WO2022111673A1 - 自适应温度补偿电路以及偏置电路 - Google Patents

自适应温度补偿电路以及偏置电路 Download PDF

Info

Publication number
WO2022111673A1
WO2022111673A1 PCT/CN2021/133863 CN2021133863W WO2022111673A1 WO 2022111673 A1 WO2022111673 A1 WO 2022111673A1 CN 2021133863 W CN2021133863 W CN 2021133863W WO 2022111673 A1 WO2022111673 A1 WO 2022111673A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
current
transistor
compensation
zero
Prior art date
Application number
PCT/CN2021/133863
Other languages
English (en)
French (fr)
Inventor
杨必文
奉靖皓
倪建兴
Original Assignee
锐石创芯(深圳)科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 锐石创芯(深圳)科技股份有限公司 filed Critical 锐石创芯(深圳)科技股份有限公司
Publication of WO2022111673A1 publication Critical patent/WO2022111673A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/30Modifications of amplifiers to reduce influence of variations of temperature or supply voltage or other physical parameters
    • H03F1/303Modifications of amplifiers to reduce influence of variations of temperature or supply voltage or other physical parameters using a switching device
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present application relates to the field of power amplifiers, and in particular, to an adaptive temperature compensation circuit and a bias circuit.
  • the requirements for power amplifiers in communication systems are getting higher and higher, and gain linearity is an important performance indicator for measuring power amplifiers, which directly affects the communication quality of mobile terminals.
  • the inventor realized that since the performance (such as gain) of the power amplifier is easily affected by the external temperature, in order to ensure the power amplifier has better performance and improve the thermal stability of the power amplifier, it is very important to perform moderate temperature compensation on the power amplifier. important.
  • Embodiments of the present application provide an adaptive temperature compensation circuit and a bias circuit, so as to solve the problem of poor performance of the power amplifier caused by excessive temperature compensation of the power amplifier.
  • An adaptive temperature compensation circuit configured to provide a compensation current to a bias circuit of a power amplifier, in a first temperature interval, the compensation current is positively correlated with temperature, and in a second temperature interval
  • the compensation current is independent of temperature, and the compensation current is positively correlated with temperature in a third temperature range, and the second temperature range is located between the first temperature range and the third temperature range.
  • a bias circuit configured to provide a bias signal to a power amplifier, comprising: a base circuit for providing a bias current for the power amplifier, and the adaptive temperature compensation circuit;
  • the basic circuit provides a bias current and the adaptive temperature compensation circuit provides a first error current to the power amplifier, and in a second temperature interval, the basic circuit provides a bias current to the power amplifier; In three temperature intervals, the base circuit provides a bias current and the adaptive temperature compensation circuit provides a second error current to the power amplifier.
  • the above adaptive temperature compensation circuit in the first temperature interval, outputs the first error current to the compensation node through the first temperature compensation module; in the third temperature interval, outputs the second error current to the compensation node through the second temperature compensation module ; In the second temperature interval, the output compensation current is zero, that is, the power amplifier is not temperature compensated in the second temperature interval; thus avoiding the occurrence of the power amplifier when the temperature is lower or higher than a certain temperature.
  • the bias circuit of the power amplifier provides a compensation current, which avoids the deterioration of the performance of the power amplifier caused by excessive temperature compensation.
  • the base circuit in a first temperature interval, the base circuit provides a bias current and the adaptive temperature compensation circuit provides a first error current to the power amplifier, and in a second temperature interval, the bias current is supplied by the The base circuit provides a bias current to the power amplifier; in a third temperature interval, the base circuit provides a bias current and the adaptive temperature compensation circuit provides a second error current to the power amplifier.
  • the basic circuit and the adaptive temperature compensation circuit are used to compensate the power amplifier together, and in the second temperature interval, the bias current is only provided to the power amplifier through the basic circuit, so as to improve the compensation At the same time, it also avoids the deterioration of the performance of the power amplifier due to excessive temperature compensation.
  • FIG. 1 is a schematic diagram of a current-temperature in an adaptive temperature compensation circuit according to an embodiment of the present application
  • FIG. 2 is another schematic block diagram of an adaptive temperature compensation circuit in an embodiment of the present application.
  • FIG 3 is another schematic diagram of current-temperature in the adaptive temperature compensation circuit according to an embodiment of the present application.
  • FIG. 4 is another schematic block diagram of an adaptive temperature compensation circuit in an embodiment of the present application.
  • FIG 5 is another schematic diagram of current-temperature in the adaptive temperature compensation circuit according to an embodiment of the present application.
  • FIG. 7 is another schematic block diagram of an adaptive temperature compensation circuit in an embodiment of the present application.
  • FIG. 6 is another current-temperature schematic diagram in the adaptive temperature compensation circuit according to an embodiment of the present application.
  • 1-self-adaptive temperature compensation circuit 2-basic circuit; 3-power amplifier; 4-compensation node; 10-first temperature compensation module; 20-second temperature compensation module; 30-adjustable resistance; 40-bandgap reference source; 50-first conditioning circuit; 60-second conditioning circuit; 101-first positive temperature compensation unit; 102-first zero temperature compensation unit; 201-second positive temperature compensation unit; 202-second zero temperature compensation cell; 1011-first transistor; 1012-second transistor; 1021-fifth transistor; 1022-sixth transistor; 2011-third transistor; 2012-fourth transistor; 2021-seventh transistor; 2022-eighth transistor; 1013-first adjustment transistor; 1014-second adjustment transistor; 1023-third adjustment transistor; 1024-fourth adjustment transistor; 2013-fifth adjustment transistor; 2014-sixth adjustment transistor; 2023-seventh adjustment transistor; 2024 - eighth regulating transistor; 501 - ninth regulating transistor; 502 - tenth regulating transistor; 601 - eleventh regulating transistor; 602 - twel
  • an adaptive temperature compensation circuit 1 is provided, and the adaptive temperature compensation circuit 1 is configured to provide a compensation current to the bias circuit of the power amplifier 3, and in a first temperature interval, the compensation current is There is a positive correlation with temperature, in the second temperature interval, the compensation current is independent of temperature, and in the third temperature interval, the compensation current is positively correlated with temperature, and the second temperature interval is located between the first temperature interval and between the third temperature interval.
  • the compensation current refers to the current that adaptively compensates the power amplifier 3 when the performance of the power amplifier 3 is affected by temperature.
  • the first temperature interval may be -20°C to 10°C, -30°C to 20°C, or -40°C to 20°C;
  • the second temperature interval may be 10°C to 30°C, 20°C to 40°C, or 20°C. °C to 50 °C;
  • the third temperature range may be 30 °C to 80 °C, 40 °C to 100 °C, or 50 °C to 120 °C, etc.
  • the first temperature range is preferably -40°C to 10°C;
  • the second temperature range is preferably 10°C to 40°C;
  • the third temperature range is preferably 40°C to 120°C interval.
  • the abscissa represents the temperature value; the ordinate represents the compensation current; in the first temperature interval, that is, in the temperature interval less than t1 in FIG. 1 , the compensation current is positive with the temperature. In the second temperature interval, that is, in the temperature interval from t1 to t2 in Figure 1, the compensation current has nothing to do with temperature; in the third temperature interval, that is, in the temperature interval greater than t2 in Figure 1, the compensation current is related to the temperature. positive correlation.
  • the first temperature interval and the third temperature interval are not infinite intervals, the first temperature interval has a minimum limit value, and the third temperature interval has a maximum limit value.
  • the minimum limit value of the first temperature range is preferably -40°C; the maximum limit value of the third temperature range is preferably 120°C.
  • the adaptive temperature compensation circuit 1 in the second temperature interval, the compensation current provided by the adaptive temperature compensation circuit 1 to the bias circuit of the power amplifier 3 is independent of temperature, that is, the compensation current is zero in the second temperature interval , compared with the bias circuit of the adaptive temperature compensation circuit in the prior art that starts to provide compensation current to the power amplifier as long as the temperature is lower or higher than a certain temperature value, the adaptive temperature compensation circuit of this embodiment can Avoid power amplifier performance degradation due to excessive temperature compensation.
  • the adaptive temperature compensation circuit 1 includes:
  • At least one first temperature compensation module 10 is configured to receive a first positive temperature coefficient current and a first zero temperature coefficient current, and output a first error when the first positive temperature coefficient current is smaller than the first zero temperature coefficient current current to compensation node 4.
  • the first positive temperature coefficient current is the current output by the positive temperature coefficient power supply connected to the first temperature compensation module 10
  • the positive temperature coefficient power supply may be a positive temperature coefficient current source or a positive temperature coefficient voltage source
  • the first zero temperature coefficient current is the current output by the zero temperature coefficient power supply connected to the first temperature compensation module 10 .
  • the zero temperature coefficient power supply may be a zero temperature coefficient current source or a zero temperature coefficient voltage source.
  • the magnitude of the first positive temperature coefficient current is positively correlated with temperature.
  • the magnitude of the first zero temperature coefficient current is independent of temperature.
  • the compensation node 4 refers to the node on the common branch of the bias circuit of the power amplifier 3 that the adaptive temperature compensation circuit 1 outputs the compensation current.
  • the first temperature compensation module 10 outputs the first error current to the compensation node 4, the The first error current is a difference current between the first positive temperature coefficient current and the first zero temperature coefficient current, and the first error current is positively correlated with temperature.
  • the first error current output by the first temperature compensation module 10 is the compensation current provided by the adaptive temperature compensation circuit 1 to the bias circuit of the power amplifier 3, and further represents the compensation current.
  • the compensation current is positively correlated with the temperature.
  • the number of accesses of the first temperature compensation modules 10 can be determined according to the specific compensation requirements of the power amplifier 3 , that is, the magnitude of the output first error current can be adjusted by adjusting different numbers of the first temperature compensation modules 10 .
  • At least one second temperature compensation module 20 is configured to receive a second positive temperature coefficient current and a second zero temperature coefficient current, and output a second error when the second positive temperature coefficient current is greater than the second zero temperature coefficient current current to compensation node 4, the first zero temperature coefficient current is less than the second zero temperature coefficient current.
  • the second positive temperature coefficient current is the current output by the positive temperature coefficient power supply connected to the second temperature compensation module 20
  • the positive temperature coefficient power supply may be a positive temperature coefficient current source or a positive temperature coefficient voltage source
  • the positive temperature coefficient power supply can be connected to the first temperature compensation module 10 and the second temperature compensation module 20 at the same time.
  • the second zero-temperature coefficient current is the current output by the zero-temperature-coefficient power supply connected to the second temperature compensation module 20.
  • the zero-temperature-coefficient power supply can be a zero-temperature-coefficient current source or a zero-temperature-coefficient voltage source.
  • the second The zero temperature coefficient current is greater than the first zero temperature coefficient current.
  • the second positive temperature coefficient current is greater than the second zero temperature coefficient current
  • the second temperature compensation module 20 outputs the second error current to the compensation node 4, so
  • the second error current is a difference current between the second positive temperature coefficient current and the second zero temperature coefficient current, and the second error current is positively correlated with temperature.
  • the second error current output by the second temperature compensation module 20 is the compensation current provided by the adaptive temperature compensation circuit 1 to the bias circuit of the power amplifier 3, and further represents the first error current.
  • the compensation current is positively correlated with the temperature.
  • the number of accesses of the second temperature compensation modules 20 can be determined according to the specific compensation requirements of the power amplifier 3 , that is, the magnitude of the output second error current can be adjusted by adjusting different numbers of the second temperature compensation modules 20 .
