WO2021013196A1 - 一种同时响应的方法及设备 - Google Patents

一种同时响应的方法及设备 Download PDF

Info

Publication number
WO2021013196A1
WO2021013196A1 PCT/CN2020/103586 CN2020103586W WO2021013196A1 WO 2021013196 A1 WO2021013196 A1 WO 2021013196A1 CN 2020103586 W CN2020103586 W CN 2020103586W WO 2021013196 A1 WO2021013196 A1 WO 2021013196A1
Authority
WO
WIPO (PCT)
Prior art keywords
electronic device
response
transmission time
instruction
time
Prior art date
Application number
PCT/CN2020/103586
Other languages
English (en)
French (fr)
Inventor
沈文静
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP20843364.9A priority Critical patent/EP3982652B1/en
Priority to US17/626,335 priority patent/US20220272645A1/en
Publication of WO2021013196A1 publication Critical patent/WO2021013196A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/40Client devices specifically adapted for the reception of or interaction with content, e.g. set-top-box [STB]; Operations thereof
    • H04N21/43Processing of content or additional data, e.g. demultiplexing additional data from a digital video stream; Elementary client operations, e.g. monitoring of home network or synchronising decoder's clock; Client middleware
    • H04N21/4302Content synchronisation processes, e.g. decoder synchronisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/16Sound input; Sound output
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L65/00Network arrangements, protocols or services for supporting real-time applications in data packet communication
    • H04L65/60Network streaming of media packets
    • H04L65/61Network streaming of media packets for supporting one-way streaming services, e.g. Internet radio
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L65/00Network arrangements, protocols or services for supporting real-time applications in data packet communication
    • H04L65/80Responding to QoS
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/20Servers specifically adapted for the distribution of content, e.g. VOD servers; Operations thereof
    • H04N21/23Processing of content or additional data; Elementary server operations; Server middleware
    • H04N21/242Synchronization processes, e.g. processing of PCR [Program Clock References]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/40Client devices specifically adapted for the reception of or interaction with content, e.g. set-top-box [STB]; Operations thereof
    • H04N21/43Processing of content or additional data, e.g. demultiplexing additional data from a digital video stream; Elementary client operations, e.g. monitoring of home network or synchronising decoder's clock; Client middleware
    • H04N21/436Interfacing a local distribution network, e.g. communicating with another STB or one or more peripheral devices inside the home
    • H04N21/43615Interfacing a Home Network, e.g. for connecting the client to a plurality of peripherals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/80Generation or processing of content or additional data by content creator independently of the distribution process; Content per se
    • H04N21/85Assembly of content; Generation of multimedia applications
    • H04N21/854Content authoring
    • H04N21/8547Content authoring involving timestamps for synchronizing content
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/70Services for machine-to-machine communication [M2M] or machine type communication [MTC]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0251Power saving arrangements in terminal devices using monitoring of local events, e.g. events related to user activity
    • H04W52/0254Power saving arrangements in terminal devices using monitoring of local events, e.g. events related to user activity detecting a user operation or a tactile contact or a motion of the device
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • H04W56/0015Synchronization between nodes one node acting as a reference for the others
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/80Services using short range communication, e.g. near-field communication [NFC], radio-frequency identification [RFID] or low energy communication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/10Small scale networks; Flat hierarchical networks
    • H04W84/12WLAN [Wireless Local Area Networks]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/18Self-organising networks, e.g. ad-hoc networks or sensor networks

