WO2022111594A1 - 一种数据传输方法及电子设备 - Google Patents

一种数据传输方法及电子设备 Download PDF

Info

Publication number
WO2022111594A1
WO2022111594A1 PCT/CN2021/133218 CN2021133218W WO2022111594A1 WO 2022111594 A1 WO2022111594 A1 WO 2022111594A1 CN 2021133218 W CN2021133218 W CN 2021133218W WO 2022111594 A1 WO2022111594 A1 WO 2022111594A1
Authority
WO
WIPO (PCT)
Prior art keywords
camera module
data packet
data
value
processor
Prior art date
Application number
PCT/CN2021/133218
Other languages
English (en)
French (fr)
Inventor
常鸣
杜思清
乐培玉
范茂斌
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to JP2023532211A priority Critical patent/JP2023552731A/ja
Priority to EP21897094.5A priority patent/EP4228245A4/en
Publication of WO2022111594A1 publication Critical patent/WO2022111594A1/zh
Priority to US18/323,854 priority patent/US20230308530A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/90Arrangement of cameras or camera modules, e.g. multiple cameras in TV studios or sports stadiums
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/54Mounting of pick-up tubes, electronic image sensors, deviation or focusing coils
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L69/00Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass
    • H04L69/22Parsing or analysis of headers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L69/00Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass
    • H04L69/18Multiprotocol handlers, e.g. single devices capable of handling multiple protocols
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/45Cameras or camera modules comprising electronic image sensors; Control thereof for generating image signals from two or more image sensors being of different type or operating in different modes, e.g. with a CMOS sensor for moving images in combination with a charge-coupled device [CCD] for still images
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/57Mechanical or electrical details of cameras or camera modules specially adapted for being embedded in other devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N7/00Television systems
    • H04N7/025Systems for the transmission of digital non-picture data, e.g. of text during the active part of a television frame
    • H04N7/035Circuits for the digital non-picture data signal, e.g. for slicing of the data signal, for regeneration of the data-clock signal, for error detection or correction of the data signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/63Control of cameras or camera modules by using electronic viewfinders
    • H04N23/631Graphical user interfaces [GUI] specially adapted for controlling image capture or setting capture parameters

