WO2022111628A1 - 一种射频芯片以及通过射频芯片的信号反馈方法 - Google Patents

一种射频芯片以及通过射频芯片的信号反馈方法 Download PDF

Info

Publication number
WO2022111628A1
WO2022111628A1 PCT/CN2021/133464 CN2021133464W WO2022111628A1 WO 2022111628 A1 WO2022111628 A1 WO 2022111628A1 CN 2021133464 W CN2021133464 W CN 2021133464W WO 2022111628 A1 WO2022111628 A1 WO 2022111628A1
Authority
WO
WIPO (PCT)
Prior art keywords
feedback
signal
radio frequency
module
transmission
Prior art date
Application number
PCT/CN2021/133464
Other languages
English (en)
French (fr)
Inventor
丁文其
周小敏
张烈
周骞
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP21897128.1A priority Critical patent/EP4236084A4/en
Publication of WO2022111628A1 publication Critical patent/WO2022111628A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/02Transmitters
    • H04B1/04Circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/02Transmitters
    • H04B1/04Circuits
    • H04B1/0475Circuits with means for limiting noise, interference or distortion
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission

Definitions

  • the embodiments of the present application relate to the field of communication technologies, and in particular, to a radio frequency chip and a signal feedback method through the radio frequency chip.
  • 5G high-frequency millimeter-wave (mmWave) network planning has been put on the agenda; for 5G millimeter-wave base stations, it is necessary to increase the signal output power and expand the coverage of the base station. has become an urgent need.
  • the digital signal will cause a large loss in the transmitting channel (power amplifier), and the nonlinear characteristics of the transmitting channel will also cause distortion of the digital signal, resulting in a decrease in the signal-to-noise ratio of the transmitted signal. , which ultimately restricts the output power of the base station.
  • Digital pre-distortion is a method to improve wireless transmission signals. Its basic principle is to compensate the distortion or loss of the transmission channel by generating information that is opposite to the distortion or loss of the transmission channel. , the digital processing unit needs to collect the input signal and output signal of the transmission channel at the current moment for processing, and update the DPD coefficient of the transmission channel in real time through adaptive processing to compensate the input signal, that is, the output signal needs to be fed back to the digital processing unit in real time .
  • the output signal is fed back by adding couplers and multiple analog feedback channels at the board level, which will cause the complexity of the system design and increase the production cost. Therefore, how to simplify the design of the current millimeter-wave system, Cost reduction is an urgent problem to be solved.
  • the embodiments of the present application provide a radio frequency chip and a signal feedback method through the radio frequency chip, which are used to simplify the current structure of the feedback channel and reduce the complexity and cost of system design.
  • a first aspect of the embodiments of the present application provides a radio frequency chip, including:
  • the radio frequency chip includes a signal transmission module and a feedback module.
  • One end of the signal transmission module is connected to the digital processing unit, and the other end is connected to the transceiver antenna, which is used to transmit received signals or send signals; then the end connected with the transceiver antenna is connected to the feedback module through a coupler.
  • the feedback module is used to transmit the feedback signal corresponding to the transmission signal to the digital processing unit, so that the digital processing unit can update the DPD coefficient of the transmission channel in real time according to the feedback signal, and compensate the transmission signal, so the feedback module
  • the output is connected to the digital processing unit.
  • the feedback module provides a feedback channel for the feedback signal, and the feedback channel is integrated inside the radio frequency chip.
  • the output end of the feedback module of the radio frequency chip can be directly connected with the digital processing unit to complete the feedback signal. Transmission; there is no need to design an inter-board coupler, which reduces the design complexity of the entire RF system.
  • the independence of the feedback channels of each RF chip will also reduce interference and reduce the cost of board-level design.
  • the signal transmission module further includes an amplifying module and a phase-shifting module, wherein the amplifying module is connected to the phase-shifting module, and one end of the amplifying module is connected to the digital processing unit. One end is connected to the transceiver antenna; as the front-end public part of the RF chip, the amplifier module can provide multiple transmission channels for the RF chip, including the transmission channel for receiving signals and the transmission channel for sending signals.
  • the transmission channel can also include amplifiers for Amplifies the signal; and the phase-shifting module is used to phase-shift the signal, which can provide multiple transmission branches, each of which includes a phase shifter, which can change the phase of the transmitted signal to ensure the transmission The signal is transmitted in the whole space.
  • the phase shifting module can also include an attenuator and a developer, that is, the gain adjustment of the transmission signal is performed at the same time, and finally the transmission signal is sent to the transceiver antenna, and the transmission signal is sent to the outside world; it is understandable that the phase shift The module can also be used to transmit the received signal, that is, the transceiver antenna receives the signal, and transmits the received signal to the phase-shifting module. After the phase-shifting module restores the phase of the received signal, it transmits the received signal to the digital processing unit.
  • the signal transmission module will provide multiple transmission channels, and can process the transmission signal, which improves the transmission performance of the radio frequency chip.
  • the phase shifting module will provide a plurality of transmission branches, each transmission branch can process and transmit the transmitted signal, and the end of each transmission branch is connected with a transceiver In this way, the end of each transmission branch is connected to the input end of the feedback module through the coupler as required, so as to ensure that the feedback signal of each transmitted signal can be transmitted to the digital processing unit to complete the compensation of the transmitted signal.
  • each transmission branch of the phase-shifting module includes a phase shifter and a regulator, and the phase shifter is used to perform phase-shift processing on the transmitted transmit signal, change its phase, and transmit and receive signals.
  • the antenna performs transmission; the conditioner may include an attenuator or an amplifier for performing gain adjustment processing on the transmitted signal.
  • the feedback module of the radio frequency chip also includes a plurality of feedback branches, wherein each transmission branch provided by the signal transmission module corresponds to a feedback branch, which is used for the feedback branch.
  • the feedback signal of the transmission signal transmitted on the transmission branch is transmitted; and multiple feedback branches are gathered in the transceiver selection switch, and the transceiver selection switch controls the switching and closing of each feedback channel, and the other end of the transceiver selection switch is connected to the digital
  • the processing unit that is, the transceiver selection switch, selects the feedback signal to be connected with the digital processing unit.
  • the transceiver selection switch further includes a phase shifter on the branch connected to the digital processing unit, and the phase shifter is used to perform a phase shifter on the transmitted signal phase-shifted by the phase shift module.
  • Phase restoration enables the digital processing unit to more accurately compensate the transmitted signal; at the same time, with this structure, multiple feedback branches can share the phase shifter, which simplifies the structure of the radio frequency chip and increases the cost.
  • the transceiver selection switch further includes a regulator on the branch connected to the digital processing unit, and the regulator may include an attenuator or an amplifier, which is used to adjust the feedback signal on the feedback branch. Gain adjustment processing is performed; similarly, with this structure, multiple feedback branches can share the regulator, which simplifies the structure of the radio frequency chip and increases the cost.
  • the feedback module still includes multiple feedback branches, and each transmission branch provided by the signal transmission module corresponds to a feedback branch, but each feedback branch in the multiple feedback branches
  • Each branch includes a phase shifter, which is used to restore the phase of the feedback signal on each feedback branch.
  • each feedback branch in the multiple feedback branches of the feedback module includes a regulator for performing gain adjustment processing on the feedback signal on each feedback branch .
  • the feedback module further includes a combiner, each feedback branch will be connected to the combiner, and the combiner will combine multiple feedback signals on the multiple feedback branches , and feed back multiple feedback signals to the digital processing unit at a time, which will increase the gain of the feedback signals and improve the transmission efficiency of the feedback signals.
  • a second aspect of an embodiment of the present application provides a signal feedback method through a radio frequency chip, where the radio frequency chip includes a signal transmission module and a feedback module, and the method includes:
  • the service signal sent by the digital processing unit is received through the first end of the signal transmission module; wherein, the end of the signal transmission module is connected to the transceiver antenna, and is connected to the input end of the feedback module through a coupler;
  • the service signal is transmitted through a transmission channel, and the service signal is sent through the transceiver antenna; wherein, the signal transmission module is configured to provide at least one transmission channel, and the service signal includes a transmission signal sent by a digital processing unit;
  • a feedback signal corresponding to the service signal is acquired, and the feedback signal is transmitted to the digital processing unit through the feedback module, wherein the feedback module is used for providing a feedback channel.
  • a third aspect of the embodiments of the present application provides a radio frequency system, where the radio frequency system includes multiple radio frequency chips, multiple frequency mixing units, multiple combiners, and digital processing units;