  • the first temperature compensation module 10 when the first positive temperature coefficient current is greater than or equal to the first zero temperature coefficient current, the first temperature compensation module 10 does not output the first error current to the compensation node 4, that is, the first temperature compensation module 10 does not output the first error current to the compensation node 4. An error current is zero. Further, in the second temperature range, the second positive temperature coefficient current is less than or equal to the second zero temperature coefficient current, the second temperature compensation module 20 does not output the second error current to the compensation node 4, that is, the first The second error current is zero. It can be seen from this that in the second temperature range, the compensation current provided to the bias circuit of the power amplifier 3 is zero.
  • the adaptive temperature compensation circuit 1 includes a first positive temperature coefficient current, a second positive temperature coefficient current, a first zero temperature coefficient current and a second zero temperature coefficient current, the first positive temperature coefficient current The current-temperature characteristics of the current, the second positive temperature coefficient current, the first zero temperature coefficient current, and the second zero temperature coefficient current determine the second temperature interval.
  • the temperature value when the first positive temperature coefficient current and the first zero temperature coefficient current are equal is the minimum value of the second temperature interval, and the second positive temperature coefficient current and the second zero temperature coefficient current are equal to each other.
  • the temperature value when the temperature coefficient currents are equal is the maximum value of the second temperature interval, and then the second temperature interval is determined according to the minimum value and the maximum value.
  • the first positive temperature coefficient current and the second positive temperature coefficient current may be regarded as two different current values on a positive temperature current straight line (I1 in FIG. 3 ).
  • I2 is the current straight line corresponding to the first zero temperature coefficient current;
  • I3 is the current straight line corresponding to the second zero temperature coefficient current.
  • t1 to t2 is the second temperature interval; at the intersection of I1 and I2, that is, at the intersection of the first positive temperature coefficient current and the first zero temperature coefficient current, the corresponding temperature value is the second temperature interval At the intersection point of I1 and I3, that is, at the intersection point when the second positive temperature coefficient current and the second zero temperature coefficient current are equal, the corresponding temperature value is the maximum value t2 of the second temperature interval .
  • the compensation current provided to the bias circuit of the power amplifier 3 is all zero.
  • the first error current is output to the compensation node 4 through the first temperature compensation module 10; in the third temperature interval, the second error current is output through the second temperature compensation module 20 to Compensation node 4; in the second temperature interval, the output compensation current is zero, that is, it is not necessary to perform temperature compensation on the power amplifier 3 at this time; thus avoiding the start when it is lower or higher than a certain temperature
  • the phenomenon of providing a compensation current for the bias circuit of the power amplifier avoids the situation that the performance of the power amplifier is deteriorated due to excessive temperature compensation.
  • the first temperature compensation module 10 includes a first positive temperature compensation unit 101 and a first zero temperature compensation unit 102, the first positive temperature compensation unit 101 receives the first positive temperature coefficient current, The first zero temperature coefficient compensation unit 102 receives the first zero temperature coefficient current, and when the first positive temperature coefficient current is smaller than the first zero temperature coefficient current, the first zero temperature coefficient compensation unit outputs the the first error current to the compensation node 4 .
  • the first positive temperature compensation unit 101 is connected to the first positive temperature coefficient power supply to receive the first positive temperature coefficient current output by the first positive temperature coefficient power supply.
  • the first zero-temperature-coefficient compensation unit 102 is connected to the first zero-temperature-coefficient power supply to receive a first zero-temperature-coefficient current output by the first zero-temperature-coefficient power supply.
  • the first positive temperature compensation unit 101 includes a first transistor 1011 and a second transistor 1012; the first zero temperature compensation unit 102 includes a fifth transistor 1021 and a sixth transistor 1022;
  • the drain of the first transistor 1011 is connected to the source of the second transistor 1012; the drain of the second transistor 1012 is respectively connected to the source of the fifth transistor 1021 and the drain of the sixth transistor 1022;
  • the source of the fifth transistor 1021 is connected to the drain of the sixth transistor 1022 ; the drain of the fifth transistor 1021 is connected to the common branch where the compensation node 4 is located.
  • the first transistor 1011 and the second transistor 1012 are both PMOS (P-Metal-Oxide-Semiconductor, P-type metal-oxide-semiconductor) transistors; the fifth transistor 1021 and the sixth transistor 1022 are both NMOS (N-Metal -Oxide-Semiconductor, N-type metal-oxide-semiconductor) transistor.
  • PMOS P-Metal-Oxide-Semiconductor, P-type metal-oxide-semiconductor
  • NMOS N-Metal -Oxide-Semiconductor, N-type metal-oxide-semiconductor
  • the first positive temperature coefficient current is smaller than the first zero temperature coefficient current, it means that the first transistor 1011 , the second transistor 1012 , the fifth transistor 1021 and the first transistor 1011 , the second transistor 1012 , and the The six transistors 1022 are all switched to an on state, and the first error current is output to the compensation node 4 through the fifth transistor 1021 .
  • a positive temperature coefficient power supply (A1 in FIG. 2) is set, and the positive temperature coefficient power supply outputs a first positive temperature coefficient current;
  • a first zero temperature coefficient power supply (A1 in FIG. 2) is set up.
  • the first zero temperature coefficient power supply outputs a first zero temperature coefficient current; the first positive temperature coefficient current passes through the first transistor 1011 and the second transistor 1012, the first zero temperature coefficient current passes through the sixth transistor 1022, and the first zero temperature coefficient current passes through the sixth transistor 1022.
  • the current value flowing through the fifth transistor 1021 can be obtained as the difference between the first zero temperature coefficient current and the first positive temperature coefficient current value, which further indicates that the first transistor 1011, the second transistor 1012, the fifth transistor 1021 and the sixth transistor 1022 are all switched to the ON state, and the fifth transistor 1021 outputs the first error current (that is, the first zero temperature coefficient difference between the current and the first positive temperature coefficient current) to the compensation node 4 .
  • the fifth transistor 1021 When the first positive temperature coefficient current is greater than or equal to the second zero temperature coefficient current, it means that in the second temperature range, the fifth transistor 1021 is switched to an off state, and no current flows through the second temperature range. With five transistors 1021, the first error current is zero.
  • the current flowing through the first transistor 1011 and the second transistor 1012 is the first positive temperature coefficient current
  • the current flowing through the sixth transistor 1022 is the first zero temperature coefficient current ;
  • the first positive temperature coefficient current is greater than or equal to the first zero temperature coefficient current, according to Kirchhoff's law, in the second temperature interval, no current flows through the fifth transistor 1021, at this time the first The five transistors 1021 are switched to an off state, and the first error current is not output to the compensation node 4 , that is, the first error current is zero.
  • the second temperature compensation module 20 includes a second positive temperature compensation unit 201 and a second zero temperature compensation unit 202, the second positive temperature compensation unit 201 receives the second positive temperature coefficient current, The second zero temperature coefficient compensation unit 202 receives the second zero temperature coefficient current, and when the second positive temperature coefficient current is greater than the second zero temperature coefficient current, the second positive temperature coefficient compensation unit 201 outputs the the second error current to the compensation node 4 .
  • the second positive temperature compensation unit 201 is connected to the second positive temperature coefficient power supply to receive the second positive temperature coefficient current output by the second positive temperature coefficient power supply.
  • the second zero temperature coefficient compensation unit 202 is connected to the second zero temperature coefficient power supply to receive the second zero temperature coefficient current output by the second zero temperature coefficient power supply.
  • the second positive temperature compensation unit 201 includes a third transistor 2011 and a fourth transistor 2012; the second zero temperature compensation unit 202 includes a seventh transistor 2021 and an eighth transistor 2022; The source is connected to the drain of the third transistor 2011 and the drain of the seventh transistor 2021 respectively, and the drain of the fourth transistor 2012 is connected to the common branch where the compensation node 4 is located; the seventh The source of the transistor 2021 is connected to the drain of the eighth transistor 2022 .
  • the third transistor 2011 and the fourth transistor 2012 are both PMOS transistors; the seventh transistor 2021 and the eighth transistor 2022 are both NMOS transistors.
  • the second positive temperature coefficient current is greater than the second zero temperature coefficient current, it indicates that the third transistor 2011 , the fourth transistor 2012 , the seventh transistor 2021 and the third transistor 2011 , the fourth transistor 2012 , the seventh transistor 2021 and the The eight transistors 2022 are all switched to an on state, and the second error current is output to the compensation node 4 through the fourth transistor 2012 .
  • a positive temperature coefficient power supply is provided, and the positive temperature coefficient power supply outputs a second positive temperature coefficient current (which is consistent with the positive temperature coefficient power supply of the first positive temperature coefficient current in the above description, the first positive temperature coefficient current
  • the temperature coefficient current and the second positive temperature coefficient current can be regarded as different currents output by the same positive temperature coefficient power supply in different temperature ranges); set a second zero temperature coefficient power supply (A3 in Figure 2), the first The 20 temperature coefficient power supply outputs a second zero temperature coefficient current; the second positive temperature coefficient current passes through the third transistor 2011, and the second zero temperature coefficient current passes through the seventh transistor 2021 and the eighth transistor 2022, when the second positive temperature coefficient current is greater than
  • the second error current flowing through the fourth transistor 2012 is the second positive temperature coefficient current and the second zero temperature coefficient current.
  • the difference between the temperature coefficient currents indicates that in the third temperature interval, the third transistor 2011 , the fourth transistor 2012 , the seventh transistor 2021 and the eighth transistor 2022 are all switched to the conducting state, and the output is output through the fourth transistor 2012
  • the second error current goes to the compensation node 4 .
  • the second positive temperature coefficient current is less than or equal to the second zero temperature coefficient current, it indicates that the fourth transistor 2012 is switched to an off state in the second temperature range, and the second error current is zero.
  • the current flowing through the third transistor 2011 is the second positive temperature coefficient current
  • the current flowing through the seventh transistor 2021 is the second zero temperature coefficient current
  • the temperature coefficient current is less than or equal to the second zero temperature coefficient current, according to Kirchhoff's law, no current flows through the fourth transistor 2012 in the second temperature range, which indicates that the fourth transistor 2012 is switched off at this time.
  • the second error current is not output to the compensation node 4, that is, the second error current is zero.
  • At least some of the first temperature compensation modules 10 include a first switch group, and by increasing the number of the first switch groups that are turned on, the number of the first temperature compensation modules 10 connected is increased, In order to increase the current value of the first error current, or, by reducing the number of the first switch groups that are turned on, reduce the number of the first temperature compensation modules 10 connected to reduce the number of the first temperature compensation modules 10. The current value of an error current.
  • the first temperature compensation module 10 further includes a first adjustment transistor 1013, a second adjustment transistor 1014, a third adjustment transistor 1023 and a fourth adjustment transistor 1024;
  • the first switch group includes a A switch K1, a second switch K2, a third switch K3 and a fourth switch K4.
  • the first positive temperature compensation unit 101 in the first temperature compensation module 10 is connected to the first positive temperature coefficient power supply A1
  • the first zero temperature compensation unit 102 in the first temperature compensation module 10 is connected to the first zero temperature coefficient power supply A2.