Definitions

  • the present application relates to the field of electronic technology, and in particular, to a data transmission method and electronic device.
  • the cameras of electronic devices continue to develop in the direction of multi-camera and high-resolution.
  • the processor in the electronic device performs data transmission with the camera module through the mobile industry processor interface (MIPI).
  • MIPI mobile industry processor interface
  • a camera module needs to use four pairs of data differential signal lines. communicate with the processor.
  • eight pairs of data differential signal lines are required to communicate with the processor.
  • the number of front camera modules and rear camera modules also increases, and the number of MIPI differential signal lines on the processor side and the number of interfaces on the processor side increase, which is not conducive to system integration.
  • the present application provides a data transmission method and electronic device.
  • multiple input devices are connected in a cascaded manner, and only one input device is connected to the processor.
  • the number of interfaces on the processor side and the number of signal lines between the input device and the processor are greatly reduced; Existing input devices are connected in cascade, and subsequent addition of input devices is easy to operate.
  • the present application provides a data transmission method.
  • the method includes: after a first camera module receives a first instruction sent by a processor, receiving a first data packet sent by a second camera module, wherein the first data packet contains An identification field is included, and the value of the identification field in the first data packet is used to indicate the forwarding times of the first data packet; the first camera module recognizes that the value of the identification field in the first data packet is the first value, and uses The first value is modified to a second value, and the difference between the second value and the first value is a preset value; the first camera module modifies the value of the identification field in the first data packet to the second value and sends the first data packet to the processor.
  • the method can be applied to an electronic device equipped with a camera module.
  • One uplink interface and one downlink interface are deployed on each camera module of the electronic device, wherein the uplink interface is connected to the processor or the upper-level camera module, and the downlink interface is connected to the processor or the upper-level camera module.
  • the interface is connected to the next-level camera module or is not connected.
  • the processing module in each camera module can process the image data collected by the input device and the data transmitted by the lower-level camera module connected to the downlink interface, and then transmit it to the processor or the upper-level camera through the uplink interface. camera module.
  • multiple camera modules are connected in cascade, and multiple camera modules only need one camera module to be connected to the processor.
  • the interface between the processor and multiple camera modules is reduced.
  • the number and number of signal pins are beneficial to system integration on the processing side; on the other hand, it is easy to increase or decrease the number of camera modules.
  • the method may also be applicable to devices such as sensors and radars, which are not limited here.
  • the first camera module includes a first application layer, a first protocol layer, and a first physical layer, and the first physical layer includes a first uplink interface and a first a downlink interface; the first camera module receives the first data packet sent by the second camera module, which specifically includes: the first camera module receives the first data packet sent by the second camera module through the first downlink interface; The first camera module modifies the value of the identification field in the first data packet from the first value to the second value, which specifically includes: the first camera module changes the value of the identification field in the first data packet from the first value through the first protocol layer.
  • a value is modified to a second value; the first camera module sends the first data packet after modifying the value of the identification field in the first data packet to the second value to the processor, specifically including: the first camera module passes the first The uplink interface sends the first data packet after modifying the value of the identification field in the first data packet to the second value to the processor.
  • the first camera module is connected to the second camera module through the first downlink interface, and the first uplink interface of the first camera module is connected to the processor, so that multiple camera modules are connected to the processor through cascade connection , reducing the number of signal pins on the processor side, which is beneficial to the system integration on the processor side.
  • the second camera module collects data and the first camera module does not need to collect data
  • the first application layer of the first camera module is not enabled, the first physical layer of the first camera module and the first protocol When the layer is turned on, the consumption of the first camera module can be reduced.
  • the first camera module collects the first data, and generates a second data packet according to the first data, the second data packet includes an identification field, and the first data packet is The value of the identification field in the two data packets is the third value; the first camera module sends the second data packet to the processor. In this way, the second camera module and the first camera module can simultaneously collect data.
  • the processor identifies which camera module collected the data packet according to the value of the identification field in the data packet.
  • the first camera module includes a first application layer, a first protocol layer, and a first physical layer, and the first physical layer includes a first uplink interface and a first a downlink interface; after the first camera module collects the first data and before generating the second data packet according to the first data, the method further includes: the first camera module encodes the first data through the first application layer; The first camera module generates a second data packet according to the first data, which specifically includes: the first camera module generates a second data packet according to the encoded first data through the first protocol layer; Sending the packet to the processor specifically includes: the first camera module sends the second data packet to the processor through the first uplink interface. In this way, when the first camera module collects data, the first application layer, the first physical layer, and the first protocol layer of the first camera module are all turned on.
  • the first data packet includes a packet header, a data packet and a packet trailer; the identification field in the first data packet is located in the packet header of the first data packet.
  • the processor can identify the value of the identification field in the packet header of the data packet, and identify that the data packet comes from the first camera module according to the value of the identification field.
  • the second data packet includes a packet header, a data packet and a packet tail; the identification field in the second data packet is located in the packet header of the second data packet.
  • the processor may identify the value of the identification field in the packet header of the data packet, and identify that the data packet comes from the second camera module according to the value of the identification field.
  • the first camera module receiving the first instruction sent by the processor specifically includes: the first camera module receiving the first instruction sent by the processor through the first control interface an instruction.
  • the first camera module enables the first physical layer and the first protocol layer, and receives the data packet sent by the second camera module.
  • the second camera module After the second camera module receives the second instruction sent by the processor through the second control interface, the second camera module enables the application layer of the second camera module, the physical layer of the second camera module, and the At the protocol layer, the second camera module starts to collect data and package the data into data packets, and sends the data packets to the first camera module.
  • each camera module in the electronic device is provided with a control interface, and the control interface is different from the uplink interface and the downlink interface.
  • the control interface is used to receive control instructions sent by the processor.
  • the upstream and downstream interfaces are used to send and receive packets.
  • the present application provides an electronic device, the electronic device includes a processor, a first camera module, and a second camera module; wherein the first camera module is used for receiving a first instruction sent by the processor Afterwards, receive the first data packet sent by the second camera module, the first data packet includes an identification field, and the value of the identification field in the first data packet is used to indicate the number of times of forwarding of the first data packet; the first camera module, Also used for: identifying the value of the identification field in the first data packet as the first value, and modifying the first value to a second value, and the difference between the second value and the first value is a preset value; The first data packet is sent to the processor after the value of the identification field is modified to the second value.
  • the method can be applied to an electronic device equipped with a camera module.
  • One uplink interface and one downlink interface are deployed on each camera module of the electronic device, wherein the uplink interface is connected to the processor or the upper-level camera module, and the downlink interface is connected to the processor or the upper-level camera module.
  • the interface is connected to the next-level camera module or is not connected.
  • the processing module in each camera module can process the image data collected by the input device and the data transmitted by the lower-level camera module connected to the downlink interface, and then transmit it to the processor or the upper-level camera through the uplink interface. camera module.
  • multiple camera modules are connected in cascade, and multiple camera modules only need one camera module to be connected to the processor.
  • the interface between the processor and multiple camera modules is reduced.
  • the number and number of signal pins are favorable for system integration on the processing side; on the other hand, adding or reducing input devices is easy to operate.
  • the first camera module includes a first application layer, a first protocol layer, and a first physical layer, and the first physical layer includes a first uplink interface and a first physical layer.
  • the first camera module is connected to the second camera module through the first downlink interface, and the first uplink interface of the first camera module is connected to the processor, so that multiple camera modules are connected to the processor through cascade connection , reducing the number of signal pins on the processor side, which is beneficial to the system integration on the processor side.
  • the second camera module collects data and the first camera module does not need to collect data
  • the first application layer of the first camera module is not enabled, the first physical layer of the first camera module and the first protocol When the layer is turned on, the consumption of the first camera module can be reduced.
  • the first camera module is further configured to: collect first data, and generate a second data packet according to the first data, where the second data packet includes The identification field, the value of the identification field in the second data packet is the third value; the second data packet is sent to the processor.
  • the second camera module and the first camera module can simultaneously collect data.
  • the processor identifies which camera module collected the data packet according to the value of the identification field in the data packet.
  • the first camera module includes a first application layer, a first protocol layer, and a first physical layer, and the first physical layer includes a first uplink interface and a first physical layer.
  • Downlink interface, the first uplink interface is connected with the first receiving port of the processor; wherein, the first camera module is also used for: encoding the first data through the first application layer; according to the encoding through the first protocol layer
  • the second data packet is generated from the second data packet; the second data packet includes an identification field, and the value of the identification field in the second data packet is a third value; the second data packet is sent to the processor through the first uplink interface.
  • the electronic device further includes a third camera module; the third camera module is configured to collect the second data and generate the third data according to the second data
  • the third data packet includes an identification field, and the value of the identification field in the third data packet is a third value; the third camera module is further configured to send the third data packet to the processor.
  • Multiple front camera modules are cascaded and connected to the first receiving port of the processor, and multiple rear camera modules are cascaded and connected to the second receiving port of the processor, that is, multiple cascaded front cameras
  • the module and a plurality of cascaded rear camera modules are connected in parallel with the processor.
  • the third camera module includes a second application layer, a second protocol layer, and a second physical layer, and the second physical layer includes a second uplink interface and a second physical layer.
  • Two downlink interfaces, the second uplink interface is connected to the second receiving port of the processor; the third camera module is further used for: encoding the second data through the second application layer;
  • the second data generates a third data packet;
  • the third data packet includes an identification field, and the value of the identification field in the third data packet is a third value; the third data packet is sent to the processor through the second uplink interface.
  • the third camera module collects data
  • the second application layer, the second physical layer, and the second protocol layer of the third camera module are all turned on.
  • the third data packet is sent to the second receiving port of the processor through the second uplink interface, which reduces the pressure on the processor to receive a large amount of data on the same port at the same time when there is only one port on the processor side.
  • the first camera module includes a first application layer, a first protocol layer, and a first physical layer, and the first physical layer includes a first uplink interface and a first physical layer.
  • a downlink interface the first uplink interface is connected to the first receiving port of the processor;
  • the third camera module includes a second application layer, a second protocol layer and a second physical layer, the second physical layer includes a second uplink
  • the interface is connected to the second downstream interface, and the second upstream interface is connected with the second receiving port of the processor; the first receiving port is different from the second receiving port.
  • the electronic device further includes a fourth camera module; the fourth camera module is configured to collect third data and generate fourth data according to the third data
  • the fourth data packet includes an identification field, and the value of the identification field in the fourth data packet is a third value; the fourth camera module is also used to send the fourth data packet to the third camera module; the third The camera module is further used for: receiving the fourth data packet sent by the fourth camera module; recognizing that the value of the identification field in the first data packet is the third value, and modifying the value of the identification field in the fourth data packet to be The fourth value, the difference between the fourth value and the third value is a preset value.
  • the fourth camera module includes a third application layer, a third protocol layer, and a third physical layer, and the third physical layer includes a third uplink interface and a third Three downlink interfaces, the third uplink interface is connected with the second downlink interface; the fourth camera module is further used for: encoding the third data through the third application layer; according to the encoded third data through the third protocol layer generating a fourth data packet; the fourth data packet includes an identification field, and the value of the identification field in the fourth data packet is a third value; the fourth data packet is sent to the third camera module through the third uplink interface; the third camera The module is further used for: receiving the fourth data packet sent by the third uplink interface through the second downlink interface; identifying the value of the identification field in the fourth data packet through the second protocol layer to the third value, and using the third value Modified to the fourth value, and the difference between the third value and the fourth value is a preset value; the fourth data packet after modifying the value
  • the first data packet includes a packet header, a data packet and a packet trailer; the identification field in the first data packet is located in the packet header of the first data packet.
  • the processor can identify the value of the identification field in the packet header of the data packet, and identify that the data packet comes from the first camera module according to the value of the identification field.
  • the second data packet includes a packet header, a data packet and a packet tail; the identification field in the second data packet is located in the packet header of the second data packet.
  • the processor may identify the value of the identification field in the packet header of the data packet, and identify that the data packet comes from the second camera module according to the value of the identification field.
  • the third data packet includes a packet header, a data packet and a packet tail; the identification field in the third data packet is located in the packet header of the third data packet.
  • the processor can identify the value of the identification field in the packet header of the data packet, and identify that the data packet comes from the third camera module according to the value of the identification field.
  • the fourth data packet includes a packet header, a data packet and a packet tail; the identification field in the second data packet is located in the packet header of the fourth data packet.
  • the processor can identify the value of the identification field in the packet header of the data packet, and identify that the data packet comes from the fourth camera module according to the value of the identification field.
  • the data packets received by the first receiving port of the processor come from the first camera module and the second camera module, and the data packets received by the second receiving port of the processor are from the third camera module and the fourth camera module.
  • the processor can determine that the data packets are from the first camera module or the third camera module according to whether the data packets are received by the first receiving port or the second receiving port; or process The controller can determine that the data packet is from the second camera module or the fourth camera module according to whether the data packet is received by the first receiving port or the second receiving port.
  • the first camera module is further configured to receive the first instruction sent by the processor through the first control interface.
  • the first camera module enables the first physical layer and the first protocol layer, and receives the data packet sent by the second camera module.
  • the second camera module After the second camera module receives the second instruction sent by the processor through the second control interface, the second camera module enables the application layer of the second camera module, the physical layer of the second camera module, and the At the protocol layer, the second camera module starts to collect data and package the data into data packets, and sends the data packets to the first camera module.
  • each camera module in the electronic device is provided with a control interface, and the control interface is different from the uplink interface and the downlink interface.
  • the control interface is used to receive control instructions sent by the processor.
  • the upstream and downstream interfaces are used to send and receive packets.
  • the present application provides a computer-readable storage medium, including instructions, when the instructions are executed on a camera module, the camera module is caused to perform the above-mentioned first aspect and any implementation in combination with the above-mentioned first aspect A data transmission method described in the method.
  • multiple input devices are connected in a cascaded manner, and only one input device is connected to the processor.
  • the number of interfaces on the processor side and the number of signal lines between the input device and the processor are greatly reduced; Existing input devices are connected in cascade, and subsequent addition of input devices is easy to operate.
  • FIG. 1 is a schematic structural diagram of an electronic device 100 according to an embodiment of the present application.
  • FIG. 2 is a schematic structural diagram of a D-PHY interface between a camera module and a processor according to an embodiment of the present application;
  • FIG. 3 is a schematic structural diagram of a C-PHY interface between a camera module and a processor according to an embodiment of the present application
  • FIG. 4 is a schematic structural diagram of a camera module according to an embodiment of the present application.
  • 5 and 6 are schematic diagrams of a multi-camera system of an electronic device 100 according to an embodiment of the application;
  • FIG. 7 is a schematic diagram of a vehicle on-board monitoring system provided by an embodiment of the present application.
  • FIGS. 8A-8B are schematic diagrams of a video surveillance system at an intersection provided by an embodiment of the present application.
  • FIG. 9 is a schematic diagram of a plurality of camera modules connected to a processor using a parallel topology structure according to an embodiment of the present application.
  • FIG. 10 is a schematic diagram of the engineering structure of a plurality of camera modules connected in parallel with the processor of the electronic device 100 according to an embodiment of the present application;
  • FIG. 11 is a schematic diagram of cascade connection of multiple camera modules in an electronic device 100 according to an embodiment of the present application.
  • FIG. 12 is a schematic structural diagram of a D-PHY interface between a cascaded camera module and a processor provided by an embodiment of the application;
  • FIG. 13 is a schematic diagram of the engineering structure of a connection between a plurality of cascaded camera modules and a processor 910 according to an embodiment of the present application;
  • FIG. 14 is a schematic structural diagram of a data packet provided by an embodiment of the application.
  • FIG. 15 is a schematic structural diagram of another data packet provided by an embodiment of the present application.
  • 16 is a data packet transmission process of N camera modules provided by an embodiment of the present application.
  • 17 is a flowchart of a data transmission method provided by an embodiment of the present application.
  • FIG. 18 is a system diagram of another camera module cascade provided by an embodiment of the present application.
  • FIG. 19 is a schematic diagram of the engineering structure of a plurality of cascaded camera modules connected to the processor 910 through an analog switch according to an embodiment of the present application;
  • FIG. 20 is a flowchart of another method for data transmission provided by an embodiment of the present application.
  • 21 is a system diagram of yet another camera module cascade provided by an embodiment of the present application.
  • FIG. 22 is a schematic diagram of another engineering structure in which multiple cascaded camera modules are connected in parallel with the processor 910 according to an embodiment of the present application;
  • 24A-24C are a set of UI diagrams provided by the embodiments of the present application.
  • 25A-25C are another set of UI diagrams provided by the embodiments of the present application.
  • first and second are only used for descriptive purposes, and should not be understood as implying or implying relative importance or implying the number of indicated technical features. Therefore, the features defined with “first” and “second” may explicitly or implicitly include one or more of the features. In the description of the embodiments of the present application, unless otherwise specified, the “multiple” The meaning is two or more.
  • FIG. 1 shows a schematic structural diagram of an electronic device 100 .
  • Device types of electronic device 100 may include cell phones, televisions, tablets, speakers, watches, desktop computers, laptop computers, handheld computers, notebook computers, ultra-mobile personal computers (UMPCs), netbooks, and Personal digital assistant (PDA), augmented reality (AR)/virtual reality (VR) devices, etc.
  • UMPCs ultra-mobile personal computers
  • PDA Personal digital assistant
  • AR augmented reality
  • VR virtual reality
  • the electronic device 100 may also be a monitoring system, and the monitoring system includes a system of multiple cameras or multiple sensors or multiple radars and other devices such as processors.
  • This embodiment of the present application does not specifically limit the device type of the electronic device 100 .
  • the electronic device 100 shown in FIG. 1 is only an example, and the electronic device 100 may have more or fewer components than those shown in FIG. 1 , two or more components may be combined, or Different component configurations are possible.
  • the various components shown in the figures may be implemented in hardware, software, or a combination of hardware and software, including one or more signal processing and/or application specific integrated circuits.
  • the electronic device 100 may include: a processor 110, an external memory interface 120, an internal memory 121, a universal serial bus (USB) interface 130, a charging management module 140, a power management module 141, a battery 142, an antenna 1, an antenna 2.
  • Mobile communication module 150 wireless communication module 160, audio module 170, speaker 170A, receiver 170B, microphone 170C, headphone jack 170D, sensor module 180, buttons 190, motor 191, indicator 192, camera 193, display screen 194, And a subscriber identification module (subscriber identification module, SIM) card interface 195 and so on.
  • SIM subscriber identification module
  • the sensor module 180 may include a pressure sensor 180A, a gyroscope sensor 180B, an air pressure sensor 180C, a magnetic sensor 180D, an acceleration sensor 180E, a distance sensor 180F, a proximity light sensor 180G, a fingerprint sensor 180H, a temperature sensor 180J, a touch sensor 180K, and ambient light. Sensor 180L, bone conduction sensor 180M, etc.
  • the structures illustrated in the embodiments of the present invention do not constitute a specific limitation on the electronic device 100 .
  • the electronic device 100 may include more or less components than shown, or combine some components, or separate some components, or arrange different components.
  • the illustrated components may be implemented in hardware, software, or a combination of software and hardware.
  • the processor 110 may include one or more processing units, for example, the processor 110 may include an application processor (application processor, AP), a modem processor, a graphics processor (graphics processing unit, GPU), an image signal processor (image signal processor, ISP), controller, memory, video codec, digital signal processor (digital signal processor, DSP), baseband processor, and/or neural-network processing unit (NPU) Wait. Wherein, different processing units may be independent devices, or may be integrated in one or more processors.
  • application processor application processor, AP
  • modem processor graphics processor
  • graphics processor graphics processor
  • ISP image signal processor
  • controller memory
  • video codec digital signal processor
  • DSP digital signal processor
  • NPU neural-network processing unit
  • the controller may be the nerve center and command center of the electronic device 100 .
  • the controller can generate an operation control signal according to the instruction operation code and timing signal, and complete the control of fetching and executing instructions.
  • a memory may also be provided in the processor 110 for storing instructions and data.
  • the memory in processor 110 is cache memory. This memory may hold instructions or data that have just been used or recycled by the processor 110 . If the processor 110 needs to use the instruction or data again, it can be called directly from the memory. Repeated accesses are avoided and the latency of the processor 110 is reduced, thereby increasing the efficiency of the system.
  • the processor 110 may include one or more interfaces.
  • the interface may include an integrated circuit (inter-integrated circuit, I2C) interface, an integrated circuit built-in audio (inter-integrated circuit sound, I2S) interface, a pulse code modulation (pulse code modulation, PCM) interface, a universal asynchronous transceiver (universal asynchronous transmitter) receiver/transmitter, UART) interface, mobile industry processor interface (MIPI), general-purpose input/output (GPIO) interface, subscriber identity module (SIM) interface, and / or universal serial bus (universal serial bus, USB) interface, etc.
  • I2C integrated circuit
  • I2S integrated circuit built-in audio
  • PCM pulse code modulation
  • PCM pulse code modulation
  • UART universal asynchronous transceiver
  • MIPI mobile industry processor interface
  • GPIO general-purpose input/output
  • SIM subscriber identity module
  • USB universal serial bus
  • the I2C interface is a bidirectional synchronous serial bus that includes a serial data line (SDA) and a serial clock line (SCL).
  • the processor 110 may contain multiple sets of I2C buses.
  • the processor 110 can be respectively coupled to the touch sensor 180K, the charger, the flash, the camera 193 and the like through different I2C bus interfaces.
  • the processor 110 may couple with the camera 193 through the I2C interface, so that the processor 110 and the camera 193 communicate with each other through the I2C bus interface, so as to realize the shooting function of the electronic device 100 .
  • the I2S interface can be used for audio communication.
  • the processor 110 may contain multiple sets of I2S buses.
  • the processor 110 may be coupled with the audio module 170 through an I2S bus to implement communication between the processor 110 and the audio module 170 .
  • the audio module 170 can transmit audio signals to the wireless communication module 160 through the I2S interface, so as to realize the function of answering calls through a Bluetooth headset.
  • the PCM interface can also be used for audio communications, sampling, quantizing and encoding analog signals.
  • the audio module 170 and the wireless communication module 160 may be coupled through a PCM bus interface.
  • the audio module 170 can also transmit audio signals to the wireless communication module 160 through the PCM interface, so as to realize the function of answering calls through the Bluetooth headset. Both the I2S interface and the PCM interface can be used for audio communication.
  • the UART interface is a universal serial data bus used for asynchronous communication.
  • the bus may be a bidirectional communication bus. It converts the data to be transmitted between serial communication and parallel communication.
  • a UART interface is typically used to connect the processor 110 with the wireless communication module 160 .
  • the processor 110 communicates with the Bluetooth module in the wireless communication module 160 through the UART interface to implement the Bluetooth function.
  • the audio module 170 can transmit audio signals to the wireless communication module 160 through the UART interface, so as to realize the function of playing music through the Bluetooth headset.
  • the MIPI interface can be used to connect the processor 110 with peripheral devices such as the display screen 194 and the camera 193 .
  • MIPI interfaces include camera serial interface (CSI), display serial interface (DSI), etc.
  • the processor 110 communicates with the camera 193 through a CSI interface, so as to realize the photographing function of the electronic device 100 .
  • the processor 110 communicates with the display screen 194 through the DSI interface to implement the display function of the electronic device 100 .
  • the GPIO interface can be configured by software.
  • the GPIO interface can be configured as a control signal or as a data signal.
  • the GPIO interface may be used to connect the processor 110 with the camera 193, the display screen 194, the wireless communication module 160, the audio module 170, the sensor module 180, and the like.
  • the GPIO interface can also be configured as I2C interface, I2S interface, UART interface, MIPI interface, etc.
  • the USB interface 130 is an interface that conforms to the USB standard specification, and may specifically be a Mini USB interface, a Micro USB interface, a USB Type C interface, and the like.
  • the USB interface 130 can be used to connect a charger to charge the electronic device 100, and can also be used to transmit data between the electronic device 100 and peripheral devices. It can also be used to connect headphones to play audio through the headphones.
  • the interface can also be used to connect other electronic devices, such as AR devices.
  • the interface connection relationship between the modules illustrated in the embodiment of the present invention is only a schematic illustration, and does not constitute a structural limitation of the electronic device 100 .
  • the electronic device 100 may also adopt different interface connection manners in the foregoing embodiments, or a combination of multiple interface connection manners.
  • the charging management module 140 is used to receive charging input from the charger.
  • the charger may be a wireless charger or a wired charger.
  • the charging management module 140 may receive charging input from the wired charger through the USB interface 130 .
  • the charging management module 140 may receive wireless charging input through a wireless charging coil of the electronic device 100 . While the charging management module 140 charges the battery 142 , it can also supply power to the electronic device through the power management module 141 .
  • the power management module 141 is used for connecting the battery 142 , the charging management module 140 and the processor 110 .
  • the power management module 141 receives input from the battery 142 and/or the charging management module 140 and supplies power to the processor 110 , the internal memory 121 , the external memory, the display screen 194 , the camera 193 , and the wireless communication module 160 .
  • the power management module 141 can also be used to monitor parameters such as battery capacity, battery cycle times, battery health status (leakage, impedance).
  • the power management module 141 may also be provided in the processor 110 .
  • the power management module 141 and the charging management module 140 may also be provided in the same device.
  • the wireless communication function of the electronic device 100 may be implemented by the antenna 1, the antenna 2, the mobile communication module 150, the wireless communication module 160, the modulation and demodulation processor, the baseband processor, and the like.
  • Antenna 1 and Antenna 2 are used to transmit and receive electromagnetic wave signals.
  • Each antenna in electronic device 100 may be used to cover a single or multiple communication frequency bands. Different antennas can also be reused to improve antenna utilization.
  • the antenna 1 can be multiplexed as a diversity antenna of the wireless local area network. In other embodiments, the antenna may be used in conjunction with a tuning switch.
  • the mobile communication module 150 may provide wireless communication solutions including 2G/3G/4G/5G etc. applied on the electronic device 100 .
  • the mobile communication module 150 may include at least one filter, switch, power amplifier, low noise amplifier (LNA) and the like.
  • the mobile communication module 150 can receive electromagnetic waves from the antenna 1, filter and amplify the received electromagnetic waves, and transmit them to the modulation and demodulation processor for demodulation.
  • the mobile communication module 150 can also amplify the signal modulated by the modulation and demodulation processor, and then turn it into an electromagnetic wave for radiation through the antenna 1 .
  • at least part of the functional modules of the mobile communication module 150 may be provided in the processor 110 .
  • at least part of the functional modules of the mobile communication module 150 may be provided in the same device as at least part of the modules of the processor 110 .
  • the modem processor may include a modulator and a demodulator.
  • the modulator is used to modulate the low frequency baseband signal to be sent into a medium and high frequency signal.
  • the demodulator is used to demodulate the received electromagnetic wave signal into a low frequency baseband signal. Then the demodulator transmits the demodulated low-frequency baseband signal to the baseband processor for processing.
  • the low frequency baseband signal is processed by the baseband processor and passed to the application processor.
  • the application processor outputs sound signals through audio devices (not limited to the speaker 170A, the receiver 170B, etc.), or displays images or videos through the display screen 194 .
  • the modem processor may be a stand-alone device.
  • the modem processor may be independent of the processor 110, and may be provided in the same device as the mobile communication module 150 or other functional modules.
  • the wireless communication module 160 can provide applications on the electronic device 100 including wireless local area networks (WLAN) (such as wireless fidelity (Wi-Fi) networks), bluetooth (BT), global navigation satellites Wireless communication solutions such as global navigation satellite system (GNSS), frequency modulation (FM), near field communication (NFC), and infrared technology (IR).
  • WLAN wireless local area networks
  • BT Bluetooth
  • GNSS global navigation satellite system
  • FM frequency modulation
  • NFC near field communication
  • IR infrared technology
  • the wireless communication module 160 may be one or more devices integrating at least one communication processing module.
  • the wireless communication module 160 receives electromagnetic waves via the antenna 2 , frequency modulates and filters the electromagnetic wave signals, and sends the processed signals to the processor 110 .
  • the wireless communication module 160 can also receive the signal to be sent from the processor 110 , perform frequency modulation on it, amplify it, and convert it into electromagnetic waves for radiation through the antenna 2 .
  • the antenna 1 of the electronic device 100 is coupled with the mobile communication module 150, and the antenna 2 is coupled with the wireless communication module 160, so that the electronic device 100 can communicate with the network and other devices through wireless communication technology.
  • the wireless communication technology may include global system for mobile communications (GSM), general packet radio service (GPRS), code division multiple access (CDMA), broadband Code Division Multiple Access (WCDMA), Time Division Code Division Multiple Access (TD-SCDMA), Long Term Evolution (LTE), BT, GNSS, WLAN, NFC , FM, and/or IR technology, etc.
  • the GNSS may include a global positioning system (global positioning system, GPS), a global navigation satellite system (GLONASS), a Beidou navigation satellite system (BDS), a quasi-zenith satellite system (quasi -zenith satellite system, QZSS) and/or satellite based augmentation systems (SBAS).
  • GPS global positioning system
  • GLONASS global navigation satellite system
  • BDS Beidou navigation satellite system
  • QZSS quasi-zenith satellite system
  • SBAS satellite based augmentation systems
  • the electronic device 100 implements a display function through a GPU, a display screen 194, an application processor, and the like.
  • the GPU is a microprocessor for image processing, and is connected to the display screen 194 and the application processor.
  • the GPU is used to perform mathematical and geometric calculations for graphics rendering.
  • Processor 110 may include one or more GPUs that execute program instructions to generate or alter display information.
  • Display screen 194 is used to display images, videos, and the like.
  • Display screen 194 includes a display panel.
  • the display panel can be a liquid crystal display (LCD), an organic light-emitting diode (OLED), an active-matrix organic light-emitting diode or an active-matrix organic light-emitting diode (active-matrix organic light).
  • LED diode AMOLED
  • flexible light-emitting diode flexible light-emitting diode (flex light-emitting diode, FLED), Miniled, MicroLed, Micro-oLed, quantum dot light-emitting diode (quantum dot light emitting diodes, QLED) and so on.
  • the electronic device 100 may include one or N display screens 194 , where N is a positive integer greater than one.
  • the electronic device 100 may implement a shooting function through an ISP, a camera 193, a video codec, a GPU, a display screen 194, an application processor, and the like.
  • the ISP is used to process the data fed back by the camera 193 .
  • the shutter is opened, the light is transmitted to the camera photosensitive element through the lens, the light signal is converted into an electrical signal, and the camera photosensitive element transmits the electrical signal to the ISP for processing, and converts it into an image visible to the naked eye.
  • ISP can also perform algorithm optimization on image noise, brightness, and skin tone.
  • ISP can also optimize the exposure, color temperature and other parameters of the shooting scene.
  • the ISP may be provided in the camera 193 .
  • Camera 193 is used to capture still images or video.
  • the object is projected through the lens to generate an optical image onto the photosensitive element.
  • the photosensitive element may be a charge coupled device (CCD) or a complementary metal-oxide-semiconductor (CMOS) phototransistor.
  • CMOS complementary metal-oxide-semiconductor
  • the photosensitive element converts the optical signal into an electrical signal, and then transmits the electrical signal to the ISP to convert it into a digital image signal.
  • the ISP outputs the digital image signal to the DSP for processing.
  • DSP converts digital image signals into standard RGB, YUV and other formats of image signals.
  • the electronic device 100 may include 1 or N cameras 193 , where N is a positive integer greater than 1.
  • the electronic device 100 may include a front-facing camera and a rear-facing camera.
  • the number of front cameras may be one or more; the number of rear cameras may also be one or more.
  • the front camera and the rear camera can start working at the same time. For example, when people use the front camera to capture distant images, they also want to use the front camera to record personal influences, that is, the front camera and the rear camera can capture images at the same time.
  • the user may also choose to turn on any one or more front cameras among the plurality of front cameras, and the user may also choose to turn on any one or more rear cameras among the plurality of rear cameras.
  • a digital signal processor is used to process digital signals, in addition to processing digital image signals, it can also process other digital signals. For example, when the electronic device 100 selects a frequency point, the digital signal processor is used to perform Fourier transform on the frequency point energy and so on.
  • Video codecs are used to compress or decompress digital video.
  • the electronic device 100 may support one or more video codecs.
  • the electronic device 100 can play or record videos of various encoding formats, such as: Moving Picture Experts Group (moving picture experts group, MPEG) 1, MPEG2, MPEG3, MPEG4 and so on.
  • MPEG Moving Picture Experts Group
  • MPEG2 moving picture experts group
  • MPEG3 MPEG4
  • MPEG4 Moving Picture Experts Group
  • the NPU is a neural-network (NN) computing processor.
  • NN neural-network
  • Applications such as intelligent cognition of the electronic device 100 can be implemented through the NPU, such as image recognition, face recognition, speech recognition, text understanding, and the like.
  • the external memory interface 120 can be used to connect an external memory card, such as a Micro SD card, to expand the storage capacity of the electronic device 100 .
  • the external memory card communicates with the processor 110 through the external memory interface 120 to realize the data storage function. For example to save files like music, video etc in external memory card.
  • Internal memory 121 may be used to store computer executable program code, which includes instructions.
  • the processor 110 executes various functional applications and data processing of the electronic device 100 by executing the instructions stored in the internal memory 121 .
  • the internal memory 121 may include a storage program area and a storage data area.
  • the storage program area can store an operating system, an application program required for at least one function (such as a sound playback function, an image playback function, etc.), and the like.
  • the storage data area may store data (such as audio data, phone book, etc.) created during the use of the electronic device 100 and the like.
  • the internal memory 121 may include high-speed random access memory, and may also include non-volatile memory, such as at least one magnetic disk storage device, flash memory device, universal flash storage (UFS), and the like.
  • the electronic device 100 may implement audio functions through an audio module 170, a speaker 170A, a receiver 170B, a microphone 170C, an earphone interface 170D, an application processor, and the like. Such as music playback, recording, etc.
  • the audio module 170 is used for converting digital audio information into analog audio signal output, and also for converting analog audio input into digital audio signal. Audio module 170 may also be used to encode and decode audio signals. In some embodiments, the audio module 170 may be provided in the processor 110 , or some functional modules of the audio module 170 may be provided in the processor 110 .
  • Speaker 170A also referred to as a "speaker" is used to convert audio electrical signals into sound signals.
  • the electronic device 100 can listen to music through the speaker 170A, or listen to a hands-free call.
  • the receiver 170B also referred to as "earpiece" is used to convert audio electrical signals into sound signals.
  • the voice can be answered by placing the receiver 170B close to the human ear.
  • the microphone 170C also called “microphone” or “microphone” is used to convert sound signals into electrical signals.
  • the user can make a sound by approaching the microphone 170C through a human mouth, and input a sound signal into the microphone 170C.
  • the electronic device 100 may be provided with at least one microphone 170C. In other embodiments, the electronic device 100 may be provided with two microphones 170C, which can implement a noise reduction function in addition to collecting sound signals.
  • the earphone jack 170D is used to connect wired earphones.
  • the earphone interface 170D can be the USB interface 130, or can be a 3.5mm open mobile terminal platform (OMTP) standard interface, a cellular telecommunications industry association of the USA (CTIA) standard interface.
  • OMTP open mobile terminal platform
  • CTIA cellular telecommunications industry association of the USA
  • the pressure sensor 180A is used to sense pressure signals, and can convert the pressure signals into electrical signals.
  • the pressure sensor 180A may be provided on the display screen 194 .
  • the capacitive pressure sensor may be comprised of at least two parallel plates of conductive material. When a force is applied to the pressure sensor 180A, the capacitance between the electrodes changes.
  • the electronic device 100 determines the intensity of the pressure according to the change in capacitance. When a touch operation acts on the display screen 194, the electronic device 100 detects the intensity of the touch operation according to the pressure sensor 180A.
  • the electronic device 100 may also calculate the touched position according to the detection signal of the pressure sensor 180A.
  • the gyro sensor 180B may be used to determine the motion attitude of the electronic device 100 .
  • the angular velocity of electronic device 100 about three axes ie, x, y, and z axes
  • the gyro sensor 180B can be used for image stabilization.
  • the air pressure sensor 180C is used to measure air pressure.
  • the electronic device 100 calculates the altitude through the air pressure value measured by the air pressure sensor 180C to assist in positioning and navigation.
