the disabled state. 1043 switches to the enabled state.
  • the download speed of the data service on the SIM card 2 can be displayed in the status bar 1012 (for example, 10MB/s).
  • the terminal 100 releases the radio frequency channel resources occupied by the secondary carrier of the first SIM card.
  • the terminal 100 may also trigger the terminal 100 to switch the data service from the first SIM card to the second SIM card when detecting that the network state of the first SIM card satisfies a certain condition.
  • the terminal 100 can access the Internet through the second SIM card, that is, the terminal 100 sends mobile network data packets to the network side through the second SIM card or receives the mobile network from the network side. data pack.
  • the network status of the first SIM card includes one or more of network signal strength, network signal quality, network standard, data service transmission delay or data service transmission rate when the terminal 100 uses the first SIM card.
  • the terminal 100 can switch the data service from the first SIM card to the second SIM card.
  • the terminal 100 sends a measurement report 3 (which may be referred to as a third measurement report), wherein the signal quality of the secondary cell of the first SIM card is a preset value (for example, -141dBm).
  • the network device 210 After receiving the measurement report 3, the network device 210 releases the secondary carrier added for the first SIM card.
  • the network device 220 sends the RRC connection reconfiguration signaling 2 (which may be referred to as the second RRC connection reconfiguration signaling) to the terminal 100, where the RRC connection reconfiguration signaling 2 includes each secondary carrier on the second SIM card The maximum number of MIMO layers.
  • the network device 220 may periodically deliver the RRC connection reconfiguration signaling 2 to the terminal 100 .
  • the terminal 100 may actively send a secondary carrier addition request for the second SIM card to the network device 220, and the network device 220 will After receiving the secondary carrier addition request for the second SIM card, the RRC connection reconfiguration signaling 2 may be sent to the terminal 100 .
  • the terminal 100 determines the radio frequency channel resources required by the second SIM card based on the maximum number of MIMO layers of each secondary carrier on the second SIM card.
  • the RRC connection reconfiguration signaling 2 includes the maximum number of MIMO layers of the B1 frequency band secondary carrier and the maximum MIMO layer number of the B3 frequency band secondary carrier in the downlink of the first SIM card, and the downlink B1 frequency band secondary carrier
  • the maximum number of MIMO layers is 2, and the maximum number of MIMO layers for the downlink B3-band secondary carrier is 2, then the RF channel resources required by the secondary carrier of the first SIM card are 2 B1-band receiving RF channels and 2 B3-band RF channels The receive RF channel of the frequency band.
  • the terminal 100 determines whether the radio frequency channel resources required by the secondary carrier are successfully allocated to the second SIM card.
  • step S909 is performed, and the terminal 100 can measure that the signal strength of the secondary cell of the second SIM card is the second value.
  • radio frequency channel resources required by the terminal 100 to allocate the secondary carrier to the second SIM card reference may be made to the foregoing embodiment shown in FIG. 7B , and details are not repeated here.
  • the terminal 100 sends a measurement report 4 (which may be referred to as a fourth measurement report) to the network device 200, where the signal quality of the secondary cell in the measurement report 4 is the second value.
  • a measurement report 4 (which may be referred to as a fourth measurement report) to the network device 200, where the signal quality of the secondary cell in the measurement report 4 is the second value.
  • the network device 220 After receiving the measurement report 4, when the second value is greater than the signal value threshold, the network device 220 adds a secondary carrier to the second SIM card of the terminal 100.
  • the terminal 100 may report the event according to the measurement configuration of the secondary cell, the terminal 100 may measure the signal quality of the secondary cell on the second SIM card, and determine whether the signal quality of the secondary cell on the second SIM card is higher than the signal quality of the secondary cell If the value is the threshold value, the terminal 100 can report the specified event (eg, "A2" event) to the network device 220 through the measurement report 4 . After the network device 220 identifies the specified event (eg, "A2" event) from the measurement report 1, the network device 220 can configure the first configuration for the terminal 100 through RRC Connection Reconfiguration signaling with a specific field (eg, the sCellToAddMoList field). Two SIM cards add secondary carrier.
  • a specific field eg, the sCellToAddMoList field
  • the measurement parameter of the signal quality of the secondary cell of the second SIM card may include RSRP, and/or SINR, and/or RSRQ of the secondary cell.
  • the terminal 100 determines that the idle radio frequency channel resources on the terminal 100 do not include the radio frequency channel resources required by the second SIM card, the terminal 100 sends a measurement report 5 (which may be referred to as a fifth measurement report) to the network device 220, wherein, The signal strength of the secondary cell in the measurement report 5 is a preset value, and the preset value is smaller than the aforementioned signal threshold.
  • the network device 220 After receiving the measurement report 5, the network device 220 releases the secondary carrier added for the second SIM card.
  • the terminal 100 may report the event according to the measurement configuration of the secondary cell.
  • the terminal 100 may determine that the above Whether the preset value is higher than the signal value threshold, if not, the terminal 100 does not report the specified event (eg, "A2" event) to the network device 200 in the measurement report 5 .
  • the network device 220 releases the secondary carrier added for the second SIM card of the terminal 100 after the specified event is not identified from the measurement report 5 .
  • the measurement parameter of the signal quality of the secondary cell of the second SIM card may include RSRP, and/or SINR, and/or RSRQ of the secondary cell.
  • the preset value of the RSRP of the secondary cell of the first SIM card may be -156dBm
  • the preset value of the RSRQ of the secondary cell may be -43
  • the preset value of the SINR of the secondary cell may be -23.
  • This embodiment of the present application provides a method for sharing a radio frequency channel.
  • the terminal 100 can report the same radio frequency capability, and dynamically report the same radio frequency capability to each modem module. Allocate radio resources.
  • the terminal 100 switches the data service from the first SIM card to the second SIM card, the terminal 100 can actively request the network side to release the secondary carrier on the first SIM card through the modem module corresponding to the first SIM card, and release the first SIM card.
  • the radio frequency channel resources occupied by the secondary carrier on the card are added, and the secondary carrier is added to the second SIM card and the radio frequency channel resources required by the secondary carrier on the second SIM card are configured. In this way, when data services are switched between different SIM cards, the terminal does not need to initiate de-registration and registration processes, thereby reducing the switching time.
  • the terminal 100 may send the first UE capability information to the network device 210, where the first SIM card supports the first SIM card. Radio frequency capability, the first UE capability information includes information of the first radio frequency capability.
  • the terminal 100 After receiving the UE capability query signaling for the second SIM card sent by the network device 220, the terminal 100 sends the second UE capability information to the network device 220, wherein the second SIM card supports the second radio frequency capability, The second UE capability information includes information about the first radio frequency capability, and the first radio frequency capability is stronger than the second radio frequency capability.
  • the terminal 100 may trigger the network device 220 to add a secondary carrier to the second SIM card.
  • the network device 220 may trigger the network device 220 to add a secondary carrier to the second SIM card.
  • the terminal 100 when the terminal 100 satisfies the first condition, the terminal 100 can also determine whether the terminal 100 successfully allocates the radio frequency channel resources required for the secondary carrier to be added by the second SIM card, and if so, the terminal 100 can trigger the network device 220 to be the first Two SIM cards add secondary carrier.
  • the terminal 100 For the specific process for the terminal 100 to allocate the required radio frequency channel resources for the secondary carrier to be added by the second SIM card, reference may be made to the foregoing embodiment shown in FIG. 7A , and details are not repeated here.
  • the terminal 100 may configure a secondary carrier for the first SIM card first, and when the terminal 100 meets the first condition, if the idle radio frequency channel resources on the terminal 100 are not enough to be allocated to the secondary carrier of the second SIM card , the terminal 100 may also release the radio frequency channel resources occupied by the secondary carrier of the first SIM card.
  • the first condition may include one or more of the following: the signal strength of the primary cell on the first SIM card is less than or equal to a preset strength threshold, and/or the network signal of the first SIM card
  • the quality is less than or equal to the preset quality threshold value, and/or, the network standard of the first SIM card is changed from the first priority network standard (for example, 5G) to the second priority network standard (for example, 4G), and/or,
  • the transmission delay of the data service on the first SIM card is greater than or equal to the preset delay threshold value, and/or the transmission rate of the data on the first SIM card is less than or equal to the preset speed threshold value.
  • the first SIM card may be a primary card, supporting data services and voice communication services
  • the second SIM card may be a secondary card, supporting voice communication services but not data services.
  • the second SIM card configures the radio frequency channel resources required by the secondary carrier, so that the network device 220 configures the secondary carrier for the second SIM card. In this way, when data services are switched between different SIM cards, the terminal does not need to initiate de-registration and registration processes, thereby reducing the switching time.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Databases & Information Systems (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种射频通道的共享方法及相关装置,终端可以在每个SIM卡向网络侧注册上报UE能力信息时,都上报相同的射频能力,并动态给每个SIM卡分配射频通道资源。当终端将数据业务从第一SIM卡切换至第二SIM卡时,终端100可以通过第一SIM卡向网络侧主动请求释放第一SIM卡上的辅载波,并释放第一SIM卡上辅载波所占用的射频通道资源,并为第二SIM卡添加辅载波以及配置第二SIM卡上辅载波需要的射频通道资源。这样,可以实现数据业务在不同的SIM卡之间切换时,终端不需要发起去注册和注册过程,减少切换时间。