  • the multiple radio frequency chips and the digital processing unit all include a transceiver interface and a feedback interface; the feedback ports of the multiple radio frequency chips are connected with the feedback interface of the digital processing unit through the first combiner and the first frequency mixing unit connection; the transceiver interfaces of the multiple radio frequency chips are connected to the transceiver interface of the digital processing unit through a second combiner and a second frequency mixing unit; the multiple combiners include the first combiner and the second combiner;
  • the digital processing unit configured to send a service sending signal to the radio frequency chip through a transceiver interface of the digital processing unit, or receive a service receiving signal transmitted by the radio frequency chip through the transceiver interface;
  • the digital processing unit is further configured to receive a feedback signal corresponding to the service transmission signal through a feedback interface of the digital processing unit, and perform signal compensation for the service transmission signal through the feedback signal;
  • the radio frequency chip is used to provide a transmission channel and a feedback channel, the transmission channel is used to transmit the service sending signal and/or the service receiving signal; the feedback channel is used to send the signal through the feedback interface of the radio frequency chip The service sends a feedback signal corresponding to the signal.
  • a fourth aspect of the embodiments of the present application provides a computer-readable storage medium, including a program, which, when executed on a computer, causes the computer to execute the method described in the second aspect.
  • a fifth aspect of the embodiments of the present application provides a circuit system, the circuit system includes a processing circuit configured to perform the method as described in the second aspect.
  • the embodiments of the present application have the following advantages:
  • the feedback channel is integrated inside the radio frequency chip, and the feedback interface of the radio frequency chip can be connected with the data processing unit through the frequency mixing unit, so that there is no need to design an inter-board coupler, which simplifies the entire radio frequency system
  • the structure improves the integration of the radio frequency chip, and the increase of the feedback channel enables the digital processing unit to receive the feedback signal of the service transmission signal, perform data processing according to the DPD characteristics, compensate the service transmission signal, and reduce the service transmission signal in the transmission channel.
  • the loss and distortion of the whole radio frequency system are improved, the output power of the whole radio frequency system is increased, and the coverage of the corresponding transmission signal of the whole radio frequency system is expanded.
  • FIG. 1 is a schematic structural diagram of a radio frequency system according to an embodiment of the present application.
  • FIG. 2 is a schematic structural diagram of a radio frequency chip according to an embodiment of the present application.
  • FIG. 3 is a schematic structural diagram of another radio frequency chip provided by an embodiment of the present application.
  • FIG. 4 is a signal feedback method through a radio frequency chip provided by an embodiment of the present application.
  • FIG. 5 is a system architecture diagram of a radio frequency system provided by an embodiment of the present application.
  • the embodiments of the present application provide a radio frequency chip and a signal feedback method through the radio frequency chip, which are used to simplify the current structure of the feedback channel and reduce the complexity and cost of system design.
  • This application is mainly applied to analog beamforming (ABF) in 5G high frequency millimeter wave or integrated in board antenna (antena in PCB, AIP) system to provide a new ABF/AIP chip architecture, To simplify the system structure, reduce the complexity and cost of system design.
  • ABF analog beamforming
  • PCB integrated in board antenna
  • DPD is a method for improving wireless transmission signals. Its basic principle is to compensate for the distortion or loss of the transmission channel by generating information that is opposite to the distortion or loss of the transmission channel; specifically, the digital processing unit sends a service signal to the transmission channel, After the service signal is transmitted through the transmission channel, the output signal needs to be fed back to the digital processing unit, and then the digital processing unit compares the output signal with the initial transmission signal, determines the compensation strategy according to the comparison result, and then performs the processing on the service signal in transmission. Real-time compensation.
  • the existing ABF/AIP chip generally only integrates the intermediate frequency and radio frequency modules; when the feedback signal is to be transmitted to the digital processing unit , basically, by adding couplers at the board level and designing multiple feedback channels to solve the DPD requirements, this will bring the complexity and cost of the entire system design. Therefore, simplifying the design of the current millimeter wave system and reducing costs have become an urgent need to solve The problem.
  • the embodiment of the present application provides a new ABF/AIP chip architecture, which integrates the feedback channel inside the chip, and the feedback interface of the chip is directly connected to the digital processing unit, so that it is unnecessary to design a board-level feedback channel, which simplifies the The structure of the radio frequency system is improved, and the cost of the radio frequency system is reduced.
  • FIG. 1 is a schematic structural diagram of a radio frequency system provided by an embodiment of the application.
  • the radio frequency system includes a digital processing unit, a frequency mixing unit, a radio frequency chip, and a transceiver antenna;
  • the digital processing unit includes a transceiver interface A and a feedback interface.
  • B and the radio frequency chip includes a signal transmission module and a feedback module.
  • the transceiver interface A of the digital processing unit is connected to one end of the signal transmission module through the frequency mixing unit, the other end of the signal transmission module is connected to the transceiver antenna, and the feedback interface B of the digital processing unit is connected to one end of the feedback module through the frequency mixing unit.
  • the other end of the feedback module is connected with the signal transmission module through a coupler.
  • the signal transmission module of the radio frequency chip is used to provide the transmission channel of the service signal.
  • the service transmission signal is transmitted to the transceiver antenna through the signal transmission module, and then the transceiver antenna transmits the service transmission signal.
  • the signal transmission module can also transmit the service reception signal to the signal transmission module, that is, the transceiver antenna receives the service reception signal, and transmits the service reception signal to the digital processing unit through the signal transmission module;
  • the transmission channel, the end of each transmission channel can be connected to a transceiver antenna, and the service sending signal and the service receiving signal can be transmitted in different transmission channels of the signal transmission module at the same time, which is not specifically limited.
  • the feedback module of the radio frequency chip is used to provide a feedback channel, and the feedback channel is used to transmit the feedback information of the service transmission signal, that is, after the service transmission signal sent by the digital processing unit passes through the signal transmission module, the output of the signal transmission module needs to be
  • the signal (feedback signal) is fed back to the digital processing unit, so that the digital processing unit can determine the loss and distortion of the service transmission signal in the transmission channel according to the feedback signal, compensate the service transmission signal in time, and improve the output power of the service transmission signal and its accuracy, thereby expanding the coverage of service transmission signals.
  • the mixing unit is used to perform spectrum shifting on the signal, which includes a mixer.
  • a mixer when the digital processing unit sends a signal to the outside world, it needs to convert the low-frequency signal into a radio frequency signal.
  • the mixing unit needs to convert the high-frequency received signal or the feedback signal into a low-frequency signal, so that the digital processing unit processes the low-frequency signal.
  • FIG. 2 is a schematic structural diagram of a radio frequency chip provided by an embodiment of the application.
  • the radio frequency chip 200 includes a signal transmission module 201 , a signal transmission module 202 and a feedback module 203 ; wherein the signal transmission module 201 includes an amplification module 2011 and phase shifting module 2012.
  • Amplification module (2) Amplification module
  • one end of the amplifying module 2011 is the transceiver interface S1 of the radio frequency chip, and the interface S1 is used to connect with the transceiver interface of the digital processing unit for transmitting service transmission signals or service transmission signals; the other end is connected to the phase-shifting module. 2012 Connect.
  • the amplification module 2011 is the forward common terminal of the chip, and can be composed of an adjustable attenuator and a channel selection switch; the channel selection switch is used to select multiple transmission branches, and the adjustable attenuator is used to amplify the service signals on the branches Or attenuating, that is, adjusting the gain of the signal; it can be understood that the amplification module 2011 is used to provide a receiving channel and a transmitting channel.
  • the branch where the adjustable attenuator 204 is located is the transmitting channel, and the adjustable attenuator 205 is located.
  • the branch is the receiving channel.
  • phase-shifting module 2012 is connected to the amplifying module 2011, and the other end is the transceiver interface on the other side of the radio frequency chip, and the transceiver interface on this side is used to connect the transceiver antenna . Connect the transceiver antenna.
  • the phase-shifting module 2012 is used to phase-shift the transmitted service signal; it may include a power divider, a transceiver selection switch, an adjustable attenuator, a power amplifier, and a phase shifter; wherein, the power divider is a power divider, which can Divide one signal transmitted by the amplifying module 2011 into multiple equal or unequal signals; when the amplifying module 2011 transmits the service sending signal to the phase-shifting module 2012, the power divider in the phase-shifting module 2012 can divide the service sending signal into Signal for multiplexing.