  • the magnetic sensor 180D includes a Hall sensor.
  • the electronic device 100 can detect the opening and closing of the flip holster using the magnetic sensor 180D.
  • the acceleration sensor 180E can detect the magnitude of the acceleration of the electronic device 100 in various directions (generally three axes).
  • the magnitude and direction of gravity can be detected when the electronic device 100 is stationary. It can also be used to identify the posture of electronic devices, and can be used in applications such as horizontal and vertical screen switching, pedometers, etc.
  • the electronic device 100 can measure the distance through infrared or laser. In some embodiments, when shooting a scene, the electronic device 100 can use the distance sensor 180F to measure the distance to achieve fast focusing.
  • Proximity light sensor 180G may include, for example, light emitting diodes (LEDs) and light detectors, such as photodiodes.
  • the light emitting diodes may be infrared light emitting diodes.
  • the electronic device 100 emits infrared light to the outside through the light emitting diode.
  • Electronic device 100 uses photodiodes to detect infrared reflected light from nearby objects. When sufficient reflected light is detected, it can be determined that there is an object near the electronic device 100 . When insufficient reflected light is detected, the electronic device 100 may determine that there is no object near the electronic device 100 .
  • the electronic device 100 can use the proximity light sensor 180G to detect that the user holds the electronic device 100 close to the ear to talk, so as to automatically turn off the screen to save power.
  • Proximity light sensor 180G can also be used in holster mode, pocket mode automatically unlocks and locks the screen.
  • the ambient light sensor 180L is used to sense ambient light brightness.
  • the electronic device 100 can adaptively adjust the brightness of the display screen 194 according to the perceived ambient light brightness.
  • the ambient light sensor 180L can also be used to automatically adjust the white balance when taking pictures.
  • the ambient light sensor 180L can also cooperate with the proximity light sensor 180G to detect whether the electronic device 100 is in a pocket, so as to prevent accidental touch.
  • the fingerprint sensor 180H is used to collect fingerprints.
  • the electronic device 100 can use the collected fingerprint characteristics to realize fingerprint unlocking, accessing application locks, taking pictures with fingerprints, answering incoming calls with fingerprints, and the like.
  • the temperature sensor 180J is used to detect the temperature.
  • the electronic device 100 uses the temperature detected by the temperature sensor 180J to execute a temperature processing strategy. For example, when the temperature reported by the temperature sensor 180J exceeds a threshold value, the electronic device 100 reduces the performance of the processor located near the temperature sensor 180J in order to reduce power consumption and implement thermal protection.
  • the electronic device 100 when the temperature is lower than another threshold, the electronic device 100 heats the battery 142 to avoid abnormal shutdown of the electronic device 100 caused by the low temperature.
  • the electronic device 100 boosts the output voltage of the battery 142 to avoid abnormal shutdown caused by low temperature.
  • Touch sensor 180K also called “touch panel”.
  • the touch sensor 180K may be disposed on the display screen 194 , and the touch sensor 180K and the display screen 194 form a touch screen, also called a “touch screen”.
  • the touch sensor 180K is used to detect a touch operation on or near it.
  • the touch sensor can pass the detected touch operation to the application processor to determine the type of touch event.
  • Visual output related to touch operations may be provided through display screen 194 .
  • the touch sensor 180K may also be disposed on the surface of the electronic device 100 , which is different from the location where the display screen 194 is located.
  • the bone conduction sensor 180M can acquire vibration signals.
  • the bone conduction sensor 180M can acquire the vibration signal of the vibrating bone mass of the human voice.
  • the bone conduction sensor 180M can also contact the pulse of the human body and receive the blood pressure beating signal.
  • the bone conduction sensor 180M can also be disposed in the earphone, combined with the bone conduction earphone.
  • the audio module 170 can analyze the voice signal based on the vibration signal of the vocal vibration bone block obtained by the bone conduction sensor 180M, so as to realize the voice function.
  • the application processor can analyze the heart rate information based on the blood pressure beat signal obtained by the bone conduction sensor 180M, and realize the function of heart rate detection.
  • the keys 190 include a power-on key, a volume key, and the like. Keys 190 may be mechanical keys. It can also be a touch key.
  • the electronic device 100 may receive key inputs and generate key signal inputs related to user settings and function control of the electronic device 100 .
  • Motor 191 can generate vibrating cues.
  • the motor 191 can be used for vibrating alerts for incoming calls, and can also be used for touch vibration feedback.
  • touch operations acting on different applications can correspond to different vibration feedback effects.
  • the motor 191 can also correspond to different vibration feedback effects for touch operations on different areas of the display screen 194 .
  • Different application scenarios for example: time reminder, receiving information, alarm clock, games, etc.
  • the touch vibration feedback effect can also support customization.
  • the indicator 192 can be an indicator light, which can be used to indicate the charging state, the change of the power, and can also be used to indicate a message, a missed call, a notification, and the like.
  • the SIM card interface 195 is used to connect a SIM card.
  • the SIM card can be contacted and separated from the electronic device 100 by inserting into the SIM card interface 195 or pulling out from the SIM card interface 195 .
  • the electronic device 100 may support 1 or N SIM card interfaces, where N is a positive integer greater than 1.
  • the SIM card interface 195 can support Nano SIM card, Micro SIM card, SIM card and so on. Multiple cards can be inserted into the same SIM card interface 195 at the same time. The types of the plurality of cards may be the same or different.
  • the SIM card interface 195 can also be compatible with different types of SIM cards.
  • the SIM card interface 195 is also compatible with external memory cards.
  • the electronic device 100 interacts with the network through the SIM card to realize functions such as call and data communication.
  • the electronic device 100 employs an eSIM, ie: an embedded SIM card.
  • the eSIM card can be embedded in the electronic device 100 and cannot be separated from the electronic device 100 .
  • MIPI Mobile Industry Processor Interface
  • CSI Camera Serial Interface
  • the CSI-2 protocol defines the standard data of the data control and data transmission interface between the sender and the receiver.
  • the sender is the master device and the receiver is the slave device.
  • the CSI-2 protocol transmits data and clock signals over a unidirectional differential serial interface.
  • the hierarchical structure of the CSI-2 protocol includes three layers: the application layer, the CSI-2 protocol layer and the data physical layer.
  • the application layer can be used for processing such as encoding and decoding data.
  • the CSI-2 protocol layer consists of a pixel/byte packing/unpacking layer, a low level protocol (LLP) layer and a channel management layer.
  • LLP low level protocol
  • the CSI-2 protocol supports a variety of pixel format image applications, including data formats from 6 bits to 12 bits per pixel.
  • the pixel/byte packing/unpacking layer packs the data from the application layer into byte data from pixel data; at the receiving end, the pixel/byte packing/unpacking layer unpacks the data sent by the LLP layer. Packing, that is, unpacking byte data into pixel data, and then, the pixel/byte packing/unpacking layer sends the pixel data to the application layer.
  • the underlying protocol layer includes methods for transferring events between the start and end of a transfer for serial data, transferring data to the next layer, and establishing bit-level and byte-level synchronization.
  • the number of data channels can be 1 or 2 or 3 or 4.
  • the interface sender distributes the data stream into one or more data channels.
  • the interface picks up the bytes from the data channel and merges them into a reassembled data stream, restoring the original data stream sequence.
  • the data physical layer specifies the transmission medium, electrical characteristics, IO circuits and synchronization mechanisms.
  • the port data physical layer (port physics layer, PHY) is compatible with the C-PHY interface, the M-PHY interface and the D-PHY interface.
  • the C-PHY interface and the D-PHY interface are now widely used in the part of the application processor, the display screen and the camera interface.
  • the D-PHY interface is composed of up to four data channels for transmitting data streams and one channel for transmitting clock signals, and each channel is composed of two differential signal lines.
  • the following describes the D-PHY interface architecture between the camera module and the processor.
  • FIG. 2 is a schematic diagram of the architecture of the D-PHY interface between the camera module and the processor.
  • the sending end of the camera serial interface consists of P data channels for transmitting data streams and one channel for transmitting clock signals.
  • the receiver of the camera serial interface is also composed of P data channels for transmitting data streams and one channel for transmitting clock signals.
  • P is a positive integer greater than or equal to 1 and less than or equal to 4.
  • Each data channel includes two differential signal lines, and each channel transmitting a clock signal also includes two differential signal lines. That is, when there are P data channels for transmitting data streams and one channel for transmitting clock signals, there are (P+1)*2 differential signal lines. For the D-PHY interface, up to 10 differential signal lines are required.
  • a D-PHY interface as shown in FIG. 2 is used between each camera module in the multiple camera modules and the processor, which is not repeated in this application. Repeat.
  • the C-PHY interface is composed of data channels with up to three data streams. Because the C-PHY interface embeds the clock signal into the data channel, no additional clock channel is required, and each channel is composed of three differential signal lines.
  • FIG. 3 is a schematic diagram of the architecture of the C-PHY interface between the camera module and the processor.
  • the sending end of the camera serial interface consists of Q data channels for transmitting data streams.
  • the receiver of the camera serial interface is also composed of Q data channels that transmit data streams.
  • Q is a positive integer greater than or equal to one and less than or equal to three.
  • Each data channel includes three differential signal lines. That is, when there are Q data channels for transmitting data streams, there are Q*3 differential signal lines. For the C-PHY interface, up to 9 differential signal lines are required.
  • a C-PHY interface as shown in FIG. 3 is used between each of the multiple camera modules and the processor, which is not repeated in this application. Repeat.
  • the camera module consists of a lens, a photosensitive sensor, an analog-to-digital converter, a digital signal processor and an interface module.
  • the scene is projected onto the photosensitive sensor through the lens, and the photosensitive sensor converts the light signal into an electrical signal.
  • the electrical signal is transmitted to the analog-to-digital converter, the electrical signal is converted into a digital image signal through the analog-to-digital converter.
  • the digital image signal is transmitted to the digital signal processor.
  • the main function of the digital signal processor is to do post-processing on the digital image signal.
  • the post-processing can include linear correction, noise removal, dead pixel removal, interpolation, white balance, and automatic exposure control. Wait.
  • the interface module is encapsulated with the CSI-2 protocol.
  • the CSI-2 protocol includes an application layer, a CSI-2 protocol layer and a data physical layer.
  • the interface module is used to encode or decode pixel data through the application layer of the CSI-2 protocol.
  • the CSI-2 protocol layer encapsulates the encoded pixel data into a data packet format. After that, the interface module passes the data packets through the CSI-2 protocol data.
  • the physical layer is passed to the application processor.
  • FIG. 5 and FIG. 6 exemplarily show schematic diagrams of a multi-camera system of an electronic device 100 provided by an embodiment of the present application.
  • the multi-camera system shown in FIG. 5 is just an example, and in a specific implementation, the multi-camera system may include more or less camera modules.
  • FIG. 5 is a schematic diagram of the front camera module 501 of the electronic device 100 .
  • the front camera module 501 includes a camera module 5011 and a camera module 5022 .
  • the camera module 5011 and the camera module 5022 can be turned on at the same time to record the user's own image.
  • FIG. 6 is a schematic diagram of the rear camera module 506 of the electronic device 100 .
  • the rear camera module 506 includes a camera module 5061 , a camera module 5062 , and a camera module 5063 .
  • the camera module 5063 may be a main camera module
  • the camera module 5061 may be an ultra-wide-angle camera module
  • the camera module 5062 may be a telephoto camera.
  • the camera module five 5063 is turned on at this time.
  • the camera module 5063 and the camera module 5061 are turned on.
  • the camera module 5063 and the camera module 5062 are turned on.
  • the camera module 5061, the rear camera module 5062, and the rear camera module 5063 can also be turned on to record distant scenes at the same time.
  • the front camera module 501 and the rear camera module 506 can be turned on at the same time.
  • multiple cameras are installed outside the car body to monitor the road conditions outside the car. to the road conditions outside the many vehicles.
  • multiple sensors installed outside the vehicle body can also detect the road conditions outside the vehicle.
  • an alarm or braking device will be triggered to prompt the driver to prevent accidents. .
  • FIG. 7 shows a schematic diagram of an on-board monitoring system of an automobile.
  • FIG. 7 is only a schematic diagram illustrating an on-board monitoring system of an automobile, which is not limited in this application.
  • a front camera 701 is used to record the road conditions in front of the vehicle
  • the left camera 702 is used to record the road conditions to the left of the vehicle
  • the right camera 703 is used to record the road conditions to the right of the vehicle
  • the rear camera 704 is used to record the road conditions behind the vehicle.
  • the multiple cameras summarize the road conditions and display them on the display screen in the car to assist the driver in driving. In this way, the driver can be prompted to avoid obstacles in the front, rear, left, and right while driving, and the user can also be assisted in parking.
  • the monitoring system outside the vehicle may further include more or less cameras, and monitoring cameras may also be set in the vehicle, which is not limited herein.
  • video surveillance technology has been widely used in schools, shopping malls, hospitals, public transportation, unmanned convenience stores, and temporary deployment of public security investigations.
  • the present application will be described with a video surveillance system at an intersection.
  • the video surveillance technology can also be applied to more scenarios, which will not be repeated in this application.
  • 8A-8B exemplarily show schematic diagrams of a video surveillance system at an intersection.
  • FIG. 8A shows a schematic diagram of a video surveillance area of an intersection.
  • the real-time data detected by the camera 1, the camera 2 and the camera 3 are respectively displayed on the display screen in the monitoring room. The staff can see the monitoring data of each camera from the monitor in the monitoring room.
  • the video surveillance system may further include more cameras, which are not limited in this application.
  • the following describes the structure in which the five-camera system (three rear camera modules and two front camera modules) of the electronic device 100 is connected to the processor in a parallel manner.
  • FIG. 9 is a schematic diagram of a plurality of camera modules connected to a processor using a parallel topology structure.
  • the three rear camera modules are respectively camera module 1 , camera module 2 and camera module 3 .
  • the two front camera modules are camera module 3 and camera module 5 respectively.
  • the processor 910 is deployed with an integrated circuit host (I2C Master), and the processor 910 is respectively connected with each camera module.
  • I2C Master integrated circuit host
  • Each camera module is deployed with an integrated circuit slave (I2C Slaver).
  • I2C Slaver integrated circuit slave
  • Each camera module and the processor 910 perform data transmission through the I2C specification.
  • the camera module 1 is connected to the interface 1 of the processor 910 through the interface 1, and the camera module 1 transmits the data packet of the camera module 1 to the interface 1 of the processor 910 through the interface 1 through the data line 1 (lane 1);
  • the group 2 is connected to the interface 2 of the processor 910 through the interface 2, and the camera module 2 transmits the data packet of the camera module 2 to the interface 2 of the processor 910 through the interface 2 through the data line 2 (lane2);
  • the interface 3 is connected with the interface 3 of the processor 910, and the camera module 3 transmits the data packet of the camera module 3 to the interface 3 of the processor 910 through the interface 3 through the data line 3 (lane 3);
  • the camera module 4 passes the interface 4 Connected with the interface 4 of the processor 910, the camera module 4 transmits the data packet of the camera module 4 to the interface 4 of the processor 910 through the interface 4 through the data line 4 (lane 4);
  • the camera module 5 transmits the data packets of the camera module 5 to the interface 5 of the processor 910 through the
  • the following takes the data transmission process between the camera module 1 and the processor 910 as an example for description.
  • the CSI-2 protocol adopted by the camera module 1 includes the camera 1 application layer, the CSI-2 protocol layer and the data physical layer.
  • the data physical layer includes interface 1 .
  • the camera 1 application layer is used to encode the pixel data collected by the camera 1. After that, the camera 1 application layer transmits the pixel data to the CSI-2 protocol layer, and the CSI-2 protocol layer is used to receive the pixel data transmitted by the camera 1 application layer. And pack the pixel data into packets.
  • the CSI-2 protocol layer transmits the data packet to the data physical layer; the data physical layer is used to receive the data packet transmitted by the data protocol layer, and the data physical layer sends the data packet through the interface 1 through the data line 1 (lane 1) to the processing device 910.
  • the interface 1 may be any one of the aforementioned C-PHY interface, M-PHY interface and D-PHY interface, which itself is not limited here.
  • the CSI-2 protocol adopted by the processor 910 includes an application layer, a CSI-2 protocol layer and a data physical layer.
  • the data physical layer includes interface 1 .
  • the processor 910 receives the data packet sent by the camera module 1 through the interface 1 of the data physical layer. After that, the data physical layer sends the data packet to the CSI-2 protocol layer, the CSI-2 protocol layer receives the data packet sent by the data physical layer, and unpacks the data packet into encoded pixel data, and then the CSI-2 protocol layer
  • the encoded pixel data is transmitted to the application layer, and the application layer can be used to decode the encoded pixel data to obtain pixel data. After that, the application layer performs operations such as pixel data compression, pixel data merging, and image compression on the pixel data. For example, the user is currently taking a picture of a distant scene and presses the shooting button, the application layer integrates the pixel data into a picture, and saves the picture to the gallery of the electronic device 100 .
  • the process of data transmission between the camera module 2, the camera module 3, the camera module 4, the camera module 5 and the processor 910 shown in FIG. 9 can refer to the above-mentioned process of data transmission between the camera module 1 and the processor. Please do not repeat them here.
  • FIG. 10 is a schematic diagram of an engineering structure in which a plurality of camera modules are connected in parallel with the processor of the electronic device 100 .
  • Each camera module is connected to a connector (board to board, BTB) of the processor 910 through a flexible circuit board (FPC).
  • BTB board to board
  • FPC flexible circuit board
  • the camera module N is connected to the connector of the processor 910 through the flexible circuit board; the camera module N-1 is connected to the connector of the processor 910 through the flexible circuit board; and so on, the camera module 2 is connected through the flexible circuit
  • the board is connected to the connector of the processor 910 ; the camera module 1 is connected to the connector of the processor 910 through the flexible circuit board.
  • each camera module needs to establish a connection with the processor 910 through an interface.
  • the 910 N ports are required to be connected to each camera module respectively.
  • the present application provides a data transmission method and electronic device.
  • the method can be applied to an electronic device 100 configured with multiple input devices (eg, camera modules), and an uplink interface and a downlink interface are deployed on each input device of the electronic device 100, wherein the uplink interface is connected to the processor or the upper The first-level input device is connected, and the downlink interface is connected to the next-level input device or is not connected.
  • the processing module in each input device can process the image data collected by the input device and the data transmitted by the lower-level input device connected to the downstream interface, and then transmit it to the processor or the upper-level input device through the upstream interface. .
  • multiple input devices are connected in a cascaded manner, and multiple input devices only need one input device to be connected to the processor.
  • the number of interfaces and signal pipes between the processor and multiple input devices are reduced.
  • the number of pins is beneficial to system integration on the processing side; on the other hand, it is easy to increase or decrease input devices.
  • the input device can be a camera module, sensor, radar and other devices, and the input device can also be other devices, which are not limited here.
  • the method can be applied to a camera system in the electronic device 100 .
  • the number of camera modules in the electronic device 100 eg, mobile phone
  • the electronic device 100 such as a mobile phone
  • the multiple camera modules can be connected in a cascaded manner, and only one camera module needs to be connected to the processor in the electronic device 100 (such as a mobile phone).
  • the processor only needs one interface to connect with the one camera module.
  • This method can also be applied to the on-board monitoring system shown in Figure 7.
  • Multiple cameras (sensors or radars) on the vehicle are connected in a cascaded manner.
  • only one camera is required to connect multiple cameras to the processor.
  • the method can also be applied to the video surveillance system in the security area shown in FIGS. 8A-8B , and multiple surveillance cameras need to be installed in the security area to perform all-round monitoring and prevent accidents.
  • you need to add surveillance cameras in the monitoring area you can directly connect the surveillance cameras that need to be added to the last camera in cascade connection, the modification is simple, and some unnecessary operations are reduced.
  • the electronic device 100 is configured with multiple camera modules, and the multiple camera modules may include multiple front camera modules and multiple rear camera modules.
  • the electronic device 100 includes 2 front camera modules and 3 rear camera modules, and the 2 front camera modules and the 3 rear camera modules are all connected to the processor in a cascaded manner.
  • FIG. 11 is a schematic diagram of cascade connection of multiple camera modules in the electronic device 100 .
  • the front camera module includes camera module 1, camera module 2, ..., camera module M, there are M camera modules in total, and the front camera module may also include more or less camera modules, Please do not limit yourself here.
  • the rear camera module includes camera module M+1, camera module M+2, ..., camera module N, there are N-M camera modules in total, and the rear camera module may also include more or less camera modules.
  • the group itself is not limited here.
  • the electronic device 100 has 2 front camera modules and 3 rear camera modules.
  • the processor 910 is deployed with an integrated circuit host (I2C Master), and the processor 910 is respectively connected with each camera module.
  • I2C Master integrated circuit host
  • Each camera module is deployed with an integrated circuit slave (I2C Slaver), and the integrated circuit slave (I2C Slaver) deployed in each camera module is connected to the integrated circuit master (I2C Master) deployed by the processor 910 , and the processor 910
  • the control signal can be sent through the integrated circuit master (I2C Master), and the integrated circuit slave (I2C Slaver) can receive the control signal and configure and control each camera module.
  • Data transmission is performed between every two camera modules and between the camera modules and the processor 910 through the CSI-2 protocol.
  • the CSI-2 protocol adopted by the camera module N includes the camera N application layer, the CSI-2 protocol layer and the data physical layer.
  • the data physical layer includes an uplink interface and a downlink interface, and the downlink interface of the camera module N is vacant , the uplink interface of the camera module N is connected with the downlink interface of the camera module N-1.
  • the camera N application layer is used to further process the pixel data collected by the camera module, such as pixel data encoding. After that, the camera N application layer transmits the pixel data to the CSI-2 protocol layer.
  • the CSI-2 protocol layer is used to receive the pixel data transmitted by the camera application layer and package the pixel data into data packets.
  • the CSI-2 protocol layer will The data packet is transmitted to the data physical layer; the data physical layer is used to receive the data packet transmitted by the data protocol layer, and the data physical layer sends the data packet to the data physical layer of the camera module N-1 through the data line N (lane N) through the uplink interface.
  • the data physical layer is used to receive the data packet transmitted by the data protocol layer, and the data physical layer sends the data packet to the data physical layer of the camera module N-1 through the data line N (lane N) through the uplink interface.
  • the downlink interface of the camera module M+2 is connected with the uplink interface of the camera module M+3.
  • the camera M+2 module receives the data packets from the camera module N to the camera M+3 module through the data line M+3 (lane M+3) through the downlink interface.
  • the camera module M+2 sends the data packets of the camera module M+2 and the data packets from the camera module N to the camera M+3 module through the uplink interface through the data line M+2 (lane M+2) 4 to camera module M+1.
  • the downlink interface of the camera module M+1 is connected with the uplink interface of the camera module M+2.
  • the camera module M+1 receives the data packets from the camera module M+2 to the camera module N through the data line M+2 (lane M+2) through the downlink interface. After that, the camera module M+1 sends the data packets of the camera module M+1 and the data packets from the camera module N to the camera module M+2 through the uplink interface through the data line M+1 (lane M+1) to the Camera Module M.
  • the downlink interface of the camera module M is connected with the uplink interface of the camera module M+1.
  • the camera module M receives the data packets from the camera module N to the camera module M+1 through the data line M+1 (lane M+1) through the downlink interface. After that, the camera module M sends the data packet of the camera module M and the data packet from the camera module N to the camera module M+1 to the camera module M-1 through the uplink interface through the data line M (lane M).
  • the downlink interface of the camera module 2 is connected with the uplink interface of the camera module 3 .
  • the camera module 2 receives the data packets from the camera module N to the camera module 3 through the data line 3 (lane 3) through the downlink interface. After that, the camera module 2 sends the data packets of the camera module 2 and the data packets from the camera module N to the camera module 3 to the camera module 1 through the data line 2 (lane 2) through the uplink interface.
  • the downlink interface of the camera module 1 is connected with the uplink interface of the camera module 2 .
  • the camera module 1 receives data packets from the camera module 2 to the camera module N through the downlink interface. After that, the camera module 1 sends the data packets of the camera module 1 and the data packets from the camera module 2 to the camera module N to the processor 910 through the data line 1 (lane 1) through the uplink interface.
  • the CSI-2 protocol adopted by camera module M+2, camera module M+1, camera module M, ..., camera module 2, and camera module 1 is the same as the CSI-2 protocol adopted by camera module N, and Camera module M+1, camera module M+2, camera module M... N is the same, and will not be repeated in this application again.
  • the CSI-2 protocol adopted by the processor 910 includes an application layer, a CSI-2 protocol layer and a data physical layer.
  • the processor 910 receives the data packets from the camera module 1 to the camera module N transmitted by the camera module 1 through the downlink interface of the data physical layer. And through the CSI-2 protocol layer of the processor 910, the data packets of the camera module 1 to the camera module N are unpacked into the encoded pixel data of the camera module 1 to the camera module N. Then, the CSI-2 protocol layer transmits the encoded pixel data to the application layer, and the application layer can be used to decode the encoded pixel data to obtain pixel data.
  • the application layer performs operations such as pixel data compression, pixel data merging, and image compression on the pixel data of the camera module 1 to the camera module N.
  • operations such as pixel data compression, pixel data merging, and image compression on the pixel data of the camera module 1 to the camera module N.
  • the application layer integrates the pixel data of the camera module M+1 to the camera module N into a picture, and saves the picture to the electronic device. 100 in the gallery.
  • the application layer integrates the pixel data of the camera module group 1 to the camera module M into a picture, and saves the picture. to the gallery of the electronic device 100 .
  • the pixel data collected by each camera module can be individually synthesized into a picture and saved in a gallery.
  • the processor receives pixel data collected by a total of N-M camera modules from camera module M+1 to camera module N
  • the processor respectively collects the pixel data from camera module M+1 to camera module N through the application layer.
  • the pixel data is integrated into pictures, a total of N-M pictures are generated, and the processor saves the N-M pictures to the gallery.
  • this application does not limit the form of the pictures generated by the camera modules, it may be that the pixel data collected by each camera module is integrated into one picture, or the pixel data collected by multiple camera modules may be integrated into a single picture.
  • a picture can also be the pixel data collected by any two or more camera modules that are integrated into one picture. This application does not limit it here.
  • the uplink interface and downlink interface of each camera module and the interface of the processor described in the above embodiment may be any one of the C-PHY interface, the M-PHY interface and the D-PHY interface, which are not limited here. .
  • FIG. 12 is a schematic structural diagram of a D-PHY interface between a cascaded camera module and a processor in an embodiment of the present application.
  • the camera module 1 is connected to the processor 910 .
  • the camera serial interface sending end of the camera module 1 is composed of P data channels for transmitting data streams and one channel for transmitting clock signals.
  • the camera serial interface receiving end on the processor 910 side is also composed of P data channels for transmitting data streams and one channel for transmitting clock signals.
  • P is a positive integer greater than or equal to 1 and less than or equal to 4.
  • Each data channel includes two differential signal lines, and each channel transmitting a clock signal also includes two differential signal lines. That is, when there are P data channels for transmitting data streams and one channel for transmitting clock signals, there are (P+1)*2 differential signal lines. For the D-PHY interface, up to 10 differential signal lines are required.
  • the integrated circuit master (I2C Master) on the processor 910 side sends a control signal to the integrated circuit slave (I2C Slaver) through the I2C bus.
  • the multiple camera modules are connected in a cascaded manner.
  • the camera module 2 is connected to the camera module 1 in cascade.
  • the camera module 2 is connected in cascade with the camera module 1 .
  • the camera serial interface receiving end of the camera module 2 is composed of P data channels for transmitting data streams and one channel for transmitting clock signals.
  • the camera serial interface receiving end of the camera module 1 is also composed of P data channels for transmitting data streams and one channel for transmitting clock signals.
  • N is a positive integer greater than or equal to 1 and less than or equal to 4.
  • the multiple camera modules are connected in a cascaded manner of the camera module 1 and the camera module 2, which will not be repeated here.
  • Each camera module is deployed with an integrated circuit slave (I2C Slaver), the processor 910 is deployed with an integrated circuit master (I2C Master), and the processor 910 sends a control signal to the integrated circuit slave (I2C master) of each camera module through the I2C bus.
  • I2C Slaver the integrated circuit slave (I2C Slaver) receives control signals to control the camera module to turn on or off.
  • a C-PHY interface may also be used between the cascaded camera modules and the processor, and a C-PHY interface connection method may also be used between the cascaded camera modules and the processor 910 .
  • the connection between the cascaded camera modules and the processor 910 using the C-PHY interface is similar, so please do not repeat them here.
  • FIG. 13 is a schematic diagram of the engineering structure of connecting multiple cascaded camera modules to the processor 910 .
  • Every two camera modules are connected through a flexible circuit board (FPC), and the first camera module is connected to the connector of the processor 910 through the flexible circuit board.
  • FPC flexible circuit board
  • the camera module N is connected to the camera module N-1 through the FPC, and so on, the camera module 3 is connected to the camera module 2 through the FPC, the camera module 2 is connected to the camera module 1 through the FPC, and the camera module Group 1 is connected to the connector 910 on the processor side through the flexible circuit board.
  • the electronic device 100 has 2 front camera modules and 3 rear camera modules. Two front camera modules are connected in cascade with three rear camera modules, and only one camera module (for example, one front module) is connected to the connector 910 on the processor side through the flexible circuit board. In this way, the processor 910 only needs 10 differential signal lines to connect with one camera module.
  • the processor 910 and the camera modules perform data transmission through four data channels and one clock channel, only 10 differential signal lines are required on the processor 910 side. Compared with the current processor 910 and five camera modules connected in parallel, 40 differential signal lines are reduced on the processor 910 side.
  • only one camera module is required to be connected to the processor 910 , which reduces the number of interfaces and the number of data pins of the processor 910 .
  • the electronic device 100 can control the front camera module and the rear camera module to be turned on at the same time.
  • the electronic device 100 can control to turn on the front camera module and the rear camera module at the same time.
  • the processor internally stores the addresses of N camera modules.
  • the processor first finds the addresses of the N camera modules, and then the integrated circuit host (I2C Master) will The addresses of the N camera modules are sent to the integrated circuit slave (I2C Slaver) of each camera module through the I2C bus.
  • I2C Slaver integrated circuit slave
  • the N camera modules send confirmation information to the integrated circuit master (I2C Master) through the I2C bus through the integrated circuit slave (I2C Slaver).
  • the integrated circuit host (I2C Master) receives the confirmation information, and then the integrated circuit host (I2C Master) controls the N camera modules to turn on.
  • the application layer, CSI-2 protocol layer and data physical layer of the camera module are all turned on.
  • the electronic device 100 can control the front camera module to be turned on or the rear camera module to be turned on.
  • the electronic device 100 controls the rear camera module to be turned on.
  • the user may choose to turn on only the rear camera module to capture distant scenes; or the user may choose to turn on only the front camera module to record his own images.
  • camera module M-1 to camera module N are rear camera modules.
  • the camera module 1 to the camera module M can also be rear camera modules, and the camera module M-1 to the camera module N are front camera modules. This application is not limited here.
  • the processor 910 internally stores the addresses of N camera modules, and the processor 910 first finds the addresses of the camera modules M-1 to N of the camera modules , and then the integrated circuit master (I2C Master) sends the addresses of camera module M-1 to camera module N to the integrated circuit slave (I2C Slaver) of each camera module through the I2C bus. After each integrated circuit slave (I2C Slaver) receives the address of camera module M-1 to camera module N, it compares it with the address of its own camera module.
  • I2C Master integrated circuit master
  • I2C Slaver integrated circuit slave
  • the camera module M-1 to camera module N send the first confirmation information through the I2C bus through their respective integrated circuit slaves (I2C Slaver). to the integrated circuit host (I2C Master). The integrated circuit host (I2C Master) receives the first confirmation information, and then the integrated circuit host (I2C Master) controls the camera module M-1 to the camera module N to turn on. If none of the addresses of camera module 1 to camera module N matches the address of the camera module with the address of its own camera module, the camera module 1 to camera module N will not send confirmation information to the integrated circuit host (I2C Master), camera module 1 to camera module N are not turned on.
  • the CSI-2 protocol layer and data physical layer of camera module 1 to camera module N need to be turned on, and the application layer of camera module 1 to camera module N should not be turned on.
  • the integrated circuit host (I2C Master) controls the camera module M-1 to the camera module N to turn on
  • the integrated circuit host (I2C Master) sends the addresses of the camera module 1 to the camera module M to the camera through the I2C bus.
  • the integrated circuit slaves (I2C Slaver) of module 1 to camera module M receive the addresses of camera module 1 to camera module M.
  • the camera module 1 to camera module Group N sends the second confirmation message to the integrated circuit master (I2C Master) through the I2C bus through the respective integrated circuit slaves (I2C Slaver).
  • the integrated circuit host (I2C Master) controls the CSI-2 protocol layer and data physical layer of camera module 1 to camera module N to open, and camera module 1 to camera module
  • the application layer of module N is not enabled. In this way, the pixel data collected by the camera M-1 to the camera module N can be ensured to be transmitted to the processor through the camera module 1 to the camera module N, and the energy consumption of the camera module 1 to the camera module N can be reduced.
  • the processor controls the camera module M-1 to the camera module N to turn on and controls the camera module 1 to the camera module N to turn on the CSI-2 protocol layer and the data physical layer in synchronization. In this way, the response speed of the camera module and the processing efficiency of the processor can be improved.
  • the electronic device 100 may default the CSI-2 protocol layer and the data physical layer of the N camera modules from camera module 1 to camera module N to be in a long-term open state.
  • the processor stores the addresses of N camera modules internally.
  • the processor first finds the addresses of camera module M-1 to camera module N, and then
  • the integrated circuit master (I2C Master) sends the addresses of camera module M-1 to camera module N to each integrated circuit slave (I2C Slaver) through the I2C bus.
  • each integrated circuit slave (I2C Slaver) receives the address of camera module M-1 to camera module N, it compares it with the address of its own camera module.
  • camera module M-1 to camera module N The address of one camera module matches the address of its own camera module, then camera module M-1 to camera module N send a third confirmation through the I2C bus through their respective integrated circuit slaves (I2C Slaver). information to the integrated circuit master (I2C Master). The integrated circuit host (I2C Master) receives the third confirmation information, and then the integrated circuit host (I2C Master) controls the application layers of the camera module M-1 to the camera module N to open. If none of the addresses of camera module 1 to camera module N matches the address of the camera module with the address of its own camera module, the camera module 1 to camera module N will not send confirmation information to the integrated circuit host (I2C Master), camera module 1 to camera module N are not turned on.
  • the pixel data collected by the camera M-1 to the camera module N needs to be transmitted to the processor through the camera module 1 to the camera module N.
  • the CSI-2 protocol layer and data physical layer of camera module 1 to camera module N are enabled, so the integrated circuit host (I2C Master) does not need to configure the CSI-2 of camera module 1 to camera module N by address. 2
  • the protocol layer and the data physical layer are turned on, reducing the operation steps of the processor.
  • the electronic device 100 controls the rear camera module to be turned on.
  • the processor stores the addresses of N camera modules internally.
  • the processor first finds the addresses of camera module 1 to camera module M-1, and then integrates The circuit master (I2C Master) sends the addresses from camera module 1 to camera module M-1 to each integrated circuit slave (I2C Slaver) through the I2C bus.
  • I2C Slaver integrated circuit slave
  • receives the addresses of camera module 1 to camera module M-1 it compares it with the address of its own camera module. If camera module 1 to camera module M-1 The address of one camera module matches the address of its own camera module, then camera module 1 to camera module M-1 send the fourth confirmation through the I2C bus through their respective integrated circuit slaves (I2C Slaver).
  • the integrated circuit host (I2C Master) receives the fourth confirmation information, and then the integrated circuit host (I2C Master) controls the camera module 1 to the camera module M-1 to turn on. If none of the addresses from camera M-1 to camera module N matches the address of the camera module with the address of its own camera module, the camera M-1 to camera module N will not send confirmation information to the integrated circuit host (I2C Master), the camera M-1 to camera module N are not turned on.
  • the CSI-2 protocol layer and data physical layer from camera M-1 to camera module N do not need to be enabled.
  • the following describes the data packet transmission process from the camera module 1 to the camera module N.
  • the data packet format includes a packet header, a data packet and a packet trailer.
  • the packet header may include a data identifier, a packet size (word count), an error correcting code (ECC), and the like. Packets contain pixel data that needs to be transmitted. The end of the packet includes additional information of the data packet, such as a check code word, etc.
  • the data packets of the camera module N are transmitted to the processor through N-1 camera modules.
  • the present application adds an identification field to the packet header of the data packet format, so as to distinguish which camera module the data packet belongs to.
  • this field may be referred to as a HOP field. It is understood that this field can be added in any position, such as the data packet or the end of the packet. This application does not limit the specific location of the identification field.
  • FIG. 15 is a schematic diagram of a data packet format including an identification field (eg, a HOP field).
  • an identification field eg, a HOP field
  • the data packet containing the identification field shown in FIG. 15 can be applied to the data packets described in the embodiments of FIGS. 11-13 .
  • the data packet format includes a packet header, a data packet and a packet trailer.
  • the packet header may include data identifier, packet size (word count), and error correcting code (ECC), etc.
  • the packet header also includes an identification field (such as a HOP field), and the value of the HOP field is used to identify the camera The position of the module, that is, the processor can identify which camera module the data packet comes from according to the value of the HOP field in the packet header.
  • the identification field (for example, the HOP field) may be added at the end of the packet header, may also be added at the head of the packet header, or may be added in the middle of the packet header, which is not limited here.
  • Packets contain pixel data that needs to be transmitted.
  • the end of the packet includes additional information of the data packet, such as a check code word, etc.
  • FIG. 16 exemplarily shows a data packet transmission process of N camera modules.
  • the data packet transmission process of the N camera modules shown in FIG. 16 can be applied to the data packet transmission process described in the embodiment shown in FIG. 11 .
  • the data packet of the camera module N is denoted as Pn
  • the data packet of the camera module N-1 is denoted as Pn-1
  • the data packet of the camera module 2 is denoted as P2
  • the The data packet of camera module 1 is denoted as P1.
  • Pn data packet
  • HOP field identification field
  • P5 data packet
  • HOP field identification field
  • Pn-1 data packet
  • HOP field identification field
  • P4 data packet
  • HOP field identification field
  • processing of the data of the camera module N-1 by the camera module N-1 and the processing of the Pn can be performed synchronously, thereby improving the data transmission efficiency of each camera module.
  • Pn-2 data packet
  • HOP field identification field
  • P3 data packet
  • HOP field the identification field
  • the processing of the data of the camera module N-2 by the camera module N-2, the processing of the Pn-1, and the processing of the Pn can be performed synchronously, thereby improving the data transmission efficiency of each camera module.
  • the camera module N-4 to the camera module 3 please refer to the data processing process of the camera module N-2, which is not repeated in this application.
  • P2 data packet
  • HOP field the identification field
  • the camera module 2 receives Pn to P3 through the downlink interface. There are N-2 data packets from Pn to P3. First, the Pn to P3 are unpacked into data blocks respectively. The camera module 2 detects the camera module 3 to the camera module. In the HOP field of N, add 1 to the HOP fields of camera module 3 to camera module N respectively, and then camera module 2 encapsulates the data blocks of camera module 3 to camera module N into data packets. After that, the camera module 2 transmits Pn to P3 to the uplink interface of the camera module 2 through the downlink interface. Finally, the uplink interface of the camera module 2 transmits Pn to P3 to the downlink interface of the camera module 1 through the data line 2 (lane 2).