Description

一种射频通道的共享方法及相关装置
本申请要求于2020年11月30日提交中国专利局、申请号为202011377601.6、申请名称为“一种射频通道的共享方法及相关装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种射频通道的共享方法及相关装置。
背景技术
随着无线技术的高速发展,人们对无线终端的依赖越来越高。在部分国家和区域,终端用户普遍使用双卡甚至多卡手机。例如,在移动网络信号覆盖不好的欠发达地区,用户可以使用多卡手机,插入多张运营商的用户识别模块(subscriber identity module,SIM)卡,选择当前位置有覆盖的运营商进行接入,提高获得移动网络服务的可能性。又如,不同运营商有不同的资费策略,用户可以使用多卡手机,使用通话资费低的运营商网络进行通话,使用流量资费低的运营商进行数据业务。
以双SIM卡的终端为例,目前有两种规格通信方式:双卡双待(dual SIM dual standy,DSDS)和双卡双通(dual SIM dual active,DSDA)。对于DSDS的终端,同一时刻终端只能使用一张卡提供通话业务和上网数据业务,另一张卡只能处于待机状态,无法提供通话和上网数据业务。对于DSDA的终端,终端可以同时使用两张卡,例如,使用一张卡进行通话业务,另一张卡进行上网数据业务。DSDA的终端相比于DSDS的终端功能更强大,但是由于需要支持双卡同时工作,需要两套收发射频通道,因此需要更多的软硬件资源。
现有技术中,终端采用DSDA方案时,通常让主卡是默认卡,可以支持通话业务和上网数据业务,副卡支持通话业务。由于通话业务数据量小,不需要支持载波聚合(carrier aggregation,CA),因此,副卡只需要少量的射频通道,这样,减少了终端射频电路的设计的复杂性,也降低了终端的成本。但是,由于主卡和副卡具有不同的射频能力,当用户需要将数据业务设置到另一张卡上时,两张卡的射频能力也跟着交换,终端需要在两张卡各自的网络上重新上报终端能力信息。这需要终端的主卡和副卡都从当前的网络去注册,然后再发起注册流程。因此,切换过程慢,且导致终端上的业务易中断。
发明内容
本申请提供了一种射频通道的共享方法及相关装置,实现了数据业务在不同的SIM卡之间切换时,终端不需要发起去注册和注册过程,减少切换时间,不会导致业务中断。
第一方面,本申请提供了一种射频通道的共享方法,包括:终端在接收到网络侧设备发送的针对第一用户识别模块SIM卡的UE能力查询信令后,发送第一UE能力信息给该网络侧设备;该终端在接收到该网络侧设备针对该第二SIM卡的UE能力查询信令后,发送第二UE能力信息给该网络侧设备,其中,该第一UE能力信息中的射频能力信息与该第二UE能力信息中的射频能力信息相同;该终端接收该网络侧设备发送的针对该第一SIM卡的第一RRC连接重配置信令,该第一RRC连接重配置信令用于为该第一SIM卡添加辅载波;该终端在响应于该第一RRC连接重配置信令为该第一SIM卡添加辅载波后,接收到数据业务从 该第一SIM卡切换至该第二SIM卡的切换操作;响应于该切换操作,该终端释放该第一SIM卡的辅载波所占用的射频通道;该终端接收到该网络侧设备针对该第二SIM卡的第二RRC连接重配置信令,该第二RRC连接重配置信令用于为该第二SIM卡添加辅载波;响应于该第二RRC连接重配置信令,该终端为该第二SIM卡的辅载波配置射频通道,并添加该第二SIM卡的辅载波。
通过本申请提供的一种射频通道的共享,终端可以在每个SIM卡向网络侧注册上报UE能力信息时,都上报相同的射频能力,并动态给每个SIM卡分配射频通道资源。当终端将数据业务从第一SIM卡切换至第二SIM卡时,终端100可以通过第一SIM卡向网络侧主动请求释放第一SIM卡上的辅载波,并释放第一SIM卡上辅载波所占用的射频通道资源,并为第二SIM卡添加辅载波以及配置第二SIM卡上辅载波需要的射频通道资源。这样,可以实现数据业务在不同的SIM卡之间切换时,终端不需要发起去注册和注册过程,减少切换时间。
在一种可能的实现方式中,在该终端接收到该第一RRC连接重配置信令后,该方法还包括:该终端基于该第一RRC连接重配置信令中辅载波的频段组合以及每个频段上多输入多输出MIMO层数,确定出第一SIM卡的辅载波所需要的射频通道;当该终端确定出该终端上未配置的射频通道中包括有该第一SIM卡的辅载波所需要的射频通道时,该终端为该第一SIM卡配置所需要的射频通道,并为该第一SIM卡添加辅载波。
在一种可能的实现方式中,该终端为该第一SIM卡添加辅载波包括:该终端测量出第一SIM卡的辅小区的信号强度为第一值;该终端通过第一SIM卡发送第一测量报告给该网络侧设备,其中,该第一测量报告中该第一SIM卡的辅小区的信号强度为该第一值,该第一测量报告用于触发该网络侧设备为该第一SIM卡添加辅载波。
在一种可能的实现方式中,该方法还包括:当该终端确定出该终端上未配置的射频通道中不包括该第一SIM卡的辅载波所需要的射频通道时,该终端测量出第一SIM卡的辅小区的信号强度为第一值;该终端通过该第一SIM卡发送第二测量报告给该网络侧设备,其中,该第二测量报告中该第一SIM卡的辅小区的信号强度为预设值,该预设值小于该第一值,该第二测量报告用于触发该网络侧设备释放该第一SIM卡的辅载波。
在一种可能的实现方式中,该方法还包括:响应于该切换操作,该终端上报第三测量报告给该网络侧设备,该第三测量报告中该第一SIM卡的辅小区的信号强度为预设值,该第三测量报告用于指示该网络侧设备释放该第一SIM卡的辅载波。
在一种可能的实现方式中,在该终端接收到该第二RRC连接重配置信令后,该方法还包括:该终端确定基于该第二RRC连接重配置信令中辅载波的频段组合以及每个频段上MIMO层数,确定出第二SIM卡的辅载波所需要的射频通道;当该终端确定出该终端上未配置的射频通道中包括有该第一SIM卡的辅载波所需要的射频通道时,该终端为该第二SIM卡配置所需要的射频通道,并为该第二SIM卡添加辅载波。
在一种可能的实现方式中,该方法还包括:该终端测量出第二SIM卡的辅小区的信号强度为第二值;该终端通过第二SIM卡发送第四测量报告给该网络侧设备,其中,该第四测量报告中该第二SIM卡的辅小区的信号强度为该第二值,该第四测量报告用于触发该网络侧设备为该第二SIM卡添加辅载波。
在一种可能的实现方式中,该方法还包括:该终端测量出第二SIM卡的辅小区的信号强度为第二值;该终端通过第二SIM卡发送第四测量报告给该网络侧设备,其中,该第四测量报告中该第二SIM卡的辅小区的信号强度为该第二值,该第四测量报告用于触发该网络侧设备为该第二SIM卡添加辅载波。
在一种可能的实现方式中,该方法还包括:当该终端确定出该终端上未配置的射频通道中不包括该第二SIM卡的辅载波所需要的射频通道时,该终端测量出第二SIM卡的辅小区的信号强度为第二值;该终端通过该第二SIM卡发送第五测量报告给该网络侧设备,其中,该第五测量报告中该第二SIM卡的辅小区的信号强度为预设值,该预设值小于该第二值,该第五测量报告用于触发该网络侧设备释放该第二SIM卡的辅载波。
在一种可能的实现方式中,在该终端接收到该切换操作之前,该第一SIM卡支持第一射频能力,该第二SIM卡支持第二射频能力,该第一射频能力强于该第二射频能力;该第一UE能力信息中的射频能力信息为该第一射频能力,该第二UE能力信息中的射频能力信息为该第一射频能力;其中,该第一射频能力具有使得该网络侧设备为该终端添加辅载波的能力,该第二射频能力不具有使得该网络侧设备为该终端添加辅载波的能力。
在一种可能的实现方式中,该射频能力信息包括支持载波聚合CA的频段组合以及每个频段的MIMO层数,该第一UE能力信息和该第二UE能力信息中均包括有一个或多个bandEUTRA信元和每个bandEUTRA信元对应的FeatureSet信元;其中,该一个或多个bandEUTRA信元用于指示支持CA的频段组合,每个bandEUTRA信元对应的FeatureSet信元用于指示每个频段的MIMO层数。
第二方面,本申请提供另了一种射频通道的共享方法,包括:终端在接收到网络侧设备发送的针对第一SIM卡的UE能力查询信令后,发送第一UE能力信息给该网络侧设备,其中,该第一SIM卡支持第一射频能力,该第一UE能力信息中包括有该第一射频能力的信息;该终端在接收到网络侧设备发送的针对第二SIM卡的UE能力查询信令后,发送第二UE能力信息给该网络侧设备,其中,该第二SIM卡支持第二射频能力,该第二UE能力信息中包括有该第一射频能力的信息,该第一射频能力强于该第二射频能力;该终端接收该网络侧设备发送的针对该第一SIM卡的第一RRC连接重配置信令,该第一RRC连接重配置信令用于为该第一SIM卡添加辅载波;该终端在响应于该第一RRC连接重配置信令为该第一SIM卡添加辅载波后,接收到数据业务从该第一SIM卡切换至该第二SIM卡的切换操作;响应于该切换操作,该终端设置该第一SIM卡支持该第二射频能力,设置该第二SIM卡支持该第一射频能力,并且不重新上报该第一SIM卡和该第二SIM卡的UE能力信息给该网络侧设备;该终端释放该第一SIM卡的辅载波所占用的射频通道;该终端接收到该网络侧设备针对该第二SIM卡的第二RRC连接重配置信令,该第二RRC连接重配置信令用于为该第二SIM卡添加辅载波;响应于该第二RRC连接重配置信令,该终端为该第二SIM卡的辅载波配置射频通道,并添加该第二SIM卡的辅载波。
通过本申请提供的一种射频通道的共享方法,终端可以在每个SIM卡向网络侧注册上报UE能力信息时,都上报相同的射频能力,并动态给每个SIM卡分配射频通道资源。当终端将数据业务从第一SIM卡切换至第二SIM卡时,终端100可以通过第一SIM卡向网络侧主动请求释放第一SIM卡上的辅载波,并释放第一SIM卡上辅载波所占用的射频通道资源,并为第二SIM卡添加辅载波以及配置第二SIM卡上辅载波需要的射频通道资源。这样,可以实现数据业务在不同的SIM卡之间切换时,终端不需要发起去注册和注册过程,减少切换时间。
在一种可能的实现方式中,该终端为该第一SIM卡添加辅载波包括:该终端测量出第一SIM卡的辅小区的信号强度为第一值;该终端通过第一SIM卡发送第一测量报告给该网络侧设备,其中,该第一测量报告中该第一SIM卡的辅小区的信号强度为该第一值,该第一测量报告用于触发该网络侧设备为该第一SIM卡添加辅载波。
在一种可能的实现方式中,该方法还包括:当该终端确定出该终端上未配置的射频通道中不包括该第一SIM卡的辅载波所需要的射频通道时,该终端测量出第一SIM卡的辅小区的信号强度为第一值;该终端通过该第一SIM卡发送第二测量报告给该网络侧设备,其中,该第二测量报告中该第一SIM卡的辅小区的信号强度为预设值,该预设值小于该第一值,该第二测量报告用于触发该网络侧设备释放该第一SIM卡的辅载波。
在一种可能的实现方式中,该方法还包括:响应于该切换操作,该终端上报第三测量报告给该网络侧设备,该第三测量报告中该第一SIM卡的辅小区的信号强度为预设值,该第三测量报告用于指示该网络侧设备释放该第一SIM卡的辅载波。
在一种可能的实现方式中,在该终端接收到该第二RRC连接重配置信令后,该方法还包括:该终端确定基于该第二RRC连接重配置信令中辅载波的频段组合以及每个频段上MIMO层数,确定出第二SIM卡的辅载波所需要的射频通道;当该终端确定出该终端上未配置的射频通道中包括有该第一SIM卡的辅载波所需要的射频通道时,该终端为该第二SIM卡配置所需要的射频通道,并为该第二SIM卡添加辅载波。
在一种可能的实现方式中,该方法还包括:该终端测量出第二SIM卡的辅小区的信号强度为第二值;该终端通过第二SIM卡发送第四测量报告给该网络侧设备,其中,该第四测量报告中该第二SIM卡的辅小区的信号强度为该第二值,该第四测量报告用于触发该网络侧设备为该第二SIM卡添加辅载波。
在一种可能的实现方式中,该方法还包括:当该终端确定出该终端上未配置的射频通道中不包括该第二SIM卡的辅载波所需要的射频通道时,该终端测量出第二SIM卡的辅小区的信号强度为第二值;该终端通过该第二SIM卡发送第五测量报告给该网络侧设备,其中,该第五测量报告中该第二SIM卡的辅小区的信号强度为预设值,该预设值小于该第二值,该第五测量报告用于触发该网络侧设备释放该第二SIM卡的辅载波。
在一种可能的实现方式中,该方法还包括:该射频能力信息包括支持载波聚合CA的频段组合以及每个频段的MIMO层数,该第一UE能力信息和该第二UE能力信息中均包括有一个或多个bandEUTRA信元和每个bandEUTRA信元对应的FeatureSet信元;其中,该一个或多个bandEUTRA信元用于指示支持CA的频段组合,每个bandEUTRA信元对应的FeatureSet信元用于指示每个频段的MIMO层数。
第三方面,本申请提供了一种终端,该终端至少安装有第一SIM卡和第二SIM卡,该终端包括一个或多个处理器和一个或多个存储器。该一个或多个存储器与一个或多个处理器耦合,一个或多个存储器用于存储计算机程序代码,计算机程序代码包括计算机指令,当一个或多个处理器执行计算机指令时,使得终端执行上述任一方面任一项可能的实现方式中的射频通道的共享方法。
第四方面,本申请实施例提供了一种芯片系统,应用于在包括有第一SIM卡和第二SIM卡的终端中,其特征在于,所述芯片系统包括:应用处理器和基带处理器;所述应用处理器和基带处理器用于从存储器中调用并运行所述存储器中存储的指令,使得终端执行上述任一方面任一项可能的实现方式中的射频通道的共享方法。
第五方面,本申请实施例提供了一种计算机存储介质,包括计算机指令,当计算机指令 在终端上运行时,使得终端执行上述任一方面任一项可能的实现方式中的射频通道的共享方法。
第六方面,本申请实施例提供了一种计算机程序产品,当计算机程序产品在计算机上运行时,使得计算机执行上述任一方面任一项可能的实现方式中的射频通道的共享方法。
附图说明
图1为本申请实施例提供的一种无线接入网网络系统架构的示意图;
图2A为本申请实施例提供的一种终端向网络设备注册的信令流程示意图;
图2B为本申请实施例提供的一种终端向网络设备去注册的信令流程示意图;
图3为本申请实施例提供的一种终端的硬件结构示意图;
图4为本申请实施例提供的一种网络设备200的硬件结构示意图;
图5为本申请另一实施例提供的一种终端的硬件结构示意图;
图6为本申请实施例提供的一种射频通道的结构示意图;
图7A为本申请实施例提供的一种射频通道共享系统的结构示意图;
图7B为本申请实施例提供的一种网络设备为终端配置辅载波的流程示意图;
图8为本申请实施例中提供的一种射频通道的共享方法的流程示意图;
图9为本申请另一实施例中提供的一种射频通道的共享方法的流程示意图;
图10A-图10E为本申请实施例中提供的一组界面示意图。
具体实施方式
下面将结合附图对本申请实施例中的技术方案进行清除、详尽地描述。其中,在本申请实施例的描述中,除非另有说明,“/”表示或的意思,例如,A/B可以表示A或B;文本中的“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况,另外,在本申请实施例的描述中,“多个”是指两个或多于两个。
以下,术语“第一”、“第二”仅用于描述目的,而不能理解为暗示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征,在本申请实施例的描述中,除非另有说明,“多个”的含义是两个或两个以上。
下面介绍本申请实施例中提供的一种无线接入网的网络系统架构。
图1示出了本申请实施例中提供的一种无线接入网网络系统架构的示意图。
如图1所示,无线接入网被划分成蜂窝小区,每个小区中的终端100和该小区的网络设备200通过空口链接,通过空口进行信令和数据交互。接入网可基于多种接入技术,具体依赖于所采用的网络制式,例如,在第五代移动通信网络(5th generation mobile networks,5G)的NR网络中,该网络设备200可以为下一代节点B(next Generation Node B,gNB),网络设备200可以使用正交频分多址(orthogonal frequency division multiplexing access,OFDMA)的多址接入方式。
其中,网络设备200可以为具有无线收发功能的设备。该设备包括但不限于:演进型节 点B(evolved Node B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(Node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved NodeB,或home Node B,HNB)、基带单元(baseband unit,BBU),5G NR网络中的gNB、传输点(TRP或TP),或构成gNB或传输点的网络节点,如基带单元(BBU),或,分布式单元(distribution unit,DU)等等。
在一些网络部署中,gNB可以包括集中式单元(centralized unit,CU)和DU。gNB还可以包括射频单元(radio unit,RU)。CU实现gNB的部分功能,DU实现gNB的部分功能,比如,CU实现无线资源控制(radio resource control,RRC),分组数据汇聚层协议(packet data convergence protocol,PDCP)层的功能,DU实现无线链路控制(radio link control,RLC)、媒体接入控制(media access control,MAC)和物理(physical,PHY)层的功能。由于RRC层的信息最终会变成PHY层的信息,或者,有PHY层的信息转变而来,因而,在这种架构下,高层信令,如RRC层信令或PHCP层信令,也可以认为是由DU发送的,或者,由DU+RU发送的。可以理解的是,网络设备200可以为CU节点、或DU节点、或包括CU节点和DU节点的设备。此外,CU可以划分为接入网RAN中的网络设备,也可以将CU划分为核心网(core network,CN)中的网络设备,在此不作限制。