  • the phase shifter is a device that can adjust the phase of the electromagnetic wave, and its function is to shift the phase of the signal by an angle, so as to ensure that the service transmission signal sent by the transceiver antenna can cover the whole space.
  • the phase shifting module 2012 can provide a plurality of transmission branches, the end of each transmission branch is connected to the sending and receiving signals, and each transmission branch includes a phase shifter, and these phase shifters perform processing on the service transmission signal. Phase adjustment, and then transmit through the transceiver antenna.
  • the transceiver selection switch in the phase shifting module 2012 is used to provide multiple transmission branches, and each transmission branch may include devices such as adjustable attenuators, power amplifiers, etc.
  • the signal is power amplified or attenuated to meet the power requirements of the digital processing unit for the service signal.
  • the structure of the signal transmission module 202 is similar to that of the signal transmission module 201, and both are used to provide multiple service transmission channels.
  • the functions of the transceiver port S2 corresponding to the signal transmission module 202 and the transceiver port S1 are also the same, and their internal specific structures Referring to the signal transmission module 201, which will not be repeated here, the difference is that the polarity of the transceiver antenna connected to the signal transmission module 202 is different from that of the transceiver antenna connected to the signal transmission module 201.
  • the structure of the radio frequency chip Symmetrically, for example, if the transceiver antenna connected to the signal transmission module 201 is a vertically polarized antenna, the polarization direction of the transceiver antenna connected to the signal transmission module 202 may be horizontal polarization.
  • the feedback module 203 is used to provide a feedback channel, that is, after the service sending signal is transmitted through the signal transmission module, the output signal of the signal transmission module needs to be fed back to the digital processing unit through the feedback channel.
  • the feedback module 203 includes a plurality of feedback branches, that is, each transmission branch of the signal transmission module corresponds to a feedback branch, and the transmission branch and the feedback branch are connected through a coupler.
  • the feedback module 203 also includes a 1-to-N switch SPNT and a selection switch SP2T, where SPNT is used to select N feedback branches corresponding to one signal transmission module, and SP2T is used to select feedback branches corresponding to antennas with different polarization directions. , so that at the same time, the feedback module ensures that one feedback branch is turned on, and transmits the feedback signal on the feedback branch.
  • SPNT is used to select N feedback branches corresponding to one signal transmission module
  • SP2T is used to select feedback branches corresponding to antennas with different polarization directions.
  • the feedback module 203 may further include a phase shifter and an adjustable attenuator, and the phase shifter can perform phase cancellation with the phase shifter in the phase shifting module, so as to realize the online DPD characteristic training of the system, so as to improve the output power capability of the system. It can be understood that, in the feedback module 203 shown in FIG. 2 , a plurality of feedback branches share a phase shifter, so that the design complexity of the feedback module 203 can be simplified and the design cost can be saved.
  • the above RF chip integrates the feedback channel inside the RF chip, and the feedback interface FB of the RF chip can be connected with the data processing unit through the frequency mixing unit, so that there is no need to design the board-level coupler design, which simplifies the structure of the entire RF system.
  • the integration of the radio frequency chip is improved, and the increase of the feedback channel enables the digital processing unit to receive the feedback signal of the service transmission signal, perform data processing according to the DPD characteristics, compensate the service transmission signal, and reduce the loss and loss of the service transmission signal in the transmission channel. Distortion, improve the output power of the entire radio frequency system, and at the same time expand the coverage of the corresponding transmitted signal of the entire radio frequency system.
  • FIG. 3 is a schematic structural diagram of another radio frequency chip provided by an embodiment of the application.
  • the radio frequency chip 300 also includes a signal transmission module 301, a signal transmission module 302 and a feedback module 303; wherein the transmission module 301 includes an amplification module and phase shifting modules.
  • the structure of the signal transmission module 301 and the signal transmission module 302 is similar to that of the signal transmission module 201 and the signal transmission module 202 in the embodiment shown in FIG. 2 , and the functions of the specific components are also similar to those in the above-mentioned embodiment. Without repeating details here, the feedback module 303 will be described in detail below.
  • the feedback module 303 includes a plurality of feedback branches, and each transmission branch of the signal transmission module corresponds to the plurality of feedback branches one-to-one, wherein each feedback branch includes a selection switch SP2T, which is used for different polarizations
  • the two transmission branches in the direction are selected; and each feedback branch can include a phase shifter and an adjustable attenuator, that is, in the embodiment shown in FIG. 3, each feedback branch no longer shares the phase shifter, but It is possible to perform phase shift processing and gain adjustment processing on multiple feedback signals at the same time.
  • the multiple feedback branches are connected to the combiner, and the combiner will combine the feedback signals on the multiple feedback branches into one feedback signal and transmit it to the data processing unit. It can be understood that the signal noise of the feedback signal The ratio will be increased by N times, which is beneficial to improve the compensation capability of the data processing unit for the service sent signal.
  • Fig. 4 provides a kind of signal feedback method by radio frequency chip that the embodiment of the application provides, and this radio frequency chip comprises signal transmission module and feedback module, and described method comprises:
  • the end of the signal transmission module is connected to the transceiver antenna, and is connected to the input end of the feedback module through a coupler.
  • the signal transmission module is used to provide at least one transmission channel, and the service signal includes the transmission signal sent by the digital processing unit.
  • the feedback module is used to provide a feedback channel. It can be understood that the structure of the radio frequency chip is the same as that of the radio frequency chip in the embodiment shown in FIG. 2 or FIG. 3 , and details are not repeated.
  • the digital processing unit After the digital processing unit obtains the feedback signal, it determines the loss and distortion of the service signal in the transmission channel according to the feedback signal and the initial transmission signal, and then uses the DPD characteristic to compensate the service signal to improve the performance of the radio frequency system. output power and coverage.
  • FIG. 5 is a system architecture diagram of a radio frequency system according to an embodiment of the present application, where the radio frequency system includes a plurality of radio frequency chips and a digital processing unit.
  • each radio frequency chip is connected to the transceiver antenna, and the transceiver ports S 1 and S 2 at the other end are connected to the transceiver port of the digital processing unit through a power divider and a frequency mixing unit; it can be understood that this
  • the channel is used to transmit service signals, and the function of the power divider is to combine multiple service signals into one signal, or divide one signal into multiple signals; the mixing unit may include a mixer, which is used to perform the processing of the passing service signals.
  • Frequency shifting exemplarily, converts a low-frequency signal sent by the digital processing unit into a radio frequency signal, converts a received signal received from the outside into a low-frequency signal, and then transmits it to the digital processing unit.
  • the feedback port FB of each radio frequency chip is connected with the feedback port of the digital processing unit through the mixing unit, and this channel is the feedback channel. Connection, that is, multiple feedback signals can be combined into one signal and transmitted to the digital processing unit, wherein the frequency mixing unit may include a mixer for mixing the multiple feedback signals.
  • each radio frequency chip in the radio frequency system reference may be made to the structure of the radio frequency chip in the embodiment shown in FIG. 2 or FIG. 3 , and details are not described here.
  • the present application further provides a computer-readable storage medium, including a program, which when run on a computer, causes the computer to execute the method described in the embodiment shown in FIG. 4 .
  • the present application further provides a circuit system, where the circuit system includes a processing circuit, and the processing circuit is configured to execute the method described in the embodiment shown in FIG. 4 .
  • the disclosed system, apparatus and method may be implemented in other manners.
  • the apparatus embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not implemented.
  • the shown or discussed mutual coupling or direct coupling or communication connection may be through some interfaces, indirect coupling or communication connection of devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution in this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit.
  • the above-mentioned integrated units may be implemented in the form of hardware, or may be implemented in the form of software functional units.
  • the integrated unit if implemented in the form of a software functional unit and sold or used as an independent product, may be stored in a computer-readable storage medium.
  • the technical solutions of the present application can be embodied in the form of software products in essence, or the parts that contribute to the prior art, or all or part of the technical solutions, and the computer software products are stored in a storage medium , including several instructions for causing a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage medium includes: U disk, mobile hard disk, read-only memory (ROM, read-only memory), random access memory (RAM, random access memory), magnetic disk or optical disk and other media that can store program codes .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Transmitters (AREA)

