WO2023236670A1 - 数据传输管理方法、电子设备及存储介质 - Google Patents

数据传输管理方法、电子设备及存储介质 Download PDF

Info

Publication number
WO2023236670A1
WO2023236670A1 PCT/CN2023/090084 CN2023090084W WO2023236670A1 WO 2023236670 A1 WO2023236670 A1 WO 2023236670A1 CN 2023090084 W CN2023090084 W CN 2023090084W WO 2023236670 A1 WO2023236670 A1 WO 2023236670A1
Authority
WO
WIPO (PCT)
Prior art keywords
electronic device
link
data transmission
frequency band
channel
Prior art date
Application number
PCT/CN2023/090084
Other languages
English (en)
French (fr)
Inventor
张忠理
王平
Original Assignee
荣耀终端有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 荣耀终端有限公司 filed Critical 荣耀终端有限公司
Publication of WO2023236670A1 publication Critical patent/WO2023236670A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/14Direct-mode setup
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/15Setup of multiple wireless link connections
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/30Connection release
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/10Small scale networks; Flat hierarchical networks
    • H04W84/12WLAN [Wireless Local Area Networks]

Definitions

  • the present application relates to the field of intelligent terminal technology, and in particular to a data transmission management method, electronic equipment and storage media.
  • the multi-screen collaboration function can achieve cross-system and cross-device collaboration.
  • the multi-screen collaboration function after establishing a collaborative connection between one electronic device and other electronic devices, resources can be quickly shared.
  • the computing power and professional system capabilities of the tablet/computer can be used to operate the mobile phone on the tablet/computer, browse the mobile phone interface, Answer collaborative control operations such as mobile phone audio and video calls.
  • data transmission performance (such as data transmission performance between electronic devices, data transmission performance between electronic devices and access points) in a multi-screen collaboration system may be poor.
  • embodiments of the present application provide a data transmission management method.
  • the method is applied to a first electronic device.
  • a first link exists between the first electronic device and a wireless access point.
  • the method includes: In response to user operation, determine a second electronic device that performs data transmission with the first electronic device, and a second link exists between the second electronic device and the wireless access point; establish a connection with the first electronic device.
  • the third link for data transmission by the second electronic device; when one of the first electronic device and the second electronic device does not have the first capability, and when the first preset condition is met, establishing a connection with the second electronic device.
  • the second electronic device connects to a fourth link and disconnects the first link, and the second electronic device provides a wireless communication network for the first electronic device through the fourth link; or when Under the first preset condition, a fourth link connected to the second electronic device is established and the first link is maintained, and the first electronic device becomes the second electronic device through the fourth link.
  • a wireless communication network is provided; the frequency band in which the third link is located is different from the preset frequency band.
  • the above technical solution can change the traditional networking mode, improve the data transmission performance in the system constructed by the first electronic device and the second electronic device, and improve the efficiency of data transmission between the first electronic device and the second electronic device.
  • satisfying the first preset condition includes: at least one electronic device among the first electronic device and the second electronic device does not have the first capability.
  • the above technical solution can be used without changing the traditional networking mode when both the first electronic device and the second electronic device have the first capability and the transmission performance is good; when the first electronic device or the second electronic device does not have the first capability capabilities, changing the traditional networking mode can improve transmission performance.
  • satisfying the first preset condition further includes: at least one frequency band among the frequency band where the first link is located and the frequency band where the second link is located is the preset frequency band.
  • the first capability is dual-frequency dual-transmission capability.
  • said not having the first capability includes transmitting in a dual-band adaptive concurrent manner.
  • the preset frequency band is 2.4GHz
  • the frequency band where the third link is located is 5GHz.
  • the third link is a P2P link.
  • establishing a fourth link connected to the second electronic device and maintaining the first link includes: when the first electronic device has the first capability and the third When two electronic devices do not possess the first capability, or when neither the first electronic device nor the second electronic device possess the first capability and the theoretical peak rate of the second electronic device is less than the first When the theoretical peak rate of an electronic device is reached, a fourth link connected to the second electronic device is established and the first link is maintained.
  • establishing a fourth link connected to the second electronic device and disconnecting the first link includes: when the first electronic device does not have the first capability and When the second electronic device possesses the first capability, or when neither the first electronic device nor the second electronic device possesses the first capability and the theoretical peak rate of the second electronic device is greater than When the theoretical peak rate of the first electronic device is determined, a fourth link connected to the second electronic device is established and the first link is disconnected.
  • the method further includes: if the second link is located The frequency band is the same as the frequency band where the third link is located and the channel where the second link works is different from the channel where the third link works. Switch the channel where the second link works. The channel after link switching is the same as the channel of the third link.
  • the method further includes: determining the second electronic device as an organizer, and the organizer is used to initiate switching of the second link working channel.
  • the above technical solution is used to determine the second electronic device as an analog router as the organizer, which can conveniently determine whether the current system is the same frequency and different channels, and improves the speed of determining whether to switch channels.
  • the method further includes: if the frequency band in which the first link is located The frequency band where the third link is located is the same and the channel where the first link works is different from the channel where the third link works. Switch the channel where the first link works. The first link The channel after path switching is the same as the channel of the third link.
  • the method further includes: determining the first electronic device as an organizer, and the organizer is used to initiate switching of the first link working channel.
  • the above technical solution is used to determine the first electronic device as an analog router as the organizer, which can conveniently determine whether the current system is the same frequency and different channels, and improves the speed of determining whether to switch channels.
  • inventions of the present application provide an electronic device.
  • the electronic device includes a memory and a processor.
  • the memory is used to store program instructions.
  • the processor reads the program instructions stored in the memory to implement the above. Data transfer management methods.
  • embodiments of the present application provide a computer-readable storage medium.
  • Computer-readable instructions are stored in the computer-readable storage medium.
  • the computer-readable instructions are executed by a processor, the above-mentioned data transmission management method is implemented.
  • Figure 1 is a schematic scene diagram of a multi-screen collaboration system provided by an embodiment of the present application.
  • Figure 2 is a schematic scene diagram of a multi-screen collaboration system provided by an embodiment of the present application.
  • Figure 3 is a schematic scene diagram of a multi-screen collaboration system provided by an embodiment of the present application.
  • FIG. 4 is a schematic diagram of the state of an electronic device provided by an embodiment of the present application.
  • FIG. 5 is a schematic diagram of data transmission of an electronic device according to an embodiment of the present application.
  • Figure 6 is a schematic scene diagram of a multi-screen collaboration system provided by an embodiment of the present application.
  • Figure 7 is a schematic flowchart of a data transmission management method provided by an embodiment of the present application.
  • Figure 8 is a schematic diagram of a multi-screen collaboration system provided by an embodiment of the present application.
  • Figure 9 is a schematic diagram of a multi-screen collaboration system provided by an embodiment of the present application.
  • Figure 10 is a schematic diagram of a multi-screen collaboration system provided by an embodiment of the present application.
  • Figure 11 is a schematic flowchart of a data transmission management method provided by an embodiment of the present application.
  • Figure 12 is a schematic structural diagram of an electronic device provided by an embodiment of the present application.
  • first and second are used for descriptive purposes only and cannot be understood as indicating or implying relative importance or implicitly indicating the quantity of indicated technical features. Therefore, features defined as “first” and “second” may explicitly or implicitly include one or more of these features.
  • words such as “exemplary”, “or”, “for example” are used to represent examples, illustrations or explanations. Any embodiment or design described as “exemplary” or “such as” in the embodiments of the application is not to be construed as preferred or advantageous over other embodiments or designs. Rather, the use of words such as “exemplary,” “or,” “for example,” etc., are intended to present the relevant concepts in a concrete manner.
  • At least one of a, b or c can represent seven situations: a, b, c, a and b, a and c, b and c, a, b and c. It should be understood that the order of the steps shown in the flowcharts herein may be changed and some may be omitted.
  • the multi-screen collaboration function can achieve cross-system and cross-device collaboration. Through the multi-screen collaboration function, after establishing a collaborative connection between one electronic device and other electronic devices, resources can be quickly shared.
  • the electronic device in this application can be a mobile phone, a tablet computer, a desktop computer, a laptop computer, a handheld computer, a notebook computer, an ultra-mobile personal computer (UMPC), a netbook, and Electronic devices such as cellular phones, personal digital assistants (PDAs), artificial intelligence (AI) devices, wearable devices, vehicle-mounted devices, smart home devices and/or smart city devices Prepare.
  • PDAs personal digital assistants
  • AI artificial intelligence
  • wearable devices wearable devices
  • vehicle-mounted devices smart home devices and/or smart city devices Prepare.
  • FIG. 1 is a schematic scene diagram of a multi-screen collaboration system provided by an embodiment of the present application.
  • a mobile phone 10, a tablet computer 20, and a router 30 constitute a multi-screen collaboration system, in which collaboration is established between the mobile phone 10 and the tablet computer 20.
  • router 30 provides wireless communication network for mobile phone 10 and tablet computer 20 respectively through wireless communication link (Wireless Fidelity link, Wi-Fi link).
  • wireless communication link Wireless Fidelity link, Wi-Fi link.
  • Wi-Fi wireless Fidelity
  • the performance of the wireless communication technology (Wireless Fidelity, Wi-Fi) module of electronic equipment is determined by the hardware structure of the electronic equipment.
  • Wi-Fi includes two frequency bands: 2.4GHz and 5GHz.
  • the Wi-Fi module can work on two frequency bands: 2.4GHz and/or 5GHz.
  • the hardware structure at least includes a baseband processing module, a Radio Frequency (RF) front-end, etc.
  • the baseband processing module can be used to support the Wi-Fi module to work on different frequency bands, and the RF front-end can be used to implement signal transmission and reception, such as implementing Wi-Fi
  • the module can send and receive signals in the 2.4GHz frequency band, and the Wi-Fi module can send and receive signals in the 5GHz frequency band.
  • the hardware structure of general electronic equipment usually includes two complete baseband processing modules and an RF front end.
  • the situation in which electronic equipment uses two baseband processing modules and an RF front end (the RF front end switches frequency bands according to the division of time slices) for data transmission is called Dual Band Single Concurrent (DBSC) mode, or it can It is called Dual Band Adaptive Concurrent (DBAC).
  • DBSC Dual Band Single Concurrent
  • DBAC Dual Band Adaptive Concurrent
  • the following uses the so-called DBAC mode as an example to illustrate.
  • two baseband processing modules can respectively support the Wi-Fi module to work on the 2.4GHz frequency band and the 5GHz frequency band.
  • the RF front-end can choose a frequency band to work and realize data transmission on a single frequency band.
  • the RF front-end can choose to work on the 2.4GHz frequency band for data transmission, or it can choose to work on the 5GHz frequency band for data transmission. Since the electronic device has only one RF front end, the electronic device can only choose to work on one frequency band for data transmission at the same time.
  • the electronic device can switch to another frequency band for data transmission by switching the RF front-end frequency band (divided according to time slices). By switching the RF front-end frequency band, dual-frequency data transmission at different times can be achieved. This kind of data transmission situation is called DBAC mode. For example, an electronic device transmits data in DBAC mode (hereinafter referred to as an electronic device in DBAC mode).
  • the electronic device When the electronic device transmits data in the 5GHz frequency band, it can switch the frequency band through the RF front-end and switch to the 2.4GHz frequency band. Data transmission is carried out on the mobile phone to realize dual-frequency data transmission at different times.
  • the hardware structure of some electronic equipment can include two complete baseband processing modules and two RF front ends. The situation in which an electronic device uses two baseband processing modules and two RF front-ends for data transmission at the same time is called the Dual Band Dual Concurrent (DBDC) mode (hereinafter referred to as the DBDC mode for an electronic device).
  • the two baseband processing modules respectively support the Wi-Fi module to work on the 2.4GHz frequency band and the 5GHz frequency band.
  • the two RF front-ends respectively choose to work in the 2.4GHz frequency band for data transmission and the 5GHz frequency band for data transmission, which can achieve dual-frequency data transmission in the same time division. It can also be said that an electronic device is in DBDC mode. Since the electronic device has two RF front ends, the electronic device can work on the 5GHz band and transmit data on the 2.4GHz band at the same time, achieving dual-frequency data at the same time. transmission.
  • the 2.4GHz frequency band has the characteristics of strong wall penetration ability.
  • single-frequency routers on the market usually only support working in the 2.4GHz frequency band.
  • the electronic equipment communicates with the single-frequency router on the 2.4GHz frequency band.
  • Dual-band routers on the market can simultaneously support working on the 2.4GHz band and Working on the 5GHz band, in this case the electronic device can choose to transmit data with the dual-band router on the 2.4GHz band, or it can choose to transmit data with the dual-band router on the 5GHz band.
  • the coverage area of the 2.4GHz frequency band is larger than that of the 5GHz frequency band, among the total coverage areas of the dual-band router, the 5GHz frequency band has a larger area not covered, so in a multi-screen collaborative system built with electronic equipment, electronic equipment can Transmit data with a dual-band router on the 2.4GHz or 5GHz frequency band to connect to WLAN for Internet access.
  • the 5GHz frequency band has the characteristics of fast transmission efficiency, data can be transmitted between two electronic devices that establish a collaborative connection on the 5GHz frequency band.
  • data can be transmitted between two electronic devices that establish collaboration on the 5GHz band, and each of the two electronic devices can communicate with the router on the 2.4GHz or 5GHz band. Perform data transfer.
  • the frequency band for data transmission between electronic devices in a multi-screen collaborative system is different from the frequency band for data transmission between the electronic device and the router, the data transmission situation of the multi-screen collaborative system is called inter-frequency and inter-channel.
  • the frequency band for data transmission between electronic devices in a multi-screen collaboration system is the same as the frequency band for data transmission between the electronic devices and the router, the data transmission situation of the multi-screen collaboration system is called the same frequency, which can include the same frequency band.
  • Same frequency channel and same frequency different channel By switching channels, the same frequency and same channel and the same frequency and different channels can be converted to each other.
  • the efficiency of data transmission in the same frequency and the same channel is greater than the efficiency of data transmission in the same frequency and different channels.
  • the data transmission between the mobile phone 10 and the tablet computer 20 that establishes collaboration in the multi-screen collaboration system is through the 5GHz frequency band
  • the data transmission between the mobile phone 10 and the router 30 or between the tablet computer 20 and the router 30 is through the 2.4GHz frequency band.
  • Frequency band is used for data transmission.
  • the data transmission situation of the multi-screen collaborative system is called inter-frequency and inter-channel.
  • data is transmitted between the mobile phone 10 and the tablet 20, between the mobile phone 10 and the router 30, and between the tablet 20 and the router 30 in the multi-screen collaboration system through the 5GHz frequency band.
  • the data transmission situation of this multi-screen collaborative system is called co-channel. If the communication channels between the mobile phone 10 and the tablet computer 20, the mobile phone 10 and the router 30, and the tablet computer 20 and the router 30 are all the same, the data transmission situation of the multi-screen collaborative system is called the same frequency and the same channel; otherwise, the multi-screen collaborative system will The data transmission situation of the cooperative system is called same frequency and different channels.
  • the electronic device When the data transmission situation of a multi-screen collaborative system corresponding to only one RF front-end electronic device is inter-frequency and inter-channel, the electronic device needs to use the DBAC mode for data transmission. That is to say, when the data transmission situation of the multi-screen collaborative system corresponding to only one RF front-end electronic device is inter-frequency and different channels, the electronic device needs to enter the DBAC mode and continuously switch the work of the RF front-end in different divided time slices. Frequency band to realize data transmission with the router, or to realize data transmission with another electronic device.
  • the electronic device When the electronic device is in DBAC mode, due to the division of time slices, the electronic device can include three states: P2P time slice state, frequency band switching state, and STA time slice state.
  • the electronic device can switch among these three states in a certain order.
  • the P2P time slice state is used for data transmission between the electronic device and another electronic device that establishes a cooperative connection. For example, data transmission can be performed through the 5GHz frequency band.
  • the STA time slice state is used for data transmission between the electronic device and the router. For example, data transmission can be carried out through the 2.4GHz frequency band.
  • it takes a certain switching time for the electronic device to switch from the P2P time slice state to the STA time slice state.
  • the electronic device is in the frequency band switching state, such as the frequency band switching 1 state. It also takes a certain switching time for the electronic device to switch from the STA time slice state to the P2P time slice state.
  • the electronic device is also in the frequency band switching state, such as frequency band switching 2 state.
  • the time the electronic device is in the frequency band switching 1 state may be the same as the time it is in the frequency band switching 2 state, or may be different, without any limitation here.
  • the durations of the P2P time slice state and the STA time slice state can be set according to actual needs. They can be set to the same or different, without any limitation here.
  • the schematic diagram of the electronic device status shown in Figure 4 is only for illustration and does not constitute any limitation.
  • the STA time slice may be before the P2P time slice.
  • the durations of the P2P time slice state, STA time slice state, frequency band switching 1 state, and frequency band switching 2 state in different electronic devices can be the same or different, without any limitation here.
  • one electronic device that establishes collaboration in a multi-screen collaboration system is in DBAC mode (such as electronic device 1), and the other electronic device is in DBDC mode (such as electronic device 2), and the data transmission situation of the multi-screen collaboration system is different frequencies, channel.