终端100也可以成为用户设备(user equipment,UE),接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。本申请的实施例中的终端设备可以是手机(mobile phone)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端、无人驾驶(selfdriving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端等等。本申请的实施例对应有场景不作限定。
图2A示出了本申请实施例提供的终端100向网络设备200注册的信令流程示意图。
如图2A所示,终端100向网络设备200注册的信令流程包括如下步骤:
1、终端100发送无线资源控制(radio resource control,RRC)连接请求(RRC Connection Request)信令给网络设备200。
2、网络设备200在接收到终端100发送的RRC Connection Request信令后,返回RRC连接建立(RRC Connection Setup)信令给终端100。
3、终端100在接收到RRC Connection Setup信令后,可以返回RRC连接建立完成信令给网络设备200。
其中,该RRC Connection Setup信令中包括非接入层的注册请求(Attach Request)信令。
4、网络设备200在接收到Attach Request信令后,可以向终端100发送UE能力查询(UE Capability Enquiry)信令给终端100,发起对终端100的能力查询流程。
5、终端100在接收到UE Capability Enquiry信令后,可以发送UE能力信息(UE Capability Information)信令给网络设备200,上报终端100的能力信息。
其中,终端100的能力信息包括射频能力信息。该射频能力信息包括终端100支持的频段组合,以及每个频段组合下终端支持的各个频段的上行和下行MIMO层数等。
6、终端100在上报完UE能力信息之后,终端100与网络设备200会进入安全模式流程。网络设备200可以发送安全模式命令(Security Mode Command)信令给终端100,以开启终端100与网络设备200之间的安全模式控制(Security Mode Control,SMC)流程(包括使用 的安全算法的协商,并生成相应安全算法所需的秘钥、初始化网络设备200和终端100间消息的安全交互等等)。
7、在终端100完成SMC流程之后,会向网络设备200返回安全模式完成(Security Mdoe Complete)信令,以通知网络设备200结束SMC流程。
8、在完成SMC流程后,网络设备200发送RRC连接重配置(RRC Connection Reconfiguration)信令给终端100,以启动RRC重配流程。
其中,该RRC连接重配置信令中携带非接入层的注册接受(Attach Accept)信令。该注册接受信令用于通知终端100该网络设备200接受终端100的注册。
9、终端100在接收到RRC连接重配置信令后,可以发送RRC连接重配置完成(RRC Connection Reconfiguration Complete)信令给网络设备200。
10、终端100在完成RRC重配流程后,可以向网络设备200发送上行直传(UL Direct Transfer)消息。其中,该UL Direct Transfer消息中携带非接入层的注册完成(Attach Complete)信令。该Attach Complete信令用于通知网络设备200已完成终端100的本次注册流程。
图2B示出了本申请实施例提供的终端100向网络设备200去注册的信令流程示意图。
如图2B所示,终端100向网络200去注册的信令流程可以包括如下步骤:
1、终端100发送去注册请求(Detach Request)信令给网络设备200。
2、网络设备200在接收到终端100的去注册请求后,清除终端100的注册资源,并返回去注册接受(Detach Accept)信令给终端100。
一般地,网络设备200只在终端100注册时或发生小区切换时才重新查询终端100的能力信息。因此,如果终端100的能力(例如,射频能力等)发生改变,需要终端100重新发起去注册和注册流程,才有机会重新上报终端100的能力信息。
当终端100上主卡和副卡具有不同的射频规格时,终端100的主卡和副卡具有不同的射频能力。
示例的,当终端100具有的射频通道(可用于收发信号)包括:B1频段上有4个射频通道、B3频段上有4个射频通道、B7频段上有4个射频通道。SIM卡1被设置为数据业务卡(即默认卡)时,SIM卡1对应的modem模块通过UE能力信息上报的射频能力可以包括如下CA频段组合:1、B1频段上的2层MIMO能力+B3频段上的4层MIMO能力+B7频段的4层MIMO能力的CA频段组合;2、B1频段上的4层MIMO能力+B3频段上的2层MIMO能力+B7频段上的4层MIMO能力的频段组合;3、B1频段上的4层MIMO能力+B3频段上的4层MIMO能力+B7频段上的2层MIMO能力的CA频段组合;以及上述3个频段组合的回落频段组合(fallback band combinations)。其中,SIM卡2只支持语音能力,SIM卡2对应的modem模块通过UE能力信息上报的射频能力可以包括如下CA频段组合:B1频段的2层MIMO能力+B3频段的2层MIMO能力+B7频段的2层MIMO能力。网络侧在接收到SIM卡1的UE能力信息后,可以基于SIM卡1的支持的CA频段组合,为SIM卡1添加辅载波。网络侧在接收到SIM卡2的UE能力信息后,确定出SIM卡2上支持的CA频段组合无法支持添加B1频段的4层MIMO+B3频段的4层MIMO的辅载波。上述示例仅仅用于解释本申请,不应构成限定。
当终端100的主卡和副卡业务互换,数据业务从主卡设置到副卡上时,随着数据业务在SIM上的转移,每个SIM卡对应调制解调器(modem)模块的射频能力也跟随着改变。此时,终端100必须在每个SIM卡对应的modem模块先向各自接入的网络侧发起去注册流程,然 后重新注册,完成每个SIM卡对应modem模块的UE能力信息上报。这样,会导致在主副SIM卡的数据业务切换时,导致切换过程缓慢,数据业务中断。
当终端100采用DSDA方案时,终端100需要为主卡和副卡配置两套完全一样的射频通道,用于主卡和副卡。这样,主卡和副卡的射频规格一样,当数据业务在两张卡上相互切换时,不需要重新上报UE能力信息,也不需要去注册和注册过程,切换快,也不会导致业务中断。但是,由于副卡只支持语音业务,需要的射频通道少,这会导致副卡大部分射频通道都处于空闲状态,射频资源利用率低,终端的硬件成本高。
当终端100采用DSDS方案,由于只支持单通,只需要一套射频资源,进行业务的卡会占用整套射频资源。两张卡的射频规格一样,当数据业务在两张卡上相互切换时,不需要重新上报终端能力,也不需要去注册和注册过程,切换快。但是,终端100无法支持双通能力,当副卡语音通话时,主卡将无法进行数据业务。
因此,本申请实施例提供了一种射频通道的共享方法,终端100可以在每个SIM卡对应的modem模块向网络侧注册上报UE能力信息时,都上报相同的射频能力,并动态给每个modem模块分配射频资源。当modem模块未被分配到配置辅载波需要的射频通道资源时,该modem模块可以向网络侧设备返回配置失败的指示消息,通知网络侧释放辅载波。当modem模块被分配到配置辅载波需要的射频通道资源时,该modem模块可以向网络侧上报辅小区的信号实际测量值,以触发网络侧为该modem模块完成添加辅小区。这样,可以实现数据业务在不同的SIM卡之间切换时,终端不需要发起去注册和注册过程,减少切换时间。
图3示出了终端100的结构示意图。
下面以终端100为例对实施例进行具体说明。应该理解的是,图3所示终端100仅是一个范例,并且终端100可以具有比图3中所示的更多的或者更少的部件,可以组合两个或多个的部件,或者可以具有不同的部件配置。图3中所示出的各种部件可以在包括一个或多个信号处理和/或专用集成电路在内的硬件、软件、或硬件和软件的组合中实现。
终端100可以包括:处理器110,外部存储器接口120,内部存储器121,通用串行总线(universal serial bus,USB)接口130,充电管理模块140,电源管理模块141,电池142,天线1,天线2,移动通信模块150,无线通信模块160,音频模块170,扬声器170A,受话器170B,麦克风170C,耳机接口170D,传感器模块180,按键190,马达191,指示器192,摄像头193,显示屏194,以及用户标识模块(subscriber identification module,SIM)卡接口195等。其中传感器模块180可以包括压力传感器180A,陀螺仪传感器180B,气压传感器180C,磁传感器180D,加速度传感器180E,距离传感器180F,接近光传感器180G,指纹传感器180H,温度传感器180J,触摸传感器180K,环境光传感器180L,骨传导传感器180M等。
可以理解的是,本发明实施例示意的结构并不构成对终端100的具体限定。在本申请另一些实施例中,终端100可以包括比图示更多或更少的部件,或者组合某些部件,或者拆分某些部件,或者不同的部件布置。图示的部件可以以硬件,软件或软件和硬件的组合实现。
处理器110可以包括一个或多个处理单元,例如:处理器110可以包括应用处理器(application processor,AP),调制解调处理器,图形处理器(graphics processing unit,GPU),图像信号处理器(image signal processor,ISP),控制器,存储器,视频编解码器,数字信号处理器(digital signal processor,DSP),基带处理器,和/或神经网络处理器(neural-network processing unit,NPU)等。其中,不同的处理单元可以是独立的器件,也可以集成在一个或多 个处理器中。
其中,控制器可以是终端100的神经中枢和指挥中心。控制器可以根据指令操作码和时序信号,产生操作控制信号,完成取指令和执行指令的控制。
处理器110中还可以设置存储器,用于存储指令和数据。在一些实施例中,处理器110中的存储器为高速缓冲存储器。该存储器可以保存处理器110刚用过或循环使用的指令或数据。如果处理器110需要再次使用该指令或数据,可从所述存储器中直接调用。避免了重复存取,减少了处理器110的等待时间,因而提高了系统的效率。
在一些实施例中,处理器110可以包括一个或多个接口。接口可以包括集成电路(inter-integrated circuit,I2C)接口,集成电路内置音频(inter-integrated circuit sound,I2S)接口,脉冲编码调制(pulse code modulation,PCM)接口,通用异步收发传输器(universal asynchronous receiver/transmitter,UART)接口,移动产业处理器接口(mobile industry processor interface,MIPI),通用输入输出(general-purpose input/output,GPIO)接口,用户标识模块(subscriber identity module,SIM)接口,和/或通用串行总线(universal serial bus,USB)接口等。
可以理解的是,本发明实施例示意的各模块间的接口连接关系,只是示意性说明,并不构成对终端100的结构限定。在本申请另一些实施例中,终端100也可以采用上述实施例中不同的接口连接方式,或多种接口连接方式的组合。
充电管理模块140用于从充电器接收充电输入。其中,充电器可以是无线充电器,也可以是有线充电器。在一些有线充电的实施例中,充电管理模块140可以通过USB接口130接收有线充电器的充电输入。在一些无线充电的实施例中,充电管理模块140可以通过终端100的无线充电线圈接收无线充电输入。充电管理模块140为电池142充电的同时,还可以通过电源管理模块141为电子设备供电。
电源管理模块141用于连接电池142,充电管理模块140与处理器110。电源管理模块141接收电池142和/或充电管理模块140的输入,为处理器110,内部存储器121,外部存储器,显示屏194,摄像头193,和无线通信模块160等供电。电源管理模块141还可以用于监测电池容量,电池循环次数,电池健康状态(漏电,阻抗)等参数。在其他一些实施例中,电源管理模块141也可以设置于处理器110中。在另一些实施例中,电源管理模块141和充电管理模块140也可以设置于同一个器件中。
终端100的无线通信功能可以通过天线1,天线2,移动通信模块150,无线通信模块160,调制解调处理器以及基带处理器等实现。
天线1和天线2用于发射和接收电磁波信号。终端100中的每个天线可用于覆盖单个或多个通信频带。不同的天线还可以复用,以提高天线的利用率。例如:可以将天线1复用为无线局域网的分集天线。在另外一些实施例中,天线可以和调谐开关结合使用。
移动通信模块150可以提供应用在终端100上的包括2G/3G/4G/5G等无线通信的解决方案。移动通信模块150可以包括至少一个滤波器,开关,功率放大器,低噪声放大器(low noise amplifier,LNA)等。移动通信模块150可以由天线1接收电磁波,并对接收的电磁波进行滤波,放大等处理,传送至调制解调处理器进行解调。移动通信模块150还可以对经调制解调处理器调制后的信号放大,经天线1转为电磁波辐射出去。在一些实施例中,移动通信模块150的至少部分功能模块可以被设置于处理器110中。在一些实施例中,移动通信模块150的至少部分功能模块可以与处理器110的至少部分模块被设置在同一个器件中。
调制解调处理器可以包括调制器和解调器。其中,调制器用于将待发送的低频基带信号调制成中高频信号。解调器用于将接收的电磁波信号解调为低频基带信号。随后解调器将解 调得到的低频基带信号传送至基带处理器处理。低频基带信号经基带处理器处理后,被传递给应用处理器。应用处理器通过音频设备(不限于扬声器170A,受话器170B等)输出声音信号,或通过显示屏194显示图像或视频。在一些实施例中,调制解调处理器可以是独立的器件。在另一些实施例中,调制解调处理器可以独立于处理器110,与移动通信模块150或其他功能模块设置在同一个器件中。
无线通信模块160可以提供应用在终端100上的包括无线局域网(wireless local area networks,WLAN)(如无线保真(wireless fidelity,Wi-Fi)网络),蓝牙(bluetooth,BT),全球导航卫星系统(global navigation satellite system,GNSS),调频(frequency modulation,FM),近距离无线通信技术(near field communication,NFC),红外技术(infrared,IR)等无线通信的解决方案。无线通信模块160可以是集成至少一个通信处理模块的一个或多个器件。无线通信模块160经由天线2接收电磁波,将电磁波信号调频以及滤波处理,将处理后的信号发送到处理器110。无线通信模块160还可以从处理器110接收待发送的信号,对其进行调频,放大,经天线2转为电磁波辐射出去。
在一些实施例中,终端100的天线1和移动通信模块150耦合,天线2和无线通信模块160耦合,使得终端100可以通过无线通信技术与网络以及其他设备通信。所述无线通信技术可以包括全球移动通讯系统(global system for mobile communications,GSM),通用分组无线服务(general packet radio service,GPRS),码分多址接入(code division multiple access,CDMA),宽带码分多址(wideband code division multiple access,WCDMA),时分码分多址(time-division code division multiple access,TD-SCDMA),长期演进(long term evolution,LTE),BT,GNSS,WLAN,NFC,FM,和/或IR技术等。所述GNSS可以包括全球卫星定位系统(global positioning system,GPS),全球导航卫星系统(global navigation satellite system,GLONASS),北斗卫星导航系统(beidou navigation satellite system,BDS),准天顶卫星系统(quasi-zenith satellite system,QZSS)和/或星基增强系统(satellite based augmentation systems,SBAS)。
终端100通过GPU,显示屏194,以及应用处理器等实现显示功能。GPU为图像处理的微处理器,连接显示屏194和应用处理器。GPU用于执行数学和几何计算,用于图形渲染。处理器110可包括一个或多个GPU,其执行程序指令以生成或改变显示信息。
显示屏194用于显示图像,视频等。显示屏194包括显示面板。显示面板可以采用液晶显示屏(liquid crystal display,LCD),有机发光二极管(organic light-emitting diode,OLED),有源矩阵有机发光二极体或主动矩阵有机发光二极体(active-matrix organic light emitting diode的,AMOLED),柔性发光二极管(flex light-emitting diode,FLED),Miniled,MicroLed,Micro-oLed,量子点发光二极管(quantum dot light emitting diodes,QLED)等。在一些实施例中,终端100可以包括1个或L个显示屏194,L为大于1的正整数。