Abstract

本申请公开了一种射频芯片以及通过射频芯片的信号反馈方法,具体用于通信技术领域,所述射频芯片包括:信号传输模块和反馈模块;所述信号传输模块的末端连接收发天线,并通过耦合器与所述反馈模块的输入端连接;所述信号传输模块用于提供至少一个传输通道,所述传输通道用于传输业务信号,所述业务信号包括数字处理单元发送的发送信号;所述反馈模块用于提供反馈通道,所述反馈通道用于向所述数字处理单元传输所述发送信号对应的反馈信号。

Description

一种射频芯片以及通过射频芯片的信号反馈方法
本申请要求于2020年11月26日提交中国专利局、申请号为202011348059.1、发明名称为“一种射频芯片以及通过射频芯片的信号反馈方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及通信技术领域,尤其涉及一种射频芯片以及通过射频芯片的信号反馈方法。
背景技术
随着第五代移动通信技术(5th-Generation,5G)的迅速发展,5G高频毫米波(mmWave)网络规划提上日程;对于5G毫米波基站而言,提高信号输出功率,扩大基站覆盖范围已经成为其迫切需求。然而,由于mmWave电磁波频率相对较高,数字信号在发射通道(功放)中将会造成很大的损耗,并且发射通道的非线性特性还会造成数字信号失真,造成发射的信号的信噪比降低,最终制约基站的输出功率。
数字预失真技术(digital per-distortion,DPD)是改善无线发射信号的一种方法,其基本原理是,通过产生和发射通道失真或损耗相反的信息,来补偿发射通道的失真或损耗;具体的,数字处理单元需要采集当前时刻传输通道的输入信号和输出信号进行处理,通过自适应处理,实时更新传输通道的DPD系数,以对输入信号进行补偿,即需要将输出信号实时反馈至数字处理单元。
目前毫米波系统中是通过板级增加耦合器及多条模拟反馈通道来反馈输出信号的,这将造成系统设计的复杂性,并且将提高制作成本,因此,如何简化当前毫米波系统的设计,降低成本成为亟需解决的问题。
发明内容
本申请实施例提供了一种射频芯片以及通过射频芯片的信号反馈方法;用于简化当前关于反馈通道的结构,降低系统设计的复杂性和成本。
本申请实施例第一方面提供了一种射频芯片,包括:
该射频芯片包括信号传输模块和反馈模块,信号传输模块的一端连接数字处理单元,另一端连接收发天线,用于传输接收信号或者发送信号;然后通过耦合器将连接有收发天线的一端与反馈模块的输入端进行连接;可以理解的,反馈模块用于向数字处理单元传输发送信号对应的反馈信号,使得数字处理单元根据反馈信号实时更新传输通道的DPD系数,对发送信号进行补偿,因此反馈模块的输出端与数字处理单元进行连接。
在上述芯片结构中,反馈模块为反馈信号提供了反馈通道,并且该反馈通道集成于射频芯片内部,这样,射频芯片反馈模块的输出端可以直接与数字处理单元进行连接,就可以完成反馈信号的传输;无需设计板级间耦合器,降低了整个射频系统的设计复杂度,各射频芯片的反馈通道相互独立也会减少干扰,并且降低了板级设计的成本。
在第一方面的一种可能实现方式中,信号传输模块内部还包括放大模块和移相模块,其中,放大模块与移相模块相连,放大模块的一端与数字处理单元进行连接,移相模块的 一端连接收发天线;放大模块作为射频芯片的前端公共部分,可以为射频芯片提供多条传输通道,包括接收信号的传输通道和发送信号的传输通道,同时,传输通道上还可以包括放大器,用于对信号进行放大;而移相模块则是用于对信号进行移相,其可以提供多条传输支路,每条传输支路上都包括移相器,可以对发送信号的相位进行改变,保证发送信号在全空间的传输,同时,移相模块还可以包括衰减器和发达器,即同时对传输信号进行增益调节,最后将发送信号发送至收发天线,对外发送发送信号;可以理解的,移相模块还可以用来传输接收信号,即收发天线接收信号,将接收信号传输至移相模块,移相模块对接收信号进行相位还原后,再向数字处理单元传输接收信号。
在上述设计中,信号传输模块将提供多条传输通道,并且可以对传输信号进行处理,提高了射频芯片的传输性能。
在第一方面的一种可能实现方式中,移相模块将提供多条传输支路,每一条传输支路都可以对发送信号进行处理并传输,且每一条传输支路的末端都连接有收发天线,这样,据需要将每一条传输支路的末端通过耦合器连接至反馈模块的输入端,保证每个发送信号的反馈信号都能传输至数字处理单元,完成对发送信号的补偿。
在第一方面的一种可能实现方式中,移相模块的每条传输支路上均包括移相器和调节器,移相器用来对传输的发送信号进行移相处理,改变其相位并向收发天线进行传输;调节器可以包括衰减器或者放大器,用于对传输的信号进行增益调节处理。
在第一方面的一种可能实现方式中,射频芯片的反馈模块中也包括多条反馈支路,其中,信号传输模块提供的每条传输支路都对应一条反馈支路,用于对该条传输支路上传输的发送信号的反馈信号进行传输;而多条反馈支路均汇聚于收发选择开关中,由收发选择开关来控制每条反馈通道的开关与闭合,收发选择开关的另一端连接数字处理单元,即收发选择开关来选择与数字处理单元进行连接的反馈信号。
在第一方面的一种可能实现方式中,收发选择开关在和数字处理单元进行连接的支路上,还包括有移相器,该移相器是为了对经过移相模块移相的发送信号进行相位还原,使得数字处理单元可以更精准的对发送信号进行补偿;同时,采用该种结构,多条反馈支路就可以共用移相器,简化了射频芯片的结构,提高了成本。
在第一方面的一种可能实现方式中,收发选择开关在和数字处理单元进行连接的支路上,还包括有调节器,调节器可以包括衰减器或者放大器,用于对反馈支路上的反馈信号进行增益调节处理;同样,采用该种结构,多条反馈支路就可以共用调节器,简化了射频芯片的结构,提高了成本。
在第一方面的一种可能实现方式中,反馈模块仍然包括多条反馈支路,信号传输模块提供的每条传输支路都对应一条反馈支路,但是多条反馈支路中的每条反馈支路上,都包括移相器,用于对所述每一条反馈支路上的反馈信号进行相位还原。
在第一方面的一种可能实现方式中,反馈模块的多条反馈支路中的每条反馈支路上,都包括调节器,用于对所述每一条反馈支路上的反馈信号进行增益调节处理。
在第一方面的一种可能实现方式中,反馈模块还包括合路器,每一条反馈支路都将与合路器进行连接,该合路器将汇合多个反馈支路上的多个反馈信号,一并将多个反馈信号反馈至数字处理单元,这样将增大反馈信号的增益,提高反馈信号的传输效率。
本申请实施例第二方面提供了一种通过射频芯片的信号反馈方法,所述射频芯片包括信号传输模块和反馈模块,所述方法包括:
通过所述信号传输模块的第一端接收数字处理单元发送的业务信号;其中,所述信号传输模块的末端连接收发天线,并通过耦合器与所述反馈模块的输入端连接;
通过传输通道传输所述业务信号,并通过所述收发天线发送所述业务信号;其中,所述信号传输模块用于提供至少一个传输通道,所述业务信号包括数字处理单元发送的发送信号;
获取所述业务信号对应的反馈信号,并通过所述反馈模块向所述数字处理单元传输所述反馈信号;其中,所述反馈模块用于提供反馈通道。