  • the positive temperature coefficient power supply is connected to the source of the first adjustment transistor 1013 , the drain of the first adjustment transistor 1013 is connected to the source of the second adjustment transistor 1014 , and the drain of the second adjustment transistor 1014 is connected to the source of the third adjustment transistor 1023 and the drain electrode of the fourth adjusting transistor 1024, the drain electrode of the third adjusting transistor 1023 is connected to the common branch where the compensation node 4 is located, and the source electrode of the fourth adjusting transistor 1024 is grounded.
  • the gate of the first adjustment transistor 1013 is connected to the gate of the first transistor 1011 through the first switch K1, and the second switch K2 is connected to the gate of the first adjustment transistor 1013 and the gate of the first adjustment transistor 1013 respectively.
  • the first switch K1 is connected;
  • the gate of the second adjusting transistor 1014 is connected to the gate of the second transistor 1012;
  • the gate of the third adjusting transistor 1023 is connected to the gate of the fifth transistor 1021;
  • the fourth adjusting transistor 1024 is connected to the gate of the sixth transistor 1022 through the third switch K3; one end of the fourth switch K4 is connected to the gate of the fourth adjusting transistor 1024 and the gate of the fourth adjusting transistor 1024 respectively.
  • the three switches K4 are connected, and the other end is grounded.
  • both the first switch K1 and the third switch K3 in the first switch group need to be switched to the conduction state, and the second switch K1 and the third switch K3 in the first switch group should be switched to the conduction state. Both the switch K2 and the fourth switch K4 are switched to the off state.
  • the specific quantity that needs to be connected to the first temperature compensation module 10 may be determined according to actual compensation requirements.
  • the first switch K1 and the third switch K3 in the first switch group are turned on, and the second switch K2 and the third switch K3 are turned off.
  • the other first temperature compensation module 10 can also receive the first positive temperature coefficient current and the first zero temperature coefficient current, and when the first positive temperature coefficient current When the current is less than the first zero temperature coefficient current, the first error current is jointly output to the compensation node 4 . That is to say, at this time, the two first temperature compensation modules 10 jointly output twice the first error current to the compensation node 4, which further indicates that after the number of the first temperature compensation modules 10 is increased, the current of the first error current will increase value.
  • the connection between the two first temperature compensation modules 10 is disconnected, thereby reducing the number of the first temperature compensation modules 10, and at this time there is only one
  • the first temperature compensation module 10 outputs the first error current to the compensation node 4 , thereby representing that after the number of the first temperature compensation modules 10 is reduced, the current value of the first error current will be reduced.
  • At least a part of the second temperature compensation modules 20 includes a second switch group, and by increasing the number of the second switch groups that are turned on, the number of the second temperature compensation modules 20 connected is increased, In order to increase the current value of the second error current, or, by reducing the number of the second switch groups that are turned on, reduce the number of the second temperature compensation modules 20 connected to reduce the number of the second temperature compensation module 20. 2. The current value of the error current.
  • the second temperature compensation module 20 further includes a fifth adjustment transistor 2013, a sixth adjustment transistor 2014, a seventh adjustment transistor 2023, and an eighth adjustment transistor 2024; the second switch group includes a fifth switch K5, the sixth switch K6, the seventh switch K7 and the eighth switch K8.
  • the second zero temperature compensation unit 202 in the second temperature compensation module 20 is connected to the second zero temperature coefficient power supply A3; the second positive temperature compensation unit in the second temperature compensation module 20 is connected to the second positive temperature coefficient power supply A4 . It can be understood that, in this embodiment, the connection of the first temperature compensation module 10 and the second temperature compensation module to different positive temperature coefficient power supplies is only an example.
  • the first positive temperature coefficient power supply can also be used A1 directly supplies current to the first positive temperature compensation unit 101 in the first temperature compensation module 10 and the second temperature compensation unit 201 in the second temperature compensation module 20, and only needs to connect the fifth transistor in the second temperature compensation module
  • the input terminals of 2011 and the sixth transistor 2012 can be respectively connected to the output terminal of the first positive temperature coefficient power supply A1.
  • the second positive temperature coefficient power supply A4 is connected to the source of the fifth adjusting transistor 2013 , the drain of the fifth adjusting transistor 2013 is connected to the source of the sixth adjusting transistor 2014 , and the drain of the sixth adjusting transistor 2014
  • the pole is connected to the common branch where the compensation node 4 is located, the source of the seventh adjustment transistor 2023 and the drain of the eighth adjustment transistor 2024, the drain of the seventh adjustment transistor 2023 is connected to the source of the sixth adjustment transistor 2014, the eighth The source of the regulating transistor 2024 is grounded.
  • the third transistor 2011 is connected to the gate of the fifth adjustment transistor 2013 through the fifth switch K5, and the sixth switch K6 is respectively connected to the gate of the fifth adjustment transistor 2013 and the gate of the fifth adjustment transistor 2013.
  • the fifth switch hole is connected; the gate of the sixth adjustment transistor 2014 is connected to the gate of the fourth transistor 2012; the gate of the seventh adjustment transistor 2023 is connected to the gate of the seventh transistor 2021; the The eighth adjustment transistor 2024 is connected to the gate of the eighth transistor 2022 through the seventh switch K7, and one end of the eighth switch K8 is respectively connected to the gate of the eighth adjustment transistor 2024 and the seventh switch K7 is connected, and the other end is grounded.
  • both the fifth switch K5 and the seventh switch K7 in the second switch group need to be switched to the conduction state, and the sixth switch K5 and the seventh switch K7 in the second switch group need to be switched to the conduction state. Both the switch K6 and the eighth switch K8 are switched to the off state.
  • the specific quantity that needs to be connected to the second temperature compensation module 20 can be determined according to the actual compensation requirement.
  • the fifth switch K5 and the seventh switch K7 in the second switch group are turned on, and the sixth switch is turned off.
  • two second temperature compensation modules can be connected simultaneously.
  • Another second temperature compensation module 20 also receives the second positive temperature coefficient current and the second zero temperature coefficient current, and when the second positive temperature coefficient current is smaller than the second zero temperature coefficient current, the two second temperature compensation modules 20 jointly output the second error current compensation node 4, that is, the two second temperature compensation modules 20 jointly output twice the second error current to the compensation node 4, which further indicates that after the number of the second temperature compensation modules 20 is increased, The current value of the second error current will be increased.
  • the connection between the two second temperature compensation modules 20 is disconnected, and the number of the second temperature compensation modules 20 is reduced, so there is only one at this time.
  • the second temperature compensation module 20 outputs the second error current to the compensation node 4 , thereby representing that the current value of the second error current will be reduced after the number of the second temperature compensation modules 20 is reduced.
  • the slope of the first positive temperature coefficient straight line corresponding to the first positive temperature coefficient current is increased; After the number of the first temperature compensation modules 10, the slope of the first positive temperature coefficient straight line is reduced.
  • the first positive temperature power supply A1 that provides the first positive temperature coefficient current needs to increase the total amount of current provided (the total amount of the first positive temperature power supply A1 .
  • the amount of current refers to the sum of the current values shunted to the first positive temperature compensation units 101 in each of the first temperature compensation modules 10 ) to supply current to the connected first temperature compensation modules 10 , and each first temperature compensation
  • the current value of the first positive temperature coefficient current between the modules 10 is the same, which further indicates that the slope of the first positive temperature coefficient straight line corresponding to the first positive temperature coefficient current increases; at the same time, the first positive temperature coefficient current corresponding to the first zero temperature coefficient current increases.
  • the zero-temperature power supply A2 also needs to increase the total current provided (the total current of the first zero-temperature power supply A2 refers to the sum of the current values shunted to the first zero-temperature compensation modules 102 of the first zero-temperature compensation modules 10 ).
  • the first positive temperature power supply A1 that provides the first positive temperature coefficient current needs to reduce the total amount of current provided, thereby characterizing the first positive temperature coefficient current corresponding to the first temperature coefficient current.
  • the slope of a positive temperature coefficient straight line decreases; at the same time, the first zero temperature power supply A2 corresponding to the first zero temperature coefficient current also needs to reduce the total amount of current provided. It should be noted that, when increasing the number of connected first temperature compensation modules 10 or reducing the number of connected first temperature compensation modules 10, the second zero temperature straight line corresponding to the second zero temperature coefficient current unchanged, and the second temperature interval does not change.
  • the slope of the second positive temperature coefficient straight line corresponding to the second positive temperature coefficient current increases; when reducing the number of the second temperature compensation modules connected After the number of , the slope of the second positive temperature coefficient line decreases.
  • the second positive temperature power supply A4 that provides the second positive temperature coefficient current needs to increase the total amount of current provided (the total amount of the second positive temperature power supply A4).
  • the current amount refers to the sum of the current values shunted to the second positive temperature compensation unit 201 in each second temperature compensation module 20 ) to supply current to the connected second temperature compensation module 20 , and the second temperature compensation module 20
  • the current value of the second positive temperature coefficient current between the The power supply A3 also needs to increase the total current provided (the total current of the second zero-temperature power supply A3 refers to the sum of the currents shunted to the second zero-temperature compensation modules 202 of the second temperature compensation modules 20 ).
  • the second positive temperature power supply A3 that provides the second positive temperature coefficient current needs to reduce the total amount of current provided, thereby characterizing the first temperature corresponding to the second positive temperature coefficient current.
  • the slope of the straight line with the second positive temperature coefficient decreases; at the same time, the second zero-temperature power supply A3 corresponding to the second zero-temperature-coefficient current also needs to reduce the total amount of current provided.
  • the temperature straight line corresponding to the first positive temperature coefficient current and the second positive temperature coefficient current is L1 (It can be understood that the first positive temperature coefficient current and the second positive temperature coefficient current can be regarded as current values corresponding to different temperature values on the same temperature line), and the first zero temperature line corresponding to the first zero temperature coefficient current is L3 , the second zero temperature straight line corresponding to the second zero temperature coefficient current is L4, and the second zero temperature coefficient current formed by the first positive temperature coefficient current, the second positive temperature coefficient current, the first zero temperature coefficient current and the second zero temperature coefficient current
  • the temperature interval is from t1 to t2.
  • the temperature line corresponding to the first positive temperature coefficient current and the second positive temperature coefficient current changes from L1.
  • the first zero temperature straight line corresponding to the first zero temperature coefficient current changes from L3 to L3'
  • the second zero temperature straight line corresponding to the second zero temperature coefficient current changes from L4 to L4', but from the first positive temperature
  • the second temperature interval formed by the coefficient current, the second positive temperature coefficient current, the first zero temperature coefficient current, and the second zero temperature coefficient current is still t1 to t2, that is, the first temperature compensation module 10 and the second temperature are added at the same time. After the compensation module 20, the second temperature interval remains unchanged.