终端100可以通过ISP,摄像头193,视频编解码器,GPU,显示屏194以及应用处理器等实现拍摄功能。
ISP用于处理摄像头193反馈的数据。例如,拍照时,打开快门,光线通过镜头被传递到摄像头感光元件上,光信号转换为电信号,摄像头感光元件将所述电信号传递给ISP处理,转化为肉眼可见的图像。ISP还可以对图像的噪点,亮度,肤色进行算法优化。ISP还可以对拍摄场景的曝光,色温等参数优化。在一些实施例中,ISP可以设置在摄像头193中。
摄像头193用于捕获静态图像或视频。物体通过镜头生成光学图像投射到感光元件。感光元件可以是电荷耦合器件(charge coupled device,CCD)或互补金属氧化物半导体 (complementary metal-oxide-semiconductor,CMOS)光电晶体管。感光元件把光信号转换成电信号,之后将电信号传递给ISP转换成数字图像信号。ISP将数字图像信号输出到DSP加工处理。DSP将数字图像信号转换成标准的RGB,YUV等格式的图像信号。在一些实施例中,终端100可以包括1个或N个摄像头193,N为大于1的正整数。
数字信号处理器用于处理数字信号,除了可以处理数字图像信号,还可以处理其他数字信号。例如,当终端100在频点选择时,数字信号处理器用于对频点能量进行傅里叶变换等。
视频编解码器用于对数字视频压缩或解压缩。终端100可以支持一种或多种视频编解码器。这样,终端100可以播放或录制多种编码格式的视频,例如:动态图像专家组(moving picture experts group,MPEG)1,MPEG2,MPEG3,MPEG4等。
NPU为神经网络(neural-network,NN)计算处理器,通过借鉴生物神经网络结构,例如借鉴人脑神经元之间传递模式,对输入信息快速处理,还可以不断的自学习。通过NPU可以实现终端100的智能认知等应用,例如:图像识别,人脸识别,语音识别,文本理解等。
外部存储器接口120可以用于连接外部存储卡,例如Micro SD卡,实现扩展终端100的存储能力。外部存储卡通过外部存储器接口120与处理器110通信,实现数据存储功能。例如将音乐,视频等文件保存在外部存储卡中。
内部存储器121可以用于存储计算机可执行程序代码,所述可执行程序代码包括指令。处理器110通过运行存储在内部存储器121的指令,从而执行终端100的各种功能应用以及数据处理。内部存储器121可以包括存储程序区和存储数据区。其中,存储程序区可存储操作系统,至少一个功能所需的应用程序(比如声音播放功能,图像播放功能等)等。存储数据区可存储终端100使用过程中所创建的数据(比如音频数据,电话本等)等。此外,内部存储器121可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件,闪存器件,通用闪存存储器(universal flash storage,UFS)等。
终端100可以通过音频模块170,扬声器170A,受话器170B,麦克风170C,耳机接口170D,以及应用处理器等实现音频功能。例如音乐播放,录音等。
音频模块170用于将数字音频信息转换成模拟音频信号输出,也用于将模拟音频输入转换为数字音频信号。
扬声器170A,也称“喇叭”,用于将音频电信号转换为声音信号。
受话器170B,也称“听筒”,用于将音频电信号转换成声音信号。
麦克风170C,也称“话筒”,“传声器”,用于将声音信号转换为电信号。
当压力传感器180A用于感受压力信号,可以将压力信号转换成电信号。在一些实施例中,压力传感器180A可以设置于显示屏194。陀螺仪传感器180B可以用于确定终端100的运动姿态。气压传感器180C用于测量气压。磁传感器180D包括霍尔传感器,可以利用磁传感器180D检测翻盖皮套的开合。加速度传感器180E可检测终端100在各个方向上(一般为三轴)加速度的大小。距离传感器180F,用于测量距离。接近光传感器180G也可用于皮套模式,口袋模式自动解锁与锁屏。环境光传感器180L用于感知环境光亮度。指纹传感器180H用于采集指纹。温度传感器180J用于检测温度。触摸传感器180K,也称“触控面板”。触摸传感器180K可以设置于显示屏194,由触摸传感器180K与显示屏194组成触摸屏,也称“触控屏”。触摸传感器180K用于检测作用于其上或附近的触摸操作。触摸传感器可以将检测到的触摸操作传递给应用处理器,以确定触摸事件类型。可以通过显示屏194提供与触摸操作相关的视觉输出。在另一些实施例中,触摸传感器180K也可以设置于终端100的表面,与显示屏194所处的位置不同。骨传导传感器180M可以获取振动信号。按键190包括开机键, 音量键等。马达191可以产生振动提示。指示器192可以是指示灯,可以用于指示充电状态,电量变化,也可以用于指示消息,未接来电,通知等。
SIM卡接口195用于连接SIM卡。SIM卡可以通过插入SIM卡接口195,或从SIM卡接口195拔出,实现和终端100的接触和分离。终端100可以支持N个SIM卡接口,N为大于等于2的正整数。SIM卡接口195可以支持Nano SIM卡,Micro SIM卡,SIM卡等。同一个SIM卡接口195可以同时插入多张卡。所述多张卡的类型可以相同,也可以不同。SIM卡接口195也可以兼容不同类型的SIM卡。SIM卡接口195也可以兼容外部存储卡。终端100通过SIM卡和网络交互,实现通话以及数据通信等功能。在一些实施例中,终端100采用eSIM,即:嵌入式SIM卡。eSIM卡可以嵌在终端100中,不能和终端100分离。
图4示出了本申请实施例提供的网络设备200的结构示意图。
如图4所示,网络设备200可包括:一个或多个处理器201、存储器202、网络接口203、发射器205、接收器206、耦合器207和天线208。这些部件可通过总线204或者其他方式连接,图4以通过总线连接为例。其中,
网络接口203可用于网络设备200与其他通信设备(例如其他网络设备)进行通信。
发射器205可用于对处理器201输出的信号进行发射处理,例如信号调制。接收器206可用于对天线208接收的移动通信信号进行接收处理。例如信号解调。在本申请的一些实施例中,发射器205和接收器206可以是一个或者多个。天线208可用于将传输线中的电磁能转换成自由空间中的电磁波,或者将自由空间中的电磁波转换成传输线中的电磁能。耦合器207可用于将移动通信信号分成多路,分配给多个接收器206。
存储器202可以和处理器201通过总线204或者输入输出端口耦合,存储器202也可以与处理器201集成在一起。存储器302可用于存储各种软件程序和/或多组指令。具体的,存储器202可包括高速随机存取的存储器,并且也可包括非易失性存储器,例如一个或多个磁盘存储设备、闪存设备或其他非易失性固态存储设备。存储器202可以存储操作系统,例如uCOS、VxWorks、RTLinux等嵌入式操作系统。存储器202还可以存储网络通信程序,该网络通信程序可用于与一个或多个附加设备,一个或多个终端、一个或多个网络设备进行通信。
本申请实施例中,处理器201可用于读取和执行计算机可读指令。具体的,处理器301可用于调用存储于存储器202中的程序,例如本申请的一个或多个实施例提供的射频通道的共享方法在网络设备200侧的实现程序,并执行该程序包含的指令。
需要说明的是,图4所示的网络设备200仅仅是本申请实施例的一种实现方式,实际应用中,网络设备200还可以包括更多或更少的部件,这里不作限制。
下面介绍本申请另一实施例中提供的一种终端100的结构示意图。
如图5所示,该终端100可以包括处理器501、存储器502、发送(transmit,TX)信号处理单元503、接收(receive,RX)信号处理单元504、n个发送(TX)射频通道、m个接收射频通道,t个天线。其中,n,m,t为正整数。其中,处理器501、存储器502、发送(transmit,TX)信号处理单元503、接收(receive,RX)信号处理单元504可以通过通信总线连接。
该存储器502可以是包括用于存储可执行代码和数据的静态存储器,也可以是包括用于存储指令和动态数据的动态存储器。
处理器501可用于控制TX信号处理单元503和RX信号处理单元按照预定义的方式发送和接收信号。本申请实施例中,处理器501可用于实施动态分配每个SIM卡申请的modem 模块以及每个modem模块申请的射频通道资源。其中,针对动态分配每个SIM卡申请的modem模块以及每个modem模块申请的射频通道资源的具体内容,可以参考后述图7A、图7B所示实施例,在此不再赘述。
TX信号处理单元503,可用于实现信号发送的各种信号处理功能。RX信号处理单元504,可用于实现信号接收的各种信号处理功能。
TX信号处理单元503和RX信号处理单元504可以分别通过TX射频通道和RX射频通道和天线相连。
TX射频通道将基带信号调制到载波频率,通过天线发送出去。
RX射频通道将从天线阵列接收到的射频信号解调为基带信号,交由RX信号处理单元504处理。部分天线可配置为可同时发送和接收,因此可以同时与TX射频通道和RX射频通道相连。部分天线配置为只用于接收,因此只与RX射频通道相连。另外,TX射频通道和RX射频通道可与任一天线相连,如TX射频通道1和RX射频通道1与天线2相连,可根据业务需求灵活配置。
下面介绍本申请实施例中射频通道的结构。
图6示出了本申请实施例中提供的一种射频通道的结构示意图。
如图6所示,TX射频通道上,TX信号处理单元503输出的数字信号,经过数模转换,转换为低频的模拟信号,再经过混频器,将低频的模拟信号调制到载波上。载波信号时通过锁相环产生的。调制后的高频信号经过功率放大器进行信号放大,经天线发送出去。
在RX射频通道上,天线接收到的高频信号,经过低噪声放大器进行信号放大,再经过混频器,将高频的模拟信号下变频为低频模拟信号。再经过模-数转换,转换为数字信号,发送给RX信号处理单元504进行信号的接收处理。
其中,终端100在不同的频段上可以共用相同的射频通道,或使用不同的射频通道。如果上行或下行支持多输入多输出(Multi-Input Multi-Output,MIMO),则终端100需要多个上行或下行射频通道。例如,如果终端100某个频段下行支持4层MIMO能力,则终端100在该频段上需要有4个接收通路。如果终端100支持载波聚合(carrier aggregation,CA)或双连接(dual connectivity,DC),终端100需要同时支持多个接收或发射通路。例如,如果终端100支持B1频段和B3频段在下行链路上的CA,并且B1频段和B3频段都支持4层MIMO能力,则终端100需要4个B1频段的接收通路和4个B3频段的接收通路。
下面介绍本申请实施例中提供的一种射频通道共享系统。
图7A示出了本申请实施例提供的一种射频通道共享系统的结构示意图。
如图7A所示,该终端100包括M张SIM卡、modem资源分配模块701、modem资源池702、射频通道分配模块703、射频通道资源池704。其中,modem资源池702可以包括N个modem模块。射频通道资源池704可以包括P个发送射频通道和Q个接收射频通道。其中,M为大于等于2的正整数,N为大于等于2的正整数,P、Q均为大于2的正整数。
在一种可能的实现方式中,终端100上的基带芯片可以包括有不同接入制式的协议栈,例如,终端100上的基带芯片可以包括有5G协议栈、4G(LTE)协议栈、3G协议栈、2G协议栈。其中,基带芯片中可以基于每个协议栈划分出多个modem模块,modem模块可以基于相对应的协议栈将待发送的低频基带信号调制成中高频信号或将接收的电磁波信号解调为低频基带信号。例如,终端100上支持双SIM卡同时接入5G网络时,终端100上的基带芯 片中可以工作在5G协议栈的modem模块1和modem模块2,当终端100上的SIM卡1注册到5G接入网络时,终端100可以为SIM卡1配置modem模块1,当终端100上的SIM卡2注册到5G接入网络时,终端100可以为SIM卡2配置modem模块2。
在终端100上的SIM卡搜网时,SIM卡可以向modem资源分配模块701申请modem模块。一个modem模块对应一个无线接入制式,当SIM卡发起某个无线接入制式的搜网时,SIM卡可以向modem资源分配模块申请相应制式的modem模块。例如,modem模块1可以工作在LTE网络接入制式,modem模块2可以工作在5G NR网络接入制式,当SIM卡1工作在LTE网络接入制式时,SIM卡1可以向modem资源分配模块申请到modem模块1,当SIM卡1工作在5G网络接入制式时,SIM卡1可以向modem资源分配模块申请到modem模块2。
其中,终端100可以接收用户的操作,设置每张SIM卡的工作制式。例如,终端100上有SIM卡1和SIM卡2,终端100可以响应于接收到的用户操作,设置SIM卡1工作在LTE网络无线接入制式,SIM卡2工作在5G NR网络无线接入制式。又例如,终端100可以响应于接收到的用户操作,设置SIM卡1和SIM卡2都工作在5G NR网络无线接入制式,等等。
每个modem模块与射频通道分配模块703以及射频通道资源池704之间的交互可以包括如下步骤:
1、终端100的SIM卡在向网络设备200注册时,射频通道分配模块703可以将终端100的射频能力信息发送给每个modem模块。其中,终端100的射频能力信息包括终端100支持载波聚合(carrier aggregation,CA)的频段组合和每个频段组合的MIMO能力信息。每个modem模块接收到的射频规格都相同。
例如,终端100支持B1频段和B3频段下行CA,并且B1频段和B3频段都支持4层MIMO能力,则终端100需要的射频通道资源为4个B1频段的接收通路和4个B3频段的接收通路。
2、在网络设备200通过RRC Connection Reconfiguration信令为某一个modem模块配置辅载波时,该modem模块可以向射频通道分配模块703申请射频通道资源(包括发射射频通道和接收射频通道)。
如图7B所示,网络设备200为终端100配置辅载波的流程可以包括:
(1)、网络设备200发送RRC Connection Reconfiguration信令给终端100,该RRC Connection Reconfiguration信令可用于配置终端100对辅载波上辅小区的信号测量。
(2)、终端100在接收到RRC Connection Reconfiguration信令后,可以完成测量配置,并返回RRC Connection Reconfigure信令给网络设备200。
(3)、终端100可以按照测量配置周期性的测量辅小区的信号质量,并向网络设备200上报对该辅小区的信号测量值。
其中,辅小区的信号质量的衡量参数可以包括辅小区的参考信号接收功率(reference signal receiving power,RSRP)、和/或信号加干扰加噪声比(signal to interference plus noise ratio,SINR)、和/或参考信号接收功率(reference signal receiving quality,RSRQ)。
(4)、当网络设备200确定出终端100上报的辅小区的信号质量高于一定门限值时,网络设备200可以通过带有特定字段(例如,sCellToAddMoList字段)的RRC Connection Reconfiguration信令,为终端100配置添加辅载波。
在一种可能的实现方式中,终端100可以按照测量配置辅小区上报事件,终端100可以测量辅小区的信号质量,并判断辅小区的信号质量是否高于一定门限值,若是,则终端100可以通过测量报告上报指定事件(例如“A2”事件)给网络设备200。网络设备200在从测量报告中识别出指定事件后,网络设备200可以通过带有特定字段(例如,sCellToAddMoList字段)的RRC Connection Reconfiguration信令,为终端100配置添加辅载波。若终端100确定出辅小区的信号质量是否不高于一定门限值,则终端100在测量报告中不上报指定事件给网络设备200。网络设备200在从测量报告中未识别出指定事件后,释放终端100添加辅载波。
(5)、终端100在接收到用于配置辅载波的RRC Connection Reconfiguration信令后,可以完成辅载波的添加,并返回RRC Connection Reconfiguration信令给网络设备200。
(6)、终端100在完成辅载波的添加后可以持续周期性的测量辅小区的信号质量,并向网络设备200上报对该辅小区的测量值。
3、射频通道分配模块703可以基于一些分配策略为申请资源的modem模块分配射频通道资源,并向modem模块返回成功或失败的指令。射频通道分配模块703在为modem模块分配射频通道成功后,还可以将分配给modem模块的射频通道的标识(例如射频通道的端口号)返回给modem模块。
其中,射频通道分配模块703可以根据如下策略为modem模块分配射频通道资源:
策略一:
在modem模块向射频通道分配模块703为辅载波申请射频通道资源时,射频通道分配模块703可以判断该modem模块对应的SIM卡是否被设置为支持数据业务,若是,则射频通道分配模块703可以返回成功指令给该modem模块。当射频通道分配模块703确定出该modem模块对应的SIM卡被设置为仅支持语音业务时,射频通道分配模块703可以返回失败指令给该modem模块。
这样,当用户设置数据业务在不同的SIM卡间切换时,终端100不需要重新发起去注册和重新注册的流程,数据业务在不同的SIM卡间切换快,不会导致数据业务中断。
策略二:
在modem模块向射频通道分配模块703为辅载波申请射频通道资源时,射频通道分配模块703可以判断是否空闲的射频通道资源中包括有modem模块为辅载波申请的射频通道资源,若是,射频通道分配模块703可以返回成功指令给该modem模块。若空闲(即未被占用)的射频通道资源中不包括modem模块为辅载波申请的射频通道资源,则射频通道分配模块703可以返回失败指令给modem模块。