本申请实施例第三方面提供了一种射频系统,所述射频系统包括多个射频芯片,多个混频单元,多个合路器和数字处理单元;
所述多个射频芯片和所述数字处理单元均包括收发接口和反馈接口;所述多个射频芯片的反馈端口通过第一合路器和第一混频单元与所述数字处理单元的反馈接口连接;所述多个射频芯片的收发接口通过第二合路器和第二混频单元与所述数字处理单元的收发接口连接;所述多个合路器包括所述第一合路器和所述第二合路器;
所述数字处理单元,用于通过所述数字处理单元的收发接口向所述射频芯片发送业务发送信号,或者通过所述收发接口接收所述射频芯片传输的业务接收信号;
所述数字处理单元,还用于通过数字处理单元的反馈接口接收所述业务发送信号对应的反馈信号,并通过所述反馈信号对所述业务发送信号进行信号补偿;
所述射频芯片,用于提供传输通道和反馈通道,所述传输通道用于传输所述业务发送信号和/或所述业务接收信号;所述反馈通道用于通过所述射频芯片的反馈接口发送所述业务发送信号对应的反馈信号。
本申请实施例第四方面提供了一种计算机可读存储介质,包括程序,当其在计算机上运行时,使得计算机执行如第二方面所述的方法。
本申请实施例第五方面提供了一种电路系统,所述电路系统包括处理电路,所述处理电路配置为执行如第二方面中所述的方法。
从以上技术方案可以看出,本申请实施例具有以下优点:
本申请实施例提供的射频芯片,将反馈通道集成于射频芯片内部,射频芯片的反馈接口可通过混频单元与数据处理单元进行连接,这样就无需设计板级间耦合器,简化了整个射频系统的结构,提高了射频芯片的集成度,同时反馈通道的增加可以使得数字处理单元接收业务发送信号的反馈信号,根据DPD特性来进行数据处理,补偿业务发送信号,减轻业务发送信号在传输通道中的损耗和失真,提高整个射频系统的输出功率,同时扩大整个射频系统对应的发送信号的覆盖范围。
附图说明
图1为本申请实施例提供的一种射频系统的结构示意图;
图2为本申请实施例提供的一种射频芯片的结构示意图;
图3为本申请实施例提供的另一种射频芯片的结构示意图;
图4为本申请实施例提供的一种通过射频芯片的信号反馈方法;
图5为本申请实施例提供的一种射频系统的系统架构图。
具体实施方式
本申请实施例提供了一种射频芯片以及通过射频芯片的信号反馈方法;用于简化当前关于反馈通道的结构,降低系统设计的复杂性和成本。
本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”、“第三”、“第四”等(如果存在)是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的实施例能够以除了在这里图示或描述的内容以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
本申请主要应用于5G高频毫米波中的模拟波束赋形(analog beamforming,ABF)或者集成在板天线(antena in PCB,AIP)系统中,用以提供一种新的ABF/AIP芯片架构,来简化系统结构,降低系统设计的复杂性和成本。
DPD是改善无线发射信号的一种方法,其基本原理是,通过产生和发射通道失真或损耗相反的信息,来补偿发射通道的失真或损耗;具体的,数字处理单元向传输通道发送业务信号,该业务信号经过传输通道传输后,就需要将输出信号反馈给数字处理单元,然后数字处理单元对比输出信号和初始的发送信号,根据对比结果来确定补偿的策略,然后对传输中的业务信号进行实时补偿。
可以理解的,将输出信号反馈至数据处理单元时,需要反馈通道来对其进行传输,现有的ABF/AIP芯片中一般仅集成有中频及射频模组;要向数字处理单元传输反馈信号时,基本是通过板级增加耦合器,设计多条反馈通道来解决DPD需求的,这样将带来整个系统设计的复杂性和成本,因此,简化当前毫米波系统的设计,降低成本成为亟需解决的问题。
基于上述问题,本申请实施例提供了一种新的ABF/AIP芯片架构,将反馈通道集成于芯片内部,芯片的反馈接口直接与数字处理单元相连接,这样就无需设计板级反馈通道,简化了射频系统的结构,降低了射频系统的成本。
图1为本申请实施例提供的一种射频系统的结构示意图,如图1所示,射频系统包括数字处理单元,混频单元,射频芯片,收发天线;数字处理单元包括收发接口A和反馈接口B,而射频芯片则包括信号传输模块和反馈模块。
数字处理单元的收发接口A通过混频单元与信号传输模块的一端连接,信号传输模块的另一端与收发天线相连,而数字处理单元的反馈接口B则通过混频单元与反馈模块的一端相连,反馈模块的另一端与信号传输模块通过耦合器相连。
射频芯片的信号传输模块用于提供业务信号的传输通道,当数字处理单元向外发送业务发送信号时,业务发送信号则通过信号传输模块传输至收发天线,然后收发天线对该业务发送信号进行发射;信号传输模块还可以向信号传输模块传输业务接收信号,即收发天线接收业务接收信号,通过信号传输模块将该业务接收信号传输至数字处理单元;示例性的,信号传输模块可以包含有多种传输通道,每一个传输通道的末端都可以连接收发天线,业务发送信号和业务接收信号可以同时在信号传输模块的不同传输通道中传输,具体不做 限定。
而射频芯片的反馈模块则用于提供反馈通道,该反馈通道用于传输业务发送信号的反馈信息,即当数字处理单元发送的业务发送信号通过信号传输模块后,就需要将信号传输模块的输出信号(反馈信号)反馈给数字处理单元,这样,数字处理单元就可以根据反馈信号确定业务发送信号在传输通道中的损耗和失真情况,及时对业务发送信号进行补偿,提高业务发送信号的输出功率及其精度,进而扩大业务发送信号的覆盖范围。
其中,混频单元用于对信号进行频谱搬移,其中包括混频器,示例性的,在数字处理单元对外发送发送信号时,就需要将低频信号变为射频信号,当数字处理单元接收接收信号或者反馈信号时,混频单元需要将高频的接收信号或者反馈信号转化为低频信号,使得数字处理单元对低频信号进行处理。
图2为本申请实施例提供的一种射频芯片的结构示意图,如图2所示,射频芯片200包括信号传输模块201、信号传输模块202和反馈模块203;其中信号传输模块201包括放大模块2011和移相模块2012。
(一)放大模块:
其中,放大模块2011的一端即为射频芯片的收发接口S1,该接口S1用于和数字处理单元的收发接口进行连接,用于传输业务发送信号或者业务传输信号;而另一端则与移相模块2012连接。
放大模块2011为芯片的前向公共端,可以由可调衰减器以及通道选择开关组成;其中通道选择开关用于选择多条传输支路,而可调衰减器用于对支路上的业务信号进行放大或者衰减,即对信号的增益进行调节;可以理解的,放大模块2011用于提供接收通道和发送通道,示例性的,可调衰减器204所在的支路为发送通道,可调衰减器205所在的支路即为接收通道。
(二)移相模块:
移相模块2012的一端与放大模块2011连接,另一端则为射频芯片另一侧的收发接口,该侧收发接口用于连接收发天线,可以理解的,图2中的接口H 0至H n均连接收发天线。