  • DBAC mode such as electronic device 1
  • DBDC mode such as electronic device 2
  • the data transmission situation of the multi-screen collaboration system is different frequencies, channel.
  • FIG 5 when electronic device 1 is in the P2P time slice state, data transmission is possible between electronic device 1 and electronic device 2, but data transmission is not possible between electronic device 1 and the router.
  • the electronic device 1 is in the frequency band switching 1 state, data transmission is not possible between the electronic device 1 and the electronic device 2 and between the electronic device 1 and the router.
  • STA time slice state data transmission is not possible between the electronic device 1 and the electronic device 2, but data transmission is possible between the electronic device 1 and the router.
  • the electronic device 1 When the electronic device 1 is in the frequency band switching 2 state, data transmission is not possible between the electronic device 1 and the electronic device 2 and between the electronic device 1 and the router.
  • the data transmission between the electronic device 2 and the router is not shown in Figure 5. It can be understood that the electronic device 2 is in DBDC mode, and the electronic device 2 can work on the 2.4GHz frequency band and the 5GHz frequency band at the same time for data transmission, so the electronic device 2 Device 2 can realize data transmission with electronic device 1 and data transmission with the router at the same time, without the need to perform state switching like electronic device 1.
  • the router When the electronic device is in other states (non-STA time slice state), the router cannot transmit data to the electronic device in DBAC mode; when transmitting data between the electronic device in DBDC mode and the electronic device in DBAC mode, you need to wait.
  • the electronic equipment in DBAC mode is in the STA time slice state. That is to say, when the electronic equipment in DBAC mode is in other states (non-STA time slice state), the electronic equipment in DBDC mode cannot be compared with the electronic equipment in DBAC mode. Perform data transmission, resulting in poor data transmission efficiency.
  • the two electronic devices that establish collaboration in a multi-screen collaboration system are both in DBAC mode, and the data transmission situation of the multi-screen collaboration system is different frequencies and different channels, and the two electronic devices are in the P2P time slice state at the same time, the two electronic devices Data transfer is possible between devices.
  • the two electronic devices Data transfer is possible between devices.
  • both the mobile phone 10 and the tablet computer 20 are in DBAC mode, and the data transmission situation of the multi-screen collaboration system is inter-frequency and inter-channel.
  • the mobile phone 10 and the tablet computer 20 are in the P2P time slice state at the same time, data transmission can be performed between the mobile phone 10 and the tablet computer 20 .
  • embodiments of the present application provide a data transmission management method, which method is applied to the following steps: An electronic device.
  • the access point device provides a wireless communication network for the first electronic device through a first link.
  • the method can effectively reduce the time when data transmission cannot be performed in a multi-screen collaboration system and improve data transmission efficiency.
  • FIG. 7 is a schematic flowchart of a data transmission management method provided by an embodiment of the present application.
  • the method is applied to a first electronic device.
  • the wireless access point is a router as an example for explanation below).
  • the router provides a wireless communication network to the first electronic device through the first link.
  • the method includes:
  • the 700 receive user operation.
  • the user operates to determine a second electronic device that establishes a link with the first electronic device for data transmission.
  • a second link exists between the second electronic device and the router.
  • the router provides a wireless communication network to the second electronic device through the second link.
  • the user operation includes a multi-screen collaborative operation (the user operation is a multi-screen collaborative operation as an example for explanation below).
  • the multi-screen collaborative operation is used to control the first electronic device and the second electronic device to establish a collaborative connection, such as establishing a P2P link for collaborative connection.
  • the multi-screen collaborative operation can be triggered when the user clicks on the multi-screen collaborative control on the electronic device (the first electronic device or the second electronic device). After the user clicks on the multi-screen collaboration control, a multi-screen collaboration prompt may appear on the electronic device (the first electronic device or the second electronic device). When the user clicks on the multi-screen collaboration prompt, the multi-screen collaborative operation may be triggered.
  • the P2P link is used to transmit multi-screen collaboration data of the first electronic device and the second electronic device.
  • Multi-screen collaboration data is data transmitted between the first electronic device and the second electronic device when they establish a collaborative connection, such as video streams for screen projection, and collaborative control operation instructions (for example, the first electronic device transmits data through a P2P link).
  • the control operation instructions for the second electronic device are sent to the second electronic device, so that the second electronic device performs corresponding operations).
  • a link for data transmission between the first electronic device and the second electronic device is established.
  • This application does not place any restrictions on the execution time of establishing the link for data transmission, and it can be executed at any time after 700 in Figure 7 , for example, after 701 or after 705 .
  • the first electronic device obtains Wi-Fi capability information of the second electronic device.
  • the first electronic device when the first electronic device and the second electronic device do not establish a P2P link in response to the multi-screen collaborative operation, can communicate through Bluetooth (BT) or NFC. Perform data transmission with the second electronic device to obtain Wi-Fi capability information of the second electronic device. For example, when the distance between the first electronic device and the second electronic device is less than a preset distance threshold, the Wi-Fi capability information of the second electronic device can be obtained from the second electronic device based on NFC communication. If the first electronic device and the second electronic device have established a P2P link in response to the multi-screen collaborative operation, the first electronic device can transmit data with the second electronic device through Bluetooth, NFC or Wi-Fi communication, etc., to obtain the third electronic device. 2.
  • BT Bluetooth
  • NFC NFC
  • Wi-Fi capability information of the electronic device may be used to represent performance information of an electronic device for wireless communication.
  • Wi-Fi capability information may include DBDC capabilities and theoretical peak rates.
  • DBDC capability can be used to determine whether an electronic device can transmit data in DBDC mode. If an electronic device has DBDC capabilities, it is determined that the electronic device can transmit data in DBDC mode.
  • the theoretical peak rate is used to represent the maximum transmission rate of data transmission by an electronic device.
  • the Wi-Fi capability information may also include Channel Switch Announcement (CSA) capability.
  • CSA Channel Switch Announcement
  • An electronic device has CSA capability when establishing a cooperative connection with other electronic devices (such as electronic device W), which means that the electronic device can automatically initiate channel switching when transmitting data with the electronic device W, and the electronic device W will automatically switch channels based on the electronic device W. Perform channel switching based on channel switching initiated by the device.
  • the electronic device determined as the organizer (Group owner, GO) has the CSA capability
  • the electronic device determined as the participant (Gower Client, GC) does not have the CSA capability.
  • the first electronic device may be a GC or a GO.
  • the Wi-Fi capability information may also include information about the currently connected router, that is, information about the router currently connected to the second electronic device.
  • the information about the currently connected router may include: connected Wi-Fi name, connected Wi-Fi basic service set identifier (Basic Service Set Identifier, BSSID). Whether the first electronic device and the second electronic device are connected to the same Wi-Fi may be determined based on information about the currently connected router.
  • the information about the currently connected router may also include the frequency band used for data transmission with the router. Based on the information currently connected to the router, the frequency band in which the electronic device operates when communicating with the router can be determined, such as 5GHz and 2.4GHz.
  • the first electronic device sends its own Wi-Fi capability information to the second electronic device.
  • the first electronic device may send its own Wi-Fi capability information to the second electronic device while acquiring the Wi-Fi capability information of the second electronic device, or the first electronic device may acquire the Wi-Fi capability information of the second electronic device.
  • After obtaining the capability information send its own Wi-Fi capability information to the second electronic device.
  • it can also send its own Wi-Fi capability information to the second electronic device before acquiring the Wi-Fi capability information of the second electronic device.
  • the second electronic device can also compare its transmission capabilities to determine whether its transmission capability is stronger than that of the second electronic device.
  • the first electronic device determines whether both the first electronic device and the second electronic device have DBDC capabilities.
  • An electronic device with DBDC capability indicates that its transmission capability is good. If both the first electronic device and the second electronic device have DBDC capabilities, it means that the data transmission capability in the multi-screen collaboration system composed of the first electronic device, the second electronic device and the router is good, and there is no need to change the conventional multi-screen collaboration system.
  • For networking execute 71, traditional networking, and the process ends.
  • the traditional networking is a triangular structure of the multi-screen collaborative system composed of the first electronic device, the second electronic device and the router. For example, as shown in Figure 1, there is a P2P link between the tablet computer 20 and the mobile phone 10, there is a Wi-Fi link between the tablet computer 20 and the router 30, and there is a Wi-Fi link between the mobile phone 10 and the router 30.
  • Links, three links form a triangular structure network. If there is an electronic device among the first electronic device and the second electronic device that does not have DBDC capability, and the networking is performed according to the conventional networking method in the multi-screen collaboration system, the working mode of one electronic device may be DBAC mode, resulting in The data transmission capability is poor (please refer to the relevant introduction to Figures 5 and 6 for the relevant description of the working scenario of electronic equipment in the DBAC mode). Therefore, if both the first electronic device and the second electronic device do not have DBDC capabilities, execute 703 to determine whether the frequency bands of the first link and the second link are both the first frequency band.
  • the first frequency band can be set according to the frequency band of the P2P channel of the first electronic device and the second electronic device during multi-screen collaboration.
  • the frequency band of the P2P channel is 5 GHz
  • the first frequency band is set to 5 GHz.
  • the frequency band in which the P2P channel is located can be determined based on the hardware structures of the first electronic device and the second electronic device. For example, if the first electronic device and the second electronic device both have two baseband processing modules, determine the frequency band in which the P2P channel is located.
  • the frequency band is 5GHz. If the frequency band where the first link is located (or the frequency band where the second link is located) is not the first frequency band, the frequency band where the first link is located (or the frequency band where the second link is located) can be the default Frequency band, such as 2.4GHz. That is to say, if the frequency band of a first link (or a second link) is not 5 GHz, the frequency band of the first link (or the second link) is 2.4 GHz.
  • the frequency band where the first link and the second link are located is both the first frequency band, there is no need to change the networking in the conventional multi-screen collaboration system.
  • the frequency band of the first link and the second link is both 5GHz, and the network is formed in a traditional way.
  • step 705 is executed, and the first electronic device sends connection information to the second electronic device to establish a Wi-Fi link.
  • the connection information is used to establish a Wi-Fi link with the first electronic device. connect The information may include a device connection name and a device connection password of the first electronic device.
  • the second electronic device establishes a Wi-Fi link with the first electronic device according to the received connection information. After establishing the Wi-Fi link, the first electronic device may be called a simulated router (Soft Access Point, Soft-AP).
  • Soft-AP can realize the function of a router and provide a wireless communication network (Wi-Fi) for other electronic devices. After an electronic device turns on the Soft-AP function, it can provide Wi-Fi for other electronic devices just like an ordinary router. Electronic devices can turn on the Soft-AP function through their own cellular network (such as 2G, 3G, 4G, 5G, etc.) to provide Wi-Fi for other electronic devices, such as sharing hotspots. Other electronic devices can connect to wireless communications through the hotspot of the electronic device. network, you can also turn on the Soft-AP function through the router it is connected to (such as by sharing Wi-Fi signals) to provide Wi-Fi for other electronic devices.
  • the method for turning on the Soft-AP function of an electronic device is not limited here.
  • the first electronic device is a mobile phone 10
  • the second electronic device is a tablet computer 20
  • the mobile phone 10 is determined as a Soft-AP.
  • Figure 8 is a schematic diagram of a multi-screen collaboration system provided by an embodiment of the present application. (a) in FIG. 8 is a schematic diagram of the multi-screen collaboration system before the first electronic device is determined as the Soft-AP. As shown in (a) of Figure 8 , the mobile phone 10 and the tablet computer 20 include a P2P channel for data transmission; the mobile phone 10 and the router 30 and the tablet computer 20 and the router 30 include Wi-Fi channels for data transmission.
  • FIG. 8 is a schematic diagram of the multi-screen collaboration system after establishing a Wi-Fi link between the second electronic device and the first electronic device.
  • the P2P channel and Wi-Fi channel for data transmission are included between the mobile phone 10 and the tablet 20; the data transmission channel is included between the mobile phone 10 and the router 30.
  • the Wi-Fi channel for transmission It can be understood that the scene shown in Figure 8 is a schematic diagram of establishing a P2P channel for data transmission between the mobile phone 10 and the tablet computer 20 before determining the mobile phone 10 as a Soft-AP.
  • a P2P channel for data transmission between the mobile phone 10 and the tablet computer 20 can be established.
  • the Wi-Fi channel between the tablet 20 and the router 30 and the frequency band between the tablet 20 and the mobile phone 10 may be different frequency bands, and the tablet 20 communicates with the router 30 and the mobile phone 10 respectively.
  • the tablet computer 20 needs to switch frequency bands (such as switching from 2.4GHz to 5GHz, or from 5GHz to 2.4GHz).
  • the Wi-Fi channel between the tablet computer 20 and the router 30 has been cancelled, only the P2P channel and Wi-Fi channel between the tablet 20 and the mobile phone 10 are retained.
  • the P2P channel and Wi-Fi channel between the tablet 20 and the mobile phone 10 can be carried out in the same frequency band (such as 5GHz) data transmission, so the tablet computer 20 does not need to switch frequency bands when using the P2P channel and the Wi-Fi channel, which avoids the time loss caused by frequency band switching and improves data transmission efficiency.
  • the tablet computer 20 does not need to switch frequency bands when using the P2P channel and the Wi-Fi channel, which avoids the time loss caused by frequency band switching and improves data transmission efficiency.
  • the first electronic device does not have the DBDC capability, execute 706 to determine whether the second electronic device has the DBDC capability. If the second electronic device has DBDC capability, the second electronic device can serve as a Soft-AP. After determining that the second electronic device can serve as a Soft-AP, the first electronic device may notify the second electronic device that it can serve as a Soft-AP. Or, in some embodiments of this application, the second electronic device will also obtain the Wi-Fi capability information of the first electronic device, and can determine whether to use itself as a Soft-Field based on the Wi-Fi capability information of the first electronic device. AP (the confirmation process can be shown as 702 to 706 in Figure 7).
  • the second electronic device When the second electronic device knows that it can serve as a Soft-AP, it turns on the Soft-AP function and sends connection information to the first electronic device.
  • the connection information is used to establish a Wi-Fi link with the second electronic device.
  • the connection information may include a device connection name and a device connection password of the second electronic device.
  • the second electronic device After turning on the Soft-AP function according to the notification of the first electronic device, the second electronic device can actively send the connection information to the first electronic device. If the second electronic device has DBDC capability, step 707 is executed.
  • the first electronic device receives the connection information of the second electronic device and establishes a Wi-Fi link.
  • step 708 is executed to disconnect the connection with the router, that is, disconnect the first link.
  • the first electronic device is a mobile phone 10
  • the second electronic device is a tablet computer 20
  • the tablet computer 20 is determined as a Soft-AP.
  • Figure 9 is a schematic diagram of a multi-screen collaboration system provided by an embodiment of the present application. (a) in Figure 9 is a schematic diagram of the multi-screen collaboration system before the second electronic device is determined as the Soft-AP.
  • the mobile phone 10 and the tablet computer 20 include a P2P channel for data transmission; the mobile phone 10 and the router 30 and the tablet computer 20 and the router 30 include Wi-Fi channels for data transmission.
  • FIG. 9 is a schematic diagram of a multi-screen collaboration system after establishing a Wi-Fi link between the first electronic device and the second electronic device.
  • the P2P channel and Wi-Fi channel for data transmission are included between the mobile phone 10 and the tablet computer 20; the connection between the tablet computer 20 and the router 30 includes Wi-Fi channel for data transmission.
  • the scene shown in Figure 9 is a schematic diagram of establishing a P2P channel for data transmission between the mobile phone 10 and the tablet 20 before determining the tablet 20 as a Soft-AP.
  • a P2P channel for data transmission between the mobile phone 10 and the tablet computer 20 can be established.
  • the Wi-Fi channel between the mobile phone 10 and the router 30 and the frequency band between the mobile phone 10 and the tablet computer 20 may be different frequency bands, and the mobile phone 10 conducts data with the router 30 and the mobile phone 10 respectively.
  • the mobile phone 10 needs to switch frequency bands (switching from 2.4GHz to 5GHz, or switching from 5GHz to 2.4GHz).
  • the Wi-Fi channel between the mobile phone 10 and the router 30 is canceled. Only the P2P channel and Wi-Fi channel between the mobile phone 10 and the tablet computer 20 are retained.
  • the P2P channel and Wi-Fi channel between the mobile phone 10 and the tablet computer 20 can transmit data in the same frequency band (such as 5GHz). Therefore, mobile phone 10 does not need to switch frequency bands when using P2P channels and Wi-Fi channels, avoiding the time loss caused by frequency band switching and improving data transmission efficiency.
  • 710 For some specific implementations of 710, please refer to the relevant description of 705.
  • the first electronic device sends connection information to the second electronic device to establish a Wi-Fi link. After establishing a Wi-Fi link with the first electronic device, the second electronic device will disconnect from the router, that is, the second link will be disconnected. If the second electronic device is determined to be a Soft-AP based on the preset rules, the first electronic device receives the connection information of the second electronic device and establishes a Wi-Fi link. After establishing a Wi-Fi link with the second electronic device, the first electronic device will disconnect from the router, that is, the first link will be disconnected.
  • the number of electronic devices working in DBAC mode in a data transmission scenario can be reduced.
  • a scenario in which one electronic device works in DBAC mode and another electronic device works in DBDC mode in a multi-screen collaboration system can be turned into a multi-screen collaboration system.
  • the time loss during frequency band switching can be reduced, effectively reducing the time when data cannot be transmitted in a multi-screen collaboration system, and improving data transmission efficiency.