Definitions

  • the embodiments of the present application relate to the field of electronic technology, and in particular, to a method and device for simultaneous response.
  • the simultaneous response of multiple devices is of great significance to scenarios such as audio synchronization, audio and video synchronization, or synchronized wake-up.
  • the simultaneous response of multiple devices can improve the user experience.
  • the master device and the slave device can obtain the standard time from the clock source site respectively, so as to synchronize the network clock. Then, the master device can send instructions to the slave device to instruct the slave device to respond at the same time at the target time. The master device and the slave device respectively set timers. After the timer expires, that is, the target time is reached, the master device and the slave device respond separately.
  • the multiple devices include a speaker 1 and a speaker 2. After speaker 1 and speaker 2 are awakened by the user, they light up the light ring to respond. Due to the poor consistency of simultaneous responses among multiple devices in the prior art, as shown in FIG. 1, the process of lighting the light ring between the speaker 1 and the speaker 2 is difficult to synchronize, and the user's visual experience is poor.
  • the embodiments of the present application provide a method and device for simultaneous response, which can reduce the time error of simultaneous responses among multiple devices, improve the consistency of simultaneous responses, and improve user experience.
  • the technical solution of the present application provides a simultaneous response method, which is applied to the first electronic device, the second electronic device, and the third electronic device in the same local area network.
  • the method includes: the first electronic device detects the response indication.
  • the first electronic device sends a first response instruction to the second electronic device after the duration of T-t1, where the first response instruction is used to instruct the second electronic device to perform a response operation.
  • the first electronic device sends a second response instruction to the third electronic device after the duration of T-t2, and the second response instruction is used to instruct the third electronic device to perform a response operation.
  • the first electronic device performs a response operation after the target time period T has elapsed.
  • the target duration T is greater than or equal to the maximum transmission time t.
  • the maximum transmission time t is the maximum value of the first transmission time t1 and the second transmission time t2.
  • the first transmission time t1 is the data transmission time between the first electronic device and the second electronic device.
  • the second transmission time t2 is the data transmission time between the first electronic device and the third electronic device.
  • the second electronic device In response to receiving the first response instruction, the second electronic device immediately executes the response operation.
  • the third electronic device immediately executes the response operation.
  • the first electronic device may be the master device, and the second electronic device and the third electronic device may be slave devices.
  • the master device side considers and offsets the time-consuming transmission between master and slave devices. The error of simultaneous response caused by time-consuming transmission is avoided, and the consistency of simultaneous response is improved. Moreover, it is not necessary to obtain the standard time through network clock synchronization, so the delay caused by network clock synchronization can be avoided, the consistency of simultaneous responses of the master and slave devices can be improved, and the user experience can be improved.
  • the master device calculates the duration of the timing and sets multiple timers.
  • the computing devices of the timing duration are all the same device, and multiple timers are implemented based on the physical clock timer of the same device. There is no need to calculate the respective timer durations on different devices and set the timers separately, thus avoiding device calculation time-consuming errors and timer errors between different devices. Therefore, the error of simultaneous responses of the group of electronic devices can be further reduced, the consistency of simultaneous responses can be improved, and the user experience can be improved.
  • the technical solution of the present application provides a simultaneous response method, which is applied to the first electronic device, the second electronic device, and the third electronic device in the same local area network.
  • the method includes: the first electronic device sends the target duration T and the first transmission time t1 to the second electronic device.
  • the first electronic device sends the target duration T and the second transmission time t2 to the third electronic device.
  • the target duration T is greater than or equal to the maximum transmission time t.
  • the maximum transmission time t is the maximum value of the first transmission time t1 and the second transmission time t2.
  • the first transmission time t1 is the data transmission time between the first electronic device and the second electronic device.
  • the second transmission time t2 is the data transmission time between the first electronic device and the third electronic device.
  • the second electronic device receives the target duration T and the first transmission time t1 sent by the first electronic device.
  • the third electronic device receives the target duration T and the second transmission time t2 sent by the first electronic device.
  • the first electronic device detects the response indication.
  • the first electronic device sends response instructions to the second electronic device and the third electronic device respectively, and the response instructions are used to instruct to perform the response operation.
  • the first electronic device performs a response operation after the target time period T has elapsed.
  • the second electronic device performs a response operation after the duration of T-t1.
  • the third electronic device performs a response operation after the duration of T-t2.
  • the first electronic device may send the target duration and transmission time to the second electronic device and the third electronic device in advance. After the first electronic device detects the response indication, the second electronic device and the third electronic device can respond simultaneously according to the target duration and the transmission time.
  • the first electronic device may be a master device, and the second electronic device and the third electronic device may be slave devices.
  • the slave device side considers and offsets the transmission time between the master and slave devices, avoids errors in simultaneous responses caused by time-consuming transmission, and improves the consistency of simultaneous responses.
  • it is not necessary to obtain the standard time through network clock synchronization so the delay caused by network clock synchronization can be avoided, the consistency of simultaneous responses of the master and slave devices can be improved, and the user experience can be improved.
  • the technical solution of the present application provides a simultaneous response method, which is applied to the first electronic device, the second electronic device, and the third electronic device in the same local area network.
  • the method includes: the first electronic device detects the response indication. In response to detecting the response instruction, the first electronic device sends a first response instruction to the second electronic device; the first response instruction is used to instruct the second electronic device to perform a response operation, and the first response instruction includes the target duration T and the first transmission cost. ⁇ t1.
  • the first electronic device sends a second response instruction to the third electronic device.
  • the second response instruction is used to instruct the third electronic device to perform a response operation.
  • the second response instruction includes the target duration T and the second transmission time t2.
  • the first electronic device performs a response operation after the target time period T has elapsed.
  • the target duration T is greater than or equal to the maximum transmission time t.
  • the maximum transmission time t is the maximum value of the first transmission time t1 and the second transmission time t2.
  • the first transmission time t1 is the data transmission time between the first electronic device and the second electronic device.
  • the second transmission time t2 is the data transmission time between the first electronic device and the third electronic device.
  • the second electronic device performs a response operation after the duration of T-t1.
  • the third electronic device performs a response operation after the duration of T-t2.
  • the first electronic device may be the master device
  • the second electronic device and the third electronic device may be slave devices.
  • the master and slave devices can respond synchronously according to the relative time, and the slave device side considers and offsets the time-consuming transmission between the master and slave devices; avoiding simultaneous response errors caused by the time-consuming transmission.
  • it is not necessary to obtain the standard time through network clock synchronization so the delay caused by network clock synchronization can be avoided, the consistency of simultaneous responses of the master and slave devices can be improved, and the user experience can be improved.
  • the technical solution of the present application provides a simultaneous response method, which is applied to the first electronic device and the second electronic device in the same local area network.
  • the method includes: the first electronic device detects the response indication.
  • the first electronic device sends a response instruction to the second electronic device, and the response instruction is used to instruct the second electronic device to perform a response operation.
  • the first electronic device performs a response operation after experiencing the transmission time t1; the transmission time t1 is the data transmission time between the first electronic device and the second electronic device.
  • the second electronic device In response to receiving the response instruction, the second electronic device immediately executes the response operation.
  • the first electronic device may be the master device
  • the second electronic device may be the slave device.
  • the main device side considers and offsets the time-consuming transmission, thereby avoiding errors in simultaneous responses caused by time-consuming transmission, and improving the consistency of simultaneous responses.
  • the technical solution of the present application provides a simultaneous response method, which is applied to the first electronic device and the second electronic device in the same local area network.
  • the method includes: the first electronic device detects the response indication.
  • the first electronic device sends a response instruction to the second electronic device after experiencing T-t1, and the response instruction is used to instruct the second electronic device to perform a response operation.
  • the first electronic device performs a response operation after the target time period T has elapsed.
  • the second electronic device immediately executes the response operation.
  • the target duration T is greater than or equal to the transmission time t1, and the transmission time t1 is the data transmission time between the first electronic device and the second electronic device.
  • the first electronic device may be the master device, and the second electronic device may be the slave device.
  • the main device side considers and offsets the time-consuming transmission, thereby avoiding errors in simultaneous responses caused by time-consuming transmission, and improving the consistency of simultaneous responses.
  • the technical solution of the present application provides a simultaneous response method, which is applied to the first electronic device and the second electronic device in the same local area network.
  • the method includes: the first electronic device sends the target duration T and the transmission time t1 to the second electronic device.
  • the first electronic device detects the response indication.
  • the first electronic device sends a response instruction to the second electronic device, and the response instruction is used to instruct the second electronic device to perform a response operation.
  • the first electronic device performs a response operation after the target time period T has elapsed.
  • the second electronic device performs a response operation after T-t1.
  • the target duration T is greater than or equal to the transmission time t1, and the transmission time t1 is the data transmission time between the first electronic device and the second electronic device.
  • the first electronic device may be the master device
  • the second electronic device may be the slave device.
  • the master device can send the target duration T and the transmission time t1 to the slave device in advance.
  • the slave device side can consider and offset the transmission time according to the target time length T and the transmission time t1, thereby avoiding the error of the simultaneous response caused by the transmission time and improving the consistency of the simultaneous response.
  • the technical solution of the present application provides a simultaneous response method, which is applied to the first electronic device and the second electronic device in the same local area network.
  • the method includes: the first electronic device detects the response indication. In response to detecting the response instruction, the first electronic device sends a response instruction to the second electronic device. The response instruction is used to instruct the second electronic device to perform a response operation.
  • the response instruction includes the target duration T and the transmission time t1. The first electronic device performs a response operation after the target time period T has elapsed. In response to receiving the response instruction, the second electronic device performs a response operation after T-t1.
  • the target duration T is greater than or equal to the transmission time t1, and the transmission time t1 is the data transmission time between the first electronic device and the second electronic device.
  • the first electronic device may be the master device
  • the second electronic device may be the slave device.
  • the slave device side can consider and offset the transmission time according to the target time length T and the transmission time t1, thereby avoiding the error of the simultaneous response caused by the transmission time and improving the consistency of the simultaneous response.
  • the method before the first electronic device sends the target duration T to the second electronic device and the third electronic device, and the target duration T is greater than or equal to the maximum transmission time t, the method further includes: the first electronic device The first transmission time t1 and the second transmission time t2 are measured. The first electronic device determines the maximum transmission time t according to the first transmission time t1 and the second transmission time t2.
  • the first electronic device may be the master device.
  • the time-consuming transmission between the measurement by the master device and different slave devices can make the execution subject of the measurement process all be the same master device, which can avoid measurement errors caused by the time-consuming transmission of different electronic devices separately, thereby improving measurement accuracy.
  • the first electronic device measuring the first transmission time t1 and the second transmission time t2 includes: after the first electronic device is paired with the second electronic device and the third electronic device, or After the first electronic device reconnects to the local area network, the first transmission time t1 and the second transmission time t2 are measured.
  • the transmission time between the master and slave devices may change. Therefore, after the network is disconnected and reconnected to the LAN, the transmission time can be measured again.
  • the first electronic device detecting the response indication includes: the first electronic device detects the user's voice wake-up indication. Or, the first electronic device receives the wake-up indication information sent by the second electronic device or the third electronic device.
  • the first electronic device may detect the response indication in various ways.
  • the first electronic device, the second electronic device, and the third electronic device are a set of stereo audio devices that cooperate with each other. Or, a group of audio and video equipment that cooperate with each other. Or, a set of audio and lighting equipment that cooperate with each other.
  • the local area network is a wireless fidelity Wi-Fi wireless local area network.
  • the first electronic device, the second electronic device, and the third electronic device may be a group of devices in the Wi-Fi local area network.
  • an embodiment of the present application provides a response method, which is applied to a first electronic device, and the first electronic device, the second electronic device, and the third electronic device belong to the same local area network.
  • the method includes: the first electronic device detects the response indication.
  • the first electronic device sends a first response instruction to the second electronic device after the duration of T-t1, where the first response instruction is used to instruct to perform the response operation.
  • the first electronic device sends a second response instruction to the third electronic device after the duration of T-t2.
  • the first electronic device performs a response operation after the target time period T has elapsed.
  • the target duration T is greater than or equal to the maximum transmission time t.
  • the maximum transmission time t is the maximum value of the first transmission time t1 and the second transmission time t2.
  • the first transmission time t1 is the data transmission time between the first electronic device and the second electronic device.
  • the second transmission time t2 is the data transmission time between the first electronic device and the third electronic device.
  • the first electronic device can be the master device, and the master device side considers and offsets the transmission time between the master and slave devices.
  • the error of simultaneous response caused by time-consuming transmission is avoided, and the consistency of simultaneous response is improved.
  • the master device calculates the duration of the timing and sets multiple timers.
  • the computing devices of the timing duration are all the same device, and multiple timers are implemented based on the physical clock timer of the same device. There is no need to calculate the respective timer durations on different devices and set the timers separately, thus avoiding device calculation time-consuming errors and timer errors between different devices.
  • an embodiment of the present application provides a response method, which is applied to a first electronic device, and the first electronic device, the second electronic device, and the third electronic device belong to the same local area network.
  • the method includes: the first electronic device sends the target duration T and the first transmission time t1 to the second electronic device.
  • the first electronic device sends the target duration T and the second transmission time t2 to the third electronic device.
  • the target duration T is greater than or equal to the maximum transmission time t.
  • the maximum transmission time t is the maximum value of the first transmission time t1 and the second transmission time t2.
  • the first transmission time t1 is the data transmission time between the first electronic device and the second electronic device.
  • the second transmission time t2 is the data transmission time between the first electronic device and the third electronic device.
  • the first electronic device detects the response indication.
  • the first electronic device sends response instructions to the second electronic device and the third electronic device respectively, and the response instructions are used to instruct to perform the response operation.
  • the first electronic device performs a response operation after the target time period T has elapsed.
  • the first electronic device may send the target duration and transmission time to the second electronic device and the third electronic device in advance. So that after the first electronic device detects the response indication, the second electronic device and the third electronic device can offset the transmission time between the first electronic device and the first electronic device according to the target duration and the transmission time, thereby avoiding the time-consuming transmission.
  • the error of simultaneous response improves the consistency of simultaneous response.
  • an embodiment of the present application provides a response method, which is applied to a first electronic device, and the first electronic device, the second electronic device, and the third electronic device belong to the same local area network.
  • the method includes: the first electronic device detects the response indication. In response to detecting the response instruction, the first electronic device sends a first response instruction to the second electronic device.
  • the first response instruction is used to instruct to perform a response operation; the first response instruction includes the target duration T and the first transmission time t1.
  • the first electronic device sends a second response instruction to the third electronic device, where the second response instruction is used to instruct to perform the response operation; the second response instruction includes the target duration T and the second transmission time t2.
  • the first electronic device performs a response operation after the target time period T has elapsed.
  • the target duration T is greater than or equal to the maximum transmission time t.
  • the maximum transmission time t is the maximum value of the first transmission time t1 and the second transmission time t2.
  • the first transmission time t1 is the data transmission time between the first electronic device and the second electronic device.
  • the second transmission time t2 is the data transmission time between the first electronic device and the third electronic device.
  • the first electronic device may be the master device
  • the second electronic device and the third electronic device may be slave devices.
  • the master and slave devices can respond synchronously according to the relative time, and there is no need to obtain the standard time through network clock synchronization, so the delay caused by network clock synchronization can be avoided, the consistency of simultaneous responses of the master and slave devices can be improved, and the user experience can be improved.
  • an embodiment of the present application provides a response method, which is applied to a first electronic device, and the first electronic device and the second electronic device belong to the same local area network.
  • the method includes: the first electronic device detects the response indication.
  • the first electronic device sends a response instruction to the second electronic device, and the response instruction is used to instruct the second electronic device to perform a response operation.
  • the first electronic device performs a response operation after experiencing the transmission time t1; the transmission time t1 is the data transmission time between the first electronic device and the second electronic device.
  • the first electronic device may be the master device
  • the second electronic device may be the slave device.
  • the main device side considers and offsets the time-consuming transmission, thereby avoiding errors in simultaneous responses caused by time-consuming transmission, and improving the consistency of simultaneous responses.
  • the technical solution of the present application provides a simultaneous response method, which is applied to a first electronic device, and the first electronic device and the second electronic device belong to the same local area network.
  • the method includes: the first electronic device detects the response indication.
  • the first electronic device sends a response instruction to the second electronic device after experiencing T-t1, and the response instruction is used to instruct the second electronic device to perform a response operation.
  • the first electronic device performs a response operation after the target time period T has elapsed.
  • the target duration T is greater than or equal to the transmission time t1, and the transmission time t1 is the data transmission time between the first electronic device and the second electronic device.
  • the first electronic device may be the master device, and the second electronic device may be the slave device.
  • the main device side considers and offsets the time-consuming transmission, thereby avoiding errors in simultaneous responses caused by time-consuming transmission, and improving the consistency of simultaneous responses.
  • the technical solution of the present application provides a simultaneous response method, which is applied to a first electronic device, and the first electronic device and the second electronic device belong to the same local area network.
  • the method includes: the first electronic device detects the response indication. In response to detecting the response instruction, the first electronic device sends a response instruction to the second electronic device.
  • the response instruction is used to instruct the second electronic device to perform a response operation.
  • the response instruction includes the target duration T and the transmission time t1.
  • the first electronic device performs a response operation after the target time period T has elapsed.
  • the target duration T is greater than or equal to the transmission time t1, and the transmission time t1 is the data transmission time between the first electronic device and the second electronic device.
  • the first electronic device may be the master device
  • the second electronic device may be the slave device.
  • the master device can send the target duration and transmission time to the slave device in advance, so that the slave device can consider and offset the transmission time, thereby avoiding the error of simultaneous response caused by the transmission time, and improving the simultaneous response. Consistency of response.
  • the technical solution of the present application provides a simultaneous response method, which is applied to a first electronic device, and the first electronic device and the second electronic device belong to the same local area network.
  • the method includes: the first electronic device sends the target duration T and the transmission time t1 to the second electronic device.
  • the first electronic device detects the response indication.
  • the first electronic device sends a response instruction to the second electronic device, and the response instruction is used to instruct the second electronic device to perform a response operation.
  • the first electronic device performs a response operation after the target time period T has elapsed.
  • the target duration T is greater than or equal to the transmission time t1, and the transmission time t1 is the data transmission time between the first electronic device and the second electronic device.
  • the first electronic device may be the master device
  • the second electronic device may be the slave device.
  • the master device can send the target duration and transmission time to the slave device, so that the slave device can consider and offset the transmission time, thereby avoiding the error of the simultaneous response caused by the transmission time and improving the simultaneous response Consistency.
  • the method before the first electronic device sends the target duration T to the second electronic device and the third electronic device, and the target duration T is greater than or equal to the maximum transmission time t, the method further includes: the first electronic device The first transmission time t1 and the second transmission time t2 are measured. The first electronic device determines the maximum transmission time t according to the first transmission time t1 and the second transmission time t2.
  • the first electronic device measuring the first transmission time t1 and the second transmission time t2 includes: after the first electronic device is paired with the second electronic device and the third electronic device, or After the first electronic device reconnects to the local area network, the first transmission time t1 and the second transmission time t2 are measured.
  • the first electronic device detecting the response indication includes: the first electronic device detects the user's voice wake-up indication. Or, the first electronic device receives the wake-up indication information sent by the second electronic device or the third electronic device.
  • the first electronic device, the second electronic device, and the third electronic device are a set of stereo audio devices that cooperate with each other. Or, a group of audio and video equipment that cooperate with each other. Or, a set of audio and lighting equipment that cooperate with each other.
  • the technical solution of the present application provides a response method applied to a second electronic device, which belongs to the same local area network as the first electronic device.
  • the method includes: the second electronic device receives the target duration T sent by the first electronic device, the first transmission time t1 between the second electronic device and the first electronic device, and the response instruction.
  • the response instruction is used to instruct the execution of the response operation; the target duration T is greater than or equal to the first transmission time t1.
  • the second electronic device performs a response operation after the duration of T-t1.
  • the second electronic device may obtain the target duration and transmission time from the first electronic device in advance. After receiving the response instruction sent by the first electronic device, the second electronic device may simultaneously respond with the first electronic device according to the target duration and transmission time.
  • the second electronic device side considers and offsets the time-consuming transmission with the first electronic device, avoids errors in simultaneous responses caused by time-consuming transmission, and improves the consistency of simultaneous responses.
  • the technical solution of the present application provides a response method applied to a second electronic device, which belongs to the same local area network as the first electronic device.
  • the method includes: the second electronic device receives a first response instruction sent by the first electronic device, the first response instruction is used to instruct to perform a response operation; the first response instruction includes a target duration T and a first response with the first electronic device The transmission time is t1; the target duration T is greater than or equal to the first transmission time t1.
  • the second electronic device performs a response operation after the duration of T-t1.
  • the first electronic device and the second electronic device can respond synchronously according to the relative time.
  • the second electronic device side considers and offsets the time-consuming transmission with the first electronic device; and there is no need to obtain the standard time through network clock synchronization, thus avoiding the delay caused by network clock synchronization and improving the simultaneous response between devices Consistency, improve user experience.
  • the embodiment of the present application provides a response method applied to a second electronic device, and the second electronic device and the first electronic device belong to the same local area network.
  • the method includes: the second electronic device receives a response instruction sent by the first electronic device. In response to receiving the response instruction, the second electronic device immediately executes the response operation.
  • the technical solution of the present application provides a simultaneous response method, which is applied to the first electronic device, the second electronic device, and the third electronic device in the same communication network.
  • the method includes: the first electronic device detects the response indication.
  • the first electronic device sends a first response instruction to the second electronic device through the forwarding device after the T-t1 time period has elapsed.
  • the first response instruction is used to instruct the second electronic device to perform a response operation.
  • the first electronic device sends a second response instruction to the third electronic device through the forwarding device, and the second response instruction is used to instruct the third electronic device to perform a response operation.
  • the first electronic device performs a response operation after the target time period T has elapsed.
  • the target duration T is greater than or equal to the maximum transmission time t;
  • the maximum transmission time t is the maximum of the first transmission time t1 and the second transmission time t2;
  • the first transmission time t1 is the first electronic device and The data transmission time between the second electronic device;
  • the second transmission time t2 is the data transmission time between the first electronic device and the third electronic device.
  • the second electronic device In response to receiving the first response instruction, the second electronic device immediately executes the response operation.
  • the third electronic device immediately executes the response operation.
  • the first electronic device in the communication network may be the master device, and the second electronic device and the third electronic device may be slave devices.
  • the master device side considers and offsets the time-consuming transmission between master and slave devices.
  • the master device calculates the duration of the timing and sets multiple timers.
  • the computing devices of the timing duration are all the same device, and multiple timers are implemented based on the physical clock timer of the same device. There is no need to calculate the respective timer durations on different devices and set the timers separately, thus avoiding device calculation time-consuming errors and timer errors between different devices. Therefore, the error of simultaneous responses of the group of electronic devices can be reduced, the consistency of simultaneous responses can be improved, and the user experience can be improved.
  • the technical solution of the present application provides a simultaneous response method, which is applied to the first electronic device, the second electronic device, and the third electronic device in the same communication network.
  • the method includes: the first electronic device sends the target duration T and the first transmission time t1 to the second electronic device through the forwarding device.
  • the first electronic device sends the target duration T and the second transmission time t2 to the third electronic device through the forwarding device.
  • the target duration T is greater than or equal to the maximum transmission time t; the maximum transmission time t is the maximum of the first transmission time t1 and the second transmission time t2; the first transmission time t1 is the first electronic device and The data transmission time between the second electronic device; the second transmission time t2 is the data transmission time between the first electronic device and the third electronic device.
  • the second electronic device receives the target duration T and the first transmission time t1 sent by the first electronic device through the forwarding device.
  • the third electronic device communicates with the forwarding device and receives the target duration T and the second transmission time t2 sent by the first electronic device.
  • the first electronic device detects the response indication.
  • the first electronic device In response to detecting the response instruction, the first electronic device sends a response instruction to the second electronic device and the third electronic device through the forwarding device, and the response instruction is used to instruct to perform the response operation.
  • the first electronic device performs a response operation after the target time period T has elapsed.
  • the second electronic device In response to receiving the response instruction, the second electronic device performs a response operation after the duration of T-t1.
  • the third electronic device performs a response operation after the duration of T-t2.
  • the first electronic device in the communication network can send the target duration and transmission time to the second electronic device and the third electronic device in advance. After the first electronic device detects the response indication, the second electronic device and the third electronic device can respond simultaneously according to the target duration and the transmission time.
  • the first electronic device may be a master device, and the second electronic device and the third electronic device may be slave devices.
  • the slave device side considers and offsets the transmission time between the master and slave devices, avoids errors in simultaneous responses caused by time-consuming transmission, and improves the consistency of simultaneous responses.
  • it is not necessary to obtain the standard time through network clock synchronization so the delay caused by network clock synchronization can be avoided, the consistency of simultaneous responses of the master and slave devices can be improved, and the user experience can be improved.
  • the technical solution of the present application provides a simultaneous response method, which is applied to the first electronic device, the second electronic device, and the third electronic device in the same communication network.
  • the method includes: the first electronic device detects the response indication. In response to detecting the response instruction, the first electronic device sends a first response instruction to the second electronic device through the forwarding device; the first response instruction is used to instruct the second electronic device to perform a response operation, and the first response instruction includes the target duration T and The first transmission takes t1.