  • the adaptive temperature compensation circuit 1 further includes a first adjustment circuit 50 and a second adjustment circuit 60; the first adjustment circuit 50 is connected to the first zero temperature compensation unit 102 and is configured as To adjust the minimum value of the second temperature interval, the second adjustment circuit 50 is connected to the second zero temperature compensation unit 202 and configured to adjust the maximum value of the second temperature interval.
  • the first adjustment circuit 50 includes a ninth adjustment transistor 501 , a tenth adjustment transistor 502 , a ninth switch K9 and a tenth switch K10 ; the drain of the second transistor 1012 of the first positive temperature compensation unit 101
  • the source of the ninth adjustment transistor 501 and the drain of the tenth adjustment transistor 502 are connected; the drain of the ninth adjustment transistor 501 is connected to the common branch where the compensation node 4 is located, and the drain of the tenth adjustment transistor 502 is grounded
  • the ninth adjustment transistor 501 is connected to the gate of the fifth transistor 1021 in the first zero temperature compensation unit 102, and the gate of the tenth transistor is connected to the sixth transistor 1022 in the first zero temperature compensation unit 102 through the ninth switch K9
  • one end of the tenth switch K10 is connected to the gate of the tenth adjustment transistor 502 , and the other end of the tenth switch K10 is grounded.
  • the adaptive temperature compensation circuit further includes a third switch group
  • the first adjustment circuit 50 is connected to the first zero temperature compensation unit 101 through the third switch group, and after the third switch group is turned on, the minimum value in the second temperature interval increases; After turning off the third switch group, the minimum value in the second temperature interval decreases.
  • the third switch group includes a ninth switch K9 and a tenth switch K10.
  • first adjustment circuits 50 there are multiple groups of first adjustment circuits 50 connected to the first zero temperature compensation unit 102.
  • the connection and disconnection of the first adjustment circuits 50 can be achieved by switching the first The ON and OFF states of the ninth switch K9 and the tenth switch K10 in the third switch group of the adjustment circuit 50 are realized. If the first adjustment circuit 50 needs to be connected to the first zero temperature compensation unit 102, the ninth switch K10 is The switch K9 is switched to the ON state, and the tenth switch K10 is switched to the OFF state at the same time.
  • the first adjustment circuit 50 is used to adjust the first zero temperature coefficient current.
  • the first adjustment circuit 50 After the first adjustment circuit 50 is connected to the first zero temperature coefficient compensation unit 101 through the third switch group, the first zero temperature coefficient current becomes larger, which in turn leads to the first zero temperature coefficient current.
  • the minimum value of the second temperature interval becomes larger; after the third switch group is turned off, the minimum value of the second temperature interval becomes smaller. Exemplarily, as shown in FIG.
  • the straight line corresponding to the first positive temperature coefficient current is L1
  • the first zero temperature coefficient current corresponding to The straight line is L3
  • the straight line corresponding to the second zero temperature coefficient current is L4, and the second temperature interval formed is t1 to t2; after the third switch group is turned on, the first adjustment circuit 50 is connected to the first zero temperature compensation unit
  • the straight line corresponding to the first zero temperature coefficient current changes from L3 to L3' (both L1 and L4 do not change), and then the minimum value in the second temperature interval changes from t1 to t1', that is, increases the second temperature the minimum value of the interval, thereby reducing the interval between the minimum value and the maximum value in the second temperature interval.
  • the third switch group is turned off, after the first adjustment circuit 50 and the first zero temperature compensation unit 102 are disconnected, the straight line corresponding to the first zero temperature coefficient current changes from L3' to L3, and then the second temperature interval The minimum value in is changed from t1' to t1, that is, the minimum value in the second temperature interval is decreased, thereby increasing the interval between the minimum value and the maximum value in the second temperature interval.
  • the second adjustment circuit 60 includes an eleventh adjustment transistor 601 , a twelfth adjustment transistor 602 , an eleventh switch K11 and a twelfth switch K12 ;
  • the drain of the eleventh adjustment transistor 601 is connected to the The source of the fourth transistor 2012 in the second positive temperature compensation unit 201, the source of the eleventh adjustment transistor 601 is connected to the drain of the twelfth adjustment transistor 602, and the source of the twelfth adjustment transistor 602 is grounded;
  • the eleventh adjustment The gate of the transistor 601 is connected to the gate of the seventh transistor 2021 in the second zero temperature compensation unit 202 , and the gate of the twelfth adjustment transistor 602 is connected to the eighth transistor 2022 in the second zero temperature compensation unit 202 through the eleventh switch K11
  • One end of the twelfth switch K12 is connected to the gate of the twelfth adjustment transistor 602, and the other end of the twelfth switch K12 is grounded.
  • the adaptive temperature compensation circuit further includes a fourth switch group
  • the second adjustment circuit is connected to the second zero temperature compensation unit through the fourth switch group. After the fourth switch group is turned on, the maximum value in the second temperature interval increases, and when the fourth switch group is turned on, the maximum value in the second temperature interval increases. After the fourth switch group is turned off, the maximum value in the second temperature interval decreases.
  • the fourth switch group includes an eleventh switch K11 and a twelfth switch K12.
  • the adaptive temperature compensation circuit 1 there are multiple groups of second adjustment circuits 60 connected to the second zero temperature compensation unit 202.
  • the connection and disconnection of the second adjustment circuits 60 can be achieved by switching the second The ON and OFF states of the eleventh switch K11 and the twelfth switch K12 in the fourth switch group of the adjustment circuit 60 are implemented. If the second adjustment circuit 60 needs to be connected to the second zero temperature compensation unit 202, The eleventh switch K11 is switched to the ON state, while the twelfth switch K12 is switched to the OFF state.
  • the second adjustment circuit 60 is used to adjust the second zero temperature current.
  • the second adjustment circuit 60 After the second adjustment circuit 60 is connected to the second zero temperature compensation unit 102 through the fourth switch group, the second zero temperature coefficient current becomes larger, which in turn leads to the second zero temperature coefficient current.
  • the maximum value of the temperature interval becomes larger; after the fourth switch group is turned off, the maximum value of the second temperature interval becomes smaller.
  • the straight line corresponding to the first positive temperature coefficient current is L1
  • the straight line corresponding to the first zero temperature coefficient current is L1.
  • the second adjustment circuit 50 is connected to the second zero temperature compensation unit 102 After that, the straight line corresponding to the second zero temperature coefficient current changes from L4 to L4' (both L1 and L3 do not change), and then the maximum value in the second temperature interval changes from t2 to t2', that is, increases the second temperature interval , thereby increasing the interval between the minimum value and the maximum value in the second temperature interval.
  • the fourth switch group is turned off, after the second adjustment circuit 60 and the second zero temperature compensation unit 202 are cut off, the straight line corresponding to the second zero temperature coefficient current changes from L4' to L4, and then the The maximum value changes from t2' to t2, ie reducing the maximum value in the second temperature interval, thereby reducing the interval between the minimum value and the maximum value in the second temperature interval.
  • a bias circuit configured to provide a bias signal to a power amplifier 3, the bias circuit comprising: a base circuit 2 for providing a bias current for the power amplifier 3, and the Adaptive temperature compensation circuit 1; in a first temperature interval, the basic circuit 2 and the adaptive temperature compensation circuit jointly provide a first bias signal to the power amplifier 3, the first bias signal and The temperature is positively correlated; in the second temperature interval, the basic circuit provides a second bias signal to the power amplifier, and the second bias signal is independent of temperature; in the third temperature interval, the basic circuit provides a second bias signal to the power amplifier; The circuit provides a bias current and the adaptive temperature compensation circuit jointly provides a third bias signal to the power amplifier, the third bias signal being positively correlated with temperature.
  • the first bias signal/second bias signal/third bias signal may be bias current or bias voltage.
  • the basic circuit 2 includes a bandgap reference source 40 and an adjustable resistor 30 , the bandgap reference source 40 is connected to the adjustable resistor 30 , and the bias is output through the bandgap reference source 40 and the adjustable resistor 30 current to the power amplifier.
  • the first positive temperature coefficient current is smaller than the first zero temperature coefficient current; the first positive temperature coefficient current flows through the first transistor 1011 and the second transistor 1012, and the first zero temperature coefficient current flows through the first In the six transistors 1022, when the first positive temperature coefficient current is less than the first zero temperature coefficient current, according to Kirchhoff's law, the current value flowing through the fifth transistor 1021 can be obtained as the first zero temperature coefficient current and the first positive temperature coefficient current.
  • the difference between the temperature coefficient currents further indicates that the first transistor 1011, the second transistor 1012, the fifth transistor 1021 and the sixth transistor 1022 are all switched to the conducting state, and the fifth transistor 1021 outputs the first error current (That is, the difference between the first zero temperature coefficient current and the first positive temperature coefficient current) to the compensation node 4 .
  • the bias current output from the bandgap reference source 40 is shunted to flow through the fifth transistor 1021 and the power amplifier 3, so the voltage value finally output to the power amplifier 3 is VBG-R*(I 2 -I 1 )( Wherein, is the voltage value of the bandgap reference source 40, R is the resistance value of the adjustable resistor 30, I2 is the first zero temperature coefficient current, and I1 is the first positive temperature coefficient current).
  • the voltage value finally output to the power amplifier 3 is VBG-R*K 1 (I 2 -I 1 );
  • the total number of compensation modules is K 1 .
  • the bias current output from the bandgap reference source 40 is divided into (I 2 -I 1 ) and the bias current that flows through the fifth transistors 1021 of the first temperature compensation modules is divided into K 1 .
  • the current of the first temperature compensation module 10 is K 1 (I 2 -I 1 ).
  • the first adjustment circuit 50 is connected to the first zero temperature compensation unit 102 by turning on the third switch group, it is assumed that after the first adjustment circuit 50 of the first zero temperature compensation unit 102 is connected, the first zero temperature compensation unit 102 The total number of the temperature compensation unit 102 and the first adjustment circuit 50 is K 2 . Then the voltage value finally output to the power amplifier 3 is VBG-R*(K 2 *I 2 -I 1 ).
  • the compensation current provided by the adaptive temperature compensation circuit 1 is 0, then the voltage value output to the power amplifier 3 is VBG, that is, in the second temperature interval, only the basic circuit 2 provides the bias Set current to the power amplifier 3.
  • the second positive temperature coefficient current is greater than the second zero temperature coefficient current; the second positive temperature coefficient current passes through the third transistor 2011, the second zero temperature coefficient current passes through the seventh transistor 2021 and the eighth transistor 2022,
  • the current value flowing through the fourth transistor 2012 is the second positive temperature coefficient.
  • the difference between the temperature coefficient current and the second zero temperature coefficient current indicates that in the third temperature interval, the third transistor 2011 , the fourth transistor 2012 , the seventh transistor 2021 and the eighth transistor 2022 are all switched to the conducting state , the second error current is output to the compensation node 4 through the fourth transistor 2012 .
  • the bias current output from the bandgap reference source 40 and the second error current output through the fourth transistor 2012 are both output to the compensation node 4, so the final voltage output to the power amplifier 3 is VBG+R*(I 4 -I 3 ) (wherein I 3 is the second zero temperature coefficient current, and I 4 is the second positive temperature coefficient current).
  • the second adjustment circuit 60 is connected to the second zero temperature compensation unit 202 by turning on the fourth switch group, it is assumed that after the second adjustment circuit 60 of the second zero temperature compensation unit 202 is connected, the second zero temperature compensation unit 202 is connected to the second zero temperature compensation unit 202.
  • the total number of the temperature compensation unit 202 and the second adjustment circuit 60 is K 4 .
  • the voltage value finally output to the power amplifier 3 is VBG+R*(I 4 -K 4 I 3 ).
  • the adaptive temperature compensation circuit 1 may increase or decrease the first temperature compensation module 10, or the second temperature compensation module 20, or connect or disconnect the first adjustment circuit 50 and the second adjustment circuit.
  • the size of the adjustable resistor 30 connected to the bandgap reference source 40 can also be adjusted. Exemplarily, it is pointed out in the above description that when the first positive temperature coefficient current is smaller than the first zero temperature coefficient current, the voltage value output to the power amplifier 3 is VBG-R*(I 2 -I 1 ).