移相模块2012用于对传输的业务信号进行移相;其中可以包括功分器、收发选择开关、可调衰减器、功率放大器、移相器;其中,功分器即功率分配器,其可以将放大模块2011传输的一路信号分为多路相等或者不等的信号;当放大模块2011传输业务发送信号至移相模块2012后,移相模块2012中的功分器就可以将业务发送信号分为多路发送信号。
其中,移相器是能对电磁波的相位进行调整的一种装置,其作用是将信号的相位移动一个角度,这样可以保证收发天线发送的业务发送信号能够覆盖全空间。可以理解的,移相模块2012可提供多个传输支路,每个传输支路的末端都连接有收发信号,而每个传输支路上均包括移相器,这些移相器对业务发送信号进行相位调节,然后通过收发天线进行发送。
可以理解的,移相模块2012中的收发选择开关用于提供多条传输支路,每条传输支路上都可以包括可调衰减器、功率放大器等装置,这些装置用于对传输支路上的业务信号进行功率放大或衰减,以满足数字处理单元对业务信号的功率要求。
在图2中,信号传输模块202与信号传输模块201的结构类似,都用于提供多个业务 传输通道,信号传输模块202对应的收发端口S2与收发端口S1的作用也相同,其内部具体结构参照信号传输模块201,在此不做赘述,不同的是,信号传输模块202所连接的收发天线与信号传输模块201所连接的收发天线的极性不同,基于多极化设计,射频芯片的结构对称,示例性的,若信号传输模块201连接的收发天线为垂直极化天线时,信号传输模块202连接的收发天线的极化方向可以为水平极化。
(三)反馈模块:
反馈模块203用于提供反馈通道,即业务发送信号通过信号传输模块传输后,信号传输模块的输出信号需要通过反馈通道反馈至数字处理单元。反馈模块203包括多条反馈支路,即信号传输模块的每一条传输支路均对应有一条反馈支路,传输支路和反馈支路通过耦合器进行连接。
反馈模块203还包括1选N开关SPNT和选择开关SP2T,其中SPNT用于对一个信号传输模块对应的N条反馈支路进行选择,SP2T用于对不同极化方向天线对应的反馈支路进行选择,这样,同一时刻中,反馈模块保证一条反馈支路导通,并对反馈支路上的反馈信号进行传输。
反馈模块203还可以包括移相器,可调衰减器,该移相器可以和移相模块中的移相器进行相位抵消,实现系统在线DPD特性训练,以期提高系统输出功率能力。可以理解的,图2所示的反馈模块203中,多条反馈支路共用移相器,这样,可以简化反馈模块203的设计复杂度,节约设计成本。
上述射频芯片,将反馈通道集成于射频芯片内部,射频芯片的反馈接口FB可通过混频单元与数据处理单元进行连接,这样就无需设计板级的耦合器设计,简化了整个射频系统的结构,提高了射频芯片的集成度,同时反馈通道的增加可以使得数字处理单元接收业务发送信号的反馈信号,根据DPD特性来进行数据处理,补偿业务发送信号,减轻业务发送信号在传输通道中的损耗和失真,提高整个射频系统的输出功率,同时扩大整个射频系统对应的发送信号的覆盖范围。
图3为本申请实施例提供的另一种射频芯片的结构示意图,如图3所示,射频芯片300也包括信号传输模块301、信号传输模块302和反馈模块303;其中传输模块301包括放大模块和移相模块。
可以理解的,信号传输模块301、信号传输模块302与图2所示实施例中信号传输模块201、信号传输模块202的结构类似,具体各元件的功能也与上述实施例中的元件功能类似,在此不做赘述,下面针对反馈模块303进行详细描述。
在反馈模块303中包括多条反馈支路,信号传输模块的每个传输支路与该多条反馈支路一一对应,其中,每一条反馈支路包括选择开关SP2T,用于对不同极化方向的两条传输支路进行选择;而每一条反馈支路均可包括移相器和可调衰减器,即在图3所示实施例中,各反馈支路不再共用移相器,而是可以同时对多个反馈信号进行移相处理和增益调节处理。最终,多个反馈支路均与合路器进行连接,该合路器会将多个反馈支路上的反馈信号合为一路反馈信号向数据处理单元进行传输,可以理解的,反馈信号的信噪比将提高N倍,有利于提高数据处理单元对业务发送信号的补偿能力。
图4为本申请实施例提供的一种通过射频芯片的信号反馈方法,该射频芯片包括信号 传输模块和反馈模块,所述方法包括:
401、通过信号传输模块的第一端接收数字处理单元发送的业务信号。
其中,所述信号传输模块的末端连接收发天线,并通过耦合器与所述反馈模块的输入端连接。
402、通过传输通道传输所述业务信号,并通过所述收发天线发送所述业务信号。
其中,所述信号传输模块用于提供至少一个传输通道,所述业务信号包括数字处理单元发送的发送信号。
403、获取所述业务信号对应的反馈信号,并通过所述反馈模块向所述数字处理单元传输所述反馈信号。
其中,所述反馈模块用于提供反馈通道。可以理解的,射频芯片的结构与图2或图3所示实施例中的射频芯片相同,具体不做赘述。
404、根据所述反馈信号对所述业务信号进行补偿。
当数字处理单元获取到反馈信号后,就根据反馈信号和初始发送信号,来确定业务信号在传输通道中的损耗和失真情况,然后利用DPD特性来对业务信号进行补偿,以其提高射频系统的输出功率和覆盖范围。
图5为本申请实施例提供的一种射频系统的系统架构图,该射频系统包括多个射频芯片和数字处理单元。
其中,每个射频芯片的收发端口H n均连接收发天线,另一端的收发端口S 1和S 2均通过功分器和混频单元与数字处理单元的收发端口进行连接;可以理解的,该通路用于传输业务信号,功分器的作用为将多个业务信号合为一路信号,或者将一路信号分为多路信号;混频单元可以包括混频器,用于对通过的业务信号进行频率搬移,示例性的,将数字处理单元发送的低频信号转化为射频信号,将从外接收到的接收信号转化为低频信号,再向数字处理单元进行传输。
每个射频芯片的反馈端口FB均通过混频单元与数字处理单元的反馈端口进行连接,该通路即为反馈通道,多个射频芯片的反馈端口FB通过合路器与数字处理单元的反馈端口进行连接,即可以将多个反馈信号合为一路信号传输至数字处理单元,其中,混频单元可以包括混频器,用于对多个反馈信号进行混频。
可以理解的,在该射频系统中每个射频芯片的结构均可以参考图2或图3所述实施例中的射频芯片的结构,在此不做赘述。
根据本申请实施例提供的方法,本申请还提供一种计算机可读存储介质,包括程序,当其在计算机上运行时,使得计算机执行图4所示实施例中所述的方法。
根据本申请实施例提供的方法,本申请还提供一种电路系统,所述电路系统包括处理电路,所述处理电路配置为执行图4所示实施例中所述的方法。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统,装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统,装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组 件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,read-only memory)、随机存取存储器(RAM,random access memory)、磁碟或者光盘等各种可以存储程序代码的介质。