  • P1 data packet
  • HOP field the identification field
  • Camera module 1 receives Pn to P2 through the downlink interface. There are N-1 data packets from Pn to P2. First, Pn to P2 are unpacked into data blocks respectively. Camera module 1 detects camera module 2 to camera module. In the HOP field of N, add 1 to the HOP fields of camera module 2 to camera module N respectively, and then camera module 1 encapsulates the data blocks of camera module 2 to camera module N into data packets. After that, the camera module 1 transmits Pn to P2 to the uplink interface of the camera module 1 through the downlink interface. Finally, the row interface of the camera module 1 transmits Pn to P2 to the downlink interface of the processor through the data line 1 (lane 1).
  • processing of the data of the camera module 1 by the camera module 1 and the processing of Pn to P2 can be performed synchronously, which can improve the data transmission efficiency of each camera module.
  • FIG. 17 is a flowchart of a data transmission method provided by an embodiment of the present application.
  • a data transmission method shown in FIG. 17 can be applied to the data packet transmission process of cascaded multi-camera modules in the multi-camera module cascade structure shown in FIG. 11 .
  • the camera module when the user only needs to turn on the main camera in the rear camera module (for example, the camera module X, X is a positive integer greater than M and less than or equal to N) to shoot a distant scene, the camera module is as follows. The process of transmitting the pixel data collected by X to the processor 910 will be described.
  • the camera module 1 to the camera module X- The CSI-2 protocol layer and data physical layer of 1 need to be turned on, and the application layers of camera module 1 to camera module X-1 should not be turned on.
  • the data packets of the camera module 3 need to pass through the camera module 1 to the camera module 2 modules.
  • the CSI-2 protocol layer and data physical layer are transmitted to the processor 910, so the CSI-2 protocol layer and data physical layer of camera module 1 to camera module 2 need to be turned on, and the application of camera module 1 to camera module 2 Layers are not turned on.
  • the processor 910 sends the address of the camera module X to each camera module.
  • the electronic device 100 stores the address of each camera module, and the electronic device 100 can control the camera module to be turned on or off according to the address of the camera module.
  • the processor 910 When the user requests to turn on the main camera (eg camera module X) in the rear camera module, the processor 910 first obtains the address of the camera module X, and sends the address of the camera module X to each camera module . If the electronic device 100 is configured with N camera modules, the processor 910 sends the address of the camera module X to the N camera modules respectively.
  • the processor 910 when the user requests to turn on the camera module 3 in the rear camera module, the processor 910 first obtains the address of the camera module 3, and sends the address of the camera module 3 to each camera module. If five camera modules are configured in the electronic device 100, the processor 910 sends the address of the camera module 3 to the five camera modules respectively.
  • the camera module X sends confirmation information to the processor 910 .
  • each camera module After the N camera modules receive the address of camera module X, each camera module matches the received address of camera module X with the address of each camera module. If it does not match, the camera module does not Any response; if it matches, the camera module X sends a confirmation message to the processor 910 .
  • the processor 910 receives and responds to the confirmation information sent by the camera module X, and the processor 910 controls the camera module X to turn on.
  • the camera module X is turned on, the application layer, the CSI-2 protocol layer and the data physical layer of the camera module X are all turned on.
  • each camera module matches the received address of camera module 3 with the address of each camera module.
  • the module does not respond; if it matches, the camera module 3 sends confirmation information to the processor 910 .
  • the processor 910 receives and responds to the confirmation information sent by the camera module 3, and the processor 910 controls the camera module 3 to turn on.
  • the camera module 3 is turned on, the application layer, the CSI-2 protocol layer and the data physical layer of the camera module 3 are all turned on.
  • the camera module X starts to collect pixel data, and packs the pixel data into a data packet, wherein the value of the identification field in the data packet is 0.
  • the camera module 3 starts to collect pixel data, and packs the pixel data into data packets.
  • an identification field is added to the data packet. Specifically, please refer to the embodiment shown in FIG. 15 for the format of the data packet with the identification field added, which will not be repeated in this application. .
  • the camera module X sets the value of the identification field of the current-level data packet to 0.
  • the camera module 3 sets the value of the identification field of the current-level data packet to 0.
  • the camera module X sends the data packet to the camera module X-1.
  • the camera module 3 sends the data packet to the camera module 2 .
  • the camera module X-1 receives the data packet, and increases the value of the identification field in the data packet of the camera module X by 1.
  • the camera module X-1 receives the data packet of the camera module X sent by the camera module X, first unpacks the data packet of the camera module X into a data block, and the camera module X-1 detects the identification of the camera module X field, add 1 to the identification field value in the data packet of camera module X, then the identification field value in the data packet of camera module X is 1, and camera module X-1 is adding the data of camera module X Blocks are encapsulated as packets.
  • the camera module X-1 sends the camera module X data packet to the camera X-2 module.
  • each camera module transmits the data packet of camera module X to the next-level camera module, and each level of camera module increases the value of the identification field in the received data packet by 1.
  • the camera module 2 receives the data packet of the camera module 3, and increases the identification field in the data packet of the camera module X by 1, and the identification field value is X-2.
  • the camera module 2 receives the data packet of the camera module X sent by the camera module 3, first unpacks the data packet of the camera module X into a data block, and the camera module X-1 detects the identification field of the camera module X, Add 1 to the identification field in the data packet of camera module X, then the identification field value in the data packet of camera module X is X-2, and camera module 2 encapsulates the data block of camera module 3 into data Bag.
  • the camera module 2 receives the data packet of the camera module 3 sent by the camera module 3, first unpacks the data packet of the camera module 3 into a data block, and the camera module 2 detects the identification of the camera module 3. Add 1 to the identification field value in the data packet of camera module 3, then the identification field value in the data packet of camera module 3 is 1, and camera module 2 encapsulates the data block of camera module 3 for data packets.
  • the camera module 2 sends the data packet of the camera module X to the camera module 1 .
  • the camera module 2 sends the data packet of the camera module 3 to the camera module 1 .
  • the camera module 1 receives the data packet, and increases the value of the identification field in the data packet of the camera module X by 1.
  • the camera module 1 receives the data packet of the camera module X sent by the camera module 2, first unpacks the data packet of the camera module X into a data block, and the camera module X-1 detects the identification field of the camera module X, The value of the identification field in the data packet of the camera module X is added by 1, and the value of the identification field in the data packet of the camera module X is X-1.
  • the camera module 1 receives the data packet of the camera module 3 sent by the camera module 2, first unpacks the data packet of the camera module 3 into a data block, and the camera module 1 detects the identification of the camera module 3. field, and the value of the identification field in the data packet of the camera module 3 is increased by 1, the value of the identification field in the data packet of the camera module 3 is 2, and then the camera module 1 encapsulates the data block into a data packet.
  • the camera module 1 sends the data packet of the camera module X to the processor 910 .
  • the camera module 1 sends the data packet of the camera module 3 to the processor 910 .
  • the processor 910 receives the data packet of the camera module X sent by the camera module 1, and the processor 910 can identify which camera module the data packet belongs to according to the value of the identification field in the data packet.
  • the data packet belongs to the camera module X; when the value of the identification field in the data packet received by the processor 910 is N-1, Then the data packet belongs to the camera module N.
  • the data packet belongs to the camera module 3 .
  • the processor 910 unpacks the data packets into encoded data blocks through the CSI-2 protocol layer. Then, the CSI-2 protocol layer transmits the encoded pixel data to the application layer, and the application layer can be used to decode the encoded pixel data to obtain pixel data. After that, the application layer performs operations such as pixel data compression, pixel data merging, and image compression on the pixel data. For example, the user is currently taking a picture of a distant scene and presses the shooting button, the application layer integrates the pixel data into a picture, and saves the picture to the gallery of the electronic device 100 .
  • the user wants to add a rear camera module to the electronic device 100.
  • the camera module to be added is referred to as camera module N+1.
  • the user only needs to connect the uplink interface of the camera module N+1 with the downlink interface of the camera module N, and the downlink interface of the camera module N+1 is vacant.
  • the camera module N+1 is turned on and collects pixel data
  • the collected pixel data is encapsulated into a data packet, wherein the camera module N+1Y sets the value of the identification field in the data packet to 0.
  • the camera module N+1 transmits the data packet to the camera module N through the data line N+1 through the uplink interface of the camera module N+1.
  • the data packets of the camera module N+1 are transmitted to the processor 910 through the camera module N to the camera module 1 .
  • the value of the identification field in the data packet of the camera module N+1 is N, and the processor can judge according to the value of the identification field in the data packet.
  • the data packet comes from camera module N+1.
  • the electronic device 100 is configured with multiple camera modules, and the multiple camera modules may include multiple front camera modules and multiple rear camera modules.
  • a plurality of front camera modules are connected in cascade, a plurality of rear camera modules are connected in cascade, and a plurality of front camera modules and a plurality of rear camera modules are connected in parallel with the analog switch.
  • the electronic device 100 can control multiple front camera modules to turn on or multiple rear camera modules to turn on through an analog switch.
  • the plurality of camera modules are connected in a cascaded manner. It can be seen that when the camera module 1 to the camera module M are front camera modules, and the camera M-1 to the camera module N are rear camera modules. When the user chooses to only turn on the rear camera module to shoot distant scenes, the camera M-1 to camera module N are turned on for the rear camera module, and the camera module 1 to the camera module M are turned off. Because the pixel data collected by the camera M-1 to the camera module N needs to be transmitted to the processor through the camera module 1 to the camera module N. Therefore, the CSI-2 protocol layer and data physical layer of camera module 1 to camera module N need to be enabled.
  • the CSI-2 protocol layer and data physical layer of camera module 1 to camera module N can be enabled in the following ways:
  • Method 1 After the camera M-1 to the camera module N are turned on, the processor sends a control signal to control the CSI-2 protocol layer and the data physical layer of the camera module 1 to the camera module N to turn on;
  • Method 2 The CSI-2 protocol layer and data physical layer of camera module 1 to camera module N are always enabled by default. Then, the processor sends a control signal to control the application layers of the camera M-1 to the camera module N to open.
  • the operation of the first method is complicated, and the processor needs to send another control signal to control the CSI-2 protocol layer and the data physical layer of the camera module 1 to the camera module N to open; in the second method, the camera module 1 to the camera module are turned on. N's CSI-2 protocol layer and data physical layer are always enabled by default, which will increase the consumption of the camera module.
  • the front camera module and the rear camera module are separated, and the front camera module or the rear camera module is selected to be turned on through an analog switch.
  • FIG. 18 is another system diagram of cascading camera modules.
  • the system includes a rear camera module, a front camera module, an analog switch and a processor.
  • the front camera module includes M camera modules such as camera module 1, camera module 2, . . . , and camera module M.
  • the rear camera module includes N-M camera modules such as camera module M+1, camera module M+2, . . . , and camera module N.
  • the downlink interface of the camera module M is vacant, the uplink interface of the camera module M is connected to the downlink interface of the camera module M-1, and so on, the camera module 2
  • the downlink interface is connected to the uplink interface of the camera module 3
  • the uplink interface of the camera module 2 is connected to the downlink interface of the camera module 1
  • the uplink interface of the camera module 1 is connected to the contact 2 (second contact) of the analog switch .
  • the downlink interface of the camera module N is vacant, the uplink interface of the camera module N is connected to the downlink interface of the camera module N-1, and so on, the downlink interface of the camera module M+2 is connected to the camera module N-1.
  • the upstream interface of the M+3 module is connected, the upstream interface of the camera module M+2 is connected to the downstream interface of the camera module M+1, the upstream interface of the camera module M+1 is connected to the contact 1 of the analog switch (the first contact) connection.
  • Contact 0 (third contact) of the analog switch is connected to the downstream interface of the processor.
  • the processor sends a control signal through the I/0 pin to control the contact 0 (third contact) of the analog switch and the contact 1 ( the first contact) is turned on.
  • the processor can receive the pixel data of the rear camera modules (camera module M+1, camera module M+2, . . . , camera module N).
  • the processor sends a control signal through the I/0 pin to control the contact 0 (third contact) of the analog switch and the contact 2 (the third contact) of the analog switch. two contacts) are turned on. In this way, the processor can receive the pixel data of the front camera modules (camera module 1, camera module 2, . . . , camera module M).
  • FIG. 19 is a schematic diagram of an engineering structure in which multiple cascaded camera modules are connected to the processor 910 through analog switches.
  • the front camera module is connected with the first contact of the analog switch.
  • the rear camera module is connected with the second contact of the analog switch.
  • the third contact of the analog switch is connected to the processor 910 .
  • the camera module M is connected to the camera module M-1 through the flexible circuit board, and so on, the camera module M+2 is connected to the camera module M+1 through the flexible circuit board, The camera module M+1 is connected to the second contact of the analog switch.
  • the camera module N is connected to the camera module M-1 through a flexible circuit board (FPC), and so on, the camera module 2 is connected to the camera module 1 through a flexible circuit board, The camera module 1 is connected to the first contact of the analog switch.
  • FPC flexible circuit board
  • the third contact of the analog switch is connected to the connector on the processor 910 side through the flexible circuit board.
  • the front camera module and the rear camera module are separated, and the front camera module or the rear camera module is selected to be turned on by simulating turning on the light.
  • the operation of the processor 910 can be reduced, and on the other hand, the consumption of unnecessary camera modules can be saved.
  • FIG. 20 is a flowchart of a data transmission method according to Embodiment 2 of the present application.
  • the electronic device 100 is provided with a front camera module and a rear camera module.
  • the front camera module includes M camera modules such as camera module 1, camera module 2, . . . , and camera module M.
  • the rear camera modules include camera modules M+1, camera modules M+2, ..., camera modules X, ..., camera modules N and other N-M camera modules.
  • the front camera module includes two camera modules, a camera module 1 and a camera module 2 .
  • the rear camera module includes three camera modules: camera module 3 , camera module 4 , and camera module 5 .
  • the front camera module and the rear camera module are connected through an analog switch.
  • an analog switch for details, please refer to the embodiment shown in FIG. 18 , which will not be repeated in this application.
  • the processor 910 controls the third contact of the analog switch to conduct conduction with the second contact of the analog switch.
  • the electronic device 100 can enable one or more camera modules of the rear camera module through address configuration.
  • the processor 910 may also control the second contact of the analog switch to conduct with the first contact of the analog switch. In this way, the electronic device 100 can enable one or more camera modules of the front camera module through address configuration.
  • the processor 910 sends the address of the camera module X to each of the rear camera modules.
  • the camera module 1 to the camera module X- The CSI-2 protocol layer and data physical layer of module 1 need to be enabled, the application layer of camera module 1 to camera module X-1 module is not enabled, and the application layer and protocol layer of camera X+1 to camera module N Neither the physical layer nor the data physical layer need to be turned on.
  • the data packets of the camera module 4 need to pass through the CSI-2 protocol layer and the CSI-2 protocol layer of the camera module 3.
  • the data physical layer is transmitted to the processor 910, so the CSI-2 protocol layer and the data physical layer of the camera module 3 need to be turned on, and the application layer of the camera module 3 is not turned on.
  • the electronic device 100 stores the address of each camera module, and the electronic device 100 can control the camera module to be turned on or off according to the address of the camera module.
  • the processor 910 When the user requests to turn on the main camera (eg camera module X) in the rear camera module, the processor 910 first obtains the address of the camera module X, and sends the address of the camera module X to the camera module M+ 1 to camera module N and other N-M camera modules.
  • the processor 910 first obtains the address of the camera module 4, and sends the address of the camera module 4 to the camera module 3, camera Module 4 and camera module 5 are three camera modules.
  • the camera module X sends confirmation information to the processor 910 .
  • N-M camera modules such as camera module M+1 to camera module N receive the address of camera module X
  • N-M camera modules such as camera module M+1 to camera module N will receive the camera module
  • the address of the group X matches the address of each camera module. If it does not match, the camera module does not respond; if it matches, the camera module X sends a confirmation message to the processor 910 .
  • the processor 910 receives and responds to the confirmation information sent by the camera module X, and the processor 910 controls the camera module X to turn on. That is, when the camera module X is turned on, the application layer, the CSI-2 protocol layer and the data physical layer of the camera module X are all turned on.
  • the three camera modules from camera module 3 to camera module 5 after the three camera modules from camera module 3 to camera module 5 receive the address of camera module 4, the three camera modules from camera module 3 to camera module 5 will receive the address of the camera module.
  • the address of the group 4 matches the address of each camera module. If it does not match, the camera module does not respond; if it matches, the camera module 4 sends a confirmation message to the processor 910 .
  • the processor 910 receives and responds to the confirmation information sent by the camera module 4, and the processor 910 controls the camera module 4 to turn on. That is, the camera module 4 is turned on, that is, the application layer, the CSI-2 protocol layer and the data physical layer of the camera module 4 are all turned on.
  • the camera module X starts to collect pixel data, and packs the pixel data into a data packet, wherein the value of the identification field in the data packet is 0.
  • an identification field is added to the data packet. Specifically, please refer to the embodiment shown in FIG. 15 for the format of the data packet with the identification field added, which is not repeated in this application. .
  • the camera module X sets the value of the identification field of the current-level data packet to 0.
  • the camera module 4 starts to collect pixel data, packs the pixel data into a data packet, and sets the value of the identification field of the data packet to 0.
  • the camera module X sends the data packet to the camera module X-1.
  • the camera module X-1 receives the data packet of the camera module X sent by the camera module X, and now unpacks the data packet of the camera module X into a data block, and the camera module X-1 detects the identification of the camera module X field, and add 1 to the identification field value in the data packet of camera module X, then the identification field value in the data packet of camera module X is 2, and camera module X-1 adds the data block of camera module X to the Encapsulated as packets.
  • each camera module transmits the data packet of camera module X to the next-level camera module, and each level of camera module increases the value of the identification field in the received data packet by 1.
  • the camera module M+2 receives the data packet, adds 1 to the identification field in the data packet, and the identification field value is X-M-2.
  • the camera module M+2 sends the data packet to the camera module M+1.
  • the camera module M+1 receives the data packet, adds 1 to the identification field in the data packet, and the identification field value is X-M-1.
  • the camera module 3 receives the data packet of the camera module 4 sent by the camera module 4, first unpacks the data packet of the camera module 4 into a data block, and the camera module 3 detects the identification of the camera module 4. field, and adding 1 to the value of the identification field in the data packet of the camera module 4 , the value of the identification field in the data packet of the camera module 3 is 1. After that, the camera module 3 encapsulates the data blocks into data packets.
  • the camera module M+1 sends the data packet to the processor 910 .
  • the processor 910 receives the data packet of the camera module X sent by the camera module M+1.
  • the processor 910 can identify which camera module the data packet belongs to according to the value of the identification field in the data packet.
  • the data packet belongs to the camera module X; when the value of the identification field in the data packet received by the processor 910 is N-M-1, Then the data packet belongs to the camera module N.
  • the data packet belongs to the camera module 4 .
  • the processor 910 unpacks the data packets into coded data blocks through the CSI-2 protocol layer, and then the CSI-2 protocol layer transmits the coded data blocks to the application layer, and the application layer can be used to perform processing on the coded data blocks. Decode to get pixel data. After that, the application layer performs operations such as pixel data compression, pixel data merging, and image compression on the pixel data. For example, the user is currently taking a picture of a distant scene and presses the shooting button, the application layer integrates the pixel data into a picture, and saves the picture to the gallery of the electronic device 100 .
  • the electronic device 100 is configured with multiple camera modules, and the multiple camera modules may include multiple front camera modules and multiple rear camera modules.
  • a plurality of front camera modules are connected in cascade, a plurality of rear camera modules are connected in cascade, and a plurality of front camera modules and a plurality of rear camera modules are connected in parallel with the processor 910 .
  • the plurality of camera modules used in the above embodiments are connected in series with the processor 910, and only one interface on the side of the processor 910 is required to be connected to the camera module.
  • the pixel data received by the interface at the same time will increase, resulting in data congestion of the interface.
  • the following embodiments of the present application separate the front camera module and the rear camera module, and the front camera module is connected to the processor 910 in a cascade manner, and the rear camera module is connected to the processor 910 in a cascade manner.
  • the camera module is connected to the processor 910 in a cascaded manner. In this way, on the one hand, it can avoid too much data at the interface on the processing side at the same time, causing data congestion; on the other hand, it can improve the speed at which the processor 910 processes data.
  • FIG. 21 is another system diagram of cascading camera modules.
  • the system includes a rear camera module, a front camera module and a processor 910 .
  • the front camera module includes camera module 1, camera module 2, ..., camera module M, there are M camera modules in total, and the front camera module may also include more or less camera modules, Please do not limit yourself here.
  • the rear camera module includes camera module M+1, camera module M+2, ..., camera module N, there are N-M camera modules in total, and the rear camera module may also include more or less camera modules.
  • the group itself is not limited here.
  • a first integrated circuit host is disposed on the side of the processor 910, and the first integrated circuit host can be used to control the N-M camera modules of the rear camera module to be turned on or off.
  • a second integrated circuit host is disposed on the processor 910 side, and the second integrated circuit host can be used to control the M camera modules of the front camera module to be turned on or off.
  • the front camera module and the rear camera module can also be controlled by the same integrated circuit host, or can be controlled by different integrated circuit hosts, which are not limited here.
  • the downlink interface of the camera module N is empty, the uplink interface of the camera module N is connected to the downlink interface of the camera module N-1, and so on, the camera module M+
  • the uplink interface of 2 is connected to the downlink interface of the camera module M+1 , and the downlink interface of the camera module M+1 is connected to the first downlink interface of the processor 910 .
  • the downlink interface of the camera module M is vacant, the uplink interface of the camera module M is connected to the downlink interface of the camera module M-1, and so on, the uplink interface of the camera module 2 is connected to the camera module 1 is connected to the downlink interface, and the uplink interface of the camera module 1 is connected to the second downlink interface of the processor 910 .
  • the pixel data of the rear camera module is transmitted to the processor 910 through the first downlink interface on the processing side, and the pixel data of the front camera module is transmitted to the processor 910 through the second downlink interface on the processing side, avoiding the need for a
  • the interface needs to transmit too much data at the same time, which reduces the data pressure on the interface.
  • FIG. 22 is a schematic diagram of an engineering structure in which a plurality of cascaded camera modules are connected in parallel with the processor 910 .
  • M front camera modules There are M front camera modules, and the front camera module is connected to the processor 910 .
  • the camera module M is connected to the camera module M-1 through the flexible circuit board, and so on, the camera module 1 is connected to the second connector of the processor 910 through the flexible circuit board.
  • the camera module N is connected to the camera module N-1 through a flexible circuit board (FPC), and so on, the camera module M+2 is connected to the camera module M through the flexible circuit board +1 connection, the camera module M+1 is connected to the first connector of the processor 910 through the flexible circuit board.
  • FPC flexible circuit board
  • FIG. 23 is a flowchart of a data transmission method according to Embodiment 3 of the present application.
  • the electronic device 100 is provided with a front camera module and a rear camera module.
  • the front camera module includes M camera modules such as camera module 1, camera module 2, ..., camera module E, ..., camera module M, etc.
  • the rear camera modules include camera modules M+1, camera modules M+2, ..., camera modules X, ..., camera modules N and other N-M camera modules.
  • the front camera module includes two camera modules, a camera module 1 and a camera module 2 .
  • the rear camera module includes three camera modules: camera module 3 , camera module 4 , and camera module 5 .
  • the front camera module is connected to the first downlink interface of the processor 910
  • the rear camera module is connected to the second downlink interface of the processor 910 .
  • the user When the user turns on the main camera in the rear camera module (for example, camera module X, where X is a positive integer greater than M but less than or equal to N) to shoot distant scenes, the user also needs to turn on the main camera in the front camera module ( For example, when the camera module E, E is a positive integer greater than or equal to 1 and less than or equal to M) to record its own image, the following describes the process of transmitting the pixel data collected by the camera module X and the camera module E to the processor 910.
  • the camera module M+1 to the camera module X-1 Since the data packets of the camera module X need to be transmitted to the processor 910 through the CSI-2 protocol layer and the data physical layer of the camera module M+1 to the camera module X-1, the camera module M+1 to the camera module The CSI-2 protocol layer and data physical layer of X-1 need to be enabled, and the application layer of camera module M+1 to camera module X-1 should not be enabled.
  • the data packets of the camera module 4 need to pass through the CSI- 2
  • the protocol layer and the data physical layer are transmitted to the processor 910, so the CSI-2 protocol layer and the data physical layer of the camera module 3 need to be turned on, and the application layer of the camera module 3 is not turned on.
  • the data packets of the camera module E need to be transmitted to the processor 910 through the CSI-2 protocol layer and the data physical layer of the camera module 1 to the camera module E-1, the data packets of the camera module 1 to the camera module E-1 are transmitted to the processor 910.
  • the CSI-2 protocol layer and data physical layer need to be enabled, and the application layers from camera module 1 to camera module E-1 are not enabled.
  • the data packets of the camera module 2 need to pass through the CSI- 2
  • the protocol layer and the data physical layer are transmitted to the processor 910, so the CSI-2 protocol layer and the data physical layer of the camera module 1 need to be turned on, and the application layer of the camera module 1 is not turned on.
  • the processor 910 sends the address of the camera module E to each camera module in the front camera module.
  • the camera module 1 to the camera module E-1 module Since the data packets of the camera module E need to be transmitted to the processor 910 through the CSI-2 protocol layer and the data physical layer of the camera module 1 to the camera module E-1, the camera module 1 to the camera module E-1 module The CSI-2 protocol layer and data physical layer of the group need to be enabled, the application layer of camera module 1 to camera module E-1 module is not enabled, and the application layer, protocol layer and data of camera X+1 to camera module N The physical layer does not need to be turned on.
  • the processor 910 first obtains the address of the camera module 2, and sends the address of the camera module 2 to the camera module 1, camera Module 2 These two camera modules.
  • the electronic device 100 stores the address of each camera module, and the electronic device 100 can control the camera module to be turned on or off according to the address of the camera module.
  • the processor 910 of the electronic device 100 When the user requests to turn on the main camera (eg camera module E) in the front camera module, the processor 910 of the electronic device 100 first obtains the address of the camera module E, and sends the address of the camera module E to the camera module Group 1 to camera module M.
  • the camera module E sends confirmation information to the processor 910 .
  • each camera module matches the received address of the camera module E with the address of each camera module. If it does not match, the camera module does not Any response; if it matches, the camera module E sends a confirmation message to the processor 910 .
  • the processor 910 receives and responds to the confirmation information sent by the camera module E, and the processor 910 controls the camera module E to turn on.
  • the camera module E is turned on, the application layer, the CSI-2 protocol layer and the data physical layer of the camera module E are all turned on.
  • the two camera modules from camera module 1 to camera module 2 after the two camera modules from camera module 1 to camera module 2 receive the address of camera module 2, the two camera modules from camera module 1 to camera module 2 will receive the The address of the group 2 matches the address of each camera module. If it does not match, the camera module does not respond; if it matches, the camera module 2 sends confirmation information to the processor 910 .
  • the processor 910 receives and responds to the confirmation information sent by the camera module 2, and the processor 910 controls the camera module 2 to turn on. That is, when the camera module 2 is turned on, the application layer, the CSI-2 protocol layer and the data physical layer of the camera module 24 are all turned on.
  • the processor 910 sends the address of the camera module X to each of the rear camera modules.
  • the camera module M+1 to the camera module Since the data packets of the camera module X need to be transmitted to the processor 910 through the CSI-2 protocol layer and the data physical layer of the camera module M+1 to the camera module X-1, the camera module M+1 to the camera module The CSI-2 protocol layer and data physical layer of X-1 need to be turned on, the application layer from the M+1 module to the camera module X-1 module is not turned on, and the application layer from the camera X+1 to the camera module N, Neither the protocol layer nor the data physical layer need to be turned on.
  • the electronic device 100 stores the address of each camera module, and the electronic device 100 can control the camera module to be turned on or off according to the address of the camera module.
  • the processor 910 of the electronic device 100 When the user requests to turn on the main camera (eg camera module X) in the rear camera module, the processor 910 of the electronic device 100 first obtains the address of the camera module X, and sends the address of the camera module X to the camera module Group M+1 to camera module N.
  • the processor 910 first obtains the address of the camera module 4, and sends the address of the camera module 4 to the camera module 3, the camera module 4, and the camera module 4.
  • Module 4 and camera module 5 are three camera modules.
  • the camera module X sends confirmation information to the processor 910.
  • each camera module matches the received address of camera module X with the address of each camera module, if not, the camera module does not Any response; if it matches, the camera module X sends a confirmation message to the processor 910 .
  • the processor 910 receives and responds to the confirmation information sent by the camera module X, and the processor 910 controls the camera module X to turn on.
  • the camera module X is turned on, the application layer, the CSI-2 protocol layer and the data physical layer of the camera module X are all turned on.
  • the three camera modules of camera module 3, camera module 4, and camera module 5 receive the address of camera module 4, the three camera modules of camera module 3, camera module 4, and camera module 5 Each camera module matches the received address of the camera module 4 with the address of each camera module. If it does not match, the camera module does not respond; if it matches, the camera module 4 sends a confirmation message to the processing. device 910.
  • the processor 910 receives and responds to the confirmation information sent by the camera module 4, and the processor 910 controls the camera module 4 to turn on. That is, when the camera module 4 is turned on, the application layer, the CSI-2 protocol layer and the data physical layer of the camera module 24 are all turned on.
  • S2301-S2302 and 2303-S2304 can be performed synchronously, which is not limited in this application.
  • the camera module E starts to collect pixel data, and packs the pixel data into a data packet, wherein the value of the identification field in the data packet is 0.
  • the camera module 2 starts to collect pixel data, packs the pixel data into a data packet, and sets the value of the identification field of the data packet to 0.
  • the camera module E sends the data packet to the camera module E-1.
  • the camera module E-1 receives the data packet of the camera module E sent by the camera module E, first unpacks the data packet of the camera module E into a data block, and the camera module E-1 detects the identification of the camera module E field, and adding 1 to the identification field value of the camera module E, the identification field value of the camera module X is 2, and the camera module E-1 then encapsulates the data packet of the camera module E into a data packet.
  • each camera module transmits the data packet of camera module E to the next-level camera module, and each level of camera module increases the value of the identification field in the received data packet by 1.
  • the camera module 2 receives the data packet, adds 1 to the identification field in the data packet, and the identification field value is E-2.
  • the camera module 2 sends the data packet to the camera module 1 .
  • the camera module 1 receives the data packet, adds 1 to the identification field in the data packet, and the identification field value is E-1.
  • the camera module 1 receives the data packet of the camera module 2 sent by the camera module 2, first unpacks the data packet of the camera module 2 into a data block, and the camera module 1 detects the identification of the camera module 2. field, and adding 1 to the value of the identification field in the data packet of the camera module 2 , the value of the identification field in the data packet of the camera module 2 is 1. After that, the camera module 1 encapsulates the data blocks into data packets.
  • the camera module 1 sends the data packet to the processor 910 .
  • the camera module X starts to collect pixel data, and packs the pixel data into a data packet, wherein the value of the identification field is 0.
  • the camera module 4 starts to collect pixel data, packs the pixel data into a data packet, and sets the value of the identification field of the data packet to 0.
  • the camera module X sends the data packet to the camera module X-1.
  • the camera module X-1 receives the data packet of the camera module X sent by the camera module X, first unpacks the data packet of the camera module X into a data block, and the camera module X-1 detects the identification of the camera module X field, and the value of the identification field of the camera module X is increased by 1, then the value of the identification field of the camera module X is 2, and the camera module X-1 then encapsulates the data packet of the camera module X into a data packet.
  • each camera module transmits the data packet of camera module X to the next-level camera module, and each level of camera module increases the value of the identification field in the received data packet by 1.
  • the camera module M+2 receives the data packet, adds 1 to the identification field in the data packet, and the identification field value is X-M-2.
  • the camera module M+2 sends the data packet to the camera module M+1.
  • the camera module M+1 receives the data packet, adds 1 to the identification field in the data packet, and the identification field value is X-M-1.
  • the camera module 3 receives the data packet of the camera module 4 sent by the camera module 4, and first unpacks the data packet of the camera module 4 into data. block, the camera module 3 detects the identification field of the camera module 4 and adds 1 to the identification field value in the data packet of the camera module 4, then the identification field value in the data packet of the camera module 3 is 1. After that, the camera module 3 encapsulates the data blocks into data packets.
  • the camera module M+1 sends the data packet to the processor 910 .
  • the processor 910 receives the data packets of the camera module E and the camera module X.
  • the processor 910 receives the data packet of the camera module X sent by the camera module M+1 through the first downlink interface.
  • the processor 910 receives the data packet of the camera module E sent by the camera module 1 through the second downlink interface.
  • the processor 910 can identify which camera module the data packet belongs to according to the value of the identification field in the data packet.
  • the processor 910 first determines that the data packet received by the first downlink interface comes from the data collected by the rear camera module, and when the value of the identification field in the data packet is X-M-1, the processor 910 identifies the data packet.
  • the data packet belongs to the camera module X in the rear camera module.
  • the processor 910 first determines that the data packet received by the second downlink interface comes from the data collected by the front camera module, and when the value of the identification field in the data packet is E-1, the processor 910 identifies that the data packet belongs to the front-end camera module.
  • the CSI-2 protocol layer unpacks the data packets of the camera module E and the camera module X into coded data blocks, and then the coded data blocks are The data block is transmitted to the application layer, and the application layer can be used to decode the encoded data block to obtain pixel data.
  • the application layer performs operations such as pixel data compression, pixel data merging, and image compression on the pixel data. For example, the pixel data of the camera module E is integrated into a picture and the pixel data of the camera module X is integrated into a picture, and the picture taken by the camera module E and the picture taken by the camera module X are saved in the gallery of the electronic device 100 .
  • S2305-S2310 and S2311-S2316 can be performed synchronously, which is not limited in this application.
  • 24A-24C exemplarily show UI diagrams of switching between the front camera interface and the rear camera interface in the current video call application scenario.
  • FIG. 24A exemplarily shows a video call application interface.
  • the video call application interface includes a video interface 240 , a video interface 241 and an operation control option 243 .
  • the video interface 240 is a user image collected by the front camera module of the electronic device 100;
  • the video interface 241 is a user image collected by another electronic device that conducts a video call with the electronic device 100.
  • Operation control options 243 include toggle camera control 2401 , hang up control 2402 , and more controls 2403 .
  • the switch camera control 2401 can receive the user's click operation, and respond to the user's click operation of the switch camera control 2401, as shown in the figure As shown in 24C, the electronic device 100 will display the video image 244 captured by the rear camera module.
  • the electronic device 100 can simultaneously turn on the front camera module and the rear camera module to capture and display images.
  • FIGS. 25A-25C exemplarily show UI diagrams in which the electronic device 100 turns on the front camera module and the rear camera module at the same time to capture and display images.
  • FIG. 25A exemplarily shows a video call application interface.
  • the video call application interface includes a video interface 240 , a video interface 241 and an operation control option 244 .
  • the video interface 240 is a user image collected by the front camera module of the electronic device 100;
  • the video interface 241 is a user image collected by another electronic device that conducts a video call with the electronic device 100.
  • the operation control option 245 includes a switch camera control 2401, a hang-up control 2402, a more control 2403, and a control 2404.
  • the control 2404 can receive a user click operation, and in response to the user click operation, the front camera module of the electronic device 100 and the rear Set the camera module to start capturing images at the same time and
  • the control 2404 can receive the user's click operation, and in response to the user's click operation, the electronic device 100 displays User interface as shown in Figure 25C.
  • the user interface includes video interface 240 , video interface 241 , video interface 246 , and operation control options 244 .
  • the video interface 240 , the video interface 241 , and the operation control options 244 refer to the foregoing embodiments, and will not be repeated here.
  • the video interface 246 is an image captured by the rear camera module of the electronic device 100 .
  • the user can simultaneously turn on the front camera module and the rear camera module to capture and display images.
  • the images collected by the front camera module and the rear camera module are sent to the friend who has a video call with the user.
  • the electronic device 100 can only turn on the front camera module to capture and display images, or only turn on the rear camera module to capture and display images, which improves user experience.
  • the term “when” may be interpreted to mean “if” or “after” or “in response to determining" or “in response to detecting" depending on the context.
  • the phrases “in determining" or “if detecting (the stated condition or event)” can be interpreted to mean “if determining" or “in response to determining" or “on detecting (the stated condition or event)” or “in response to the detection of (the stated condition or event)”.
  • the above-mentioned embodiments it may be implemented in whole or in part by software, hardware, firmware or any combination thereof.
  • software it can be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions. When the computer program instructions are loaded and executed on a computer, all or part of the processes or functions described in the embodiments of the present application are generated.
  • the computer may be a general purpose computer, special purpose computer, computer network, or other programmable device.
  • the computer instructions may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be downloaded from a website site, computer, server, or data center Transmission to another website site, computer, server, or data center by wire (eg, coaxial cable, optical fiber, digital subscriber line) or wireless (eg, infrared, wireless, microwave, etc.).
  • the computer-readable storage medium can be any available medium that can be accessed by a computer or a data storage device such as a server, a data center, or the like that includes an integration of one or more available media.
  • the usable media may be magnetic media (eg, floppy disks, hard disks, magnetic tapes), optical media (eg, DVDs), or semiconductor media (eg, solid state drives), and the like.
  • the process can be completed by instructing the relevant hardware by a computer program, and the program can be stored in a computer-readable storage medium.
  • the program When the program is executed , which may include the processes of the foregoing method embodiments.
  • the aforementioned storage medium includes: ROM or random storage memory RAM, magnetic disk or optical disk and other mediums that can store program codes.