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Amplifiers (AREA)

Abstract

本申请公开了一种自适应温度补偿电路以及偏置电路。该自适应温度补偿电路在第一温度区间内,通过第一温度补偿模块输出第一误差电流至补偿节点;在第三温度区间内,通过第二温度补偿模块输出第二误差电流至补偿节点;在第二温度区间内,输出的补偿电流为零,也即不对功率放大器进行温度补偿。从而避免了出现在低于或高于某一特定适温的时候就会开始对待补偿件进行对应的温度补偿的现象,避免了因过度的温度补偿而导致的待补偿件的性能变差的情况发生。

Description

自适应温度补偿电路以及偏置电路
本申请要求于2020年11月30日提交中国专利局、申请号为202011375576.8,发明名称为“自适应温度补偿电路以及偏置电路”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及功率放大器领域,尤其涉及一种自适应温度补偿电路以及偏置电路。
背景技术
随着移动通讯技术的发展,对通讯系统中的功率放大器要求也越来越高,而增益线性度是作为衡量功率放大器的重要性能指标,直接影响移动终端的通讯质量。发明人意识到,由于功率放大器的性能(比如增益)容易受到外界温度的影响,因此为了保证功率放大器具有较好的性能;提高功率放大器的热稳定性,对功率放大器进行适度的温度补偿是非常重要的。
申请内容
本申请实施例提供一种自适应温度补偿电路以及偏置电路,以解决对功率放大器进行过度温度补偿,从而导致的功率放大器性能变差的问题。
一种自适应温度补偿电路,所述自适应温度补偿电路被配置为给功率放大器的偏置电路提供补偿电流,在第一温度区间内,所述补偿电流与温度呈正相关,在第二温度区间内,所述补偿电流与温度无关,在第三温度区间内,所述补偿电流与温度呈正相关,所述第二温度区间位于所述第一温度区间和所述第三温度区间之间。
一种偏置电路,被配置为提供偏置信号至功率放大器,包括:为所述功率放大器提供偏置电流的基础电路,以及所述自适应温度补偿电路;在第一温度区间内,由所述基础电路提供偏置电流和所述自适应温度补偿电路提供第一误差电流至所述功率放大器,在第二温度区间内,由所述基础电路提供偏置电流至所述功率放大器;在第三温度区间内,由所述基础电路提供偏置电流和所述自适应温度补偿电路提供第二误差电流至所述功率放大器。
上述自适应温度补偿电路,在第一温度区间内,通过第一温度补偿模块输出第一误差电流至补偿节点;在第三温度区间内,通过第二温度补偿模块输出第二误差电流至补偿节点;在第二温度区间内,输出的补偿电流为零,也即在第二温度区间内不对功率放大器进行温度补偿;从而避免了出现在低于或高于某一特定温度的时候就会开始为功率放大器的偏置电路提供补偿电流的现象,避免了因过度的温度补偿而导致的功率放大器的性能变差的情况发生。
上述偏置电路,在第一温度区间内,由所述基础电路提供偏置电流和所述自适应温度补偿电路提供第一误差电流至所述功率放大器,在第二温度区间内,由所述基础电路提供偏置电流至所述功率放大器;在第三温度区间内,由所述基础电路提供偏置电流和所述自适应温度补偿电路提供第二误差电流至所述功率放大器。使得在第一温度区间以及第三温度区间,通过基础电路以及自适应温度补偿电路共同为功率放大器补偿,在第二温度区间内,只通过基础电路提供偏置电流至功率放大器,从而在提高补偿效率同时,还可避免因过度的温度补偿而导致功率放大器的性能变差。
本申请的一个或多个实施例的细节在下面的附图和描述中提出,本申请的其他特征和优点将从说明书、附图以及权利要求变得明显。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对本申请实施例的描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是本申请一实施例中自适应温度补偿电路中一电流-温度示意图;
图2是本申请一实施例中自适应温度补偿电路的另一原理框图;
图3是本申请一实施例中自适应温度补偿电路中另一电流-温度示意图;
图4是本申请一实施例中自适应温度补偿电路的另一原理框图;
图5是本申请一实施例中自适应温度补偿电路中另一电流-温度示意图;
图7是本申请一实施例中自适应温度补偿电路的另一原理框图;
图6是本申请一实施例中自适应温度补偿电路中另一电流-温度示意图。
其中,图中各附图标记:
1-自适应温度补偿电路;2-基础电路;3-功率放大器;4-补偿节点;10-第一温度补偿 模块;20-第二温度补偿模块;30-可调电阻;40-带隙基准源;50-第一调节电路;60-第二调节电路;101-第一正温度补偿单元;102-第一零温度补偿单元;201-第二正温度补偿单元;202-第二零温度补偿单元;1011-第一晶体管;1012-第二晶体管;1021-第五晶体管;1022-第六晶体管;2011-第三晶体管;2012-第四晶体管;2021-第七晶体管;2022-第八晶体管;1013-第一调节晶体管;1014-第二调节晶体管;1023-第三调节晶体管;1024-第四调节晶体管;2013-第五调节晶体管;2014-第六调节晶体管;2023-第七调节晶体管;2024-第八调节晶体管;501-第九调节晶体管;502-第十调节晶体管;601-第十一调节晶体管;602-第十二调节晶体管;K1-第一开关;K2-第二开关;K3-第三开关;K4-第四开关;K5-第五开关;K6-第六开关;K7-第七开关;K8-第八开关;K9-第九开关;K10-第十开关;K11-第十一开关;K12-第十二开关。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
在一实施例中,提供一种自适应温度补偿电路1,所述自适应温度补偿电路1被配置为给功率放大器3的偏置电路提供补偿电流,在第一温度区间内,所述补偿电流与温度呈正相关,在第二温度区间内,所述补偿电流与温度无关,在第三温度区间内,所述补偿电流与温度呈正相关,所述第二温度区间位于所述第一温度区间和所述第三温度区间之间。
其中,补偿电流指的是在功率放大器3的性能受温度影响时,对功率放大器3进行适应性补偿的电流。示例性地,第一温度区间可以为-20℃至10℃、-30℃至20℃或者-40℃至20℃;第二温度区间可以为10℃至30℃、20℃至40℃或者20℃至50℃;第三温度区间可以为30℃至80℃、40℃至100℃或者50℃至120℃等。本实施例对第一温度区间、第二温度区间和第三温度区间的温度区间值不做具体限制。在本实施例中,第一温度区间优选为-40℃至10℃这一区间;第二温度区间优选为10℃至40℃这一区间;第三温度区间优选为40℃至120℃这一区间。
示例性地,如图1所示电流-温度示意图,横坐标表征温度值;纵坐标表征补偿电流;在第一温度区间内,也即图1中小于t1的温度区间内,补偿电流与温度呈正相关;在第二温度区间内,也即图1中t1至t2温度区间内,补偿电流与温度无关;在第三温度区间内, 也即图1中大于t2的温度区间内,补偿电流与温度呈正相关。需要说明的是,第一温度区间和第三温度区间不是无穷区间,第一温度区间存在最小极限值,第三温度区间存在最大极限值。本实施例中,第一温度区间的最小极限值优选为-40℃;第三温度区间的最大极限值优选为120℃。
在本实施例中,由于在第二温度区间内,所述自适应温度补偿电路1提供给功率放大器3的偏置电路的补偿电流均与温度无关,即在第二温度区间内补偿电流为零,相比较于现有技术中的自适应温度补偿电路只要出现低于或高于某一特定温度值就开始提供补偿电流始至功率放大器的偏置电路,本实施例的自适应温度补偿电路可避免因过度的温度补偿而导致功率放大器的性能变差。
在一实施例中,所述自适应温度补偿电路1包括:
至少一个第一温度补偿模块10,被配置为接收第一正温度系数电流和第一零温度系数电流,且在第一正温度系数电流小于所述第一零温度系数电流时,输出第一误差电流至补偿节点4。
其中,第一正温度系数电流为由设置在与第一温度补偿模块10连接的正温度系数电源输出的电流,该正温度系数电源可以为正温度系数电流源,也可以为正温度系数电压源。第一零温度系数电流为由设置在与第一温度补偿模块10连接的零温度系数电源输出的电流,该零温度系数电源可以为零温度系数电流源,也可以为零温度系数电压源。第一正温度系数电流的大小与温度呈正相关。第一零温度系数电流的大小与温度无关。补偿节点4指的是自适应温度补偿电路1输出补偿电流至功率放大器3的偏置电路上的公共支路上的节点。
进一步地,在第一温度区间内,所述第一正温度系数电流小于所述第一零温度系数电流,所述第一温度补偿模块10输出所述第一误差电流至补偿节点4,所述第一误差电流为所述第一正温度系数电流与所述第一零温度系数电流之间的差值电流,所述第一误差电流与温度呈正相关。可以理解地,在第一温度区间内,所述第一温度补偿模块10输出的第一误差电流即为所述自适应温度补偿电路1给功率放大器3的偏置电路提供的补偿电流,进而表征第一温度区间内,补偿电流与温度呈正相关。
进一步地,可以根据功率放大器3具体的补偿需求确定第一温度补偿模块10的接入数量,也即可以通过调整不同数量的第一温度补偿模块10,调整输出的第一误差电流的大小。
至少一个第二温度补偿模块20,被配置为接收第二正温度系数电流和第二零温度系数 电流,且在第二正温度系数电流大于所述第二零温度系数电流时,输出第二误差电流至补偿节点4,所述第一零温度系数电流小于所述第二零温度系数电流。
其中,第二正温度系数电流为由设置在与第二温度补偿模块20连接的正温度系数电源输出的电流,该正温度系数电源可以为正温度系数电流源,也可以为正温度系数电压源,该正温度系数电源可以同时连接第一温度补偿模块10以及第二温度补偿模块20。第二零温度系数电流为由设置在与第二温度补偿模块20连接的零温度系数电源输出的电流,该零温度系数电源可以为零温度系数电流源,也可以为零温度电压源,第二零温度系数电流大于第一零温度系数电流。
进一步地,在第三温度区间,所述第二正温度系数电流大于所述第二零温度系数电流,所述第二温度补偿模块20输出所述第二误差电流至所述补偿节点4,所述第二误差电流为所述第二正温度系数电流与所述第二零温度系数电流之间的差值电流,所述第二误差电流与温度呈正相关。可以理解地,在第三温度区间,所述第二温度补偿模块20输出的第二误差电流即是所述自适应温度补偿电路1给功率放大器3的偏置电路提供的补偿电流,进而表征第三温度区间内,补偿电流与温度呈正相关。
进一步地,可以根据具体功率放大器3补偿需求确定第二温度补偿模块20接入数量,也即可以通过调整不同数量的第二温度补偿模块20,调整输出的第二误差电流的大小。
进一步地,在第二温度区间内,第一正温度系数电流大于或等于所述第一零温度系数电流,所述第一温度补偿模块10不输出第一误差电流至补偿节点4,也即第一误差电流为零。进一步地,在第二温度区间内,第二正温度系数电流小于或等于所述第二零温度系数电流,所述第二温度补偿模块20不输出第二误差电流至补偿节点4,也即第二误差电流为零。由此可知,在第二温度区间内,给功率放大器3的偏置电路提供的补偿电流为零。
在一实施例中,所述自适应温度补偿电路1包括第一正温度系数电流、第二正温度系数电流、第一零温度系数电流和第二零温度系数电流,所述第一正温度系数电流、第二正温度系数电流、第一零温度系数电流和第二零温度系数电流的电流-温度特性确定所述第二温度区间。
具体地,所述第一正温度系数电流和所述第一零温度系数电流相等时的温度值为所述第二温度区间的最小值,所述第二正温度系数电流和所述第二零温度系数电流相等时的温度值为所述第二温度区间的最大值,进而根据最小值以及最大值确定出第二温度区间。
示例性地,如图3所示,所述第一正温度系数电流和第二正温度系数电流可以视为一条正温度电流直线(如图3中的I1)上的两个不同电流值。I2为第一零温度系数电流对应 的电流直线;I3为第二零温度系数电流对应的电流直线。t1至t2为第二温度区间;在I1与I2的交点处,也即第一正温度系数电流和所述第一零温度系数电流相等时的交点处,对应的温度值即为第二温度区间的最小值t1;在I1与I3的交点处,也即第二正温度系数电流和所述第二零温度系数电流相等时的交点处,对应的温度值即为第二温度区间的最大值t2。在t1-t2-温度区间内,给功率放大器3的偏置电路提供的补偿电流均为零。
在本实施例中,在第一温度区间内,通过第一温度补偿模块10输出第一误差电流至补偿节点4;在第三温度区间内,通过第二温度补偿模块20输出第二误差电流至补偿节点4;在第二温度区间内,输出的补偿电流为零,也即此时不需对功率放大器3进行温度补偿;从而避免了出现在低于或高于某一特定温度的时候就开始为功率放大器的偏置电路提供补偿电流的现象,避免了因过度的温度补偿而导致的功率放大器的性能变差的情况发生。
在一实施例中,所述第一温度补偿模块10包括第一正温度补偿单元101和第一零温度补偿单元102,所述第一正温度补偿单元101接收所述第一正温度系数电流,所述第一零温度补偿单元102接收所述第一零温度系数电流,在所述第一正温度系数电流小于所述第一零温度系数电流时,所述第一零温度系数补偿单元输出所述第一误差电流至所述补偿节点4。
其中,第一正温度补偿单元101连接第一正温度系数电源,以接收第一正温度系数电源输出的第一正温度系数电流。第一零温度补偿单元102连接第一零温度系数电源,以接收第一零温度系数电源输出的第一零温度系数电流。