这样,在modem模块申请射频通道资源时,射频通道分配模块703可以返回成功指令,直至空闲的射频通道资源耗尽,返回失败指令。先申请射频通道资源的modem模块,会先配置射频通道,使得射频通道资源可以在各SIM卡之间动态共享,按需分配。一般当网络侧为modem配置辅载波时,说明该modem上有大量数据需要传输,提高了射频通道资源的利用率。
策略三、
在modem模块向射频通道分配模块703为辅载波申请射频通道资源时,射频通道分配模 块703可以判断是否空闲的射频通道资源中包括有modem模块为辅载波申请的射频通道资源,若是,射频通道分配模块703可以返回成功指令给该modem模块。若空闲的射频通道资源中不包括modem模块为辅载波申请的射频通道资源,则射频通道分配模块703可以根据modem模块的优先级顺序,判断该正在申请射频通道资源的modem模块的优先级是否高于已申请到射频通道资源的modem模块的优先级,若是,则射频通道分配模块703可以释放优先级低的modem模块为辅载波申请到的射频通道资源,并将释放掉的射频通道资源分配给该优先级高的modem模块。
示例性的,终端100上有SIM卡1、SIM卡2、SIM卡3。其中,SIM卡1配置有modem模块1,SIM卡2配置有modem模块2,SIM卡3配置有modem模块3。modem模块1为辅载波申请到了2个发送射频通道和2个接收射频通道,modem模块2为辅载波申请到了2个发送射频通道和2个接收射频通道,其中,射频通道资源池中已无空闲的射频通道资源。此时,modem模块3接收到网络侧发送的用于添加辅载波的RRC信令,modem模块3可以响应于该RRC信令,可以向射频通道分配模块703为辅载波申请射频通道资源。
若modem模块3需要为辅载波申请2个发送射频通道和2个接收射频通道,且各modem模块的优先级顺序为:modem模块3大于modem模块2大于modem模块1,则射频通道分配模块703可以指示modem模块1释放辅载波占用的2个发送射频通道和2个接收射频通道,并将释放出的2个发送射频通道和2个接收射频通道分配给modem模块3。
若modem模块3需要为辅载波申请2个发送射频通道和2个接收射频通道,且各modem模块的优先级顺序为:modem模块3大于modem模块1大于modem模块2,则射频通道分配模块703可以指示modem模块2释放辅载波占用的2个发送射频通道和2个接收射频通道,并将释放出的2个发送射频通道和2个接收射频通道分配给modem模块3。
若modem模块3需要为辅载波申请2个发送射频通道和2个接收射频通道,且modem模块3比modem模块1和modem模块2的优先级都低,则射频通道分配模块703可以向modem模块3返回失败指令,以通知modem模块3分配射频通道资源失败。
若modem模块3需要为辅载波申请4个发送射频通道和4个接收射频通道,且modem模块3比modem模块1和modem模块2的优先级都高,则射频通道分配模块703可以指示modem模块1释放辅载波占用的2个发送射频通道和2个接收射频通道,指示modem模块2释放辅载波占用的2个发送射频通道和2个接收射频通道。射频通道分配模块703可以将释放出的4个发送射频通道和4个接收射频通道都分配给modem模块3。
其中,射频通道分配模块703可以通过如下任一方式确定各modem模块的优先级:
方式(1):
射频通道分配模块703可以基于各modem模块在主小区上的参考信号接收功率(reference signal receiving power,RSRP)/信号与干扰加噪声比(signal to interference plus noise ratio,SINR),确定modem模块的优先级。其中,主小区上的RSRP/SINR越高,modem模块的优先级越高。
方式(2):
射频通道分配模块703可以基于modem模块在主小区上的上行速率或下行速率确定modem模块的优先级顺序。其中,modem模块的优先级包括modem模块的上行优先级、modem模块下行优先级。射频通道分配模块703可以根据各modem模块在主小区的上行速率,确定出各modem模块的上行优先级顺序,并根据各modem模块的上行优先级顺序,为各modem 模块分配发送射频通道资源。射频通道分配模块703可以根据各modem模块在主小区的下行速率,确定出各modem模块的下行优先级顺序,并根据各modem模块的下行优先级顺序,为各modem模块分配接收射频通道资源。其中,主小区的下行速率越高,modem模块的下行优先级越高。主小区的上行速率越高,modem模块的上行优先级越高。
方式(3):
射频通道分配模块703可以基于用户预设的modem优先级顺序,为各modem模块分配射频通道资源。在一种可能的实现方式中,用户可以手动设置SIM卡的优先级,SIM卡的优先级表征SIM卡对应modem模块的优先级。例如,用户设置SIM卡1支持数据业务,SIM卡2仅支持语音业务,因此,SIM卡1对应的modem模块的优先级大于SIM卡2对应的modem模块的优先级。
这样,在modem模块申请射频通道资源时,射频通道分配模块703可以基于modem模块的优先级分配射频通道资源。当射频通道资源不足时,可以保证终端100总体上的通信性能最优。
4、若射频通道分配模块703为modem模块成功分配到需要的射频通道资源,modem模块可以基于射频通道分配模块703返回的射频通道的标识,配置射频通道,并添加辅载波。若射频通道分配模块703为modem模块分配射频通道失败后,modem模块不添加辅载波,并上报辅载波小区的测量值为预设值(例如-141dBm),触发网络侧释放辅载波。
通过本申请实施例提供了一种射频通道共享系统,终端100可以在每个SIM卡对应的modem模块向网络侧注册上报UE能力信息时,都上报相同的射频能力,并动态给每个modem模块分配射频资源。当modem模块未被分配到配置辅载波需要的射频通道资源时,该modem模块可以向网络侧设备返回配置失败的指示消息,通知网络侧释放辅载波。当modem模块被分配到配置辅载波需要的射频通道资源时,该modem模块可以向网络侧上报辅小区的信号实际测量值,以触发网络侧为该modem模块完成添加辅小区。这样,可以实现数据业务在不同的SIM卡之间切换时,终端不需要发起去注册和注册过程,减少切换时间。
下面介绍本申请实施例中提供的一种射频通道的共享方法。
图8示出了本申请实施例中提供的一种射频通道的共享方法的流程示意图。基于上述图7A和图7B所示实施例,如图8所示,终端100包括有至少2张SIM卡(包括第一SIM卡和第二SIM卡)、至少2个modem模块(包括第一modem模块和第二modem模块)。其中,每一个SIM卡都对应有一个modem模块。图8中具体以终端100包括两张SIM卡为例进行说明。例如,终端100为第一SIM卡分配到第一modem模块,为第二SIM卡分配到第二modem模块,等等。第一modem模块可以与网络设备210通信,第二modem模块可以与网络设备220通信。其中,网络设备210和网络设备220的硬件结构可以参考上述图4所示实施例中针对网络设备200的文字说明,在此不再赘述。网络设备210和网络设备220可以被统称为网络侧设备。
如图8所示,该方法包括:
S801、网络设备210向终端100发送针对第一SIM卡的UE能力查询(UE Capability Enquiry)信令,其中,该UE Capability Enquiry信令用于查询终端100的能力。
其中,终端100在向网络设备210注册时,网络设备210可以向终端100发送针对第一SIM卡的UE能力查询信令。具体的,终端100在开机或重启或关闭飞行模式等情况下,搜索到SIM卡1所要接入的网络后,可以通过向网络设备210发送针对第一SIM卡的RRC连接请求信令。网络设备210在接收到针对第一SIM卡的RRC连接请求信令后可以返回针对第一SIM卡的RRC连接建立信令给终端100。终端100在接收到第一SIM卡的RRC连接建立信令后,可以向网络设备210发送针对第一SIM卡的RRC连接建立完成信令(携带注册请求信令),以触发对第一SIM卡的注册流程。网络设备210在接收到该第一SIM卡的RRC连接建立完成信令后,可以向终端100发送针对第一SIM卡的UE能力查询信令。具体注册流程可以参考前述图2A所示实施例,在此不再赘述。
S802、终端100发送第一UE能力信息(UE Capability Information)给网络设备210,其中,第一UE能力信息包括射频能力信息1。
其中,第一UE能力信息中包括有射频能力信息1以及其他能力信息。该射频能力信息1在第一UE能力信息中的频段组合列表(Band Combination List)字段中携带。该Band Combination List字段中包括了终端100支持的频段组合,以及每个频段组合下每个频段支持的载波数以及每个载波的MIMO能力(也称为MIMO层数)。
示例性的,该Band Combination List字段的信令格式可以如下:
Figure PCTCN2021134224-appb-000001
其中,上述Band Combination List字段中可以包括多个频段参数(BandParameters)字段,BandParameters字段可用于表示终端100上支持CA的频段,多个BandParameters字段即表示终端100支持CA的频段组合。
示例性的,BandParameters字段可以包括如下信元:
Figure PCTCN2021134224-appb-000002
Figure PCTCN2021134224-appb-000003
其中,上述Band Combination List字段中频段列表(bandList)信元可用于指示每个频段组合下包含的频段,每个频段可由如下信元指示:每个频段可以为LTE或NR的频段。其中,bandEUTRA信元指示了一个LTE频段,例如,bandEUTRA信元的值为“1”时,表示LTE B1频段;bandEUTRA信元的值为“2”时,表示LTE B2频段。bandNR信元可用于指示一个NR频段,例如,bandNR信元的值为“1”时,表示NR的n1频段;bandNR信元的值为“2”时,表示NR n2频段。
ca-BandwidthClassDL-EUTRA信元可以用于指示该LTE频段下行的聚合类别,该ca-BandwidthClassDL-NR信元可以用于指示该NR频段下行的聚合类别。例如,该ca-BandwidthClassDL-EUTRA信元或ca-BandwidthClassDL-NR信元的数值为“A”或“a”时,表示单载波;ca-BandwidthClassDL-EUTRA信元或ca-BandwidthClassDL-NR信元的数值为“B”,“b”时,表示2个在频段内连续的载波聚合。
上述Band Combination List字段中FeatureSetCombination信元指示了一个特性集合(Feature Set)组合(FeatureSetCombination),其中包含了指示该频段组合下每个频段的下行和上行的特性集合的信元downlinkSetEUTRA/downlinkSetNR和uplinkSetEUTRA/uplinkSetNR。
示例性的,FeatureSetCombination信元可以如下所示:
Figure PCTCN2021134224-appb-000004
进一步的,每个频段的下行和上行的FeatureSet信元中指示了该频段上各载波的MIMO能力(即MIMO层数)。其中,featureSetListPerDownlinkCC信元和featureSetListPerUplinkCC信元分别指示了下行和上行每个载波的特性集合。
示例性的,每个频段的下行特性设置(FeatureSetDownLink)信元和上行特性设置(FeatureSetUpLink)信元可以如下:
Figure PCTCN2021134224-appb-000005
示例性的,featureSetListPerDownlinkCC信元和featureSetListPerUplinkCC信元可以如下:
Figure PCTCN2021134224-appb-000006
每个载波的特性集合中,指示了每个载波的MIMO能力。对于上行,maxNumberMIMO-LayersCB-PUSCH信元和maxNumberMIMO-LayersNonCB-PUSCH信元分别表示基于码本(code book)或基于非码本(non code book)的MIMO方式下的MIMO能力。对于下行,maxNumberMIMO-LayersPDSCH信元指示了MIMO能力。
例如,当终端100上报的射频能力是下行支持B1频段的4层MIMO能力+B3频段的4层MIMO能力+B7频段的4层MIMO能力时,终端100上报UE能力信息中上述Band Combination List字段中频段列表(bandList)信元可以包括3个bandEUTRA信元(包括bandEUTRA信元1、bandEUTRA信元2和bandEUTRA信元3)以及这3个bandEUTRA信元各自对应的FeatureSet信元(包括FeatureSet信元1、FeatureSet信元2、FeatureSet信元3)。其中,bandEUTRA信元1的值可以为“1”、bandEUTRA信元2的值可以为“3”和bandEUTRA信元3的值可以为“7”。bandEUTRA信元1与FeatureSet信元1对应,FeatureSet信元1中 maxNumberMIMO-LayersPDSCH信元的值为“4”,bandEUTRA信元2与FeatureSet信元2对应,FeatureSet信元2中maxNumberMIMO-LayersPDSCH信元的值为“4”,bandEUTRA信元3与FeatureSet信元3对应,FeatureSet信元3中maxNumberMIMO-LayersPDSCH信元的值为“4”。上述示例仅仅用于解释本申请不应构成限定。
终端100可以按照终端100的射频能力生成终端100支持的频段组合能力,其中,频段组合能力包括CA能力和MIMO层数。当终端100的射频通道设计确定后,终端100所支持频段组合能力也已确定。或者,终端100的射频通道可以是基于终端100所支持CA的band组合能力设计的。终端100可以将其支持的频段组合能力写入配置文件中,当终端100上报UE能力信息时,终端100可以从配置文件中读出该频段组合能力组装成UE Capability Information信令,并将该UE Capability Information信令上报给网络侧。
例如,当网络设备210针对第一SIM卡下发UE Capability Enquiry信令后,终端100可以通过第一SIM卡对应的modem模块发送携带频段组合能力的UE Capability Information信令给网络设备210。当网络设备220针对第二SIM卡下发UE Capability Enquiry信令后,终端100可以通过第二SIM卡对应的modem模块发送携带频段组合能力的UE Capability Information信令给网络设备220。
S803、网络设备220向终端100发送针对第二SIM卡的UE能力查询信令。
S804、终端100发送第二UE能力信息给网络设备220,其中,第二UE能力信息包括射频能力信息2,该射频能力信息2与射频能力信息1相同。
其中,终端100发送第二UE能力信息给网络设备220的过程可以参考前述步骤S802中终端100发送第一UE能力信息给网络设备210的过程,在此不再赘述。
当网络侧向终端100下发针对其他SIM卡的UE能力查询信令时,终端100返回给网络侧的UE能力信息中的射频能力信息,与上述射频能力信息1和射频能力信息2均相同。
示例性的,当终端100具有的射频通道(可用于收发)包括:B1频段上有4个射频通道、B3频段上有4个射频通道、B7频段上有4个射频通道。终端100配置有第一SIM卡和第二SIM卡,其中,第一SIM卡为数据业务卡,支持数据业务和语音通话,第二SIM卡只支持语音通话(包括VoLTE或VoNR),不支持数据业务。第一SIM卡和第二SIM卡均支持并在UE能力信息中上报如下频段组合:
1、B1频段上的2层MIMO能力+B3频段上的4层MIMO能力+B7频段的4层MIMO能力的频段组合。
2、B1频段上的4层MIMO能力+B3频段上的2层MIMO能力+B7频段上的4层MIMO能力的频段组合。
3、B1频段上的4层MIMO能力+B3频段上4层MIMO能力+B7频段上的2层MIMO能力的频段组合。
以及上述3个频段组合的回落频段组合(fallback band combinations)。
其中,在本申请实施例中,每张SIM卡在向网络侧上报UE能力信息时,均上报终端100最大的射频能力。即,每张SIM卡上报的UE能力信息中的射频能力信息均为:B1频段上4层MIMO能力+B3频段上的4层MIMO能力+B7频段上的4层MIMO能力。
上述示例仅仅用于解释本申请,不应构成限定。
本申请实施例中,当第一SIM卡为数据业务卡支持数据业务和语音通信业务时,第一SIM卡可以支持第一射频能力,第二SIM卡可以支持第二射频能力,其中,第一射频能力强于第二射频能力。终端100上报第一SIM卡和第二SIM卡的射频能力信息均为第一射频能力。在一些实施例中,第一射频能力可以具有使得所述网络侧设备为所述终端添加辅载波的能力,所述第二射频能力不具有使得所述网络侧设备为所述终端添加辅载波的能力。
其中,上述第一射频能力强于第二射频能力可以指第一射频能力中支持CA的频段和/或MIMO层数要多于第二射频能力。例如,第一射频能力可以是B1频段上4层MIMO能力+B3频段上的4层MIMO能力+B7频段上的4层MIMO能力,第二射频能力可以是B1频段的2层MIMO能力+B3频段的2层MIMO能力+B7频段的2层MIMO能力。