Claims (12)

  1. 一种射频芯片,其特征在于,所述射频芯片包括:信号传输模块和反馈模块;
    所述信号传输模块的末端连接收发天线,并通过耦合器与所述反馈模块的输入端连接;
    所述信号传输模块用于提供至少一个传输通道,所述传输通道用于传输业务信号,所述业务信号包括数字处理单元发送的发送信号;
    所述反馈模块用于提供反馈通道,所述反馈通道用于向所述数字处理单元传输所述发送信号对应的反馈信号。
  2. 根据权利要求1所述的射频芯片,其特征在于,所述信号传输模块包括放大模块和移相模块;
    其中,所述放大模块的末端与所述移相模块的第一端连接;所述移相模块的第二端连接所述收发天线,并且通过所述耦合器与所述反馈模块的输入端连接;
    所述放大模块用于对放大并传输所述发送信号;
    所述移相模块用于传输所述发送信号,并对发送信号进行移相处理。
  3. 根据权利要求2所述的射频芯片,其特征在于,所述移相模块包括多条传输支路;
    其中,每条传输支路的第一端与所述放大模块的末端连接;
    所述每条传输支路的第二端均连接有所述收发天线,且所述每条传输支路的第二端分别与所述反馈模块连接。
  4. 根据权利要求3所述的射频芯片,其特征在于,所述每条传输支路上均包括移相器和调节器;
    其中,所述移相器用于对所述发送信号进行移相处理;
    所述调节器用于对所述发送信号进行增益调节处理。
  5. 根据权利要求4所述的射频芯片,其特征在于,所述反馈模块包括多条反馈支路,所述多条传输支路与所述多条反馈支路一一对应;
    所述多条反馈支路均与收发选择开关的第一端连接,所述收发选择开关的第二端与所述数字处理单元连接;
    所述收发选择开关,用于选择所述多条反馈支路中的一条反馈支路与所述数字处理单元连接。
  6. 根据权利要求5所述的射频芯片,其特征在于,在所述收发选择开关的第二端与所述数字处理单元之间还包括移相器,所述移相器用于对所述反馈支路上的反馈信号进行相位还原。
  7. 根据权利要求6所述的射频芯片,其特征在于,在所述收发选择开关的第二端与所述数字处理单元之间还包括调节器,所述调节器用于对所述反馈支路上的反馈信号进行增益调节处理。
  8. 根据权利要求4所述的射频芯片,其特征在于,所述反馈模块包括多条反馈支路,所述多条传输支路与所述多条反馈支路一一对应,所述多条反馈支路上的每一条反馈支路均包括移相器;
    所述移相器,用于对所述每一条反馈支路上的反馈信号进行相位还原。
  9. 根据权利要求8所述的射频芯片,其特征在于,所述多条反馈支路上的每一条反馈 支路还包括调节器;
    所述调节器,用于对所述每一条反馈支路上的反馈信号进行增益调节处理。
  10. 根据权利要求8至9所述的射频芯片,其特征在于,所述反馈模块还包括合路器,所述每一条反馈支路的末端均与所述合路器相连;
    所述合路器,用于汇合所述多个反馈支路上的多个反馈信号,并将所述多个反馈信号反馈至所述数字处理单元。
  11. 一种通过射频芯片的信号反馈方法,其特征在于,所述射频芯片包括信号传输模块和反馈模块,所述方法包括:
    通过所述信号传输模块的第一端接收数字处理单元发送的业务信号;其中,所述信号传输模块的末端连接收发天线,并通过耦合器与所述反馈模块的输入端连接;
    通过传输通道传输所述业务信号,并通过所述收发天线发送所述业务信号;其中,所述信号传输模块用于提供至少一个传输通道,所述业务信号包括数字处理单元发送的发送信号;
    获取所述业务信号对应的反馈信号,并通过所述反馈模块向所述数字处理单元传输所述反馈信号;其中,所述反馈模块用于提供反馈通道。
  12. 一种射频系统,其特征在于,所述射频系统包括多个射频芯片,多个合路器,多个混频单元和数字处理单元;
    所述多个射频芯片和所述数字处理单元均包括收发接口和反馈接口;所述多个射频芯片的反馈端口通过第一合路器和第一混频单元与所述数字处理单元的反馈接口连接;所述多个射频芯片的收发接口通过第二合路器和第二混频单元与所述数字处理单元的收发接口连接;所述多个合路器包括所述第一合路器和所述第二合路器;
    所述数字处理单元,用于通过所述数字处理单元的收发接口向所述射频芯片发送业务发送信号,或者通过所述收发接口接收所述射频芯片传输的业务接收信号;
    所述数字处理单元,还用于通过数字处理单元的反馈接口接收所述业务发送信号对应的反馈信号,并通过所述反馈信号对所述业务发送信号进行信号补偿;
    所述射频芯片,用于提供传输通道和反馈通道,所述传输通道用于传输所述业务发送信号和/或所述业务接收信号;所述反馈通道用于通过所述射频芯片的反馈接口发送所述业务发送信号对应的反馈信号。
PCT/CN2021/133464 2020-11-26 2021-11-26 一种射频芯片以及通过射频芯片的信号反馈方法 WO2022111628A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP21897128.1A EP4236084A4 (en) 2020-11-26 2021-11-26 RADIO FREQUENCY CHIP AND SIGNAL FEEDBACK METHOD EXECUTED USING A RADIO FREQUENCY CHIP