进一步地,如图2所示,所述第一正温度补偿单元101包括第一晶体管1011以及第二晶体管1012;所述第一零温度补偿单元102包括第五晶体管1021以及第六晶体管1022;所述第一晶体管1011的漏极连接所述第二晶体管1012的源极;所述第二晶体管1012的漏极分别连接所述第五晶体管1021的源极和所述第六晶体管1022的漏极;所述第五晶体管1021的源极连接所述第六晶体管1022的漏极;所述第五晶体管1021的漏极连接至所述补偿节点4所处公共支路上。
其中,第一晶体管1011以及第二晶体管1012均为PMOS(P-Metal-Oxide-Semiconductor,P型金属-氧化物-半导体)晶体管;第五晶体管1021以及第六晶体管1022均为NMOS(N-Metal-Oxide-Semiconductor,N型金属-氧化物-半导体)晶体管。
在所述第一正温度系数电流小于所述第一零温度系数电流时,表征在所述第一温度区 间内,所述第一晶体管1011、第二晶体管1012、第五晶体管1021以及所述第六晶体管1022均切换至导通状态,经所述第五晶体管1021输出所述第一误差电流至所述补偿节点4。
示例性地,如图2所示,设置一个正温度系数电源(图2中的A1),该正温度系数电源输出第一正温度系数电流;设置一个第一零温度系数电源(图2中的A2),该第一零温度系数电源输出第一零温度系数电流;第一正温度系数电流经第一晶体管1011以及第二晶体管1012,第一零温度系数电流经第六晶体管1022,在第一正温度系数电流小于第一零温度系数电流时,根据基尔霍夫定律,可以得到流经第五晶体管1021的电流值即为第一零温度系数电流与第一正温度系数电流之间的差值,进而表征此时第一晶体管1011、第二晶体管1012、第五晶体管1021以及第六晶体管1022均切换至导通状态,经第五晶体管1021输出第一误差电流(也即第一零温度系数电流与第一正温度系数电流之间的差值)至补偿节点4。
在所述第一正温度系数电流大于或等于所述第二零温度系数电流时,表征在所述第二温度区间内,所述第五晶体管1021切换至关闭状态,此时没有电流流过第五晶体管1021,所述第一误差电流为零。
示例性地,如图2所示,由于流经第一晶体管1011和第二晶体管1012的电流即为第一正温度系数电流,且流经第六晶体管1022的电流即为第一零温度系数电流;在第一正温度系数电流大于或等于所述第一零温度系数电流时,根据基尔霍夫定律可知,在所述第二温度区间内,没有电流流过第五晶体管1021,此时第五晶体管1021切换至关闭状态,未输出第一误差电流至补偿节点4,也即第一误差电流为零。
在一实施例中,所述第二温度补偿模块20包括第二正温度补偿单元201以及第二零温度补偿单元202,所述第二正温度补偿单元201接收所述第二正温度系数电流,所述第二零温度补偿单元202接收所述第二零温度系数电流,在所述第二正温度系数电流大于所述第二零温度系数电流时,所述第二正温度补偿单元201输出所述第二误差电流至所述补偿节点4。
其中,第二正温度补偿单元201连接第二正温度系数电源,以接收第二正温度系数电源输出的第二正温度系数电流。第二零温度补偿单元202连接第二零温度系数电源,以接收第二零温度系数电源输出的第二零温度系数电流。
进一步地,所述第二正温度补偿单元201包括第三晶体管2011、第四晶体管2012;所述第二零温度补偿单元202包括第七晶体管2021以及第八晶体管2022;所述第四晶体管2012的源极分别连接所述第三晶体管2011的漏极和所述第七晶体管2021的漏极,所述第 四晶体管2012的漏极连接至所述补偿节点4所处公共支路上;所述第七晶体管2021的源极连接所述第八晶体管2022的漏极。
其中,第三晶体管2011以及第四晶体管2012均为PMOS晶体管;第七晶体管2021和第八晶体管2022均为NMOS晶体管。
在所述第二正温度系数电流大于所述第二零温度系数电流时,表征在所述第三温度区间内,所述第三晶体管2011、第四晶体管2012、第七晶体管2021以及所述第八晶体管2022均切换至导通状态,经所述第四晶体管2012输出所述第二误差电流至所述补偿节点4。
示例性地,如图2所示,设置一个正温度系数电源,该正温度系数电源输出第二正温度系数电流(与上述说明中第一正温度系数电流的正温度系数电源一致,第一正温度系数电流以及第二正温度系数电流可以视为,同一个正温度系数电源在不同温度区间下输出的不同电流);设置一个第二零温度系数电源(如图2中的A3),该第二零温度系数电源输出第二零温度系数电流;第二正温度系数电流经第三晶体管2011,第二零温度系数电流经过第七晶体管2021以及第八晶体管2022,在第二正温度系数电流大于所述第二零温度系数电流时,根据基尔霍夫定律可知,在所述第三温度区间内,流经第四晶体管2012的第二误差电流即为第二正温度系数电流与第二零温度系数电流之间的差值,进而表征在第三温度区间内,第三晶体管2011,第四晶体管2012,第七晶体管2021以及第八晶体管2022均切换至导通状态,经第四晶体管2012输出第二误差电流至补偿节点4。
在所述第二正温度系数电流小于或等于所述第二零温度系数电流时,表征在所述第二温度区间内,所述第四晶体管2012切换至关闭状态,所述第二误差电流为零。
示例性地,如图2所示,由于流经第三晶体管2011的电流即为第二正温度系数电流,且流经第七晶体管2021的电流即为第二零温度系数电流;在第二正温度系数电流小于或等于第二零温度系数电流时,根据基尔霍夫定律可知,在所述第二温度区间内,没有电流流经第四晶体管2012,表征此时第四晶体管2012切换至关闭状态,未输出第二误差电流至补偿节点4,也即第二误差电流为零。
在一实施例中,至少部分第一温度补偿模块10中包括第一开关组,通过增加导通的所述第一开关组的数量,增加接入的所述第一温度补偿模块10的数量,以增大所述第一误差电流的电流值,或者,通过减少导通的所述第一开关组的数量,减少接入的所述第一温度补偿模块10的数量,以减小所述第一误差电流的电流值。
其中,如图4所示,所述第一温度补偿模块10还包括第一调节晶体管1013、第二调节晶体管1014、第三调节晶体管1023和第四调节晶体管1024;所述第一开关组包括第一 开关K1、第二开关K2、第三开关K3和第四开关K4。所述第一温度补偿模块10中的第一正温度补偿单元101连接第一正温度系数电源A1,所述第一温度补偿模块10中的第一零温度补偿单元102连接第一零温度系数电源A2。
其中,正温度系数电源连接第一调节晶体管1013的源极,第一调节晶体管1013的漏极连接第二调节晶体管1014的源极,第二调节晶体管1014的漏极连接第三调节晶体管1023的源极以及第四调节晶体管1024漏极,第三调节晶体管1023的漏极连接至所述补偿节点4所处的公共支路上,第四调节晶体管1024的源极接地。
其中,所述第一调节晶体管1013的栅极通过所述第一开关K1与所述第一晶体管1011的栅极连接,所述第二开关K2分别与所述第一调节晶体管1013的栅极和所述第一开关K1连接;所述第二调节晶体管1014的栅极连接所述第二晶体管1012的栅极;所述第三调节晶体管1023的栅极连接所述第五晶体管1021的栅极;所述第四调节晶体1024管通过所述第三开关K3连接所述第六晶体管1022的栅极;所述第四开关K4的一端分别与所述第四调节晶体管1024的栅极和所述第三开关K4连接,另一端接地。
在一具体实施例中,实现多个第一温度补偿模块10之间的导通,需要将第一开关组中的第一开关K1以及第三开关K3均切换至导通状态,同时将第二开关K2以及第四开关K4均切换至切断状态。需要接入第一温度补偿模块10的具体数量可以根据实际补偿需求进行确定。
若原始仅存在一个第一温度补偿模块10输出第一误差电流至补偿节点4,则在通过导通第一开关组中的第一开关K1以及第三开关K3,并切断第二开关K2以及第四开关K4,以接入另一个第一温度补偿模块10之后,另一个第一温度补偿模块10也可以接收第一正温度系数电流和第一零温度系数电流,且在第一正温度系数电流小于所述第一零温度系数电流时,共同输出第一误差电流至补偿节点4。也即此时由两个第一温度补偿模块10共同输出两倍的第一误差电流至补偿节点4,进而表征在增加第一温度补偿模块10的数量之后,会增大第一误差电流的电流值。
反之,在切断第一开关组中的第一开关K1以及第三开关K3之后,两个第一温度补偿模块10之间断开连接,进而减少第一温度补偿模块10的数量,此时仅存在一个第一温度补偿模块10输出第一误差电流至补偿节点4,进而表征在减少第一温度补偿模块10的数量之后,会减小第一误差电流的电流值。
在一实施例中,至少部分第二温度补偿模块20中包括第二开关组,通过增加导通的所述第二开关组的数量,增加接入的所述第二温度补偿模块20的数量,以增大所述第二误差电流的电流值,或者,通过减少导通的所述第二开关组的数量,减少接入的所述第二温度补偿模块20的数量,以减小所述第二误差电流的电流值。
如图4所示,所述第二温度补偿模块20还包括第五调节晶体管2013、第六调节晶体管2014、第七调节晶体管2023、第八调节晶体管2024;所述第二开关组包括第五开关K5、第六开关K6、第七开关K7和第八开关K8。所述第二温度补偿模块20中的第二零温度补偿单元202连接第二零温度系数电源A3;所述第二温度补偿模块20中的第二正温度补偿单元连接第二正温度系数电源A4。可以理解地,在本实施例中,第一温度补偿模块10以及第二温度补偿模块分别连接不同的正温度系数电源仅为一种示例,除此之外,还可以通过第一正温度系数电源A1直接对第一温度补偿模块10中的第一正温度补偿单元101,以及第二温度补偿模块20中的第二温度补偿单元201提供电流,仅需要将第二温度补偿模块中的第五晶体管2011以及第六晶体管2012的输入端分别接入到第一正温度系数电源A1的输出端即可。
其中,如图4所示,第二正温度系数电源A4连接第五调节晶体管2013的源极,第五调节晶体管2013的漏极连接第六调节晶体管2014的源极,第六调节晶体管2014的漏极连接所述补偿节点4所处公共支路上,第七调节晶体管2023的源极以及第八调节晶体管2024漏极,第七调节晶体管2023的漏极连接第六调节晶体管2014的源极,第八调节晶体管2024的源极接地。
其中,所述第三晶体2011管通过所述第五开关K5与所述第五调节晶体管2013的栅极连接,所述第六开关K6分别与所述第五调节晶体管2013的栅极和所述第五开关孔连接;所述第六调节晶体管2014的栅极连接所述第四晶体管2012的栅极;所述第七调节晶体管2023的栅极连接所述第七晶体管2021的栅极;所述第八调节晶体管2024通过所述第七开关K7与所述第八晶体管2022的栅极连接,所述第八开关K8的一端分别与所述第八调节晶体管2024的栅极和所述第七开关K7连接,另一端接地。
在一具体实施例中,实现多个第二温度补偿模块20之间的导通,需要将第二开关组中的第五开关K5以及第七开关K7均切换至导通状态,同时将第六开关K6以及第八开关K8均切换至切断状态。需要接入第二温度补偿模块20的具体数量可以根据实际补偿需求进行确定。
进一步地,若原始仅存在一个第二温度补偿模块20输出第二误差电流至补偿节点4,则在通过导通第二开关组中的第五开关K5以及第七开关K7,并切断第六开关K6以及第八开关K8之后,可实现两个第二温度补偿模块的同时接入。另一个第二温度补偿模块20也接收第二正温度系数电流和第二零温度系数电流,且在第二正温度系数电流小于所述第二零温度系数电流时,两个第二温度补偿模块20共同输出第二误差电流补偿节点4,也即 由两个第二温度补偿模块20共同输出两倍的第二误差电流至补偿节点4,进而表征在增加第二温度补偿模块20的数量之后,会增大第二误差电流的电流值。
反之,在切断第二开关组中的第五开关K5以及第七开关K7之后,两个第二温度补偿模块20之间断开连接,第二温度补偿模块20的数量减少,则此时仅存在一个第二温度补偿模块20输出第二误差电流至补偿节点4,进而表征在减少第二温度补偿模块20的数量之后,会减小第二误差电流的电流值。
在一实施例中,在增加接入的所述第一温度补偿模块10的数量之后,增大与所述第一正温度系数电流对应的第一正温度系数直线的斜率;在减少接入的所述第一温度补偿模块10的数量之后,减小所述第一正温度系数直线的斜率。
可以理解地,在增加接入的第一温度补偿模块10的数量之后,提供第一正温度系数电流的第一正温度电源A1需要增大提供的总电流量(第一正温度电源A1的总电流量指的是分流至各第一温度补偿模块10中第一正温度补偿单元101的电流值之和),以供给电流至接入的第一温度补偿模块10,且每一第一温度补偿模块10之间的第一正温度系数电流的电流值相同,进而表征第一正温度系数电流对应的第一正温度系数直线的斜率增大;同时,与第一零温度系数电流对应的第一零温度电源A2也需要增大提供的总电流量(第一零温度电源A2的总电流量是指分流至各第一温度补偿模块10中第一零温度补偿模块102的电流值之和)。反之,在减少接入的第一温度补偿模块10的数量之后,提供第一正温度系数电流的第一正温度电源A1需要减少提供的总电流量,进而表征第一正温度系数电流对应的第一正温度系数直线的斜率减小;同时,与第一零温度系数电流对应的第一零温度电源A2也需要减小提供的总电流量。需要说明的是,在增加接入的第一温度补偿模块10的数量,或是在减小接入第一温度补偿模块10的数量时,对于第二零温度系数电流对应的第二零温度直线不变,且第二温度区间也不发生改变。
在增加接入的所述第二温度补偿模块的数量之后,与所述第二正温度系数电流对应的第二正温度系数直线的斜率增大;在减少接入的所述第二温度补偿模块的数量之后,减小所述第二正温度系数直线的斜率减小。