S805、网络设备210向终端100发送RRC连接重配置信令1(可以被称为第一RRC连接重配置信令),其中,RRC连接重配置信令1包括第一SIM卡上每个辅载波的最大MIMO层数。
S806、终端100基于RRC连接重配置信令1中每个辅载波的最大MIMO层数,确定出第一SIM卡的辅载波所需要的射频通道资源。
示例性的,RRC连接重配置信令1中可以包括有第一SIM卡下行链路中B3频段辅载波的最大MIMO层数和B7频段辅载波的最大MIMO层数,且该下行B3频段辅载波的最大MIMO层数为4层,该下行B7频段辅载波的最大MIMO层数为4层。则第一SIM卡的辅载波所需要的射频通道资源为4个B3频段的接收射频通道和4个B7频段的接收射频通道。上述示例仅仅用于解释本申请,不应构成限定。
S807、终端100判断是否成功为第一SIM卡分配到辅载波所需要的射频通道资源。
若是,则执行步骤S808、终端100为第一SIM卡配置辅载波所需要的射频通道资源,并测量出第一SIM卡的辅小区的信号强度为第一值。
示例性的,终端100空闲的射频通道资源可以包括有B1频段上的4个射频通道、B3频段上的4个射频通道、B7频段上的4个射频通道,其中,每个射频通道都可以用于收发信号。第一SIM卡的辅载波所需要的射频通道资源可以包括4个B3频段的射频通道。终端100空闲的射频通道资源包括有第一SIM卡的辅载波所需要的射频通道资源,则终端100可以为第一SIM卡的辅载波配置4个B3频段的射频通道。上述示例仅仅用于解释本申请,不应构成限定。
其中,关于终端100为第一SIM卡分配辅载波所需要的射频通道资源的具体实现,可以参考前述图7A所示实施例,在此不再赘述。
S809、终端100发送测量报告1(可以被称为第一测量报告)给网络设备210,其中,测量报告1中辅小区的信号质量为第一值。
S810、网络设备210在接收到测量报告1后,若第一值大于信号值门限,为终端100的第一SIM卡添加辅载波。
在一种可能的实现方式中,终端100可以按照测量配置辅小区上报事件,终端100可以测量第一SIM卡上辅小区的信号质量,并判断第一SIM卡辅小区的信号质量是否高于信号值门限值,若是,则终端100可以通过测量报告1上报指定事件(例如“A2”事件)给网络设备210。网络设备210在从测量报告1中识别出指定事件(例如“A2”事件)后,网络设备 210可以通过带有特定字段(例如,sCellToAddMoList字段)的RRC Connection Reconfiguration信令,为终端100配置的第一SIM卡添加辅载波。
其中,第一SIM卡辅小区的信号质量的衡量参数可以包括辅小区的RSRP、和/或SINR、和/或RSRQ。
本申请实施例中,针对网络设备210在接收到测量报告1后,为终端100的第一SIM卡添加辅载波的流程可以参考前述图7B所示实施例,在此不再赘述。
S811、当终端100判断终端100上空闲的射频通道资源不包括第一SIM卡需要的射频通道资源时,终端100发送测量报告2(可以被称为第二测量报告)给网络设备210,其中,测量报告2中辅小区的信号强度为预设值(例如-141dBm),预设值小于上述信号值门限。
S812、网络设备210在接收到测量报告2后,可以释放为第一SIM卡添加的辅载波。
在一种可能的实现方式中,终端100可以按照测量配置辅小区上报事件,当终端100判断终端100上空闲的射频通道资源不包括第一SIM卡需要的射频通道资源时,终端100可以判断上述预设值是否高于信号值门限值,若否,则终端100在测量报告4中不上报指定事件(例如“A2”事件)给网络设备210。网络设备210在从测量报告4中未识别出指定事件后,释放为终端100的第一SIM卡添加的辅载波。
其中,第一SIM卡辅小区的信号质量的衡量参数可以包括辅小区的RSRP、和/或SINR、和/或RSRQ。
例如,第一SIM卡辅小区的RSRP的预设值可以为-156dBm,辅小区的RSRQ的预设值可以为-43,辅小区的SINR的预设值可以为-23。
通过本申请实施例提供的一种射频通道的共享方法,当终端100插入双SIM卡,双SIM卡同时接入LTE或NR网络时,终端100上报给两张SIM卡对应的网络侧的UE能力信息中支持的频段组合和各频段组合的MIMO能力是一致的,当网络侧同时给两张SIM卡最大射频规格配置辅载波并在辅载波上发送下行数据时,这两张SIM卡的辅载波上有部分辅载波上下行全部误码,同时终端100上报网络侧这些辅载波上的辅小区的测量值接近最低值(例如-141dBm)。通过上述方法,可以实现数据业务在不同的SIM卡之间切换时,终端不需要发起去注册和注册过程,减少切换时间。
下面介绍本申请另一实施例中提供的一种射频通道的共享方法。
图9示出了本申请实施例中提供的一种射频通道的共享方法的流程示意图。基于上述图7A和图7B所示实施例,如图9所示,终端100包括有至少2张SIM卡(包括第一SIM卡和第二SIM卡)、至少2个modem模块(包括第一modem模块和第二modem模块)。其中,每一个SIM卡都对应有一个modem模块。图9中具体以终端100包括两张SIM卡为例进行说明。例如,终端100为第一SIM卡分配到第一modem模块,为第二SIM卡分配到第二modem模块,等等。第一modem模块可以与网络设备210通信,第二modem模块可以与网络设备220通信。其中,网络设备210和网络设备220的硬件结构可以参考上述图4中针对网络设备200的文字说明,在此不再赘述。网络设备210和网络设备220可以被统称为网络侧设备。
如图9所示,该方法包括:
S901、当满足预设条件时,网络设备210为终端100的第一SIM卡添加辅载波。
此时,第一SIM卡被设置为支持数据业务的卡,网络设备210已为第一SIM卡添加辅载波。第二SIM卡被设置为仅支持语音业务的卡,网络设备220暂未为第二SIM卡添加辅载波。
其中,网络设备210为第一SIM卡添加辅载波的流程可以参考前述图7B所示实施例,在此不再赘述。
S902、终端100接收到将数据业务从第一SIM卡切换至第二SIM卡的业务切换操作。
示例性的,如图10A所示,终端100显示主屏幕(home screen)的界面1010,该界面1010中显示了一个放置有应用图标的页面,该页面包括多个应用图标(例如天气应用图标、股票应用图标、计算器应用图标、设置应用图标1011、邮件应用图标、音乐应用图标、视频应用图标、浏览器应用图标、地图应用图标、图库应用图标,等等)。可选的,多个应用图标下方还显示包括有页面指示符,以表明home screen上页面总数,以及当前显示的页面与其他页面的位置关系。例如,home screen的界面1010可以包括三个页面,该页面指示符中为白点可以表示当前显示页面为三个页面中最右边的一个页面。进一步可选的,页面指示符的下方有多个托盘图标(例如拨号应用图标、信息应用图标、联系人应用图标、相机应用图标),托盘图标在页面切换时保持显示。该界面1010上还可以显示有状态栏1012,该状态栏1012中可以包括有时间信息、电池电量信息、各SIM卡所接入网络的运营商名称以及个SIM卡的工作制式以及数据业务的下载速度等。例如,第一SIM卡所接入网络的运营商名称为”中国移动”,第一SIM卡的工作制式为5G网络接入制式,第二SIM卡所接入网络的运营商名称为“中国联通”,第二SIM卡的工作制式为5G网络接入制式,其中,当前第一SIM卡被设置为支持数据业务的卡,第一SIM卡上数据业务的下载速度为“10MB/s”,第二SIM卡被设置为仅支持语音业务的卡。其中,该状态栏1012可以一直保持显示在终端100的屏幕顶部。
终端100可以接收用户作用于针对设置应用图标1011的操作(例如单击),响应于该操作,终端100可以显示如图10B所示的设置界面1020。
如图10B所示,该设置界面1020包括移动网络设置栏1021和其他设置栏(例如,WLAN设置栏、蓝牙设置栏、电池设置栏、显示设置栏、声音设置栏、存储设置栏,等等)。
终端100可以接收针对移动网络设置栏1021的操作,响应于该操作,终端100可以显示如图10C所示的移动网络设置界面1030。
如图10C所示,该移动网络设置界面1030包括SIM卡管理设置栏1031和其他设置栏(例如飞行模式设置栏、移动数据设置栏、个人热点设置栏、流量管理栏,等等)。
终端100可以接收针对SIM卡管理设置栏1031的操作(例如单击),响应于该操作,终端100可以显示如图10D所示的SIM卡管理界面1040。
如图10D所示,该SIM卡管理界面1040包括多个SIM卡设置栏(例如SIM卡1设置栏和SIM卡2设置栏)、数据业务设置栏1041等等。其中,当前终端100默认的数据业务设置在SIM卡1上,因此,数据业务设置栏1041中SIM卡1对应的选择控件1042处于使能状态,SIM卡2对应的选择控件1043处于去使能状态。此时,状态栏1012中SIM卡1上数据业务的下载速度为“10MB/s”,SIM卡2上不支持数据业务仅支持语音业务。
终端100可以接收作用于数据业务设置栏1041中选择控件1042的操作(例如单击),响应于该操作,终端100可以将数据业务从SIM卡1切换至SIM卡2。
如图10E所示,在终端100将数据业务从SIM卡1切换至SIM卡2后,终端100可以将SIM卡1对应的选择控件1042切换至去使能状态,将SIM卡2对应的选择控件1043切换至使能状态。其中,在数据业务切换至SIM卡2上后,状态栏1012中可以显示SIM卡2上数据业务的下载速度(例如,为10MB/s)。
S903、响应于业务切换操作,终端100释放第一SIM卡的辅载波所占用的射频通道资源。
在一种可能的实现方式中,终端100也可以在检测到第一SIM卡的网络状态满足一定条件时,触发终端100将数据业务从第一SIM卡切换至第二SIM卡。当数据业务从第一SIM卡切换至第二SIM卡后,终端100可以通过第二SIM卡上网,即,终端100通过第二SIM卡发送移动网络数据包给网络侧或者从网络侧接收移动网络数据包。其中,第一SIM卡的网络状态包括终端100使用第一SIM卡时的网络信号强度、网络信号质量、网络制式、数据业务的传输时延或者数据业务的传输速率中的一种或多种。
示例性的,当第一SIM卡上主小区的信号强度小于或者等于预设强度门限值,和/或,第一SIM卡的网络信号质量小于或者等于预设质量门限值,和/或,第一SIM卡的网络制式从第一优先级网络制式(例如5G)变成第二优先级网络制式(例如4G),和/或,第一SIM卡上数据业务的传输时延大于或者等于预设时延门限值,和/或,第一SIM卡上数据的传输速率小于或者等于预设速度门限值时,终端100可以将数据业务从第一SIM卡切换至第二SIM卡。
S904、终端100发送测量报告3(可以被称为第三测量报告),其中,第一SIM卡的辅小区的信号质量为预设值(例如-141dBm)。
S905、网络设备210在接收到测量报告3后,释放为第一SIM卡添加的辅载波。
S906、网络设备220发送RRC连接重配置信令2(可以被称为第二RRC连接重配置信令)给终端100,其中,RRC连接重配置信令2包括第二SIM卡上每个辅载波的最大MIMO层数。
其中,网络设备220可以周期性下发RRC连接重配置信令2给终端100。
在一种可能的实现方式中,终端100在释放第一SIM卡的辅载波所占用的射频通道资源后,可以主动向网络设备220发送针对第二SIM卡的辅载波添加请求,网络设备220在接收到该针对第二SIM卡的辅载波添加请求后,可以发送RRC连接重配置信令2给终端100。
S907、终端100基于第二SIM卡上每个辅载波的最大MIMO层数,确定第二SIM卡需要的射频通道资源。
示例性的,RRC连接重配置信令2中包括有第一SIM卡下行链路中B1频段辅载波的最大MIMO层数和B3频段辅载波的最大MIMO层数,且该下行B1频段辅载波的最大MIMO层数为2层,该下行B3频段辅载波的最大MIMO层数为2层,则第一SIM卡的辅载波所需要的射频通道资源为2个B1频段的接收射频通道和2个B3频段的接收射频通道。上述示例仅仅用于解释本申请,不应构成限定。
S908、终端100判断是否成功为第二SIM卡分配到辅载波所需要的射频通道资源。
若是,则执行步骤S909、终端100可以测量出第二SIM卡的辅小区的信号强度为第二值。
其中,关于终端100为第二SIM卡分配辅载波所需要的射频通道资源的具体实现,可以参考前述图7B所示实施例,在此不再赘述。
S910、终端100发送测量报告4(可以被称为第四测量报告)给网络设备200,其中,测量报告4中辅小区的信号质量为第二值。
S911、网络设备220在接收到测量报告4后,当第二值大于信号值门限,为终端100的第二SIM卡添加辅载波。
在一种可能的实现方式中,终端100可以按照测量配置辅小区上报事件,终端100可以 测量第二SIM卡上辅小区的信号质量,并判断第二SIM卡辅小区的信号质量是否高于信号值门限值,若是,则终端100可以通过测量报告4上报指定事件(例如“A2”事件)给网络设备220。网络设备220在从测量报告1中识别出指定事件(例如“A2”事件)后,网络设备220可以通过带有特定字段(例如,sCellToAddMoList字段)的RRC Connection Reconfiguration信令,为终端100配置的第二SIM卡添加辅载波。
其中,第二SIM卡辅小区的信号质量的衡量参数可以包括辅小区的RSRP、和/或SINR、和/或RSRQ。
其中,针对网络设备220在接收到测量报告4后,为终端100的第二SIM卡添加辅载波的流程可以参考前述图7B所示实施例,在此不再赘述。
S912、当终端100判断终端100上空闲的射频通道资源不包括第二SIM卡需要的射频通道资源时,终端100发送测量报告5(可以被称为第五测量报告)给网络设备220,其中,测量报告5中辅小区的信号强度为预设值,预设值小于上述信号门限值。
S913、网络设备220在接收到测量报告5后,释放为第二SIM卡添加的辅载波。
在一种可能的实现方式中,终端100可以按照测量配置辅小区上报事件,当终端100判断终端100上空闲的射频通道资源不包括第二SIM卡需要的射频通道资源时,终端100可以判断上述预设值是否高于信号值门限值,若否,则终端100在测量报告5中不上报指定事件(例如“A2”事件)给网络设备200。网络设备220在从测量报告5中未识别出指定事件后,释放为终端100的第二SIM卡添加的辅载波。
其中,第二SIM卡辅小区的信号质量的衡量参数可以包括辅小区的RSRP、和/或SINR、和/或RSRQ。
例如,第一SIM卡辅小区的RSRP的预设值可以为-156dBm,辅小区的RSRQ的预设值可以为-43,辅小区的SINR的预设值可以为-23。
本申请实施例提供了一种射频通道的共享方法,终端100可以在每个SIM卡对应的modem模块向网络侧注册上报UE能力信息时,都上报相同的射频能力,并动态给每个modem模块分配射频资源。当终端100将数据业务从第一SIM卡切换至第二SIM卡时,终端100可以通过第一SIM卡对应modem模块向网络侧主动请求释放第一SIM卡上的辅载波,并释放第一SIM卡上辅载波所占用的射频通道资源,并为第二SIM卡添加辅载波以及配置第二SIM卡上辅载波需要的射频通道资源。这样,可以实现数据业务在不同的SIM卡之间切换时,终端不需要发起去注册和注册过程,减少切换时间。
在一些实施例中,终端100在接收到网络设备210发送的针对第一SIM卡的UE能力查询信令后,可以发送第一UE能力信息给网络设备210,其中,第一SIM卡支持第一射频能力,第一UE能力信息中包括有第一射频能力的信息。终端100在接收到网络设备220发送的针对第二SIM卡的UE能力查询信令后,发送第二UE能力信息给所述网络设备220,其中,所述第二SIM卡支持第二射频能力,第二UE能力信息中包括有第一射频能力的信息,第一射频能力强于第二射频能力。当终端100满足第一条件时,终端100可以触发网络设备220为第二SIM卡添加辅载波。这样,在上报UE能力信息时,将两张SIM卡都上报同样的最大射频能力,可以为第二SIM卡添加辅载波提供可能性。
其中,当终端100满足第一条件时,终端100还可以判断终端100是否为第二SIM卡待添加的辅载波分配成功所需的射频通道资源,若是,则终端100可以触发网络设备220为第 二SIM卡添加辅载波。具体针对终端100为第二SIM卡待添加的辅载波分配所需的射频通道资源的过程,可以参考前述图7A所示实施例,在此不再赘述。
在一种可能的实现方式中,终端100可以先为第一SIM卡配置辅载波,当终端100满足第一条件时,若终端100上空闲的射频通道资源不够分配给第二SIM卡的辅载波,终端100还可以释放第一SIM卡的辅载波所占用的射频通道资源。
本申请实施例中,上述第一条件可以包括如下一种或多种:第一SIM卡上主小区的信号强度小于或者等于预设强度门限值,和/或,第一SIM卡的网络信号质量小于或者等于预设质量门限值,和/或,第一SIM卡的网络制式从第一优先级网络制式(例如5G)变成第二优先级网络制式(例如4G),和/或,第一SIM卡上数据业务的传输时延大于或者等于预设时延门限值,和/或,第一SIM卡上数据的传输速率小于或者等于预设速度门限值。
在一种可能的实现方式中,第一SIM卡可以是主卡,支持数据业务和语音通信业务,第二SIM卡可以是副卡,支持语音通信业务但不支持数据业务。在终端100在第一SIM卡上和第二SIM卡上都上报第一射频能力后,由于射频通道资源充足,终端100可以为第一SIM卡配置辅载波所需的射频通道资源,使得网络设备210可以为第一SIM卡添加辅载波。当终端100响应于切卡操作,将第一SIM卡切换为副卡,第二SIM卡切换为主卡时,终端100可以释放第一SIM卡的辅载波所占用的射频通道资源,并为第二SIM卡配置辅载波需要的射频通道资源,让网络设备220为第二SIM卡配置辅载波。这样,可以实现数据业务在不同的SIM卡之间切换时,终端不需要发起去注册和注册过程,减少切换时间。
其中,针对添加辅载波的信令流程可以参考前述图8或图9所示实施例,在此不再赘述。
以上所述,以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围。