  • the first electronic device sends a second response instruction to the third electronic device through the forwarding device.
  • the second response instruction is used to instruct the third electronic device to perform a response operation.
  • the second response instruction includes the target duration T and the second transmission time t2.
  • the first electronic device performs a response operation after the target time period T has elapsed.
  • the target duration T is greater than or equal to the maximum transmission time t;
  • the maximum transmission time t is the maximum of the first transmission time t1 and the second transmission time t2;
  • the first transmission time t1 is the first electronic device and The data transmission time between the second electronic device;
  • the second transmission time t2 is the data transmission time between the first electronic device and the third electronic device.
  • the second electronic device performs a response operation after the duration of T-t1.
  • the third electronic device performs a response operation after the duration of T-t2.
  • the first electronic device in the communication network may be the master device, and the second electronic device and the third electronic device may be slave devices.
  • the master and slave devices can respond synchronously according to the relative time, and the slave device side considers and offsets the transmission time between the master and slave devices; and there is no need to obtain the standard time through network clock synchronization, thus avoiding the delay caused by network clock synchronization , Improve the consistency of simultaneous response of the master and slave devices, and improve user experience.
  • an embodiment of the present application provides a response device, which is included in a first electronic device, a second electronic device, or a third electronic device.
  • the device has the function of realizing the behavior of the first electronic device, the second electronic device, or the third electronic device in any method in the foregoing aspects and possible designs.
  • This function can be realized by hardware, or by hardware executing corresponding software.
  • the hardware or software includes at least one module or unit corresponding to the above-mentioned functions. For example, detection module or unit, execution module or unit, receiving module or unit, sending module or unit, etc.
  • an embodiment of the present application provides an electronic device, including: one or more processors; and a memory in which codes are stored.
  • the code is executed by one or more processors, the electronic device is caused to execute the response method in any one of the possible designs of the foregoing aspects.
  • an embodiment of the present application provides a computer storage medium, including computer instructions, which when the computer instructions run on a mobile terminal, cause the mobile terminal to execute any of the possible design response methods in the above aspects.
  • embodiments of the present application provide a computer program product, which when the computer program product runs on a computer, causes the computer to execute any one of the possible design response methods in the foregoing aspects.
  • Figure 1 is a schematic diagram of a simultaneous response effect provided by the prior art
  • Figure 2 is a schematic diagram of the principle of simultaneous response provided by the prior art
  • FIG. 3 is a schematic diagram of a group of electronic devices provided by an embodiment of the application.
  • FIG. 4 is a schematic structural diagram of an electronic device provided by an embodiment of the application.
  • FIG. 5 is a schematic diagram of a simultaneous response scenario provided by an embodiment of the application.
  • FIG. 6 is a schematic diagram of a group of pairing interfaces provided by an embodiment of the application.
  • FIG. 7 is a schematic diagram of the principle of a simultaneous response provided by an embodiment of this application.
  • FIG. 8A is a schematic diagram of a simultaneous response effect provided by an embodiment of this application.
  • FIG. 8B is a schematic diagram of another simultaneous response effect provided by an embodiment of this application.
  • FIG. 9 is a schematic diagram of another simultaneous response principle provided by an embodiment of this application.
  • FIG. 10A is a flowchart of a simultaneous response provided by an embodiment of this application.
  • FIG. 10B is a flowchart of another simultaneous response provided by an embodiment of this application.
  • FIG. 11 is a schematic diagram of another simultaneous response principle provided by an embodiment of this application.
  • FIG. 12 is a flowchart of another simultaneous response provided by an embodiment of the application.
  • FIG. 13 is a flowchart of another simultaneous response provided by an embodiment of this application.
  • FIG. 14 is a schematic diagram of another simultaneous response scenario provided by an embodiment of the application.
  • 15 is a schematic diagram of another simultaneous response scenario provided by an embodiment of the application.
  • FIG. 16 is a schematic diagram of another simultaneous response scenario provided by an embodiment of the application.
  • the left and right channel devices need to be played at the same time to achieve simultaneous stereo playback.
  • the audio device and the video device need to be played at the same time to achieve synchronization and consistency of sound and picture.
  • Network clock synchronization refers to the transmission of a unified standard time through the Internet, which is an absolute time.
  • the clock source site on the Internet transmits the standard time to multiple devices through the network.
  • the standard time is transmitted based on the network channel, and the transmission process requires transmission time, that is, there is a network transmission delay. Therefore, after the standard time reaches each device, the respective clock on each device will be delayed relative to the standard time.
  • the delay of the respective clocks on each device relative to the standard time also has errors.
  • the distance between the clock source site and multiple devices may be relatively long, which makes the standard time transmission time longer (for example, it can be 10s). In turn, the delay of the respective clocks on multiple devices relative to the standard time is relatively large.
  • the clock source site transmits the standard time to device A, device B, and device C via the network.
  • the transmission time consumed from the clock source site to device A, device B, and device C is transmission time a, transmission time b, and transmission time c, respectively. Since the transmission time of the standard time corresponding to different devices is different, the clock on the device is set based on the standard time, so compared with the standard time, the clocks on the device A, the device B, and the device C are also different.
  • the clocks on device A, device B, and device C delay transmission time a, transmission time b, and transmission time c, respectively.
  • the current time indicated by the clocks on the device A, the device B, and the device C differs from the standard time by the transmission time a, the transmission time b, and the transmission time c, respectively.
  • the time represented by the clock on device A is time 1
  • the actual standard time is time 1+a
  • the time represented by the clock on device B is time 1
  • the actual standard time is time 1+b
  • the time indicated by the clock is time 1+c.
  • device A is the master device
  • device B and device C are slave devices.
  • the master device A sends response instructions to the slave device B and the slave device C to instruct to respond at the target time.
  • the master device A, slave device B, and slave device C respectively calculate the difference between the target time and the current time.
  • Device A, slave device B, and slave device C respectively set timers according to their calculated differences.
  • the timers of different devices are implemented by different physical clock counters.
  • the working frequency of the physical clock counter is different, and the counting accuracy of the physical clock counter is also different, so there are errors in the timing duration of different timers.
  • the clock source station synchronizes the standard time "time 1" to master device A, slave device B, and slave device C, respectively.
  • Device A receives time 1 at time 1+a; device B receives time 1 at time 1+b; device C receives time 1 at time 1+c.
  • the master device A sends a response instruction to the slave device B and the slave device C, instructing to respond at the target time "time 2".
  • the difference between time 2 and time 1 is d.
  • the length of time it takes for the master device A, slave device B, and slave device C to calculate the difference d is f1, f2, and f3, respectively.
  • the master device A, the slave device B and the slave device C respectively set the duration of their respective timers to d.
  • the timing error of the timer of the master device A is e1; the timing error of the timer of the slave device B is e2; the timing error of the timer of the slave device C is e3. Then, the master device A reaches the target time after time 1+a+f1+d+e1, and then responds; the slave device B reaches the target time after time 1+b+f2+d+e2, and then responds; C reaches the target time after time 1+c+f3+d+e3, and responds.
  • the master device A, slave device B, and slave device C cannot do the same at time 2. Can not respond at the same time.
  • the existing solutions have relatively large errors in simultaneous responses, while the consistency of responses is poor, and the user experience is poor. For example, in a stereo playback scene, due to the large error of simultaneous response, it is difficult for the left and right channel devices to achieve synchronous playback, and the stereo playback effect is poor.
  • the sound played by the audio device is not synchronized with the screen and subtitles played by the video device, and the user experience is poor.
  • the embodiment of the present application provides a simultaneous response method, which can be applied to a group of electronic devices used in conjunction.
  • the group of electronic devices includes device A, device B, and device C in the communication network.
  • Devices such as device A, device B, and device C forward information through one or more forwarding devices (or intermediary devices) to communicate with each other.
  • forwarding devices or intermediary devices
  • device A, device B, and device C forward information through the same forwarding device to communicate with each other.
  • device A and device B communicate with each other by forwarding information through forwarding device 1; forwarding device 1 and forwarding device 2 can communicate, and device C communicates with other devices through forwarding of forwarding device 2; device C and device A and device B forward information through forwarding device 1 and forwarding device 2, so as to communicate with each other.
  • the communication network may be a local area network (LAN).
  • This group of electronic devices includes device A, device B, and device C in the same local area network.
  • the local area network can be a wired local area network or a wireless local area network.
  • a local area network refers to a group of devices interconnected by multiple devices in a certain area.
  • a local area network covers a small geographic area, and the communication delay time between devices in the local area network is short.
  • the local area network is a wireless local area network, it may specifically be a Wi-Fi local area network, a Wi-Fi hotspot, a Bluetooth local area network, or a Bluetooth hotspot.
  • Wi-Fi local area network may also include Wi-Fi hotspots, that is, Wi-Fi hotspots also belong to Wi-Fi local area networks.
  • Wi-Fi hotspots that is, Wi-Fi hotspots also belong to Wi-Fi local area networks.
  • Bluetooth LAN can also include Bluetooth hotspots, that is, Bluetooth hotspots also belong to Bluetooth LANs.
  • devices in the local area network usually need to forward information through one or more forwarding devices (or intermediary devices) such as gateways, so that the devices in the local area network can communicate with each other.
  • the gateway device may be a wireless router.
  • multiple devices managed by the same gateway can belong to the same LAN.
  • the same local area network can also include multiple devices managed by multiple gateways.
  • the communication network may also be other communication networks other than the local area network.
  • the group of electronic devices may also be a group of electronic devices in a wide area network, and the embodiment of the present application does not limit the type of communication network.
  • the communication network may also be a wireless network based on direct connection technology.
  • the group of electronic devices may be a group of electronic devices based on near-field direct connection technologies such as Bluetooth direct connection, Wi-Fi direct connection, or Zigbee direct connection.
  • the group of electronic devices may include master devices and slave devices.
  • the group of electronic devices includes a master device A, a slave device B, and a slave device C.
  • the master and slave devices can respond simultaneously based on the relative time obtained by calculation, without the need to obtain the standard time (ie absolute time) through network clock synchronization, thus avoiding network clock synchronization
  • the error caused by the network transmission delay can reduce the time error of the simultaneous response of the group of electronic devices, improve the consistency of the simultaneous response, and improve the user experience.
  • the master device can also calculate the timing duration of multiple timers and set multiple timers, and notify the corresponding slave device to respond after the timer expires, without the need to calculate their respective timings on different devices.
  • the duration of the device and the timer are set separately, which can also avoid the calculation time-consuming error of the device and the timing error of the timer between different devices, thereby reducing the time error of the simultaneous response of the group of electronic devices, improving the consistency of the simultaneous response, and improving the user Experience.
  • the electronic devices can be smart home devices such as speakers, light bulbs, TVs, set-top boxes, etc., and can also be mobile phones, headsets, tablets, wearable devices, in-vehicle devices, augmented reality (AR). )/Virtual reality (VR) equipment, notebook computers, ultra-mobile personal computers (UMPC), netbooks, personal digital assistants (personal digital assistants, PDAs) and other equipment.
  • AR augmented reality
  • VR Virtual reality
  • notebook computers notebook computers
  • netbooks personal digital assistants
  • PDAs personal digital assistants
  • the embodiment of the present application does not specifically limit the device type of the electronic device.
  • the multiple electronic devices in the group of electronic devices may be the same type of electronic devices or different types of electronic devices.
  • the group of electronic equipment may be audio equipment, audio and video equipment, lighting equipment, or other types of equipment.
  • the group of electronic devices includes a left-channel speaker (that is, a speaker for playing left-channel audio) and a right-channel speaker (that is, a speaker for playing right-channel audio), that is, a group of the same The audio device of the device type.
  • the left-channel speaker and the right-channel speaker play at the same time, so as to achieve synchronous stereo playback.
  • the group of electronic devices includes a video device TV and an audio device speaker, that is, a group of electronic devices of different device types.
  • TV and speakers respond at the same time, playing video and audio respectively, so as to realize the synchronous playback of pictures and sounds.
  • FIG. 4 shows a schematic structural diagram of the electronic device 100.
  • the electronic device 100 may include a processor 110, an external memory interface 120, an internal memory 121, a universal serial bus (USB) interface 130, a charging management module 140, a power management module 141, a battery 142, an antenna 1, and an antenna 2.
  • Mobile communication module 150 wireless communication module 160, audio module 170, speaker 170A, receiver 170B, microphone 170C, earphone jack 170D, sensor module 180, buttons 190, motor 191, indicator 192, camera 193, display screen 194, user An identification module (subscriber identification module, SIM) card interface 195, a network card 196, and so on.
  • SIM subscriber identification module
  • the sensor module 180 may include pressure sensor 180A, gyroscope sensor 180B, air pressure sensor 180C, magnetic sensor 180D, acceleration sensor 180E, distance sensor 180F, proximity light sensor 180G, fingerprint sensor 180H, temperature sensor 180J, touch sensor 180K, ambient light Sensor 180L, bone conduction sensor 180M, etc.
  • the processor 110 may include one or more processing units.
  • the processor 110 may include an application processor (AP), a modem processor, a graphics processing unit (GPU), and an image signal processor. (image signal processor, ISP), controller, memory, video codec, digital signal processor (digital signal processor, DSP), baseband processor, and/or neural-network processing unit (NPU) Wait.
  • AP application processor
  • modem processor modem processor
  • GPU graphics processing unit
  • image signal processor image signal processor
  • ISP image signal processor
  • controller memory
  • video codec digital signal processor
  • DSP digital signal processor
  • NPU neural-network processing unit
  • the different processing units may be independent devices or integrated in one or more processors.
  • the controller may be the nerve center and command center of the electronic device 100.
  • the controller can generate operation control signals according to the instruction operation code and timing signals to complete the control of fetching and executing instructions.
  • a memory may also be provided in the processor 110 to store instructions and data.
  • the memory in the processor 110 is a cache memory.
  • the memory can store instructions or data that have just been used or recycled by the processor 110. If the processor 110 needs to use the instruction or data again, it can be directly called from the memory. Repeated accesses are avoided, the waiting time of the processor 110 is reduced, and the efficiency of the system is improved.
  • the processor 110 may include one or more interfaces.
  • the interface may include an integrated circuit (inter-integrated circuit, I2C) interface, an integrated circuit built-in audio (inter-integrated circuit sound, I2S) interface, a pulse code modulation (pulse code modulation, PCM) interface, and a universal asynchronous transmitter (universal asynchronous transmitter) interface.
  • I2C integrated circuit
  • I2S integrated circuit built-in audio
  • PCM pulse code modulation
  • PCM pulse code modulation
  • UART universal asynchronous transmitter
  • receiver/transmitter, UART) interface mobile industry processor interface (MIPI), general-purpose input/output (GPIO) interface, subscriber identity module (SIM) interface, general purpose Serial bus (universal bus, USB) interface, and/or network cable interface, etc.
  • MIPI mobile industry processor interface
  • GPIO general-purpose input/output
  • SIM subscriber identity module
  • USB universal bus
  • the network cable interface can be used to connect the network card to the Internet through the network cable, for
  • the I2C interface is a bidirectional synchronous serial bus, which includes a serial data line (SDA) and a serial clock line (SCL).
  • the processor 110 may be coupled to the touch sensor 180K, charger, flash, camera 193, etc. through different I2C bus interfaces.
  • the I2S interface can be used for audio communication.
  • the PCM interface can also be used for audio communication to sample, quantize and encode analog signals.
  • the UART interface is a universal serial data bus used for asynchronous communication.
  • the MIPI interface can be used to connect the processor 110 with the display screen 194, the camera 193 and other peripheral devices.
  • the GPIO interface can be configured through software.
  • the GPIO interface can be configured as a control signal or as a data signal.
  • the USB interface 130 is an interface that complies with the USB standard specification, and specifically may be a Mini USB interface, a Micro USB interface, a USB Type C interface, and so on.
  • the interface connection relationship between the modules illustrated in the embodiment of the present application is merely a schematic description, and does not constitute a structural limitation of the electronic device 100.
  • the electronic device 100 may also adopt different interface connection modes in the foregoing embodiments, or a combination of multiple interface connection modes.
  • the charging management module 140 is used to receive charging input from the charger.
  • the charger can be a wireless charger or a wired charger. While the charging management module 140 charges the battery 142, it can also supply power to the electronic device through the power management module 141.
  • the power management module 141 is used to connect the battery 142, the charging management module 140 and the processor 110.
  • the power management module 141 receives input from the battery 142 and/or the charge management module 140, and supplies power to the processor 110, the internal memory 121, the external memory, the display screen 194, the camera 193, and the wireless communication module 160.
  • the wireless communication function of the electronic device 100 can be implemented by the antenna 1, the antenna 2, the mobile communication module 150, the wireless communication module 160, the modem processor, and the baseband processor.
  • the antenna 1 and the antenna 2 are used to transmit and receive electromagnetic wave signals.
  • Each antenna in the electronic device 100 can be used to cover a single or multiple communication frequency bands. Different antennas can also be reused to improve antenna utilization.
  • antenna 1 can be multiplexed as a diversity antenna of a wireless local area network.
  • the antenna can be used in combination with a tuning switch.
  • the mobile communication module 150 can provide a wireless communication solution including 2G/3G/4G/5G and the like applied to the electronic device 100.
  • the mobile communication module 150 may include at least one filter, switch, power amplifier, low noise amplifier (LNA), etc.
  • the mobile communication module 150 can receive electromagnetic waves by the antenna 1, and perform processing such as filtering, amplifying and transmitting the received electromagnetic waves to the modem processor for demodulation.
  • the mobile communication module 150 can also amplify the signal modulated by the modem processor, and convert it into electromagnetic waves for radiation via the antenna 1.
  • at least part of the functional modules of the mobile communication module 150 may be provided in the processor 110.
  • at least part of the functional modules of the mobile communication module 150 and at least part of the modules of the processor 110 may be provided in the same device.
  • the modem processor may include a modulator and a demodulator.
  • the modulator is used to modulate the low frequency baseband signal to be sent into a medium and high frequency signal.
  • the demodulator is used to demodulate the received electromagnetic wave signal into a low-frequency baseband signal. Then the demodulator transmits the demodulated low-frequency baseband signal to the baseband processor for processing.
  • the low-frequency baseband signal is processed by the baseband processor and then passed to the application processor.
  • the application processor outputs a sound signal through an audio device (not limited to the speaker 170A, the receiver 170B, etc.), or displays an image or video through the display screen 194.
  • the modem processor may be an independent device.
  • the modem processor may be independent of the processor 110 and be provided in the same device as the mobile communication module 150 or other functional modules.
  • the wireless communication module 160 can provide applications on the electronic device 100 including wireless local area networks (WLAN) (such as wireless fidelity (Wi-Fi) networks), bluetooth (BT), and global navigation satellites.
  • WLAN wireless local area networks
  • BT wireless fidelity
  • GNSS global navigation satellite system
  • FM frequency modulation
  • NFC near field communication technology
  • infrared technology infrared, IR
  • the wireless communication module 160 may be one or more devices integrating at least one communication processing module.
  • the wireless communication module 160 receives electromagnetic waves via the antenna 2, frequency modulates and filters the electromagnetic wave signals, and sends the processed signals to the processor 110.
  • the wireless communication module 160 can also receive the signal to be sent from the processor 110, perform frequency modulation, amplify it, and convert it into electromagnetic wave radiation via the antenna 2.
  • the electronic device 100 may access a wireless local area network (such as Wi-Fi) through the wireless communication module 160.
  • a wireless local area network such as Wi-Fi
  • the electronic device 100 may access a wired local area network through a network cable interface.
  • the antenna 1 of the electronic device 100 is coupled with the mobile communication module 150, and the antenna 2 is coupled with the wireless communication module 160, so that the electronic device 100 can communicate with the network and other devices through wireless communication technology.
  • Wireless communication technologies can include global system for mobile communications (GSM), general packet radio service (GPRS), code division multiple access (CDMA), and broadband code division. Multiple access (wideband code division multiple access, WCDMA), time-division code division multiple access (TD-SCDMA), long term evolution (LTE), BT, GNSS, WLAN, NFC, FM , And/or IR technology, etc.
  • GNSS can include global positioning system (GPS), global navigation satellite system (GLONASS), Beidou navigation satellite system (BDS), and quasi-zenith satellite system (quasi-zenith). Satellite system, QZSS) and/or satellite-based augmentation systems (SBAS).
  • GPS global positioning system
  • GLONASS global navigation satellite system
  • BDS Beidou navigation satellite system
  • QZSS quasi-zenith satellite system
  • SBAS satellite-based augmentation systems
  • the electronic device 100 implements a display function through a GPU, a display screen 194, and an application processor.
  • the GPU is a microprocessor for image processing, connected to the display 194 and the application processor.
  • the GPU is used to perform mathematical and geometric calculations for graphics rendering.
  • the processor 110 may include one or more GPUs, which execute program instructions to generate or change display information.
  • the display screen 194 is used to display images, videos, etc.
  • the display screen 194 includes a display panel.
  • the display panel can adopt liquid crystal display (LCD), organic light-emitting diode (OLED), active-matrix organic light-emitting diode or active-matrix organic light-emitting diode (active-matrix organic light-emitting diode).
  • LCD liquid crystal display
  • OLED organic light-emitting diode
  • active-matrix organic light-emitting diode active-matrix organic light-emitting diode
  • AMOLED flexible light-emitting diode (FLED), Miniled, MicroLed, Micro-oLed, quantum dot light-emitting diode (QLED), etc.
  • the electronic device 100 may include one or N display screens 194, and N is a positive integer greater than one.
  • the electronic device 100 can implement a shooting function through an ISP, a camera 193, a video codec, a GPU, a display screen 194, and an application processor.
  • the ISP is used to process the data fed back from the camera 193. For example, when taking a picture, the shutter is opened, the light is transmitted to the photosensitive element of the camera through the lens, the light signal is converted into an electrical signal, and the photosensitive element of the camera transmits the electrical signal to the ISP for processing, which is converted into an image visible to the naked eye.
  • ISP can also optimize the image noise, brightness, and skin color. ISP can also optimize the exposure, color temperature and other parameters of the shooting scene.
  • the ISP may be provided in the camera 193.
  • the camera 193 is used to capture still images or videos.
  • the object generates an optical image through the lens and projects it to the photosensitive element.
  • the photosensitive element may be a charge coupled device (CCD) or a complementary metal-oxide-semiconductor (CMOS) phototransistor.
  • CMOS complementary metal-oxide-semiconductor
  • the photosensitive element converts the optical signal into an electrical signal, and then transmits the electrical signal to the ISP to convert it into a digital image signal.
  • ISP outputs digital image signals to DSP for processing.
  • DSP converts digital image signals into standard RGB, YUV and other formats.
  • the electronic device 100 may include 1 or N cameras 193, and N is a positive integer greater than 1.
  • Digital signal processors are used to process digital signals. In addition to digital image signals, they can also process other digital signals. For example, when the electronic device 100 selects the frequency point, the digital signal processor is used to perform Fourier transform on the energy of the frequency point.
  • Video codecs are used to compress or decompress digital video.
  • the electronic device 100 may support one or more video codecs. In this way, the electronic device 100 can play or record videos in a variety of encoding formats, such as: moving picture experts group (MPEG) 1, MPEG2, MPEG3, MPEG4, and so on.
  • MPEG moving picture experts group
  • NPU is a neural-network (NN) computing processor.
  • NN neural-network
  • the NPU can realize applications such as intelligent cognition of the electronic device 100, such as image recognition, face recognition, voice recognition, text understanding, and so on.
  • the external memory interface 120 may be used to connect an external memory card, such as a Micro SD card, to expand the storage capacity of the electronic device 100.
  • the external memory card communicates with the processor 110 through the external memory interface 120 to realize the data storage function. For example, save music, video and other files in an external memory card.
  • the internal memory 121 may be used to store computer executable program code, and the executable program code includes instructions.
  • the processor 110 executes various functional applications and data processing of the electronic device 100 by running instructions stored in the internal memory 121.
  • the internal memory 121 may include a storage program area and a storage data area.
  • the storage program area can store an operating system, at least one application program (such as a sound playback function, an image playback function, etc.) required by at least one function.
  • the data storage area can store data (such as audio data, phone book, etc.) created during the use of the electronic device 100.
  • the internal memory 121 may include a high-speed random access memory, and may also include a non-volatile memory, such as at least one magnetic disk storage device, a flash memory device, a universal flash storage (UFS), etc.
  • UFS universal flash storage
  • the electronic device 100 can implement audio functions through the audio module 170, the speaker 170A, the receiver 170B, the microphone 170C, the earphone interface 170D, and the application processor. For example, music playback, recording, etc.
  • the audio module 170 is used to convert digital audio information into an analog audio signal for output, and is also used to convert an analog audio input into a digital audio signal.
  • the audio module 170 can also be used to encode and decode audio signals.
  • the audio module 170 may be provided in the processor 110, or part of the functional modules of the audio module 170 may be provided in the processor 110.
  • the speaker 170A also called a “speaker” is used to convert audio electrical signals into sound signals.
  • the electronic device 100 can listen to music through the speaker 170A, or listen to a hands-free call.
  • the receiver 170B also called “earpiece” is used to convert audio electrical signals into sound signals.
  • the electronic device 100 answers a call or voice message, it can receive the voice by bringing the receiver 170B close to the human ear.
  • the microphone 170C also called “microphone”, “microphone”, is used to convert sound signals into electrical signals.
  • the user can approach the microphone 170C through the mouth to make a sound, and input the sound signal to the microphone 170C.
  • the electronic device 100 may be provided with at least one microphone 170C. In other embodiments, the electronic device 100 may be provided with two microphones 170C, which can implement noise reduction functions in addition to collecting sound signals. In some other embodiments, the electronic device 100 can also be provided with three, four or more microphones 170C to collect sound signals, reduce noise, identify sound sources, and realize directional recording functions.
  • the microphone 170C may also collect the user's voice instructions, so that the electronic device 100 performs a response operation according to the user's voice instructions.
  • the earphone interface 170D is used to connect wired earphones.
  • the earphone interface 170D may be a USB interface 130, or a 3.5mm open mobile terminal platform (OMTP) standard interface, and a cellular telecommunications industry association (cellular telecommunications industry association of the USA, CTIA) standard interface.
  • OMTP open mobile terminal platform
  • CTIA cellular telecommunications industry association of the USA, CTIA
  • the pressure sensor 180A is used to sense the pressure signal and can convert the pressure signal into an electrical signal.
  • the pressure sensor 180A may be provided on the display screen 194.
  • the gyro sensor 180B may be used to determine the movement posture of the electronic device 100. In some embodiments, the angular velocity of the electronic device 100 around three axes (ie, x, y, and z axes) can be determined by the gyro sensor 180B. The gyro sensor 180B can be used for image stabilization.
  • the air pressure sensor 180C is used to measure air pressure.
  • the electronic device 100 calculates the altitude based on the air pressure value measured by the air pressure sensor 180C to assist positioning and navigation.
  • the magnetic sensor 180D includes a Hall sensor.
  • the electronic device 100 can use the magnetic sensor 180D to detect the opening and closing of the flip holster.
  • the electronic device 100 can detect the opening and closing of the flip according to the magnetic sensor 180D.
  • features such as automatic unlocking of the flip cover are set.
  • the acceleration sensor 180E can detect the magnitude of the acceleration of the electronic device 100 in various directions (generally three axes). When the electronic device 100 is stationary, the magnitude and direction of gravity can be detected. It can also be used to identify the posture of electronic devices, and used in applications such as horizontal and vertical screen switching, pedometers and so on.
  • the electronic device 100 can measure the distance by infrared or laser. In some embodiments, when shooting a scene, the electronic device 100 can use the distance sensor 180F to measure the distance to achieve fast focusing.
  • the proximity light sensor 180G may include, for example, a light emitting diode (LED) and a light detector such as a photodiode.
  • the light emitting diode may be an infrared light emitting diode.
  • the electronic device 100 emits infrared light to the outside through the light emitting diode.
  • the electronic device 100 uses a photodiode to detect infrared reflected light from nearby objects. When sufficient reflected light is detected, it can be determined that there is an object near the electronic device 100. When insufficient reflected light is detected, the electronic device 100 can determine that there is no object near the electronic device 100.
  • the electronic device 100 can use the proximity light sensor 180G to detect that the user holds the electronic device 100 close to the ear to talk, so as to automatically turn off the screen to save power.
  • the proximity light sensor 180G can also be used in leather case mode, and the pocket mode will automatically unlock and lock the screen.
  • the ambient light sensor 180L is used to sense the brightness of the ambient light.
  • the electronic device 100 can adaptively adjust the brightness of the display screen 194 according to the perceived brightness of the ambient light.
  • the ambient light sensor 180L can also be used to automatically adjust the white balance when taking pictures.
  • the ambient light sensor 180L can also cooperate with the proximity light sensor 180G to detect whether the electronic device 100 is in the pocket to prevent accidental touch.
  • the fingerprint sensor 180H is used to collect fingerprints.
  • the electronic device 100 can use the collected fingerprint characteristics to realize fingerprint unlocking, access application locks, fingerprint photographs, fingerprint answering calls, etc.
  • the temperature sensor 180J is used to detect temperature.
  • the electronic device 100 uses the temperature detected by the temperature sensor 180J to execute a temperature processing strategy. For example, when the temperature reported by the temperature sensor 180J exceeds a threshold value, the electronic device 100 executes to reduce the performance of the processor located near the temperature sensor 180J, so as to reduce power consumption and implement thermal protection.
  • the electronic device 100 when the temperature is lower than another threshold, the electronic device 100 heats the battery 142 to avoid abnormal shutdown of the electronic device 100 due to low temperature.
  • the electronic device 100 boosts the output voltage of the battery 142 to avoid abnormal shutdown caused by low temperature.
  • Touch sensor 180K also called “touch panel”.
  • the touch sensor 180K may be disposed on the display screen 194, and the touch screen is composed of the touch sensor 180K and the display screen 194, which is also called a “touch screen”.
  • the touch sensor 180K is used to detect touch operations acting on or near it.
  • the touch sensor can pass the detected touch operation to the application processor to determine the type of touch event.
  • the visual output related to the touch operation can be provided through the display screen 194.
  • the touch sensor 180K may also be disposed on the surface of the electronic device 100, which is different from the position of the display screen 194.
  • the bone conduction sensor 180M can acquire vibration signals.