  • the above embodiments can be used to solve the technical problem that when an electronic device works in DBAC mode (DBSC mode), the P2P link and the Internet link cannot transmit data at the same time, and time-sharing data transmission is required, resulting in reduced data transmission efficiency.
  • DBSC mode DBAC mode
  • the number of electronic devices working in the DBAC mode in the multi-screen collaboration system can be reduced, thereby improving the data transmission efficiency in the multi-screen collaboration system.
  • P2P channels can also be used for other services, such as screen projection, file transfer, etc., so in the screen projection scenario (file transfer scenario), we face the data brought by DBAC mode (DBSC mode)
  • DBAC mode DBAC mode
  • using the above embodiments can also reduce the number of electronic devices working in the DBAC mode in the scene, thereby improving data transmission efficiency.
  • the first electronic device determines whether to use itself or the second electronic device as a Soft-AP based on the Wi-Fi capability information of the second electronic device.
  • Changing the traditional networking is only an example. Description without any limitation. It can be understood that in some embodiments of the present application, the first electronic device may send the Wi-Fi capability information and transmission capability comparison request of the first electronic device to the second electronic device.
  • the transmission capability comparison request is used to request the second electronic device to determine whether to use itself or the first electronic device as a Soft-AP based on the Wi-Fi capability information of the first electronic device to change the traditional networking.
  • the first electronic device and the second electronic device can send Wi-Fi capability information to each other, compare their respective transmission capabilities, and determine whether to use themselves or the second electronic device according to the transmission capability comparison results.
  • a Soft-AP it changes the traditional networking. For example, after the first electronic device and the second electronic device send Wi-Fi capability information to each other, the first electronic device performs a transmission capability comparison based on the Wi-Fi capability information sent by the second electronic device, and determines its own transmission capability based on the transmission capability comparison.
  • the transmission capability is stronger than that of the second electronic device, and it determines not to disconnect from the router, and determines to use itself as a Soft-AP to provide Wi-Fi to the second electronic device; the second electronic device determines according to the Wi-Fi capability sent by the first electronic device The information is compared with the transmission capabilities, and based on the comparison of transmission capabilities, it is determined that its own transmission capability is weaker than that of the first electronic device, it is determined to disconnect from the router, and it is determined to establish a Wi-Fi connection with the first electronic device. After the first electronic device determines that it will serve as a Soft-AP to provide Wi-Fi for the second electronic device, it can send the connection information corresponding to the first electronic device to the second electronic device.
  • the second electronic device determines to establish a Wi-Fi connection with the first electronic device and does not receive the connection information sent by the first electronic device, it can actively obtain the connection information from the first electronic device.
  • the second electronic device establishes a connection with the first electronic device according to the connection information sent by the first electronic device. After the connection is established, the first electronic device provides Wi-Fi services to the second electronic device.
  • the second electronic device after executing steps shown as 705, 710 or 714 in Figure 7, if the second electronic device successfully establishes a Wi-Fi link with the first electronic device or the first electronic device and the second After the electronic device successfully establishes a Wi-Fi link, it can generate and display corresponding prompts according to preset rules.
  • the prompt may be used to prompt the user that the networking in the multi-screen collaboration system has changed. For example, if the second electronic device successfully establishes a Wi-Fi link with the first electronic device, a first prompt may be displayed on the display interface of the first electronic device. The first prompt is used to prompt the first electronic device to provide the second electronic device with a Wi-Fi link. The electronic device provides Wi-Fi service; a second prompt may also be displayed on the display interface of the second electronic device, and the second prompt is used to prompt that the second electronic device is accessing the Internet through the Wi-Fi service provided by the first electronic device.
  • the second electronic device after executing steps 705, 710 or 714 in Figure 7, if the second electronic device successfully establishes a Wi-Fi link with the first electronic device, it is determined that the second electronic device and the first electronic device are connected to each other. Whether the frequency band used by an electronic device for data transmission is the same as the frequency band used by the first electronic device and the router for data transmission. If the frequency band for data transmission between the second electronic device and the first electronic device is the same as the frequency band for data transmission between the first electronic device and the router, it is determined whether to adjust the frequency band between the second electronic device and the router according to the channel for data transmission between the first electronic device and the router. First electronic device for data transmission Channel.
  • the channel for data transmission between the first electronic device and the router is inconsistent with the channel for data transmission between the second electronic device and the first electronic device, it is determined to adjust the channel for data transmission between the second electronic device and the first electronic device, that is, the current multiple When the screen collaboration system is the same frequency and different channels, channel switching is performed so that the switched multi-screen collaboration system is the same frequency and same channel; otherwise, it is determined not to adjust the channel for data transmission between the second electronic device and the first electronic device, that is, the current When the multi-screen collaboration system uses the same frequency and the same channel, there is no need to adjust the channel for data transmission between the second electronic device and the first electronic device.
  • the GO in the multi-screen collaborative system can actively initiate channel switching.
  • GC will perform channel switching in response to the channel switching initiated by GO, so that the channel for data transmission between GO and GC can be switched.
  • GO and GC please refer to the relevant description of step 701 in Figure 7 and will not be repeated here.
  • the frequency band for data transmission between the mobile phone 10 and the router 30 is the same as the frequency band for data transmission between the mobile phone 10 and the tablet computer 20 (both are 5G). It is determined that there are Same frequency; the channel for data transmission between mobile phone 10 and router 30 (channel 1) is inconsistent with the channel for data transmission between mobile phone 10 and tablet computer 20 (channel 2). It is determined that the current multi-screen collaboration system is the same frequency and different channels. In the case of the same frequency and different channels, the channels for data transmission between the mobile phone 10 and the tablet computer 20 are switched, so that the multi-screen collaborative system becomes the same frequency and the same channel. If the mobile phone 10 is GO, the mobile phone 10 can actively initiate channel switching.
  • the tablet computer 20 will perform channel switching in response to the channel switching initiated by the mobile phone 10 .
  • the channel for data transmission between the mobile phone 10 and the tablet computer 20 is switched from channel 2 to channel 1, so that the multi-screen collaborative system becomes the same frequency and the same channel.
  • the connection between the second electronic device and the first electronic device can be monitored. If the channel for data transmission between the first electronic device and the first electronic device changes, determine whether the frequency band for data transmission between the second electronic device and the first electronic device is the same as that of the first electronic device.
  • the frequency band for data transmission between the second electronic device and the router is the same as the frequency band for data transmission between the second electronic device and the first electronic device and the frequency band for data transmission between the first electronic device and the router, according to the channel for data transmission between the first electronic device and the router , determine whether to adjust the channel for data transmission between the second electronic device and the first electronic device. That is, according to the data transmission channel between the first electronic device and the router, it is determined whether the current multi-screen collaboration system is the same frequency and different channels. If the current multi-screen collaboration system is the same frequency and different channels, it is determined that the second electronic device needs to be adjusted to the same frequency and different channels. A channel for electronic equipment to transmit data, making it the same frequency and same channel.
  • the channel for data transmission between the second electronic device and the first electronic device changes, it is determined whether to adjust the data transmission situation in the multi-screen collaboration system, and it can be determined in a timely manner whether it is necessary to adjust the data transmission situation in the multi-screen collaboration system. , which can effectively ensure the data transmission efficiency in the multi-screen collaborative system.
  • the first electronic device and the second electronic device after executing steps 707, 712 or 714 in Figure 7, if the first electronic device and the second electronic device successfully establish a Wi-Fi link, it is determined that the first electronic device and the second electronic device are connected to each other. Whether the frequency band used by the second electronic device for data transmission is the same as the frequency band used by the second electronic device and the router for data transmission; if the frequency band used by the second electronic device and the first electronic device for data transmission is the same as the frequency band used by the first electronic device and the router for data transmission. Similarly, based on the channel for data transmission between the second electronic device and the router, it is determined whether to adjust the channel for data transmission between the first electronic device and the second electronic device. For some specific implementations of this embodiment, please refer to the relevant descriptions of the above embodiments and will not be described again here.
  • the second electronic device Since the first electronic device is connected to the router after executing steps 705, 710 or 714 in Figure 7, the second electronic device is not connected to the router. If the second electronic device is GO at this time, the second electronic device determines When the current multi-screen collaboration system uses the same frequency but different channels, the channel for data transmission with the router in multi-screen collaboration cannot be directly obtained (i.e. The channel for data transmission between the first electronic device and the router) needs to be obtained through the first electronic device. Therefore, it is not very convenient for the second electronic device to determine whether the current multi-screen collaboration system is the same frequency and different channels, resulting in initiating active channel switching. Slower speed.
  • the first electronic device since the second electronic device is connected to the router after executing steps 707, 712 or 714 in Figure 7, the first electronic device is not connected to the router. If the first electronic device is GO at this time, the first electronic device When the device determines whether the current multi-screen collaboration system is on the same frequency but with different channels, it cannot directly obtain the channel for data transmission with the router in the multi-screen collaboration (that is, the channel for data transmission between the second electronic device and the router). It needs to use the second electronic device to transmit data to the router. The device can obtain it, so it is not very convenient for the first electronic device to judge whether the current multi-screen collaboration system is the same frequency and different channels, resulting in a slow speed of initiating active channel switching.
  • GO can be re-determined in the first electronic device and the second electronic device according to Soft-AP. For example, if the first electronic device is Soft-AP, determine the first electronic device as GO; if the second electronic device is Soft-AP, determine the second electronic device as GO.
  • the GO can directly determine the channel for data transmission with the router, and based on the channel for data transmission with the router, Determine whether to actively initiate channel switching so that the channel for data transmission between GO and the router is consistent with the channel for data transmission between GC and GO.
  • GO directly transmits data to the router and GC, it can directly obtain the data transmission information (data transmission frequency band, data transmission channel) with the router and GC, and determine whether to actively initiate channel switching based on the data transmission information, which can easily determine the current Whether the multi-screen collaboration system uses the same frequency but different channels improves the speed of determining whether to switch channels.
  • data transmission frequency band data transmission channel
  • the mobile phone 10 directly transmits data with the tablet computer 20 and the router 30 . Therefore, the data transmission information can be directly obtained, and whether to control the tablet computer 20 to perform channel switching is determined based on the data transmission information. If the tablet computer 20 is GO and the tablet computer 20 does not directly transmit data with the router 30, the tablet computer 20 cannot directly obtain the data transmission information between the mobile phone 10 and the tablet computer 20. It needs to obtain the data transmission information between the mobile phone 10 and the mobile phone 10. data transmission information with the tablet computer 20, so it takes a long time for the tablet computer 20 to obtain the data transmission information.
  • Soft-AP after re-determining GO in the first electronic device and the second electronic device, it can be conveniently determined whether the current multi-screen collaboration system is the same frequency and different channel, which improves the speed of determining whether to switch channels. .
  • step 803 determines whether the first electronic device Whether it has DBDC capabilities. If the first electronic device has DBDC capability, step 804 is executed. The first electronic device sends connection information to the second electronic device to establish a Wi-Fi link. If the first electronic device does not have the DBDC capability, execute 805 to determine whether the second electronic device has the DBDC capability. If the second electronic device has DBDC capability, step 806 is executed. The first electronic device receives the connection information of the second electronic device and establishes a Wi-Fi link.
  • step 807 is executed to disconnect from the router. If the second electronic device does not have DBDC capability, execute 808 to determine whether the theoretical peak rate of the first electronic device is greater than the theoretical peak rate of the second electronic device. If the theoretical peak rate of the first electronic device is greater than the theoretical peak rate of the second electronic device, step 809 is executed, and the first electronic device sends connection information to the second electronic device to establish a Wi-Fi link. If the theoretical peak rate of the first electronic device is not greater than the theoretical peak rate of the second electronic device, execute 810 to determine whether the theoretical peak rate of the first electronic device is less than the theoretical peak rate of the second electronic device.
  • the theoretical peak rate of the first electronic device is less than the theoretical peak rate of the second electronic device, execute 811 to receive the connection information of the second electronic device and establish a Wi-Fi link. If the first electronic device establishes a Wi-Fi link with the second electronic device, perform step 812 to disconnect from the router. If the theoretical peak rate of the first electronic device is not less than the theoretical peak rate of the second electronic device, execute 813 to send connection information to the second electronic device based on the preset rules to establish a Wi-Fi link; or based on the preset rules, Receive connection information from the second electronic device and establish a Wi-Fi link.
  • the number of electronic devices working in DBAC mode in a data transmission scenario can be reduced.
  • a scenario in which one electronic device works in DBAC mode and another electronic device works in DBDC mode in a multi-screen collaboration system can be turned into a multi-screen collaboration system.
  • FIG. 12 is a schematic structural diagram of an electronic device 100 provided by an embodiment of the present application.
  • the electronic device 100 may include a processor 110, an external memory interface 120, an internal memory 121, a universal serial bus (USB) interface 130, a charging management module 140, a power management module 141, a battery 142, and an antenna.
  • a processor 110 may include a central processing unit (CPU) for performing various functions.
  • an external memory interface 120 may include a central processing unit (C) interface 130, etc.
  • USB universal serial bus
  • a charging management module 140 may include a charging management module 140, a power management module 141, a battery 142, and an antenna.
  • Antenna 2 mobile communication module 150, wireless communication module 160, audio module 170, speaker 170A, receiver 170B, microphone 170C, headphone interface 170D, sensor module 180, button 190, motor 191, indicator 192, camera 193, display Screen 194, and subscriber identification module (subscriber identification module, SIM) card interface 195
  • the sensor module 180 may include a pressure sensor 180A, a gyro sensor 180B, an air pressure sensor 180C, a magnetic sensor 180D, an acceleration sensor 180E, a distance sensor 180F, a proximity light sensor 180G, a fingerprint sensor 180H, a temperature sensor 180J, a touch sensor 180K, and ambient light. Sensor 180L, bone conduction sensor 180M, etc.
  • the structure illustrated in the embodiment of the present invention does not constitute a specific limitation on the electronic device 100 .
  • the electronic device 100 may include more or fewer components than shown in the figures, or some components may be combined, some components may be separated, or some components may be arranged differently.
  • the components illustrated may be implemented in hardware, software, or a combination of software and hardware.
  • the processor 110 may include one or more processing units.
  • the processor 110 may include an application processor (application processor, AP), a modem processor, a graphics processing unit (GPU), and an image signal processor. (image signal processor, ISP), controller, video codec, digital signal processor (digital signal processor, DSP), baseband processor, and/or neural network processor (neural-network processing unit, NPU), etc.
  • application processor application processor, AP
  • modem processor graphics processing unit
  • GPU graphics processing unit
  • image signal processor image signal processor
  • controller video codec
  • digital signal processor digital signal processor
  • DSP digital signal processor
  • baseband processor baseband processor
  • neural network processor neural-network processing unit
  • the processor 110 may also be provided with a memory for storing instructions and data.
  • the memory in processor 110 is cache memory. This memory may hold instructions or data that have been recently used or recycled by processor 110 . If the processor 110 needs to use the instructions or data again, it can be called directly from the memory. Repeated access is avoided and the waiting time of the processor 110 is reduced, thus improving the efficiency of the system.
  • processor 110 may include one or more interfaces.
  • Interfaces may include integrated circuit (inter-integrated circuit, I1C) interface, integrated circuit built-in audio (inter-integrated circuit sound, I2S) interface, pulse code modulation (pulse code modulation, PCM) interface, universal asynchronous receiver and transmitter (universal asynchronous receiver/transmitter (UART) interface, mobile industry processor interface (MIPI), general-purpose input/output (GPIO) interface, subscriber identity module (SIM) interface, and /or universal serial bus (USB) interface, etc.
  • I1C integrated circuit
  • I2S integrated circuit built-in audio
  • PCM pulse code modulation
  • UART universal asynchronous receiver and transmitter
  • MIPI mobile industry processor interface
  • GPIO general-purpose input/output
  • SIM subscriber identity module
  • USB universal serial bus
  • the I1C interface is a bidirectional synchronous serial bus, including a serial data line (SDA) and a serial clock line (derail clock line, SCL).
  • SDA serial data line
  • SCL serial clock line
  • the I2S interface can be used for audio communication.
  • the PCM interface can also be used for audio communications to sample, quantize and encode analog signals.
  • audio Module 170 and wireless communication module 160 may be coupled through a PCM bus interface.
  • the UART interface is a universal serial data bus used for asynchronous communication.