Claims (22)

  1. 一种射频通道的共享方法,其特征在于,包括:
    终端在接收到网络侧设备发送的针对第一用户识别模块SIM卡的UE能力查询信令后,发送第一UE能力信息给所述网络侧设备;
    所述终端在接收到所述网络侧设备针对所述第二SIM卡的UE能力查询信令后,发送第二UE能力信息给所述网络侧设备,其中,所述第一UE能力信息中的射频能力信息与所述第二UE能力信息中的射频能力信息相同;
    所述终端接收所述网络侧设备发送的针对所述第一SIM卡的第一RRC连接重配置信令,所述第一RRC连接重配置信令用于为所述第一SIM卡添加辅载波;
    所述终端在响应于所述第一RRC连接重配置信令为所述第一SIM卡添加辅载波后,接收到数据业务从所述第一SIM卡切换至所述第二SIM卡的切换操作;
    响应于所述切换操作,所述终端释放所述第一SIM卡的辅载波所占用的射频通道;
    所述终端接收到所述网络侧设备针对所述第二SIM卡的第二RRC连接重配置信令,所述第二RRC连接重配置信令用于为所述第二SIM卡添加辅载波;
    响应于所述第二RRC连接重配置信令,所述终端为所述第二SIM卡的辅载波配置射频通道,并添加所述第二SIM卡的辅载波。
  2. 根据权利要求1所述的方法,其特征在于,在所述终端接收到所述第一RRC连接重配置信令后,所述方法还包括:
    所述终端基于所述第一RRC连接重配置信令中辅载波的频段组合以及每个频段上多输入多输出MIMO层数,确定出第一SIM卡的辅载波所需要的射频通道;
    当所述终端确定出所述终端上未配置的射频通道中包括有所述第一SIM卡的辅载波所需要的射频通道时,所述终端为所述第一SIM卡配置所需要的射频通道,并为所述第一SIM卡添加辅载波。
  3. 根据权利要求2所述的方法,其特征在于,所述终端为所述第一SIM卡添加辅载波,具体包括:
    所述终端测量出第一SIM卡的辅小区的信号强度为第一值;
    所述终端通过第一SIM卡发送第一测量报告给所述网络侧设备,其中,所述第一测量报告中所述第一SIM卡的辅小区的信号强度为所述第一值,所述第一测量报告用于触发所述网络侧设备为所述第一SIM卡添加辅载波。
  4. 根据权利要求2所述的方法,其特征在于,所述方法还包括:
    当所述终端确定出所述终端上未配置的射频通道中不包括所述第一SIM卡的辅载波所需要的射频通道时,所述终端测量出第一SIM卡的辅小区的信号强度为第一值;
    所述终端通过所述第一SIM卡发送第二测量报告给所述网络侧设备,其中,所述第二测量报告中所述第一SIM卡的辅小区的信号强度为预设值,所述预设值小于所述第一值,所述第二测量报告用于触发所述网络侧设备释放所述第一SIM卡的辅载波。
  5. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    响应于所述切换操作,所述终端上报第三测量报告给所述网络侧设备,所述第三测量报 告中所述第一SIM卡的辅小区的信号强度为预设值,所述第三测量报告用于指示所述网络侧设备释放所述第一SIM卡的辅载波。
  6. 根据权利要求1所述的方法,其特征在于,在所述终端接收到所述第二RRC连接重配置信令后,所述方法还包括:
    所述终端确定基于所述第二RRC连接重配置信令中辅载波的频段组合以及每个频段上MIMO层数,确定出第二SIM卡的辅载波所需要的射频通道;
    当所述终端确定出所述终端上未配置的射频通道中包括有所述第一SIM卡的辅载波所需要的射频通道时,所述终端为所述第二SIM卡配置所需要的射频通道,并为所述第二SIM卡添加辅载波。
  7. 根据权利要求6所述的方法,其特征在于,所述方法还包括:
    所述终端测量出第二SIM卡的辅小区的信号强度为第二值;
    所述终端通过第二SIM卡发送第四测量报告给所述网络侧设备,其中,所述第四测量报告中所述第二SIM卡的辅小区的信号强度为所述第二值,所述第四测量报告用于触发所述网络侧设备为所述第二SIM卡添加辅载波。
  8. 根据权利要求6所述的方法,其特征在于,所述方法还包括:
    当所述终端确定出所述终端上未配置的射频通道中不包括所述第二SIM卡的辅载波所需要的射频通道时,所述终端测量出第二SIM卡的辅小区的信号强度为第二值;
    所述终端通过所述第二SIM卡发送第五测量报告给所述网络侧设备,其中,所述第五测量报告中所述第二SIM卡的辅小区的信号强度为预设值,所述预设值小于所述第二值,所述第五测量报告用于触发所述网络侧设备释放所述第二SIM卡的辅载波。
  9. 根据权利要求1所述的方法,其特征在于,在所述终端接收到所述切换操作之前,所述第一SIM卡支持第一射频能力,所述第二SIM卡支持第二射频能力,所述第一射频能力强于所述第二射频能力;所述第一UE能力信息中的射频能力信息为所述第一射频能力,所述第二UE能力信息中的射频能力信息为所述第一射频能力;其中,所述第一射频能力具有使得所述网络侧设备为所述终端添加辅载波的能力,所述第二射频能力不具有使得所述网络侧设备为所述终端添加辅载波的能力。
  10. 根据权利要求1所述的方法,其特征在于,所述射频能力信息包括支持载波聚合CA的频段组合以及每个频段的MIMO层数,所述第一UE能力信息和所述第二UE能力信息中均包括有一个或多个bandEUTRA信元和每个bandEUTRA信元对应的FeatureSet信元;其中,所述一个或多个bandEUTRA信元用于指示支持CA的频段组合,每个bandEUTRA信元对应的FeatureSet信元用于指示每个频段的MIMO层数。
  11. 一种射频通道的共享方法,其特征在于,包括:
    终端在接收到网络侧设备发送的针对第一SIM卡的UE能力查询信令后,发送第一UE能力信息给所述网络侧设备,其中,所述第一SIM卡支持第一射频能力,所述第一UE能力信息中包括有所述第一射频能力的信息;
    所述终端在接收到网络侧设备发送的针对第二SIM卡的UE能力查询信令后,发送第二UE能力信息给所述网络侧设备,其中,所述第二SIM卡支持第二射频能力,所述第二UE能力信息中包括有所述第一射频能力的信息,所述第一射频能力强于所述第二射频能力;
    所述终端接收所述网络侧设备发送的针对所述第一SIM卡的第一RRC连接重配置信令,所述第一RRC连接重配置信令用于为所述第一SIM卡添加辅载波;
    所述终端在响应于所述第一RRC连接重配置信令为所述第一SIM卡添加辅载波后,接收到数据业务从所述第一SIM卡切换至所述第二SIM卡的切换操作;
    响应于所述切换操作,所述终端设置所述第一SIM卡支持所述第二射频能力,设置所述第二SIM卡支持所述第一射频能力,并且不重新上报所述第一SIM卡和所述第二SIM卡的UE能力信息给所述网络侧设备;
    所述终端释放所述第一SIM卡的辅载波所占用的射频通道;
    所述终端接收到所述网络侧设备针对所述第二SIM卡的第二RRC连接重配置信令,所述第二RRC连接重配置信令用于为所述第二SIM卡添加辅载波;
    响应于所述第二RRC连接重配置信令,所述终端为所述第二SIM卡的辅载波配置射频通道,并添加所述第二SIM卡的辅载波。
  12. 根据权利要求11所述的方法,其特征在于,在所述终端接收到所述第一RRC连接重配置信令后,所述方法还包括:
    所述终端基于所述第一RRC连接重配置信令中辅载波的频段组合以及多输入多输出MIMO层数,确定出第一SIM卡的辅载波所需要的射频通道;
    当所述终端确定出所述终端上未配置的射频通道中包括有所述第一SIM卡的辅载波所需要的射频通道时,所述终端为所述第一SIM卡配置所需要的射频通道,并为所述第一SIM卡添加辅载波。
  13. 根据权利要求12所述的方法,其特征在于,所述终端为所述第一SIM卡添加辅载波,具体包括:
    所述终端测量出第一SIM卡的辅小区的信号强度为第一值;
    所述终端通过第一SIM卡发送第一测量报告给所述网络侧设备,其中,所述第一测量报告中所述第一SIM卡的辅小区的信号强度为所述第一值,所述第一测量报告用于触发所述网络侧设备为所述第一SIM卡添加辅载波。
  14. 根据权利要求12所述的方法,其特征在于,所述方法还包括:
    当所述终端确定出所述终端上未配置的射频通道中不包括所述第一SIM卡的辅载波所需要的射频通道时,所述终端测量出第一SIM卡的辅小区的信号强度为第一值;
    所述终端通过所述第一SIM卡发送第二测量报告给所述网络侧设备,其中,所述第二测量报告中所述第一SIM卡的辅小区的信号强度为预设值,所述预设值小于所述第一值,所述第二测量报告用于触发所述网络侧设备释放所述第一SIM卡的辅载波。
  15. 根据权利要求11所述的方法,其特征在于,所述方法还包括:
    响应于所述切换操作,所述终端上报第三测量报告给所述网络侧设备,所述第三测量报告中所述第一SIM卡的辅小区的信号强度为预设值,所述第三测量报告用于指示所述网络侧 设备释放所述第一SIM卡的辅载波。
  16. 根据权利要求11所述的方法,其特征在于,在所述终端接收到所述第二RRC连接重配置信令后,所述方法还包括:
    所述终端确定基于所述第二RRC连接重配置信令中辅载波的频段组合以及每个频段上MIMO层数,确定出第二SIM卡的辅载波所需要的射频通道;
    当所述终端确定出所述终端上未配置的射频通道中包括有所述第一SIM卡的辅载波所需要的射频通道时,所述终端为所述第二SIM卡配置所需要的射频通道,并为所述第二SIM卡添加辅载波。
  17. 根据权利要求16所述的方法,其特征在于,所述方法还包括:
    所述终端测量出第二SIM卡的辅小区的信号强度为第二值;
    所述终端通过第二SIM卡发送第四测量报告给所述网络侧设备,其中,所述第四测量报告中所述第二SIM卡的辅小区的信号强度为所述第二值,所述第四测量报告用于触发所述网络侧设备为所述第二SIM卡添加辅载波。
  18. 根据权利要求16所述的方法,其特征在于,所述方法还包括:
    当所述终端确定出所述终端上未配置的射频通道中不包括所述第二SIM卡的辅载波所需要的射频通道时,所述终端测量出第二SIM卡的辅小区的信号强度为第二值;
    所述终端通过所述第二SIM卡发送第五测量报告给所述网络侧设备,其中,所述第五测量报告中所述第二SIM卡的辅小区的信号强度为预设值,所述预设值小于所述第二值,所述第五测量报告用于触发所述网络侧设备释放所述第二SIM卡的辅载波。
  19. 根据权利要求16所述的方法,其特征在于,所述方法还包括:所述射频能力信息包括支持载波聚合CA的频段组合以及每个频段的MIMO层数,所述第一UE能力信息和所述第二UE能力信息中均包括有一个或多个bandEUTRA信元和每个bandEUTRA信元对应的FeatureSet信元;其中,所述一个或多个bandEUTRA信元用于指示支持CA的频段组合,每个bandEUTRA信元对应的FeatureSet信元用于指示每个频段的MIMO层数。
  20. 一种终端,所述终端至少安装有第一SIM卡和第二SIM卡,其特征在于,所述终端包括:一个或多个处理,一个或多个存储器;其中,一个或多个存储器与一个或多个处理器耦合,所述一个或多个存储器用于存储计算机程序代码,所述计算机程序代码包括计算机指令,当所述一个或多个处理器在执行所述计算机指令时,使得所述终端执行如权利要求1-10或11-19中任一项所述的方法。
  21. 一种芯片系统,应用于在包括有第一SIM卡和第二SIM卡的电子设备中,其特征在于,所述芯片系统包括:应用处理器和基带处理器;所述应用处理器和基带处理器用于从存储器中调用并运行所述存储器中存储的指令,使得安装有所述芯片的终端执行如权利要求1-10或11-19中任一项所述的方法。
  22. 一种计算机存储介质,其特征在于,包括计算机指令,当所述计算机指令在终端上运行时,使得所述终端执行如权利要求1-10或11-19中任一项所述的方法。
PCT/CN2021/134224 2020-11-30 2021-11-30 一种射频通道的共享方法及相关装置 WO2022111718A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/255,065 US20240007843A1 (en) 2020-11-30 2021-11-30 Radio frequency channel sharing method and related apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011377601.6A CN114584966B (zh) 2020-11-30 2020-11-30 一种射频通道的共享方法及相关装置
CN202011377601.6 2020-11-30