  • the bone conduction sensor 180M can obtain the vibration signal of the vibrating bone mass of the human voice.
  • the bone conduction sensor 180M can also contact the pulse of the human body and receive the blood pressure pulse signal.
  • the bone conduction sensor 180M may also be provided in the earphone, combined with the bone conduction earphone.
  • the audio module 170 can parse out the voice signal based on the vibration signal of the vibrating bone block of the voice obtained by the bone conduction sensor 180M to realize the voice function.
  • the application processor can analyze the heart rate information based on the blood pressure beating signal obtained by the bone conduction sensor 180M, and realize the heart rate detection function.
  • the button 190 includes a power button, a volume button, and so on.
  • the button 190 may be a mechanical button. It can also be a touch button.
  • the electronic device 100 may receive key input, and generate key signal input related to user settings and function control of the electronic device 100.
  • the electronic device 100 may perform a response operation according to the user's key input.
  • the motor 191 can generate vibration prompts.
  • the motor 191 can be used for incoming call vibration notification, and can also be used for touch vibration feedback.
  • touch operations applied to different applications can correspond to different vibration feedback effects.
  • Acting on touch operations in different areas of the display screen 194, the motor 191 can also correspond to different vibration feedback effects.
  • Different application scenarios for example: time reminding, receiving information, alarm clock, games, etc.
  • the touch vibration feedback effect can also support customization.
  • the indicator 192 may be an indicator light, which may be used to indicate the charging status, power change, or to indicate messages, missed calls, notifications, and so on.
  • the SIM card interface 195 is used to connect to the SIM card.
  • the SIM card can be inserted into the SIM card interface 195 or pulled out from the SIM card interface 195 to achieve contact and separation with the electronic device 100.
  • the electronic device 100 may support 1 or N SIM card interfaces, and N is a positive integer greater than 1.
  • the SIM card interface 195 can support Nano SIM cards, Micro SIM cards, SIM cards, etc.
  • the same SIM card interface 195 can insert multiple cards at the same time. The types of multiple cards can be the same or different.
  • the SIM card interface 195 can also be compatible with different types of SIM cards.
  • the SIM card interface 195 may also be compatible with external memory cards.
  • the electronic device 100 interacts with the network through the SIM card to implement functions such as call and data communication.
  • the electronic device 100 adopts an eSIM, that is, an embedded SIM card.
  • the eSIM card can be embedded in the electronic device 100 and cannot be separated from the electronic device 100.
  • the structure illustrated in the embodiment of the present application does not constitute a specific limitation on the electronic device 100.
  • the electronic device 100 may include more or fewer components than shown, or combine certain components, or split certain components, or arrange different components.
  • the illustrated components can be implemented in hardware, software, or a combination of software and hardware.
  • the electronic device 100 when the above-mentioned electronic device 100 is a TV, the electronic device 100 may include components such as a display screen and a GPU, but does not include components such as a mobile communication module; when the above-mentioned electronic device 100 is a speaker, it may include components such as an audio module, but does not include a display. Screen, GPU and other components.
  • the processor 110 can execute the code in the internal memory 121 to measure the transmission time between different slave devices (that is, the network transmission time), and determine the The maximum transmission time between different slave devices max.
  • the processor 110 can also execute the code in the internal memory 121 to respond after max duration; and the maximum transmission time max, and communicate with each slave Different transmission time between devices is sent to the corresponding slave device. If the electronic device 100 is a slave device, the processor 110 may execute the code in the internal memory 121 to respond after receiving the max and the transmission time and the max-ti duration. Among them, ti represents the current transmission time between the slave device and the master device. Therefore, the master device and each slave device can respond simultaneously.
  • the processor 110 may execute the code in the internal memory 121 to respond after the max-ti period has elapsed; and after the max-ti period, indicate the corresponding The slave responds.
  • ti represents the time-consuming transmission between the master device and the slave device that instructs to respond.
  • the transmission time ti varies depending on the slave device.
  • the processor 110 may execute the code in the internal memory 121 to immediately respond after receiving the response instruction sent by the master device. Therefore, the master device and each slave device can respond simultaneously.
  • the group of electronic devices is a group of audio devices.
  • This group of audio devices can receive user voice instructions.
  • the set of audio devices may be a set of speakers, a set of headphones or a set of other audio devices.
  • the group of audio equipment includes a speaker A set in the living room, and a speaker B and a speaker C set in different bedrooms.
  • Speaker A, speaker B and speaker C can be connected to the same Wi-Fi LAN through a wireless router (or wireless access point).
  • the wireless router is the gateway. It should be noted that there may be one or more wireless routers (for example, including a master router and a slave router).
  • Speaker A, speaker B and speaker C can be paired to form a set of electronic devices.
  • the group of electronic devices is a group of electronic devices that are pre-paired at the factory.
  • the set of electronic devices is a set of left channel speakers and right channel speakers that have been paired at the factory.
  • speaker A, speaker B, speaker C, and the user's mobile phone can access the same Wi-Fi local area network through a wireless router.
  • the user can pair speaker A, speaker B, and speaker C through the mobile APP, thereby combining speaker A, speaker B, and speaker C into A set of electronic equipment.
  • the mobile phone after the mobile phone detects the user's instruction to pair speaker A, speaker B, and speaker C through the APP, it can notify speaker A, speaker B, and speaker C to pair via the cloud server.
  • Speaker A can send pairing related information to the cloud server through the wireless router, and the cloud server forwards it to the speaker B and speaker C to be paired through the wireless router.
  • the pairing-related information may include, IP address, device identification (such as serial number), device name, device model, or pairing response information.
  • speaker C and speaker B can also forward the pairing related information to other speakers to be paired through the wireless router and cloud server. Therefore, the speaker A, the speaker B, and the speaker C can exchange pairing related information to complete the pairing process.
  • the roles of the master device and the slave device may be specified by the user.
  • the user can designate speaker A as the master device through APP, and speaker B and speaker C as the slave devices.
  • the roles of the master device and the slave device may also be automatically determined by the mobile phone.
  • the mobile phone determines that among the group of electronic devices, the speaker first connected to the Wi-Fi LAN is the master device, and the other speakers are the slave devices.
  • the mobile phone randomly selects one speaker in the group of electronic devices as the master device, and other speakers as the slave devices.
  • different speakers in the group of electronic devices can determine the distance to the user through infrared sensors, distance sensors and other devices, and report the distance to the mobile phone, and the mobile phone determines the speaker closest to the user as the main device.
  • different speakers in the group of electronic devices can detect the user’s voice signal strength and other parameters, and report the voice signal strength and other parameters to the mobile phone.
  • the mobile phone determines the distance between the speaker and the user based on the voice signal strength and other parameters. And determine the speaker closest to the user as the main device.
  • the mobile phone can notify the roles of the master and slave devices to speaker A, speaker B, and speaker C through the cloud server and wireless router; or, the master and slave devices can notify each other Own role.
  • the group of electronic devices can measure the transmission time between the master device and each slave device.
  • the clock source site may be far away from the group of electronic devices, compared with the transmission time between the clock source site and the group of electronic devices in the prior art, the difference between the master device and the slave device connected to the same LAN is The distance is shorter, so the transmission time between the master device and the slave device is shorter.
  • the slave device can measure the transmission time between the slave device and the master device, and report to the master device for storage. This transmission is time-consuming and the time required to transmit information between the master device and the slave device.
  • the master device can determine the maximum value max for the transmission time between each slave device (ie, the maximum transmission time).
  • the master device may separately measure the transmission time with each slave device, and determine the maximum value max of the transmission time with each slave device.
  • the master device or the slave device can measure the transmission time.
  • the transmission between speaker A and speaker B is time-consuming.
  • Speaker A can send measurement information to speaker B and record the sending time. After speaker B receives the measurement information sent by speaker A, it can record the receiving time. Speaker B sends a response message to the main device to return the receiving time to speaker A.
  • the speaker A determines the difference between the receiving moment and the sending moment, which is the transmission time between the speaker A and the speaker B.
  • speaker A can send measurement information to speaker B and start a timer. After speaker B receives the measurement information sent by speaker A, it will reply to speaker A with a response message.
  • Speaker A stops the timer after receiving the response information, and determines half of the timer's duration, that is, the transmission time between speaker A and speaker B.
  • the transmission time between speaker A and speaker B and speaker C may be equal or different.
  • the group of electronic devices can exchange pairing related information; after pairing, the group of electronic devices can also exchange measurement information and response information for measuring time-consuming transmission between the master and slave devices. other information.
  • the group of electronic devices when the group of electronic devices is disconnected from the network, for example, the group of electronic devices is powered on/off, the access point of the group of electronic devices is changed, reset, powered on/off, or the group of electronic devices is connected
  • the transmission time may also change. Therefore, after reconnecting to the local area network, the group of electronic devices can also re-measure the transmission consumption between the master device and each slave device. Time, and re-determine the maximum transmission time max.
  • the group of electronic devices can receive the user's voice instructions and simultaneously respond to the user's voice instructions.
  • the group of electronic devices can receive an instruction from the user to turn on the lights, and perform the operation of turning on the lights at the same time (that is, simultaneous response, or simultaneous response operation).
  • the group of electronic devices can receive a voice wake-up instruction from the user, and perform a wake-up response at the same time (ie, simultaneously respond).
  • the wake-up response can include lights (such as lighting the light ring, lighting the indicator light, and constantly flashing the indicator), sound (such as a "di" sound, or the sound "Master, I have been awakened”) or vibration.
  • speaker A is the master device
  • speaker B and speaker C are slave devices.
  • the group of electronic devices After receiving the user's voice wake-up instruction (that is, detecting the response instruction), the group of electronic devices will light up the light ring at the same time Take the wake-up response as an example.
  • the master and slave devices can forward and exchange data information (such as data instructions) through a gateway (such as a wireless router).
  • a gateway such as a wireless router
  • the master and slave devices can also forward and exchange data information through the cloud server and gateway.
  • the cloud server has strong processing capabilities, can better recognize the user’s voice information, and recognize the user’s intention based on the user’s voice information, so the master and slave devices can also be processed by the cloud server and forwarded by the gateway.
  • Process voice information For example, the slave device can receive the user's voice information and report it to the cloud server through the gateway. After the cloud server recognizes and processes the voice information, it learns the user's intention, converts the user's intention into the corresponding data instruction, and sends the data instruction to the main device through the gateway.
  • the master and slave devices can forward and interact voice information through the gateway.
  • the voice wake-up instruction is a specific voice instruction, for example, the voice wake-up instruction may be "Little E, Little E!.
  • Speakers A-C determine that the user wants to wake up the speakers after detecting the voice wake-up command.
  • speaker A ie, the main device
  • Loudspeaker A can control Loudspeaker A, Loudspeaker B and Loudspeaker C to light up the light ring at the same time (ie, respond simultaneously). Or, after speaker B or speaker C (i.e.
  • speaker A can be notified through the cloud server (that is, speaker A is notified by the cloud server's voice intention processing and the wireless router forwarding notification); speaker A can Control speaker A, speaker B and speaker C start to light up the light ring synchronously.
  • speaker A can detect the user's voice wake-up instruction by itself, or learn the user's wake-up instruction according to a notification from the device or cloud server. If the transmission time ab and ac are measured by speaker A, and the current time is time 1, speaker A can send response command 1 to speaker B, and the response command 1 includes transmission time ab and maximum transmission time max.
  • the ab and max sent by speaker A arrive at speaker B after transmission time-consuming ab. That is, speaker B receives ab and max sent by speaker A at time 1+ab.
  • speaker A can send response instruction 2 to speaker C.
  • the response instruction 2 includes transmission time ac and maximum transmission time max.
  • speaker A can send response instructions to speaker B and speaker C after learning the user's wake-up instruction.
  • speaker A sends a response command to speaker B
  • speaker A sends a response command to speaker C in no order.
  • speaker A responds at a time indicated by time 1+max.
  • the wake-up response is to light up the light ring
  • the sound box A, the sound box B, and the sound box C light up the light ring at the same time.
  • the process of lighting the light ring of each speaker can be synchronized.
  • the wake-up response is to light up one or more indicator lights
  • the speaker A, the speaker B, and the speaker C simultaneously light the indicator.
  • each speaker can simultaneously light up the row of indicators.
  • the wake-up response is a flashing indication, etc.
  • speaker A, speaker B, and speaker C start to flash the indicator at the same frequency at the same time.
  • the wake-up response is a beep
  • the speaker A, the speaker B, and the speaker C beep simultaneously.
  • the wake-up response is the sound "Master, I have been awakened"
  • the time indicated by time 1+max speaker A, speaker B and speaker C simultaneously sound "Master, I have been awakened”. wake.
  • the slave device side considers and offsets the transmission time when responding simultaneously, thereby avoiding the transmission cost.
  • the error of the simultaneous response caused by the time improves the consistency of the simultaneous response.
  • the speaker A, the speaker B, and the speaker C can simultaneously wake up and respond, for example, start to light the light ring at the same time.
  • the synchronization of the lighting process of the speaker A, the speaker B, and the speaker C is better, and the user's visual experience is better.
  • Speaker A sends the maximum transmission time to speaker B and speaker C through response commands max, instead of sending ab and ac.
  • the max sent by speaker A reaches speaker B after the transmission time ab. That is, speaker B receives the max sent by speaker A at time 1+ab.
  • speaker A responds at a time indicated by time 1+max.
  • speaker A responds after max duration after the current moment
  • speaker B receives max sent by speaker A and responds after max-ab duration
  • speaker C receives To the max sent by speaker A, and respond after max-ac duration.
  • the max, max-ab and max-ac are all relative time, that is to say, each speaker responds synchronously according to the relative time, and considers and offsets the transmission time between master and slave devices in the LAN; and does not need to go through the network
  • the clock synchronization obtains the standard time (that is, the absolute time), thereby avoiding the delay caused by the network clock synchronization, improving the consistency of the simultaneous response of the master and the slave device, and improving the user experience.
  • the solution shown in Figure 7 can be used to reduce the time error of simultaneous response between different speakers to less than 0.01 ms.
  • the main solution described above is that after the master device determines that it needs to respond (or after detecting the response instruction, for example, after learning the user's wake-up instruction), it sends the response instruction to the slave device, and sets max, ab, and ac Send to the slave device, or send max to the slave device for simultaneous response.
  • the method flowchart of the solution shown in FIG. 7 can be seen in FIG. 10A.
  • the master device may send max, ab, and ac to the slave device in advance, or send max to the slave device in advance. For example, after pairing, the master device sends max, ab, and ac to the corresponding slave devices in advance, or sends max to each slave device in advance. Then, after the master device determines that it needs to respond (for example, learns the user's wake-up instruction), it then sends a response instruction to the slave device according to the timing shown in Figure 7.
  • the response instruction may not include max-ab or max-ac, so that The master device and the slave device respond simultaneously.
  • the transmission time ab and ac between the master and slave devices can be measured by speaker A, or can be measured by speaker B and speaker C separately; and the master device can determine max based on ab and ac.
  • the current is time 1
  • the duration of speaker A can be set to max. , Max-ab, and max-ac timers.
  • speaker A sends an instruction to speaker B to instruct speaker B to respond.
  • speaker B receives the instruction, it responds immediately. That is, the speaker B responds at the time indicated by 1+max.
  • speaker A considers and offsets the transmission time, thereby avoiding the error of simultaneous response caused by transmission time.
  • speaker A sends a command to speaker B to instruct speaker B to respond.
  • speaker A considers and offsets the time-consuming transmission, thereby avoiding the error of simultaneous response caused by the time-consuming transmission.
  • speaker A, speaker B, and speaker C all respond simultaneously at the time indicated by time 1+max.
  • speaker A responds after max duration after the current moment, and instructs speaker B to respond after max-ab duration after the current moment, and at max-ac after the current moment After a long time, instruct speaker C to respond.
  • the max, max-ab and max-ac are all relative time, that is to say, each speaker responds synchronously according to the relative time, and considers and offsets the transmission time between master and slave devices in the LAN; and does not need to go through the network
  • the clock synchronization obtains the standard time (that is, the absolute time), which can avoid the delay caused by the network clock synchronization, improve the consistency of the simultaneous response of the master and the slave devices, and improve the user experience.
  • the main device speaker A calculates the duration of the timing and sets multiple timers.
  • the computing devices of the timing duration are all the same device, and multiple timers are implemented based on the physical clock timer of the same device. There is no need to calculate the respective timer durations on different devices and set the timers separately, thus avoiding device calculation time-consuming errors and timer errors between different devices. Therefore, the error of simultaneous responses of the group of electronic devices can be reduced, the consistency of simultaneous responses can be improved, and the user experience can be improved. For example, using the solutions shown in Figure 11 and Figure 12, the time error of simultaneous response between different speakers can be reduced to less than 0.001 ms.
  • T0 the master device and the slave device can respond at the same time as quickly as possible, and the user experience is better.
  • the group of electronic devices may also receive other user voice commands other than the voice wake-up command, and respond simultaneously.
  • the user's other voice commands are the voice commands for the user to set an alarm clock at 8:00 tomorrow morning.
  • the user's other voice commands other than the voice wake-up command are usually not specific commands, they are personalized and arbitrary. Different users usually issue different voice commands for the same instruction.
  • the cloud server has a strong voice intent processing capability. Therefore, the user's other voice commands other than the voice wake-up command detected by the master device or the slave device usually need to be reported to the cloud server through the wireless router, processed by the cloud server, and converted into corresponding data instructions, and then forwarded to the master through the wireless router equipment.
  • the master device control and the slave device respond simultaneously.
  • speaker A of the main device detects the voice command of the user to set an alarm clock at 8:00 tomorrow morning.
  • Speaker A, speaker B, and speaker C can use the simultaneous response method shown in Figures 7-12 to activate the alarm reminder at 8:00 the next morning.
  • Speaker B notifies speaker A of the alarm setting through the wireless router and cloud server.
  • Speaker A, speaker B, and speaker C can use the simultaneous response method shown in Figures 7-12 to activate the alarm reminder at 8:00 the next morning.
  • the group of electronic devices receives voice control instructions used by the user to instruct play, pause, previous/next song, increase volume, decrease volume, etc.
  • the group of electronic devices can use the methods shown in Figs. 7-12 to respond simultaneously.
  • the user can also instruct the group of electronic devices to perform control operations such as play, pause, previous/next song, increase volume, and decrease volume through voice commands, key operations, or touch operations through the mobile phone APP.
  • the APP informs the main device through the cloud server.
  • the cloud server can forward the relevant instructions to the main device through the wireless router.
  • the master device and the slave device can respond simultaneously by using the method shown in Figure 7-12, thereby starting playback at the same time, pausing at the same time, switching to the previous/next song at the same time, increasing the volume at the same time, or reducing the volume at the same time, etc. .
  • the slave device can also detect the user's key operation or touch operation and other instructions, and notify the master device. It should be noted that the slave device can forward the relevant instructions to the master device through the wireless router. For example, after the slave device detects the user's instruction to play the next song through a key operation, it notifies the master device. The master device and the slave device can use the method shown in Figure 7-12 to respond simultaneously, thereby switching to playing the next song at the same time.
  • the above description is mainly based on an example in which the slave device includes two devices.
  • the number of slave devices may also be greater than two, and the above max is the maximum value of the transmission time between each slave device and the master device.
  • max means the transmission time between the master device and the slave device.
  • the master device is speaker A
  • the slave device is speaker B
  • the transmission time between the master device and the slave device measured by max is ab.
  • the response indication detected by the speaker A may be that the speaker A detects a user's voice command, key operation or touch operation, or receives an instruction sent by a cloud server or a device.
  • speaker A detects the response indication and responds after ab duration has elapsed.
  • the speaker A may send a response instruction to the speaker B in response to detecting the response instruction.
  • Speaker B can respond immediately after receiving the response indication.
  • speaker A detects the response indication and responds after the duration of T.
  • speaker A may send a response instruction to speaker B after experiencing T-ab (ie, T0).
  • Speaker B receives the response instruction and can respond immediately.
  • speaker A detects the response instruction and responds after a duration of T; and, in response to detecting the response instruction, speaker A sends a response instruction to speaker B.
  • Speaker B receives the response instruction and responds after experiencing T-ab (ie T0).
  • the group of electronic devices is a group of audio devices.
  • This group of audio equipment can be used in conjunction to achieve audio stereo playback.
  • the group of audio devices may include a left-channel speaker and a right-channel speaker.
  • the audio device may include a left-channel earphone and a right-channel earphone.
  • the group of audio equipment itself is divided into left-channel equipment and right-channel equipment.
  • the group of audio devices is designated by the user (for example, designated during pairing) whether it is a left-channel device or a right-channel device.
  • This group of audio devices includes a master device and a slave device.
  • the master and slave devices can respond synchronously using the method shown in Figure 7-13 .
  • stereo synchronous playback, or synchronous pause synchronously increase the volume, synchronously reduce the volume, and synchronously switch the next/previous song playback control.
  • the stereo playback effect is better, and the user will not feel that the audio of the left and right channels is out of sync, and the user's hearing experience is better.
  • the group of electronic devices is a group of electronic devices that cooperate with audio and video.
  • the group of electronic equipment may include video equipment and audio equipment used in conjunction.
  • the group of electronic equipment includes a TV and a speaker.
  • the TV is used to play video images, and the speakers are used to play sound.
  • the group of electronic devices includes a master device (such as a TV) and a slave device (such as a speaker). After the master device detects the user's voice instructions, key operations or touch operations, or receives instructions from the cloud server or slave device, the master and slave devices can respond synchronously using the method shown in Figure 7-13 , In order to achieve synchronized playback of audio and video. Among them, due to the high consistency of simultaneous responses of this group of audio and video equipment, the synchronization effect of video and audio is better, and the user will not feel a delay between the video picture and the sound, and the user experience is better.
  • the group of electronic devices includes a TV and two speakers.
  • the TV is used to play video images, one speaker is used to play the left channel audio, and the other speaker is used to play the right channel audio.
  • This group of electronic devices includes 1 master device (such as a TV) and 2 slave devices.
  • the master and slave devices can use the methods shown in Figures 7-13 to respond synchronously to achieve synchronous playback of audio and video. Among them, due to the high consistency of simultaneous responses of this group of audio and video equipment, the synchronization effect between video and audio is better, and the stereo playback effect is better, and the user experience is better.
  • the group of electronic equipment includes a TV and a speaker.
  • the TV itself has a speaker, the TV is used to play video images and left channel audio, and the speaker is used to play right channel audio.
  • This group of electronic devices includes a master device and a slave device.
  • the master and slave devices can use the methods shown in Figures 7-13 to perform synchronous responses to achieve synchronous playback of audio and video, and synchronous playback of stereo audio.
  • the group of electronic devices is a group of video devices.
  • This group of video devices can be used in conjunction with a left-eye image playback device and a right-eye image playback device.
  • the master and slave devices can respond synchronously using the method shown in Figure 7-13 .
  • the master and slave devices can respond synchronously using the method shown in Figure 7-13 .
  • the group of electronic devices is a group of electronic devices with audio and lighting coordination.
  • the group of electronic devices may include audio devices and light emitting devices that are used in conjunction.
  • the group of electronic equipment includes a speaker and at least one light bulb.
  • the light bulb can emit different colors of light or flash lights at different frequencies according to changes in characteristics such as loudness, pitch, tone color, scale or frequency of the sound played by the speaker, so as to display different lighting effects.
  • the master device in the group of electronic devices may be a speaker, and the slave device may be the at least one light bulb.
  • the master and slave devices can respond synchronously using the method shown in Figure 7-13 , In order to realize the interweaving and coordination of music and lighting. Among them, due to the high consistency of simultaneous responses, the coordination between sound and light is better, and the user experience is better.
  • the above description is mainly based on the example that the group of electronic devices are connected to the same Wi-Fi LAN. This group of electronic devices can also be connected to other types of local area networks.
  • the group of electronic devices can access the same Wi-Fi hotspot.
  • a mobile phone opens a Wi-Fi hotspot, and the group of electronic devices accesses the Wi-Fi hotspot.
  • the group of electronic devices may be speaker A, speaker B, and speaker C connected to the Wi-Fi hotspot.
  • the function of the mobile phone is similar to the function of the above-mentioned wireless router (ie, the gateway), which can forward information between the master and slave devices of the group of electronic devices; it can also be combined with the cloud server to connect the master and slave devices of the group of electronic devices. Forward information between devices.
  • the embodiments of this application will not be repeated.
  • the master and slave devices of the group of electronic devices can communicate based on the Wi-Fi hotspot protocol through the forwarding of the mobile phone, and respond simultaneously by using the method shown in Figure 7-13.
  • the above description is mainly based on the Wi-Fi wireless communication technology as an example.
  • the simultaneous response method provided in the embodiment of the present application can also be applied to other wireless communication technologies.
  • Bluetooth Zigbee, infrared, etc.
  • the group of electronic devices can access the same Bluetooth LAN.
  • the notebook computer supports the Bluetooth protocol (for example, the Bluetooth protocol 4.0 and above).
  • the laptop is connected to the Internet via Wi-Fi or a network cable.
  • the laptop opens the ability to use Bluetooth to share the network. That is, the laptop opens a Bluetooth LAN.
  • the group of electronic devices can be connected to a laptop computer via Bluetooth and access the Bluetooth LAN.
  • the master and slave devices in the Bluetooth LAN can respond simultaneously through the methods shown in Figures 7-13 based on the Bluetooth communication protocol.
  • the group of electronic devices includes a TV and a speaker.
  • an electronic device such as a TV
  • a laptop computer After an electronic device (such as a TV) is connected to a laptop computer via Bluetooth, it can prompt the user whether to use Bluetooth LAN for communication. If the electronic device detects the user's instruction to use the Bluetooth LAN, it will access the Bluetooth LAN.
  • the function of the notebook computer is similar to the function of the above-mentioned wireless router (ie, gateway).
  • the local area network may also be a Bluetooth hotspot, a Zigbee local area network, a Zigbee hotspot, an infrared local area network, or an infrared hotspot, etc., which are not described here.
  • the embodiment of the present application also provides an electronic device, which may include: a detection unit, an execution unit, a sending unit, or a receiving unit, etc. These units can execute the steps in the above-mentioned embodiments to realize the interactive method based on the folding screen.
  • the embodiments of the present application also provide an electronic device, including one or more processors; a memory; and one or more computer programs.
  • One or more computer programs are stored in the memory, and the one or more computer programs include instructions.
  • the electronic device is caused to execute each step in the foregoing embodiment, so as to implement the foregoing simultaneous response method.
  • the embodiments of the present application also provide a computer storage medium, the computer storage medium stores computer instructions, and when the computer instructions run on the electronic device, the electronic device executes the above-mentioned related method steps to realize the simultaneous response in the above-mentioned embodiment method.
  • the embodiments of the present application also provide a computer program product, which when the computer program product runs on a computer, causes the computer to execute the above-mentioned related steps, so as to realize the simultaneous response method in the above-mentioned embodiment.
  • the embodiment of the present application also provides a device, which may specifically be a chip system.
  • the chip system is applied to electronic equipment.
  • the chip system includes one or more interface circuits and one or more processors; the interface circuit and the processor are interconnected by wires; the interface circuit is used to receive signals from the memory of the electronic device and send signals to the processor.
  • the signals include Computer instructions stored in the memory; when the processor executes the computer instructions, the electronic device executes the above-mentioned related steps to implement the simultaneous response method in the above-mentioned embodiment.
  • the embodiments of the present application also provide a device, which may specifically be a component or a module.
  • the device may include a connected processor and a memory; wherein the memory is used to store computer execution instructions.
  • the processor When the device is running, the processor The computer-executable instructions stored in the executable memory are executed so that the chip executes the simultaneous response methods in the foregoing method embodiments.
  • the electronic devices, chips, computer storage media, computer program products, or chips provided in the embodiments of the present application are all used to execute the corresponding methods provided above. Therefore, the beneficial effects that can be achieved can refer to the above provided The beneficial effects in the corresponding method are not repeated here.
  • the disclosed device and method may be implemented in other ways.
  • the device embodiments described above are only illustrative, for example, the division of modules or units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components may be combined or It can be integrated into another device, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separate, and the components displayed as units may be one physical unit or multiple physical units, that is, they may be located in one place, or they may be distributed to multiple different places. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • each unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the above-mentioned integrated unit can be implemented in the form of hardware or software functional unit.
  • the integrated unit is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a readable storage medium.
  • the technical solutions of the embodiments of the present application are essentially or the part that contributes to the prior art, or all or part of the technical solutions can be embodied in the form of software products, which are stored in a storage medium It includes several instructions to make a device (may be a single-chip microcomputer, a chip, etc.) or a processor (processor) execute all or part of the steps of the methods in the various embodiments of the present application.
  • the aforementioned storage medium includes: U disk, mobile hard disk, read only memory (read only memory, ROM), random access memory (random access memory, RAM), magnetic disk or optical disk and other media that can store program codes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Audiology, Speech & Language Pathology (AREA)
  • Computer Security & Cryptography (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Synchronisation In Digital Transmission Systems (AREA)