  • the bus can be a bidirectional communication bus. It converts the data to be transmitted between serial communication and parallel communication.
  • a UART interface is generally used to connect the processor 110 and the wireless communication module 160 .
  • the processor 110 communicates with the Bluetooth module in the wireless communication module 160 through the UART interface to implement the Bluetooth function.
  • the MIPI interface can be used to connect the processor 110 with peripheral devices such as the display screen 194 and the camera 193 .
  • MIPI interfaces include camera serial interface (CSI), display serial interface (DSI), etc.
  • the processor 110 and the camera 193 communicate through the CSI interface to implement the shooting function of the electronic device 100 .
  • the processor 110 and the display screen 194 communicate through the DSI interface to implement the display function of the electronic device 100 .
  • the GPIO interface can be configured through software.
  • the GPIO interface can be configured as a control signal or as a data signal.
  • the GPIO interface can be used to connect the processor 110 with the camera 193, display screen 194, wireless communication module 160, audio module 170, sensor module 180, etc.
  • the GPIO interface can also be configured as an I1C interface, I2S interface, UART interface, MIPI interface, etc.
  • the USB interface 130 is an interface that complies with the USB standard specification, and may be a Mini USB interface, a Micro USB interface, a USB Type C interface, etc.
  • the USB interface 130 can be used to connect a charger to charge the electronic device 100, and can also be used to transmit data between the electronic device 100 and peripheral devices. It can also be used to connect headphones to play audio through them. This interface can also be used to connect other electronic devices 100, such as AR devices, etc.
  • the interface connection relationships between the modules illustrated in the embodiment of the present invention are only schematic illustrations and do not constitute a structural limitation of the electronic device 100 .
  • the electronic device 100 may also adopt different interface connection methods in the above embodiments, or a combination of multiple interface connection methods.
  • the charging management module 140 is used to receive charging input from the charger.
  • the charger can be a wireless charger or a wired charger.
  • the power management module 141 is used to connect the battery 142, the charging management module 140 and the processor 110.
  • the power management module 141 receives input from the battery 142 and/or the charging management module 140, and supplies power to the processor 110, the internal memory 121, the display screen 194, the camera 193, the wireless communication module 160, and the like.
  • the power management module 141 can also be used to monitor battery capacity, battery cycle times, battery health status (leakage, impedance) and other parameters.
  • the wireless communication function of the electronic device 100 can be implemented through the antenna 1, the antenna 2, the mobile communication module 150, the wireless communication module 160, the modem processor and the baseband processor.
  • Antenna 1 and Antenna 2 are used to transmit and receive electromagnetic wave signals.
  • Each antenna in electronic device 100 may be used to cover a single or multiple communication frequency bands. Different antennas can also be reused to improve antenna utilization. For example: Antenna 1 can be reused as a diversity antenna for a wireless LAN. In other embodiments, antennas may be used in conjunction with tuning switches.
  • the mobile communication module 150 can provide solutions for wireless communication including 2G/3G/4G/5G applied on the electronic device 100 .
  • the mobile communication module 150 may include at least one filter, switch, power amplifier, low noise amplifier (LNA), etc.
  • the mobile communication module 150 can receive electromagnetic waves through the antenna 1, perform filtering, amplification and other processing on the received electromagnetic waves, and transmit them to the modem processor for demodulation.
  • the mobile communication module 150 can also amplify the signal modulated by the modem processor and convert it into electromagnetic waves through the antenna 1 for radiation.
  • a modem processor may include a modulator and a demodulator.
  • the modulator is used to modulate the low-frequency baseband signal to be sent into a medium-high frequency signal.
  • the demodulator is used to demodulate the received electromagnetic wave signal into a low-frequency baseband signal.
  • the demodulator then transmits the demodulated low-frequency baseband signal to the baseband processor for processing.
  • the application processor outputs sound information through an audio device (not limited to speaker 170A, receiver 170B, etc.) number, or display an image or video through the display screen 194.
  • the modem processor may be a stand-alone device.
  • the modem processor may be independent of the processor 110 and may be provided in the same device as the mobile communication module 150 or other functional modules.
  • the wireless communication module 160 can provide applications on the electronic device 100 including wireless local area networks (WLAN), Bluetooth (bluetooth, BT), global navigation satellite system (global navigation satellite system, GNSS), frequency modulation (frequency modulation, FM), near field communication technology (NFC), infrared technology (infrared, IR) and other wireless communication solutions.
  • the wireless communication module 160 may be one or more devices integrating at least one communication processing module.
  • the wireless communication module 160 receives electromagnetic waves via the antenna 2 , frequency modulates and filters the electromagnetic wave signals, and sends the processed signals to the processor 110 .
  • the wireless communication module 160 can also receive the signal to be sent from the processor 110, frequency modulate it, amplify it, and convert it into electromagnetic waves through the antenna 2 for radiation.
  • the electronic device 100 implements display functions through a GPU, a display screen 194, an application processor, and the like.
  • the GPU is a microprocessor that serves exception reminders and is connected to the display screen 194 and the application processor. GPUs are used to perform mathematical and geometric calculations for graphics rendering.
  • Processor 110 may include one or more GPUs that execute program instructions to generate or alter display information.
  • the display screen 194 is used to display images, videos, etc.
  • Display 194 includes a display panel.
  • the display panel can use a liquid crystal display (LCD), an organic light-emitting diode (OLED), an active matrix organic light emitting diode or an active matrix organic light emitting diode (active-matrix organic light emitting diode).
  • LCD liquid crystal display
  • OLED organic light-emitting diode
  • AMOLED organic light-emitting diode
  • FLED flexible light-emitting diode
  • Miniled MicroLed, Micro-oLed, quantum dot light emitting diode (QLED), etc.
  • the electronic device 100 may include 1 or N display screens 194, where N is a positive integer greater than 1.
  • the electronic device 100 can implement the shooting function through an ISP, a camera 193, a video codec, a GPU, a display screen 194, an application processor, and the like.
  • Camera 193 is used to capture still images or video.
  • the object passes through the lens to produce an optical image that is projected onto the photosensitive element.
  • the photosensitive element can be a charge coupled device (CCD) or a complementary metal-oxide-semiconductor (CMOS) phototransistor.
  • CMOS complementary metal-oxide-semiconductor
  • the photosensitive element converts the optical signal into an electrical signal, and then passes the electrical signal to the ISP to convert it into a digital image signal.
  • ISP outputs digital image signals to DSP for processing.
  • DSP converts digital image signals into standard RGB, YUV and other format image signals.
  • the electronic device 100 may include 1 or N cameras 193, where N is a positive integer greater than 1.
  • Digital signal processors are used to process digital signals. In addition to digital image signals, they can also process other digital signals. For example, when the electronic device 100 selects a frequency point, the digital signal processor is used to perform Fourier transform on the frequency point energy.
  • Video codecs are used to compress or decompress digital video.
  • Electronic device 100 may support one or more video codecs. In this way, the electronic device 100 can play or record videos in multiple encoding formats, such as moving picture experts group (MPEG) 1, MPEG2, MPEG3, MPEG4, etc.
  • MPEG moving picture experts group
  • MPEG2 MPEG2, MPEG3, MPEG4, etc.
  • NPU is a neural network (NN) computing processor.
  • NN neural network
  • Intelligent cognitive applications of the electronic device 100 can be implemented through the NPU, such as image recognition, face recognition, speech recognition, text understanding, etc.
  • the internal memory 121 may include one or more random access memories (RAM) and one or more non-volatile memories (NVM). In this embodiment of the present application, the internal memory 121 may also be called memory. In some embodiments, a processor (such as a CPU) may store the display time of each display of the guidance information and the cumulative number of times the guidance information is displayed in the memory.
  • RAM random access memories
  • NVM non-volatile memories
  • the external memory interface 120 can be used to connect an external non-volatile memory to expand the storage capacity of the electronic device 100 .
  • the external non-volatile memory communicates with the processor 110 through the external memory interface 120 to implement the data storage function. For example, save music, video and other files in external non-volatile memory.
  • the electronic device 100 can implement audio functions through the audio module 170, the speaker 170A, the receiver 170B, the microphone 170C, the headphone interface 170D, and the application processor. Such as music playback, recording, etc.
  • the audio module 170 is used to convert digital audio information into analog audio signal output, and is also used to convert analog audio input into digital audio signals. Audio module 170 may also be used to encode and decode audio signals.
  • Speaker 170A also called “speaker” is used to convert audio electrical signals into sound signals.
  • the electronic device 100 can listen to music through the speaker 170A, or listen to hands-free calls.
  • Receiver 170B also called “earpiece” is used to convert audio electrical signals into sound signals.
  • the electronic device 100 answers a call or a voice message, the voice can be heard by bringing the receiver 170B close to the human ear.
  • Microphone 170C also called “microphone” or “microphone” is used to convert sound signals into electrical signals. When making a call or sending a voice message, the user can speak close to the microphone 170C with the human mouth and input the sound signal to the microphone 170C.
  • the electronic device 100 may be provided with at least one microphone 170C. In other embodiments, the electronic device 100 may be provided with two microphones 170C, which in addition to collecting sound signals, may also implement a noise reduction function. In other embodiments, the electronic device 100 can also be provided with three, four or more microphones 170C to collect sound signals, reduce noise, identify sound sources, and implement directional recording functions, etc.
  • the headphone interface 170D is used to connect wired headphones.
  • the headphone interface 170D can be a USB interface 130, or a 3.5mm open mobile terminal platform (OMTP) standard interface, or a cellular telecommunications industry association of the USA (CTIA) standard interface. .
  • OMTP open mobile terminal platform
  • CTIA cellular telecommunications industry association of the USA
  • the pressure sensor 180A is used to sense pressure signals and can convert the pressure signals into electrical signals.
  • pressure sensor 180A may be disposed on display screen 194 .
  • pressure sensors 180A there are many types of pressure sensors 180A, such as resistive pressure sensors, inductive pressure sensors, capacitive pressure sensors, etc.
  • a capacitive pressure sensor may include at least two parallel plates of conductive material.
  • the electronic device 100 determines the intensity of the pressure based on the change in capacitance.
  • the electronic device 100 detects the intensity of the touch operation according to the pressure sensor 180A.
  • the electronic device 100 may also calculate the touched position based on the detection signal of the pressure sensor 180A.
  • the gyro sensor 180B may be used to determine the motion posture of the electronic device 100 .
  • the desktop card displayed on the display interface can be updated based on the positioning of the gyroscope sensor 180B.
  • Air pressure sensor 180C is used to measure air pressure. In some embodiments, the electronic device 100 calculates the altitude through the air pressure value measured by the air pressure sensor 180C to assist positioning and navigation.
  • Magnetic sensor 180D includes a Hall sensor.
  • the electronic device 100 may utilize the magnetic sensor 180D to detect opening and closing of the flip holster.
  • the electronic device 100 may detect the opening and closing of the flip according to the magnetic sensor 180D. Then, based on the detected opening and closing status of the leather case or the opening and closing status of the flip cover, features such as automatic unlocking of the flip cover are set.
  • the acceleration sensor 180E can detect the acceleration of the electronic device 100 in various directions (generally three axes). When the electronic device 100 is stationary, the magnitude and direction of gravity can be detected. It can also be used to identify the posture of the electronic device 100 and be used in horizontal and vertical screen switching, pedometer and other applications.
  • Distance sensor 180F for measuring distance.
  • Electronic device 100 can measure distance via infrared or laser. In some embodiments, when shooting a scene, the electronic device 100 may utilize the distance sensor 180F to measure distance to achieve fast focusing.
  • Proximity light sensor 180G may include, for example, a light emitting diode (LED) and a light detector, such as a photodiode.
  • the light emitting diode may be an infrared light emitting diode.
  • the electronic device 100 emits infrared light outwardly through the light emitting diode.
  • Electronic device 100 uses photodiodes to detect infrared reflected light from nearby objects. When sufficient reflected light is detected, it can be determined that there is an object near the electronic device 100 .
  • the ambient light sensor 180L is used to sense ambient light brightness.
  • the electronic device 100 can adaptively adjust the brightness of the display screen 194 according to the perceived ambient light brightness.
  • the ambient light sensor 180L can also be used to automatically adjust the white balance when taking pictures.
  • the ambient light sensor 180L can also cooperate with the proximity light sensor 180G to detect whether the electronic device 100 is in the pocket to prevent accidental touching.
  • Fingerprint sensor 180H is used to collect fingerprints.
  • the electronic device 100 can use the collected fingerprint characteristics to achieve fingerprint unlocking, access to application locks, fingerprint photography, fingerprint answering of incoming calls, etc.
  • Temperature sensor 180J is used to detect temperature.
  • Touch sensor 180K also known as "touch device”.
  • the touch sensor 180K can be disposed on the display screen 194.
  • the touch sensor 180K and the display screen 194 form a touch screen, which is also called a "touch screen”.
  • the touch sensor 180K is used to detect a touch operation on or near the touch sensor 180K.
  • the touch sensor can pass the detected touch operation to the application processor to determine the touch event type.
  • Visual output related to the touch operation may be provided through display screen 194 .
  • the touch sensor 180K may also be disposed on the surface of the electronic device 100 at a location different from that of the display screen 194 .
  • the target pasting application may be determined based on the user's touch operation on the touch sensor 180K.
  • Bone conduction sensor 180M can acquire vibration signals.
  • the bone conduction sensor 180M can acquire the vibration signal of the vibrating bone mass of the human body's vocal part.
  • the bone conduction sensor 180M can also contact the human body's pulse and receive blood pressure beating signals.
  • the bone conduction sensor 180M can also be provided in an earphone and combined into a bone conduction earphone.
  • the audio module 170 can analyze the voice signal based on the vibration signal of the vocal vibrating bone obtained by the bone conduction sensor 180M to implement the voice function.
  • the application processor can analyze the heart rate information based on the blood pressure beating signal acquired by the bone conduction sensor 180M to implement the heart rate detection function.
  • the buttons 190 include a power button, a volume button, etc.
  • Key 190 may be a mechanical key. It can also be a touch button.
  • the electronic device 100 may receive key inputs and generate key signal inputs related to user settings and function control of the electronic device 100 .
  • the motor 191 can generate vibration prompts.
  • the motor 191 can be used for vibration prompts for incoming calls and can also be used for touch vibration feedback.
  • touch operations for different applications can correspond to different vibration feedback effects.
  • the motor 191 can also respond to different vibration feedback effects for touch operations in different areas of the display screen 194 .
  • Different application scenarios such as time reminders, receiving information, alarm clocks, games, etc.
  • the touch vibration feedback effect can also be customized.
  • the indicator 192 may be an indicator light, which may be used to indicate charging status, power changes, or may be used to indicate messages, missed calls, notifications, etc.
  • the SIM card interface 195 is used to connect a SIM card.
  • the SIM card can be connected to or separated from the electronic device 100 by inserting it into the SIM card interface 195 or pulling it out from the SIM card interface 195 .
  • the electronic device 100 can support 1 or N SIM card interfaces, where N is a positive integer greater than 1.
  • SIM card interface 195 can support Nano SIM card, Micro SIM card, SIM card, etc. Multiple frame cards can be inserted into the same SIM card interface 195 at the same time. The types of the multi-frame cards may be the same or different.
  • the SIM card interface 195 is also compatible with different types of SIM cards.
  • the SIM card interface 195 is also compatible with external memory cards.
  • the electronic device 100 interacts with the network through the SIM card to implement functions such as calls and data communications.
  • the electronic device 100 uses an eSIM, that is, an embedded SIM card.
  • the eSIM card can be embedded in the electronic device 100 and cannot be separated from the electronic device 100 .
  • This embodiment also provides a computer storage medium that stores computer instructions.
  • the electronic device 100 causes the electronic device 100 to execute the above related method steps to implement the data transmission in the above embodiment. management methods.
  • This embodiment also provides a computer program product.
  • the computer program product When the computer program product is run on a computer, it causes the computer to perform the above related steps to implement the data transmission management method in the above embodiment.
  • inventions of the present application also provide a device.
  • This device may be a chip, a component or a module.
  • the device may include a connected processor and a memory.
  • the memory is used to store computer execution instructions.
  • the processor can execute computer execution instructions stored in the memory, so that the chip executes the data transmission management method in each of the above method embodiments.
  • the electronic equipment, computer storage media, computer program products or chips provided in this embodiment are all used to execute the corresponding methods provided above. Therefore, the beneficial effects they can achieve can be referred to the corresponding methods provided above. The beneficial effects of the method will not be repeated here.
  • the disclosed devices and methods can be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of modules or units is only a logical function division.
  • there may be other division methods for example, multiple units or components may be combined. Either it can be integrated into another device, or some features can be ignored, or not implemented.
  • the coupling or direct coupling or communication connection between each other shown or discussed may be through some interfaces, and the indirect coupling or communication connection of the devices or units may be in electrical, mechanical or other forms.
  • the unit described as a separate component may or may not be physically separate.
  • the component shown as a unit may be one physical unit or multiple physical units, that is, it may be located in one place, or it may be distributed to multiple different places. Some or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application can be integrated into one processing unit, each unit can exist physically alone, or two or more units can be integrated into one unit.
  • the above integrated units can be implemented in the form of hardware or software functional units.
  • the integrated unit is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a readable storage medium.
  • the technical solutions of the embodiments of the present application are essentially or contribute to the existing technology, or all or part of the technical solution can be embodied in the form of a software product, and the software product is stored in a storage medium , including several instructions to cause a device (which can be a microcontroller, a chip, etc.) or a processor to execute all or part of the steps of the methods of various embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk and other media that can store program code. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种数据传输管理方法、电子设备及存储介质,涉及智能终端领域。所述方法应用于与无线接入点之间存在第一链路的第一电子设备。所述方法包括:响应于用户操作,确定与第一电子设备之间进行数据传输的第二电子设备,第二电子设备和无线接入点之间存在第二链路;建立用于和第二电子设备进行数据传输的第三链路;当满足第一预设条件时,建立与第二电子设备连接的第四链路并断开第一链路;或当满足第一预设条件时,建立与第二电子设备连接的第四链路并保持第一链路;所述第三链路所处的频段和预设频段不同。本申请实施例可以提高数据传输的效率。