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011348059.1 2020-11-26
CN202011348059.1A CN114553245B (zh) 2020-11-26 2020-11-26 一种射频芯片以及通过射频芯片的信号反馈方法

Publications (1)

Publication Number Publication Date
WO2022111628A1 true WO2022111628A1 (zh) 2022-06-02

Family

ID=81668174

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/133464 WO2022111628A1 (zh) 2020-11-26 2021-11-26 一种射频芯片以及通过射频芯片的信号反馈方法

Country Status (3)

Country Link
EP (1) EP4236084A4 (zh)
CN (1) CN114553245B (zh)
WO (1) WO2022111628A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115378458A (zh) * 2022-08-19 2022-11-22 Oppo广东移动通信有限公司 一种射频系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104901638A (zh) * 2015-06-03 2015-09-09 京信通信技术(广州)有限公司 多通道数字预失真dpd功放系统
CN105556913A (zh) * 2014-08-18 2016-05-04 华为技术有限公司 信号处理装置、射频拉远单元和基站
WO2018098629A1 (zh) * 2016-11-29 2018-06-07 华为技术有限公司 一种数字预失真处理方法和装置
US10243596B1 (en) * 2017-12-15 2019-03-26 Nxp Usa, Inc. Radio frequency transceiver having digital pre-distortion feedback
US20200067466A1 (en) * 2017-06-30 2020-02-27 Intel Corporation Wireless Architectures and Digital Pre-Distortion (DPD) Techniques Using Closed Loop Feedback for Phased Array Transmitters

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102201798B (zh) * 2011-04-06 2014-08-06 北京大学 一种适于纳米尺度工艺的高线性度射频前端
CN102412858B (zh) * 2011-11-04 2016-08-24 南京中兴软件有限责任公司 射频收发器、终端和终端接收信号的方法
CN110912580A (zh) * 2019-11-29 2020-03-24 三维通信股份有限公司 一种适用于5g的零中频的硬件平台系统和射频拉远单元

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105556913A (zh) * 2014-08-18 2016-05-04 华为技术有限公司 信号处理装置、射频拉远单元和基站
CN104901638A (zh) * 2015-06-03 2015-09-09 京信通信技术(广州)有限公司 多通道数字预失真dpd功放系统
WO2018098629A1 (zh) * 2016-11-29 2018-06-07 华为技术有限公司 一种数字预失真处理方法和装置
US20200067466A1 (en) * 2017-06-30 2020-02-27 Intel Corporation Wireless Architectures and Digital Pre-Distortion (DPD) Techniques Using Closed Loop Feedback for Phased Array Transmitters
US10243596B1 (en) * 2017-12-15 2019-03-26 Nxp Usa, Inc. Radio frequency transceiver having digital pre-distortion feedback

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4236084A4

Also Published As

Publication number Publication date
EP4236084A4 (en) 2024-05-01
EP4236084A1 (en) 2023-08-30
CN114553245B (zh) 2023-07-18
CN114553245A (zh) 2022-05-27

Similar Documents

Publication Publication Date Title
US8063822B2 (en) Antenna system
US8599955B1 (en) System and method for distinguishing between antennas in hybrid MIMO RDN systems
EP2487800B1 (en) Active antenna arrays
US9998171B2 (en) IBFD transceiver with non-reciprocal frequency transposition module
JP2005537728A (ja) 周波数選択ビーム形成
JP2000078072A (ja) 送受信装置
US10389510B2 (en) Self-interference signal cancellation apparatus and transceiver including the same
JP2002101027A (ja) 信号増幅方法及び送信装置
EP2719016B1 (en) Multi-beam multi-radio antenna
US5953659A (en) Method and apparatus for producing delay of a carrier signal for implementing spatial diversity in a communications system
WO2022111628A1 (zh) 一种射频芯片以及通过射频芯片的信号反馈方法
CN106537768B (zh) 调相负载装置和方法
WO2021226086A1 (en) Ultra-small millimeter wave 5g beam former architecture
CN101888254B (zh) 射频前端电路
WO2022206520A1 (zh) 一种信号转发方法和装置
JP2014027367A (ja) 無線通信システムおよび無線通信方法
CN114631265B (zh) 一种天线收发模块、多输入多输出天线收发系统和基站
CN111106858B (zh) 基于天线阵列设计的无线功率传输的设备及方法
JP2001168789A (ja) 指向性可変型移動体通信基地局
JP3153909B2 (ja) アクティブフェーズドアレイアンテナ
CN221010109U (zh) 一种多功能可重构智能表面装置
CN118487037A (zh) 自适应频率选择的相控阵天线系统
US20240162932A1 (en) Transceiver and wireless communication apparatus including the same
CN110798236A (zh) 一种多波束空间功率合成射频前端电路
WO2024153329A1 (en) Combination of balanced amplifiers for resilience to load impedance variation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21897128

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021897128

Country of ref document: EP

Effective date: 20230525

NENP Non-entry into the national phase

Ref country code: DE