Abstract

本申请实施例提供一种同时响应的方法及设备,涉及电子技术领域,能够降低多个设备之间同时响应的时间误差,提高同时响应的一致性,提高用户使用体验。具体方案为:第一电子设备检测到响应指示;响应于检测到该响应指示,第一电子设备在经历T-t1时长后,向第二电子设备发送响应指令;第一电子设备在经历T-t2时长后,向第三电子设备发送响应指令;第一电子设备在经历目标时长T后,执行响应操作;目标时长T大于或者等于最大传输耗时t;最大传输耗时t为与第二电子设备间的第一传输耗时t1,与第三电子设备间的第二传输耗时t2中的最大值;第二电子设备和第三电子设备接收到响应指令后,立即执行响应操作。本申请实施例用于同时响应。

Description

一种同时响应的方法及设备
本申请要求于2019年7月25日提交国家知识产权局、申请号为201910678890.4、申请名称为“一种同时响应的方法及设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及电子技术领域,尤其涉及一种同时响应的方法及设备。
背景技术
多设备同时响应对音频同步、音视频同步或同步唤醒等场景具有重要意义。多设备同时响应可以提升用户的使用体验。
同时响应的多个设备之间可以采用主从关系。现有技术中,主设备和从设备可以分别从时钟源站点获取标准时间,从而进行网络时钟同步。而后,主设备可以向从设备发送指令,指示从设备在目标时间同时做出响应。主设备和从设备分别设置定时器,在定时器超时,即到达目标时间后,主设备和从设备分别做出响应。
其中,由于从时钟源站点到不同设备之间的网络传输存在不同程度的延迟,因而不同设备接收到标准时间的时刻不同,不同设备根据接收到的标准时间分别设置的时钟也不同,不同设备达到目标时间的实际时刻也不同。因此,多个设备之间无法同时进行响应,同时响应的一致性差,给用户的体验较差。
示例性的,该多个设备包括音箱1和音箱2。音箱1和音箱2被用户唤醒后,点亮灯环进行响应。由于现有技术中多个设备之间同时响应的一致性较差,因而如图1所示,音箱1和音箱2之间点亮灯环的过程难以同步,用户视觉体验较差。
发明内容
本申请实施例提供一种同时响应的方法及设备,能够降低多个设备之间同时响应的时间误差,提高同时响应的一致性,提高用户使用体验。
为达到上述目的,本申请实施例采用如下技术方案:
一方面,本申请技术方案提供了一种同时响应的方法,应用于同一局域网中的第一电子设备、第二电子设备和第三电子设备。该方法包括:第一电子设备检测到响应指示。响应于检测到响应指示,第一电子设备在经历T-t1时长后,向第二电子设备发送第一响应指令,第一响应指令用于指示第二电子设备执行响应操作。并且,第一电子设备在经历T-t2时长后,向第三电子设备发送第二响应指令,第二响应指令用于指示第三电子设备执行响应操作。并且,第一电子设备在经历目标时长T后,执行响应操作。其中,目标时长T大于或者等于最大传输耗时t。最大传输耗时t为第一传输耗时t1和第二传输耗时t2中的最大值。第一传输耗时t1为第一电子设备与第二电子设备之间的数据传输时长。第二传输耗时t2为第一电子设备与第三电子设备之间的数据传输时长。第二电子设备响应于接收到第一响应指令,立即执行响应操作。第三电子设备响应于接收到第二响应指令,立即执行响应操作。
在该方案中,第一电子设备可以为主设备,第二电子设备和第三电子设备可以为从设备。主设备侧考虑并抵消了主、从设备之间的传输耗时。避免了传输耗时导致的同时响应的误差,提高了同时响应的一致性。而且不需要通过网络时钟同步获取标准时间,因而可以避免网络时钟同步导致的延时,提高主、从设备同时响应的一致性,提高用户体验。
并且,主设备侧计算定时的时长并设置多个定时器。定时时长的计算设备均为同一设备,且多个定时器基于同一设备的物理时钟定时器实现。而不需要在不同设备上分别计算各自的定时器时长并分别设置定时器,因而还可以避免不同设备间的设备计算耗时误差和定时器误差。从而,可以进一步降低该组电子设备同时响应的误差,提高同时响应的一致性,提高用户体验。
另一方面,本申请技术方案提供了一种同时响应的方法,应用于同一局域网中的第一电子设备、第二电子设备和第三电子设备。该方法包括:第一电子设备向第二电子设备发送目标时长T和第一传输耗时t1。第一电子设备向第三电子设备发送目标时长T和第二传输耗时t2。其中,目标时长T大于或者等于最大传输耗时t。最大传输耗时t为第一传输耗时t1和第二传输耗时t2中的最大值。第一传输耗时t1为第一电子设备与第二电子设备之间的数据传输时长。第二传输耗时t2为第一电子设备与第三电子设备之间的数据传输时长。第二电子设备接收第一电子设备发送的目标时长T和第一传输耗时t1。第三电子设备接收第一电子设备发送的目标时长T和第二传输耗时t2。第一电子设备检测到响应指示。响应于检测到响应指示,第一电子设备分别向第二电子设备和第三电子设备发送响应指令,响应指令用于指示执行响应操作。第一电子设备在经历目标时长T后,执行响应操作。第二电子设备响应于接收到响应指令,在经历T-t1时长后,执行响应操作。第三电子设备响应于接收到响应指令,在经历T-t2时长后,执行响应操作。
在该方案中,第一电子设备可以预先将目标时长和传输耗时发送给第二电子设备和第三电子设备。在第一电子设备检测到响应指示后,第二电子设备和第三电子设备可以根据目标时长和传输耗时,同时进行响应。第一电子设备可以为主设备,第二电子设备和第三电子设备可以为从设备。在进行同时响应时,从设备侧考虑并抵消了主、从设备间的传输耗时,避免了传输耗时导致的同时响应的误差,提高了同时响应的一致性。而且不需要通过网络时钟同步获取标准时间,因而可以避免网络时钟同步导致的延时,提高主、从设备同时响应的一致性,提高用户体验。
另一方面,本申请技术方案提供了一种同时响应的方法,应用于同一局域网中的第一电子设备、第二电子设备和第三电子设备。该方法包括:第一电子设备检测到响应指示。响应于检测到响应指示,第一电子设备向第二电子设备发送第一响应指令;第一响应指令用于指示第二电子设备执行响应操作,第一响应指令包括目标时长T和第一传输耗时t1。第一电子设备向第三电子设备发送第二响应指令,第二响应指令用于指示第三电子设备执行响应操作,第二响应指令包括目标时长T和第二传输耗时t2。第一电子设备在经历目标时长T后,执行响应操作。其中,目标时长T大于或者等于最大传输耗时t。最大传输耗时t为第一传输耗时t1和第二传输耗时t2中的最大值。第一传输耗时t1为第一电子设备与第二电子设备之间的数据传输时长。第二传输耗时 t2为第一电子设备与第三电子设备之间的数据传输时长。第二电子设备响应于接收到第一响应指令,在经历T-t1时长后,执行响应操作。第三电子设备响应于接收到第二响应指令,在经历T-t2时长后,执行响应操作。
在该方案中,第一电子设备可以为主设备,第二电子设备和第三电子设备可以为从设备。主、从设备可以根据相对时间进行同步响应,从设备侧考虑并抵消了主、从设备间的传输耗时;避免了传输耗时导致的同时响应的误差。而且不需要通过网络时钟同步获取标准时间,因而可以避免网络时钟同步导致的延时,提高主、从设备同时响应的一致性,提高用户体验。
另一方面,本申请技术方案提供了一种同时响应的方法,应用于同一局域网中的第一电子设备和第二电子设备。该方法包括:第一电子设备检测到响应指示。响应于检测到响应指示,第一电子设备向第二电子设备发送响应指令,响应指令用于指示第二电子设备执行响应操作。第一电子设备在经历传输耗时t1时长后,执行响应操作;传输耗时t1为第一电子设备与第二电子设备之间的数据传输时长。第二电子设备响应于接收到响应指令,立即执行响应操作。
在该方案中,第一电子设备可以为主设备,第二电子设备可以为从设备。在进行同时响应时,主设备侧考虑并抵消了该传输耗时,从而避免了传输耗时导致的同时响应的误差,提高了同时响应的一致性。而且不需要通过网络时钟同步获取标准时间,因而可以避免网络时钟同步导致的延时,提高主、从设备同时响应的一致性,提高用户体验。
另一方面,本申请技术方案提供了一种同时响应的方法,应用于同一局域网中的第一电子设备和第二电子设备。该方法包括:第一电子设备检测到响应指示。响应于检测到响应指示,第一电子设备在经历T-t1后,向第二电子设备发送响应指令,响应指令用于指示第二电子设备执行响应操作。第一电子设备在经历目标时长T后,执行响应操作。第二电子设备响应于接收到响应指令,立即执行响应操作。其中,目标时长T大于或者等于传输耗时t1,传输耗时t1为第一电子设备与第二电子设备之间的数据传输时长。
在该方案中,第一电子设备可以为主设备,第二电子设备可以为从设备。在进行同时响应时,主设备侧考虑并抵消了该传输耗时,从而避免了传输耗时导致的同时响应的误差,提高了同时响应的一致性。
另一方面,本申请技术方案提供了一种同时响应的方法,应用于同一局域网中的第一电子设备和第二电子设备。该方法包括:第一电子设备向第二电子设备发送目标时长T和传输耗时t1。第一电子设备检测到响应指示。响应于检测到响应指示,第一电子设备向第二电子设备发送响应指令,响应指令用于指示第二电子设备执行响应操作。第一电子设备在经历目标时长T后,执行响应操作。第二电子设备响应于接收到响应指令,在经历T-t1后,执行响应操作。其中,目标时长T大于或者等于传输耗时t1,传输耗时t1为第一电子设备与第二电子设备之间的数据传输时长。
在该方案中,第一电子设备可以为主设备,第二电子设备可以为从设备。主设备可以预先将目标时长T和传输耗时t1发送给从设备。在进行同时响应时,从设备侧可以根据目标时长T和传输耗时t1,考虑并抵消了该传输耗时,从而避免了传输耗时导 致的同时响应的误差,提高了同时响应的一致性。
另一方面,本申请技术方案提供了一种同时响应的方法,应用于同一局域网中的第一电子设备和第二电子设备。该方法包括:第一电子设备检测到响应指示。响应于检测到响应指示,第一电子设备向第二电子设备发送响应指令,响应指令用于指示第二电子设备执行响应操作,响应指令包括目标时长T和传输耗时t1。第一电子设备在经历目标时长T后,执行响应操作。第二电子设备响应于接收到响应指令,在经历T-t1后,执行响应操作。其中,目标时长T大于或者等于传输耗时t1,传输耗时t1为第一电子设备与第二电子设备之间的数据传输时长。
在该方案中,第一电子设备可以为主设备,第二电子设备可以为从设备。在进行同时响应时,从设备侧可以根据目标时长T和传输耗时t1,考虑并抵消了该传输耗时,从而避免了传输耗时导致的同时响应的误差,提高了同时响应的一致性。
在一种可能的设计中,在第一电子设备向第二电子设备和第三电子设备发送目标时长T,目标时长T大于或者等于最大传输耗时t之前,该方法还包括:第一电子设备测量第一传输耗时t1和第二传输耗时t2。第一电子设备根据第一传输耗时t1和第二传输耗时t2,确定最大传输耗时t。
在该方案中,第一电子设备可以为主设备。由主设备测量与不同从设备之间的传输耗时,可以使得测量过程的执行主体均为同一主设备,可以避免不同电子设备分别测量传输耗时导致的测量误差,从而提高测量精度。
在另一种可能的设计中,第一电子设备测量第一传输耗时t1和第二传输耗时t2,包括:第一电子设备在与第二电子设备和第三电子设备进行配对后,或者在第一电子设备重新接入局域网后,测量第一传输耗时t1和第二传输耗时t2。
可以理解的是,在发生断网的情况下,主、从设备间的传输耗时可能会发生改变,因而在断网并重新接入局域网后,可以重新测量传输耗时。
在另一种可能的设计中,第一电子设备检测到响应指示,包括:第一电子设备检测到用户的语音唤醒指示。或者,第一电子设备接收到第二电子设备或第三电子设备的发送的唤醒指示信息。
可以理解的是,第一电子设备可以通过多种方式检测到响应指示。
在另一种可能的设计中,第一电子设备、第二电子设备和第三电子设备为相互配合的一组立体声音频设备。或者,为相互配合的一组音视频设备。或者,为相互配合的一组音频和灯光设备。
在另一种可能的设计中,该局域网为无线保真Wi-Fi无线局域网。
也就是说,第一电子设备、第二电子设备和第三电子设备可以是Wi-Fi局域网中的一组设备。
另一方面,本申请实施例提供了一种响应方法,应用于第一电子设备,第一电子设备和第二电子设备以及第三电子设备属于同一局域网。该方法包括:第一电子设备检测到响应指示。响应于检测到响应指示,第一电子设备在经历T-t1时长后,向第二电子设备发送第一响应指令,第一响应指令用于指示执行响应操作。第一电子设备在经历T-t2时长后,向第三电子设备发送第二响应指令。第一电子设备在经历目标时长T后,执行响应操作。其中,目标时长T大于或者等于最大传输耗时t。最大传输耗时 t为第一传输耗时t1和第二传输耗时t2中的最大值。第一传输耗时t1为第一电子设备与第二电子设备之间的数据传输时长。第二传输耗时t2为第一电子设备与第三电子设备之间的数据传输时长。
在该方案中,第一电子设备可以为主设备,主设备侧考虑并抵消了主、从设备之间的传输耗时。避免了传输耗时导致的同时响应的误差,提高了同时响应的一致性。并且,主设备侧计算定时的时长并设置多个定时器。定时时长的计算设备均为同一设备,且多个定时器基于同一设备的物理时钟定时器实现。而不需要在不同设备上分别计算各自的定时器时长并分别设置定时器,因而还可以避免不同设备间的设备计算耗时误差和定时器误差。
另一方面,本申请实施例提供了一种响应方法,应用于第一电子设备,第一电子设备和第二电子设备以及第三电子设备属于同一局域网。该方法包括:第一电子设备向第二电子设备发送目标时长T和第一传输耗时t1。第一电子设备向第三电子设备发送目标时长T和第二传输耗时t2。其中,目标时长T大于或者等于最大传输耗时t。最大传输耗时t为第一传输耗时t1和第二传输耗时t2中的最大值。第一传输耗时t1为第一电子设备与第二电子设备之间的数据传输时长。第二传输耗时t2为第一电子设备与第三电子设备之间的数据传输时长。第一电子设备检测到响应指示。响应于检测到响应指示,第一电子设备分别向第二电子设备和第三电子设备发送响应指令,响应指令用于指示执行响应操作。第一电子设备在经历目标时长T后,执行响应操作。
在该方案中,第一电子设备可以预先将目标时长和传输耗时发送给第二电子设备和第三电子设备。以便在第一电子设备检测到响应指示后,第二电子设备和第三电子设备可以根据目标时长和传输耗时,抵消与第一电子设备之间的传输耗时,避免了传输耗时导致的同时响应的误差,提高了同时响应的一致性。
另一方面,本申请实施例提供了一种响应方法,应用于第一电子设备,第一电子设备和第二电子设备以及第三电子设备属于同一局域网。该方法包括:第一电子设备检测到响应指示。响应于检测到响应指示,第一电子设备向第二电子设备发送第一响应指令,第一响应指令用于指示执行响应操作;第一响应指令包括目标时长T和第一传输耗时t1。第一电子设备向第三电子设备发送第二响应指令,第二响应指令用于指示执行响应操作;第二响应指令包括目标时长T和第二传输耗时t2。第一电子设备在经历目标时长T后,执行响应操作。其中,目标时长T大于或者等于最大传输耗时t。最大传输耗时t为第一传输耗时t1和第二传输耗时t2中的最大值。第一传输耗时t1为第一电子设备与第二电子设备之间的数据传输时长。第二传输耗时t2为第一电子设备与第三电子设备之间的数据传输时长。
在该方案中,第一电子设备可以为主设备,第二电子设备和第三电子设备可以为从设备。主、从设备可以根据相对时间进行同步响应,而且不需要通过网络时钟同步获取标准时间,因而可以避免网络时钟同步导致的延时,提高主、从设备同时响应的一致性,提高用户体验。
另一方面,本申请实施例提供了一种响应方法,应用于第一电子设备,第一电子设备和第二电子设备属于同一局域网。该方法包括:第一电子设备检测到响应指示。响应于检测到响应指示,第一电子设备向第二电子设备发送响应指令,响应指令用于 指示第二电子设备执行响应操作。第一电子设备在经历传输耗时t1时长后,执行响应操作;传输耗时t1为第一电子设备与第二电子设备之间的数据传输时长。
在该方案中,第一电子设备可以为主设备,第二电子设备可以为从设备。在进行同时响应时,主设备侧考虑并抵消了该传输耗时,从而避免了传输耗时导致的同时响应的误差,提高了同时响应的一致性。而且不需要通过网络时钟同步获取标准时间,因而可以避免网络时钟同步导致的延时,提高主、从设备同时响应的一致性,提高用户体验。
另一方面,本申请技术方案提供了一种同时响应的方法,应用于第一电子设备,第一电子设备和第二电子设备属于同一局域网。该方法包括:第一电子设备检测到响应指示。响应于检测到响应指示,第一电子设备在经历T-t1后,向第二电子设备发送响应指令,响应指令用于指示第二电子设备执行响应操作。第一电子设备在经历目标时长T后,执行响应操作。其中,目标时长T大于或者等于传输耗时t1,传输耗时t1为第一电子设备与第二电子设备之间的数据传输时长。
在该方案中,第一电子设备可以为主设备,第二电子设备可以为从设备。在进行同时响应时,主设备侧考虑并抵消了该传输耗时,从而避免了传输耗时导致的同时响应的误差,提高了同时响应的一致性。
另一方面,本申请技术方案提供了一种同时响应的方法,应用于第一电子设备,第一电子设备和第二电子设备属于同一局域网。该方法包括:第一电子设备检测到响应指示。响应于检测到响应指示,第一电子设备向第二电子设备发送响应指令,响应指令用于指示第二电子设备执行响应操作,响应指令包括目标时长T和传输耗时t1。第一电子设备在经历目标时长T后,执行响应操作。其中,目标时长T大于或者等于传输耗时t1,传输耗时t1为第一电子设备与第二电子设备之间的数据传输时长。
在该方案中,第一电子设备可以为主设备,第二电子设备可以为从设备。在进行同时响应时,主设备可以预先将目标时长和传输耗时发送给从设备,以便从设备侧考虑并抵消该传输耗时,从而避免了传输耗时导致的同时响应的误差,提高了同时响应的一致性。
另一方面,本申请技术方案提供了一种同时响应的方法,应用于第一电子设备,第一电子设备和第二电子设备属于同一局域网。该方法包括:第一电子设备向第二电子设备发送目标时长T和传输耗时t1。第一电子设备检测到响应指示。响应于检测到响应指示,第一电子设备向第二电子设备发送响应指令,响应指令用于指示第二电子设备执行响应操作。第一电子设备在经历目标时长T后,执行响应操作。其中,目标时长T大于或者等于传输耗时t1,传输耗时t1为第一电子设备与第二电子设备之间的数据传输时长。
在该方案中,第一电子设备可以为主设备,第二电子设备可以为从设备。在进行同时响应时,主设备可以将目标时长和传输耗时发送给从设备,以便从设备侧考虑并抵消该传输耗时,从而避免了传输耗时导致的同时响应的误差,提高了同时响应的一致性。
在一种可能的设计中,在第一电子设备向第二电子设备和第三电子设备发送目标时长T,目标时长T大于或者等于最大传输耗时t之前,该方法还包括:第一电子设 备测量第一传输耗时t1和第二传输耗时t2。第一电子设备根据第一传输耗时t1和第二传输耗时t2,确定最大传输耗时t。
在另一种可能的设计中,第一电子设备测量第一传输耗时t1和第二传输耗时t2,包括:第一电子设备在与第二电子设备和第三电子设备进行配对后,或者在第一电子设备重新接入局域网后,测量第一传输耗时t1和第二传输耗时t2。
在另一种可能的设计中,第一电子设备检测到响应指示,包括:第一电子设备检测到用户的语音唤醒指示。或者,第一电子设备接收到第二电子设备或第三电子设备的发送的唤醒指示信息。
在另一种可能的设计中,第一电子设备、第二电子设备和第三电子设备为相互配合的一组立体声音频设备。或者,为相互配合的一组音视频设备。或者,为相互配合的一组音频和灯光设备。
另一方面,本申请技术方案提供了一种响应方法,应用于第二电子设备,第二电子设备与第一电子设备属于同一局域网。该方法包括:第二电子设备接收第一电子设备发送的目标时长T,与第一电子设备之间的第一传输耗时t1,以及响应指令。响应指令用于指示执行响应操作;目标时长T大于或者等于第一传输耗时t1。第二电子设备响应于接收到响应指令,在经历T-t1时长后,执行响应操作。
在该方案中,第二电子设备可以提前从第一电子设备获取目标时长和传输耗时。第二电子设备在接收到第一电子设备发送的响应指令后,可以根据目标时长和传输耗时与第一电子设备进行同时响应。在进行同时响应时,第二电子设备侧考虑并抵消了与第一电子设备之间的传输耗时,避免了传输耗时导致的同时响应的误差,提高了同时响应的一致性。而且不需要通过网络时钟同步获取标准时间,因而可以避免网络时钟同步导致的延时,提高设备间同时响应的一致性,提高用户体验。
另一方面,本申请技术方案提供了一种响应方法,应用于第二电子设备,第二电子设备与第一电子设备属于同一局域网。该方法包括:第二电子设备接收第一电子设备发送的第一响应指令,第一响应指令用于指示执行响应操作;第一响应指令包括目标时长T以及与第一电子设备之间的第一传输耗时t1;目标时长T大于或者等于第一传输耗时t1。第二电子设备响应于接收到第一响应指令,在经历T-t1时长后,执行响应操作。
在该方案中,第一电子设备和第二电子设备之间可以根据相对时间进行同步响应。第二电子设备侧考虑并抵消了与第一电子设备之间的传输耗时;而且不需要通过网络时钟同步获取标准时间,因而可以避免网络时钟同步导致的延时,提高设备之间同时响应的一致性,提高用户体验。
另一方面,本申请实施例提供了一种响应方法,应用于第二电子设备,第二电子设备和第一电子设备属于同一局域网。该方法包括:第二电子设备接收第一电子设备发送的响应指令。第二电子设备响应于接收到响应指令,立即执行响应操作。
另一方面,本申请技术方案提供了一种同时响应的方法,应用于同一通信网络中的第一电子设备、第二电子设备和第三电子设备。该方法包括:第一电子设备检测到响应指示。响应于检测到响应指示,第一电子设备在经历T-t1时长后,通过转发设备向第二电子设备发送第一响应指令,第一响应指令用于指示第二电子设备执行响应操 作。第一电子设备在经历T-t2时长后,通过转发设备向第三电子设备发送第二响应指令,第二响应指令用于指示第三电子设备执行响应操作。第一电子设备在经历目标时长T后,执行响应操作。其中,目标时长T大于或者等于最大传输耗时t;最大传输耗时t为第一传输耗时t1和第二传输耗时t2中的最大值;第一传输耗时t1为第一电子设备与第二电子设备之间的数据传输时长;第二传输耗时t2为第一电子设备与第三电子设备之间的数据传输时长。第二电子设备响应于接收到第一响应指令,立即执行响应操作。第三电子设备响应于接收到第二响应指令,立即执行响应操作。
在该方案中,通信网络中的第一电子设备可以为主设备,第二电子设备和第三电子设备可以为从设备。主设备侧考虑并抵消了主、从设备之间的传输耗时。并且,主设备侧计算定时的时长并设置多个定时器。定时时长的计算设备均为同一设备,且多个定时器基于同一设备的物理时钟定时器实现。而不需要在不同设备上分别计算各自的定时器时长并分别设置定时器,因而还可以避免不同设备间的设备计算耗时误差和定时器误差。从而,可以降低该组电子设备同时响应的误差,提高同时响应的一致性,提高用户体验。
另一方面,本申请技术方案提供了一种同时响应的方法,应用于同一通信网络中的第一电子设备、第二电子设备和第三电子设备。该方法包括:第一电子设备通过转发设备,向第二电子设备发送目标时长T和第一传输耗时t1。第一电子设备通过转发设备,向第三电子设备发送目标时长T和第二传输耗时t2。其中,目标时长T大于或者等于最大传输耗时t;最大传输耗时t为第一传输耗时t1和第二传输耗时t2中的最大值;第一传输耗时t1为第一电子设备与第二电子设备之间的数据传输时长;第二传输耗时t2为第一电子设备与第三电子设备之间的数据传输时长。第二电子设备通过转发设备,接收第一电子设备发送的目标时长T和第一传输耗时t1。第三电子设备通转发设备,接收第一电子设备发送的目标时长T和第二传输耗时t2。第一电子设备检测到响应指示。响应于检测到响应指示,第一电子设备通过转发设备,分别向第二电子设备和第三电子设备发送响应指令,响应指令用于指示执行响应操作。第一电子设备在经历目标时长T后,执行响应操作。第二电子设备响应于接收到响应指令,在经历T-t1时长后,执行响应操作。第三电子设备响应于接收到响应指令,在经历T-t2时长后,执行响应操作。
在该方案中,通信网络中的第一电子设备可以提前将目标时长和传输耗时发送给第二电子设备和第三电子设备。在第一电子设备检测到响应指示后,第二电子设备和第三电子设备可以根据目标时长和传输耗时,同时进行响应。第一电子设备可以为主设备,第二电子设备和第三电子设备可以为从设备。在进行同时响应时,从设备侧考虑并抵消了主、从设备间的传输耗时,避免了传输耗时导致的同时响应的误差,提高了同时响应的一致性。而且不需要通过网络时钟同步获取标准时间,因而可以避免网络时钟同步导致的延时,提高主、从设备同时响应的一致性,提高用户体验。
另一方面,本申请技术方案提供了一种同时响应的方法,应用于同一通信网络中的第一电子设备、第二电子设备和第三电子设备。该方法包括:第一电子设备检测到响应指示。响应于检测到响应指示,第一电子设备通过转发设备,向第二电子设备发送第一响应指令;第一响应指令用于指示第二电子设备执行响应操作,第一响应指令 包括目标时长T和第一传输耗时t1。第一电子设备通过转发设备,向第三电子设备发送第二响应指令,第二响应指令用于指示第三电子设备执行响应操作,第二响应指令包括目标时长T和第二传输耗时t2。第一电子设备在经历目标时长T后,执行响应操作。其中,目标时长T大于或者等于最大传输耗时t;最大传输耗时t为第一传输耗时t1和第二传输耗时t2中的最大值;第一传输耗时t1为第一电子设备与第二电子设备之间的数据传输时长;第二传输耗时t2为第一电子设备与第三电子设备之间的数据传输时长。第二电子设备响应于接收到第一响应指令,在经历T-t1时长后,执行响应操作。第三电子设备响应于接收到第二响应指令,在经历T-t2时长后,执行响应操作。
在该方案中,通信网络中的第一电子设备可以为主设备,第二电子设备和第三电子设备可以为从设备。主、从设备可以根据相对时间进行同步响应,从设备侧考虑并抵消了主、从设备间的传输耗时;而且不需要通过网络时钟同步获取标准时间,因而可以避免网络时钟同步导致的延时,提高主、从设备同时响应的一致性,提高用户体验。
另一方面,本申请实施例提供了一种响应装置,该装置包含在第一电子设备、第二电子设备或第三电子设备中。该装置具有实现上述方面及可能的设计中任一方法中第一电子设备、第二电子设备或第三电子设备行为的功能。该功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。硬件或软件包括至少一个与上述功能相对应的模块或单元。例如,检测模块或单元、执行模块或单元、接收模块或单元、发送模块或单元等。
另一方面,本申请实施例提供了一种电子设备,包括:一个或多个处理器;以及存储器,存储器中存储有代码。当代码被一个或多个处理器执行时,使得电子设备执行上述方面任一项可能的设计中的响应方法。
另一方面,本申请实施例提供了一种计算机存储介质,包括计算机指令,当计算机指令在移动终端上运行时,使得移动终端执行上述方面任一项可能的设计中的响应方法。
又一方面,本申请实施例提供了一种计算机程序产品,当计算机程序产品在计算机上运行时,使得计算机执行上述方面任一项可能的设计中的响应方法。
附图说明
图1为现有技术提供的一种同时响应的效果示意图;
图2为现有技术提供的一种同时响应的原理示意图;
图3为本申请实施例提供的一组电子设备的示意图;
图4为本申请实施例提供的一种电子设备的结构示意图;
图5为本申请实施例提供的一种同时响应的场景示意图;
图6为本申请实施例提供的一组配对界面示意图;
图7为本申请实施例提供的一种同时响应的原理示意图;
图8A为本申请实施例提供的一种同时响应的效果示意图;
图8B为本申请实施例提供的另一种同时响应的效果示意图;
图9为本申请实施例提供的另一种同时响应的原理示意图;
图10A为本申请实施例提供的一种同时响应的流程图;
图10B为本申请实施例提供的另一种同时响应的流程图;
图11为本申请实施例提供的另一种同时响应的原理示意图;
图12为本申请实施例提供的另一种同时响应的流程图;
图13为本申请实施例提供的另一种同时响应的流程图;
图14为本申请实施例提供的另一种同时响应的场景示意图;
图15为本申请实施例提供的另一种同时响应的场景示意图;
图16为本申请实施例提供的另一种同时响应的场景示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述。其中,在本申请实施例的描述中,除非另有说明,“/”表示或的意思,例如,A/B可以表示A或B;本文中的“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,在本申请实施例的描述中,“多个”是指两个或多于两个。
在一些场景中,多个设备之间同时响应具有严格的要求。例如,在立体声播放场景中,左、右声道的设备需要同时播放,以实现立体声同步播放。再例如,在音视频播放场景中,音频设备和视频设备需要同时播放,以实现声音和画面的同步和一致。