Description

数据传输管理方法、电子设备及存储介质
相关申请的交叉引用
本申请要求在2022年06月11日提交中国专利局、申请号为202210658493.2、申请名称为“数据传输管理方法、电子设备及存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及智能终端技术领域,尤其涉及一种数据传输管理方法、电子设备及存储介质。
背景技术
基于分布式技术,多屏协同功能能够实现跨系统、跨设备协同。通过多屏协同功能,将一电子设备和其他电子设备建立协同连接之后,可以实现资源快速共享,可利用平板/电脑的运算能力和专业系统能力,在平板/电脑上操作手机,浏览手机界面、接听手机音视频通话等协同控制操作。但是由于电子设备的设备性能限制,可能会导致多屏协同系统中数据传输性能(如电子设备之间数据传输性能、电子设备与接入点之间的数据传输性能)较差。
发明内容
鉴于以上内容,有必要提供一种数据传输管理方法、电子设备及存储介质,以解决DBAC场景(DBSC场景)带来的数据传输较差的问题。
第一方面,本申请实施例提供一种数据传输管理方法,所述方法应用于第一电子设备,所述第一电子设备和无线接入点之间存在第一链路,所述方法包括:响应于用户操作,确定与所述第一电子设备之间进行数据传输的第二电子设备,所述第二电子设备和所述无线接入点之间存在第二链路;建立用于和所述第二电子设备进行数据传输的第三链路;当所述第一电子设备和所述第二电子设备中有一电子设备不具备第一能力,且当满足第一预设条件时,建立与所述第二电子设备连接的第四链路并断开所述第一链路,所述第二电子设备通过所述第四链路为所述第一电子设备提供无线通信网络;或当满足第一预设条件时,建立与所述第二电子设备连接的第四链路并保持所述第一链路,所述第一电子设备通过所述第四链路为所述第二电子设备提供无线通信网络;所述第三链路所处的频段和预设频段不同。
上述技术方案,可以改变传统的组网模式,提高第一电子设备与第二电子设备构建的系统中数据传输性能,提高了第一电子设备与第二电子设备进行数据传输的效率。
在一种实现方式中,所述满足第一预设条件包括:所述第一电子设备和所述第二电子设备中至少有一电子设备不具备第一能力。上述技术方案,可以在第一电子设备和第二电子设备都具备第一能力时,传输性能好时,不对传统的组网模式进行改变;在第一电子设备或第二电子设备不具备第一能力时,对传统的组网模式进行改变,可以改善传输性能。
在一种实现方式中,所述满足第一预设条件还包括:所述第一链路所处的频段和所述第二链路所处的频段中至少有一频段为所述预设频段。上述技术方案,进一步根据第一链路和第二链路所处的频段判断是否对传统的组网模式进行改变,可以使得做出的决策更具有准确 性。
在一种实现方式中,所述第一能力为双频双发能力。
在一种实现方式中,所述不具备第一能力包括采用双频自适应并发的方式进行传输。
在一种实现方式中,所述预设频段为2.4GHz,所述第三链路所处的频段为5GHz。
在一种实现方式中,所述第三链路为P2P链路。
在一种实现方式中,所述建立与所述第二电子设备连接的第四链路并保持所述第一链路包括:当所述第一电子设备具备所述第一能力且所述第二电子设备不具备所述第一能力时,或者当所述第一电子设备和所述第二电子设备都不具备所述第一能力且所述第二电子设备的理论峰值速率小于所述第一电子设备的理论峰值速率时,建立与所述第二电子设备连接的第四链路并保持所述第一链路。上述技术方案,可以准确地确定是否建立与所述第二电子设备的第四链路并保持第一链路,可以有效地减少数据传输场景中使用双频自适应并发模式工作的电子设备个数。
在一种实现方式中,所述建立与所述第二电子设备连接的第四链路并断开所述第一链路连接包括:当所述第一电子设备不具备所述第一能力且所述第二电子设备具备所述第一能力时,或当所述第一电子设备和所述第二电子设备都不具备所述第一能力且所述第二电子设备的理论峰值速率大于所述第一电子设备的理论峰值速率时,建立与所述第二电子设备连接的第四链路并断开所述第一链路。上述技术方案,可以准确地确定是否建立与所述第二电子设备的第四链路并断开所述第一链路,可以有效地减少数据传输场景中使用双频自适应并发模式工作的电子设备个数。
在一种实现方式中,所述建立与所述第二电子设备连接的第四链路并断开所述第一链路之后,所述方法还包括:若所述第二链路所处的频段与所述第三链路所处的频段相同且所述第二链路工作的信道与所述第三链路工作的信道不同,切换所述第二链路工作的信道,所述第二链路切换后的信道与所述第三链路的信道相同。上述技术方案,通过将第二链路和第三链路之间的同频异信道变为同屏同信道,可以进一步提高数据传输的效率。
在一种实现方式中,所述方法还包括:将所述第二电子设备确定为组织者,所述组织者用于发起所述第二链路工作信道的切换。上述技术方案,用于将作为模拟路由器的第二电子设备确定为组织者,可以便利地确定当前的系统是否为同频异信道,提高了确定是否信道切换的速度。
在一种实现方式中,所述建立与所述第二电子设备连接的第四链路并保留所述第一链路之后,所述方法还包括:若所述第一链路所处的频段与所述第三链路所处的频段相同且所述第一链路工作的信道与所述第三链路工作的信道不同,切换所述第一链路工作的信道,所述第一链路切换后的信道与所述第三链路的信道相同。上述技术方案,通过将第一链路和第三链路之间的同频异信道变为同屏同信道,可以进一步提高数据传输的效率。
在一种实现方式中,所述方法还包括:将所述第一电子设备确定为组织者,所述组织者用于发起所述第一链路工作信道的切换。上述技术方案,用于将作为模拟路由器的第一电子设备确定为组织者,可以便利地确定当前的系统是否为同频异信道,提高了确定是否信道切换的速度。
第二方面,本申请实施例提供一种电子设备,该电子设备包括存储器和处理器;该存储器,用于存储程序指令;该处理器于读取存储器中存储的程序指令,以实现如上述的数据传输管理方法。
第三方面,本申请实施例提供一种计算机可读存储介质,该计算机可读存储介质中存储有计算机可读指令,该计算机可读指令被处理器执行时实现如上述的数据传输管理方法。
另外,第二方面和第三方面所带来的技术效果可参见上述方法部分各设计的方法相关的描述,此处不再赘述。
附图说明
图1为本申请实施例提供的一种多屏协同系统的场景示意图。
图2为本申请实施例提供的一种多屏协同系统的场景示意图。
图3为本申请实施例提供的一种多屏协同系统的场景示意图。
图4为本申请实施例提供的一种电子设备状态的示意图。
图5为本申请实施例提供的一种电子设备数据传输的示意图。
图6为本申请实施例提供的一种多屏协同系统的场景示意图。
图7为本申请实施例提供的一种数据传输管理方法的流程示意图。
图8为本申请实施例提供的一种多屏协同系统的示意图。
图9为本申请实施例提供的一种多屏协同系统的示意图。
图10为本申请实施例提供的一种多屏协同系统的示意图。
图11为本申请实施例提供的一种数据传输管理方法的流程示意图。
图12为本申请实施例提供的一种电子设备的结构示意图。
具体实施方式
以下,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本申请实施例的描述中,“示例性”、“或者”、“例如”等词用于表示作例子、例证或说明。本申请实施例中被描述为“示例性”或者“例如”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用“示例性”、“或者”、“例如”等词旨在以具体方式呈现相关概念。
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请中的技术领域的技术人员通常理解的含义相同。本申请的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请。应理解,本申请中除非另有说明,“/”表示或的意思。例如,A/B可以表示A或B。本申请中的“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系。例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B三种情况。“至少一个”是指一个或者多个。“多个”是指两个或多于两个。例如,a、b或c中的至少一个,可以表示:a,b,c,a和b,a和c,b和c,a、b和c七种情况。应当理解的是,本文的流程图中所示步骤的顺序可以改变,某些也可以省略。
基于分布式技术,多屏协同功能能够实现跨系统、跨设备协同。通过多屏协同功能,将一电子设备和其他电子设备建立协同连接之后,可以实现资源快速共享。
可以理解的是,本申请中的电子设备可以是手机、平板电脑、桌面型计算机、膝上型计算机、手持计算机、笔记本电脑、超级移动个人计算机(ultra-mobile personal computer,UMPC)、上网本,以及蜂窝电话、个人数字助理(personal digital assistant,PDA)、人工智能(artificial intelligence,AI)设备、可穿戴式设备、车载设备、智能家居设备和/或智慧城市设备等电子设 备。本申请实施例对该电子设备的具体形态不作特殊限制。
两个电子设备之间可以通过对等网络(peer-to-peer networking,P2P)连接建立协同进行通信。在建立协同的同时,每个电子设备也可以各自作为站点(Station,STA)通过一个无线接入点设备(AccessPoint,AP,例如路由器)连接无线局域网(Wireless Local Area Network,WLAN)进行上网。例如,如图1所示。图1为本申请实施例提供的一种多屏协同系统的场景示意图,在图1中手机10、平板电脑20、路由器30构成多屏协同系统,其中手机10与平板电脑20之间建立协同进行通信(通过P2P链路进行通信)、路由器30通过无线通信链路(Wireless Fidelity链路,Wi-Fi链路)分别为手机10和平板电脑20提供无线通信网络。然而,由于电子设备的设备性能限制,可能会导致多屏协同系统中数据传输性能(如电子设备之间数据传输性能、电子设备与接入点设备之间的数据传输性能)较差。
电子设备的无线通信技术(Wireless Fidelity,Wi-Fi)模块性能由电子设备的硬件结构进行决定,Wi-Fi包括2.4GHz和5GHz两个频段。Wi-Fi模块可以在2.4GHz和/或5GHz两个频段上进行工作。硬件结构至少包括基带处理模块、射频(RadioFrequency,RF)前端等,基带处理模块可以用于支持Wi-Fi模块在不同频段上进行工作,RF前端可以用于实现信号的收发,如实现Wi-Fi模块在2.4GHz频段上信号的收发、实现Wi-Fi模块在5GHz频段上信号的收发。
一般的电子设备的硬件结构中通常包括两个完整的基带处理模块和一个RF前端。电子设备使用两个基带处理模块和一个RF前端(该RF前端要按照时间片的划分切换频段)进行数据传输的情形被称为双频单发(Dual Band Single Concurrent,DBSC)模式,或者也可以被称为双频自适应并发(Dual Band Adaptive Concurrent,DBAC),下面以被称为DBAC模式为例进行说明。例如,两个基带处理模块可分别支持Wi-Fi模块在2.4GHz的频段上进行工作,和在5GHz的频段上进行工作。RF前端可以选择一个频段进行工作,实现在单频段上的数据传输,如RF前端可以选择工作在2.4GHz频段上进行数据传输,或者,可以选择工作在5GHz频段上进行数据传输。由于电子设备只有一个RF前端,所以该电子设备在同一时间段内只能选择工作在一种频段上进行数据传输。该电子设备可以通过RF前端频段切换(按照时间片的划分),换一个频段进行数据传输,通过RF前端频段切换,可以实现不同时分的双频数据传输,该种数据传输的情形被称为DBAC模式。例如,一电子设备进行数据传输的情形为DBAC模式(下文中简称为一电子设备为DBAC模式),该电子设备在5GHz频段上进行数据传输时,可以通过RF前端的频段切换,在2.4GHz频段上进行数据传输,实现在不同时分的双频数据传输。有些电子设备的硬件结构中可以包括两个完整的基带处理模块和两个RF前端。电子设备同时使用两个基带处理模块和两个RF前端进行数据传输的情形被称为双频双发(Dual Band Dual Concurrent,DBDC)模式(下文中简称为一电子设备为DBDC模式)。两个基带处理模块分别支持Wi-Fi模块在2.4GHz的频段上进行工作,和在5GHz的频段上进行工作。两个RF前端分别选择工作在2.4GHz频段上进行数据传输和工作在5GHz频段上进行数据传输,可以实现相同时分的双频数据传输。也可以是说,一电子设备为DBDC模式,由于该电子设备有两个RF前端,所以该电子设备可以同时工作在5GHz频段上和在2.4GHz频段上进行数据传输,实现相同时分的双频数据传输。
2.4GHz频段具有穿墙能力强的特点,为保证信号稳定,市面上的单频路由器通常只支持在2.4GHz频段上进行工作,这种情况下电子设备是在2.4GHz频段上与单频路由器进行数据传输,以连接WLAN实现上网。市面上的双频路由器可以同时支持在2.4GHz频段上工作和 在5GHz频段上进行工作,这种情况下电子设备可以选择在2.4GHz频段上与双频路由器进行数据传输,也可以选择在5GHz频段上与双频路由器进行数据传输。但是由于2.4GHz频段的覆盖范围比5GHz频段的覆盖范围大,双频路由器的全部覆盖区域中,5GHz频段未覆盖的范围较大,所以在与电子设备构建的多屏协同系统中,电子设备可以在2.4GHz或5GHz频段上与双频路由器进行数据传输,以连接WLAN实现上网。
由于5GHz频段具有传输效率快的特点,建立协同连接的两个电子设备之间可以在5GHz频段上进行数据传输。
根据上述分析,所以在多屏协同系统中,建立协同的两个电子设备之间可以在5GHz频段上进行数据传输,而两个电子设备中每个电子设备可以在2.4GHz或5GHz频段上与路由器进行数据传输。
若一多屏协同系统中电子设备之间进行数据传输的频段与电子设备与路由器之间进行数据传输的频段不同,该多屏协同系统的数据传输情形被称之为异频异信道。若一多屏协同系统中电子设备之间进行数据传输的频段与电子设备分别与路由器之间进行数据传输的频段相同,该多屏协同系统的数据传输情形被称之为同频,可以包括同频同信道和同频异信道。通过切换信道,同频同信道和同频异信道之间可以相互转换。在同频同信道中进行数据传输的效率,大于在同频异信道中进行数据传输的效率。
例如,如图2所示,在多屏协同系统中建立协同的手机10与平板电脑20之间通过5GHz频段进行数据传输、手机10与路由器30之间或平板电脑20与路由器30之间通过2.4GHz频段进行数据传输,该多屏协同系统的数据传输情形被称为异频异信道。
例如,如图3所示,在多屏协同系统中建立协同的手机10与平板电脑20之间、手机10与路由器30之间和平板电脑20与路由器30之间都通过5GHz频段进行数据传输,该多屏协同系统的数据传输情形被称为同频。若手机10与平板电脑20、手机10与路由器30、平板电脑20与路由器30之间的通信信道都相同,该多屏协同系统的数据传输情形被称为同频同信道;否则,该多屏协同系统的数据传输情形被称为同频异信道。
只有一个RF前端的电子设备对应的多屏协同系统的数据传输情形为异频异信道的情况下,该电子设备需要使用DBAC模式进行数据传输。也就是说,只有一个RF前端的电子设备对应的多屏协同系统的数据传输情形为异频异信道时,该电子设备需要进入DBAC模式,通过在划分的不同时间片中不断切换RF前端的工作频段,实现与路由器的数据传输,或者实现与另一个电子设备的数据传输。电子设备为DBAC模式时,由于时间片的划分,电子设备可以包括三种状态:P2P时间片状态、频段切换状态、STA时间片状态,电子设备可以按照一定顺序在这三个状态中进行切换。其中,P2P时间片状态用于该电子设备与建立协同连接的另一电子设备进行数据传输,例如,可以通过5GHz频段进行数据传输。STA时间片状态,用于该电子设备与路由器进行数据传输,例如,可以通过2.4GHz频段进行数据传输。例如,如图4所示,电子设备从P2P时间片状态切换至STA时间片状态需要一定的切换时间,在切换过程中,电子设备处于频段切换状态,如处于频段切换1状态。电子设备从STA时间片状态切换至P2P时间片状态也需要一定的切换时间。在切换过程中,电子设备同样处于频段切换状态,如处于频段切换2状态。电子设备处于频段切换1状态的时间可以与处于频段切换2状态的时间相同,也可以不同,在此不做任何限定。P2P时间片状态和STA时间片状态的持续时间可以根据实际需求进行设置,可以设置为相同,也可以设置为不同,在此不做任何限定。
可以理解的是,图4所示的电子设备状态的示意图仅做举例说明,不构成任何限制,例如,在本申请的一些实施例中,STA时间片可以在P2P时间片之前。同时,不同的电子设备中的P2P时间片状态、STA时间片状态、频段切换1状态、频段切换2状态的持续时间可以相同,也可以不同,在此不做任何限定。
若多屏协同系统中建立协同的一个电子设备为DBAC模式(如电子设备1),另一个电子设备为DBDC模式(如电子设备2),且该多屏协同系统的数据传输情形为异频异信道。如图5所示,当电子设备1处于P2P时间片状态时,电子设备1与电子设备2之间可以进行数据传输,电子设备1与路由器之间不可以进行数据传输。当电子设备1处于频段切换1状态时,电子设备1与电子设备2之间和电子设备1与路由器之间都不可以进行数据传输。当电子设备1处于STA时间片状态时,电子设备1与电子设备2之间不可以进行数据传输,电子设备1与路由器之间可以进行数据传输。当电子设备1处于频段切换2状态时,电子设备1与电子设备2之间和电子设备1与路由器之间都不可以进行数据传输。电子设备2与路由器之间的数据传输在图5中未示出,可以理解的是,电子设备2为DBDC模式,电子设备2可以同时在2.4GHz频段和5GHz频段上工作进行数据传输,所以电子设备2可以同时进行实现与电子设备1之间的数据传输和与路由器之间的数据传输,无需如电子设备1一样进行状态切换。
也就是说,当多屏协同系统中建立协同的一个电子设备为DBAC模式,另一个电子设备为DBDC模式时,只有在为DBAC模式的电子设备处于P2P时间片状态时,两个电子设备之间才能进行数据传输,否则,两个电子设备之间不能进行数据传输。在为DBAC模式的电子设备处于STA时间片状态时,该电子设备才能与路由器之间进行数据传输。由两个不同模式的电子设备建立的多屏协同系统中,路由器与为DBAC模式的电子设备进行数据传输时,需要等待为DBAC模式的电子设备处于STA时间片状态,也就是说,为DBAC模式的电子设备处于其它状态(非STA时间片状态的状态)时,路由器不能与为DBAC模式的电子设备进行数据传输;为DBDC模式的电子设备与为DBAC模式的电子设备进行数据传输时,需要等待为DBAC模式的电子设备处于STA时间片状态,也就是说,为DBAC模式的电子设备处于其它状态(非STA时间片状态的状态)时,为DBDC模式的电子设备不能与为DBAC模式的电子设备进行数据传输,导致数据传输效率较差。
若多屏协同系统中建立协同的两个电子设备都为DBAC模式,且该多屏协同系统的数据传输情形为异频异信道时,两个电子设备同时处于P2P时间片状态时,两个电子设备之间可以进行数据传输。例如,如图6所示,一多屏协同系统中手机10与平板电脑20都为DBAC模式,且该多屏协同系统的数据传输情形为异频异信道。当手机10与平板电脑20同时处于P2P时间片状态时,手机10与平板电脑20之间可以进行数据传输。当手机10与平板电脑20并非同时处于P2P时间片时,手机10与平板电脑20之间不可以进行数据传输。例如,当手机10处于P2P时间片状态但平板电脑20处于频段切换1状态时,手机10与平板电脑20之间不可以进行数据传输;平板电脑20处于P2P时间片但手机10处于频段切换2时,手机10与平板电脑20之间不可以进行数据传输。可以理解的是,当手机10处于STA时间片状态时,手机10与路由器之间可以进行数据传输。当平板电脑20处于STA时间片状态时,平板电脑20与路由器之间可以进行数据传输。
也就是说,当多屏协同系统中建立协同的两个电子设备都为DBAC模式,且该多屏协同系统的数据传输情形为异频异信道时,只有在两个电子设备都处于P2P时间片状态时,两个电子设备之间才能进行数据传输,否则,两个电子设备之间不能进行数据传输。一电子设备 只有在处于STA时间片状态时,才能与路由器之间进行数据传输。由两个DBAC模式的电子设备建立的多屏协同系统中,很多时间都不能进行数据传输,导致数据传输效率较差。
为了解决多屏协同系统中DBAC场景(DBSC场景)带来的数据传输较差的问题,数据传输效率较差的问题,本申请实施例提供一种数据传输管理方法,所述方法应用于包括第一电子设备,接入点设备通过第一链路为所述第一电子设备提供无线通信网络,所述方法可以有效减少多屏协同系统中不能进行数据传输的时间,提高数据传输效率。下面结合附图,对数据传输管理方法进行详细介绍。
图7为本申请实施例提供的一种数据传输管理方法的流程示意图。所述方法应用于第一电子设备,所述第一电子设备与无线接入点(如路由器,下文以无线接入点为路由器为例进行说明)之间存在第一链路(Wi-Fi链路)。路由器通过第一链路为第一电子设备提供无线通信网络。如图7所示,所述方法包括:
700,接收用户操作。用户操作用于确定与第一电子设备建立链路进行数据传输的第二电子设备。所述第二电子设备与路由器之间存在第二链路(Wi-Fi链路)。路由器通过第二链路为第二电子设备提供无线通信网络。
所述用户操作包括多屏协同操作(下文以用户操作为多屏协同操作为例进行说明)。所述多屏协同操作用于控制第一电子设备与第二电子设备建立协同连接,如建立进行协同连接的P2P链路。用户点击电子设备(第一电子设备或第二电子设备)上多屏协同控件时可以触发所述多屏协同操作。用户点击多屏协同控件后,电子设备(第一电子设备或第二电子设备)上可以出现多屏协同提示,用户点击所述多屏协同提示时可以触发所述多屏协同操作。所述P2P链路用于传输第一电子设备和第二电子设备的多屏协同数据。多屏协同数据为第一电子设备与第二电子设备建立协同连接时互相传输的数据,如用于投屏的视频流,以及用于协同控制操作指令(如第一电子设备通过P2P链路把对第二电子设备的控制操作指令发送给第二电子设备,使得第二电子设备执行相应的操作)。
在本申请的一些实施例中,接收用户操作后,建立第一电子设备与第二电子设备进行数据传输的链路。本申请对建立数据传输的链路的执行时刻不做任何限制,可以在图7中700之后的任意时刻执行,例如,可以在701之后、在705之后。
701,第一电子设备获取第二电子设备的Wi-Fi能力信息。