可以理解地,在增加接入的第二温度补偿模块20的数量之后,提供第二正温度系数电流的第二正温度电源A4需要增大提供的总电流量(第二正温度电源A4的总电流量指的是分流至各第二温度补偿模块20中第二正温度补偿单元201的电流值之和),以供给电流至接入的第二温度补偿模块20,且第二温度补偿模块20之间的第二正温度系数电流的电流值相同,进而表征第二正温度系数电流对应的第二正温度系数直线的斜率增大;同时, 与第二零温度系数电流对应的第二零温度电源A3也需要增大提供的总电流量(第二零温度电源A3的总电流量是指分流至各第二温度补偿模块20中第二零温度补偿模块202的电流值之和)。反之,在减少接入的第二温度补偿模块20的数量之后,提供第二正温度系数电流的第二正温度电源A3需要减少提供的总电流量,进而表征第二正温度系数电流对应的第二正温度系数直线的斜率减小;同时,与第二零温度系数电流对应的第二零温度电源A3也需要减小提供的总电流量。需要说明的是,在增加接入的第二温度补偿模块20的数量,或是减小接入第二温度补偿模块20的数量时,第一零温度系数电流对应的第一零温度直线不变,且第二温度区间也不发生改变。
示例性地,如图5所示,在未加入第一温度补偿模块10,且未加入第二温度补偿模块20时,第一正温度系数电流以及第二正温度系数电流对应的温度直线为L1(可以理解地,第一正温度系数电流和第二正温度系数电流,可以视为同一温度直线上不同温度值对应的电流值),第一零温度系数电流对应的第一零温度直线为L3,第二零温度系数电流对应的第二零温度直线为L4,进而由第一正温度系数电流、第二正温度系数电流、第一零温度系数电流以及第二零温度系数电流形成的第二温度区间为t1至t2。
进一步地,如图5所示,在接入第一温度补偿模块10,且接入第二温度补偿模块20之后,第一正温度系数电流以及第二正温度系数电流对应的温度直线从L1变成L1’,第一零温度系数电流对应的第一零温度直线从L3变成L3’,第二零温度系数电流对应的第二零温度直线从L4变成L4’,但是由第一正温度系数电流、第二正温度系数电流、第一零温度系数电流以及第二零温度系数电流形成的第二温度区间仍然为t1至t2,也即在同时加入第一温度补偿模块10以及第二温度补偿模块20之后,第二温度区间不变。
在一实施例中,所述自适应温度补偿电路1还包括第一调节电路50和第二调节电路60;所述第一调节电路50与所述第一零温度补偿单元102连接,被配置为对所述第二温度区间的最小值进行调节,所述第二调节电路50与所述第二零温度补偿单元202连接,被配置为对所述第二温度区间的最大值进行调节。
如图6所示,第一调节电路50中包括第九调节晶体管501、第十调节晶体管502、第九开关K9以及第十开关K10;第一正温度补偿单元101的第二晶体管1012的漏极连接第九调节晶体管501的源极以及第十调节晶体管502的漏极;第九调节晶体管501的漏极连接至所述补偿节点4所处的公共支路上,第十调节晶体管502的漏极接地;第九调节晶体管501连接第一零温度补偿单元102中的第五晶体管1021的栅极,第十晶体管的栅极通过第九开关K9连接第一零温度补偿单元102中的第六晶体管1022的栅极,第十开关K10 的一端连接第十调节晶体管502的栅极,第十开关K10的另一端接地。
所述自适应温度补偿电路还包括第三开关组;
所述第一调节电路50通过所述第三开关组与所述第一零温度补偿单元101连接,在导通所述第三开关组之后,所述第二温度区间中的最小值增大;在关断所述第三开关组之后,所述第二温度区间中的最小值减小。
其中,第三开关组包括第九开关K9以及第十开关K10。
可以理解地,在自适应温度补偿电路1中,存在多组与第一零温度补偿单元102连接的第一调节电路50,该第一调节电路50的接入与断开,可以通过切换第一调节电路50的第三开关组中的第九开关K9以及第十开关K10的导通和切断状态进行实现,如需要将第一调节电路50接入第一零温度补偿单元102时,将第九开关K9切换至导通状态,同时将第十开关K10切换至切断状态。第一调节电路50用于调整第一零温度系数电流,在通过第三开关组接入第一调节电路50至第一零温度补偿单元101之后,第一零温度系数电流变大,进而导致第二温度区间的最小值变大;在关断第三开关组之后,第二温度区间的最小值变小。在示例性地,如图7所示,在未将第一调节电路50接入第一零温度补偿单元101时,第一正温度系数电流对应的直线为L1,第一零温度系数电流对应的直线为L3,第二零温度系数电流对应的直线为L4,进而形成的第二温度区间为t1至t2;在导通第三开关组,将第一调节电路50接入第一零温度补偿单元101之后,第一零温度系数电流对应的直线从L3变成L3’(L1和L4均不改变),进而第二温度区间中的最小值从t1变成t1’,也即增大第二温度区间的最小值,从而减小第二温度区间中最小值与最大值之间的间隔。反之,若关断所述第三开关组,将第一调节电路50与第一零温度补偿单元102切断之后,第一零温度系数电流对应的直线从L3’变成L3,进而第二温度区间中的最小值从t1’变成t1,也即减小第二温度区间的最小值,从而增大第二温度区间中最小值与最大值之间的间隔。
如图6所示,第二调节电路60中包括第十一调节晶体管601、第十二调节晶体管602、第十一开关K11以及第十二开关K12;第十一调节晶体管601的漏极连接第二正温度补偿单元201中第四晶体管2012的源极,第十一调节晶体管601的源极连接第十二调节晶体管602的漏极,第十二调节晶体管602的源极接地;第十一调节晶体管601的栅极连接第二零温度补偿单元202中第七晶体管2021的栅极,第十二调节晶体管602的栅极通过第十一开关K11连接第二零温度补偿单元202中第八晶体管2022的栅极;第十二开关K12的一端连接第十二调节晶体管602的栅极,第十二开关K12的另一端接地。
所述自适应温度补偿电路还包括第四开关组;
所述第二调节电路通过所述第四开关组与所述第二零温度补偿单元连接,在导通所述第四开关组之后,所述第二温度区间中的最大值增大,在关断所述第四开关组之后,所述第二温度区间中的最大值减小。
其中,第四开关组包括第十一开关K11以及第十二开关K12。
可以理解地,在自适应温度补偿电路1中,存在多组与第二零温度补偿单元202连接的第二调节电路60,该第二调节电路60的接入与断开,可以通过切换第二调节电路60的第四开关组中的的第十一开关K11以及第十二开关K12的导通和切断状态进行实现,如需要将第二调节电路60接入第二零温度补偿单元202时,将第十一开关K11切换至导通状态,同时将第十二开关K12切换至切断状态。第二调节电路60用于调整第二零温度电流,在通过第四开关组接入第二调节电路60至第二零温度补偿单元102之后,第二零温度系数电流变大,进而导致第二温度区间的最大值变大;在关断第四开关组之后,第二温度区间的最大值变小。示例性地,如图7所示,在未将第二调节电路60接入第二零温度补偿单元202时,第一正温度系数电流对应的直线为L1,第一零温度系数电流对应的直线为L3,第二零温度系数电流对应的直线为L4,进而形成的第二温度区间为t1至t2;在导通第四开关组,将第二调节电路50接入第二零温度补偿单元102之后,第二零温度系数电流对应的直线从L4变成L4’(L1和L3均不改变),进而第二温度区间中的最大值从t2变成t2’,也即增大第二温度区间的最大值,从而增大第二温度区间中最小值与最大值之间的间隔。反之,若关断第四开关组,将第二调节电路60与第二零温度补偿单元202切断之后,第二零温度系数电流对应的直线从L4’变成L4,进而第二温度区间中的最大值从t2’变成t2,也即减小第二温度区间中的最大值,从而减小第二温度区间中最小值与最大值之间的间隔。
在一实施例中,提供一种偏置电路,被配置为提供偏置信号至功率放大器3,所述偏置电路包括:为所述功率放大器3提供偏置电流的基础电路2,以及所述自适应温度补偿电路1;在第一温度区间内,由所述基础电路2和所述自适应温度补偿电路共同提供第一偏置信号至所述功率放大器3,所述第一偏置信号与温度呈正相关;在第二温度区间内,由所述基础电路提供第二偏置信号至所述功率放大器,所述第二偏置信号与温度无关;在第三温度区间内,由所述基础电路提供偏置电流和所述自适应温度补偿电路共同提供第三偏置信号至所述功率放大器,所述第三偏置信号与温度呈正相关。其中,第一偏置信号/第二偏置信号/第三偏置信号可以为偏置电流或者偏置电压。
其中,如图2所示,基础电路2中包含带隙基准源40以及可调电阻30,带隙基准源 40与可调电阻30连接,经带隙基准源40和可调电阻30输出偏置电流至功率放大器。
具体地,在第一温度区间内,第一正温度系数电流小于第一零温度系数电流;第一正温度系数电流流经第一晶体管1011以及第二晶体管1012,第一零温度系数电流经第六晶体管1022,在第一正温度系数电流小于第一零温度系数电流时,根据基尔霍夫定律,可以得到流经第五晶体管1021的电流值即为第一零温度系数电流与第一正温度系数电流之间的差值,进而表征此时第一晶体管1011、第二晶体管1012、第五晶体管1021以及第六晶体管1022均切换至导通状态,经第五晶体管1021输出第一误差电流(也即第一零温度系数电流与第一正温度系数电流之间的差值)至补偿节点4。
进一步地,从带隙基准源40输出的偏置电流分流至流经第五晶体管1021以及功率放大器3,因此最终输出至功率放大器3的电压值为VBG-R*(I 2-I 1)(其中,为带隙基准源40的电压值,R为可调电阻30的电阻值,I 2为第一零温度系数电流,I 1为第一正温度系数电流)。
进一步地,在通过增加导通的第一开关组的数量,增加接入的第一温度补偿模块10的数量后,假设增加接入的第一温度补偿模块10之后第一温度补偿模块的总数量为K 1,则最终输出至功率放大器3的电压值为VBG-R*K 1(I 2-I 1);可以理解地,在增加接入的第一温度补偿模块10的数量之后第一温度补偿模块的总数量为K 1,从带隙基准源40输出的偏置电流分流至流经各第一温度补偿模块的第五晶体管1021均为(I 2-I 1),因此分流至K 1个第一温度补偿模块10的电流为K 1(I 2-I 1)。
进一步地,在通过导通第三开关组,将第一调节电路50接入第一零温度补偿单元102之后,假设接入第一零温度补偿单元102的第一调节电路50之后,第一零温度补偿单元102与第一调节电路50的总数量为K 2。则最终输出至功率放大器3的电压值为VBG-R*(K 2*I 2-I 1)。
在第二温度区间内,自适应温度补偿电路1提供的补偿电流为0,则输出至功率放大器3的电压值为VBG,也即在第二温度区间内,仅由所述基础电路2提供偏置电流至所述功率放大器3。
在第三温度区间内,第二正温度系数电流大于第二零温度系数电流;第二正温度系数电流经第三晶体管2011,第二零温度系数电流经过第七晶体管2021以及第八晶体管2022, 在第二正温度系数电流大于所述第二零温度系数电流时,表征在所述第三温度区间内,根据基尔霍夫定律可知,流经第四晶体管2012的电流值即为第二正温度系数电流与第二零温度系数电流之间的差值,进而表征在第三温度区间内,第三晶体管2011,第四晶体管2012,第七晶体管2021以及第八晶体管2022均切换至导通状态,经第四晶体管2012输出第二误差电流至补偿节点4。
进一步地,从带隙基准源40输出的偏置电流以及经第四晶体管2012输出第二误差电流均输出至补偿节点4,因此最终输出至功率放大器3的电压值为VBG+R*(I 4-I 3)(其中,I 3为第二零温度系数电流,I 4为第二正温度系数电流)。
进一步地,在通过增加导通的第二开关组的数量,增加接入的第二温度补偿模块20的数量后,假设增加接入的第二温度补偿模块20之后第二温度补偿模块的总数量为K 3,则最终输出至功率放大器3的电压值为VBG+R*K 3(I 4-I 3);可以理解地,在增加接入的第二温度补偿模块20的数量之后第二温度补偿模块的总数量为K 3,从经各第二温度补偿模块的第四晶体管2012输出的第二误差电流均为(I 4-I 3),因此K 3个第二温度补偿模块20输出的第二误差电流的总和为K 3(I 4-I 3)。
进一步地,在通过导通第四开关组,将第二调节电路60接入第二零温度补偿单元202之后,假设接入第二零温度补偿单元202的第二调节电路60之后,第二零温度补偿单元202与第二调节电路60的总数量为K 4。则最终输出至功率放大器3的电压值为VBG+R*(I 4-K 4I 3)。
在此提出,除了上述实施例中自适应温度补偿电路1可以通过增加或者减少第一温度补偿模块10,或者第二温度补偿模块20,亦或者接入或切断第一调节电路50以及第二调节电路60,以改变输出至功率放大器3的电压值之外,还可以通过调整与带隙基准源40连接的可调电阻30的大小。示例性地,上述说明中指出,在第一正温度系数电流小于第一零温度系数电流时,输出至功率放大器3的电压值为VBG-R*(I 2-I 1),若可调电阻30增大一倍,则输出至功率放大器3的电压值为VBG-2R*(I 2-I 1),进而改变输出至功率放大器3的电压值(也即电流值,电压值与电流值成正比)。
应理解,上述实施例中各步骤的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
所属领域的技术人员可以清楚地了解到,为了描述的方便和简洁,仅以上述各功能单元、模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能单元、模块完成,即将所述装置的内部结构划分成不同的功能单元或模块,以完成以上描述的全部或者部分功能。
以上所述实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围,均应包含在本申请的保护范围之内。