现有技术中,多个设备的同时响应通常基于网络时钟同步和定时器实现。网络时钟同步是指通过互联网传递统一的标准时间,该标准时间为绝对时间。例如,互联网中的时钟源站点通过网络将标准时间传递给多个设备。标准时间基于网络信道进行传递,而该传递过程需要传输时间,即存在网络传输时延。因而,标准时间到达各设备后,各设备上各自的时钟相对于标准时间会发生延迟。并且,由于时钟源站点与不同设备之间的网络信道的传输时间不同,因而各设备上各自的时钟相对于标准时间的延迟也存在误差。此外,由于时钟源站点为预先部署的若干时钟源站点中的一个,因而时钟源站点与多个设备之间的距离可能较远,从而使得标准时间的传输时间较长(比如可以为10s),进而使得多个设备上各自的时钟相对于标准时间的延迟较大。
例如,如图2所示,时钟源站点通过网络将标准时间传输给设备A、设备B、设备C。从时钟源站点到设备A、设备B、设备C之间所消耗的传输时间,分别为传输时间a、传输时间b、传输时间c。由于不同设备对应的标准时间的传输时间不同,设备上的时钟基于标准时间设置,因而与标准时间相比,设备A、设备B、设备C上的时钟也不同。设备A、设备B、设备C上的时钟分别向后延迟了传输时间a、传输时间b、传输时间c。与标准时间相比,设备A、设备B、设备C上的时钟表示的当前时间分别与标准时间相差了传输时间a、传输时间b、传输时间c。举例来说,设备A上的时钟表示的时间为时刻1,实际标准时间为时刻1+a;设备B上的时钟表示的时间为时刻1,实际标准时间为时刻1+b;设备C上的时钟表示的时间为时刻1,实际标准时间为时刻1+c。
其中,设备A为主设备,设备B和设备C为从设备。主设备A向从设备B和从设备C发送响应指令,以指示在目标时间做出响应。主设备A、从设备B和从设备C,分别计算目标时间与当前时间的差值。设备A、从设备B和从设备C分别根据各自计算的差值设置定时器。其中,由于不同设备的工作频率可能不同、芯片的计算速度可 能也不同,从而导致不同设备之间的计算耗时也存在误差(例如为8ms)。并且,不同设备的定时器通过不同的物理时钟计数器实现。物理时钟计数器的工作频率不同,物理时钟计数器的计数精度也不同,因而不同定时器的定时时长也存在误差。
举例来说,时钟源站点在时刻1,将标准时间“时刻1”分别同步给主设备A、从设备B和从设备C。设备A在时刻1+a接收到时刻1;设备B在时刻1+b接收到时刻1;设备C在时刻1+c接收到时刻1。主设备A向从设备B和从设备C发送响应指令,指示在目标时间“时刻2”做出响应。时刻2与时刻1之间的差值为d。主设备A、从设备B和从设备C计算获得该差值d所花费的时长分别为f1、f2和f3。主设备A、从设备B和从设备C分别设置各自的定时器的时长为d。主设备A的定时器的定时误差为e1;从设备B的定时器的定时误差为e2;从设备C的定时器的定时误差为e3。那么,主设备A在时刻1+a+f1+d+e1后到达目标时间,从而进行响应;从设备B在时刻1+b+f2+d+e2后到达目标时间,从而进行响应;从设备C在时刻1+c+f3+d+e3后到达目标时间,从而进行响应。
也就是说,在现有同时响应方案中,由于存在网络传输时延、设备计算耗时误差和定时器定时误差等,因而主设备A、从设备B和从设备C并不能在时刻2同时做出响应,也不能同时做出响应。现有方案同时响应的误差较大,同时响应的一致性较差,用户体验较差。例如,在立体声播放场景中,由于同时响应的误差较大,因而左、右声道的设备难以实现同步播放,立体声播放效果较差。再例如,在音视频播放场景中,音频设备播放的声音与视频设备播放的画面和字幕等不同步,用户体验较差。
本申请实施例提供了一种同时响应的方法,可以应用于一组配合使用的电子设备。参见图3,该组电子设备包括通信网络中的设备A、设备B和设备C等。设备A、设备B和设备C等设备之间,通过一个或多个转发设备(或称中介设备)转发信息,从而进行相互通信。例如,设备A、设备B和设备C之间通过同一转发设备转发信息,从而进行相互通信。
再例如,设备A和设备B之间通过转发设备1转发信息从而进行相互通信;转发设备1与转发设备2可以通信,设备C通过转发设备2的转发与其他设备进行通信;设备C,与设备A和设备B之间通过转发设备1和转发设备2转发信息,从而进行相互通信。
示例性的,该通信网络可以是局域网(local area network,LAN)。该组电子设备包括同一局域网内的设备A、设备B和设备C。该局域网可以是有线局域网或无线局域网。其中,局域网是指在某一区域内由多台设备互联成的设备组。通常,局域网覆盖的地理范围较小,局域网内设备之间的通信延迟时间短等。例如,当该局域网为无线局域网时,具体可以是Wi-Fi局域网、Wi-Fi热点、蓝牙局域网或蓝牙热点等。在一些情况下,Wi-Fi局域网的概念也可以包括Wi-Fi热点,即Wi-Fi热点也属于Wi-Fi局域网。类似的,蓝牙局域网的概念也可以包括蓝牙热点,即蓝牙热点也属于蓝牙局域网。
其中,局域网内的设备通常需要通过一个或多个网关等转发设备(或称中介设备)转发信息,以使得局域网内的设备之间进行相互通信。当该局域网为Wi-Fi局域网时,该网关设备可以为无线路由器。一般情况下,同一网关管理的多个设备,可以属于同 一局域网。同一局域网也可以包括多个网关管理的多个设备。
可以理解的是,该通信网络也可以是局域网以外的其他通信网络。例如,该组电子设备也可以是广域网中的一组电子设备,本申请实施例对通信网络的类型不予限定。或者,该通信网络也可以是基于直连技术组成的无线网络。例如,该组电子设备之间可以是基于蓝牙直连、Wi-Fi直连、或Zigbee直连等近场直连技术组成的一组电子设备。
该组电子设备可以包括主设备和从设备。例如,如图3所示,该组电子设备包括主设备A,从设备B和从设备C。在本申请实施例提供的同时响应的方法中,主、从设备可以基于计算获得的相对时间进行同时响应,而不需要通过网络时钟同步获取标准时间(即绝对时间),因而可以避免网络时钟同步的网络传输时延造成的误差,从而可以降低该组电子设备同时响应的时间误差,提高同时响应的一致性,提高用户体验。
在一些实施例中,主设备还可以计算多个定时器的定时时长并设置多个定时器,在定时器超时后通知相应的从设备进行响应,而不需要在不同设备上分别计算各自的定时器时长并分别设置定时器,因而还可以避免不同设备间的设备计算耗时误差和定时器的定时误差,从而可以降低该组电子设备同时响应的时间误差,提高同时响应的一致性,提高用户体验。
例如,在该组电子设备中,电子设备具体可以为音箱、灯泡、电视、机顶盒等智能家居设备,还可以是手机、耳机、平板电脑、可穿戴设备、车载设备、增强现实(augmented reality,AR)/虚拟现实(virtual reality,VR)设备、笔记本电脑、超级移动个人计算机(ultra-mobile personal computer,UMPC)、上网本、个人数字助理(personal digital assistant,PDA)等设备。本申请实施例对电子设备的设备类型不作具体限定。
其中,该组电子设备中的多个电子设备,可以是同种类型的电子设备,也可以是不同类型的电子设备。例如,该组电子设备可以是音频设备、音视频设备、灯光设备或其他类型的设备等。
举例来说,该组电子设备为包括左声道音箱(即用于播放左声道音频的音箱)和右声道音箱(即用于播放右声道音频的音箱),即包括一组同种设备类型的音频设备。左声道音箱和右声道音箱同时播放,从而实现立体声同步播放。
在另一个示例中,该组电子设备包括视频设备电视和音频设备音箱,即包括一组不同设备类型的电子设备。电视和音箱同时响应,分别播放视频和音频,从而实现画面和声音的同步播放。
示例性的,图4示出了电子设备100的一种结构示意图。电子设备100可以包括处理器110,外部存储器接口120,内部存储器121,通用串行总线(universal serial bus,USB)接口130,充电管理模块140,电源管理模块141,电池142,天线1,天线2,移动通信模块150,无线通信模块160,音频模块170,扬声器170A,受话器170B,麦克风170C,耳机接口170D,传感器模块180,按键190,马达191,指示器192,摄像头193,显示屏194,用户标识模块(subscriber identification module,SIM)卡接口195,以及网卡196等。其中传感器模块180可以包括压力传感器180A,陀螺仪传感 器180B,气压传感器180C,磁传感器180D,加速度传感器180E,距离传感器180F,接近光传感器180G,指纹传感器180H,温度传感器180J,触摸传感器180K,环境光传感器180L,骨传导传感器180M等。
处理器110可以包括一个或多个处理单元,例如:处理器110可以包括应用处理器(application processor,AP),调制解调处理器,图形处理器(graphics processing unit,GPU),图像信号处理器(image signal processor,ISP),控制器,存储器,视频编解码器,数字信号处理器(digital signal processor,DSP),基带处理器,和/或神经网络处理器(neural-network processing unit,NPU)等。其中,不同的处理单元可以是独立的器件,也可以集成在一个或多个处理器中。
其中,控制器可以是电子设备100的神经中枢和指挥中心。控制器可以根据指令操作码和时序信号,产生操作控制信号,完成取指令和执行指令的控制。
处理器110中还可以设置存储器,用于存储指令和数据。在一些实施例中,处理器110中的存储器为高速缓冲存储器。该存储器可以保存处理器110刚用过或循环使用的指令或数据。如果处理器110需要再次使用该指令或数据,可从存储器中直接调用。避免了重复存取,减少了处理器110的等待时间,因而提高了系统的效率。
在一些实施例中,处理器110可以包括一个或多个接口。接口可以包括集成电路(inter-integrated circuit,I2C)接口,集成电路内置音频(inter-integrated circuit sound,I2S)接口,脉冲编码调制(pulse code modulation,PCM)接口,通用异步收发传输器(universal asynchronous receiver/transmitter,UART)接口,移动产业处理器接口(mobile industry processor interface,MIPI),通用输入输出(general-purpose input/output,GPIO)接口,用户标识模块(subscriber identity module,SIM)接口,通用串行总线(universal serial bus,USB)接口,和/或网线接口等。其中,网线接口可以用于将通过网线将网卡接入互联网,例如接入有线局域网。
例如,I2C接口是一种双向同步串行总线,包括一根串行数据线(serial data line,SDA)和一根串行时钟线(derail clock line,SCL)。处理器110可以通过不同的I2C总线接口分别耦合触摸传感器180K,充电器,闪光灯,摄像头193等。I2S接口可以用于音频通信。PCM接口也可以用于音频通信,将模拟信号抽样,量化和编码。UART接口是一种通用串行数据总线,用于异步通信。MIPI接口可以被用于连接处理器110与显示屏194,摄像头193等外围器件。GPIO接口可以通过软件配置。GPIO接口可以被配置为控制信号,也可被配置为数据信号。USB接口130是符合USB标准规范的接口,具体可以是Mini USB接口,Micro USB接口,USB Type C接口等。
可以理解的是,本申请实施例示意的各模块间的接口连接关系,只是示意性说明,并不构成对电子设备100的结构限定。在本申请另一些实施例中,电子设备100也可以采用上述实施例中不同的接口连接方式,或多种接口连接方式的组合。
充电管理模块140用于从充电器接收充电输入。其中,充电器可以是无线充电器,也可以是有线充电器。充电管理模块140为电池142充电的同时,还可以通过电源管理模块141为电子设备供电。
电源管理模块141用于连接电池142,充电管理模块140与处理器110。电源管理模块141接收电池142和/或充电管理模块140的输入,为处理器110,内部存储器121, 外部存储器,显示屏194,摄像头193,和无线通信模块160等供电。
电子设备100的无线通信功能可以通过天线1,天线2,移动通信模块150,无线通信模块160,调制解调处理器以及基带处理器等实现。
天线1和天线2用于发射和接收电磁波信号。电子设备100中的每个天线可用于覆盖单个或多个通信频带。不同的天线还可以复用,以提高天线的利用率。例如:可以将天线1复用为无线局域网的分集天线。在另外一些实施例中,天线可以和调谐开关结合使用。
移动通信模块150可以提供应用在电子设备100上的包括2G/3G/4G/5G等无线通信的解决方案。移动通信模块150可以包括至少一个滤波器,开关,功率放大器,低噪声放大器(low noise amplifier,LNA)等。移动通信模块150可以由天线1接收电磁波,并对接收的电磁波进行滤波,放大等处理,传送至调制解调处理器进行解调。移动通信模块150还可以对经调制解调处理器调制后的信号放大,经天线1转为电磁波辐射出去。在一些实施例中,移动通信模块150的至少部分功能模块可以被设置于处理器110中。在一些实施例中,移动通信模块150的至少部分功能模块可以与处理器110的至少部分模块被设置在同一个器件中。
调制解调处理器可以包括调制器和解调器。其中,调制器用于将待发送的低频基带信号调制成中高频信号。解调器用于将接收的电磁波信号解调为低频基带信号。随后解调器将解调得到的低频基带信号传送至基带处理器处理。低频基带信号经基带处理器处理后,被传递给应用处理器。应用处理器通过音频设备(不限于扬声器170A,受话器170B等)输出声音信号,或通过显示屏194显示图像或视频。在一些实施例中,调制解调处理器可以是独立的器件。在另一些实施例中,调制解调处理器可以独立于处理器110,与移动通信模块150或其他功能模块设置在同一个器件中。
无线通信模块160可以提供应用在电子设备100上的包括无线局域网(wireless local area networks,WLAN)(如无线保真(wireless fidelity,Wi-Fi)网络),蓝牙(bluetooth,BT),全球导航卫星系统(global navigation satellite system,GNSS),调频(frequency modulation,FM),近距离无线通信技术(near field communication,NFC),红外技术(infrared,IR)等无线通信的解决方案。无线通信模块160可以是集成至少一个通信处理模块的一个或多个器件。无线通信模块160经由天线2接收电磁波,将电磁波信号调频以及滤波处理,将处理后的信号发送到处理器110。无线通信模块160还可以从处理器110接收待发送的信号,对其进行调频,放大,经天线2转为电磁波辐射出去。
在本申请的实施例中,电子设备100可以通过无线通信模块160接入无线局域网(如Wi-Fi)。或者,电子设备100可以通过网线接口接入有线局域网。
在一些实施例中,电子设备100的天线1和移动通信模块150耦合,天线2和无线通信模块160耦合,使得电子设备100可以通过无线通信技术与网络以及其他设备通信。无线通信技术可以包括全球移动通讯系统(global system for mobile communications,GSM),通用分组无线服务(general packet radio service,GPRS),码分多址接入(code division multiple access,CDMA),宽带码分多址(wideband code division multiple access,WCDMA),时分码分多址(time-division code division multiple access,TD-SCDMA),长期演进(long term evolution,LTE),BT,GNSS,WLAN,NFC,FM, 和/或IR技术等。GNSS可以包括全球卫星定位系统(global positioning system,GPS),全球导航卫星系统(global navigation satellite system,GLONASS),北斗卫星导航系统(beidou navigation satellite system,BDS),准天顶卫星系统(quasi-zenith satellite system,QZSS)和/或星基增强系统(satellite based augmentation systems,SBAS)。
电子设备100通过GPU,显示屏194,以及应用处理器等实现显示功能。GPU为图像处理的微处理器,连接显示屏194和应用处理器。GPU用于执行数学和几何计算,用于图形渲染。处理器110可包括一个或多个GPU,其执行程序指令以生成或改变显示信息。
显示屏194用于显示图像,视频等。显示屏194包括显示面板。显示面板可以采用液晶显示屏(liquid crystal display,LCD),有机发光二极管(organic light-emitting diode,OLED),有源矩阵有机发光二极体或主动矩阵有机发光二极体(active-matrix organic light emitting diode的,AMOLED),柔性发光二极管(flex light-emitting diode,FLED),Miniled,MicroLed,Micro-oLed,量子点发光二极管(quantum dot light emitting diodes,QLED)等。在一些实施例中,电子设备100可以包括1个或N个显示屏194,N为大于1的正整数。
电子设备100可以通过ISP,摄像头193,视频编解码器,GPU,显示屏194以及应用处理器等实现拍摄功能。
ISP用于处理摄像头193反馈的数据。例如,拍照时,打开快门,光线通过镜头被传递到摄像头感光元件上,光信号转换为电信号,摄像头感光元件将电信号传递给ISP处理,转化为肉眼可见的图像。ISP还可以对图像的噪点,亮度,肤色进行算法优化。ISP还可以对拍摄场景的曝光,色温等参数优化。在一些实施例中,ISP可以设置在摄像头193中。
摄像头193用于捕获静态图像或视频。物体通过镜头生成光学图像投射到感光元件。感光元件可以是电荷耦合器件(charge coupled device,CCD)或互补金属氧化物半导体(complementary metal-oxide-semiconductor,CMOS)光电晶体管。感光元件把光信号转换成电信号,之后将电信号传递给ISP转换成数字图像信号。ISP将数字图像信号输出到DSP加工处理。DSP将数字图像信号转换成标准的RGB,YUV等格式的图像信号。在一些实施例中,电子设备100可以包括1个或N个摄像头193,N为大于1的正整数。
数字信号处理器用于处理数字信号,除了可以处理数字图像信号,还可以处理其他数字信号。例如,当电子设备100在频点选择时,数字信号处理器用于对频点能量进行傅里叶变换等。
视频编解码器用于对数字视频压缩或解压缩。电子设备100可以支持一种或多种视频编解码器。这样,电子设备100可以播放或录制多种编码格式的视频,例如:动态图像专家组(moving picture experts group,MPEG)1,MPEG2,MPEG3,MPEG4等。
NPU为神经网络(neural-network,NN)计算处理器,通过借鉴生物神经网络结构,例如借鉴人脑神经元之间传递模式,对输入信息快速处理,还可以不断的自学习。通过NPU可以实现电子设备100的智能认知等应用,例如:图像识别,人脸识别,语音识别,文本理解等。
外部存储器接口120可以用于连接外部存储卡,例如Micro SD卡,实现扩展电子设备100的存储能力。外部存储卡通过外部存储器接口120与处理器110通信,实现数据存储功能。例如将音乐,视频等文件保存在外部存储卡中。
内部存储器121可以用于存储计算机可执行程序代码,可执行程序代码包括指令。处理器110通过运行存储在内部存储器121的指令,从而执行电子设备100的各种功能应用以及数据处理。内部存储器121可以包括存储程序区和存储数据区。其中,存储程序区可存储操作系统,至少一个功能所需的应用程序(比如声音播放功能,图像播放功能等)等。存储数据区可存储电子设备100使用过程中所创建的数据(比如音频数据,电话本等)等。此外,内部存储器121可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件,闪存器件,通用闪存存储器(universal flash storage,UFS)等。
电子设备100可以通过音频模块170,扬声器170A,受话器170B,麦克风170C,耳机接口170D,以及应用处理器等实现音频功能。例如音乐播放,录音等。
音频模块170用于将数字音频信息转换成模拟音频信号输出,也用于将模拟音频输入转换为数字音频信号。音频模块170还可以用于对音频信号编码和解码。在一些实施例中,音频模块170可以设置于处理器110中,或将音频模块170的部分功能模块设置于处理器110中。
扬声器170A,也称“喇叭”,用于将音频电信号转换为声音信号。电子设备100可以通过扬声器170A收听音乐,或收听免提通话。
受话器170B,也称“听筒”,用于将音频电信号转换成声音信号。当电子设备100接听电话或语音信息时,可以通过将受话器170B靠近人耳接听语音。
麦克风170C,也称“话筒”,“传声器”,用于将声音信号转换为电信号。当拨打电话或发送语音信息时,用户可以通过人嘴靠近麦克风170C发声,将声音信号输入到麦克风170C。电子设备100可以设置至少一个麦克风170C。在另一些实施例中,电子设备100可以设置两个麦克风170C,除了采集声音信号,还可以实现降噪功能。在另一些实施例中,电子设备100还可以设置三个,四个或更多麦克风170C,实现采集声音信号,降噪,还可以识别声音来源,实现定向录音功能等。
在一些实施例中,麦克风170C还可以采集用户的语音指示,从而使得电子设备100根据用户的语音指示执行响应操作。
耳机接口170D用于连接有线耳机。耳机接口170D可以是USB接口130,也可以是3.5mm的开放移动电子设备平台(open mobile terminal platform,OMTP)标准接口,美国蜂窝电信工业协会(cellular telecommunications industry association of the USA,CTIA)标准接口。
压力传感器180A用于感受压力信号,可以将压力信号转换成电信号。在一些实施例中,压力传感器180A可以设置于显示屏194。压力传感器180A的种类很多,如电阻式压力传感器,电感式压力传感器,电容式压力传感器等。
陀螺仪传感器180B可以用于确定电子设备100的运动姿态。在一些实施例中,可以通过陀螺仪传感器180B确定电子设备100围绕三个轴(即,x,y和z轴)的角速度。陀螺仪传感器180B可以用于拍摄防抖。
气压传感器180C用于测量气压。在一些实施例中,电子设备100通过气压传感器180C测得的气压值计算海拔高度,辅助定位和导航。
磁传感器180D包括霍尔传感器。电子设备100可以利用磁传感器180D检测翻盖皮套的开合。在一些实施例中,当电子设备100是翻盖机时,电子设备100可以根据磁传感器180D检测翻盖的开合。进而根据检测到的皮套的开合状态或翻盖的开合状态,设置翻盖自动解锁等特性。
加速度传感器180E可检测电子设备100在各个方向上(一般为三轴)加速度的大小。当电子设备100静止时可检测出重力的大小及方向。还可以用于识别电子设备姿态,应用于横竖屏切换,计步器等应用。
距离传感器180F,用于测量距离。电子设备100可以通过红外或激光测量距离。在一些实施例中,拍摄场景,电子设备100可以利用距离传感器180F测距以实现快速对焦。
接近光传感器180G可以包括例如发光二极管(LED)和光检测器,例如光电二极管。发光二极管可以是红外发光二极管。电子设备100通过发光二极管向外发射红外光。电子设备100使用光电二极管检测来自附近物体的红外反射光。当检测到充分的反射光时,可以确定电子设备100附近有物体。当检测到不充分的反射光时,电子设备100可以确定电子设备100附近没有物体。电子设备100可以利用接近光传感器180G检测用户手持电子设备100贴近耳朵通话,以便自动熄灭屏幕达到省电的目的。接近光传感器180G也可用于皮套模式,口袋模式自动解锁与锁屏。
环境光传感器180L用于感知环境光亮度。电子设备100可以根据感知的环境光亮度自适应调节显示屏194亮度。环境光传感器180L也可用于拍照时自动调节白平衡。环境光传感器180L还可以与接近光传感器180G配合,检测电子设备100是否在口袋里,以防误触。
指纹传感器180H用于采集指纹。电子设备100可以利用采集的指纹特性实现指纹解锁,访问应用锁,指纹拍照,指纹接听来电等。
温度传感器180J用于检测温度。在一些实施例中,电子设备100利用温度传感器180J检测的温度,执行温度处理策略。例如,当温度传感器180J上报的温度超过阈值,电子设备100执行降低位于温度传感器180J附近的处理器的性能,以便降低功耗实施热保护。在另一些实施例中,当温度低于另一阈值时,电子设备100对电池142加热,以避免低温导致电子设备100异常关机。在其他一些实施例中,当温度低于又一阈值时,电子设备100对电池142的输出电压执行升压,以避免低温导致的异常关机。
触摸传感器180K,也称“触控面板”。触摸传感器180K可以设置于显示屏194,由触摸传感器180K与显示屏194组成触摸屏,也称“触控屏”。触摸传感器180K用于检测作用于其上或附近的触摸操作。触摸传感器可以将检测到的触摸操作传递给应用处理器,以确定触摸事件类型。可以通过显示屏194提供与触摸操作相关的视觉输出。在另一些实施例中,触摸传感器180K也可以设置于电子设备100的表面,与显示屏194所处的位置不同。
骨传导传感器180M可以获取振动信号。在一些实施例中,骨传导传感器180M可以获取人体声部振动骨块的振动信号。骨传导传感器180M也可以接触人体脉搏, 接收血压跳动信号。在一些实施例中,骨传导传感器180M也可以设置于耳机中,结合成骨传导耳机。音频模块170可以基于骨传导传感器180M获取的声部振动骨块的振动信号,解析出语音信号,实现语音功能。应用处理器可以基于骨传导传感器180M获取的血压跳动信号解析心率信息,实现心率检测功能。
按键190包括开机键,音量键等。按键190可以是机械按键。也可以是触摸式按键。电子设备100可以接收按键输入,产生与电子设备100的用户设置以及功能控制有关的键信号输入。电子设备100可以根据用户的按键输入执行响应操作。
马达191可以产生振动提示。马达191可以用于来电振动提示,也可以用于触摸振动反馈。例如,作用于不同应用(例如拍照,音频播放等)的触摸操作,可以对应不同的振动反馈效果。作用于显示屏194不同区域的触摸操作,马达191也可对应不同的振动反馈效果。不同的应用场景(例如:时间提醒,接收信息,闹钟,游戏等)也可以对应不同的振动反馈效果。触摸振动反馈效果还可以支持自定义。
指示器192可以是指示灯,可以用于指示充电状态,电量变化,也可以用于指示消息,未接来电,通知等。
SIM卡接口195用于连接SIM卡。SIM卡可以通过插入SIM卡接口195,或从SIM卡接口195拔出,实现和电子设备100的接触和分离。电子设备100可以支持1个或N个SIM卡接口,N为大于1的正整数。SIM卡接口195可以支持Nano SIM卡,Micro SIM卡,SIM卡等。同一个SIM卡接口195可以同时插入多张卡。多张卡的类型可以相同,也可以不同。SIM卡接口195也可以兼容不同类型的SIM卡。SIM卡接口195也可以兼容外部存储卡。电子设备100通过SIM卡和网络交互,实现通话以及数据通信等功能。在一些实施例中,电子设备100采用eSIM,即:嵌入式SIM卡。eSIM卡可以嵌在电子设备100中,不能和电子设备100分离。
可以理解的是,本申请实施例示意的结构并不构成对电子设备100的具体限定。在本申请另一些实施例中,电子设备100可以包括比图示更多或更少的部件,或者组合某些部件,或者拆分某些部件,或者不同的部件布置。图示的部件可以以硬件,软件或软件和硬件的组合实现。
例如,当上述电子设备100为电视时,电子设备100可以包括显示屏、GPU等部件,不包括移动通信模块等部件;当上述电子设备100为音箱时,可以包括音频模块等部件,不包括显示屏、GPU等部件。
在本申请的实施例中,若电子设备100为主设备,则处理器110可以执行内部存储器121中的代码,以测量与不同从设备之间的传输耗时(即网络传输时间),确定与不同从设备之间的最大传输耗时max。