在本申请的一些实施例中,当第一电子设备与第二电子设备之间没有响应多屏协同操作建立P2P链路时,第一电子设备可以通过蓝牙(Bluetooth,BT)或NFC通信等方式与第二电子设备进行数据传输,获取第二电子设备的Wi-Fi能力信息。例如,第一电子设备与第二电子设备的距离小于预设距离阈值时,基于NFC通信可从第二电子设备上获取第二电子设备的Wi-Fi能力信息。若第一电子设备与第二电子设备之间已响应多屏协同操作建立P2P链路,第一电子设备可以通过蓝牙、NFC或Wi-Fi通信等方式与第二电子设备进行数据传输,获取第二电子设备的Wi-Fi能力信息。Wi-Fi能力信息可以用于表示电子设备进行无线通信的性能信息。Wi-Fi能力信息可以包括DBDC能力、理论峰值速率。DBDC能力可用于判断电子设备能否可以在DBDC模式下进行数据传输。若一电子设备具有DBDC能力,确定该电子设备能在DBDC模式下进行数据传输。理论峰值速率用于表示电子设备的数据传输的最大传输速率。Wi-Fi能力信息中还可以信道切换通知(Channel Switch Announcement,CSA)能力。一电子设备与其他电子设备(如电子设备W)建立协同连接时具有CSA能力,表明该电子设备在与电子设备W进行数据传输的时候可以自动发起信道切换,电子设备W会基于该电子设 备发起的信道切换进行信道切换。建立协同的两个设备中被确定为组织者(Group owner,GO)的电子设备具有CSA能力,确定为参与者(Gower Client,GC)的电子设备不具备有CSA能力。可以理解的是,第一电子设备可以是GC,也可以是GO。
Wi-Fi能力信息中还可以包括当前连接路由器的信息,即第二电子设备当前连接的路由器的信息。所述当前连接路由器的信息可以包括;已连接的Wi-Fi名称、已连接的Wi-Fi基本服务集标识(Basic Service Set Identifier,BSSID)。可以基于当前连接路由器的信息确定第一电子设备与第二电子设备是否连接同一个Wi-Fi。所述当前连接路由器的信息中还可以包括与路由器进行数据传输时工作的频段。根据当前连接路由器的信息,可以确定电子设备与路由器进行通信时,电子设备工作的频段,如5GHz、2.4GHz。
在本申请的一些实施例中,第一电子设备会发送自身的Wi-Fi能力信息至第二电子设备。第一电子设备可以在获取第二电子设备的Wi-Fi能力信息的同时,向第二电子设备发送自身的Wi-Fi能力信息,或者第一电子设备可以在获取第二电子设备的Wi-Fi能力信息之后,向第二电子设备发送自身的Wi-Fi能力信息,当然也可以在获取第二电子设备的Wi-Fi能力信息之前,向第二电子设备发送自身的Wi-Fi能力信息。第二电子设备接收第一电子设备发送的Wi-Fi能力信息后,也可以进行传输能力比对,确定其传输能力是否强于第二电子设备。
702,第一电子设备确定第一电子设备和第二电子设备是否都具有DBDC能力。
一电子设备具有DBDC能力说明其传输能力好。若第一电子设备和第二电子设备都具有DBDC能力,说明第一电子设备、第二电子设备和路由器构成的多屏协同系统中数据传输能力好,不需要改变常规的多屏协同系统中的组网,执行71,传统组网,流程结束。传统组网为第一电子设备、第二电子设备和路由器构成的多屏协同系统为三角形结构的组网。例如,如图1所示,平板电脑20与手机10之间存在一条P2P链路,平板电脑20与路由器30之间存在一条Wi-Fi链路,手机10与路由器30之间存在一条Wi-Fi链路,三条链路构成三角结构的组网。若第一电子设备和第二电子设备中存在一个电子设备不具有DBDC能力,按照常规的多屏协同系统中的组网方式进行组网,可能会出现一电子设备的工作模式为DBAC模式,导致数据传输能力较差(可以参见对图5和图6相关介绍中,关于工作模式为DBAC模式的电子设备工作场景的相关说明)。所以若第一电子设备和第二电子设备不都具有DBDC能力,执行703,确定第一链路与第二链路所在的频段是否都为第一频段。所述第一频段可以根据多屏协同时第一电子设备与第二电子设备的P2P通道所处的频段进行设置,例如P2P通道所处的频段为5GHz,将所述第一频段设置为5GHz。P2P通道所处的频段可以根据第一电子设备和第二电子设备的硬件结构进行确定,例如,若第一电子设备和第二电子设备都具有两个基带处理模块时,确定P2P通道所处的频段为5GHz。若第一链路所处的频段(或第二链路所处的频段)不为第一频段时,第一链路所处的频段(或第二链路所处的频段)可以为预设频段,如2.4GHz。也就是说,若一第一链路(或一第二链路)所处的频段不为5GHz时,该第一链路(或该第二链路)所处的频段为2.4GHz。
若第一链路与第二链路所在的频段都为第一频段,不需要改变常规的多屏协同系统中的组网,执行71,传统组网,流程结束。例如,第一链路与第二链路所在的频段都为5GHz,按照传统的方式进行组网。
若第一链路与第二链路所在的频段不都为第一频段,执行704,确定第一电子设备是否具有DBDC能力。若第一电子设备具有DBDC能力,执行705,第一电子设备发送连接信息至第二电子设备,建立Wi-Fi链路。所述连接信息用于与第一电子设备建立Wi-Fi链路。连接 信息可以包括第一电子设备的设备连接名称和设备连接密码。第二电子设备根据接收到的连接信息与第一电子设备建立Wi-Fi链路。建立Wi-Fi链路后,第一电子设备可以被称为模拟路由器(Soft Access Point,Soft-AP)。Soft-AP可以实现路由器的功能,为其他的电子设备提供无线通信网络(Wi-Fi)。一电子设备开启Soft-AP的功能后,可以和普通的路由器一样,为其他的电子设备提供Wi-Fi。电子设备可以通过自身的蜂窝网络(如2G、3G、4G、5G等)开启Soft-AP功能为其它电子设备提供Wi-Fi,如分享热点,其他电子设备可以通过该电子设备的热点连接无线通信网络,也可以通过自身连接的路由器(如通过共享Wi-Fi信号)开启Soft-AP功能,为其它电子设备提供Wi-Fi。在此不对电子设备开启Soft-AP功能的方法进行限定。
可以理解的是,第二电子设备与第一电子设备建立Wi-Fi链路后,会断开与路由器的连接,也就是断开第二链路。例如,第一电子设备为手机10,第二电子设备为平板电脑20,将手机10确定为Soft-AP,图8为本申请实施例提供的一种多屏协同系统的示意图。图8中(a)为将第一电子设备确定为Soft-AP之前的多屏协同系统示意图。如图8中(a)所示,手机10与平板电脑20之间包括进行数据传输的P2P通道;手机10与路由器30之间和平板电脑20与路由器30包括进行数据传输的Wi-Fi通道。图8中(b)为将第二电子设备与第一电子设备建立Wi-Fi链路后的多屏协同系统示意图。如图8中(b)所示,手机10开启Soft-AP功能后,手机10与平板电脑20之间包括进行数据传输的P2P通道和Wi-Fi通道;手机10与路由器30之间包括进行数据传输的Wi-Fi通道。可以理解的是,图8所示的场景为在将手机10确定为Soft-AP之前,建立手机10与平板电脑20之间进行数据传输的P2P通道的示意图,在本申请的另一些实施例中,可以在将手机10确定为Soft-AP之后,建立手机10与平板电脑20之间进行数据传输的P2P通道。
因为手机10开启Soft-AP功能之前,平板电脑20与路由器30之间Wi-Fi通道和平板电脑20与手机10之间的频段可能为不同的频段,平板电脑20分别与路由器30和手机10进行数据传输时,平板电脑20需要进行频段切换(如从2.4GHz切换至5GHz,或从5GHz切换至2.4GHz),手机10开启Soft-AP功能之后,平板电脑20与路由器30之间Wi-Fi通道被取消了仅保留了平板电脑20与手机10之间的P2P通道和Wi-Fi通道,平板电脑20与手机10之间的P2P通道和Wi-Fi通道可以在同一个频段(如5GHz)下进行数据传输,所以平板电脑20使用P2P通道和Wi-Fi通道时无需进行频段切换,避免了频段切换带来的时间损耗,提高数据传输效率。
若第一电子设备不具有DBDC能力,执行706,确定第二电子设备是否具有DBDC能力。若第二电子设备具有DBDC能力,第二电子设备可以作为Soft-AP。第一电子设备在确定第二电子设备可以作为Soft-AP,可以通知第二电子设备可以作为Soft-AP。或者,在一本申请的一些实施例中,第二电子设备也会获取第一电子设备的Wi-Fi能力信息,并可以根据第一电子设备的Wi-Fi能力信息确定是否将自己作为Soft-AP(确认流程可以如图7中702至706所示)。第二电子设备知道自己可以作为Soft-AP时,开启Soft-AP功能,并发送连接信息至所述第一电子设备。所述连接信息用于与第二电子设备建立Wi-Fi链路。连接信息可以包括第二电子设备的设备连接名称和设备连接密码。第二电子设备根据第一电子设备的通知,开启Soft-AP功能后,可以主动将连接信息发送至第一电子设备。若第二电子设备具有DBDC能力,执行707,第一电子设备接收第二电子设备的连接信息,建立Wi-Fi链路。第一电子设备与第二电子设备建立Wi-Fi链路后,执行708,断开与路由器的连接,也就是断开第一链路。 例如,第一电子设备为手机10,第二电子设备为平板电脑20,将平板电脑20确定为Soft-AP,图9为本申请实施例提供的一种多屏协同系统的示意图。图9中(a)为将第二电子设备确定为Soft-AP之前的多屏协同系统示意图。如图9中(a)所示,手机10与平板电脑20之间包括进行数据传输的P2P通道;手机10与路由器30之间和平板电脑20与路由器30包括进行数据传输的Wi-Fi通道。图9中(b)为将第一电子设备与第二电子设备建立Wi-Fi链路后的多屏协同系统示意图。如图9中(b)所示,平板电脑20开启Soft-AP功能后,手机10与平板电脑20之间包括进行数据传输的P2P通道和Wi-Fi通道;平板电脑20与路由器30之间包括进行数据传输的Wi-Fi通道。可以理解的是,图9所示的场景为在将平板电脑20确定为Soft-AP之前,先建立手机10与平板电脑20之间进行数据传输的P2P通道的示意图,在本申请的另一些实施例中,可以在将平板电脑20确定为Soft-AP之后,再建立手机10与平板电脑20之间进行数据传输的P2P通道。
因为平板电脑20开启Soft-AP功能之前,手机10与路由器30之间Wi-Fi通道和手机10与平板电脑20之间的频段可能为不同的频段,手机10分别与路由器30和手机10进行数据传输时,手机10需要进行频段切换(从2.4GHz切换至5GHz,或从5GHz切换至2.4GHz),平板电脑20开启Soft-AP功能之后,手机10与路由器30之间Wi-Fi通道被取消了仅保留了手机10与平板电脑20之间的P2P通道和Wi-Fi通道,手机10与平板电脑20之间的P2P通道和Wi-Fi通道可以在同一个频段(如5GHz)下进行数据传输,所以手机10使用P2P通道和Wi-Fi通道时无需进行频段切换,避免了频段切换带来的时间损耗,提高数据传输效率。
若第二电子设备不具有DBDC能力,执行709,确定第一电子设备的理论峰值速率是否大于第二电子设备的理论峰值速率。若第一电子设备的理论峰值速率大于第二电子设备的理论峰值速率,执行710,第一电子设备发送连接信息至第二电子设备,建立Wi-Fi链路。710的一些具体实施方式可以参见对705的相关说明。
若第一电子设备的理论峰值速率不大于第二电子设备的理论峰值速率,执行711确定第一电子设备的理论峰值速率是否小于第二电子设备的理论峰值速率。若第一电子设备的理论峰值速率小于第二电子设备的理论峰值速率,执行712,接收第二电子设备的连接信息,建立Wi-Fi链路。若第一电子设备与所述第二电子设备建立Wi-Fi链路后,执行713,断开与路由器的连接,也就是断开第二链路。
若第一电子设备的理论峰值速率不小于第二电子设备的理论峰值速率,执行714,基于预设规则发送连接信息至第二电子设备,建立Wi-Fi链路;或基于预设规则,接收第二电子设备的连接信息,建立Wi-Fi链路。也就是说第一电子设备的理论峰值速率等于第二电子设备的理论峰值速率时,可以按照预设的规则在第一电子设备和第二电子设备中确定为Soft-AP。
若基于预设的规则确定将第一电子设备确定为Soft-AP,第一电子设备发送连接信息至第二电子设备,建立Wi-Fi链路。第二电子设备与第一电子设备建立Wi-Fi链路后,会断开与路由器的连接,也就是断开第二链路。若基于预设的规则确定将第二电子设备确定为Soft-AP,第一电子设备接收第二电子设备的连接信息,建立Wi-Fi链路。第一电子设备与第二电子设备建立Wi-Fi链路后,会断开与路由器的连接,也就是断开第一链路。
通过上述实施例,可以减少数据传输场景中使用DBAC模式工作的电子设备个数,例如将多屏协同系统中一电子设备使用DBAC模式工作和一电子设备使用DBDC模式工作的场景,变成多屏协同系统中没有电子设备使用DBAC模式工作的场景,或者,将多屏协同系统中两电子设备使用DBAC模式工作的场景,变成多屏协同系统中仅有一电子设备使用DBAC 模式工作的场景。通过减少多屏协同系统中使用DBAC模式工作的电子设备,可以减少频段切换过程中时间的损耗,能有效减少多屏协同系统中不能进行数据传输的时间,提高数据传输效率。上述实施例可以用于解决电子设备使用DBAC模式(DBSC模式)工作时,P2P链路和上网链路不能同时进行数据传输,需要分时数据传输,带来的数据传输效率降低的技术问题。通过上述实施例,可以减少多屏协同系统中使用DBAC模式工作的电子设备个数,从而提高了多屏协同系统中数据传输效率。可以理解是,P2P信道除了用于多屏协同,也可以用于其他业务,如投屏、文件传输等,所以在投屏场景(文件传输场景)中面临DBAC模式(DBSC模式)带来的数据传输效率降低的技术问题时,使用上述实施例,也可以减少场景中使用DBAC模式工作的电子设备个数,从而提高了数据传输效率。
图7所示的数据传输管理方法中第一电子设备根据第二电子设备的Wi-Fi能力信息,确定是否将自身或第二电子设备作为Soft-AP,改变传统的组网仅为一种举例说明,不构成任何限制。可以理解的,在本申请的一些实施例中,第一电子设备可以向第二电子设备发送第一电子设备的Wi-Fi能力信息和传输能力比对请求。传输能力比对请求用于请求第二电子设备根据第一电子设备的Wi-Fi能力信息,确定是否将自身或第一电子设备作为Soft-AP,改变传统的组网。在本申请的一些实施例中,第一电子设备与第二电子设备可以互相发送Wi-Fi能力信息,各自进行传输能力比对,并根据传输能力对比结果,确定是否将自身或第二电子设备作为Soft-AP,改变传统的组网。例如,第一电子设备与第二电子设备互相发送Wi-Fi能力信息后,第一电子设备根据第二电子设备发送的Wi-Fi能力信息进行传输能力比对,根据传输能力比对确定自己的传输能力强于第二电子设备,确定不断开与路由器的连接,并确定将自身作为Soft-AP为第二电子设备提供Wi-Fi;第二电子设备根据第一电子设备发送的Wi-Fi能力信息进行传输能力比对,根据传输能力比对确定自己的传输能力弱于第一电子设备,确定断开与路由器的连接,确定与第一电子设备建立Wi-Fi连接。第一电子设备确定将自身作为Soft-AP为第二电子设备提供Wi-Fi后,可以将第一电子设备对应的连接信息发送至第二电子设备。若第二电子设备确定与第一电子设备建立Wi-Fi连接且没有接收到第一电子设备发送的连接信息,可以主动向第一电子设备获取连接信息。第二电子设备根据第一电子设备发送的连接信息,与第一电子设备建立连接,建立连接后第一电子设备为所述第二电子设备通过Wi-Fi服务。关于上述实施例的一些具体实施方式,可以参见对图7的相关描述,在此不再赘述。
在本申请的一些实施例中,执行图7中705、710或714所示的步骤后,若第二电子设备与第一电子设备建立Wi-Fi链路成功后或第一电子设备与第二电子设备建立Wi-Fi链路成功后,可以按照预设规则生成并显示相应的提示。所述提示可以用于提示用户多屏协同系统中组网已发生变更。例如,若第二电子设备与第一电子设备建立Wi-Fi链路成功后,可以在第一电子设备的显示界面上显示第一提示,第一提示用于提示第一电子设备正在为第二电子设备提供Wi-Fi服务;也可以在第二电子设备的显示界面上显示第二提示,第二提示用于提示第二电子设备正通过第一电子设备提供的Wi-Fi服务进行上网。
在本申请的一些实施例中,执行图7中705、710或714所示的步骤后,若第二电子设备与第一电子设备建立Wi-Fi链路成功后,确定第二电子设备与第一电子设备进行数据传输的频段是否和第一电子设备与路由器进行数据传输的频段相同。若第二电子设备与第一电子设备进行数据传输的频段与第一电子设备与路由器进行数据传输的频段相同,根据第一电子设备与路由器进行数据传输的信道,确定是否调整第二电子设备与第一电子设备进行数据传输 的信道。若第一电子设备与路由器进行数据传输的信道和第二电子设备与第一电子设备进行数据传输的信道不一致,确定调整第二电子设备与第一电子设备进行数据传输的信道,即当前的多屏协同系统为同频异信道时进行信道切换,使得切换后的多屏协同系统为同频同信道;否则,确定不调整第二电子设备与第一电子设备进行数据传输的信道,即当前的多屏协同系统中为同频同信道时,无需调整第二电子设备与第一电子设备进行数据传输的信道。
可以理解的是,当前的多屏协同系统为同频异信道时,多屏协同系统中的GO可以主动发起信道切换。GC在GO发起信道切换后,会响应于GO发起的信道切换进行信道切换,从而使得GO与GC进行数据传输的信道得以切换。GO和GC的相关说明,可以参见对图7中步骤701的相关描述,在此不再赘述。
例如,如图10中(a)所示,手机10与路由器30进行数据传输的频段和手机10与平板电脑20进行数据传输的频段一致(都为5G),确定当前的多屏协同系统中存在同频;手机10与路由器30进行数据传输的信道(信道1)和手机10与平板电脑20进行数据传输的信道(信道2)不一致,确定当前的多屏协同系统为同频异信道。同频异信道的情况下,对手机10与平板电脑20进行数据传输的信道进行信道切换,使得多屏协同系统变为同频同信道。若手机10为GO,手机10可以主动发起信道切换。平板电脑20在手机10发起信道切换后,会响应于手机10发起的信道切换进行信道切换。如图10中(b)所示,将手机10与平板电脑20进行数据传输的信道从信道2切换为信道1,使得多屏协同系统变为同频同信道。
上述实施例,通过将多屏协同系统中的同频异信道变为同屏同信道,可以进一步提高数据传输的效率。
在本申请的一些实施例中,执行图7中705、710或714所示的步骤后,若第二电子设备与第一电子设备建立Wi-Fi链路成功后,可以监测第二电子设备与第一电子设备进行数据传输的信道,若第二电子设备与第一电子设备进行数据传输的信道发生变化时,确定第二电子设备与第一电子设备进行数据传输的频段是否和第一电子设备与路由器进行数据传输的频段相同;若第二电子设备与第一电子设备进行数据传输的频段与第一电子设备与路由器进行数据传输的频段相同,根据第一电子设备与路由器进行数据传输的信道,确定是否调整第二电子设备与第一电子设备进行数据传输的信道。即根据第一电子设备与路由器进行数据传输的信道,确定当前的多屏协同系统是否为同频异信道,若当前的多屏协同系统为同频异信道,确定需要调整第二电子设备与第一电子设备进行数据传输的信道,使之成为同频同信道。在第二电子设备与第一电子设备进行数据传输的信道发生变化时,确定是否调整多屏协同系统中的数据传输情形,可以及时地确定是否需要对多屏协同系统中的数据传输情形进行调整,从而可以有效保证多屏协同系统中数据传输效率。
在本申请的一些实施例中,执行图7中707、712或714所示的步骤后,若第一电子设备与第二电子设备建立Wi-Fi链路成功后,确定第一电子设备与第二电子设备进行数据传输的频段是否和第二电子设备与路由器进行数据传输的频段相同;若第二电子设备与第一电子设备进行数据传输的频段与第一电子设备与路由器进行数据传输的频段相同,根据第二电子设备与路由器进行数据传输的信道,确定是否调整第一电子设备与第二电子设备进行数据传输的信道。该实施例的一些具体实施方式可以参见上述实施例的相关描述,在此不再赘述。
由于执行图7中705、710或714所示的步骤后,第一电子设备与路由器进行连接,第二电子设备不与路由器进行连接,若此时第二电子设备为GO,第二电子设备判断当前的多屏协同系统是否为同频异信道时,不能直接获取多屏协同中与路由器进行数据传输的信道(即 第一电子设备与路由器进行数据传输的信道),需要通过第一电子设备才能获取,所以第二电子设备判断当前的多屏协同系统是否为同频异信道不是很便利,导致发起主动信道切换的速度较慢。或者,由于执行图7中707、712或714所示的步骤后,第二电子设备与路由器进行连接,第一电子设备不与路由器进行连接,若此时第一电子设备为GO,第一电子设备判断当前的多屏协同系统是否为同频异信道时,不能直接获取多屏协同中与路由器进行数据传输的信道(即第二电子设备与路由器进行数据传输的信道),需要通过第二电子设备才能获取,所以第一电子设备判断当前的多屏协同系统是否为同频异信道不是很便利,导致发起主动信道切换的速度较慢。
基于上述原因,在本申请的一些实施例中,可以根据Soft-AP,在第一电子设备和第二电子设备中重新确定GO。例如,若第一电子设备为Soft-AP,将第一电子设备确定为GO;若第二电子设备为Soft-AP,将第二电子设备确定为GO。通过将Soft-AP对应的电子设备确定为GO,可以使得在多屏协同系统中存在同频的情况下,GO可以直接确定与路由器进行数据传输的信道,并根据与路由器进行数据传输的信道,确定是否主动发起信道切换,以使GO与路由器进行数据传输的信道和GC与GO进行数据传输的信道一致。因为GO和路由器、GC直接进行数据传输,可以直接获取与路由器和GC的数据传输信息(数据传输频段、数据传输信道),并根据数据传输信息确定是否主动发起信道切换,可以便利地确定当前的多屏协同系统是否为同频异信道,提高了确定是否信道切换的速度。
例如,如图10中(a)所示,若手机10为GO,手机10直接与平板电脑20、路由器30进行数据传输。所以可以直接获取数据传输信息,并根据数据传输信息确定是否控制平板电脑20进行信道切换。若平板电脑20为GO,平板电脑20没有直接与路由器30进行数据传输,平板电脑20不能直接获取手机10与平板电脑20的数据传输信息,需要通过与手机10之间的数据传输才能获取手机10与平板电脑20的数据传输信息,所以导致平板电脑20获取数据传输信息的时间较长。
上述实施例,根据Soft-AP,在第一电子设备和第二电子设备中重新确定GO后,可以便利地确定当前的多屏协同系统是否为同频异信道,提高了确定是否信道切换的速度。