Claims (20)

  1. 一种自适应温度补偿电路,其中,所述自适应温度补偿电路被配置为给功率放大器的偏置电路提供补偿电流,在第一温度区间内,所述补偿电流与温度呈正相关,在第二温度区间内,所述补偿电流与温度无关,在第三温度区间内,所述补偿电流与温度呈正相关,所述第二温度区间位于所述第一温度区间和所述第三温度区间之间。
  2. 如权利要求1所述的自适应温度补偿电路,其中,所述自适应温度补偿电路包括:
    至少一个第一温度补偿模块,被配置为接收第一正温度系数电流和第一零温度系数电流,且在第一正温度系数电流小于所述第一零温度系数电流时,输出第一误差电流至补偿节点;
    至少一个第二温度补偿模块,被配置为接收第二正温度系数电流和第二零温度系数电流,且在第二正温度系数电流大于所述第二零温度系数电流时,输出第二误差电流至补偿节点,所述第一零温度系数电流小于所述第二零温度系数电流。
  3. 如权利要求1所述的自适应温度补偿电路,其中,在所述第二温度区间内,所述补偿电流为零。
  4. 如权利要求1所述的自适应温度补偿电路,其中,所述自适应温度补偿电路包括第一正温度系数电流、第二正温度系数电流、第一零温度系数电流和第二零温度系数电流,所述第一正温度系数电流、第二正温度系数电流、第一零温度系数电流和第二零温度系数电流的电流-温度特性确定所述第二温度区间。
  5. 如权利要求4所述的自适应温度补偿电路,其中,
    所述第一正温度系数电流和所述第一零温度系数电流相等时的温度值为所述第二温度区间的最小值,所述第二正温度系数电流和所述第二零温度系数电流相等时的温度值为所述第二温度区间的最大值。
  6. 如权利要求2所述的自适应温度补偿电路,其中,在所述第一温度区间内,所述第一正温度系数电流小于所述第一零温度系数电流,所述第一温度补偿模块输出所述第一误差电流至所述补偿节点;所述第一误差电流与温度呈正相关。
  7. 如权利要求2所述的自适应温度补偿电路,其中,在所述第三温度区间内,所述第二正温度系数电流大于所述第二零温度系数电流,所述第二温度补偿模块输出所述第二误差电流至所述补偿节点;所述第二误差电流与温度呈正相关。
  8. 如权利要求2所述的自适应温度补偿电路,其中,至少部分第一温度补偿模块中包括第一开关组;
    通过增加导通的所述第一开关组的数量,增加接入的所述第一温度补偿模块的数量,以增大所述第一误差电流的电流值;
    或者,通过减少导通的所述第一开关组的数量,减少接入的所述第一温度补偿模块的数量,以减小所述第一误差电流的电流值;
    至少部分第二温度补偿模块中包括第二开关组;
    通过增加导通的所述第二开关组的数量,增加接入的所述第二温度补偿模块的数量,以增大所述第二误差电流的电流值;
    或者,通过减少导通的所述第二开关组的数量,减少接入的所述第二温度补偿模块的数量,以减小所述第二误差电流的电流值。
  9. 如权利要求8所述的自适应温度补偿电路,其中,在增加接入的所述第一温度补偿模块的数量之后,与所述第一正温度系数电流对应的第一正温度系数直线的斜率增大;在减少接入的所述第一温度补偿模块的数量之后,所述第一正温度系数直线的斜率减小;
    在增加接入的所述第二温度补偿模块的数量之后,与所述第二正温度系数电流对应的第二正温度系数直线的斜率增大;在减少接入的所述第二温度补偿模块的数量之后,所述第二正温度系数直线的斜率减小。
  10. 如权利要求8所述的自适应温度补偿电路,其中,所述第一温度补偿模块包括第一正温度补偿单元和第一零温度补偿单元,所述第一正温度补偿单元接收所述第一正温度系数电流,所述第一零温度补偿单元接收所述第一零温度系数电流,在所述第一正温度系数电流小于所述第一零温度系数电流时,所述第一零温度系数补偿单元输出所述第一误差电流至所述补偿节点。
  11. 如权利要求10所述的自适应温度补偿电路,其中,所述第一正温度补偿单元包括第一晶体管以及第二晶体管;所述第一零温度补偿单元包括第五晶体管以及第六晶体管;所述第一晶体管的漏极连接所述第二晶体管的源极;所述第二晶体管的漏极分别连接所述第五晶体管的源极和所述第六晶体管的漏极;所述第五晶体管的源极连接所述第六晶体管的漏极;所述第五晶体管的漏极连接至所述补偿节点所处公共支路上;
    在所述第一正温度系数电流小于所述第一零温度系数电流时,表征在所述第一温度区间内,所述第一晶体管、第二晶体管、第五晶体管以及所述第六晶体管均切换至导通状态,经所述第五晶体管输出所述第一误差电流至所述补偿节点;
    在所述第一正温度系数电流大于或等于所述第二零温度系数电流时,表征在所述第二温度区间内,所述第五晶体管切换至关闭状态,所述第一误差电流为零。
  12. 如权利要求11所述的自适应温度补偿电路,其中,所述第二温度补偿模块包括第二正温度补偿单元以及第二零温度补偿单元,所述第二正温度补偿单元接收所述第二正温度系数电流,所述第二零温度补偿单元接收所述第二零温度系数电流,在所述第二正温度系数电流大于所述第二零温度系数电流时,所述第二正温度补偿单元输出所述第二误差电流至所述补偿节点。
  13. 如权利要求12所述的自适应温度补偿电路,其中,所述第二正温度补偿单元包括第三晶体管、第四晶体管;所述第二零温度补偿单元包括第七晶体管以及第八晶体管;所述第四晶体管的源极分别连接所述第三晶体管的漏极和所述第七晶体管的漏极,所述第四晶体管的漏极连接至所述补偿节点所处公共支路上;所述第七晶体管的源极连接所述第八晶体管的漏极;
    在所述第二正温度系数电流大于所述第二零温度系数电流时,表征在所述第三温度区间内,所述第三晶体管、第四晶体管、第七晶体管以及所述第八晶体管均切换至导通状态,经所述第四晶体管输出所述第二误差电流至所述补偿节点;
    在所述第二正温度系数电流小于或等于所述第二零温度系数电流时,表征在所述第二温度区间内,所述第四晶体管切换至关闭状态,所述第二误差电流为零。
  14. 如权利要求13所述的自适应温度补偿电路,其中,所述第一温度补偿模块还包括第一调节晶体管、第二调节晶体管、第三调节晶体管和第四调节晶体管;所述第一开关组包括第一开关、第二开关、第三开关和第四开关;
    所述第一调节晶体管的栅极通过所述第一开关与所述第一晶体管的栅极连接,所述第二开关分别与所述第一调节晶体管的栅极和所述第一开关连接;所述第二调节晶体管的栅极连接所述第二晶体管的栅极;所述第三调节晶体管的栅极连接所述第五晶体管的栅极;所述第四调节晶体管通过所述第三开关连接所述第六晶体管的栅极;所述第四开关的一端分别与所述第四调节晶体管的栅极和所述第三开关连接,另一端接地。
  15. 如权利要求13所述的自适应温度补偿电路,其中,所述第二温度补偿模块还包括第五调节晶体管、第六调节晶体管、第七调节晶体管、第八调节晶体管;所述第二开关组包括第五开关、第六开关、第七开关和第八开关;
    所述第三晶体管通过所述第五开关与所述第五调节晶体管的栅极连接,所述第六开关分别与所述第五调节晶体管的栅极和所述第五开关连接;所述第六调节晶体管的栅极连接所述第四晶体管的栅极;所述第七调节晶体管的栅极连接所述第七晶体管的栅极;所述第八调节晶体管通过所述第七开关与所述第八晶体管的栅极连接,所述第八开关的一端分别 与所述第八调节晶体管的栅极和所述第七开关连接,另一端接地。
  16. 如权利要求12所述的自适应温度补偿电路,其中,所述自适应温度补偿电路还包括第一调节电路和第二调节电路;所述第一调节电路与所述第一零温度补偿单元连接,被配置为对所述第二温度区间的最小值进行调节,所述第二调节电路与所述第二零温度补偿单元连接,被配置为对所述第二温度区间的最大值进行调节。
  17. 如权利要求16所述的自适应温度补偿电路,其中,所述自适应温度补偿电路还包括第三开关组和第四开关组;
    所述第一调节电路通过所述第三开关组与所述第一零温度补偿单元连接,在导通所述第三开关组之后,所述第二温度区间中的最小值增大;在关断所述第三开关组之后,所述第二温度区间中的最小值减小;
    所述第二调节电路通过所述第四开关组与所述第二零温度补偿单元连接,在导通所述第四开关组之后,所述第二温度区间中的最大值增大,在关断所述第四开关组之后,所述第二温度区间中的最大值减小。
  18. 一种偏置电路,被配置为提供偏置信号至功率放大器,其中,包括:为所述功率放大器提供偏置电流的基础电路以及自适应温度补偿电路;
    所述自适应温度补偿电路被配置为给功率放大器的偏置电路提供补偿电流,在第一温度区间内,所述补偿电流与温度呈正相关,在第二温度区间内,所述补偿电流与温度无关,在第三温度区间内,所述补偿电流与温度呈正相关,所述第二温度区间位于所述第一温度区间和所述第三温度区间之间;
    在第一温度区间内,由所述基础电路和所述自适应温度补偿电路共同提供第一偏置信号至所述功率放大器,所述第一偏置信号与温度呈正相关;在第二温度区间内,由所述基础电路提供第二偏置信号至所述功率放大器,所述第二偏置信号与温度无关;在第三温度区间内,由所述基础电路提供偏置电流和所述自适应温度补偿电路共同提供第三偏置信号至所述功率放大器,所述第三偏置信号与温度呈正相关。
  19. 如权利要求18所述的偏置电路,其中,所述自适应温度补偿电路包括:
    至少一个第一温度补偿模块,被配置为接收第一正温度系数电流和第一零温度系数电流,且在第一正温度系数电流小于所述第一零温度系数电流时,输出第一误差电流至补偿节点;
    至少一个第二温度补偿模块,被配置为接收第二正温度系数电流和第二零温度系数电流,且在第二正温度系数电流大于所述第二零温度系数电流时,输出第二误差电流至补偿 节点,所述第一零温度系数电流小于所述第二零温度系数电流。
  20. 如权利要求18所述的偏置电路,其中,在所述第二温度区间内,所述补偿电流为零。
PCT/CN2021/133863 2020-11-30 2021-11-29 自适应温度补偿电路以及偏置电路 WO2022111673A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011375576.8A CN112583364A (zh) 2020-11-30 2020-11-30 自适应温度补偿电路以及偏置电路
CN202011375576.8 2020-11-30

Publications (1)

Publication Number Publication Date
WO2022111673A1 true WO2022111673A1 (zh) 2022-06-02

Family

ID=75126461

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/133863 WO2022111673A1 (zh) 2020-11-30 2021-11-29 自适应温度补偿电路以及偏置电路

Country Status (2)

Country Link
CN (1) CN112583364A (zh)
WO (1) WO2022111673A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112583364A (zh) * 2020-11-30 2021-03-30 锐石创芯(深圳)科技有限公司 自适应温度补偿电路以及偏置电路

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009130892A (ja) * 2007-11-28 2009-06-11 Toshiba Corp 温度補償回路
CN102064765A (zh) * 2010-12-24 2011-05-18 烽火通信科技股份有限公司 应用于激光驱动器的温度补偿电路
KR101214752B1 (ko) * 2011-09-29 2012-12-21 삼성전기주식회사 바이어스 제어 장치
CN103051292A (zh) * 2012-12-10 2013-04-17 广州润芯信息技术有限公司 射频发射机、其增益补偿电路及方法
CN111294004A (zh) * 2020-05-13 2020-06-16 锐石创芯(深圳)科技有限公司 增益补偿装置和偏置电路装置
CN111562807A (zh) * 2020-05-29 2020-08-21 广东华芯微特集成电路有限公司 带隙基准电压源
US20200336115A1 (en) * 2019-04-18 2020-10-22 Samsung Electro-Mechanics Co., Ltd. Bias circuit and amplifying device with dual compensation
CN112583364A (zh) * 2020-11-30 2021-03-30 锐石创芯(深圳)科技有限公司 自适应温度补偿电路以及偏置电路

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4397255B2 (ja) * 2004-03-08 2010-01-13 Okiセミコンダクタ株式会社 振幅制限回路
US20100311362A1 (en) * 2009-06-05 2010-12-09 Yi-Bin Lee Gain compensation device over temperature and method thereof
CN106788283B (zh) * 2016-12-16 2019-08-06 武汉邮电科学研究院 一种带有温度补偿的射随输出电路
CN110011622B (zh) * 2019-04-15 2023-02-07 厦门雷迅科微电子股份有限公司 一种射频功率放大器的偏置电路

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009130892A (ja) * 2007-11-28 2009-06-11 Toshiba Corp 温度補償回路
CN102064765A (zh) * 2010-12-24 2011-05-18 烽火通信科技股份有限公司 应用于激光驱动器的温度补偿电路
KR101214752B1 (ko) * 2011-09-29 2012-12-21 삼성전기주식회사 바이어스 제어 장치
CN103051292A (zh) * 2012-12-10 2013-04-17 广州润芯信息技术有限公司 射频发射机、其增益补偿电路及方法
US20200336115A1 (en) * 2019-04-18 2020-10-22 Samsung Electro-Mechanics Co., Ltd. Bias circuit and amplifying device with dual compensation
CN111294004A (zh) * 2020-05-13 2020-06-16 锐石创芯(深圳)科技有限公司 增益补偿装置和偏置电路装置
CN111562807A (zh) * 2020-05-29 2020-08-21 广东华芯微特集成电路有限公司 带隙基准电压源
CN112583364A (zh) * 2020-11-30 2021-03-30 锐石创芯(深圳)科技有限公司 自适应温度补偿电路以及偏置电路

Also Published As

Publication number Publication date
CN112583364A (zh) 2021-03-30

Similar Documents

Publication Publication Date Title
US6771097B1 (en) Series terminated CMOS output driver with impedance calibration
WO2022111673A1 (zh) 自适应温度补偿电路以及偏置电路
US7888987B2 (en) Temperature compensation circuit
WO2022033457A1 (zh) 一种自适应快速响应的ldo电路及其芯片
CN107402591A (zh) 电压调节器及应用于其上的方法
WO2021227275A1 (zh) 增益补偿装置和偏置电路装置
US7997794B2 (en) Temperature sensor circuit
CN115826665A (zh) 一种具有限流功能的ldo电路、芯片及电子设备
CN110932714A (zh) 一种基于sublvds的传输接口电路
TW201025842A (en) Method and system for variable-gain amplifier
US10700652B2 (en) Ethernet line driver
US8970187B2 (en) Voltage generator
US10141897B2 (en) Source follower
TWI654842B (zh) 反相器
CN113851075A (zh) 一种led显示屏恒流源驱动模组及其控制方法
US20230208371A1 (en) Post driver having voltage protection
US20060017495A1 (en) Symmetrically matched voltage mirror and applications therefor
US20060097791A1 (en) Low offset rail-to-rail operational amplifier
TW202025635A (zh) 電晶體開關電路
JPH0340556A (ja) 加重電流和形成回路
CN108319324A (zh) 一种电源噪声非敏感的电流镜电路、芯片及通信终端
WO2021073305A1 (zh) 高电源抑制比的低压差线性稳压器
CN115379619B (zh) 一种led共阴驱动芯片
TWI641253B (zh) 網路驅動電路及網路裝置之驅動方法
WO2023207380A1 (zh) 一种校准电路、方法及相关装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21897173

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21897173

Country of ref document: EP

Kind code of ref document: A1