在一种技术方案中,若电子设备100为主设备,则处理器110还可以执行内部存储器121中的代码,以在经历max时长后进行响应;并将最大传输耗时max,以及与各从设备之间的不同传输耗时分别发送给对应的从设备。若电子设备100为从设备,则处理器110可以执行内部存储器121中的代码,以在接收到max和传输耗时并经历max-ti时长后进行响应。其中,ti表示当前从设备与主设备之间的传输耗时。从而,可以使得主设备和各从设备同时进行响应。
在另一种技术方案中,若电子设备100为主设备,则处理器110可以执行内部存 储器121中的代码,以在经历max时长后进行响应;并在经历max-ti时长后,指示相应的从设备进行响应。其中,ti表示主设备与指示进行响应的从设备之间的传输耗时。从设备不同,传输耗时ti也不同,若电子设备100为从设备,则处理器110可以执行内部存储器121中的代码,以在接收到主设备发送的响应指令后,立即进行响应。从而,可以使得主设备和各从设备同时进行响应。
以下通过不同应用场景的举例说明,来对本申请实施例提供的同时响应的方法进行阐述。
在一种应用场景中,该组电子设备为一组音频设备。该组音频设备可以接收用户的语音指令。例如,该组音频设备可以为一组音箱,一组耳机或一组其他音频设备。
示例性的,参见图5,该组音频设备包括客厅设置的音箱A,以及不同卧室内分别设置的音箱B和音箱C。音箱A、音箱B和音箱C可以通过无线路由器(或称无线接入点)接入同一Wi-Fi局域网。该无线路由器即为网关。需要注意的是,该无线路由器可以是一个也可以是多个(例如包括主路由器和从路由器)。
音箱A、音箱B和音箱C可以通过配对,组合为一组电子设备。该组电子设备的配对方式可以有多种。例如,在一些实施例中,该组电子设备是出厂时预先配对的一组电子设备。示例性的,该组电子设备为出厂时已配对的一组左声道音箱和右声道音箱。
再例如,在另一些实施例中,音箱A、音箱B、音箱C以及用户的手机,可以通过无线路由器接入同一Wi-Fi局域网。示例性的,参见图6中的(a)和图6中的(b),用户可以通过手机APP对音箱A、音箱B和音箱C进行配对,从而将音箱A、音箱B和音箱C组合为一组电子设备。
其中,手机通过APP检测到用户指示将音箱A、音箱B和音箱C进行配对的指示操作后,可以通过云端服务器分别通知音箱A、音箱B和音箱C进行配对。音箱A可以将配对相关的信息,通过无线路由器发送给云端服务器,云端服务器再通过无线路由器转发给待配对的音箱B和音箱C。例如,配对相关的信息可以包括,IP地址,设备标识(比如序列号),设备名称,设备型号,或配对响应信息等。同样,音箱C和音箱B也可以把配对的相关的信息,通过无线路由器和云端服务器转发给待配对的其他音箱。从而,音箱A、音箱B和音箱C之间可以交互配对相关的信息,完成配对过程。
其中,在该组电子设备中,主设备和从设备的角色可以是用户指定的。例如,用户可以通过APP指定音箱A为主设备,音箱B和音箱C为从设备。
或者,在该组电子设备中,主设备和从设备的角色也可以是手机自动确定的。例如,手机确定该组电子设备中,先接入Wi-Fi局域网的音箱为主设备,其他音箱为从设备。再例如,手机随机选择该组电子设备中的一个音箱作为主设备,其他音箱为从设备。再例如,该组电子设备中的不同音箱可以分别通过红外传感器、距离传感器等器件,确定与用户之间的距离,并将距离上报给手机,手机确定距离用户最近的音箱为主设备。再例如,该组电子设备中的不同音箱,可以分别检测用户的语音信号强度等参数,并将语音信号强度等参数上报给手机,手机根据语音信号强度等参数确定音箱与用户之间的距离,并确定距离用户最近的音箱为主设备。
在主设备和从设备的角色确定后,手机可以通过云端服务器和无线路由器将主、从设备的角色分别通知给音箱A、音箱B和音箱C;或者,主、从设备之间可以互相通知对方自身的角色。
在配对后,该组电子设备可以测量主设备与各从设备之间的传输耗时。其中,由于时钟源站点可能距离该组电子设备较远,因而与现有技术中时钟源站点与该组电子设备之间的传输时间相比,接入同一局域网的主设备与从设备之间的距离较近,因而主设备与从设备之间的传输耗时也更短。
在一些实施例中,从设备可以分别测量与主设备之间的传输耗时,并分别上报给主设备进行保存。该传输耗时为主设备和从设备之间传输信息需要消耗的时间。主设备可以确定与各从设备之间的传输耗时的最大值max(即最大传输耗时)。
在另一些实施例中,主设备可以分别测量与各从设备之间的传输耗时,并确定与各从设备之间的传输耗时的最大值max。
其中,主设备或从设备测量传输耗时的方法可以有多种。例如,音箱A测量与音箱B之间的传输耗时。音箱A可以向音箱B发送测量信息,并记录发送时刻。音箱B接收到音箱A发送的该测量信息后,可以记录接收时刻。音箱B向主设备发送响应信息,以将该接收时刻返回给音箱A。音箱A确定该接收时刻与该发送时刻之间的差值,即为音箱A与音箱B之间的传输耗时。再例如,在音箱A测量与音箱B之间的传输耗时时,音箱A可以向音箱B发送测量信息,并启动计时器。音箱B接收到音箱A发送的该测量信息后,即向音箱A回复响应信息。音箱A接收到该响应信息后停止计时器,并确定计时器计时时长的一半,即为音箱A与音箱B之间的传输耗时。
其中,音箱A分别与音箱B和音箱C之间的传输耗时可能相等,也可能不等。示例性的,音箱A与音箱B之间的传输耗时为ab(例如可以为12ms),音箱A与音箱C之间的传输耗时为ac。若ac大于ab,则max=ac。
这样,在配对时,该组电子设备之间可以交互配对相关信息;在配对后,该组电子设备之间还可以交互测量信息和响应信息等用于测量主、从设备之间传输耗时的其他信息。
此外,在该组电子设备发生断网的情况下,例如该组电子设备上/下电,该组电子设备的接入点发生更改,重置,上/下电,或者该组电子设备接入的局域网的名称或密码等发生更改等的情况下,传输耗时可能也发生了变化,因而在重新接入局域网后,该组电子设备还可以重新测量主设备与各从设备之间的传输耗时,并重新确定最大传输耗时max。
在一些实施例中,该组电子设备可以接收用户的语音指令,并针对用户的语音指令同时进行响应。例如,该组电子设备可以接收用户指示亮灯的指令,同时进行亮灯(即同时响应,或称同时执行响应操作)操作。再例如,该组电子设备可以接收用户的语音唤醒指令,并同时进行唤醒应答(即同时响应)。该唤醒应答可以包括亮灯(例如点亮灯环,点亮指示灯,不断闪烁指示灯)、声音(例如“嘀”一声,或发出声音“主人,我已被已唤醒”)或振动等多种方式。
以下以图5所示场景下,音箱A为主设备,音箱B和音箱C为从设备,该组电子设备在接收到用户的语音唤醒指示(即检测到响应指示)后,同时点亮灯环进行唤醒 应答为例进行说明。
在本申请的实施例中,主、从设备之间可以通过网关(例如无线路由器)的转发交互数据信息(例如数据指令)。或者,主、从设备之间还可以通过云端服务器和网关的转发交互数据信息。
通常,云端服务器的处理能力较强,能够更好地识别用户的语音信息,并根据用户的语音信息识别用户的意图,因而主、从设备之间还可以通过云端服务器的处理和网关的转发,处理语音信息。例如,从设备可以接收用户的语音信息,并通过网关上报给云端服务器。云端服务器对语音信息进行识别和处理后,获知用户意图,并将用户意图转化成相应的数据指令,通过网关将数据指令发送给主设备。或者,主、从设备之间可以通过网关的转发交互语音信息。
在一种情况下,语音唤醒指令为特定的语音指令,例如该语音唤醒指令可以为“小E小E!”。音箱A-C检测到该语音唤醒指令后确定用户想要唤醒音箱。例如,音箱A(即主设备)检测到用户的语音唤醒指令后,确定用户想要唤醒音箱。音箱A可以控制音箱A、音箱B和音箱C同时点亮灯环(即同时响应)。或者,音箱B或音箱C(即从设备)检测到该语音唤醒指令后,确定用户想要唤醒音箱,因而可以向音箱A发送相应的数据指令(即通过无线路由器向音箱A转发相应的数据指令),以使得音箱A获知用户想要唤醒音箱。该种方法不通过云端服务器的转发指令信息,因而可以尽快唤醒音箱。
在另一种情况下,音箱B或音箱C检测到用户的语音唤醒指令后,可以通过云端服务器通知音箱A(即通过云端服务器的语音意图处理和无线路由器的转发通知音箱A);音箱A可以控制音箱A、音箱B和音箱C开始同步点亮灯环。
在一些实施例中,参见图7,音箱A可以通过自身检测到用户的语音唤醒指令,或者根据从设备或云端服务器的通知获知用户的唤醒指示。若传输耗时ab和ac是音箱A测量获得的,且当前时刻为时刻1,则音箱A可以向音箱B发送响应指令1,该响应指令1包括传输耗时ab和最大传输耗时max。音箱A发送的ab和max,经过传输耗时ab后到达音箱B。即音箱B在时刻1+ab接收到音箱A发送的ab和max。音箱B接收到ab和max后,设置时长为max-ab的定时器,从而在经历max-ab时长之后进行响应。即音箱B在时刻1+ab+(max-ab)=时刻1+max表示的时刻进行响应。
同理,音箱A可以向音箱C发送响应指令2,该响应指令2包括传输耗时ac和最大传输耗时max。音箱A发送的ac和max,经过传输耗时ac后到达音箱C。即音箱C在时刻1+ac接收到音箱A发送的ac和max。音箱C接收到ac和max后,设置时长为max-ac的定时器,从而在经历max-ac时长之后进行响应。即音箱C在时刻1+ac+(max-ac)=时刻1+max表示的时刻进行响应。
需要说明的是,在上述图7,以及后续图9-图10B中,音箱A获知用户的唤醒指示后,即可以分别向音箱B和音箱C发送响应指令。也就是说,音箱A向音箱B发送响应指令,与音箱A向音箱C发送响应指令没有先后顺序。
还需要说明的是,在上述图7,以及后续的图9-图13中,音箱A、音箱B和音箱C之间的信息交互,例如响应指令,max,ab或ac等的交互,均是由一个音箱通过无线路由器转发给另一个音箱的;并不是音箱之间直接发送给对方的。
并且,音箱A在时刻1+max表示的时刻进行响应。
可见,音箱A、音箱B和音箱C均在时刻1+max表示的时刻同时进行响应。其中,若max=ac,则音箱A、音箱B和音箱C均在时刻1+ac表示的时刻同时进行响应。若max=ab,则音箱A、音箱B和音箱C均在时刻1+ab表示的时刻同时进行响应。
示例性的,若该唤醒应答为点亮灯环,则在时刻1+max表示的时刻,音箱A、音箱B和音箱C同时点亮灯环。如图8A所示,各音箱点亮灯环的过程可以同步。
再示例性的,若该唤醒应答为点亮一个或多个指示灯,则在时刻1+max表示的时刻,音箱A、音箱B和音箱C同时点亮该指示灯。如图8B,各音箱可以同步点亮该排指示灯。
再示例性的,若该唤醒应答为闪烁指示等,则在时刻1+max表示的时刻,音箱A、音箱B和音箱C同时开始以相同的频率闪烁指示等。
再示例性的,若该唤醒应答为“嘀”一声,则在时刻1+max表示的时刻,音箱A、音箱B和音箱C同时“嘀”一声。
再示例性的,若该唤醒应答为发出声音“主人,我已被已唤醒”,则在时刻1+max表示的时刻,音箱A、音箱B和音箱C同时发出声音“主人,我已被已唤醒”。
在图7所示的上述方案中,局域网内的主、从设备之间虽然存在传输耗ab和ac,但从设备侧在进行同时响应时考虑并抵消了该传输耗时,从而避免了传输耗时导致的同时响应的误差,提高了同时响应的一致性。
其中,由于主、从设备同时响应的一致性较高,因而音箱A、音箱B和音箱C可以同时进行唤醒应答,例如同时开始点亮灯环。并且,与图1所示的现有技术中的灯环点亮过程相比,音箱A、音箱B和音箱C之间点亮灯环的过程的同步性更好,用户视觉体验更好。
若传输耗时ab和ac分别是音箱B和音箱C测量并上报给音箱A的,当前时刻为时刻1,则参见图9,音箱A通过响应指令分别向音箱B和音箱C发送最大传输耗时max,而不再发送ab和ac。音箱A发送的max,经过传输耗时ab后到达音箱B。即音箱B在时刻1+ab接收到音箱A发送的max。音箱B接收到max后,设置时长为max-ab的定时器,从而在max-ab时长之后进行响应。即音箱B在时刻1+ab+(max-ab)=时刻1+max表示的时刻进行响应。
同理,音箱A发送的max,经过传输耗时ac后到达音箱C。即音箱C在时刻1+ac接收到音箱A发送的max。音箱C接收到max后,设置时长为max-ac的定时器,从而在max-ac时长之后进行响应。即音箱C在时刻1+ac+(max-ac)=时刻1+max表示的时刻进行响应。
并且,音箱A在时刻1+max表示的时刻进行响应。
在图7和图9所示的方案中,音箱A在当前时刻之后的max时长后进行响应,音箱B在接收到音箱A发送的max,并经历max-ab时长后进行响应,音箱C在接收到音箱A发送的max,并经历max-ac时长后进行响应。而max,max-ab和max-ac均为相对时间,也就是说,各音箱根据相对时间进行同步响应,并且考虑并抵消了局域网内主、从设备间的传输耗时;而且不需要通过网络时钟同步获取标准时间(即绝对时间),因而可以避免网络时钟同步导致的延时,提高主、从设备同时响应的一致性, 提高用户体验。例如,采用图7所示的方案,可以使得不同音箱之间同时响应的时间误差降低至0.01ms以下。
以上主要描述的方案为,主设备在确定需要进行响应后(或者说在检测到响应指示后,例如在获知用户的唤醒指示后),才向从设备发送响应指令,并将max、ab和ac发送给从设备,或者将max发送给从设备,从而进行同时响应。例如,上述图7所示方案的方法流程图可以参见图10A。
在其他一些技术方案中,参见图10B,主设备可以预先将max、ab和ac发送给从设备,或者预先将max发送给从设备。例如,在配对后,主设备预先将max、ab和ac分别发送给相应的从设备,或者预先将max发送给各从设备。而后,主设备在确定需要进行响应(例如获知用户的唤醒指示)后,再按照图7所示的时机向从设备发送响应指令,响应指令中可以不包括max-ab或max-ac,从而使得主设备和从设备进行同时响应。
由上描述可知,主、从设备之间的传输耗时ab和ac可以是音箱A测量的,也可以是音箱B和音箱C分别测量的;且主设备可以根据ab和ac确定max。在一些实施例中,在音箱A通过自身的检测或根据从设备或云端服务器的通知,获知用户的唤醒指示后,参见图11和图12,当前为时刻1,音箱A可以设置时长分别为max,max-ab,以及max-ac的定时器。在时长为max-ab的定时器超时后,即在时刻1+max-ab表示的时刻,音箱A向音箱B发送指令,以指示音箱B进行响应。该指令经过传输耗时ab到达音箱B。即,音箱B在时刻1+max-ab+ab=时刻1+max表示的时刻接收到该指令。音箱B接收到该指令后,立即进行响应。即,音箱B在1+max表示的时刻进行响应。
可见,音箱A和音箱B之间虽然存在传输耗时ab,但音箱A端考虑并抵消了该传输耗时,从而避免了传输耗时导致的同时响应的误差。
在时长为max-ac的定时器超时后,即在时刻1+max-ac表示的时刻,音箱A向音箱B发送指令,以指示音箱B进行响应。该指令经过传输耗时ac到达音箱B。即,音箱B在时刻1+max-ac+ac=时刻1+max表示的时刻接收到该指令。音箱B接收到该指令后,立即进行响应。即,音箱B在1+max表示的时刻进行响应。
可见,音箱A和音箱C之间虽然存在传输耗时ac,但音箱A端考虑并抵消了该传输耗时,从而避免了传输耗时导致的同时响应的误差。
在时长为max的定时器超时后,即在时刻1+max表示的时刻,音箱A进行响应。
也就是说,音箱A、音箱B和音箱C均在时刻1+max表示的时刻同时进行响应。
在图11和图12所示的方案中,音箱A在当前时刻之后的max时长后进行响应,在当前时刻之后的max-ab时长后指示音箱B进行响应,并在当前时刻之后的max-ac时长后指示音箱C进行响应。而max,max-ab和max-ac均为相对时间,也就是说,各音箱根据相对时间进行同步响应,并且考虑并抵消了局域网内主、从设备间的传输耗时;而且不需要通过网络时钟同步获取标准时间(即绝对时间),因而可以避免网络时钟同步导致的延时,提高主、从设备同时响应的一致性,提高用户体验。
并且,与图7-图10B所示的方案相比,在图11和图12所示的方案中,主设备音箱A计算定时的时长并设置多个定时器。定时时长的计算设备均为同一设备,且多个定时器基于同一设备的物理时钟定时器实现。而不需要在不同设备上分别计算各自的 定时器时长并分别设置定时器,因而还可以避免不同设备间的设备计算耗时误差和定时器误差。从而,可以降低该组电子设备同时响应的误差,提高同时响应的一致性,提高用户体验。例如,采用图11和图12所示的方案,可以使得不同音箱之间同时响应的时间误差降低至0.001ms以下。
此外,需要说明的是,在图11和图12所示的方案中,与不同从设备(即音箱B和音箱C)分别测量与主设备(即音箱A)之间的传输耗时相比,由主设备测量与不同从设备之间的传输耗时,可以使得测量过程的执行主体均为同一主设备,可以避免不同电子设备分别测量传输耗时导致的测量误差,从而提高测量精度。
在其他一些实施例中,max可以替换为T=max+T0,T0大于或者等于0,即T大于或者等于max。当T0为0时,主设备和从设备可以尽快在同一时刻同时进行响应,用户体验更好。
在其他一些实施例中,该组电子设备还可以接收语音唤醒指令以外的用户其他语音指令,并进行同时响应。例如,用户其他语音指令为用户设置明天早上8:00的闹钟的语音指令。
其中,由于语音唤醒指令以外的用户其他语音指令通常不是特定的指令,具有个性化和随意性。不同用户针对同一指示下发的语音指令通常不同。而云端服务器具有较强的语音意图处理能力。因而,主设备或从设备检测到的语音唤醒指令以外的用户其他语音指令,通常需要通过无线路由器上报给云端服务器,经过云端服务器的处理后转换成相应的数据指令,再通过无线路由器转发给主设备。主设备控制与从设备同时进行响应。
例如,主设备音箱A检测到用户设置明天早上8:00的闹钟的语音指令。音箱A、音箱B和音箱C可以采用图7-图12所示的同时响应的方法,在第二天早上8:00同时启动闹铃提醒。再例如,从设备音箱B检测到用户设置明天早上8:00的闹钟的语音指令。音箱B通过无线路由器和云端服务器将该闹钟设置通知给音箱A。音箱A、音箱B和音箱C可以采用图7-图12所示的同时响应的方法,在第二天早上8:00同时启动闹铃提醒。
再例如,该组电子设备接收用户用于指示播放、暂停、上一首/下一首、增大音量、减小音量等的语音控制指令。该组电子设备可以采用图7-图12所示的方法进行同时响应。
另外,用户还可以通过手机APP,以语音指令、按键操作或触摸操作等方式,指示该组电子设备进行播放、暂停、上一首/下一首、增大音量、减小音量等控制操作。APP通过云端服务器通知主设备。需要注意的是,云端服务器具体可以通过无线路由器将相关指令转发该主设备。主设备和从设备可以采用图7-图12所示的方法进行同时响应,从而同时启动播放,同时暂停,同时切换到上一首/下一首,同时增大音量,或同时减小音量等。
此外,从设备还可以检测用户的按键操作或触摸操作等指示,并通知主设备。需要注意的是,从设备具体可以通过无线路由器将相关指令转发给主设备。例如,从设备检测到用户通过按键操作指示播放下一首歌曲的指示后,通知主设备。主设备和从设备可以采用图7-图12所示的方法进行同时响应,从而同时切换到播放下一首歌曲。
需要说明的是,以上主要是以从设备包括2个设备为例进行说明的。在其他一些实施例中,从设备的数量还可以大于2个,上述max为各从设备与主设备之间的传输耗时的最大值。
在其他一些实施例中,从设备还可以是1个,max即为主设备与该从设备之间的传输耗时。示例性的,主设备为音箱A,从设备为音箱B,max为主设备测量的与从设备之间的传输耗时为ab。音箱A检测到响应指示后,响应于该响应指示,在经历T=ab+T0时长后进行响应,T0大于或者等于0,即T大于或者等于ab。例如,音箱A检测到响应指示可以为,音箱A检测到用户的语音指令,按键操作或触摸操作等指示,或者接收到云端服务器或从设备发送的指令等。
当T0等于0时,参见图13,音箱A检测到响应指示,在经历ab时长后进行响应。并且,音箱A响应于检测到该响应指示,可以向音箱B发送响应指令。音箱B接收到该响应指示后,可以立即进行响应。
当T0大于0时,在一些情况下,音箱A检测到响应指示,在经历T时长后进行响应。并且,音箱A响应于检测到该响应指示,可以在经历T-ab(即T0)后向音箱B发送响应指令。音箱B接收到该响应指示,可以立即进行响应。在另一些情况下,音箱A检测到响应指示,在经历T时长后进行响应;并且,音箱A响应于检测到该响应指示,向音箱B发送响应指令。音箱B接收到该响应指示,在经历T-ab(即T0)后进行响应。
在另一种应用场景下,该组电子设备为一组音频设备。该组音频设备可以配合使用,以实现音频立体声播放。例如,该组音频设备可以包括左声道音箱和右声道音箱。再例如,该音频设备可以包括左声道耳机和右声道耳机。
在一种情况下,该组音频设备本身就有左声道设备和右声道设备之分。在另一种情况下,该组音频设备由用户指定(例如在配对时指定)是左声道设备还是右声道设备。该组音频设备包括1个主设备和1个从设备。
在主设备检测到用户的语音指令,按键操作或触摸操作等指示后,或者接收到云端服务器或从设备发送的指令后,主、从设备可以采用图7-图13所示的方法进行同步响应。从而,可以实现立体声同步播放,或者同步暂停,同步增大音量,同步减小音量,同步切换下一首/上一首等播放控制。其中,由于各音频设备之间同时响应的一致性较高,因而立体声播放效果较好,不会让用户感觉到左、右声道的音频不同步,用户听觉体验较好。
在另一种应用场景下,该组电子设备为一组音视频配合的电子设备。该组电子设备可以包括配合使用的视频设备和音频设备。
例如,该组电子设备包括一台电视和一台音箱。电视用于播放视频画面,音箱用于播放声音。该组电子设备包括1个主设备(例如电视)和1个从设备(例如音箱)。在主设备检测到用户的语音指令,按键操作或触摸操作等指示后,或者接收到云端服务器或从设备发送的指令后,主、从设备可以采用图7-图13所示的方法进行同步响应,以实现音视频的同步播放。其中,由于该组音视频设备同时响应的一致性较高,因而视频和音频的同步效果较好,不会让用户感觉到视频画面和声音之间有延迟,用户体验较好。
再例如,参见图14,该组电子设备包括一台电视和两台音箱。电视用于播放视频画面,一台音箱用于播放左声道音频,另一台音箱用于播放右声道音频。该组电子设备包括1个主设备(例如电视)和2个从设备。主、从设备可以采用图7-图13所示的方法进行同步响应,以实现音视频的同步播放。其中,由于该组音视频设备同时响应的一致性较高,因而视频和音频之间的同步效果较好,且立体声播放效果较好,用户体验较好。
再例如,该组电子设备包括一台电视和一台音箱。电视自身带有音箱,电视用于播放视频画面和左声道音频,音箱用于播放右声道音频。该组电子设备包括1个主设备和1个从设备。主、从设备可以采用图7-图13所示的方法进行同步响应,以实现音频和视频的同步播放,以及立体声音频的同步播放。
在另一种应用场景下,该组电子设备为一组视频设备。该组视频设备可以配合使用的左眼图像播放设备以及右眼图像播放设备。在主设备检测到用户的语音指令,按键操作或触摸操作等指示后,或者接收到云端服务器或从设备发送的指令后,主、从设备可以采用图7-图13所示的方法进行同步响应,以实现左、右眼图像的同步播放,以及同步暂停,同步切换视频等播放控制。其中,由于该组视频设备同时响应的一致性较高,因而左、右眼图像的同步效果较好。
在另一种应用场景下,该组电子设备为一组音频和灯光配合的电子设备。该组电子设备可以包括配合使用的音频设备和发光设备。例如,该组电子设备包括一台音箱和至少一个灯泡。该灯泡可以根据音箱播放的声音的响度、音调、音色、音阶或频率等特征的变化,配合发出不同颜色的光线或者以不同的频率进行灯光闪烁,从而展示不同的灯光效果。该组电子设备中的主设备可以为音箱,从设备可以为该至少一个灯泡。在主设备检测到用户的语音指令,按键操作或触摸操作等指示后,或者接收到云端服务器或从设备发送的指令后,主、从设备可以采用图7-图13所示的方法进行同步响应,以实现音乐和灯光的交织和配合。其中,由于同时响应的一致性较高,因而声音和灯光之间的配合较好,用户体验较好。
以上主要是以该组电子设备,接入同一Wi-Fi局域网为例进行说明的。该组电子设备也可以接入其他类型的局域网。
例如,在一些实施例中,该组电子设备可以接入同一Wi-Fi热点。示例性的,参见图15,手机开放了一个Wi-Fi热点,该组电子设备接入了该Wi-Fi热点。例如,该组电子设备可以为接入该Wi-Fi热点的音箱A、音箱B和音箱C。在该场景中,手机的功能类似于上述无线路由器(即网关)的功能,可以在该组电子设备的主、从设备之间转发信息;还可以结合云端服务器,在该组电子设备的主、从设备之间转发信息。本申请实施例不予赘述。该组电子设备的主、从设备之间,可以基于Wi-Fi热点协议,通过手机的转发进行通信,并采用图7-图13所示的方法进行同时响应。
以上主要是以Wi-Fi无线通信技术为例进行说明的,本申请实施例提供的同时响应方法还可以应用于其他无线通信技术。例如,蓝牙,Zigbee,红外等。
例如,以蓝牙无线通信技术为例。该组电子设备可以接入同一蓝牙局域网。示例性的,笔记本电脑支持蓝牙协议(例如蓝牙协议4.0及以上)。笔记本电脑通过Wi-Fi或网线接入互联网。笔记本电脑开启使用蓝牙分享网络的能力。即,笔记本电脑开放 了一个蓝牙局域网。该组电子设备可以通过蓝牙与笔记本电脑连接,并接入该蓝牙局域网。该蓝牙局域网中的主、从设备可以基于蓝牙通信协议,通过图7-图13所示的方法同时响应。示例性的,参见图16,该组电子设备包括电视和音箱。电子设备(例如电视)通过蓝牙与笔记本电脑连接后,可以提示用户是否使用蓝牙局域网进行通信。若电子设备检测到用户指示使用蓝牙局域网的操作,则接入蓝牙局域网。在该场景中,笔记本电脑的功能类似于上述无线路由器(即网关)的功能。
可以理解的是,该局域网也可以是蓝牙热点,Zigbee局域网,Zigbee热点,红外局域网,或红外热点等,此处不予赘述。
本申请实施例还提供了一种电子设备,可以包括:检测单元、执行单元、发送单元或接收单元等。这些单元可以执行上述实施例中的各个步骤,以实现基于折叠屏的交互方法。
本申请实施例还提供了一种电子设备,包括一个或多个处理器;存储器;以及一个或多个计算机程序。一个或多个计算机程序被存储在存储器中,一个或多个计算机程序包括指令。当指令被一个或多个处理器执行时,使得电子设备执行上述实施例中的各个步骤,以实现上述同时响应的方法。
本申请实施例还提供一种计算机存储介质,该计算机存储介质中存储有计算机指令,当该计算机指令在电子设备上运行时,使得电子设备执行上述相关方法步骤实现上述实施例中的同时响应的方法。
本申请实施例还提供一种计算机程序产品,当该计算机程序产品在计算机上运行时,使得计算机执行上述相关步骤,以实现上述实施例中的同时响应的方法。
另外,本申请的实施例还提供一种装置,该装置具体可以是芯片系统。该芯片系统应用于电子设备。该芯片系统包括一个或多个接口电路和一个或多个处理器;该接口电路和处理器通过线路互联;该接口电路用于从电子设备的存储器接收信号,并向处理器发送信号,信号包括存储器中存储的计算机指令;当处理器执行计算机指令时,电子设备执行上述相关步骤,以实现上述实施例中的同时响应的方法。
另外,本申请的实施例还提供一种装置,该装置具体可以是组件或模块,该装置可包括相连的处理器和存储器;其中,存储器用于存储计算机执行指令,当装置运行时,处理器可执行存储器存储的计算机执行指令,以使芯片执行上述各方法实施例中的同时响应的方法。
其中,本申请实施例提供的电子设备、芯片,计算机存储介质、计算机程序产品或芯片均用于执行上文所提供的对应的方法,因此,其所能达到的有益效果可参考上文所提供的对应的方法中的有益效果,此处不再赘述。
通过以上实施方式的描述,所属领域的技术人员可以了解到,为描述的方便和简洁,仅以上述各功能模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能模块完成,即将装置的内部结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。
在本申请所提供的几个实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,模块或单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个 单元或组件可以结合或者可以集成到另一个装置,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是一个物理单元或多个物理单元,即可以位于一个地方,或者也可以分布到多个不同地方。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个可读取存储介质中。基于这样的理解,本申请实施例的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该软件产品存储在一个存储介质中,包括若干指令用以使得一个设备(可以是单片机,芯片等)或处理器(processor)执行本申请各个实施例方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上内容,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求的保护范围为准。