Publications (1)

Publication Number Publication Date
WO2022111718A1 true WO2022111718A1 (zh) 2022-06-02

Family

ID=81754065

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/134224 WO2022111718A1 (zh) 2020-11-30 2021-11-30 一种射频通道的共享方法及相关装置

Country Status (3)

Country Link
US (1) US20240007843A1 (zh)
CN (1) CN114584966B (zh)
WO (1) WO2022111718A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105813125A (zh) * 2016-03-14 2016-07-27 中国电信股份有限公司北京分公司 用于用户设备的语音业务的方法、用户设备和装置
CN108924817A (zh) * 2018-06-28 2018-11-30 维沃移动通信有限公司 一种sim卡状态切换方法及移动终端
CN110300434A (zh) * 2019-04-19 2019-10-01 中国联合网络通信集团有限公司 基于终端双卡切换的语音通信的方法和设备
CN111083747A (zh) * 2018-10-19 2020-04-28 华为技术有限公司 通信方法及装置
CN111698741A (zh) * 2020-06-02 2020-09-22 Oppo广东移动通信有限公司 射频切换方法及装置
WO2020209641A1 (en) * 2019-04-09 2020-10-15 Samsung Electronics Co., Ltd. Method and system of ue for switching between plurality of sim networks

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2769933C (en) * 2011-03-01 2018-11-27 Tracfone Wireless, Inc. System, method and apparatus for pairing sim or uicc cards with authorized wireless devices
US9319863B2 (en) * 2014-04-09 2016-04-19 Qualcomm Incorporated System and methods for increasing efficiency of a public land mobile network search in service acquisition on a multi-SIM wireless device
CN110880958B (zh) * 2018-09-06 2021-10-15 华为技术有限公司 一种射频参数的上报方法及装置
CN111385787B (zh) * 2018-12-29 2021-11-30 华为终端有限公司 一种状态切换的方法、移动终端、网络设备及通信系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105813125A (zh) * 2016-03-14 2016-07-27 中国电信股份有限公司北京分公司 用于用户设备的语音业务的方法、用户设备和装置
CN108924817A (zh) * 2018-06-28 2018-11-30 维沃移动通信有限公司 一种sim卡状态切换方法及移动终端
CN111083747A (zh) * 2018-10-19 2020-04-28 华为技术有限公司 通信方法及装置
WO2020209641A1 (en) * 2019-04-09 2020-10-15 Samsung Electronics Co., Ltd. Method and system of ue for switching between plurality of sim networks
CN110300434A (zh) * 2019-04-19 2019-10-01 中国联合网络通信集团有限公司 基于终端双卡切换的语音通信的方法和设备
CN111698741A (zh) * 2020-06-02 2020-09-22 Oppo广东移动通信有限公司 射频切换方法及装置

Also Published As

Publication number Publication date
CN114584966B (zh) 2023-07-28
CN114584966A (zh) 2022-06-03
US20240007843A1 (en) 2024-01-04

Similar Documents

Publication Publication Date Title
KR102623159B1 (ko) 네트워크 연결 처리 방법, 관련 장치 및 컴퓨터 저장 매체
WO2020192781A1 (zh) 一种上报能力的方法及用户设备
CN114390337B (zh) 投屏方法、系统及电子设备
EP4099741A1 (en) Method and apparatus for sharing mobile network hotspot, and hotspot sharing device
US20240049056A1 (en) Terminal device, multi-link communication method, and chip
WO2022028339A1 (zh) 一种天线选择的方法及装置
WO2021129244A1 (zh) 网络标识的显示方法、设备及系统
US20220272563A1 (en) Device control method and system, and related apparatus
WO2022042264A1 (zh) 一种切换接入点的方法、装置及系统
EP4102927A1 (en) Dual wifi connection method and electronic device
EP4247030A1 (en) Device network distribution method, and mobile terminal and storage medium
CN111557102A (zh) 信息传输方法、装置、通信设备及存储介质
CN114071777A (zh) 一种随机接入增强的方法、网络设备和终端
WO2022111718A1 (zh) 一种射频通道的共享方法及相关装置
WO2021197010A1 (zh) 建立网络连接的方法和装置
CN113556805B (zh) 减少功耗的方法及终端
CN116982326A (zh) 一种边缘配置服务器的确定方法及装置
CN113572586A (zh) 一种探测参考信号的发送方法、用户设备以及一种系统
CN113453327A (zh) 一种发送功率控制方法、终端、芯片系统与系统
EP4277351A1 (en) Wi-fi access method and related device
WO2023236670A1 (zh) 数据传输管理方法、电子设备及存储介质
US20240236851A9 (en) Network Connection Processing Method, Related Device, And Computer Storage Medium
WO2022028341A1 (zh) 一种随机接入增强的方法、网络设备和终端
CN117135654A (zh) 语音业务的建立方法和电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21897218

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18255065

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21897218

Country of ref document: EP

Kind code of ref document: A1