在本申请一些实施例中,如图11所示,执行完图7中702所示的步骤后,若第一电子设备和第二电子设备不都具有DBDC能力,执行803、确定第一电子设备是否具有DBDC能力。若第一电子设备具有DBDC能力,执行804,第一电子设备发送连接信息至第二电子设备,建立Wi-Fi链路。若第一电子设备不具有DBDC能力,执行805,确定第二电子设备是否具有DBDC能力。若第二电子设备具有DBDC能力,执行806,第一电子设备接收第二电子设备的连接信息,建立Wi-Fi链路。第一电子设备与第二电子设备建立Wi-Fi链路后,执行807,断开与路由器的连接。若第二电子设备不具有DBDC能力,执行808,确定第一电子设备的理论峰值速率是否大于第二电子设备的理论峰值速率。若第一电子设备的理论峰值速率大于第二电子设备的理论峰值速率,执行809,第一电子设备发送连接信息至第二电子设备,建立Wi-Fi链路。若第一电子设备的理论峰值速率不大于第二电子设备的理论峰值速率,执行810确定第一电子设备的理论峰值速率是否小于第二电子设备的理论峰值速率。若第一电子设备的理论峰值速率小于第二电子设备的理论峰值速率,执行811,接收第二电子设备的连接信息,建立Wi-Fi链路。若第一电子设备与所述第二电子设备建立Wi-Fi链路后,执行812断开与路由器的连接。若第一电子设备的理论峰值速率不小于第二电子设备的理论峰值速率,执行813,基于预设规则发送连接信息至第二电子设备,建立Wi-Fi链路;或基于预设规则, 接收第二电子设备的连接信息,建立Wi-Fi链路。
图11中803-813的一些具体实施方式,可以参见对图7的相关说明,在此不再赘述。
通过上述实施例,可以减少数据传输场景中使用DBAC模式工作的电子设备个数,例如将多屏协同系统中一电子设备使用DBAC模式工作和一电子设备使用DBDC模式工作的场景,变成多屏协同系统中没有电子设备使用DBAC模式工作的场景,或者,将多屏协同系统中两电子设备使用DBAC模式工作的场景,变成多屏协同系统中仅有一电子设备使用DBAC模式工作的场景。通过减少多屏协同系统中使用DBAC模式工作的电子设备,可以减少频段切换过程中时间的损耗,能有效减少多屏协同系统中不能进行数据传输的时间,提高数据传输效率。
图12为本申请实施例提供的一种电子设备100的结构示意图。参考图12,电子设备100可以包括处理器110,外部存储器接口120,内部存储器121,通用串行总线(universal serial bus,USB)接口130,充电管理模块140,电源管理模块141,电池142,天线1,天线2,移动通信模块150,无线通信模块160,音频模块170,扬声器170A,受话器170B,麦克风170C,耳机接口170D,传感器模块180,按键190,马达191,指示器192,摄像头193,显示屏194,以及用户标识模块(subscriber identification module,SIM)卡接口195等。其中传感器模块180可以包括压力传感器180A,陀螺仪传感器180B,气压传感器180C,磁传感器180D,加速度传感器180E,距离传感器180F,接近光传感器180G,指纹传感器180H,温度传感器180J,触摸传感器180K,环境光传感器180L,骨传导传感器180M等。
可以理解的是,本发明实施例示意的结构并不构成对电子设备100的具体限定。在本申请另一些实施例中,电子设备100可以包括比图示更多或更少的部件,或者组合某些部件,或者拆分某些部件,或者不同的部件布置。图示的部件可以以硬件,软件或软件和硬件的组合实现。
处理器110可以包括一个或多个处理单元,例如:处理器110可以包括应用处理器(application processor,AP),调制解调处理器,图形处理器(graphics processing unit,GPU),图像信号处理器(image signal processor,ISP),控制器,视频编解码器,数字信号处理器(digital signal processor,DSP),基带处理器,和/或神经网络处理器(neural-network processing unit,NPU)等。
处理器110中还可以设置存储器,用于存储指令和数据。在一些实施例中,处理器110中的存储器为高速缓冲存储器。该存储器可以保存处理器110刚用过或循环使用的指令或数据。如果处理器110需要再次使用该指令或数据,可从所述存储器中直接调用。避免了重复存取,减少了处理器110的等待时间,因而提高了系统的效率。
在一些实施例中,处理器110可以包括一个或多个接口。接口可以包括集成电路(inter-integrated circuit,I1C)接口,集成电路内置音频(inter-integrated circuit sound,I2S)接口,脉冲编码调制(pulse code modulation,PCM)接口,通用异步收发传输器(universal asynchronous receiver/transmitter,UART)接口,移动产业处理器接口(mobile industry processor interface,MIPI),通用输入输出(general-purpose input/output,GPIO)接口,用户标识模块(subscriber identity module,SIM)接口,和/或通用串行总线(universal serial bus,USB)接口等。
I1C接口是一种双向同步串行总线,包括一根串行数据线(serial data line,SDA)和一根串行时钟线(derail clock line,SCL)。I2S接口可以用于音频通信。
PCM接口也可以用于音频通信,将模拟信号抽样,量化和编码。在一些实施例中,音频 模块170与无线通信模块160可以通过PCM总线接口耦合。
UART接口是一种通用串行数据总线,用于异步通信。该总线可以为双向通信总线。它将要传输的数据在串行通信与并行通信之间转换。在一些实施例中,UART接口通常被用于连接处理器110与无线通信模块160。例如:处理器110通过UART接口与无线通信模块160中的蓝牙模块通信,实现蓝牙功能。
MIPI接口可以被用于连接处理器110与显示屏194,摄像头193等外围器件。MIPI接口包括摄像头串行接口(camera serial interface,CSI),显示屏串行接口(display serial interface,DSI)等。在一些实施例中,处理器110和摄像头193通过CSI接口通信,实现电子设备100的拍摄功能。处理器110和显示屏194通过DSI接口通信,实现电子设备100的显示功能。
GPIO接口可以通过软件配置。GPIO接口可以被配置为控制信号,也可被配置为数据信号。在一些实施例中,GPIO接口可以用于连接处理器110与摄像头193,显示屏194,无线通信模块160,音频模块170,传感器模块180等。GPIO接口还可以被配置为I1C接口,I2S接口,UART接口,MIPI接口等。
USB接口130是符合USB标准规范的接口,具体可以是Mini USB接口,Micro USB接口,USB Type C接口等。USB接口130可以用于连接充电器为电子设备100充电,也可以用于电子设备100与外围设备之间传输数据。也可以用于连接耳机,通过耳机播放音频。该接口还可以用于连接其他电子设备100,例如AR设备等。
可以理解的是,本发明实施例示意的各模块间的接口连接关系,只是示意性说明,并不构成对电子设备100的结构限定。在本申请另一些实施例中,电子设备100也可以采用上述实施例中不同的接口连接方式,或多种接口连接方式的组合。
充电管理模块140用于从充电器接收充电输入。其中,充电器可以是无线充电器,也可以是有线充电器。
电源管理模块141用于连接电池142,充电管理模块140与处理器110。电源管理模块141接收电池142和/或充电管理模块140的输入,为处理器110,内部存储器121,显示屏194,摄像头193,和无线通信模块160等供电。电源管理模块141还可以用于监测电池容量,电池循环次数,电池健康状态(漏电,阻抗)等参数。
电子设备100的无线通信功能可以通过天线1,天线2,移动通信模块150,无线通信模块160,调制解调处理器以及基带处理器等实现。
天线1和天线2用于发射和接收电磁波信号。电子设备100中的每个天线可用于覆盖单个或多个通信频带。不同的天线还可以复用,以提高天线的利用率。例如:可以将天线1复用为无线局域网的分集天线。在另外一些实施例中,天线可以和调谐开关结合使用。
移动通信模块150可以提供应用在电子设备100上的包括2G/3G/4G/5G等无线通信的解决方案。移动通信模块150可以包括至少一个滤波器,开关,功率放大器,低噪声放大器(low noise amplifier,LNA)等。移动通信模块150可以由天线1接收电磁波,并对接收的电磁波进行滤波,放大等处理,传送至调制解调处理器进行解调。移动通信模块150还可以对经调制解调处理器调制后的信号放大,经天线1转为电磁波辐射出去。
调制解调处理器可以包括调制器和解调器。其中,调制器用于将待发送的低频基带信号调制成中高频信号。解调器用于将接收的电磁波信号解调为低频基带信号。随后解调器将解调得到的低频基带信号传送至基带处理器处理。低频基带信号经基带处理器处理后,被传递给应用处理器。应用处理器通过音频设备(不限于扬声器170A,受话器170B等)输出声音信 号,或通过显示屏194显示图像或视频。在一些实施例中,调制解调处理器可以是独立的器件。在另一些实施例中,调制解调处理器可以独立于处理器110,与移动通信模块150或其他功能模块设置在同一个器件中。
无线通信模块160可以提供应用在电子设备100上的包括无线局域网(wireless local area networks,WLAN),蓝牙(bluetooth,BT),全球导航卫星系统(global navigation satellite system,GNSS),调频(frequency modulation,FM),近距离无线通信技术(near field communication,NFC),红外技术(infrared,IR)等无线通信的解决方案。无线通信模块160可以是集成至少一个通信处理模块的一个或多个器件。无线通信模块160经由天线2接收电磁波,将电磁波信号调频以及滤波处理,将处理后的信号发送到处理器110。无线通信模块160还可以从处理器110接收待发送的信号,对其进行调频,放大,经天线2转为电磁波辐射出去。
电子设备100通过GPU,显示屏194,以及应用处理器等实现显示功能。GPU为服务异常提醒的微处理器,连接显示屏194和应用处理器。GPU用于执行数学和几何计算,用于图形渲染。处理器110可包括一个或多个GPU,其执行程序指令以生成或改变显示信息。
显示屏194用于显示图像,视频等。显示屏194包括显示面板。显示面板可以采用液晶显示屏(liquid crystal display,LCD),有机发光二极管(organic light-emitting diode,OLED),有源矩阵有机发光二极体或主动矩阵有机发光二极体(active-matrix organic light emitting diode的,AMOLED),柔性发光二极管(flexible light-emitting diode,FLED),Miniled,MicroLed,Micro-oLed,量子点发光二极管(quantum dot light emitting diodes,QLED)等。
在一些实施例中,电子设备100可以包括1个或N个显示屏194,N为大于1的正整数。电子设备100可以通过ISP,摄像头193,视频编解码器,GPU,显示屏194以及应用处理器等实现拍摄功能。
摄像头193用于捕获静态图像或视频。物体通过镜头生成光学图像投射到感光元件。感光元件可以是电荷耦合器件(charge coupled device,CCD)或互补金属氧化物半导体(complementary metal-oxide-semiconductor,CMOS)光电晶体管。感光元件把光信号转换成电信号,之后将电信号传递给ISP转换成数字图像信号。ISP将数字图像信号输出到DSP加工处理。DSP将数字图像信号转换成标准的RGB,YUV等格式的图像信号。在一些实施例中,电子设备100可以包括1个或N个摄像头193,N为大于1的正整数。
数字信号处理器用于处理数字信号,除了可以处理数字图像信号,还可以处理其他数字信号。例如,当电子设备100在频点选择时,数字信号处理器用于对频点能量进行傅里叶变换等。
视频编解码器用于对数字视频压缩或解压缩。电子设备100可以支持一种或多种视频编解码器。这样,电子设备100可以播放或录制多种编码格式的视频,例如:动态图像专家组(moving picture experts group,MPEG)1,MPEG2,MPEG3,MPEG4等。
NPU为神经网络(neural-network,NN)计算处理器,通过借鉴生物神经网络结构,例如借鉴人脑神经元之间传递模式,对输入信息快速处理,还可以不断的自学习。通过NPU可以实现电子设备100的智能认知等应用,例如:图像识别,人脸识别,语音识别,文本理解等。
内部存储器121可以包括一个或多个随机存取存储器(random access memory,RAM)和一个或多个非易失性存储器(non-volatile memory,NVM)。在本申请实施例中,内部存储器121也可以称为内存。在一些实施例中,处理器(如CPU)可以在内存中存储每一次展示引导信息的展示时间以及展示引导信息的累计次数。
外部存储器接口120可以用于连接外部的非易失性存储器,实现扩展电子设备100的存储能力。外部的非易失性存储器通过外部存储器接口120与处理器110通信,实现数据存储功能。例如将音乐,视频等文件保存在外部的非易失性存储器中。
电子设备100可以通过音频模块170,扬声器170A,受话器170B,麦克风170C,耳机接口170D,以及应用处理器等实现音频功能。例如音乐播放,录音等。
音频模块170用于将数字音频信息转换成模拟音频信号输出,也用于将模拟音频输入转换为数字音频信号。音频模块170还可以用于对音频信号编码和解码。
扬声器170A,也称“喇叭”,用于将音频电信号转换为声音信号。电子设备100可以通过扬声器170A收听音乐,或收听免提通话。
受话器170B,也称“听筒”,用于将音频电信号转换成声音信号。当电子设备100接听电话或语音信息时,可以通过将受话器170B靠近人耳接听语音。
麦克风170C,也称“话筒”,“传声器”,用于将声音信号转换为电信号。当拨打电话或发送语音信息时,用户可以通过人嘴靠近麦克风170C发声,将声音信号输入到麦克风170C。电子设备100可以设置至少一个麦克风170C。在另一些实施例中,电子设备100可以设置两个麦克风170C,除了采集声音信号,还可以实现降噪功能。在另一些实施例中,电子设备100还可以设置三个,四个或更多麦克风170C,实现采集声音信号,降噪,还可以识别声音来源,实现定向录音功能等。
耳机接口170D用于连接有线耳机。耳机接口170D可以是USB接口130,也可以是3.5mm的开放移动电子设备100平台(open mobile terminal platform,OMTP)标准接口,美国蜂窝电信工业协会(cellular telecommunications industry association of the USA,CTIA)标准接口。
压力传感器180A用于感受压力信号,可以将压力信号转换成电信号。在一些实施例中,压力传感器180A可以设置于显示屏194。压力传感器180A的种类很多,如电阻式压力传感器,电感式压力传感器,电容式压力传感器等。电容式压力传感器可以是包括至少两个具有导电材料的平行板。当有力作用于压力传感器180A,电极之间的电容改变。电子设备100根据电容的变化确定压力的强度。当有触摸操作作用于显示屏194,电子设备100根据压力传感器180A检测所述触摸操作强度。电子设备100也可以根据压力传感器180A的检测信号计算触摸的位置。
陀螺仪传感器180B可以用于确定电子设备100的运动姿态。在一些实施例中,可以陀螺仪传感器180B的定位,更新显示界面上显示的桌面卡片。
气压传感器180C用于测量气压。在一些实施例中,电子设备100通过气压传感器180C测得的气压值计算海拔高度,辅助定位和导航。
磁传感器180D包括霍尔传感器。电子设备100可以利用磁传感器180D检测翻盖皮套的开合。在一些实施例中,当电子设备100是翻盖机时,电子设备100可以根据磁传感器180D检测翻盖的开合。进而根据检测到的皮套的开合状态或翻盖的开合状态,设置翻盖自动解锁等特性。
加速度传感器180E可检测电子设备100在各个方向上(一般为三轴)加速度的大小。当电子设备100静止时可检测出重力的大小及方向。还可以用于识别电子设备100姿态,应用于横竖屏切换,计步器等应用。
距离传感器180F,用于测量距离。电子设备100可以通过红外或激光测量距离。在一些实施例中,拍摄场景,电子设备100可以利用距离传感器180F测距以实现快速对焦。
接近光传感器180G可以包括例如发光二极管(LED)和光检测器,例如光电二极管。发光二极管可以是红外发光二极管。电子设备100通过发光二极管向外发射红外光。电子设备100使用光电二极管检测来自附近物体的红外反射光。当检测到充分的反射光时,可以确定电子设备100附近有物体。
环境光传感器180L用于感知环境光亮度。电子设备100可以根据感知的环境光亮度自适应调节显示屏194亮度。环境光传感器180L也可用于拍照时自动调节白平衡。环境光传感器180L还可以与接近光传感器180G配合,检测电子设备100是否在口袋里,以防误触。
指纹传感器180H用于采集指纹。电子设备100可以利用采集的指纹特性实现指纹解锁,访问应用锁,指纹拍照,指纹接听来电等。
温度传感器180J用于检测温度。
触摸传感器180K,也称“触控器件”。触摸传感器180K可以设置于显示屏194,由触摸传感器180K与显示屏194组成触摸屏,也称“触控屏”。触摸传感器180K用于检测作用于其上或附近的触摸操作。触摸传感器可以将检测到的触摸操作传递给应用处理器,以确定触摸事件类型。可以通过显示屏194提供与触摸操作相关的视觉输出。在另一些实施例中,触摸传感器180K也可以设置于电子设备100的表面,与显示屏194所处的位置不同。在本申请的一些实施例中,可以基于用户在触摸传感器180K上触摸操作,确定目标粘贴应用。
骨传导传感器180M可以获取振动信号。在一些实施例中,骨传导传感器180M可以获取人体声部振动骨块的振动信号。骨传导传感器180M也可以接触人体脉搏,接收血压跳动信号。在一些实施例中,骨传导传感器180M也可以设置于耳机中,结合成骨传导耳机。音频模块170可以基于所述骨传导传感器180M获取的声部振动骨块的振动信号,解析出语音信号,实现语音功能。应用处理器可以基于所述骨传导传感器180M获取的血压跳动信号解析心率信息,实现心率检测功能。
按键190包括开机键,音量键等。按键190可以是机械按键。也可以是触摸式按键。电子设备100可以接收按键输入,产生与电子设备100的用户设置以及功能控制有关的键信号输入。
马达191可以产生振动提示。马达191可以用于来电振动提示,也可以用于触摸振动反馈。例如,作用于不同应用(例如拍照,音频播放等)的触摸操作,可以对应不同的振动反馈效果。作用于显示屏194不同区域的触摸操作,马达191也可对应不同的振动反馈效果。不同的应用场景(例如:时间提醒,接收信息,闹钟,游戏等)也可以对应不同的振动反馈效果。触摸振动反馈效果还可以支持自定义。
指示器192可以是指示灯,可以用于指示充电状态,电量变化,也可以用于指示消息,未接来电,通知等。
SIM卡接口195用于连接SIM卡。SIM卡可以通过插入SIM卡接口195,或从SIM卡接口195拔出,实现和电子设备100的接触和分离。电子设备100可以支持1个或N个SIM卡接口,N为大于1的正整数。SIM卡接口195可以支持Nano SIM卡,Micro SIM卡,SIM卡等。同一个SIM卡接口195可以同时插入多帧卡。所述多帧卡的类型可以相同,也可以不同。SIM卡接口195也可以兼容不同类型的SIM卡。SIM卡接口195也可以兼容外部存储卡。电子设备100通过SIM卡和网络交互,实现通话以及数据通信等功能。在一些实施例中,电子设备100采用eSIM,即:嵌入式SIM卡。eSIM卡可以嵌在电子设备100中,不能和电子设备100分离。
本实施例还提供一种计算机存储介质,该计算机存储介质中存储有计算机指令,当该计算机指令在电子设备100上运行时,使得电子设备100执行上述相关方法步骤实现上述实施例中的数据传输管理方法。
本实施例还提供了一种计算机程序产品,当该计算机程序产品在计算机上运行时,使得计算机执行上述相关步骤,以实现上述实施例中的数据传输管理方法。
另外,本申请的实施例还提供一种装置,这个装置具体可以是芯片,组件或模块,该装置可包括相连的处理器和存储器;其中,存储器用于存储计算机执行指令,当装置运行时,处理器可执行存储器存储的计算机执行指令,以使芯片执行上述各方法实施例中的数据传输管理方法。
其中,本实施例提供的电子设备、计算机存储介质、计算机程序产品或芯片均用于执行上文所提供的对应的方法,因此,其所能达到的有益效果可参考上文所提供的对应的方法中的有益效果,此处不再赘述。
通过以上的实施方式的描述,所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,仅以上述各功能模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能模块完成,即将装置的内部结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。
在本申请所提供的几个实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,该模块或单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个装置,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
该作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是一个物理单元或多个物理单元,即可以位于一个地方,或者也可以分布到多个不同地方。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
该集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个可读取存储介质中。基于这样的理解,本申请实施例的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该软件产品存储在一个存储介质中,包括若干指令用以使得一个设备(可以是单片机,芯片等)或处理器(processor)执行本申请各个实施例方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
最后应说明的是,以上实施例仅用以说明本申请的技术方案而非限制,尽管参照较佳实施例对本申请进行了详细说明,本领域的普通技术人员应当理解,可以对本申请的技术方案进行修改或等同替换,而不脱离本申请技术方案的精神和范围。