Abstract

本申请提供一种数据传输方法及电子设备。该方法可以应用于配置有多个输入设备(例如相机模组)的电子设备,在电子设备的每个输入设备上部署一个上行接口、一个下行接口,其中,上行接口与处理器或上一级输入设备连接,下行接口与下一级输入设备连接或空置不接。每个输入设备中的处理模块可以将本级设备采集到的图像数据和由连接在下行接口上的下级输入设备传来的数据处理之后,通过上行接口传输给处理器或上一级的输入设备。这样,多个输入设备之间采用级联的方式连接,多个输入设备只需一个输入设备与处理器连接。一方面,减少了处理器与多个输入设备之间的接口数量和信号管脚线数量;另一方面,增加或减少输入设备操作简单。

Description

一种数据传输方法及电子设备
本申请要求于2020年11月26日提交中国专利局、申请号为202011347808.9、申请名称为“一种数据传输方法及电子设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及电子技术领域,尤其涉及一种数据传输方法及电子设备。
背景技术
随着对智能手机、平板等电子设备摄像要求的不断提高,电子设备的摄像头朝着多摄、高像素等方向持续发展。
目前,在相机模组的电路结构中,电子设备中处理器通过移动行业处理器接口(mobile industry processor,MIPI)与相机模组进行数据传输,一般一个相机模组需要使用四对数据差分信号线与处理器通信。当电子设备分别设置了一个前置相机模组和一个后置相,则需要八对数据差分信号线与处理器通信。随着摄像精度提高,前置相机模组和后置相机模组数量也提高增加,则处理器侧MIPI差分信号线的数量和处理器侧接口数量越来越多,不利于系统集成。
发明内容
本申请提供了一种数据传输方法及电子设备。该方法通过多个输入设备采用级联的方式进行连接,只需一个输入设备与处理器连接。一方面,极大地减少了处理器侧的接口数量和输入设备与处理器之间的信号线数量;另一方面,多个输入设备采用级联的方式进行连接,只需将增加的输入设备与已有的输入设备级联连接,后续增加输入设备操作简单。
第一方面,本申请提供了一种数据传输方法,方法包括:第一相机模组接收处理器发送的第一指令之后,接收第二相机模组发送的第一数据包,第一数据包中包括有识别字段,第一数据包中识别字段的值用于指示所述第一数据包的转发次数;第一相机模组识别出第一数据包中识别字段的值为第一值,并将第一值修改为第二值,第二值与第一值之差为预设值;第一相机模组将第一数据包中识别字段的值修改为第二值之后的第一数据包发送给处理器。
该方法可以应用于配置有相机模组的电子设备,在电子设备的每个相机模组上部署一个上行接口、一个下行接口,其中,上行接口与处理器或上一级相机模组连接,下行接口与下一级相机模组连接或空置不接。每个相机模组中的处理模块可以将本输入设备采集到的图像数据和由连接在下行接口上的下级相机模组传来的数据处理之后,通过上行接口传输给处理器或上一级的相机模组。这样,多个相机模组之间采用级联的方式进行连接,多个相机模组只需一个相机模组与处理器连接,一方面,减少了处理器与多个相机模组之间的接口数量和信号管脚线数量,有利于处理侧系统集成;另一方面,增加或减少相机模组操作简单。
该方法除了可以应用于配置有相机模组的电子设备100,还可以适用于传感器、雷达等设备,本身请在此不做限定。
结合第一方面,在第一方面的一种可能的实现方式中,第一相机模组包括第一应用层、第一协议层和第一物理层,第一物理层包括第一上行接口和第一下行接口;第一相机模组接收第二相机模组发送的第一数据包,具体包括:第一相机模组通过第一下行接口接收第二相 机模组发送的第一数据包;第一相机模组将第一数据包中识别字段的值由第一值修改为第二值,具体包括:第一相机模组通过第一协议层将第一数据包中识别字段的值由第一值修改为第二值;第一相机模组将第一数据包中识别字段的值修改为第二值之后的第一数据包发送给处理器,具体包括:第一相机模组通过第一上行接口将第一数据包中识别字段的值修改为第二值之后的第一数据包发送给处理器。这样,第一相机模组通过第一下行接口与第二相机模组连接,第一相机模组的第一上行接口与处理器连接,实现了多个相机模组通过级联与处理器连接,减少了处理器侧信号管脚数,有利于处理器侧系统集成。另一方面,当第二相机模组采集数据,第一相机模组不用采集数据时,第一相机模组的第一应用层不开启,第一相机模组的第一物理层和第一协议层开启,可以减少第一相机模组的消耗。
结合第一方面,在第一方面的一种可能的实现方式中,第一相机模组采集第一数据,并根据第一数据生成第二数据包,第二数据包中包括有识别字段,第二数据包中识别字段的值为第三值;第一相机模组将第二数据包发送至所述处理器。这样,第二相机模组和第一相机模组可以同时采集数据。处理器根据数据包中识别字段的值分辨出该数据包是哪一个相机模组采集的。
结合第一方面,在第一方面的一种可能的实现方式中,第一相机模组包括第一应用层、第一协议层和第一物理层,第一物理层包括第一上行接口和第一下行接口;在第一相机模组采集第一数据之后,在根据第一数据生成第二数据包之前,方法还包括:第一相机模组通过第一应用层对第一数据进行编码;第一相机模组根据第一数据生成第二数据包,具体包括:第一相机模组通过第一协议层根据编码后的第一数据生成第二数据包;第一相机模组将第二数据包发送至处理器,具体包括:第一相机模组通过第一上行接口将第二数据包发送至所述处理器。这样,当第一相机模组采集数据时,第一相机模组的第一应用层、第一物理层、第一协议层均开启。
结合第一方面,在第一方面的一种可能的实现方式中,第一数据包包括包头、数据包和包尾;第一数据包中识别字段位于第一数据包的包头中。处理器可以识别出数据包包头中识别字段的值,并根据识别字段的值辨别出该数据包来自第一相机模组。
同理,第二数据包包括包头、数据包和包尾;第二数据包中识别字段位于第二数据包的包头中。处理器可以识别出数据包包头中识别字段的值,并根据识别字段的值辨别出该数据包来自第二相机模组。
结合第一方面,在第一方面的一种可能的实现方式中,第一相机模组接收处理器发送第一指令,具体包括:第一相机模组通过第一控制接口接收处理器发送的第一指令。这样,第一相机模组通过第一控制接口接收处理器发送的第一指令之后,第一相机模组开启第一物理层和第一协议层,并接收第二相机模组发送的数据包。第二相机模组通过第二控制接口接收处理器发送的第二指令之后,第二相机模组开启第二相机模组的应用层、第二相机模组的物理层和第二相机模组的协议层,第二相机模组开始采集数据并将数据打包为数据包,并将数据包发送至第一相机模组。
同理,电子设备中每一个相机模组均设置有控制接口,控制接口与上行接口与下行接口不同。控制接口用于接收处理器发送的控制指令。上行接口和下行接口用于发送和接收数据包。
第二方面,本申请提供了一种电子设备,电子设备包括处理器、第一相机模组、第二相机模组;其中,第一相机模组,用于在接收处理器发送的第一指令之后,接收第二相机模组发送的第一数据包,第一数据包包括有识别字段,第一数据包中识别字段的值用于指示第一 数据包的转发次数;第一相机模组,还用于:识别出第一数据包中识别字段的值为第一值,并将第一值修改为第二值,第二值与第一值之差为预设值;将第一数据包中识别字段的值修改为第二值之后的第一数据包发送给处理器。
该方法可以应用于配置有相机模组的电子设备,在电子设备的每个相机模组上部署一个上行接口、一个下行接口,其中,上行接口与处理器或上一级相机模组连接,下行接口与下一级相机模组连接或空置不接。每个相机模组中的处理模块可以将本输入设备采集到的图像数据和由连接在下行接口上的下级相机模组传来的数据处理之后,通过上行接口传输给处理器或上一级的相机模组。这样,多个相机模组之间采用级联的方式进行连接,多个相机模组只需一个相机模组与处理器连接,一方面,减少了处理器与多个相机模组之间的接口数量和信号管脚线数量,有利于处理侧系统集成;另一方面,增加或减少输入设备操作简单。
结合第二方面,在第二方面的一种可能的实现方式中,第一相机模组包括第一应用层、第一协议层和第一物理层,第一物理层包括第一上行接口和第一下行接口;其中,第一相机模组,还用于:通过第一下行接口接收第二相机模组发送的第一数据包;通过第一协议层将第一数据包中识别字段的值由第一值修改为第二值;通过第一上行接口将第一数据包中识别字段的值修改为第二值之后的第一数据包发送给处理器。这样,第一相机模组通过第一下行接口与第二相机模组连接,第一相机模组的第一上行接口与处理器连接,实现了多个相机模组通过级联与处理器连接,减少了处理器侧信号管脚数,有利于处理器侧系统集成。另一方面,当第二相机模组采集数据,第一相机模组不用采集数据时,第一相机模组的第一应用层不开启,第一相机模组的第一物理层和第一协议层开启,可以减少第一相机模组的消耗。
结合第二方面,在第二方面的一种可能的实现方式中,第一相机模组还用于:采集第一数据,并根据第一数据生成第二数据包,第二数据包中包括有识别字段,第二数据包中识别字段的值为第三值;将第二数据包发送至处理器。这样,第二相机模组和第一相机模组可以同时采集数据。处理器根据数据包中识别字段的值分辨出该数据包是哪一个相机模组采集的。
结合第二方面,在第二方面的一种可能的实现方式中,第一相机模组包括第一应用层、第一协议层和第一物理层,第一物理层包括第一上行接口和第一下行接口,第一上行接口与处理器的第一接收端口连接;其中,第一相机模组,还用于:通过第一应用层对第一数据进行编码;通过第一协议层根据编码后的第一数据生成第二数据包;第二数据包中包括有识别字段,第二数据包中识别字段的值为第三值;通过第一上行接口将第二数据包发送至处理器。这样,当第一相机模组采集数据时,第一相机模组的第一应用层、第一物理层、第一协议层均开启。
结合第二方面,在第二方面的一种可能的实现方式中,电子设备还包括第三相机模组;第三相机模组,用于采集第二数据,并根据第二数据生成第三数据包,第三数据包中包括有识别字段,第三数据包中识别字段的值为第三值;第三相机模组,还用于将第三数据包发送至处理器。这样,一方面,当电子设备中有多个相机模组时,为了减少处理器通过一个接口接收多个级联的相机模组同时采集的数据的负担,将前置相机模组与后置相机模组分开。多个前置相机模组级联之后与处理器的第一接收端口连接,多个后置相机模组级联之后与处理器的第二接收端口连接,也即多个级联的前置相机模组和多个级联的后置相机模组与处理器并联连接。
结合第二方面,在第二方面的一种可能的实现方式中,第三相机模组包括第二应用层、第二协议层和第二物理层,第二物理层包括第二上行接口和第二下行接口,第二上行接口与处理器的第二接收端口连接;第三相机模组,还用于:通过第二应用层对第二数据进行编码; 通过第二协议层根据编码后的第二数据生成第三数据包;第三数据包中包括有识别字段,第三数据包中识别字段的值为第三值;通过第二上行接口将第三数据包发送至处理器。这样,当第三相机模组采集数据时,第三相机模组的第二应用层、第二物理层、第二协议层均开启。并将第三数据包通过第二上行接口发送至处理器的第二接收端口,减少了处理器侧只有一个端口时,处理器同一时间在同一端口接收大量数据的压力。
结合第二方面,在第二方面的一种可能的实现方式中,第一相机模组包括第一应用层、第一协议层和第一物理层,第一物理层包括第一上行接口和第一下行接口,第一上行接口与处理器的第一接收端口连接;第三相机模组包括第二应用层、第二协议层和第二物理层,所述第二物理层包括第二上行接口和第二下行接口,第二上行接口与处理器的第二接收端口连接;第一接收端口与第二接收端口不同。
结合第二方面,在第二方面的一种可能的实现方式中,电子设备还包括第四相机模组;第四相机模组,用于采集第三数据,并根据第三数据生成第四数据包,第四数据包中包括有识别字段,第四数据包中识别字段的值为第三值;第四相机模组,还用于将第四数据包发送至第三相机模组;第三相机模组,还用于:接收第四相机模组发送的第四数据包;识别出第一数据包中识别字段的值为第三值,并将第四数据包中识别字段的值修改为第四值,第四值与第三值之差为预设值。
结合第二方面,在第二方面的一种可能的实现方式中,第四相机模组包括第三应用层、第三协议层和第三物理层,第三物理层包括第三上行接口和第三下行接口,第三上行接口与第二下行接口相连接;第四相机模组,还用于:通过第三应用层对第三数据进行编码;通过第三协议层根据编码后的第三数据生成第四数据包;第四数据包中包括有识别字段,第四数据包中识别字段的值为第三值;通过第三上行接口发送第四数据包至第三相机模组;第三相机模组,还用于:通过第二下行接口接收第三上行接口发送的第四数据包;通过第二协议层识别出第四数据包中识别字段的值为第三值,并将第三值修改为第四值,第三值与第四值之差为预设值;通过第二上行接口将第四数据包中识别字段的值修改为第四值之后的所第四数据包发送给所述处理器。这样,当后续需要增加一个相机模组时,只需将第四相机模组的第三上行接口与第三相机模组的第二下行接口连接,不用改变原有的电路结构,操作简单。
结合第二方面,在第二方面的一种可能的实现方式中,第一数据包包括包头、数据包和包尾;第一数据包中识别字段位于第一数据包的包头中。处理器可以识别出数据包包头中识别字段的值,并根据识别字段的值辨别出该数据包来自第一相机模组。
同理,第二数据包包括包头、数据包和包尾;第二数据包中识别字段位于第二数据包的包头中。处理器可以识别出数据包包头中识别字段的值,并根据识别字段的值辨别出该数据包来自第二相机模组。
同理,第三数据包包括包头、数据包和包尾;第三数据包中识别字段位于第三数据包的包头中。处理器可以识别出数据包包头中识别字段的值,并根据识别字段的值辨别出该数据包来自第三相机模组。
同理,第四数据包包括包头、数据包和包尾;第二数据包中识别字段位于第四数据包的包头中。处理器可以识别出数据包包头中识别字段的值,并根据识别字段的值辨别出该数据包来自第四相机模组。
并且,处理器第一接收端口接收的数据包来自第一相机模组和第二相机模组,处理器第二接收端口接收的数据包来自第三相机模组和第四相机模组。当数据包中识别字段的值一样时,处理器可以根据数据包是第一接收端口接收的还是第二接收端口接收的判断该数据包来 自第一相机模组或第三相机模组;或者处理器可以根据数据包是第一接收端口接收的还是第二接收端口接收的判断该数据包来自第二相机模组或第四相机模组。
结合第二方面,在第二方面的一种可能的实现方式中,第一相机模组,还用于通过第一控制接口接收处理器发送的第一指令。这样,第一相机模组通过第一控制接口接收处理器发送的第一指令之后,第一相机模组开启第一物理层和第一协议层,并接收第二相机模组发送的数据包。第二相机模组通过第二控制接口接收处理器发送的第二指令之后,第二相机模组开启第二相机模组的应用层、第二相机模组的物理层和第二相机模组的协议层,第二相机模组开始采集数据并将数据打包为数据包,并将数据包发送至第一相机模组。
同理,电子设备中每一个相机模组均设置有控制接口,控制接口与上行接口与下行接口不同。控制接口用于接收处理器发送的控制指令。上行接口和下行接口用于发送和接收数据包。
第三方面,本申请提供了一种计算机可读存储介质,包括指令,当指令在相机模组上运行时,使得所述相机模组执行上述第一方面以及结合上述第一方面任意一种实施方式所述的一种数据传输方法。
该方法通过多个输入设备采用级联的方式进行连接,只需一个输入设备与处理器连接。一方面,极大地减少了处理器侧的接口数量和输入设备与处理器之间的信号线数量;另一方面,多个输入设备采用级联的方式进行连接,只需将增加的输入设备与已有的输入设备级联连接,后续增加输入设备操作简单。
附图说明
图1为本申请实施例提供的一种电子设备100的结构示意图;
图2为本申请实施例提供的一种相机模组和处理器之间的D-PHY接口的架构示意图;
图3为本申请实施例提供的一种相机模组和处理器之间的C-PHY接口的架构示意图;
图4为本申请实施例提供的一种相机模组的结构示意图;
图5和图6为本申请实施例提供的一种电子设备100的多摄系统的示意图;
图7为本申请实施例提供的一种汽车车载监控系统的示意图;
图8A-图8B为本申请实施例提供的一种十字路口的视频监控系统的示意图;
图9为本申请实施例提供的一种多个相机模组采用并联拓扑结构和处理器连接的示意图;
图10为本申请实施例提供的一种多个相机模组与电子设备100处理器并联连接的工程结构示意图;
图11为本申请实施例提供的一种电子设备100中多个相机模组级联连接的示意图;
图12为本申请实施例提供的一种级联的相机模组与处理器之间的D-PHY接口的架构示意图;
图13为本申请实施例提供的一种多个级联相机模组与处理器910连接的工程结构示意图;
图14为本申请实施例提供的一种数据包的结构示意图;
图15为本申请实施例提供的另一种数据包的结构示意图;
图16为本申请实施例提供的一种N个相机模组的数据包传输过程;
图17为本申请实施例提供的一种数据传输方法的流程图;
图18为本申请实施例提供的另一种相机模组级联的系统图;
图19为本申请实施例提供的一种多个级联相机模组与处理器910通过模拟开关连接的工程结构示意图;
图20为本申请实施例提供的另一种数据传输的方法流程图;
图21为本申请实施例提供的又一种相机模组级联的系统图;
图22为本申请实施例提供的又一种多个级联相机模组与处理器910并联连接的工程结构示意图;
图23为本申请实施例提供的又一种数据传输的方法流程图;
图24A-图24C为本申请实施例提供的一组UI图;
图25A-图25C为本申请实施例提供的另一组UI图。
具体实施方式
下面将结合附图对本申请实施例中的技术方案进行清除、详尽地描述。其中,在本申请实施例的描述中,除非另有说明,“/”表示或的意思,例如,A/B可以表示A或B;文本中的“或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况,另外,在本申请实施例的描述中,“多个”是指两个或多于两个。
以下,术语“第一”、“第二”仅用于描述目的,而不能理解为暗示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征,在本申请实施例的描述中,除非另有说明,“多个”的含义是两个或两个以上。
接下来,介绍本申请实施例的提及的电子设备100的硬件架构。
图1示出了电子设备100的结构示意图。
下面以电子设备100为例对实施例进行具体说明。电子设备100的设备类型可以包括手机、电视、平板电脑、音箱、手表、桌面型计算机、膝上计算机、手持计算机、笔记本电脑、超级移动个人计算机(ultra-mobile personal computer,UMPC)、上网本,以及个人数字助理(personal digital assistant,PDA)、增强现实(augmented reality,AR)/虚拟现实(virtual reality,VR)设备等。
在一些实施例中,电子设备100还可以是监测系统,监测系统包括多个摄像头或者多个传感器或者多个雷达和处理器等其它设备的系统。
本申请实施例对电子设备100的设备类型不做特殊限制。
应该理解的是,图1所示电子设备100仅是一个范例,并且电子设备100可以具有比图1中所示的更多的或者更少的部件,可以组合两个或多个的部件,或者可以具有不同的部件配置。图中所示出的各种部件可以在包括一个或多个信号处理和/或专用集成电路在内的硬件、软件、或硬件和软件的组合中实现。
电子设备100可以包括:处理器110,外部存储器接口120,内部存储器121,通用串行总线(universal serial bus,USB)接口130,充电管理模块140,电源管理模块141,电池142,天线1,天线2,移动通信模块150,无线通信模块160,音频模块170,扬声器170A,受话器170B,麦克风170C,耳机接口170D,传感器模块180,按键190,马达191,指示器192,摄像头193,显示屏194,以及用户标识模块(subscriber identification module,SIM)卡接口195 等。其中传感器模块180可以包括压力传感器180A,陀螺仪传感器180B,气压传感器180C,磁传感器180D,加速度传感器180E,距离传感器180F,接近光传感器180G,指纹传感器180H,温度传感器180J,触摸传感器180K,环境光传感器180L,骨传导传感器180M等。
可以理解的是,本发明实施例示意的结构并不构成对电子设备100的具体限定。在本申请另一些实施例中,电子设备100可以包括比图示更多或更少的部件,或者组合某些部件,或者拆分某些部件,或者不同的部件布置。图示的部件可以以硬件,软件或软件和硬件的组合实现。
处理器110可以包括一个或多个处理单元,例如:处理器110可以包括应用处理器(application processor,AP),调制解调处理器,图形处理器(graphics processing unit,GPU),图像信号处理器(image signal processor,ISP),控制器,存储器,视频编解码器,数字信号处理器(digital signal processor,DSP),基带处理器,和/或神经网络处理器(neural-network processing unit,NPU)等。其中,不同的处理单元可以是独立的器件,也可以集成在一个或多个处理器中。
其中,控制器可以是电子设备100的神经中枢和指挥中心。控制器可以根据指令操作码和时序信号,产生操作控制信号,完成取指令和执行指令的控制。
处理器110中还可以设置存储器,用于存储指令和数据。在一些实施例中,处理器110中的存储器为高速缓冲存储器。该存储器可以保存处理器110刚用过或循环使用的指令或数据。如果处理器110需要再次使用该指令或数据,可从所述存储器中直接调用。避免了重复存取,减少了处理器110的等待时间,因而提高了系统的效率。
在一些实施例中,处理器110可以包括一个或多个接口。接口可以包括集成电路(inter-integrated circuit,I2C)接口,集成电路内置音频(inter-integrated circuit sound,I2S)接口,脉冲编码调制(pulse code modulation,PCM)接口,通用异步收发传输器(universal asynchronous receiver/transmitter,UART)接口,移动产业处理器接口(mobile industry processor interface,MIPI),通用输入输出(general-purpose input/output,GPIO)接口,用户标识模块(subscriber identity module,SIM)接口,和/或通用串行总线(universal serial bus,USB)接口等。
I2C接口是一种双向同步串行总线,包括一根串行数据线(serial data line,SDA)和一根串行时钟线(derail clock line,SCL)。在一些实施例中,处理器110可以包含多组I2C总线。处理器110可以通过不同的I2C总线接口分别耦合触摸传感器180K,充电器,闪光灯,摄像头193等。例如:处理器110可以通过I2C接口耦合摄像头193,使处理器110与摄像头193通过I2C总线接口通信,实现电子设备100的拍摄功能。
I2S接口可以用于音频通信。在一些实施例中,处理器110可以包含多组I2S总线。处理器110可以通过I2S总线与音频模块170耦合,实现处理器110与音频模块170之间的通信。在一些实施例中,音频模块170可以通过I2S接口向无线通信模块160传递音频信号,实现通过蓝牙耳机接听电话的功能。
PCM接口也可以用于音频通信,将模拟信号抽样,量化和编码。在一些实施例中,音频模块170与无线通信模块160可以通过PCM总线接口耦合。在一些实施例中,音频模块170也可以通过PCM接口向无线通信模块160传递音频信号,实现通过蓝牙耳机接听电话的功能。所述I2S接口和所述PCM接口都可以用于音频通信。
UART接口是一种通用串行数据总线,用于异步通信。该总线可以为双向通信总线。它将要传输的数据在串行通信与并行通信之间转换。在一些实施例中,UART接口通常被用于连接处理器110与无线通信模块160。例如:处理器110通过UART接口与无线通信模块160 中的蓝牙模块通信,实现蓝牙功能。在一些实施例中,音频模块170可以通过UART接口向无线通信模块160传递音频信号,实现通过蓝牙耳机播放音乐的功能。
MIPI接口可以被用于连接处理器110与显示屏194,摄像头193等外围器件。MIPI接口包括摄像头串行接口(camera serial interface,CSI),显示屏串行接口(display serial interface,DSI)等。在一些实施例中,处理器110和摄像头193通过CSI接口通信,实现电子设备100的拍摄功能。处理器110和显示屏194通过DSI接口通信,实现电子设备100的显示功能。
GPIO接口可以通过软件配置。GPIO接口可以被配置为控制信号,也可被配置为数据信号。在一些实施例中,GPIO接口可以用于连接处理器110与摄像头193,显示屏194,无线通信模块160,音频模块170,传感器模块180等。GPIO接口还可以被配置为I2C接口,I2S接口,UART接口,MIPI接口等。
USB接口130是符合USB标准规范的接口,具体可以是Mini USB接口,Micro USB接口,USB Type C接口等。USB接口130可以用于连接充电器为电子设备100充电,也可以用于电子设备100与外围设备之间传输数据。也可以用于连接耳机,通过耳机播放音频。该接口还可以用于连接其他电子设备,例如AR设备等。
可以理解的是,本发明实施例示意的各模块间的接口连接关系,只是示意性说明,并不构成对电子设备100的结构限定。在本申请另一些实施例中,电子设备100也可以采用上述实施例中不同的接口连接方式,或多种接口连接方式的组合。
充电管理模块140用于从充电器接收充电输入。其中,充电器可以是无线充电器,也可以是有线充电器。在一些有线充电的实施例中,充电管理模块140可以通过USB接口130接收有线充电器的充电输入。在一些无线充电的实施例中,充电管理模块140可以通过电子设备100的无线充电线圈接收无线充电输入。充电管理模块140为电池142充电的同时,还可以通过电源管理模块141为电子设备供电。
电源管理模块141用于连接电池142,充电管理模块140与处理器110。电源管理模块141接收电池142和/或充电管理模块140的输入,为处理器110,内部存储器121,外部存储器,显示屏194,摄像头193,和无线通信模块160等供电。电源管理模块141还可以用于监测电池容量,电池循环次数,电池健康状态(漏电,阻抗)等参数。在其他一些实施例中,电源管理模块141也可以设置于处理器110中。在另一些实施例中,电源管理模块141和充电管理模块140也可以设置于同一个器件中。
电子设备100的无线通信功能可以通过天线1,天线2,移动通信模块150,无线通信模块160,调制解调处理器以及基带处理器等实现。
天线1和天线2用于发射和接收电磁波信号。电子设备100中的每个天线可用于覆盖单个或多个通信频带。不同的天线还可以复用,以提高天线的利用率。例如:可以将天线1复用为无线局域网的分集天线。在另外一些实施例中,天线可以和调谐开关结合使用。
移动通信模块150可以提供应用在电子设备100上的包括2G/3G/4G/5G等无线通信的解决方案。移动通信模块150可以包括至少一个滤波器,开关,功率放大器,低噪声放大器(low noise amplifier,LNA)等。移动通信模块150可以由天线1接收电磁波,并对接收的电磁波进行滤波,放大等处理,传送至调制解调处理器进行解调。移动通信模块150还可以对经调制解调处理器调制后的信号放大,经天线1转为电磁波辐射出去。在一些实施例中,移动通信模块150的至少部分功能模块可以被设置于处理器110中。在一些实施例中,移动通信模块150的至少部分功能模块可以与处理器110的至少部分模块被设置在同一个器件中。
调制解调处理器可以包括调制器和解调器。其中,调制器用于将待发送的低频基带信号 调制成中高频信号。解调器用于将接收的电磁波信号解调为低频基带信号。随后解调器将解调得到的低频基带信号传送至基带处理器处理。低频基带信号经基带处理器处理后,被传递给应用处理器。应用处理器通过音频设备(不限于扬声器170A,受话器170B等)输出声音信号,或通过显示屏194显示图像或视频。在一些实施例中,调制解调处理器可以是独立的器件。在另一些实施例中,调制解调处理器可以独立于处理器110,与移动通信模块150或其他功能模块设置在同一个器件中。
无线通信模块160可以提供应用在电子设备100上的包括无线局域网(wireless local area networks,WLAN)(如无线保真(wireless fidelity,Wi-Fi)网络),蓝牙(bluetooth,BT),全球导航卫星系统(global navigation satellite system,GNSS),调频(frequency modulation,FM),近距离无线通信技术(near field communication,NFC),红外技术(infrared,IR)等无线通信的解决方案。无线通信模块160可以是集成至少一个通信处理模块的一个或多个器件。无线通信模块160经由天线2接收电磁波,将电磁波信号调频以及滤波处理,将处理后的信号发送到处理器110。无线通信模块160还可以从处理器110接收待发送的信号,对其进行调频,放大,经天线2转为电磁波辐射出去。
在一些实施例中,电子设备100的天线1和移动通信模块150耦合,天线2和无线通信模块160耦合,使得电子设备100可以通过无线通信技术与网络以及其他设备通信。所述无线通信技术可以包括全球移动通讯系统(global system for mobile communications,GSM),通用分组无线服务(general packet radio service,GPRS),码分多址接入(code division multiple access,CDMA),宽带码分多址(wideband code division multiple access,WCDMA),时分码分多址(time-division code division multiple access,TD-SCDMA),长期演进(long term evolution,LTE),BT,GNSS,WLAN,NFC,FM,和/或IR技术等。所述GNSS可以包括全球卫星定位系统(global positioning system,GPS),全球导航卫星系统(global navigation satellite system,GLONASS),北斗卫星导航系统(beidou navigation satellite system,BDS),准天顶卫星系统(quasi-zenith satellite system,QZSS)和/或星基增强系统(satellite based augmentation systems,SBAS)。
电子设备100通过GPU,显示屏194,以及应用处理器等实现显示功能。GPU为图像处理的微处理器,连接显示屏194和应用处理器。GPU用于执行数学和几何计算,用于图形渲染。处理器110可包括一个或多个GPU,其执行程序指令以生成或改变显示信息。
显示屏194用于显示图像,视频等。显示屏194包括显示面板。显示面板可以采用液晶显示屏(liquid crystal display,LCD),有机发光二极管(organic light-emitting diode,OLED),有源矩阵有机发光二极体或主动矩阵有机发光二极体(active-matrix organic light emitting diode的,AMOLED),柔性发光二极管(flex light-emitting diode,FLED),Miniled,MicroLed,Micro-oLed,量子点发光二极管(quantum dot light emitting diodes,QLED)等。在一些实施例中,电子设备100可以包括1个或N个显示屏194,N为大于1的正整数。
电子设备100可以通过ISP,摄像头193,视频编解码器,GPU,显示屏194以及应用处理器等实现拍摄功能。
ISP用于处理摄像头193反馈的数据。例如,拍照时,打开快门,光线通过镜头被传递到摄像头感光元件上,光信号转换为电信号,摄像头感光元件将所述电信号传递给ISP处理,转化为肉眼可见的图像。ISP还可以对图像的噪点,亮度,肤色进行算法优化。ISP还可以对拍摄场景的曝光,色温等参数优化。在一些实施例中,ISP可以设置在摄像头193中。
摄像头193用于捕获静态图像或视频。物体通过镜头生成光学图像投射到感光元件。感 光元件可以是电荷耦合器件(charge coupled device,CCD)或互补金属氧化物半导体(complementary metal-oxide-semiconductor,CMOS)光电晶体管。感光元件把光信号转换成电信号,之后将电信号传递给ISP转换成数字图像信号。ISP将数字图像信号输出到DSP加工处理。DSP将数字图像信号转换成标准的RGB,YUV等格式的图像信号。在一些实施例中,电子设备100可以包括1个或N个摄像头193,N为大于1的正整数。
在一些实施例中,电子设备100可包括前置摄像头和后置摄像头。其中,前置摄像头的数量可以为一个或多个;后置摄像头的数量也可以为一个或多个。前置摄像头和后置摄像头可以同时开始工作。例如,当人们在使用前置摄像头拍摄远处图像时,又希望使用前置摄像头记录个人影响,即前置摄像头和后置摄像头可以同时进行图像采集。或者,用户也可以选择开启多个前置摄像头中的任意一个或多个前置摄像头,用户也可以选择开启多个后置摄像头中的任意一个或多个后置摄像头。
数字信号处理器用于处理数字信号,除了可以处理数字图像信号,还可以处理其他数字信号。例如,当电子设备100在频点选择时,数字信号处理器用于对频点能量进行傅里叶变换等。
视频编解码器用于对数字视频压缩或解压缩。电子设备100可以支持一种或多种视频编解码器。这样,电子设备100可以播放或录制多种编码格式的视频,例如:动态图像专家组(moving picture experts group,MPEG)1,MPEG2,MPEG3,MPEG4等。
NPU为神经网络(neural-network,NN)计算处理器,通过借鉴生物神经网络结构,例如借鉴人脑神经元之间传递模式,对输入信息快速处理,还可以不断的自学习。通过NPU可以实现电子设备100的智能认知等应用,例如:图像识别,人脸识别,语音识别,文本理解等。
外部存储器接口120可以用于连接外部存储卡,例如Micro SD卡,实现扩展电子设备100的存储能力。外部存储卡通过外部存储器接口120与处理器110通信,实现数据存储功能。例如将音乐,视频等文件保存在外部存储卡中。
内部存储器121可以用于存储计算机可执行程序代码,所述可执行程序代码包括指令。处理器110通过运行存储在内部存储器121的指令,从而执行电子设备100的各种功能应用以及数据处理。内部存储器121可以包括存储程序区和存储数据区。其中,存储程序区可存储操作系统,至少一个功能所需的应用程序(比如声音播放功能,图像播放功能等)等。存储数据区可存储电子设备100使用过程中所创建的数据(比如音频数据,电话本等)等。此外,内部存储器121可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件,闪存器件,通用闪存存储器(universal flash storage,UFS)等。
电子设备100可以通过音频模块170,扬声器170A,受话器170B,麦克风170C,耳机接口170D,以及应用处理器等实现音频功能。例如音乐播放,录音等。
音频模块170用于将数字音频信息转换成模拟音频信号输出,也用于将模拟音频输入转换为数字音频信号。音频模块170还可以用于对音频信号编码和解码。在一些实施例中,音频模块170可以设置于处理器110中,或将音频模块170的部分功能模块设置于处理器110中。
扬声器170A,也称“喇叭”,用于将音频电信号转换为声音信号。电子设备100可以通过扬声器170A收听音乐,或收听免提通话。
受话器170B,也称“听筒”,用于将音频电信号转换成声音信号。当电子设备100接听电话或语音信息时,可以通过将受话器170B靠近人耳接听语音。
麦克风170C,也称“话筒”,“传声器”,用于将声音信号转换为电信号。当拨打电话或发 送语音信息时,用户可以通过人嘴靠近麦克风170C发声,将声音信号输入到麦克风170C。电子设备100可以设置至少一个麦克风170C。在另一些实施例中,电子设备100可以设置两个麦克风170C,除了采集声音信号,还可以实现降噪功能。
耳机接口170D用于连接有线耳机。耳机接口170D可以是USB接口130,也可以是3.5mm的开放移动电子设备平台(open mobile terminal platform,OMTP)标准接口,美国蜂窝电信工业协会(cellular telecommunications industry association of the USA,CTIA)标准接口。
压力传感器180A用于感受压力信号,可以将压力信号转换成电信号。在一些实施例中,压力传感器180A可以设置于显示屏194。压力传感器180A的种类很多,如电阻式压力传感器,电感式压力传感器,电容式压力传感器等。电容式压力传感器可以是包括至少两个具有导电材料的平行板。当有力作用于压力传感器180A,电极之间的电容改变。电子设备100根据电容的变化确定压力的强度。当有触摸操作作用于显示屏194,电子设备100根据压力传感器180A检测所述触摸操作强度。电子设备100也可以根据压力传感器180A的检测信号计算触摸的位置。
陀螺仪传感器180B可以用于确定电子设备100的运动姿态。在一些实施例中,可以通过陀螺仪传感器180B确定电子设备100围绕三个轴(即,x,y和z轴)的角速度。陀螺仪传感器180B可以用于拍摄防抖。
气压传感器180C用于测量气压。在一些实施例中,电子设备100通过气压传感器180C测得的气压值计算海拔高度,辅助定位和导航。
磁传感器180D包括霍尔传感器。电子设备100可以利用磁传感器180D检测翻盖皮套的开合。
加速度传感器180E可检测电子设备100在各个方向上(一般为三轴)加速度的大小。当电子设备100静止时可检测出重力的大小及方向。还可以用于识别电子设备姿态,应用于横竖屏切换,计步器等应用。
距离传感器180F,用于测量距离。电子设备100可以通过红外或激光测量距离。在一些实施例中,拍摄场景,电子设备100可以利用距离传感器180F测距以实现快速对焦。
接近光传感器180G可以包括例如发光二极管(LED)和光检测器,例如光电二极管。发光二极管可以是红外发光二极管。电子设备100通过发光二极管向外发射红外光。电子设备100使用光电二极管检测来自附近物体的红外反射光。当检测到充分的反射光时,可以确定电子设备100附近有物体。当检测到不充分的反射光时,电子设备100可以确定电子设备100附近没有物体。电子设备100可以利用接近光传感器180G检测用户手持电子设备100贴近耳朵通话,以便自动熄灭屏幕达到省电的目的。接近光传感器180G也可用于皮套模式,口袋模式自动解锁与锁屏。
环境光传感器180L用于感知环境光亮度。电子设备100可以根据感知的环境光亮度自适应调节显示屏194亮度。环境光传感器180L也可用于拍照时自动调节白平衡。环境光传感器180L还可以与接近光传感器180G配合,检测电子设备100是否在口袋里,以防误触。
指纹传感器180H用于采集指纹。电子设备100可以利用采集的指纹特性实现指纹解锁,访问应用锁,指纹拍照,指纹接听来电等。
温度传感器180J用于检测温度。在一些实施例中,电子设备100利用温度传感器180J检测的温度,执行温度处理策略。例如,当温度传感器180J上报的温度超过阈值,电子设备100执行降低位于温度传感器180J附近的处理器的性能,以便降低功耗实施热保护。在另一些实施例中,当温度低于另一阈值时,电子设备100对电池142加热,以避免低温导致电子 设备100异常关机。在其他一些实施例中,当温度低于又一阈值时,电子设备100对电池142的输出电压执行升压,以避免低温导致的异常关机。