Claims (23)

  1. 一种同时响应的方法,应用于同一局域网中的第一电子设备、第二电子设备和第三电子设备,其特征在于,所述方法包括:
    所述第一电子设备检测到响应指示;
    响应于检测到所述响应指示,所述第一电子设备在经历T-t1时长后,向所述第二电子设备发送第一响应指令,所述第一响应指令用于指示所述第二电子设备执行响应操作;
    所述第一电子设备在经历T-t2时长后,向所述第三电子设备发送第二响应指令,所述第二响应指令用于指示所述第三电子设备执行响应操作;
    所述第一电子设备在经历目标时长T后,执行响应操作;
    其中,所述目标时长T大于或者等于最大传输耗时t;所述最大传输耗时t为第一传输耗时t1和第二传输耗时t2中的最大值;所述第一传输耗时t1为所述第一电子设备与所述第二电子设备之间的数据传输时长;所述第二传输耗时t2为所述第一电子设备与所述第三电子设备之间的数据传输时长;
    所述第二电子设备响应于接收到所述第一响应指令,立即执行响应操作;
    所述第三电子设备响应于接收到所述第二响应指令,立即执行响应操作。
  2. 一种同时响应的方法,应用于同一局域网中的第一电子设备、第二电子设备和第三电子设备,其特征在于,所述方法包括:
    所述第一电子设备向所述第二电子设备发送目标时长T和第一传输耗时t1;
    所述第一电子设备向所述第三电子设备发送所述目标时长T和第二传输耗时t2;
    其中,所述目标时长T大于或者等于最大传输耗时t;所述最大传输耗时t为所述第一传输耗时t1和所述第二传输耗时t2中的最大值;所述第一传输耗时t1为所述第一电子设备与所述第二电子设备之间的数据传输时长;所述第二传输耗时t2为所述第一电子设备与所述第三电子设备之间的数据传输时长;
    所述第二电子设备接收所述第一电子设备发送的所述目标时长T和所述第一传输耗时t1;
    所述第三电子设备接收所述第一电子设备发送的所述目标时长T和所述第二传输耗时t2;
    所述第一电子设备检测到响应指示;
    响应于检测到所述响应指示,所述第一电子设备分别向所述第二电子设备和所述第三电子设备发送响应指令,所述响应指令用于指示执行响应操作;
    所述第一电子设备在经历所述目标时长T后,执行响应操作;
    所述第二电子设备响应于接收到所述响应指令,在经历T-t1时长后,执行响应操作;
    所述第三电子设备响应于接收到所述响应指令,在经历T-t2时长后,执行响应操作。
  3. 一种同时响应的方法,应用于同一局域网中的第一电子设备、第二电子设备和第三电子设备,其特征在于,所述方法包括:
    所述第一电子设备检测到响应指示;
    响应于检测到所述响应指示,所述第一电子设备向所述第二电子设备发送第一响应指令;所述第一响应指令用于指示所述第二电子设备执行响应操作,所述第一响应指令包括目标时长T和第一传输耗时t1;
    所述第一电子设备向所述第三电子设备发送第二响应指令,所述第二响应指令用于指示所述第三电子设备执行响应操作,所述第二响应指令包括所述目标时长T和第二传输耗时t2;
    所述第一电子设备在经历所述目标时长T后,执行响应操作;
    其中,所述目标时长T大于或者等于最大传输耗时t;所述最大传输耗时t为所述第一传输耗时t1和所述第二传输耗时t2中的最大值;所述第一传输耗时t1为所述第一电子设备与第二电子设备之间的数据传输时长;所述第二传输耗时t2为所述第一电子设备与第三电子设备之间的数据传输时长;
    所述第二电子设备响应于接收到所述第一响应指令,在经历T-t1时长后,执行响应操作;
    所述第三电子设备响应于接收到所述第二响应指令,在经历T-t2时长后,执行响应操作。
  4. 根据权利要求1-3任一项所述的方法,其特征在于,在所述第一电子设备向所述第二电子设备和所述第三电子设备发送所述目标时长T,所述目标时长T大于或者等于所述最大传输耗时t之前,所述方法还包括:
    所述第一电子设备测量所述第一传输耗时t1和所述第二传输耗时t2;
    所述第一电子设备根据所述第一传输耗时t1和所述第二传输耗时t2,确定所述最大传输耗时t。
  5. 根据权利要求4所述的方法,其特征在于,所述第一电子设备测量第一传输耗时t1和第二传输耗时t2,包括:
    所述第一电子设备在与所述第二电子设备和所述第三电子设备进行配对后,或者在所述第一电子设备重新接入局域网后,测量所述第一传输耗时t1和所述第二传输耗时t2。
  6. 根据权利要求1-5任一项所述的方法,其特征在于,所述第一电子设备检测到响应指示,包括:
    所述第一电子设备检测到用户的语音唤醒指示;
    或者,所述第一电子设备接收到所述第二电子设备或所述第三电子设备的发送的唤醒指示信息。
  7. 根据权利要求1-6任一项所述的方法,其特征在于,所述第一电子设备、所述第二电子设备和所述第三电子设备为相互配合的一组立体声音频设备;
    或者,为相互配合的一组音视频设备;
    或者,为相互配合的一组音频和灯光设备。
  8. 一种同时响应的方法,应用于同一局域网中的第一电子设备和第二电子设备,其特征在于,所述方法包括:
    所述第一电子设备检测到响应指示;
    响应于检测到所述响应指示,所述第一电子设备向所述第二电子设备发送响应指 令,所述响应指令用于指示所述第二电子设备执行响应操作;
    所述第一电子设备在经历传输耗时t1时长后,执行响应操作;所述传输耗时t1为所述第一电子设备与第二电子设备之间的数据传输时长;
    所述第二电子设备响应于接收到所述响应指令,立即执行响应操作。
  9. 根据权利要求1-8任一项所述的方法,其特征在于,所述局域网为无线保真Wi-Fi无线局域网。
  10. 一种响应方法,应用于第一电子设备,所述第一电子设备和第二电子设备以及第三电子设备属于同一局域网,其特征在于,所述方法包括:
    第一电子设备检测到响应指示;
    响应于检测到所述响应指示,所述第一电子设备在经历T-t1时长后,向所述第二电子设备发送第一响应指令,所述第一响应指令用于指示执行响应操作;
    所述第一电子设备在经历T-t2时长后,向所述第三电子设备发送第二响应指令;
    所述第一电子设备在经历目标时长T后,执行响应操作;
    其中,所述目标时长T大于或者等于最大传输耗时t;所述最大传输耗时t为第一传输耗时t1和第二传输耗时t2中的最大值;所述第一传输耗时t1为所述第一电子设备与所述第二电子设备之间的数据传输时长;所述第二传输耗时t2为所述第一电子设备与所述第三电子设备之间的数据传输时长。
  11. 一种响应方法,应用于第一电子设备,所述第一电子设备和第二电子设备以及第三电子设备属于同一局域网,其特征在于,所述方法包括:
    所述第一电子设备向所述第二电子设备发送目标时长T和第一传输耗时t1;
    所述第一电子设备向所述第三电子设备发送所述目标时长T和第二传输耗时t2;
    其中,所述目标时长T大于或者等于最大传输耗时t;所述最大传输耗时t为所述第一传输耗时t1和所述第二传输耗时t2中的最大值;所述第一传输耗时t1为所述第一电子设备与所述第二电子设备之间的数据传输时长;所述第二传输耗时t2为所述第一电子设备与所述第三电子设备之间的数据传输时长;所述第一电子设备检测到响应指示;
    响应于检测到所述响应指示,所述第一电子设备分别向所述第二电子设备和所述第三电子设备发送响应指令,所述响应指令用于指示执行响应操作;
    所述第一电子设备在经历所述目标时长T后,执行响应操作。
  12. 一种响应方法,应用于第一电子设备,所述第一电子设备和第二电子设备以及第三电子设备属于同一局域网,其特征在于,所述方法包括:
    第一电子设备检测到响应指示;
    响应于检测到所述响应指示,所述第一电子设备向所述第二电子设备发送第一响应指令,所述第一响应指令用于指示执行响应操作;所述第一响应指令包括目标时长T和第一传输耗时t1;
    所述第一电子设备向所述第三电子设备发送第二响应指令,所述第二响应指令用于指示执行响应操作;所述第二响应指令包括所述目标时长T和第二传输耗时t2;
    所述第一电子设备在经历所述目标时长T后,执行响应操作;
    其中,所述目标时长T大于或者等于最大传输耗时t;所述最大传输耗时t为所述 第一传输耗时t1和所述第二传输耗时t2中的最大值;所述第一传输耗时t1为所述第一电子设备与所述第二电子设备之间的数据传输时长;所述第二传输耗时t2为所述第一电子设备与所述第三电子设备之间的数据传输时长。
  13. 根据权利要求10-12任一项所述的方法,其特征在于,在所述第一电子设备向所述第二电子设备和所述第三电子设备发送所述目标时长T,所述目标时长T大于或者等于所述最大传输耗时t之前,所述方法还包括:
    所述第一电子设备测量所述第一传输耗时t1和所述第二传输耗时t2;
    所述第一电子设备根据所述第一传输耗时t1和所述第二传输耗时t2,确定所述最大传输耗时t。
  14. 根据权利要求13所述的方法,其特征在于,所述第一电子设备测量第一传输耗时t1和第二传输耗时t2,包括:
    所述第一电子设备在与所述第二电子设备和所述第三电子设备进行配对后,或者在所述第一电子设备重新接入局域网后,测量所述第一传输耗时t1和所述第二传输耗时t2。
  15. 根据权利要求10-14任一项所述的方法,其特征在于,所述第一电子设备检测到响应指示,包括:
    所述第一电子设备检测到用户的语音唤醒指示;
    或者,所述第一电子设备接收到所述第二电子设备或所述第三电子设备的发送的唤醒指示信息。
  16. 根据权利要求10-15任一项所述的方法,其特征在于,所述第一电子设备、所述第二电子设备和所述第三电子设备为相互配合的一组立体声音频设备;
    或者,为相互配合的一组音视频设备;
    或者,为相互配合的一组音频和灯光设备。
  17. 一种响应方法,应用于第一电子设备,所述第一电子设备和第二电子设备属于同一局域网,其特征在于,所述方法包括:
    所述第一电子设备检测到响应指示;
    响应于检测到所述响应指示,所述第一电子设备向所述第二电子设备发送响应指令,所述响应指令用于指示所述第二电子设备执行响应操作;
    所述第一电子设备在经历传输耗时t1时长后,执行响应操作;所述传输耗时t1为所述第一电子设备与第二电子设备之间的数据传输时长。
  18. 一种响应方法,应用于第二电子设备,所述第二电子设备与第一电子设备属于同一局域网,其特征在于,所述方法包括:
    所述第二电子设备接收所述第一电子设备发送的目标时长T,与所述第一电子设备之间的第一传输耗时t1,以及响应指令;所述响应指令用于指示执行响应操作;所述目标时长T大于或者等于所述第一传输耗时t1;
    所述第二电子设备响应于接收到所述响应指令,在经历T-t1时长后,执行响应操作。
  19. 一种响应方法,应用于第二电子设备,所述第二电子设备与第一电子设备属于同一局域网,其特征在于,所述方法包括:
    所述第二电子设备接收所述第一电子设备发送的第一响应指令,所述第一响应指令用于指示执行响应操作;所述第一响应指令包括目标时长T以及与所述第一电子设备之间的第一传输耗时t1;所述目标时长T大于或者等于所述第一传输耗时t1;
    所述第二电子设备响应于接收到所述第一响应指令,在经历T-t1时长后,执行响应操作。
  20. 一种电子设备,其特征在于,包括:一个或多个处理器;
    以及存储器,所述存储器中存储有代码;
    当所述代码被所述一个或多个处理器执行时,使得所述电子设备执行如权利要求10-19中任一项所述的响应方法。
  21. 一种计算机存储介质,其特征在于,包括计算机指令,当所述计算机指令在电子设备上运行时,使得所述电子设备执行如权利要求10-19中任一项所述的响应方法。
  22. 一种计算机程序产品,其特征在于,当所述计算机程序产品在计算机上运行时,使得所述计算机执行如权利要求10-19中任一项所述的响应方法。
  23. 一种芯片系统,其特征在于,所述芯片系统应用于电子设备;所述芯片系统包括一个或多个接口电路和一个或多个处理器;所述接口电路和所述处理器通过线路互联;所述接口电路用于从所述电子设备的存储器接收信号,并向所述处理器发送所述信号,所述信号包括所述存储器中存储的计算机指令;当所述处理器执行所述计算机指令时,所述电子设备执行如权利要求10-19中任一项所述的响应方法。
PCT/CN2020/103586 2019-07-25 2020-07-22 一种同时响应的方法及设备 WO2021013196A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20843364.9A EP3982652B1 (en) 2019-07-25 2020-07-22 Simultaneous response method and device
US17/626,335 US20220272645A1 (en) 2019-07-25 2020-07-22 Simultaneous Response Method and Device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910678890.4A CN110572799B (zh) 2019-07-25 2019-07-25 一种同时响应的方法及设备
CN201910678890.4 2019-07-25

Publications (1)

Publication Number Publication Date
WO2021013196A1 true WO2021013196A1 (zh) 2021-01-28

Family

ID=68773209

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/103586 WO2021013196A1 (zh) 2019-07-25 2020-07-22 一种同时响应的方法及设备

Country Status (4)

Country Link
US (1) US20220272645A1 (zh)
EP (1) EP3982652B1 (zh)
CN (1) CN110572799B (zh)
WO (1) WO2021013196A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110572799B (zh) * 2019-07-25 2020-12-25 华为技术有限公司 一种同时响应的方法及设备
CN111263206B (zh) * 2020-02-13 2022-06-10 Tcl移动通信科技(宁波)有限公司 多媒体信息的同步播放方法、装置、存储介质及移动终端
CN113784486B (zh) * 2021-08-11 2024-04-12 深圳市智岩科技有限公司 设备控制方法、装置、电子设备及存储介质
CN114465689B (zh) * 2021-12-23 2023-10-03 东莞市李群自动化技术有限公司 通道组的信号指令同步处理方法、系统、设备及存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011075867A1 (en) * 2009-12-23 2011-06-30 Telefonaktiebolaget L M Ericsson (Publ) Base station synchronisation
CN102404280A (zh) * 2010-09-10 2012-04-04 北京飞利信科技股份有限公司 一种在基于串行总线的流媒体传输系统中的主动延时装置
CN104168639A (zh) * 2013-05-16 2014-11-26 北京信威通信技术股份有限公司 一种通信网络中基站时钟同步的方法
CN104751864A (zh) * 2015-03-09 2015-07-01 广东欧珀移动通信有限公司 一种多播放设备的控制方法、相关设备及系统
CN106331120A (zh) * 2016-08-26 2017-01-11 自连电子科技(上海)有限公司 实现不同物联网设备之间协同操作的系统与方法
CN110572799A (zh) * 2019-07-25 2019-12-13 华为技术有限公司 一种同时响应的方法及设备

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030108164A1 (en) * 2001-02-08 2003-06-12 Laurin Jeremy S. Simultaneous, multiple digital presentation content block, channel independent presentation controller
US8190680B2 (en) * 2004-07-01 2012-05-29 Netgear, Inc. Method and system for synchronization of digital media playback
US20080008141A1 (en) * 2006-07-05 2008-01-10 Izoslav Tchigevsky Methods and apparatus for providing a virtualization system for multiple media access control connections of a wireless communication platform
JP2010011274A (ja) * 2008-06-30 2010-01-14 Toshiba Corp 映像音声出力装置及び映像音声出力方法
US9251776B2 (en) * 2009-06-01 2016-02-02 Zya, Inc. System and method creating harmonizing tracks for an audio input
EP2896222A1 (en) * 2012-09-12 2015-07-22 Sony Corporation Audio system, method for sound reproduction, audio signal source device, and sound output device
US9521449B2 (en) * 2012-12-24 2016-12-13 Intel Corporation Techniques for audio synchronization
CN104469218B (zh) * 2014-11-14 2018-07-06 国光电器股份有限公司 具有扩展功能标准接口的挂墙电视超低音音箱系统
CN105049923B (zh) * 2015-08-28 2019-03-01 小米科技有限责任公司 唤醒电子设备的方法及装置
CN107733745A (zh) * 2016-08-10 2018-02-23 上海悟空信息科技有限公司 一种基于wifi协议的音乐同步播放方法及播放系统
US10255032B2 (en) * 2016-12-13 2019-04-09 EVA Automation, Inc. Wireless coordination of audio sources
CN107947889B (zh) * 2017-12-18 2019-07-02 京信通信系统(中国)有限公司 一种时钟频偏校准的方法及设备
CN108962263B (zh) * 2018-06-04 2019-09-20 百度在线网络技术(北京)有限公司 一种智能设备控制方法及系统
CN109041200A (zh) * 2018-07-24 2018-12-18 上海斐讯数据通信技术有限公司 一种多音箱间声音同步的方法及系统
CN109215663A (zh) * 2018-10-11 2019-01-15 北京小米移动软件有限公司 设备唤醒方法及装置
CN117062256B (zh) * 2023-10-08 2023-12-26 荣耀终端有限公司 跨设备业务转移的方法、电子设备和系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011075867A1 (en) * 2009-12-23 2011-06-30 Telefonaktiebolaget L M Ericsson (Publ) Base station synchronisation
CN102404280A (zh) * 2010-09-10 2012-04-04 北京飞利信科技股份有限公司 一种在基于串行总线的流媒体传输系统中的主动延时装置
CN104168639A (zh) * 2013-05-16 2014-11-26 北京信威通信技术股份有限公司 一种通信网络中基站时钟同步的方法
CN104751864A (zh) * 2015-03-09 2015-07-01 广东欧珀移动通信有限公司 一种多播放设备的控制方法、相关设备及系统
CN106331120A (zh) * 2016-08-26 2017-01-11 自连电子科技(上海)有限公司 实现不同物联网设备之间协同操作的系统与方法
CN110572799A (zh) * 2019-07-25 2019-12-13 华为技术有限公司 一种同时响应的方法及设备

Also Published As

Publication number Publication date
CN110572799A (zh) 2019-12-13
EP3982652A4 (en) 2022-07-27
US20220272645A1 (en) 2022-08-25
CN110572799B (zh) 2020-12-25
EP3982652B1 (en) 2023-09-06
EP3982652A1 (en) 2022-04-13

Similar Documents

Publication Publication Date Title
WO2020211733A1 (zh) 一种蓝牙连接方法、设备及系统
CN113228701B (zh) 音频数据的同步方法及设备
EP3975171A1 (en) Voice wakeup method and electronic device
WO2021027616A1 (zh) 一种通过遥控器实现一碰投屏的终端设备、方法以及系统
WO2020107485A1 (zh) 一种蓝牙连接方法及设备
WO2021013196A1 (zh) 一种同时响应的方法及设备
WO2021043219A1 (zh) 一种蓝牙回连方法及相关装置
CN111369988A (zh) 一种语音唤醒方法及电子设备
WO2021017909A1 (zh) 一种通过nfc标签实现功能的方法、电子设备及系统
WO2021185141A1 (zh) Wi-Fi Aware的建链方法、系统、电子设备和存储介质
WO2021023046A1 (zh) 一种电子设备控制方法及一种电子设备
CN113169915A (zh) 无线音频系统、音频通讯方法及设备
CN113039822B (zh) 一种数据信道的建立方法及设备
EP4250075A1 (en) Content sharing method, electronic device, and storage medium
WO2021043250A1 (zh) 一种蓝牙通信方法及相关装置
EP4336356A1 (en) Screen projection method and related apparatus
WO2024055881A1 (zh) 时钟同步方法、电子设备、系统及存储介质
CN115580541B (zh) 信息同步方法及电子设备
WO2022042460A1 (zh) 一种设备的连接方法及电子设备
WO2024001735A1 (zh) 网络连接方法、电子设备及存储介质
WO2023226645A1 (zh) 通信方法、通信系统及电子设备
EP4362507A1 (en) Communication system and communication method
WO2023160524A1 (zh) 测距方法、装置、系统及可读存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20843364

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020843364

Country of ref document: EP

Effective date: 20220104

NENP Non-entry into the national phase

Ref country code: DE