Claims (15)

  1. 一种数据传输管理方法,所述方法应用于第一电子设备,所述第一电子设备和无线接入点之间存在第一链路,其特征在于,所述方法包括:
    响应于用户操作,确定与所述第一电子设备之间进行数据传输的第二电子设备,所述第二电子设备和所述无线接入点之间存在第二链路;
    建立用于和所述第二电子设备进行数据传输的第三链路;
    当满足第一预设条件时,建立与所述第二电子设备连接的第四链路并断开所述第一链路,所述第二电子设备通过所述第四链路为所述第一电子设备提供无线通信网络;或
    当满足第一预设条件时,建立与所述第二电子设备连接的第四链路并保持所述第一链路,所述第一电子设备通过所述第四链路为所述第二电子设备提供无线通信网络;
    所述第三链路所处的频段和预设频段不同。
  2. 根据权利要求1所述的数据传输管理方法,其特征在于,所述满足第一预设条件包括:所述第一电子设备和所述第二电子设备中至少有一电子设备不具备第一能力。
  3. 根据权利要求2所述的数据传输管理方法,其特征在于,所述满足第一预设条件还包括:所述第一链路所处的频段和所述第二链路所处的频段中至少有一频段为所述预设频段。
  4. 根据权利要求2所述的数据传输管理方法,其特征在于,所述第一能力为双频双发能力。
  5. 根据权利要求2所述的数据传输管理方法,其特征在于,所述不具备第一能力包括采用双频自适应并发的方式进行传输。
  6. 根据权利要求3所述的数据传输管理方法,其特征在于,所述预设频段为2.4GHz,所述第三链路所处的频段为5GHz。
  7. 根据权利要求1所述的数据传输管理方法,其特征在于,所述第三链路为P2P链路。
  8. 根据权利要求3所述的数据传输管理方法,其特征在于,所述建立与所述第二电子设备连接的第四链路并保持所述第一链路包括:当所述第一电子设备具备所述第一能力且所述第二电子设备不具备所述第一能力时,或者当所述第一电子设备和所述第二电子设备都不具备所述第一能力且所述第二电子设备的理论峰值速率小于所述第一电子设备的理论峰值速率时,建立与所述第二电子设备连接的第四链路并保持所述第一链路。
  9. 根据权利要求3所述的数据传输管理方法,其特征在于,所述建立与所述第二电子设备连接的第四链路并断开所述第一链路连接包括:当所述第一电子设备不具备所述第一能力且所述第二电子设备具备所述第一能力时,或当所述第一电子设备和所述第二电子设备都不具备所述第一能力且所述第二电子设备的理论峰值速率大于所述第一电子设备的理论峰值速率时,建立与所述第二电子设备连接的第四链路并断开所述第一链路。
  10. 根据权利要求1至9中任意一项所述的数据传输管理方法,其特征在于,所述建立与所述第二电子设备连接的第四链路并断开所述第一链路之后,所述方法还包括:若所述第二链路所处的频段与所述第三链路所处的频段相同且所述第二链路工作的信道与所述第三链路工作的信道不同,切换所述第二链路工作的信道,所述第二链路切换后的信道与所述第三链路的信道相同。
  11. 根据权利要求10所述的数据传输管理方法,其特征在于,所述方法还包括:将所述第二电子设备确定为组织者,所述组织者用于发起所述第二链路工作信道的切换。
  12. 根据权利要求1至9中任意一项所述的数据传输管理方法,其特征在于,所述建立与所述第二电子设备连接的第四链路并保留所述第一链路之后,所述方法还包括:若所述第一链路所处的频段与所述第三链路所处的频段相同且所述第一链路工作的信道与所述第三链路工作的信道不同,切换所述第一链路工作的信道,所述第一链路切换后的信道与所述第三链路的信道相同。
  13. 根据权利要求12所述的数据传输管理方法,其特征在于,所述方法还包括:将所述第一电子设备确定为组织者,所述组织者用于发起所述第一链路工作信道的切换。
  14. 一种电子设备,其特征在于,所述电子设备包括存储器和处理器;
    所述存储器,用于存储程序指令;
    所述处理器,用于读取所述存储器中存储的所述程序指令,以实现如权利要求1至13任意一项所述的数据传输管理方法。
  15. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有计算机可读指令,所述计算机可读指令被处理器执行时实现如权利要求1至13中任意一项所述的数据传输管理方法。
PCT/CN2023/090084 2022-06-11 2023-04-23 数据传输管理方法、电子设备及存储介质 WO2023236670A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210658493.2A CN117255434A (zh) 2022-06-11 2022-06-11 数据传输管理方法、电子设备及存储介质
CN202210658493.2 2022-06-11

Publications (1)

Publication Number Publication Date
WO2023236670A1 true WO2023236670A1 (zh) 2023-12-14

Family

ID=89117521

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/090084 WO2023236670A1 (zh) 2022-06-11 2023-04-23 数据传输管理方法、电子设备及存储介质

Country Status (2)

Country Link
CN (1) CN117255434A (zh)
WO (1) WO2023236670A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200107222A1 (en) * 2018-09-27 2020-04-02 Apple Inc. WiFi TCP Performance in Multi-Radio Coexistence Cases
CN113645693A (zh) * 2021-10-14 2021-11-12 荣耀终端有限公司 WiFi P2P连接方法、电子设备、程序产品和介质
CN113676902A (zh) * 2020-04-30 2021-11-19 华为技术有限公司 一种提供无线上网的系统、方法及电子设备
CN114390337A (zh) * 2020-10-21 2022-04-22 华为技术有限公司 投屏方法、系统及电子设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200107222A1 (en) * 2018-09-27 2020-04-02 Apple Inc. WiFi TCP Performance in Multi-Radio Coexistence Cases
CN113676902A (zh) * 2020-04-30 2021-11-19 华为技术有限公司 一种提供无线上网的系统、方法及电子设备
CN114390337A (zh) * 2020-10-21 2022-04-22 华为技术有限公司 投屏方法、系统及电子设备
CN113645693A (zh) * 2021-10-14 2021-11-12 荣耀终端有限公司 WiFi P2P连接方法、电子设备、程序产品和介质

Also Published As

Publication number Publication date
CN117255434A (zh) 2023-12-19

Similar Documents

Publication Publication Date Title
WO2021027616A1 (zh) 一种通过遥控器实现一碰投屏的终端设备、方法以及系统
WO2021036835A1 (zh) 一种蓝牙搜索方法、系统及相关装置
US20220124643A1 (en) Bluetooth Transmit Power Control Method and Terminal Device
WO2020107485A1 (zh) 一种蓝牙连接方法及设备
WO2021043219A1 (zh) 一种蓝牙回连方法及相关装置
EP4213512A1 (en) Screen projection method and system, and electronic device
WO2021175268A1 (zh) 移动网络热点的共享方法、装置和热点共享设备
WO2021023046A1 (zh) 一种电子设备控制方法及一种电子设备
WO2021043198A1 (zh) 一种蓝牙配对方法及相关装置
CN114125789B (zh) 通信方法、终端设备及存储介质
CN114499587B (zh) 音频同步的通信方法、系统、无线耳机、终端及存储介质
EP4250075A1 (en) Content sharing method, electronic device, and storage medium
WO2020124371A1 (zh) 一种数据信道的建立方法及设备
WO2021197071A1 (zh) 无线通信系统及方法
WO2021027623A1 (zh) 一种设备能力发现方法及p2p设备
CN112469014A (zh) 配置蓝牙连接参数的方法和电子设备
WO2021043250A1 (zh) 一种蓝牙通信方法及相关装置
CN114554012A (zh) 来电接听方法、电子设备及存储介质
WO2021197115A1 (zh) 天线调谐方法、装置、电子设备和网络侧设备
WO2023236670A1 (zh) 数据传输管理方法、电子设备及存储介质
CN113572586B (zh) 一种探测参考信号的发送方法、用户设备以及系统
CN113453327A (zh) 一种发送功率控制方法、终端、芯片系统与系统
WO2024001735A1 (zh) 网络连接方法、电子设备及存储介质
WO2023165513A1 (zh) 通信方法、电子设备及装置
CN114980238B (zh) Wi-Fi接入的方法及相关设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23818837

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023818837

Country of ref document: EP

Ref document number: 23818837.9

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2023818837

Country of ref document: EP

Effective date: 20240416