触摸传感器180K,也称“触控面板”。触摸传感器180K可以设置于显示屏194,由触摸传感器180K与显示屏194组成触摸屏,也称“触控屏”。触摸传感器180K用于检测作用于其上或附近的触摸操作。触摸传感器可以将检测到的触摸操作传递给应用处理器,以确定触摸事件类型。可以通过显示屏194提供与触摸操作相关的视觉输出。在另一些实施例中,触摸传感器180K也可以设置于电子设备100的表面,与显示屏194所处的位置不同。
骨传导传感器180M可以获取振动信号。在一些实施例中,骨传导传感器180M可以获取人体声部振动骨块的振动信号。骨传导传感器180M也可以接触人体脉搏,接收血压跳动信号。在一些实施例中,骨传导传感器180M也可以设置于耳机中,结合成骨传导耳机。音频模块170可以基于所述骨传导传感器180M获取的声部振动骨块的振动信号,解析出语音信号,实现语音功能。应用处理器可以基于所述骨传导传感器180M获取的血压跳动信号解析心率信息,实现心率检测功能。
按键190包括开机键,音量键等。按键190可以是机械按键。也可以是触摸式按键。电子设备100可以接收按键输入,产生与电子设备100的用户设置以及功能控制有关的键信号输入。
马达191可以产生振动提示。马达191可以用于来电振动提示,也可以用于触摸振动反馈。例如,作用于不同应用(例如拍照,音频播放等)的触摸操作,可以对应不同的振动反馈效果。作用于显示屏194不同区域的触摸操作,马达191也可对应不同的振动反馈效果。不同的应用场景(例如:时间提醒,接收信息,闹钟,游戏等)也可以对应不同的振动反馈效果。触摸振动反馈效果还可以支持自定义。
指示器192可以是指示灯,可以用于指示充电状态,电量变化,也可以用于指示消息,未接来电,通知等。
SIM卡接口195用于连接SIM卡。SIM卡可以通过插入SIM卡接口195,或从SIM卡接口195拔出,实现和电子设备100的接触和分离。电子设备100可以支持1个或N个SIM卡接口,N为大于1的正整数。SIM卡接口195可以支持Nano SIM卡,Micro SIM卡,SIM卡等。同一个SIM卡接口195可以同时插入多张卡。所述多张卡的类型可以相同,也可以不同。SIM卡接口195也可以兼容不同类型的SIM卡。SIM卡接口195也可以兼容外部存储卡。电子设备100通过SIM卡和网络交互,实现通话以及数据通信等功能。在一些实施例中,电子设备100采用eSIM,即:嵌入式SIM卡。eSIM卡可以嵌在电子设备100中,不能和电子设备100分离。
为了便于理解本申请,下面对本申请涉及的术语进行解释。
移动行业处理器接口(Mobile Industry Processor Interface,MIPI)是MIPI联盟发起的为移动应用处理器制定的开放标准。MIPI在相机工作组已经完成了相机串行接口(Camera Serial Interface,CSI)规范。
CSI-2协议:CSI-2协议定义了发送端和接收端之间的数据控制和数据传输接口的标准数据,发送端为主设备,接收端为从设备。CSI-2协议是以单向差分串行接口传输数据和时钟信号的。
CSI-2协议的层次结构包含三个层次:应用层、CSI-2协议层和数据物理层。
其中,应用层,可用于对数据进行编解码等处理。
CSI-2协议层由像素/字节打包/解包层、底层协议(low level protocol,LLP)层和通道管理层组成。
CSI-2协议支持多种像素格式图像应用,包括从6位到12位每个像素的数据格式。在发送端,像素/字节打包/解包层将由应用层传过来的数据由像素数据打包成字节数据;在接收端,像素/字节打包/解包层将LLP层发送过来的数据解包,即将字节数据解包成像素数据,然后,像素/字节打包/解包层将像素数据发送至应用层。底层协议层包括为串行数据在传输开始和传输结束之间传输事件、将数据传输到下一层、建立位级和字节级同步的方法。通道管理层中,数据通道的数目可以是1或2或3或4。接口发送端分配数据流到一个或多个数据通道中。在接收端,接口从数据通道手机字节并将之合并成为重新组合的数据流,恢复至原始数据流序列。
数据物理层规范了传输介质、电气特性、IO电路和同步机制。端口数据物理层(port physics layer,PHY)兼容C-PHY接口、M-PHY接口和D-PHY接口。C-PHY接口和D-PHY接口现在大量应用于应用处理器与显示屏、摄像接口的部分。其中,D-PHY接口由最多四个传输数据流的数据通道和一个传输时钟信号的通道组成,每个通道又有两根差分信号线组成。
下面介绍相机模组和处理器之间的D-PHY接口架构。
如图2所示,图2为相机模组和处理器之间的D-PHY接口的架构示意图。
如图2所示,相机串行接口发送端由P个传输数据流的数据通道和一个传输时钟信号的通道组成。相机串行接口接收端也由P个传输数据流的数据通道和一个传输时钟信号的通道组成。P为大于等于1小于等于4的正整数。
每个数据通道包括两根差分信号线,每个传输时钟信号的通道也包括两根差分信号线。即,当有P个传输数据流的数据通道和一个传输时钟信号的通道,则有(P+1)*2个差分信号线。对于D-PHY接口,最多需要10根差分信号线。
当电子设备100中可以有多个相机模组时,多个相机模组中的每一个相机模组与处理器之间均采用如图2所示的D-PHY接口,本申请再此不再赘述。
C-PHY接口由最多由三个数据流的数据通道组成,因为C-PHY接口把时钟信号嵌入到数据通道中,所以不需要额外的时钟通道,每个通道又由三根差分信号线组成。
下面介绍相机模组和处理器之间的C-PHY接口架构。
如图3所示,图3为相机模组和处理器之间的C-PHY接口的架构示意图。
如图3所示,相机串行接口发送端由Q个传输数据流的数据通道组成。相机串行接口接收端也由Q个传输数据流的数据通道组成。Q为大于等于一小于等于三的正整数。
每个数据通道包括三根差分信号线。即,当有Q个传输数据流的数据通道,则有Q*3个差分信号线。对于C-PHY接口,最多需要9根差分信号线。
当电子设备100中可以有多个相机模组时,多个相机模组中的每一个相机模组与处理器之间均采用如图3所示的C-PHY接口,本申请再此不再赘述。
相机模组:如图4所示,相机模组由镜头、感光传感器、模数转换器、数字信号处理器和接口模块组成。
具体的,景物通过镜头被投射到感光传感器上,感光传感器将光信号转换为电信号。电信号传输到模数转换器之后,电信号经过模数转换器变为数字图像信号。之后,数字图像信 号传输到数字信号处理器,数字信号处理器主要作用是对数字图像信号做后期处理,后期处理可以包括线性纠正、噪声去除、坏点去除、内插、白平衡、自动曝光控制等。
接口模块封装有CSI-2协议。CSI-2协议包括应用层、CSI-2协议层和数据物理层。接口模块用于通过CSI-2协议的应用层将像素数据编码或解码,CSI-2协议层将编码后的像素数据封装为数据包格式,之后,接口模块将数据包通过CSI-2协议的数据物理层传输至应用处理器。
下面对多个摄像头的应用场景进行介绍。
图5和图6示例性示出了本申请实施例提供的一种电子设备100的多摄系统的示意图。其中,图5中所示的多摄系统只是一种示例,具体实现中,该多摄系统可以包括更多或更少的相机模组。
如图5所示,图5为电子设备100前置相机模组501的示意图。前置相机模组501包括相机模组5011和相机模组5022。相机模组5011和相机模组5022可以同时开启开记录用户自己的影像。
如图6所示,图6为电子设备100后置相机模组506的示意图。后置相机模组506包括相机模组5061、相机模组5062、相机模组5063。示例性的,相机模组5063可以是主相机模组、相机模组5061可以是超广角相机模组、相机模组5062可以是长焦摄像头。当用户想拍摄远处的景物时,这时,相机模组五5063处于开启状态。当用户想使用超广角功能拍摄远处的景物时,相机模组5063和相机模组5061处于开启状态。当用户想拍摄更远处的景物时,相机模组5063和相机模组5062处于开启状态。相机模组5061、后置相机模组5062、后置相机模组5063也可以同时开启记录远处的景象。
在一些实施例中,当用户想要拍摄远处的景像时,又想记录下用户自己的影像。这时,前置相机模组501和后置相机模组506可以同时开启。
又例如,目前,为了辅助司机驾驶,汽车车身外安装有多个摄像头(传感器或雷达)来监视车外的路况,一方面车身外多个摄像头的监测数据可以扩大四级的视野,让司机看到跟多的车外的路况。另一方面,车身外安装的多个传感器也可以检测车外的路况,当传感器或雷达探测到车身与障碍物的距离小于预定值时,将触发报警器或刹车装置提示司机,预防事故的发生。
图7示出了汽车车载监控系统的示意图。图7只是示例性的示出了汽车车载监控系统的示意图,本申请在此不做限定。
如图7所示,汽车身外监控系统的摄像头一共有4个,分别为前摄像头701、左摄像头702、右摄像头703和后摄像头704。前摄像头701用于记录汽车行驶前方的路况,左摄像头702用于记录汽车行驶左方的路况,右摄像头703用于记录汽车行驶右方的路况,后摄像头704用于记录汽车行驶后方的路况。该多个摄像头将路况情况汇总后显示在车内的显示屏上,辅助司机驾驶。这样,可以提示司机在驾驶途中避让前后左右的障碍物,还可以辅助用户泊车等。
在一些实施例中,汽车身外监控系统还可以包括更多或更少的摄像头,汽车车内也可以设置监控摄像头,本身请在此不做限定。
又例如,视频监控技术已经广泛应用于学校、商场、医院、公共交通、无人便利店、公 安侦查临时布防等等场景中。这里,本申请以十字路口的视频监控系统进行说明。视频监控技术还可以应用于更多的场景,本申请在此不再赘述。
图8A-图8B示例性的示出了十字路口的视频监控系统的示意图。
如图8A所示,图8A示出了十字路口的视频监控区域的示意图。示例性的,在该十字路口有三个摄像头(摄像头1、摄像头2和摄像头3)来实时监测该路口的交通情况。如图8B所示,摄像头1、摄像头2和摄像头3检测的实时数据分别显示在监控室内的显示屏上。工作人员可以从监控室的显示屏上看到每个摄像头的监测数据。
在一些实施例中,视频监控系统还可以包括更多的摄像头,本申请在此不做限定。
目前,针对上述多个应用场景中,多个摄像头之间采用并联的方式与处理器连接。当有N个摄像头时,处理器侧需要N个接口分别与每一个摄像头连接。随着摄像头数量的增多,处理器侧的接口数量会越来越多,这样会导致处理器侧走线复杂,不利于处理器侧集成。
下面电子设备100的五摄系统(三个后置相机模组和两个前置相机模组)之间采用并联的方式与处理器连接的结构进行说明。
如图9所示,图9为多个相机模组采用并联拓扑结构和处理器连接的示意图。三个后置相机模组分别为相机模组1、相机模组2和相机模组3。两个前置相机模组分别为相机模组3和相机模组5。
处理器910部署有集成电路主机(I2C Master),处理器910分别与每一个相机模组连接。
每个相机模组部署有集成电路从机(I2C Slaver)。每个相机模组与处理器910通过I2C规范进行数据传输。
相机模组1通过接口1与处理器910的接口1连接,相机模组1将相机模组1的数据包通过接口1通过数据线路1(lane 1)传输至处理器910的接口1;相机模组2通过接口2与处理器910的接口2连接,相机模组2将相机模组2的数据包通过接口2通过数据线路2(lane2)传输至处理器910的接口2;相机模组3通过接口3与处理器910的接口3连接,相机模组3将相机模组3的数据包通过接口3通过数据线路3(lane 3)传输至处理器910的接口3;相机模组4通过接口4与处理器910的接口4接,相机模组4将相机模组4的数据包通过接口4通过数据线路4(lane 4)传输至处理器910的接口4;相机模组5通过接口5与处理器910的接口5连接,相机模组5将相机模组5的数据包通过接口5通过数据线路5(lane 5)传输至处理器910的接口5。
下面以相机模组1与处理器910之间的数据传输过程为例进行说明。
如图9所示,相机模组1采用的CSI-2协议包括相机1应用层、CSI-2协议层和数据物理层。数据物理层包括接口1。相机1应用层用于对相机1采集的像素数据进行编码,之后,相机1应用层将像素数据传输至CSI-2协议层,CSI-2协议层用于接收相机1应用层传输的像素数据,并将像素数据打包成数据包。之后,CSI-2协议层将数据包传输至数据物理层;数据物理层用于接收数据协议层传输的数据包,数据物理层将数据包通过接口1通过数据线路1(lane 1)发送至处理器910。接口1可以是前述的C-PHY接口、M-PHY接口和D-PHY接口中的任意一种,本身请在此不做限定。
处理器910采用的CSI-2协议包括应用层、CSI-2协议层和数据物理层。数据物理层包括接口1。处理器910通过数据物理层的接口1接收相机模组1发送的数据包。之后,数据物理层将数据包发送至CSI-2协议层,CSI-2协议层接收数据物理层发送的数据包,并将数据包解包成已编码的像素数据,然后,CSI-2协议层将已编码的像素数据传输至应用层,应用层可 用于对已编码的像素数据进行解码,得到像素数据。之后,应用层对像素数据进行像素数据压缩、像素数据合并和图像压缩等操作。例如用户当前在拍摄远处的景物照片,并且按下了拍摄按钮,则应用层将像素数据整合成图片,并将图片保存至电子设备100的图库中。
图9所示的相机模组2、相机模组3、相机模组4、相机模组5与处理器910进行数据传输的过程可以参考上述相机模组1与处理器进行数据传输的过程,本身请在此不在赘述。
如图10所示,图10为多个相机模组与电子设备100处理器并联连接的工程结构示意图。
每个相机模组通过柔性电路板(Flexible circuit board,FPC)与处理器910的连接器(board to board,BTB)连接。
具体的,相机模组N通过柔性电路板与处理器910的连接器连接;相机模组N-1通过柔性电路板与处理器910的连接器连接;以此类推,相机模组2通过柔性电路板与处理器910的连接器连接;相机模组1通过柔性电路板与处理器910的连接器连接。
可以看出,当多个相机模组与电子设备100中的处理器910并联连接时,每一个相机模组都需要和处理器910通过接口建立连接,当有N个相机模组时,910就需要N个接口分别与每一个相机模组连接。
当多个相机模组与处理器并联连接时,随着相机模组数量增多,处理器侧的接口数和信号管脚数也会增多,会导致走线复杂,不利于处理器侧系统集成。
因此,本申请提供了一种数据传输方法及电子设备。该方法可以应用于配置有多个输入设备(例如相机模组)的电子设备100,在电子设备100的每个输入设备上部署一个上行接口、一个下行接口,其中,上行接口与处理器或上一级输入设备连接,下行接口与下一级输入设备连接或空置不接。每个输入设备中的处理模块可以将本输入设备采集到的图像数据和由连接在下行接口上的下级输入设备传来的数据处理之后,通过上行接口传输给处理器或上一级的输入设备。这样,多个输入设备之间采用级联的方式进行连接,多个输入设备只需一个输入设备与处理器连接,一方面,减少了处理器与多个输入设备之间的接口数量和信号管脚线数量,有利于处理侧系统集成;另一方面,增加或减少输入设备操作简单。
输入设备可以是相机模组、传感器、雷达等设备,输入设备还可以是其他的设备,本身请在此不做限定。
该方法可以适用于电子设备100中的摄像系统。为了提高摄像精度,电子设备100(例如手机)中的相机模组的数量会越来越多。当电子设备100(例如手机)有多个相机模组时,多个相机模组可以采用级联的方式进行连接,只需一个相机模组与电子设备100(例如手机)中的处理器进行连接,这样,处理器只需一个接口与该一个相机模组进行连接。一方面,有利于减少处理器侧的接口数和数据管脚数,有利于系统的集成;另一方面,当后续需要增加相机模组时,只需将增加的相机模组与已有的相机模组级联连接,操作简单。
该方法还可以适用于图7所示的汽车车载监控系统,车载多个摄像头(传感器或雷达)之间采用级联的方式进行连接,一方面,多个摄像头只需一个摄像头与处理器进行连接,减少了处理器侧接口数量的数据管脚数;另一方面,当需要增加车载摄像头时,只需将增加的摄像头与最后一个摄像头进行级联连接,操作简单。
该方法还可以适用于图8A-图8B所示的安防区域的视频监控系统,在安防区域需要安装多个监控摄像头来进行全方位的监控,预防事故的发生。当需要在监控区域增加监控摄像头时,可以直接将需要增加的监控摄像头与最后一个摄像头进行级联连接,改装简单,减少了 一些不必要的操作。
下面,以电子设备100中的多相机模组对本申请实施例提供的一种数据传输方法进行介绍。
在一些应用场景中,电子设备100配置有多个相机模组,多个相机模组可以包括多个前置相机模组和多个后置相机模组。例如,电子设备100包括有2个前置相机模组、3个后置相机模组,2个前置相机模组和3个后置相机模组全部以级联的方式与处理器连接。
首先介绍电子设备100中多个相机模组的级联结构。
如图11所示,图11为电子设备100中多个相机模组级联连接的示意图。
其中,前置相机模组包括相机模组1、相机模组2、…、相机模组M,共有M个相机模组,前置相机模组也可以包括更多或更少的相机模组,本身请在此不做限定。
后置相机模组包括相机模组M+1、相机模组M+2、…、相机模组N,共有N-M个相机模组,后置相机模组还可以包括更多或更少的相机模组,本身请在此不做限定。
示例性的,当M为2、N为5时,则电子设备100有2个前置相机模组,3个后置相机模组。
处理器910部署有集成电路主机(I2C Master),处理器910分别与每一个相机模组连接。
每个相机模组部署有集成电路从机(I2C Slaver),每个相机模组部署的集成电路从机(I2C Slaver)与处理器910部署的集成电路主机(I2C Master)进行连接,处理器910可以通过集成电路主机(I2C Master)发送控制信号,集成电路从机(I2C Slaver)接收控制信号并对对每个相机模组进行配置和控制。每两个相机模组与之间、相机模组和处理器910之间通过CSI-2协议进行数据传输。
如图11所示,相机模组N采用的CSI-2协议包括相机N应用层、CSI-2协议层和数据物理层,数据物理层包括上行接口和下行接口,相机模组N的下行接口空置,相机模组N的上行接口与相机模组N-1的下行接口连接。相机N应用层用于对相机模组采集的像素数据进行进一步处理,例如像素数据编码等处理。之后,相机N应用层将像素数据传输至CSI-2协议层,CSI-2协议层用于接收相机应用层传输的像素数据,并将像素数据打包成数据包,之后,CSI-2协议层将数据包传输至数据物理层;数据物理层用于接收数据协议层传输的数据包,数据物理层将数据包通过上行接口通过数据线路N(lane N)发送至相机模组N-1的数据物理层。
以此类推,相机模组M+2的下行接口与相机M+3模组的上行接口进行连接。相机M+2模组通过下行接口通过数据线路M+3(lane M+3)接收相机模组N至相机M+3模组的数据包。之后,相机模组M+2将相机模组M+2的数据包和相机模组N至相机M+3模组的数据包通过上行接口通过数据线路M+2(lane M+2)四发送至相机模组M+1。
相机模组M+1的下行接口与相机模组M+2的上行接口进行连接。相机模组M+1通过下行接口通过数据线路M+2(lane M+2)接收相机模组M+2至相机模组N的数据包。之后,相机模组M+1将相机模组M+1的数据包和相机模组N至相机模组M+2的数据包通过上行接口通过数据线路M+1(lane M+1)发送至相机模组M。
相机模组M的下行接口与相机模组M+1的上行接口进行连接。相机模组M通过下行接口通过数据线路M+1(lane M+1)接收相机模组N至相机模组M+1的数据包。之后,相机模组M将相机模组M的数据包和相机模组N至相机模组M+1的数据包通过上行接口通过数据线路M(lane M)发送至相机模组M-1。
以此类推,相机模组2的下行接口与相机模组3的上行接口进行连接。相机模组2通过下行接口通过数据线路3(lane 3)接收相机模组N至相机模组3的数据包。之后,相机模组2将相机模组2的数据包和相机模组N至相机模组3的数据包通过上行接口通过数据线路2(lane 2)发送至相机模组1。
相机模组1的下行接口与相机模组2的上行接口进行连接。相机模组1通过下行接口接收相机模组2至相机模组N的数据包。之后,相机模组1将相机模组1的数据包和相机模组2至相机模组N的数据包通过上行接口通过数据线路1(lane 1)发送至处理器910。
相机模组M+2、相机模组M+1、相机模组M、…、相机模组2、相机模组1采用的CSI-2协议与相机模组N采用的CSI-2协议相同,并且相机模组M+1、相机模组M+2、相机模组M、…、相机模组2、相机模组1的像素数据采集和将像素数据打包和数据包传输的过程与上述相机模组N相同,本申请再次不再赘述。
处理器910采用的CSI-2协议包括应用层、CSI-2协议层和数据物理层。处理器910通过数据物理层的下行接口接收相机模组1传输的相机模组1至相机模组N的数据包。并通过处理器910的CSI-2协议层将相机模组1至相机模组N的数据包解包成相机模组1至相机模组N已编码的像素数据。然后,CSI-2协议层将已编码的像素数据传输至应用层,应用层可用于对已编码的像素数据进行解码,得到像素数据。之后,应用层对相机模组1至相机模组N的像素数据进行像素数据压缩、像素数据合并和图像压缩等操作。示例性的,当用户在拍摄远处的景物照片,并且按下了拍摄按钮,则应用层将相机模组M+1至相机模组N的像素数据整合成图片,并将图片保存至电子设备100的图库中。当用户在拍摄远处的景物照片同时也在拍摄自己的自拍图像,并且按下了拍摄按钮,则应用层将相机模组组1至相机模组M的像素数据整合成图片,并将图片保存至电子设备100的图库中。
在一些实施例中,每一个相机模组采集的像素数据都可以单独合成一张图片并保存在图库中。示例性的,当处理器接收相机模组M+1至相机模组N共N-M个相机模组采集的像素数据,处理器通过应用层分别将相机模组M+1至相机模组N采集的像素数据整合为图片,共生成N-M张图片,处理器将N-M张图片保存至图库。
需要说明的是,本申请对相机模组生成的图片形式不做限定,可以是每个相机模组采集的像素数据整合张一张图片,也可以是多个相机模组采集的像素数据整合成一张图片,也可以是任一两个或两个以上的相机模组采集的像素数据整合成一张图片本申请在此不做限定。
上述实施例所述的各个相机模组的上行接口和下行接口、处理器的接口可以是C-PHY接口、M-PHY接口和D-PHY接口中的任意一种,本身请在此不做限定。
如图12所示,图12为本申请实施例中级联的相机模组与处理器之间的D-PHY接口的架构示意图。
如图12所示,相机模组1与处理器910连接。相机模组1的相机串行接口发送端由P个传输数据流的数据通道和一个传输时钟信号的通道组成。处理器910侧的相机串行接口接收端也由P个传输数据流的数据通道和一个传输时钟信号的通道组成。P为大于等于1小于等于4的正整数。
每个数据通道包括两根差分信号线,每个传输时钟信号的通道也包括两根差分信号线。即,当有P个传输数据流的数据通道和一个传输时钟信号的通道,则有(P+1)*2个差分信号线。对于D-PHY接口,最多需要10根差分信号线。
处理器910侧的集成电路主机(I2C Master)通过I2C总线发送控制信号至集成电路从机 (I2C Slaver)。
当电子设备100中有多个相机模组时,多个相机模组采用级联的方式建立连接。示例性的,对于相机模组2来说,相机模组2与相机模组1级联连接。
如图12所示,相机模组2与相机模组1级联连接。相机模组2的相机串行接口接收端由P个传输数据流的数据通道和一个传输时钟信号的通道组成。相机模组1的相机串行接口接收端也由P个传输数据流的数据通道和一个传输时钟信号的通道组成。N为大于等于1小于等于4的正整数。
当有多个相机模组时,多个相机模组采用相机模组1和相机模组2的级联的方式建立连接,本身请在此不再赘述。
每个相机模组部署有集成电路从机(I2C Slaver),处理器910部署有集成电路主机(I2C Master),处理器910通过I2C总线发送控制信号至每个相机模组的集成电路从机(I2C Slaver),集成电路从机(I2C Slaver)接收控制信号来控制相机模组开启或关闭。
同理,本申请实施例中级联的相机模组与处理器之间也可以采用C-PHY接口,级联的相机模组与处理器910之间也可以采用C-PHY接口的连接方式与级联的相机模组与处理器910之间采用C-PHY接口的连接方式类似,本身请在此不在赘述。
如图13所示,图13为多个级联相机模组与处理器910连接的工程结构示意图。
每两个相机模组之间通过柔性电路板(Flexible circuit board,FPC)连接,第一个相机模组通过柔性电路板与处理器910的连接器连接。
具体的,相机模组N通过FPC与相机模组N-1连接,以此类推,相机模组3通过FPC与相机模组2连接,相机模组2通过FPC与相机模组1连接,相机模组1通过柔性电路板与处理器侧的连接器910连接。
示例性的,当M为2、N为5时,则电子设备100有2个前置相机模组,3个后置相机模组。2个前置相机模组与3个后置相机模组级联连接,只需一个相机模组(例如一个前置模组)通过柔性电路板与处理器侧的连接器910连接。这样,处理器910只需10根差分信号线与一个相机模组连接。当处理器910与该一个个相机模组通过4个数据通道和一个时钟通道进行数据传输时,处理器910侧只需10根差分信号线。与目前处理器910与5个相机模组分别并联连接相比,处理器910侧减少了40根差分信号线。
因此,本申请实施例只需一个相机模组与处理器910连接,减少了处理器910接口数量和数据管脚数。一方面,有利于处理器910系统集成;另一方面,有利于后期增加设备时,只需将增加的设备与已有的设备级联,改装简单。
电子设备100可以控制前置相机模组和后置相机模组同时开启。
在一些实施例中,当用户想要开启后置相机模组拍摄远处的景象的同时,同时也想要开启前置相机模组记录用户自己的影像。电子设备100可以同时控制开启前置相机模组和后置相机模组。
当前置相机模组和后置相机模组需要同时开启时,处理器内部存储有N个相机模组的地址,处理器首先找到N个相机模组的地址,然后集成电路主机(I2C Master)将N个相机模组的地址通过I2C总线发送至每一个相机模组的集成电路从机(I2C Slaver)。每一个集成电路从机(I2C Slaver)接收到N个相机模组的地址之后,与自己的相机模组的地址进行比较,若N个相机模组的地址中有相机模组的地址和自己的相机模组的地址匹配,则N个相机模组 通过集成电路从机(I2C Slaver)通过I2C总线发送确认信息至集成电路主机(I2C Master)。集成电路主机(I2C Master)接收到确信信息,之后,集成电路主机(I2C Master)控制N个相机模组开启。
相机模组开启即相机模组的应用层、CSI-2协议层和数据物理层均开启。
电子设备100可以控制前置相机模组开启或后置相机模组开启。
首先介绍电子设备100控制后置相机模组开启。
在一些实施例中,用户可以选择只开启后置相机模组来拍摄远处的景象;或者用户也可以选择只开启前置相机模组来记录自己的影像。
若相机模组1至相机模组M为前置相机模组,相机模组M-1至相机模组N为后置相机模组。当然相机模组1至相机模组M也可以是后置相机模组,相机模组M-1至相机模组N为前置相机模组。本申请在此不做限定。
当用户选择只开启后置相机模组来拍摄远处的景象时,处理器910内部存储有N个相机模组的地址,处理器910首先找到相机模组M-1至相机模组N的地址,然后集成电路主机(I2C Master)将相机模组M-1至相机模组N的地址通过I2C总线发送至每一个相机模组的集成电路从机(I2C Slaver)。每一个集成电路从机(I2C Slaver)接收到相机模组M-1至相机模组N的地址之后,与自己的相机模组的地址进行比较,若相机模组M-1至相机模组N的地址中有相机模组的地址和自己的相机模组的地址匹配,则相机模组M-1至相机模组N通过各自的集成电路从机(I2C Slaver)通过I2C总线发送第一确认信息至集成电路主机(I2C Master)。集成电路主机(I2C Master)接收到第一确认信息,之后,集成电路主机(I2C Master)控制相机模组M-1至相机模组N开启。若相机模组1至相机模组N的地址中均没有相机模组的地址和自己的相机模组的地址匹配,则相机模组1至相机模组N不发确认信息至集成电路主机(I2C Master),则相机模组1至相机模组N不开启。
由于相机M-1至相机模组N采集的像素数据需要经过相机模组1至相机模组M传送至处理器910。因此相机模组1至相机模组N的CSI-2协议层和数据物理层需开启,相机模组1至相机模组N的应用层不开启。
具体的,集成电路主机(I2C Master)控制相机模组M-1至相机模组N开启之后,集成电路主机(I2C Master)将相机模组1至相机模组M的地址通过I2C总线发送至相机模组1至相机模组M的集成电路从机(I2C Slaver),相机模组1至相机模组M的集成电路从机(I2C Slaver)接收到相机模组1至相机模组M的地址之后,与自己的相机模组的地址进行比较,若相机模组1至相机模组M的地址中有一个相机模组的地址和自己的相机模组的地址匹配,则相机模组1至相机模组N通过各自的集成电路从机(I2C Slaver)通过I2C总线发送第二确认信息至集成电路主机(I2C Master)。集成电路主机(I2C Master)接收到第二确认信息之后,集成电路主机(I2C Master)控制相机模组1至相机模组N的CSI-2协议层和数据物理层开启,相机模组1至相机模组N的应用层不开启。这样,既可以保证相机M-1至相机模组N采集的像素数据经过相机模组1至相机模组N传送至处理器;又可以减少相机模组1至相机模组N的能量消耗。
需要说明的是,处理器控制相机模组M-1至相机模组N开启和控制相机模组1至相机模组N的CSI-2协议层和数据物理层开启可以是同步进行的。这样,可以提高,相机模组的响应速度和处理器的处理效率。
在一些实施例中,电子设备100可以默认相机模组1至相机模组N这N个相机模组的 CSI-2协议层和数据物理层处于长期开启状态。当用户选择只开启后置相机模组来拍摄远处的景象时,处理器内部存储有N个相机模组的地址,处理器首先找到相机模组M-1至相机模组N的地址,然后集成电路主机(I2C Master)将相机模组M-1至相机模组N的地址通过I2C总线发送至每一个集成电路从机(I2C Slaver)。每一个集成电路从机(I2C Slaver)接收到相机模组M-1至相机模组N的地址之后,与自己的相机模组的地址进行比较,若相机模组M-1至相机模组N的地址中有一个相机模组的地址和自己的相机模组的地址匹配,则相机模组M-1至相机模组N通过各自的集成电路从机(I2C Slaver)通过I2C总线发送第三确认信息至集成电路主机(I2C Master)。集成电路主机(I2C Master)接收到第三确认信息,之后,集成电路主机(I2C Master)控制相机模组M-1至相机模组N的应用层开启。若相机模组1至相机模组N的地址中均没有相机模组的地址和自己的相机模组的地址匹配,则相机模组1至相机模组N不发确认信息至集成电路主机(I2C Master),则相机模组1至相机模组N不开启。相机M-1至相机模组N采集的像素数据需要经过相机模组1至相机模组N传送至处理器。但是相机模组1至相机模组N的CSI-2协议层和数据物理层是开启的,因此集成电路主机(I2C Master)不需要在通过地址配置相机模组1至相机模组N的CSI-2协议层和数据物理层开启,减少了处理器的操作步骤。
当用户只需开启后置相机模组中的主摄像头(例如相机模组X,X大于M小于等于N)时,电子设备100如何开启相机模组X与上述电子设备100如何开始后置相机模组的方法一样,本身请在此不在赘述。
接下来介绍电子设备100控制后置相机模组开启。
当用户选择只开启前置相机模组来记录自己的影像时,处理器内部存储有N个相机模组的地址,处理器首先找到相机模组1至相机模组M-1的地址,然后集成电路主机(I2C Master)将相机模组1至相机模组M-1的地址通过I2C总线发送至每一个集成电路从机(I2C Slaver)。每一个集成电路从机(I2C Slaver)接收到相机模组1至相机模组M-1的地址之后,与自己的相机模组的地址进行比较,若相机模组1至相机模组M-1的地址中有一个相机模组的地址和自己的相机模组的地址匹配,则相机模组1至相机模组M-1通过各自的集成电路从机(I2C Slaver)通过I2C总线发送第四确认信息至集成电路主机(I2C Master)。集成电路主机(I2C Master)接收到第四确信信息,之后,集成电路主机(I2C Master)控制相机模组1至相机模组M-1开启。若相机M-1至相机模组N的地址中均没有相机模组的地址和自己的相机模组的地址匹配,则相机M-1至相机模组N不发确认信息至集成电路主机(I2C Master),则相机M-1至相机模组N不开启。
由于相机模组1至相机模组M-1采集的像素数据不需要经过相机M-1至相机模组N传送至处理器。因此相机M-1至相机模组N的CSI-2协议层和数据物理层不用开启。
下面介绍相机模组1至相机模组N的数据包的传输过程。
目前,当N个相机模组采用并联结构与处理器进行连接时,每个相机模组的数据包格式如图14所示。
如图14所示,数据包格式包括包头、数据包和包尾。
包头可以包括数据标识(data identifier)、数据包大小(word count)和错误效验码(error correcting code,ECC)等。数据包包括需要传送的像素数据。包尾包括数据包附加信息,例如校验码字等。
本申请实施例中,N个相机模组采用级联结构与处理器进行连接时,相机模组N的数据包经过N-1个相机模组传输到处理器。为了区分处理器收到的数据包是来自哪一个相机模组。本申请在数据包格式的包头中加入了一个识别字段,以此来区分数据包属于哪一个相机模组。示例性的,该字段可以称为HOP字段。可以理解的是,该字段可以添加在任意一个位置,例如数据包或者包尾。本申请对识别字段的具体位置不做限定。
如图15所示,图15是含有识别字段(例如HOP字段)的数据包格式示意图。
图15所示的含有识别字段的数据包可以适用于图11-图13实施例描述的数据包。
如图15所示,数据包格式包括包头、数据包和包尾。
包头可以包括数据标识(data identifier)、数据包大小(word count)和错误效验码(error correcting code,ECC)等,包头还包括识别字段(例如HOP字段),该HOP字段的值用于标识相机模组的位置,即处理器可以根据包头中的HOP字段的值分辨出该数据包来自哪个相机模组。
在一些实施例中,识别字段(例如HOP字段)可以添加在包头的尾部,也可以添加在包头的头部,还可以添加在包头中间,本身请在此不做限定。
数据包包括需要传送的像素数据。包尾包括数据包附加信息,例如校验码字等。
图16示例性的示出了N个相机模组的数据包传输过程。
图16所示的N个相机模组的数据包传输过程可以适用于图11所示的实施例中描述的数据包传输过程。
为了便于描述,将相机模组N的数据包记为Pn,将相机模组N-1的数据包记为Pn-1,以此类推,将将相机模组2的数据包记为P2,将相机模组1的数据包记为P1。
对于相机模组N:
相机模组N采集像素数据,并将像素数据打包成数据包(Pn),并将Pn中的识别字段(HOP字段)的值置为0,即HOP字段=0。之后,相机模组N将Pn通过上行接口通过数据线路N(lane N)传输至相机模组N-1的下行接口。
示例性的,当N为5时,相机模组5采集像素数据,并将像素数据打包成数据包(P5),并将P5中的识别字段(HOP字段)的值置为0,即HOP字段=0。之后,相机模组5将P5通过上行接口通过数据线路5(lane 5)传输至相机模组4的下行接口。
对于相机模组N-1:
相机模组N-1数据的处理:
相机模组N-1采集像素数据,并将像素数据打包成数据包(Pn-1),并将Pn-1中的识别字段(HOP字段)的值置为0,即HOP字段=0。之后,相机模组N-1将Pn-1通过上行接口通过数据线路N-1(lane N-1)传输至相机模组N-2的下行接口。
示例性的,当N为5时,相机模组4采集像素数据,并将像素数据打包成数据包(P4),并将P4中的识别字段(HOP字段)的值置为0,即HOP字段=0。之后,相机模组4将P4通过上行接口通过数据线路4(lane 4)传输至相机模组3的下行接口。
对Pn的处理:
相机模组N-1通过下行接口接收Pn,并将Pn解包为数据块,之后相机模组N-1检测到相机模组N的数据块的HOP字段,并将HOP字段加1,HOP字段=1,再将数据块打包成数据包Pn。之后,相机模组N-1将Pn通过下行接口传输到相机模组N-1的上行接口。最后,相机模组N-1的上行接口通过数据线路N-1(lane N-1)将Pn传输至相机模组N-2的下行接口。
需要说明的是,相机模组N-1对相机模组N-1数据的处理、对Pn的处理可以同步进行,提高各个相机模组的数据传输效率。
示例性的,当N为5时,相机模组4通过下行接口接收P5,并将P5解包为数据块,之后相机模组4检测到相机模组5的数据块的HOP字段,并将HOP字段加1,HOP字段=1,再将数据块打包成数据包P5。之后,相机模组4将P5通过下行接口传输到相机模组4的上行接口。最后,相机模组4的上行接口通过数据线路4(lane 4)将P5传输至相机模组3的下行接口。
对于相机模组N-2:
相机模组N-2数据的处理:
相机模组N-2采集像素数据,并将像素数据打包成数据包(Pn-2),并将Pn-2中的识别字段(HOP字段)置为0,即HOP字段=0。之后,相机模组N-2将Pn-2通过上行接口通过数据线路N-2(lane N-2)传输至相机模组N-3的下行接口。
示例性的,当N为5时,相机模组3采集像素数据,并将像素数据打包成数据包(P3),并将P3中的识别字段(HOP字段)的值置为0,即HOP字段=0。之后,相机模组3将P3通过上行接口通过数据线路3(lane 3)输至相机模组2的下行接口。
对Pn-1的处理:
相机模组N-2通过下行接口接收Pn-1,并将Pn-1解包为数据块,之后相机模组N-2检测到相机模组N-1的数据块的HOP字段,并将HOP字段加1,HOP字段=1,再将数据块打包成数据包Pn-1。之后,相机模组N-2将Pn-1通过下行接口传输到相机模组N-2的上行接口。最后,相机模组N-2的上行接口通过数据线路N-2(lane N-2)将Pn-1传输至相机模组N-3的下行接口。
示例性的,当N为5时,相机模组3通过下行接口接收P4,并将P4解包为数据块,之后相机模组3检测到相机模组4的数据块的HOP字段,并将HOP字段加1,HOP字段=1,再将数据块打包成数据包P4。之后,相机模组3将P4通过下行接口传输到相机模组3的上行接口。最后,相机模组3的上行接口通过数据线路3(lane 3)将P4传输至相机模组2的下行接口。
对Pn的处理:
相机模组N-2通过下行接口接收Pn,并将Pn解包为数据块,之后相机模组N-2检测到相机模组N的数据块的HOP字段,并将HOP字段加1,HOP字段=2,再将数据块打包成数据包Pn。之后,相机模组N-2将Pn通过下行接口传输到相机模组N-2的上行接口。最后,相机模组N-2的上行接口通过数据线路N-2(lane N-2)将Pn传输至相机模组N-3的下行接口。
示例性的,当N为5时,相机模组3通过下行接口接收P5,并将P5解包为数据块,之后相机模组3检测到相机模组5的数据块的HOP字段,并将HOP字段加1,HOP字段=2,再将数据块打包成数据包P5。之后,相机模组3将P5通过下行接口传输到相机模组3的上行接口。最后,相机模组3的上行接口通过数据线路3(lane 3)将P5传输至相机模组2的下行接口。
需要说明的是,相机模组N-2对相机模组N-2数据的处理、对Pn-1的处理、对Pn的处理可以同步进行,提高各个相机模组的数据传输效率。
以此类推,相机模组N-3、相机模组N-4至相机模组3的数据处理流程请参考上述相机模组N-2的数据处理过程,本申请在此不在赘述。
对于相机模组2:
相机模组2数据的处理:
相机模组2采集像素数据,并将像素数据打包成数据包(P2),并将P2中的识别字段(HOP字段)的值置为0,即HOP字段=0。之后,相机模组2将P2通过上行接口通过数据线路2(lane 2)传输至相机模组1的下行接口。
对Pn至P3的处理:
相机模组2通过下行接口接收Pn至P3,Pn至P3一共有N-2个数据包,先将Pn至P3分别解包为数据块,相机模组2检测到相机模组3至相机模组N的HOP字段,将相机模组3至相机模组N的HOP字段分别加1,之后,相机模组2再将相机模组3至相机模组N的数据块封装为数据包。之后,相机模组2将Pn至P3通过下行接口传输到相机模组2的上行接口。最后,相机模组2的上行接口通过数据线路2(lane 2)将Pn至P3传输至相机模组1的下行接口。
示例性的,当N为5时,相机模组2通过下行接口接收P5,并将P5解包为数据块,之后相机模组2检测到相机模组5的数据块的HOP字段,并将HOP字段加1,HOP字段=3,再将数据块打包成数据包P5。之后,相机模组2将P5通过下行接口传输到相机模组2的上行接口。最后,相机模组2的上行接口通过数据线路2(lane 2)将P5传输至相机模组1的下行接口。
同理,当N为5时,相机模组2通过下行接口接收P4,并将P4解包为数据块,之后相机模组2检测到相机模组4的数据块的HOP字段,并将HOP字段加1,HOP字段=2,再将数据块打包成数据包P4。之后,相机模组2将P4通过下行接口传输到相机模组2的上行接口。最后,相机模组2的上行接口通过数据线路2(lane 2)将P4传输至相机模组1的下行接口。
同理,当N为5时,相机模组2通过下行接口接收P3,并将P3解包为数据块,之后相机模组2检测到相机模组3的数据块的HOP字段,并将HOP字段加1,HOP字段=1,再将数据块打包成数据包P3。之后,相机模组2将P3通过下行接口传输到相机模组2的上行接口。最后,相机模组2的上行接口通过数据线路2(lane 2)将P3传输至相机模组1的下行接口。需要说明的是,相机模组1对相机模组1数据的处理、对Pn至P3的处理是可以同步进行,这样可以提高各个相机模组的数据传输效率。
对于相机模组1:
相机模组1数据的处理:
相机模组1采集像素数据,并将像素数据打包成数据包(P1),并将P1中的识别字段(HOP字段)的值置为0,即HOP字段=0。之后,相机模组1将P1通过上行接口通过数据线路1(lane 1)传输至处理器的下行接口。
对Pn至P2的处理:
相机模组1通过下行接口接收Pn至P2,Pn至P2一共有N-1个数据包,先将Pn至P2分别解包为数据块,相机模组1检测到相机模组2至相机模组N的HOP字段,将相机模组2至相机模组N的HOP字段分别加1,之后,相机模组1再将相机模组2至相机模组N的数据块封装为数据包。之后,相机模组1将Pn至P2通过下行接口传输到相机模组1的上行接口。最后,相机模组1的行接口通过数据线路1(lane 1)将Pn至P2传输至处理器的下行接口。
示例性的,当N为5时,相机模组1通过下行接口接收P5,并将P5解包为数据块,之 后相机模组1检测到相机模组5的数据块的HOP字段,并将HOP字段加1,HOP字段=4,再将数据块打包成数据包P5。之后,相机模组1将P5通过下行接口传输到相机模组1的上行接口。最后,相机模组1的上行接口通过数据线路1(lane 1)将P5传输至处理器的下行接口。
同理,当N为5时,相机模组1通过下行接口接收P4,并将P4解包为数据块,之后相机模组1检测到相机模组4的数据块的HOP字段,并将HOP字段加1,HOP字段=3,再将数据块打包成数据包P4。之后,相机模组1将P4通过下行接口传输到相机模组1的上行接口。最后,相机模组1的上行接口通过数据线路1(lane 1)将P4传输至处理器的下行接口。
同理,当N为5时,相机模组1通过下行接口接收P3,并将P3解包为数据块,之后相机模组1检测到相机模组3的数据块的HOP字段,并将HOP字段加1,HOP字段=2,再将数据块打包成数据包P3。之后,相机模组1将P3通过下行接口传输到相机模组1的上行接口。最后,相机模组1的上行接口通过数据线路1(lane 1)将P3传输至处理器的下行接口。
同理,当N为5时,相机模组1通过下行接口接收P2,并将P2解包为数据块,之后相机模组1检测到相机模组2的数据块的HOP字段,并将HOP字段加1,HOP字段=1,再将数据块打包成数据包P2。之后,相机模组1将P2通过下行接口传输到相机模组1的上行接口。最后,相机模组1的上行接口通过数据线路1(lane 1)将P2传输至处理器的下行接口。
需要说明的是,相机模组1对相机模组1数据的处理、对Pn至P2的处理是可以同步进行,这样可以提高各个相机模组的数据传输效率。
如图17所示,图17为本申请实施例提供的一种数据传输方法的流程图。
图17所示的一种数据传输方法可以应用于图11所示的多相机模组级联结构中多相机模组级联的数据包传输过程。
在一些实施中,当用户只需开启后置相机模组中的主摄像头(例如相机模组X,X为大于M小于等于N的正整数)拍摄远处的景物时,下面对相机模组X采集的像素数据传输到处理器910的过程进行说明。
由于相机模组X的数据包需要经过相机模组1至相机模组X-1模组的CSI-2协议层和数据物理层传输至处理器910,因此相机模组1至相机模组X-1的CSI-2协议层和数据物理层需要开启,相机模组1至相机模组X-1的应用层不开启。
示例性的,当X为3,M为2,N为5时,当相机模组3开启并采集像素数据后,相机模组3的数据包需要经过相机模组1至相机模组2模组的CSI-2协议层和数据物理层传输至处理器910,因此相机模组1至相机模组2的CSI-2协议层和数据物理层需要开启,相机模组1至相机模组2的应用层不开启。
S1701、处理器910发送相机模组X的地址至每一个相机模组。
电子设备100中存储有每个相机模组的地址,电子设备100可以根据相机模组的地址来控制相机模组开启或关闭。
当用户请求开启后置相机模组中的主摄像头(例如相机模组X)时,处理器910首先获取到相机模组X的地址,并将相机模组X的地址发送至每一个相机模组。若电子设备100中配置有N个相机模组,则处理器910分别向N个相机模组发送相机模组X的地址。
示例性的,当用户请求开启后置相机模组中的相机模组3时,处理器910首先获取到相机模组3的地址,并将相机模组3的地址发送至每一个相机模组。若电子设备100中配置有5个相机模组,则处理器910分别向5个相机模组发送相机模组3的地址。
S1702、相机模组X发送确认信息至处理器910。
N个相机模组收到相机模组X的地址后,每个相机模组将接收到的相机模组X的地址与每个相机模组的地址匹配,若不匹配,则相机模组不做任何响应;若匹配,则相机模组X发送确认信息至处理器910。
处理器910接收并响应相机模组X发送的确认信息,处理器910控制相机模组X开启。相机模组X开启即相机模组X的应用层、CSI-2协议层和数据物理层均开启。
示例性的,5个相机模组收到相机模组3的地址后,每个相机模组将接收到的相机模组3的地址与每个相机模组的地址匹配,若不匹配,则相机模组不做任何响应;若匹配,则相机模组3发送确认信息至处理器910。
处理器910接收并响应相机模组3发送的确认信息,处理器910控制相机模组3开启。相机模组3开启即相机模组3的应用层、CSI-2协议层和数据物理层均开启。
S1703、相机模组X开始采集像素数据,并将像素数据打包成数据包,其中,数据包中识别字段的值为0。
示例性的,相机模组3开始采集像素数据,并将像素数据打包成数据包。
为了使处理器910区分数据包所属的相机模组,在数据包中增加了一个识别字段,具体的,添加识别字段的数据包格式请参考图15所示的实施例,本申请在此不在赘述。
相机模组X将本级数据包的识别字段值置为0。
示例性的,相机模组3将本级数据包的识别字段值置为0。
S1704、相机模组X将数据包发送至相机模组X-1。
示例性的,相机模组3将数据包发送至相机模组2。
S1705、相机模组X-1接收数据包,并将相机模组X数据包中的识别字段值增加1。
相机模组X-1接收相机模组X发送的相机模组X的数据包,先将相机模组X的数据包解包为数据块,相机模组X-1检测到相机模组X的识别字段,将并将相机模组X的数据包中的识别字段值加1,则相机模组X的数据包中的识别字段值为1,相机模组X-1在将相机模组X的数据块封装为数据包。
S1706、相机模组X-1将相机模组X数据包发送至相机X-2模组。
以此类推,每个相机模组向下一级相机模组传输相机模组X的数据包,每一级相机模组将接受到的数据包中的识别字段值增加1。
S1707、相机模组2接收相机模组3的数据包,并将相机模组X数据包中的识别字段增加1,识别字段值为X-2。
相机模组2接收相机模组3发送的相机模组X的数据包,先将相机模组X的数据包解包为数据块,相机模组X-1检测到相机模组X的识别字段,并将相机模组X的数据包中的识别字段加1,则相机模组X的数据包中的识别字段值为X-2,相机模组2在将相机模组3的数据块封装为数据包。
示例性的,相机模组2接收相机模组3发送的相机模组3的数据包,先将相机模组3的数据包解包为数据块,相机模组2检测到相机模组3的识别字段,将并将相机模组3的数据包中的识别字段值加1,则相机模组3的数据包中的识别字段值为1,相机模组2在将相机模组3的数据块封装为数据包。
S1708、相机模组2将相机模组X的数据包发送至相机模组1。
示例性的,相机模组2将相机模组3的数据包发送至相机模组1。
S1709、相机模组1接收数据包,并将相机模组X数据包中的识别字段值增加1。
相机模组1接收相机模组2发送的相机模组X的数据包,先将相机模组X的数据包解包为数据块,相机模组X-1检测到相机模组X的识别字段,并将相机模组X的数据包中的识别字段值加1,则相机模组X的数据包中的识别字段值为X-1。
示例性的,相机模组1接收相机模组2发送的相机模组3的数据包,先将相机模组3的数据包解包为数据块,相机模组1检测到相机模组3的识别字段,并将相机模组3的数据包中的识别字段值加1,则相机模组3的数据包中的识别字段值为2,之后,相机模组1再将数据块封装为数据包。
S1710、相机模组1将相机模组X的数据包发送至处理器910。
示例性的,相机模组1将相机模组3的数据包发送至处理器910。
S1711、处理器910接收相机模组1发送的相机模组X的数据包,处理器910可以根据数据包中的识别字段的值辨认出该数据包是属于哪一个相机模组。
当处理器910接收到的数据包中的识别字段的值为X-1,则该数据包属于相机模组X;当处理器910接收到的数据包中的识别字段的值为N-1,则该数据包属于相机模组N。
示例性的,当处理器910接收到的数据包中的识别字段的值为2,则该数据包属于相机模组3。
处理器910通过CSI-2协议层将数据包解包为已编码的数据块。然后,CSI-2协议层将已编码的像素数据传输至应用层,应用层可用于对已编码的像素数据进行解码,得到像素数据。之后,应用层对像素数据进行像素数据压缩、像素数据合并和图像压缩等操作。例如用户当前在拍摄远处的景物照片,并且按下了拍摄按钮,则应用层将像素数据整合成图片,并将图片保存至电子设备100的图库中。
在一些实施例中,用户想在电子设备100中增加一个后置相机模组,为了描述方便,将需要增加的相机模组称为相机模组N+1。则该用户只需将该相机模组N+1的上行接口与相机N模组的下行接口连接,相机模组N+1的下行接口空置。当相机模组N+1开启并采集像素数据后,并将采集的像素数据封装为数据包,其中,相机模组N+1Y将数据包中的识别字段的值置为0。之后,相机模组N+1将数据包通过相机模组N+1的上行接口通过数据线路N+1传输至相机模组N。之后相机模组N+1的数据包经过相机模组N至相机模组1传输至处理器910。当相机模组N+1的数据包传输至处理器910之后,相机模组N+1的数据包中的识别字段的值为N,则处理器可以根据数据包中识别字段的值为N判断出该数据包来自相机模组N+1。对于相机模组N+1的数据包经过相机模组N至相机模组1传输至处理器910的过程请参考图16所示的实施例,本申请在此不再赘述。
从上述实施例可知,当用户想增加相机模组时,只需将需增加的相机模组与已有的相机模组进行级联连接,不用改变处理器与相机模组之间的线路连接关系,操作简单。
在一些应用场景中,电子设备100配置有多个相机模组,多个相机模组可以包括多个前置相机模组和多个后置相机模组。多个前置相机模组级联连接,多个后置相机模组级联连接,多个前置相机模组和多个后置相机模组与模拟开关并联连接。电子设备100可以通过模拟开关控制多个前置相机模组开启或多个后置相机模组开启。
上述实施例中,多个相机模组之间采用级联的方式连接。可知,当相机模组1至相机模组M为前置相机模组,相机M-1至相机模组N为后置相机模组时。当用户选择只开启后置相机模组来拍摄远处的景象时,相机M-1至相机模组N为后置相机模组开启,相机模组1至 相机模组M关闭。由于相机M-1至相机模组N采集的像素数据需要经过相机模组1至相机模组N传送至处理器。因此相机模组1至相机模组N的CSI-2协议层和数据物理层需开启。
相机模组1至相机模组N的CSI-2协议层和数据物理层开启可以有以下方式:
方式一、相机M-1至相机模组N开启后,再由处理器发送控制信号控制相机模组1至相机模组N的CSI-2协议层和数据物理层开启;
方式二、相机模组1至相机模组N的CSI-2协议层和数据物理层默认一直开启。再由处理器发送控制信号控制相机M-1至相机模组N的应用层开启。
由上述方式可知,方式一操作复杂,需要处理器另外发控制信号控制相机模组1至相机模组N的CSI-2协议层和数据物理层开启;方式二中相机模组1至相机模组N的CSI-2协议层和数据物理层默认一直开启,这样,会使相机模组的消耗增大。
因此,本申请以下实施例将前置相机模组和后置相机模组分开,通过模拟开关来选择开启前置相机模组或后置相机模组。
如图18所示,图18为另一种相机模组级联的系统图。
如图18所示,该系统包括后置相机模组、前置相机模组、模拟开关和处理器。
其中,前置相机模组包括相机模组1、相机模组2、…、相机模组M等M个相机模组。后置相机模组包括相机模组M+1、相机模组M+2、…、相机模组N等N-M个相机模组。
对于后置相机模组、前置相机模组和处理器的结构描述请参考前述实施例,本申请在此不再赘述。
如图18所示,对于前置相机模组,相机模组M的下行接口空置,相机模组M的上行接口与相机模组M-1的下行接口连接,以此类推,相机模组2的下行接口与相机模组3的上行接口连接,相机模组2的上行接口与相机模组1的下行接口连接,相机模组1的上行接口与模拟开关的触点2(第二触点)连接。
对于后置相机模组,相机模组N的下行接口空置,相机模组N的上行接口与相机模组N-1的下行接口连接,以此类推,相机模组M+2的下行接口与相机M+3模组的上行接口连接,相机模组M+2的上行接口与相机模组M+1的下行接口连接,相机模组M+1的上行接口与模拟开关的触点1(第一触点)连接。
模拟开关的触点0(第三触点)与处理器的下行接口连接。
当用户只需开启后置相机模组来拍摄远处的景物时,处理器通过I/0管脚发送控制信号控制模拟开关的触点0(第三触点)与模拟开关的触点1(第一触点)导通。这样,处理器就可以接收到后置相机模组(相机模组M+1、相机模组M+2、…、相机模组N)的像素数据。
对于后置相机模组(相机模组M+1、相机模组M+2、…、相机模组N)的像素数据传输到处理器的过程请参考实施例一,本身请在此不再赘述。
当用户只需开启前置相机模组来记录自己的影像时,处理器通过I/0管脚发送控制信号控制模拟开关的触点0(第三触点)与模拟开关的触点2(第二触点)导通。这样,处理器就可以接收到前置相机模组(相机模组1、相机模组2、…、相机模组M)的像素数据。
对于前置相机模组(相机模组1、相机模组2、…、相机模组M)的像素数据传输到处理器的过程请参考实施例一,本身请在此不再赘述。
如图19所示,图19为多个级联相机模组与处理器910通过模拟开关连接的工程结构示意图。
前置相机模组与模拟开关的第一触点连接。后置相机模组与模拟开关的第二触点连接。 模拟开关的第三触点与处理器910连接。
前置相机模组有M个,后置相机模组有N-M个。
具体的,对于前置相机模组,相机模组M通过柔性电路板与相机模组M-1连接,以此类推,相机模组M+2通过柔性电路板与相机模组M+1连接,相机模组M+1与模拟开关的第二触点连接。
对于后置相机模组,相机模组N通过柔性电路板(Flexible circuit board,FPC)与相机模组M-1连接,以此类推,相机模组2通过柔性电路板与相机模组1连接,相机模组1与模拟开关的第一触点连接。
模拟开关的第三触点通过柔性电路板与处理器910侧的连接器连接。
这样,将前置相机模组和后置相机模组分开,通过模拟开光来选择开启前置相机模组或后置相机模组。一方面,可以减少处理器910的操作,另一方面,可以节省不必要的相机模组的消耗。
如图20所示,图20为本申请实施例二提供的一种数据传输的方法流程图。
电子设备100设置有前置相机模组和后置相机模组。前置相机模组包括相机模组1、相机模组2、…、相机模组M等M个相机模组。后置相机模组包括相机模组M+1、相机模组M+2、…、相机模组X、…、相机模组N等N-M个相机模组。
示例性的,当X为4,M为2,N为5时,则前置相机模组包括相机模组1、相机模组2这两个相机模组。后置相机模组包括相机模组3、相机模组4、相机模组5这三个相机模组。
前置相机模组和后置相机模组通过模拟开关连接,具体的,请参考图18所示的实施例,本申请在此不再赘述。
当用户只需开启后置相机模组中的主摄像头(例如相机模组X,X为大于M小于等于N的正整数)拍摄远处的景物时,下面对相机模组X采集的像素数据传输到处理器910的过程进行说明。
S2001、处理器910控制模拟开关的第三触点与模拟开关的第二触点导通。
这样,电子设备100可以通过地址配置来开启后置相机模组的一个或多个相机模组。
在一些实施例中,处理器910也可以控制模拟开关的第二触点与模拟开关的第一触点导通。这样,电子设备100可以通过地址配置来开启前置相机模组的一个或多个相机模组。
S2002、处理器910发送相机模组X的地址至后置相机模组中的每一个相机模组。
由于相机模组X的数据包需要经过相机模组M+1至相机模组X-1的CSI-2协议层和数据物理层传输至处理器910,因此相机模组1至相机模组X-1模组的CSI-2协议层和数据物理层需要开启,相机模组1至相机模组X-1模组的应用层不开启,相机X+1至相机模组N的应用层、协议层和数据物理层均不用开启。
示例性的,当X为4,M为2,N为5时,当相机模组4开启并采集像素数据后,相机模组4的数据包需要经过相机模组3的CSI-2协议层和数据物理层传输至处理器910,因此相机模组3的CSI-2协议层和数据物理层需要开启,相机模组3的应用层不开启。
电子设备100中存储有每个相机模组的地址,电子设备100可以根据相机模组的地址来控制相机模组开启或关闭。
当用户请求开启后置相机模组中的主摄像头(例如相机模组X)时,处理器910首先获取到相机模组X的地址,并将相机模组X的地址发送至相机模组M+1至相机模组N等N-M个相机模组。
示例性的,当用户请求开启后置相机模组中的相机模组4时,处理器910首先获取到相机模组4的地址,并将相机模组4的地址发送至相机模组3、相机模组4、相机模组5这三个相机模组。
S2003、相机模组X发送确认信息至处理器910。
相机模组M+1至相机模组N等N-M个相机模组收到相机模组X的地址后,相机模组M+1至相机模组N等N-M个相机模组将接收到的相机模组X的地址与每个相机模组的地址匹配,若不匹配,则相机模组不做任何响应;若匹配,则相机模组X发送确认信息至处理器910。
处理器910接收并响应相机模组X发送的确认信息,处理器910控制相机模组X开启。即相机模组X开启即相机模组X的应用层、CSI-2协议层和数据物理层均开启。
示例性的,相机模组3至相机模组5这3个相机模组收到相机模组4的地址后,相机模组3至相机模组5这3个相机模组将接收到的相机模组4的地址与每个相机模组的地址匹配,若不匹配,则相机模组不做任何响应;若匹配,则相机模组4发送确认信息至处理器910。
处理器910接收并响应相机模组4发送的确认信息,处理器910控制相机模组4开启。即相机模组4开启即相机模组4的应用层、CSI-2协议层和数据物理层均开启。
S2004、相机模组X开始采集像素数据,并将像素数据打包成数据包,其中,数据包中识别字段的值为0。
为了使处理器910区分数据包所属的相机模组,在数据包中增加了一个识别字段,具体的,添加识别字段的数据包格式请参考图15所示的实施例,本申请在此不在赘述。
相机模组X将本级数据包的识别字段值置为0。
示例性的,相机模组4开始采集像素数据,并将像素数据打包成数据包,并将数据包的识别字段的值置为0。
S2005、相机模组X将数据包发送至相机模组X-1。
相机模组X-1接收相机模组X发送的相机模组X的数据包,现将相机模组X的数据包解包为数据块,相机模组X-1检测到相机模组X的识别字段,并将相机模组X的数据包中的识别字段值加1,则相机模组X的数据包中的识别字段值为2,相机模组X-1再将相机模组X的数据块封装为数据包。
以此类推,每个相机模组向下一级相机模组传输相机模组X的数据包,每一级相机模组将接受到的数据包中的识别字段值增加1。
S2006、相机模组M+2接收数据包,将数据包中的识别字段置加1,识别字段值为X-M-2。
S2007、相机模组M+2将数据包发送至相机模组M+1。
S2008、相机模组M+1接收数据包,将数据包中的识别字段置加1,识别字段值为X-M-1。
示例性的,相机模组3接收相机模组4发送的相机模组4的数据包,先将相机模组4的数据包解包为数据块,相机模组3检测到相机模组4的识别字段,并将相机模组4的数据包中的识别字段值加1,则相机模组3的数据包中的识别字段值为1。之后,相机模组3再将数据块封装为数据包。
S2009、相机模组M+1将数据包发送至处理器910。
S2010、处理器910接收相机模组M+1发送的相机模组X的数据包。
处理器910可以根据数据包中的识别字段的值辨认出该数据包是属于哪一个相机模组。
当处理器910接收到的数据包中的识别字段的值为X-M-1,则该数据包属于相机模组X;当处理器910接收到的数据包中的识别字段的值为N-M-1,则该数据包属于相机模组N。
示例性的,当处理器910接收到的数据包中的识别字段的值为2,则该数据包属于相机模组4。
处理器910通过CSI-2协议层将数据包解包成已编码的数据块,然后,CSI-2协议层将已编码的数据块传输至应用层,应用层可用于对已编码的数据块进行解码,得到像素数据。之后,应用层对像素数据进行像素数据压缩、像素数据合并和图像压缩等操作。例如用户当前在拍摄远处的景物照片,并且按下了拍摄按钮,则应用层将像素数据整合成图片,并将图片保存至电子设备100的图库中。
在一些应用场景中,电子设备100配置有多个相机模组,多个相机模组可以包括多个前置相机模组和多个后置相机模组。多个前置相机模组级联连接,多个后置相机模组级联连接,多个前置相机模组和多个后置相机模组与处理器910并联连接。
上述实施例采用的多个相机模组与处理器910串联连接,处理器910侧只需一个接口与相机模组连接。当多个相机模组同时开启时,该接口在同一时间接收的像素数据会增大,导致该接口的数据拥挤。为了减少该接口在同一时间接收的像素数据过多,本申请以下实施例将前置相机模组和后置相机模组分开,前置相机模组采用级联的方式与处理器910连接,后置相机模组采用级联的方式与处理器910连接。这样,一方面,可以避免同一时间处理侧的接口处数据量太多,造成数据拥挤;另一方面,可以提高处理器910处理数据的速度。
如图21所示,图21为另一种相机模组级联的系统图。
如图21所示,该系统包括后置相机模组、前置相机模组和处理器910。
其中,前置相机模组包括相机模组1、相机模组2、…、相机模组M,共有M个相机模组,前置相机模组也可以包括更多或更少的相机模组,本身请在此不做限定。
后置相机模组包括相机模组M+1、相机模组M+2、…、相机模组N,共有N-M个相机模组,后置相机模组还可以包括更多或更少的相机模组,本身请在此不做限定。
对于后置相机模组、前置相机模组和处理器910的结构描述请参考前述实施例,本申请在此不再赘述。
处理器910侧部署有第一集成电路主机,第一集成电路主机可用于控制后置相机模组的N-M个相机模组开启或关闭。
处理器910侧部署有第二集成电路主机,第二集成电路主机可用于控制前置相机模组的M个相机模组开启或关闭。
在一些实施例中,前置相机模组和后置相机模组也可以由同一个集成电路主机控制,也可以由不同的集成电路主机控制,本身请在此不做限定。
如图21所示,后置相机模组中,相机模组N的下行接口空置,相机模组N的上行接口与相机模组N-1的下行接口连接,以此类推,相机模组M+2的上行接口与相机模组M+1的下行接口连接,相机模组M+1的下行接口与处理器910的第一下行接口连接。
前置相机模组中,相机模组M的下行接口空置,相机模组M的上行接口与相机模组M-1的下行接口连接,以此类推,相机模组2的上行接口与相机模组1的下行接口连接,相机模组1的上行接口与处理器910的第二下行接口连接。
这样,后置相机模组的像素数据通过处理侧的第一下行接口传输到处理器910,前置相机模组的像素数据通过处理侧的第二下行接口传输到处理器910,避免了当处理器910侧只有一个接口时,当前置相机模组和后置相机模组同时开启时,该接口同一时间需要传输的数据量过多,减少了该接口的数据压力。
如图22所示,图22为多个级联相机模组与处理器910并联连接的工程结构示意图。
前置相机模组有M个,前置相机模组与处理器910连接。后置相机模组有N-M个,后置相机模组与处理器连接。
前置相机模组中,相机模组M通过柔性电路板与相机模组M-1连接,以此类推,相机模组1通过柔性电路板与处理器910的第二连接器连接。
对于后置相机模组,相机模组N通过柔性电路板(Flexible circuit board,FPC)与相机模组N-1连接,以此类推,相机模组M+2通过柔性电路板与相机模组M+1连接,相机模组M+1通过柔性电路板与处理器910的第一连接器连接。
如图23,图23为本申请实施例三提供的一种数据传输方法流程图。
电子设备100设置有前置相机模组和后置相机模组。前置相机模组包括相机模组1、相机模组2、…、相机模组E、…、相机模组M等M个相机模组。后置相机模组包括相机模组M+1、相机模组M+2、…、相机模组X、…、相机模组N等N-M个相机模组。
示例性的,当X为4,M为2,N为5时,则前置相机模组包括相机模组1、相机模组2这两个相机模组。后置相机模组包括相机模组3、相机模组4、相机模组5这三个相机模组。
前置相机模组与处理器910的第一下行接口连接,后置相机模组与处理器910的第二下行接口连接。具体的,请参考图21所示的实施例,本申请在此不再赘述。
当用户开启后置相机模组中的主摄像头(例如相机模组X,X为大于M小于等于N的正整数)拍摄远处的景物时,又要开启前置相机模组中的主摄像头(例如相机模组E,E为大于等于1小于等于M的正整数)记录自己的影像时,下面对相机模组X和相机模组E采集的像素数据传输到处理器910的过程进行说明。
由于相机模组X的数据包需要经过相机模组M+1至相机模组X-1的CSI-2协议层和数据物理层传输至处理器910,因此相机模组M+1至相机模组X-1的CSI-2协议层和数据物理层需要开启,相机模组M+1至相机模组X-1的应用层不开启。
示例性的,当X为4,M为2,N为5,E为2时,当相机模组4开启并采集像素数据后,相机模组4的数据包需要经过相机模组3的CSI-2协议层和数据物理层传输至处理器910,因此相机模组3的CSI-2协议层和数据物理层需要开启,相机模组3的应用层不开启。
由于相机模组E的数据包需要经过相机模组1至相机模组E-1的CSI-2协议层和数据物理层传输至处理器910,因此相机模组1至相机模组E-1的CSI-2协议层和数据物理层需要开启,相机模组1至相机模组E-1的应用层不开启。
示例性的,当X为4,M为2,N为5,E为2时,当相机模组2开启并采集像素数据后,相机模组2的数据包需要经过相机模组1的CSI-2协议层和数据物理层传输至处理器910,因此相机模组1的CSI-2协议层和数据物理层需要开启,相机模组1的应用层不开启。
S2301、处理器910发送相机模组E的地址至前置相机模组中的每一个相机模组。
由于相机模组E的数据包需要经过相机模组1至相机模组E-1的CSI-2协议层和数据物理层传输至处理器910,因此相机模组1至相机模组E-1模组的CSI-2协议层和数据物理层需要开启,相机模组1至相机模组E-1模组的应用层不开启,相机X+1至相机模组N的应用层、协议层和数据物理层均不用开启。
示例性的,当用户请求开启后置相机模组中的相机模组2时,处理器910首先获取到相机模组2的地址,并将相机模组2的地址发送至相机模组1、相机模组2这两个相机模组。
电子设备100中存储有每个相机模组的地址,电子设备100可以根据相机模组的地址来控制相机模组开启或关闭。
当用户请求开启前置相机模组中的主摄像头(例如相机模组E)时,电子设备100处理器910首先获取到相机模组E的地址,并将相机模组E的地址发送至相机模组1至相机模组M。
S2302、相机模组E发送确认信息至处理器910。
M个相机模组收到相机模组E的地址后,每个相机模组将接收到的相机模组E的地址与每个相机模组的地址匹配,若不匹配,则相机模组不做任何响应;若匹配,则相机模组E发送确认信息至处理器910。
处理器910接收并响应相机模组E发送的确认信息,处理器910控制相机模组E开启。相机模组E开启即相机模组E的应用层、CSI-2协议层和数据物理层均开启。
示例性的,相机模组1至相机模组2这两个相机模组收到相机模组2的地址后,相机模组1至相机模组2这两个相机模组将接收到的相机模组2的地址与每个相机模组的地址匹配,若不匹配,则相机模组不做任何响应;若匹配,则相机模组2发送确认信息至处理器910。
处理器910接收并响应相机模组2发送的确认信息,处理器910控制相机模组2开启。即相机模组2开启即相机模组24的应用层、CSI-2协议层和数据物理层均开启。
S2303、处理器910发送相机模组X的地址至后置相机模组中的每一个相机模组。
由于相机模组X的数据包需要经过相机模组M+1至相机模组X-1的CSI-2协议层和数据物理层传输至处理器910,因此相机模组M+1至相机模组X-1的CSI-2协议层和数据物理层需要开启,相M+1模组至相机模组X-1模组的应用层不开启,相机X+1至相机模组N的应用层、协议层和数据物理层均不用开启。
电子设备100中存储有每个相机模组的地址,电子设备100可以根据相机模组的地址来控制相机模组开启或关闭。
当用户请求开启后置相机模组中的主摄像头(例如相机模组X)时,电子设备100处理器910首先获取到相机模组X的地址,并将相机模组X的地址发送至相机模组M+1至相机模组N。
示例性的,当用户请求开启后置相机模组中的相机模组4时,处理器910首先获取到相机模组4的地址,并将相机模组4的地址发送至相机模组3、相机模组4、相机模组5这三个相机模组。
S2304、相机模组X发送确认信息至处理器910。
N-M个相机模组收到相机模组X的地址后,每个相机模组将接收到的相机模组X的地址与每个相机模组的地址匹配,若不匹配,则相机模组不做任何响应;若匹配,则相机模组X发送确认信息至处理器910。
处理器910接收并响应相机模组X发送的确认信息,处理器910控制相机模组X开启。相机模组X开启即相机模组X的应用层、CSI-2协议层和数据物理层均开启。
示例性的,相机模组3、相机模组4、相机模组5这三个相机模组收到相机模组4的地址后,相机模组3、相机模组4、相机模组5这三个相机模组将接收到的相机模组4的地址与每个相机模组的地址匹配,若不匹配,则相机模组不做任何响应;若匹配,则相机模组4发送确认信息至处理器910。
处理器910接收并响应相机模组4发送的确认信息,处理器910控制相机模组4开启。即相机模组4开启即相机模组24的应用层、CSI-2协议层和数据物理层均开启。
S2301-S2302和2303-S2304是可以同步进行的,本申请在此不做限定。
S2305、相机模组E开始采集像素数据,并将像素数据打包成数据包,其中,数据包中识别字段的值为0。
示例性的,相机模组2开始采集像素数据,并将像素数据打包成数据包,并将数据包的识别字段的值置为0。
S2306、相机模组E将数据包发送至相机模组E-1。
相机模组E-1接收相机模组E发送的相机模组E的数据包,先将相机模组E的数据包解包为数据块,相机模组E-1检测到相机模组E的识别字段,并将相机模组E的识别字段值加1,则相机模组X的识别字段值为2,相机模组E-1再将相机模组E的数据包封装为数据包。
以此类推,每个相机模组向下一级相机模组传输相机模组E的数据包,每一级相机模组将接受到的数据包中的识别字段值增加1。
S2307、相机模组2接收数据包,将数据包中的识别字段置加1,识别字段值为E-2。
S2008、相机模组2将数据包发送至相机模组1。
S2009、相机模组1接收数据包,将数据包中的识别字段置加1,识别字段值为E-1。
示例性的,相机模组1接收相机模组2发送的相机模组2的数据包,先将相机模组2的数据包解包为数据块,相机模组1检测到相机模组2的识别字段,并将相机模组2的数据包中的识别字段值加1,则相机模组2的数据包中的识别字段值为1。之后,相机模组1再将数据块封装为数据包。
S2010、相机模组1将数据包发送至处理器910。
S2311、相机模组X开始采集像素数据,并将像素数据打包成数据包,其中,识别字段的值为0。
示例性的,相机模组4开始采集像素数据,并将像素数据打包成数据包,并将数据包的识别字段的值置为0。
S2312、相机模组X将数据包发送至相机模组X-1。
相机模组X-1接收相机模组X发送的相机模组X的数据包,先将相机模组X的数据包解包为数据块,相机模组X-1检测到相机模组X的识别字段,并将相机模组X的识别字段值加1,则相机模组X的识别字段值为2,相机模组X-1再将相机模组X的数据包封装为数据包。
以此类推,每个相机模组向下一级相机模组传输相机模组X的数据包,每一级相机模组将接受到的数据包中的识别字段值增加1。S2313、相机模组M+2接收数据包,将数据包中的识别字段置加1,识别字段值为X-M-2。
S2314、相机模组M+2将数据包发送至相机模组M+1。
S2315、相机模组M+1接收数据包,将数据包中的识别字段置加1,识别字段值为X-M-1。
示例性的,当N为5,X为4,M为2时,相机模组3接收相机模组4发送的相机模组4的数据包,先将相机模组4的数据包解包为数据块,相机模组3检测到相机模组4的识别字段,并将相机模组4的数据包中的识别字段值加1,则相机模组3的数据包中的识别字段值为1。之后,相机模组3再将数据块封装为数据包。
S2316、相机模组M+1将数据包发送至处理器910。
S2317、处理器910接收相机模组E和相机模组X的数据包。
处理器910通过第一下行接口接收相机模组M+1发送的相机模组X的数据包。
处理器910通过第二下行接口接收相机模组1发送的相机模组E的数据包。
处理器910可以根据数据包中的识别字段的值辨认出该数据包是属于哪一个相机模组。
示例性的,处理器910首先根据判断第一下行接口接收的数据包来自后置相机模组采集的数据,当数据包中的识别字段的值为X-M-1,则处理器910识别出该数据包属于后置相机模组中的相机模组X。
处理器910首先根据判断第二下行接口接收的数据包来自前置相机模组采集的数据,当数据包中的识别字段的值为E-1,则处理器910识别出该数据包属于前置相机模组中的相机模组E。
处理器910接收相机模组E和相机模组X的数据包之后,CSI-2协议层将相机模组E和相机模组X的数据包解包为已编码的数据块,然后,将已编码的数据块传输至应用层,应用层可用于对已编码的数据块进行解码,得到像素数据。之后,应用层对像素数据进行像素数据压缩、像素数据合并和图像压缩等操作。例如将相机模组E的像素数据整合成图片和将相机模组X的像素数据整合成图片,并将相机模组E拍摄的图片和相机模组X拍摄的图片保存至电子设备100的图库中。
S2305-S2310和S2311-S2316是可以同步进行的,本申请在此不做限定。
基于上述图21-图23的实施例,下面对本申请实施例涉及的一种应用场景进行介绍。
图24A-图24C示例性的示出了目前视频通话应用场景中,前置摄像界面和后置摄像界面切换的UI图。
图24A示例性的示出了视频通话应用界面。该视频通话应用界面包括视频界面240、视频界面241和操作控件选项243。其中,视频界面240为电子设备100前置相机模组采集的用户图像;视频界面241为与电子设备100进行视频通话的另一个电子设备采集的用户图像,该用户图像可以是另一个电子设备前置相机模组采集的用户图像,也可以是另一个电子设备的后置相机模组采集的用户图像。操作控件选项243包括切换摄像头控件2401、挂断控件2402和更多控件2403。
如图24B所示,当用户想将当前视频画面切换为后置相机模组拍摄的画面时,切换摄像头控件2401可以接收用户单击操作,响应于用户单击切换摄像头控件2401的操作,如图24C所示,电子设备100将显示后置相机模组拍摄的视频画面244。
在一些实施例中,当用户和好友在进行视频通话时,电子设备100可以同时开启前置相机模组和后置相机模组采集图像并显示。
图25A-图25C示例性的示出了电子设备100同时开启前置相机模组和后置相机模组采集图像并显示的UI图。
如图25A所示,图25A示例性的示出了视频通话应用界面。该视频通话应用界面包括视频界面240、视频界面241和操作控件选项244。其中,视频界面240为电子设备100前置相机模组采集的用户图像;视频界面241为与电子设备100进行视频通话的另一个电子设备采集的用户图像,该用户图像可以是另一个电子设备前置相机模组采集的用户图像,也可以是另一个电子设备的后置相机模组采集的用户图像。操作控件选项245包括切换摄像头控件2401、挂断控件2402、更多控件2403和控件2404,控件2404可以接收用户单击操作,响应于用户单击操作,电子设备100的前置相机模组和后置相机模组同时开启采集图像并
如图25B所示,当用户想同时开启电子设备100的前置相机模组和后置相机模组采集图像时,控件2404可以接收用户单击操作,响应于用户单击操作,电子设备100显示如图25C所示的用户界界面。
该用户界面包括视频界面240、视频界面241、视频界面246和操作控件选项244。其中, 视频界面240、视频界面241、操作控件选项244请参考前述实施例,本身请在此不再赘述。视频界面246为电子设备100的后置相机模组采集的图像。
这样,用户可以同时开启前置相机模组和后置相机模组采集图像并显示。并将前置相机模组和后置相机模组采集的图像发送至与用户进行视频通话的好友。实现了一些应用场景中,电子设备100只能开启前置相机模组采集图像并显示或者只能开启后置相机模组采集图像并显示的问题,提高了用户体验。
当然,改应用场景也适用于图11-图17所示的实施例,本身请在此不做限定。
上述实施例中所用,根据上下文,术语“当…时”可以被解释为意思是“如果…”或“在…后”或“响应于确定…”或“响应于检测到…”。类似地,根据上下文,短语“在确定…时”或“如果检测到(所陈述的条件或事件)”可以被解释为意思是“如果确定…”或“响应于确定…”或“在检测到(所陈述的条件或事件)时”或“响应于检测到(所陈述的条件或事件)”。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线)或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如DVD)、或者半导体介质(例如固态硬盘)等。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,该流程可以由计算机程序来指令相关的硬件完成,该程序可存储于计算机可读取存储介质中,该程序在执行时,可包括如上述各方法实施例的流程。而前述的存储介质包括:ROM或随机存储记忆体RAM、磁碟或者光盘等各种可存储程序代码的介质。

Claims (18)

  1. 一种数据传输方法,其特征在于,所述方法包括:
    第一相机模组接收处理器发送的第一指令之后,接收第二相机模组发送的第一数据包,所述第一数据包中包括有识别字段,所述第一数据包中识别字段的值用于指示所述第一数据包的转发次数;
    所述第一相机模组识别出所述第一数据包中识别字段的值为第一值,并将所述第一值修改为第二值,所述第二值与所述第一值之差为预设值;
    所述第一相机模组将所述第一数据包中识别字段的值修改为所述第二值之后的所述第一数据包发送给所述处理器。
  2. 根据权利要求1所述的方法,其特征在于,所述第一相机模组包括第一应用层、第一协议层和第一物理层,所述第一物理层包括第一上行接口和第一下行接口;
    所述第一相机模组接收第二相机模组发送的第一数据包,具体包括:
    所述第一相机模组通过所述第一下行接口接收所述第二相机模组发送的所述第一数据包;
    所述第一相机模组将所述第一数据包中识别字段的值由所述第一值修改为所述第二值,具体包括:
    所述第一相机模组通过所述第一协议层将所述第一数据包中识别字段的值由所述第一值修改为所述第二值;
    所述第一相机模组将所述第一数据包中识别字段的值修改为所述第二值之后的所述第一数据包发送给所述处理器,具体包括:
    所述第一相机模组通过所述第一上行接口将所述第一数据包中识别字段的值修改为所述第二值之后的所述第一数据包发送给所述处理器。
  3. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    所述第一相机模组采集第一数据,并根据所述第一数据生成第二数据包,所述第二数据包中包括有识别字段,所述第二数据包中识别字段的值为第三值;
    所述第一相机模组将所述第二数据包发送至所述处理器。
  4. 根据权利要求3所述的方法,其特征在于,所述第一相机模组包括第一应用层、第一协议层和第一物理层,所述第一物理层包括第一上行接口和第一下行接口;
    在所述第一相机模组采集第一数据之后,在根据第一数据生成第二数据包之前,所述方法还包括:
    所述第一相机模组通过所述第一应用层对所述第一数据进行编码;
    所述第一相机模组根据第一数据生成第二数据包,具体包括:
    所述第一相机模组通过所述第一协议层根据编码后的所述第一数据生成所述第二数据包;
    所述第一相机模组将所述第二数据包发送至所述处理器,具体包括:
    所述第一相机模组通过所述第一上行接口将所述第二数据包发送至所述处理器。
  5. 根据权利要求1-2任一项所述的方法,其特征在于,所述第一数据包包括包头、数据包和包尾;
    所述第一数据包中所述识别字段位于所述第一数据包的所述包头中。
  6. 根据权利要求1所述的方法,其特征在于,所述第一相机模组接收处理器发送第一指令,具体包括:
    所述第一相机模组通过第一控制接口接收所述处理器发送的所述第一指令。
  7. 一种电子设备,其特征在于,包括处理器、第一相机模组、第二相机模组;其中,
    所述第一相机模组,用于在接收所述处理器发送的第一指令之后,接收所述第二相机模组发送的第一数据包,所述第一数据包包括有识别字段,所述第一数据包中识别字段的值用于指示所述第一数据包的转发次数;
    所述第一相机模组,还用于:
    识别出所述第一数据包中识别字段的值为第一值,并将所述第一值修改为第二值,所述第二值与所述第一值之差为预设值;
    将所述第一数据包中识别字段的值修改为所述第二值之后的所述第一数据包发送给所述处理器。
  8. 根据权利要求7所述的电子设备,其特征在于,所述第一相机模组包括第一应用层、第一协议层和第一物理层,所述第一物理层包括第一上行接口和第一下行接口;其中,
    所述第一相机模组,还用于:
    通过所述第一下行接口接收所述第二相机模组发送的所述第一数据包;
    通过所述第一协议层将所述第一数据包中识别字段的值由所述第一值修改为所述第二值;
    通过所述第一上行接口将所述第一数据包中识别字段的值修改为所述第二值之后的所述第一数据包发送给所述处理器。
  9. 根据权利要求7所述的电子设备,其特征在于,
    所述第一相机模组还用于:
    采集第一数据,并根据第一数据生成第二数据包,所述第二数据包中包括有识别字段,所述第二数据包中识别字段的值为第三值;
    将所述第二数据包发送至所述处理器。
  10. 根据权利要求9所述的电子设备,其特征在于,所述第一相机模组包括第一应用层、第一协议层和第一物理层,所述第一物理层包括第一上行接口和第一下行接口,所述第一上行接口与处理器的第一接收端口连接;其中,
    所述第一相机模组,还用于:
    通过所述第一应用层对所述第一数据进行编码;
    通过所述第一协议层根据编码后的所述第一数据生成所述第二数据包;所述第二数据包中包括有所述识别字段,所述第二数据包中识别字段的值为第三值;
    通过所述第一上行接口将所述第二数据包发送至所述处理器。
  11. 根据权利要求7所述的电子设备,其特征在于,所述电子设备还包括第三相机模组;
    所述第三相机模组,用于采集第二数据,并根据所述第二数据生成第三数据包,所述第 三数据包中包括有识别字段,所述第三数据包中识别字段的值为第三值;
    所述第三相机模组,还用于将所述第三数据包发送至所述处理器。
  12. 根据权利要求11所述的电子设备,其特征在于,所述第三相机模组包括第二应用层、第二协议层和第二物理层,所述第二物理层包括第二上行接口和第二下行接口,所述第二上行接口与所述处理器的第二接收端口连接;
    所述第三相机模组,还用于:
    通过所述第二应用层对所述第二数据进行编码;
    通过所述第二协议层根据编码后的所述第二数据生成第三数据包;所述第三数据包中包括有所述识别字段,所述第三数据包中识别字段的值为第三值;
    通过所述第二上行接口将所述第三数据包发送至所述处理器。
  13. 根据权利要求12所述的方法,其特征在于,所述第一相机模组包括第一应用层、第一协议层和第一物理层,所述第一物理层包括第一上行接口和第一下行接口,所述第一上行接口与处理器的第一接收端口连接;所述第一接收端口与所述第二接收端口不同。
  14. 根据权利要求11所述的电子设备,其特征在于,所述电子设备还包括第四相机模组;
    所述第四相机模组,用于采集第三数据,并根据所述第三数据生成第四数据包,所述第四数据包中包括有识别字段,所述第四数据包中识别字段的值为所述第三值;
    所述第四相机模组,还用于将所述第四数据包发送至所述第三相机模组;
    所述第三相机模组,还用于:
    接收所述第四相机模组发送的所述第四数据包;
    识别出所述第一数据包中识别字段的值为所述第三值,并将所述第四数据包中识别字段的值修改为第四值,所述第四值与所述第三值之差为所述预设值。
  15. 根据权利要求13所述的电子设备,其特征在于,所述第四相机模组包括第三应用层、第三协议层和第三物理层,所述第三物理层包括第三上行接口和第三下行接口,所述第三上行接口与所述第二下行接口相连接;
    第四相机模组,还用于:
    通过所述第三应用层对所述第三数据进行编码;
    通过所述第三协议层根据编码后的所述第三数据生成所述第四数据包;所述第四数据包中包括有所述识别字段,所述第四数据包中识别字段的值为所述第三值;
    通过所述第三上行接口发送所述第四数据包至所述第三相机模组;
    第三相机模组,还用于:
    通过所述第二下行接口接收所述第三上行接口发送的所述第四数据包;
    通过所述第二协议层识别出所述第四数据包中所述识别字段的值为所述第三值,并将所述第三值修改为所述第四值,所述第三值与所述第四值之差为所述预设值;
    通过所述第二上行接口将所述第四数据包中识别字段的值修改为所述第四值之后的所述第四数据包发送给所述处理器。
  16. 据权利要求7-8任一项所述的电子设备,其特征在于,所述第一数据包包括包头、数 据包和包尾;
    所述第一数据包中所述识别字段位于所述第一数据包的所述包头中。
  17. 根据权利要求7所述的方法,其特征在于,
    所述第一相机模组,还用于通过第一控制接口接收所述处理器发送的所述第一指令。
  18. 一种计算机可读存储介质,包括指令,其特征在于,当所述指令在相机模组上运行时,使得所述相机模组执行如权利要求1至6任一项所述的方法。
PCT/CN2021/133218 2020-11-26 2021-11-25 一种数据传输方法及电子设备 WO2022111594A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2023532211A JP2023552731A (ja) 2020-11-26 2021-11-25 データ送信方法および電子デバイス
EP21897094.5A EP4228245A4 (en) 2020-11-26 2021-11-25 DATA TRANSMISSION METHOD AND ELECTRONIC DEVICE
US18/323,854 US20230308530A1 (en) 2020-11-26 2023-05-25 Data Transmission Method and Electronic Device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011347808.9A CN114554037B (zh) 2020-11-26 2020-11-26 一种数据传输方法及电子设备
CN202011347808.9 2020-11-26

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/323,854 Continuation US20230308530A1 (en) 2020-11-26 2023-05-25 Data Transmission Method and Electronic Device

Publications (1)

Publication Number Publication Date
WO2022111594A1 true WO2022111594A1 (zh) 2022-06-02

Family

ID=81659466

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/133218 WO2022111594A1 (zh) 2020-11-26 2021-11-25 一种数据传输方法及电子设备

Country Status (5)

Country Link
US (1) US20230308530A1 (zh)
EP (1) EP4228245A4 (zh)
JP (1) JP2023552731A (zh)
CN (2) CN114554037B (zh)
WO (1) WO2022111594A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116437100A (zh) * 2023-06-13 2023-07-14 基石酷联微电子技术(北京)有限公司 一种视频压缩数据实时高速传输系统

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020016875A1 (en) * 2000-07-24 2002-02-07 Toshihiko Yokoyama Communication method of an electronic apparatus
CN101547268A (zh) * 2009-04-24 2009-09-30 北京飞利信科技股份有限公司 一种基于局域网的数字语音传输系统
CN102595042A (zh) * 2012-03-14 2012-07-18 无锡微视电子技术有限公司 基于串行的无穷级联的摄像机阵列系统
US20160234404A1 (en) * 2013-11-11 2016-08-11 Toshiba Teli Corporation Synchronous camera
CN106921523A (zh) * 2017-03-17 2017-07-04 西安电子科技大学 一种基于geo/leo卫星网络的数据传输方法
CN206472223U (zh) * 2016-11-11 2017-09-05 深圳市道通智能航空技术有限公司 一种mipi接口多路连接结构及无人机
CN107493454A (zh) * 2016-06-13 2017-12-19 杭州海康威视数字技术股份有限公司 摄像机级联系统
CN207039753U (zh) * 2017-07-31 2018-02-23 维沃移动通信有限公司 一种图像处理电路结构及移动终端
CN211580072U (zh) * 2020-03-10 2020-09-25 浙江大华技术股份有限公司 一种高清模拟摄像机及其级联系统

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7042494B2 (en) * 2001-08-08 2006-05-09 Sensormatic Electronics Corporation Wire harness apparatus for multi-node video camera array
JP5784664B2 (ja) * 2013-03-21 2015-09-24 株式会社東芝 多眼撮像装置
CN107454464B (zh) * 2016-05-31 2020-02-18 腾讯科技(北京)有限公司 一种信息处理方法及终端
KR20180039341A (ko) * 2016-10-10 2018-04-18 삼성전자주식회사 외부 장치와 통신 방법 및 이를 지원하는 전자 장치
CN110996011A (zh) * 2019-12-20 2020-04-10 易思维(杭州)科技有限公司 多相机同步触发系统

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020016875A1 (en) * 2000-07-24 2002-02-07 Toshihiko Yokoyama Communication method of an electronic apparatus
CN101547268A (zh) * 2009-04-24 2009-09-30 北京飞利信科技股份有限公司 一种基于局域网的数字语音传输系统
CN102595042A (zh) * 2012-03-14 2012-07-18 无锡微视电子技术有限公司 基于串行的无穷级联的摄像机阵列系统
US20160234404A1 (en) * 2013-11-11 2016-08-11 Toshiba Teli Corporation Synchronous camera
CN107493454A (zh) * 2016-06-13 2017-12-19 杭州海康威视数字技术股份有限公司 摄像机级联系统
CN206472223U (zh) * 2016-11-11 2017-09-05 深圳市道通智能航空技术有限公司 一种mipi接口多路连接结构及无人机
CN106921523A (zh) * 2017-03-17 2017-07-04 西安电子科技大学 一种基于geo/leo卫星网络的数据传输方法
CN207039753U (zh) * 2017-07-31 2018-02-23 维沃移动通信有限公司 一种图像处理电路结构及移动终端
CN211580072U (zh) * 2020-03-10 2020-09-25 浙江大华技术股份有限公司 一种高清模拟摄像机及其级联系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4228245A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116437100A (zh) * 2023-06-13 2023-07-14 基石酷联微电子技术(北京)有限公司 一种视频压缩数据实时高速传输系统
CN116437100B (zh) * 2023-06-13 2023-08-25 基石酷联微电子技术(北京)有限公司 一种视频压缩数据实时高速传输系统

Also Published As

Publication number Publication date
CN116405758A (zh) 2023-07-07
CN114554037A (zh) 2022-05-27
EP4228245A4 (en) 2024-03-27
US20230308530A1 (en) 2023-09-28
EP4228245A1 (en) 2023-08-16
JP2023552731A (ja) 2023-12-19
CN114554037B (zh) 2023-04-18

Similar Documents

Publication Publication Date Title
WO2020244623A1 (zh) 一种空鼠模式实现方法及相关设备
WO2021164556A1 (zh) 无线耳机盒及系统
CN113228701B (zh) 音频数据的同步方法及设备
CN111132234B (zh) 一种数据传输方法及对应的终端
WO2021017909A1 (zh) 一种通过nfc标签实现功能的方法、电子设备及系统
WO2021043219A1 (zh) 一种蓝牙回连方法及相关装置
WO2021013196A1 (zh) 一种同时响应的方法及设备
CN110795187A (zh) 一种图像显示方法及电子设备
CN114422340A (zh) 日志上报方法、电子设备及存储介质
US20230308530A1 (en) Data Transmission Method and Electronic Device
WO2022116930A1 (zh) 内容共享方法、电子设备及存储介质
CN112740728B (zh) 一种蓝牙通信方法及电子设备
WO2022042265A1 (zh) 通信方法、终端设备及存储介质
CN113593567A (zh) 视频声音转文本的方法及相关设备
CN115694598A (zh) 一种北斗通信系统中多帧融合传输方法及相关装置
CN109285563B (zh) 在线翻译过程中的语音数据处理方法及装置
WO2022095752A1 (zh) 帧解复用方法、电子设备及存储介质
WO2022135144A1 (zh) 自适应显示方法、电子设备及存储介质
US20230230343A1 (en) Image Processing Method, Electronic Device, Image Processing System, and Chip System
CN115525366A (zh) 一种投屏方法及相关装置
CN113674258A (zh) 图像处理方法及相关设备
CN115019803B (zh) 音频处理方法、电子设备以及存储介质
WO2022068486A1 (zh) 数据发送方法、电子设备、芯片系统及存储介质
WO2022199613A1 (zh) 同步播放方法及装置
WO2022095581A1 (zh) 数据传输方法及终端设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21897094

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021897094

Country of ref document: EP

Effective date: 20230509

WWE Wipo information: entry into national phase

Ref document number: 2023532211

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE