WO2022111492A1 - 一种临时应急医院通风系统及方法 - Google Patents
一种临时应急医院通风系统及方法 Download PDFInfo
- Publication number
- WO2022111492A1 WO2022111492A1 PCT/CN2021/132616 CN2021132616W WO2022111492A1 WO 2022111492 A1 WO2022111492 A1 WO 2022111492A1 CN 2021132616 W CN2021132616 W CN 2021132616W WO 2022111492 A1 WO2022111492 A1 WO 2022111492A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- ventilation system
- air
- range
- main control
- ward area
- Prior art date
Links
- 238000009423 ventilation Methods 0.000 title claims abstract description 99
- 238000000034 method Methods 0.000 title claims abstract description 23
- 230000001681 protective effect Effects 0.000 claims description 12
- 238000004378 air conditioning Methods 0.000 claims description 9
- 210000005069 ears Anatomy 0.000 claims description 7
- 238000010801 machine learning Methods 0.000 claims description 6
- 230000008569 process Effects 0.000 claims description 6
- 238000012545 processing Methods 0.000 claims description 6
- 241000700605 Viruses Species 0.000 abstract description 7
- 230000008859 change Effects 0.000 description 9
- 238000006073 displacement reaction Methods 0.000 description 8
- 238000010586 diagram Methods 0.000 description 7
- 238000002955 isolation Methods 0.000 description 5
- 238000009434 installation Methods 0.000 description 4
- 230000008520 organization Effects 0.000 description 4
- 230000001276 controlling effect Effects 0.000 description 3
- 238000001514 detection method Methods 0.000 description 3
- 238000007789 sealing Methods 0.000 description 3
- 230000009286 beneficial effect Effects 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 208000015181 infectious disease Diseases 0.000 description 2
- 238000012549 training Methods 0.000 description 2
- 208000035473 Communicable disease Diseases 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 238000013528 artificial neural network Methods 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 230000002458 infectious effect Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 230000005180 public health Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F7/00—Ventilation
- F24F7/007—Ventilation with forced flow
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F11/00—Control or safety arrangements
- F24F11/62—Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
- F24F11/63—Electronic processing
- F24F11/64—Electronic processing using pre-stored data
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F11/00—Control or safety arrangements
- F24F11/62—Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
- F24F11/63—Electronic processing
- F24F11/65—Electronic processing for selecting an operating mode
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F11/00—Control or safety arrangements
- F24F11/70—Control systems characterised by their outputs; Constructional details thereof
- F24F11/72—Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F11/00—Control or safety arrangements
- F24F11/89—Arrangement or mounting of control or safety devices
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F13/00—Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
- F24F13/02—Ducting arrangements
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F2120/00—Control inputs relating to users or occupants
- F24F2120/10—Occupancy
- F24F2120/12—Position of occupants
Definitions
- the invention relates to the technical field of air-conditioning ventilation systems, in particular to a temporary emergency hospital ventilation system and method.
- the negative pressure isolation ward usually adopts the airflow organization method of the same side up and down, the air supply port should be set in the upper part of the room, and the exhaust port should be set near the head of the bed.
- the exhaust system is equipped with a high-efficiency air filter.
- the negative pressure structure of the existing isolation ward is a passive protection for medical staff, and the negative pressure system cannot be upgraded to active protection for medical staff.
- the purpose of the present invention is to overcome the problem that the existing infectious disease hospital ventilation system cannot keep the medical staff in the ward in an environment with low virus content, and to provide a temporary emergency hospital ventilation system
- the hospital includes a medical corridor, a ward area and Patient corridor;
- the hospital ventilation system includes a negative pressure ventilation system and a ventilation protection system for medical staff;
- the negative pressure ventilation system is used to sequentially form negative pressure and pressure gradient in the medical corridor, the ward area and the patient corridor;
- the negative pressure ventilation system includes a first air supply pipe connecting the medical corridor and the ward area;
- the medical staff ventilation protection system is arranged in the ward area and communicated with the outlet end of the first air supply pipe, and is used to track and locate the range or coordinates of the position of the human body in the ward area, and guide all The air outlet direction of the first air supply pipe points to the range or coordinates of the position of the human body.
- the medical personnel ventilation protection system includes a hose adjustment device and a corrugated hose; the hose adjustment device is used to drive at least one axial section of the corrugated hose to displace in the radial direction to adjust the air outlet direction.
- the hose adjusting device further comprises a pipe connecting piece and a driving device for driving the pipe connecting piece to displace in the radial direction; the pipe connecting piece is connected with the corrugated hose.
- the ventilation and protection system for medical staff further includes a shutter and a protective air duct, and the protective air duct, the corrugated hose and the blind are connected in sequence.
- the ventilation protection system for medical staff also includes a Doppler radar sensor and a main control unit;
- the Doppler radar sensor is used for sensing and collecting the range or coordinate information of the position of the human body in the ward area;
- the main control unit is electrically connected with the driving device and the Doppler radar sensor, and is used for receiving and processing the range or coordinate information of the Doppler radar sensor, and reporting to the driving device according to the processing result.
- a control command is issued, so that the geometric center axis of the corrugated hose between the pipe connector and the shutter points to the range or coordinates of the position of the human body in the ward area.
- the negative pressure ventilation system includes a medical ventilation system connecting the medical corridor and the ward area and a patient ventilation system connecting the ward area and the patient corridor;
- the medical ventilation system includes a first air exhaust pipe, the first air supply pipe and a first quantitative air valve arranged on the first air supply pipe;
- the patient ventilation system includes a second air supply pipe, a second air exhaust pipe, and a second quantitative air valve provided on the second air exhaust pipe;
- the main control unit is also connected with the first quantitative air valve and the second quantitative air valve for controlling the opening and closing of the valves of the first quantitative air valve and the second quantitative air valve.
- the driving device includes a fixed frame, a driving wheel, a driven wheel, a crank, and a first motor; the first motor drives the driving wheel to rotate; the central axis of the driving wheel and the central axis of the corrugated hose parallel; the driving wheel is synchronously engaged with at least two of the driven wheels; one end of the crank is fixed with the driven wheel and rotates with the driven wheel, and the other end of the crank is connected to the The hinge hole is hinged; the driving wheel, the driven wheel and the first motor are connected with the fixing frame.
- the pipe connector includes a hoop
- the hoop is coaxially sleeved on the corrugated hose.
- connection ears at least two of the connection ears are provided along the circumference of the corrugated hose.
- the protective air duct and the corrugated hose are connected through a first flange; the corrugated hose and the shutter are connected through a second flange; the fixing frame is connected with the first flange connection; the pipe connector is located at one end of the corrugated hose close to the first flange.
- the shutter includes a window and a blade; the inlet end of the window is connected with the second flange, and the blade is arranged in the window; the outlet end of the window is provided with a Doppler A radar sensor; the shutter further includes a blade adjustment device; the blade adjustment device is connected with the blade for adjusting the inclination angle of the blade.
- the hospital ventilation system further includes an air conditioning system; the air conditioning system includes an indoor unit arranged in the ward area and an outdoor unit arranged outside the hospital.
- the beneficial effects of the temporary emergency hospital ventilation system of the invention are: by setting the medical staff ventilation protection system at the outlet end of the first air supply pipe of the negative pressure ventilation system; the medical staff in the ward area and the surrounding air are always affected by the flowing airflow , which can effectively reduce the virus content in the surrounding air, thereby effectively protecting the safety of medical staff in the ward.
- the range or coordinates of the position of the human body in the ward area are collected by the Doppler radar sensor; the geometric center axis of the corrugated hose is adjusted by the hose adjustment device, so that it points to the range or coordinates of the position of the human body in the ward area.
- the present invention also proposes a ventilation method for a temporary emergency hospital, comprising the following steps:
- Establish a negative pressure ventilation system make the medical corridor, the ward area and the patient corridor form negative pressure and pressure gradient in turn; including the first air supply pipe connecting the medical corridor and the ward area;
- the main control unit determines whether there is a human body entering the ward area from the medical corridor, and if so, activates the protection mode, and proceeds to step M4; if not, activates the normal mode and proceeds to step M5;
- the main control unit guides the air outlet direction of the first air supply duct to point to the range or coordinates of the position of the human body in the ward area tracked and located by the Doppler radar sensor;
- the main control unit controls the operation of the negative pressure ventilation system to gradually decrease the pressure in the medical corridor, the ward area and the patient corridor; enter step M6;
- the main control unit controls the operation of the negative pressure ventilation system so that the medical corridor, the ward area and the patient corridor are in a negative pressure state; go to step M6;
- the method for the main control unit to guide the air outlet direction of the first air supply duct to point to the range or coordinates of the position of the human body in the ward area includes the following steps:
- the main control unit uses the machine learning method to calculate and obtain the maximum air volume at the exit end of the blinds pointing to the human body and the corresponding system adjustment when the position of the human body in the ward area is in different ranges or coordinates.
- the main control unit establishes a spatial coordinate system with the geometric center of the exit end of the shutter as the coordinate center, and uses the Doppler radar sensor to sense and collect the different positions of the human body in the ward area.
- the range or coordinates and the air volume and system adjustment angle of the outlet end of the shutter corresponding to the range or coordinates pointing to the human body are used as training samples;
- the system adjustment angle includes the geometric center axis offset angle of the corrugated hose communicated with the shutter and the inclination angle of the blade in the shutter; the Doppler radar sensor is provided at the outlet end of the shutter or in the ward area;
- the main control unit sets the tracking determination time T and the effective range M of the space in the ward corresponding to the maximum air volume directed to the human body at the outlet end of the shutter;
- the main control unit receives and processes the range or coordinates P of the position of the human body in the ward area collected by the Doppler radar sensor in real time;
- step S4 When the range or coordinates P all do not exceed the valid range M, go to step S5; when the range or coordinates P at least partially exceed the valid range M, and the duration is less than the tracking determination time T , enter step S5;
- the main control unit retrieves the data stored in the step S1, and sends a first-level tracking instruction to the blade adjustment device: the blades of the shutter are inclined toward the range or coordinate P; go to step S7;
- the main control unit retrieves the data stored in the step S1, and sends a secondary tracking instruction to the hose adjustment device: make the geometric center axis of the corrugated hose communicated with the shutter point to the range or coordinate P ; Enter step S7;
- the beneficial effect of the ventilation method of the temporary emergency hospital of the present invention is that the medical staff in the ward and the surrounding air are always affected by the flowing airflow, which can effectively reduce the virus content in the surrounding air, thereby effectively protecting the medical staff in the ward.
- Safety Through the cooperation of the main control unit and the Doppler radar sensor, the automatic tracking and positioning of the human body in the ward area is realized; It can effectively clear the stagnant flow area or dead flow area in the ward, and at the same time make the wind direction automatically compensate according to the change of the position of the human body, so as to ensure the maximum air volume and wind speed directed to the position of the human body.
- FIG. 1 is a schematic plan view of the ventilation system of a temporary emergency hospital according to the present invention.
- FIG. 2 is a schematic structural diagram of the front view of the ventilation protection system for medical staff in FIG. 1 .
- FIG. 3 is a schematic cross-sectional structural diagram of plane A-A in FIG. 2 .
- FIG. 4 is a schematic structural diagram of the position change of the hoop in FIG. 3 .
- FIG. 5 is a schematic structural diagram of a further change in the position of the hoop in FIG. 4 .
- FIG. 6 is a schematic three-dimensional structure diagram of the shutter in FIG. 2 .
- FIG. 7 is a schematic structural diagram of the horizontal adjusting device and the horizontal blade in the shutter in FIG. 6 .
- FIG. 8 is a schematic structural diagram of the vertical adjusting device and the vertical blades in the shutter shown in FIG. 6 .
- FIG. 9 is a schematic view of the structure of FIG. 2 where the air outlet direction is changed.
- protection air duct 1 corrugated hose 2, shutter 3, window 3.1, Puller radar sensor 4, main control unit 5, first flange 6, second flange 7, fixing frame 8, active Wheel 9, driven wheel 10, crank 11, first motor 12, hoop 13, connecting ear 14, horizontal turbine 15, vertical worm 16, second motor 17, vertical turbine 18, horizontal worm 19, third motor 20 , hinge hole 21, horizontal blade 22, vertical blade 23,
- the hospital ventilation system includes a negative pressure ventilation system, a medical staff ventilation protection system 34 and an air conditioning system; the air conditioning system includes an indoor unit 36 located in the ward area 25 and an outdoor unit located outside the hospital.
- the air conditioning system adopts an existing conventional system, which is not limited in this embodiment.
- the negative pressure ventilation system of this embodiment can also adopt existing conventional means.
- the temporary emergency hospital in this embodiment is a container-spliced building.
- the negative pressure ventilation system of this embodiment is used to sequentially form negative pressure and pressure gradient in the medical corridor 24, the ward area 25 and the patient corridor 26; the ward area 25 of this embodiment includes a buffer zone 25.1, a ward 25.2 and The toilet 25.3, wherein there may be multiple wards 25.2 and toilets 25.3 respectively.
- the negative pressure ventilation system includes a first air supply duct 27 connecting the medical corridor 24 and the ward area 25; specifically: the negative pressure ventilation system includes a medical ventilation system connecting the medical corridor 24 and the ward area 25, and the ward area 25 and the patient corridor. 26 patient ventilation system.
- the medical ventilation system includes a first air supply pipe 27 , a first air exhaust pipe 28 and a first quantitative air valve 29 provided on the first air supply pipe 27 .
- the inlet end of the first air supply pipe 27 is communicated with the air supply equipment 35 located outside the hospital, and the outlet end of the first air supply pipe 27 is located in the ward area 25, preferably distributed in the ward 25.2 and the buffer zone 25.1, and the outlet is located in the ward area 25. Both ends are connected with a ventilation protection system 34 for medical staff.
- the inlet end of the first exhaust duct 28 is located in the medical corridor 24, and the outlet end of the first exhaust duct 28 is located outside the hospital.
- the patient ventilation system includes a second air supply duct 30 , a second air exhaust duct 31 and a second quantitative air valve 32 provided on the second air exhaust duct 31 .
- the inlet end of the second air supply duct 30 is communicated with an air supply device 35 outside the hospital.
- the air supply device 35 may be the same as or different from the air supply device 35 of the first air supply duct 27 .
- the outlet end is located in the ward area 25 near the patient corridor 26; the inlet end of the second exhaust duct 31 is located in the ward area 25, preferably in the toilet 25.3 and the ward 25.2, and the outlet end of the second exhaust duct 31 is located in the hospital outside.
- the second air supply pipe 30 is also provided with an electric sealing valve 33 .
- the medical staff ventilation protection system 34 is configured to track and locate the range or coordinates of the position of the human body in the ward area 25 , and guide the air outlet direction of the first air supply duct 27 to point to the range or coordinates of the position of the human body.
- the "human body” in this embodiment mainly refers to medical staff.
- the ventilation protection system for medical staff includes a Doppler radar sensor 4 , a hose adjustment device, a main control unit 5 , and a protective air duct 1 , a corrugated hose 2 and a shutter 3 connected in sequence.
- the protective air duct 1 and the corrugated hose 2 are connected through the first flange 6 ; the corrugated hose 2 and the shutter 3 are connected through the second flange 7 .
- the corrugated hose 2 is preferably a circular pipe body.
- the shutter 3 includes a window 3.1 and blades; the inlet end of the window 3.1 is connected to the second flange 7, and the blades are arranged in the window 3.1.
- the Doppler radar sensor 4 is used to sense and collect the range or coordinate information of the position of the human body in the ward area; the Doppler radar sensor 4 can be arranged at the exit end of the shutter 3 or in the ward area. In this embodiment, the Doppler radar sensor 4 is preferably arranged on the outlet end of the window 3.1 of the shutter 3, and a plurality of them are evenly arranged along the outlet end of the shutter 3. As shown in FIG.
- the hose adjusting device is used to drive at least one axial section of the corrugated hose 2 to displace in the radial direction to adjust the air outlet direction;
- the hose adjusting device includes a pipe connecting piece and a driving device for driving the pipe connecting piece to displace in the radial direction;
- the connecting piece is connected with the corrugated hose 2;
- the main control unit 5 is electrically connected with the driving device and the Doppler radar sensor 4, and is used for receiving and processing the range or coordinate information of the Doppler radar sensor 4, and issuing control instructions to the driving device according to the processing result, so that the pipe connector
- the geometric center axis of the corrugated hose 2 between the shutters 3 points to the range or coordinates of the position of the human body in the ward area.
- the main control unit is also connected with the first quantitative air valve, the second quantitative air valve and the electric airtight valve to realize the regulation of negative pressure in the medical corridor, ward area and patient corridor by controlling the opening and closing of the corresponding valves.
- the driving device includes a fixed frame 8, a driving wheel 9, a driven wheel 10, a crank 11 and a first motor 12; the first motor 12 drives the driving wheel 9 to rotate; the central axis of the driving wheel 9 is connected to the The central axis of the corrugated hose 2 is parallel; the driving wheel 9 is synchronously engaged with at least two driven wheels 10; one end of the crank 11 is fixed with the driven wheel 10 and rotates with the driven wheel 10, and the other end of the crank 11 is hinged on the pipe connector.
- the hole 21 is hinged; the driving wheel 9 , the driven wheel 10 and the first motor 12 are connected with the fixing frame 8 .
- the pipe connector includes a hoop 13 or a connecting ear 14; the hoop 13 is coaxially sleeved on the corrugated hose 2; the hoop 13 is provided with at least two hinge holes 21 in the circumferential direction; There are at least two, and the connecting ears 14 are provided with hinge holes 21 .
- the pipe connector can be one of the hoop 13 or the connecting ear 14.
- the pipe connector is the hoop 13 and the connecting ear 14.
- the hoop 13 is coaxially sleeved on the corrugated hose 2 first.
- Two connecting ears 14 are provided along the circumferential direction of the hoop 13 , and the two connecting ears 14 are located at two adjacent quadrant points of the hoop 13 .
- the driving wheel 9 is arranged between the two quadrant points.
- the fixing frame 8 is connected with the first flange 6 ; the pipe connecting piece is located at one end of the corrugated hose 2 close to the first flange 6 .
- the driving wheel 9 rotates under the driving action of the first motor 12, and the two driven wheels 10 meshing with the driving wheel 9 rotate synchronously, thereby driving the cranks 11 on the two driven wheels 10 to rotate.
- the crank 11 in the example is connected with the central axis of the driven wheel 10, so that the crank 11 rotates around the central axis of the driven wheel 10; the two synchronously rotating cranks 11 drive the hoop 13 connected with them to move, and the hoop 13 moves to drive the corrugated hose 2 radial displacement.
- a reduction gear assembly may also be provided between the first motor 12 and the driving wheel 9 .
- the main control unit 5 controls the rotation angle of the first motor 12, which can control the rotation angle of the driving wheel 9, thereby controlling the rotation angle of the crank 11, and then control the displacement of the hoop 13 and the corrugated hose 2, and the change of the displacement Change the path of the air flow in the corrugated hose 2, see Figure 2 and Figure 9, after the air flow path in the corrugated hose 2 is changed, the air flows along the central axis of the corrugated hose 2 after the changed path, and flows from the shutter.
- the outlet end of 3 flows out, so as to realize the adjustment of the air outlet direction.
- This adjustment method does not need to change the position of the shutter 3, so it does not affect the installation sealing performance and installation position of the shutter 3 and the wall, which is very suitable for high requirements on sealing. used in infectious disease hospitals.
- each hose adjusting device independently controls the displacement of the pipe connecting piece of the hose adjusting device, and the displacement amount corresponding to a length of the corrugated hose 2 provided with the pipe connecting piece is also independently regulated.
- the cooperation of multiple hose adjustment devices can make the corrugated hose 2 change direction more smoothly and reduce airflow loss.
- the ventilation protection system for medical staff in this embodiment may further include a compensation hose, one end of the compensation hose is connected with the protection air duct 1, and the other end of the compensation hose is connected with the end of the corrugated hose 2 close to the second flange 7, And at least one hose adjustment device is arranged on the compensation hose for adjusting the air flow direction in the compensation hose.
- the inner diameter of the compensation hose is preferably smaller than the inner diameter of the corrugated hose 2 .
- the hose adjustment device on the compensation hose adjusts its airflow direction to be consistent with the required air outlet direction of the louver 3 outlet.
- the multiple compensating hoses may be evenly arranged along the circumferential direction of the first flange 6 .
- an air volume adjustment valve can also be arranged on the compensation hose to adjust the air volume flowing through the compensation hose or to close the air flow passage of the compensation hose.
- the compensation hose spans the first flange 6 and the hoop 13 .
- the air volume adjustment valve When the air volume adjustment valve is opened, part of the air flow in the protection air duct 1 enters the compensation hose. Since the hose adjustment device on the compensation hose adjusts the partial section of the compensation hose to undergo radial displacement, the air flowing through the compensation hose will be displaced. The direction is changed to the desired outlet direction. And because the compensation hose is connected to the end of the corrugated hose 2 close to the second flange 7, the airflow blown out from the compensation hose quickly passes through the corrugated hose 2 after a short stroke from the shutter in the required air outlet direction. The outlet end of 3 blows out. The airflow blown out from the compensation hose can perform a drainage correction effect on the peripheral airflow in the corrugated hose 2 .
- the adjustment of the air outlet direction of the shutter 3 in this embodiment is not limited to the adjustment of the corrugated hose 2 , but also includes the adjustment of the inclination angle of the blades in the shutter 3 .
- this blade-adjustable method belongs to the prior art, it is used in conjunction with the hose adjustment device to ensure that the air volume and wind speed flowing out from the outlet end of the shutter 3 are maximized.
- the shutter 3 further includes a blade adjustment device; the blade adjustment device is connected with the blade to adjust the inclination angle of the blade.
- the vanes include horizontal vanes 22 and vertical vanes 23 spaced from the inlet end to the outlet end of the window 3.1;
- the vane adjusting device includes a horizontal adjusting device for adjusting the inclination angle of the horizontal vane 22 and a A vertical adjusting device for adjusting the inclination angle of the vertical vanes 23 ; the vane adjusting device is electrically connected to the main control unit 5 .
- the horizontal adjustment device includes a horizontal turbine 15, a vertical worm 16 and a second motor 17; the horizontal turbine 15 is connected with the end of the horizontal blade 22; the vertical worm 16 is engaged with the horizontal turbine 15; the rotating shaft of the second motor 17 is connected with the vertical worm 16 is connected; the rotation of the second motor 17 drives the vertical worm 16 to rotate, and the rotation of the vertical worm 16 drives the horizontal turbine 15 to rotate, thereby driving the horizontal blades 22 to rotate.
- the vertical adjustment device includes a vertical turbine 18, a horizontal worm 19 and a third motor 20; the vertical turbine 18 is connected with the end of the vertical blade 23; the horizontal worm 19 meshes with the vertical turbine 18; the rotation shaft of the third motor 20 Connect with the horizontal worm 19.
- the rotation of the third motor 20 drives the horizontal worm 19 to rotate, and the rotation of the horizontal worm 19 drives the vertical turbine 18 to rotate, thereby driving the vertical blades 23 to rotate.
- the rotation speed and rotation angle of the first motor 12 , the second motor 17 and the third motor 20 are uniformly controlled by the main control unit 5 , so that the displacement direction and displacement of the corrugated hose 2 are the same as the horizontal blades 22 .
- the airflow direction changes.
- a ventilation method for a temporary emergency hospital of the present invention comprises the following steps:
- Establish a negative pressure ventilation system make the medical corridor, ward area and patient corridor form negative pressure and pressure gradient in turn; include the first air supply pipe connecting the medical corridor and the ward area; that is, install the medical ventilation system and the patient ventilation system , the specific pipeline connection method can adopt the existing conventional method.
- Establish a ventilation protection system for medical staff install Doppler radar sensor, hose adjustment device, main control unit, and connected protective air ducts, corrugated hoses and shutters in sequence; connect the inlet end of the protective air duct to the first air supply The outlet end of the pipe is connected; in this embodiment, at least two ventilation protection systems for medical staff are arranged in the ward area, preferably between the ward and the buffer room in the ward area, and this area is the main area for medical staff in the ward area. activity area.
- the main control unit judges whether there is a human body entering the ward area from the medical corridor. If so, start the protection mode and go to step M4; if not, start the normal mode and go to step M5; Through induction, when a medical staff enters the ward area from the medical corridor, the Doppler radar sensor senses the signal change and feeds the change signal back to the main control unit. The main control unit calculates and processes to determine that someone has entered. Of course, other judgment methods can also be used, for example, a sensor that is electrically connected to the main control unit is provided on the only way to enter the ward area in the medical corridor.
- the main control unit guides the air outlet direction of the first air supply duct to point to the range or coordinates of the position of the human body in the ward area tracked and located by the Doppler radar sensor;
- the main control unit controls the work of the negative pressure ventilation system to make the pressure in the medical corridor, ward area and patient corridor decrease step by step; the pressure decrease is mainly controlled by the main control unit to open the first quantitative air valve and the second quantitative air valve
- the closing degree is achieved, for example, the opening degree of the first quantitative air valve is smaller than the opening degree of the second quantitative air valve; go to step M6.
- the main control unit controls the work of the negative pressure ventilation system so that the medical corridor, ward area and patient corridor are in a negative pressure state; the negative pressure state is mainly controlled by the main control unit to open the first quantitative air valve and the second quantitative air valve.
- the closed state is realized, for example, the first quantitative air valve is closed, and the second quantitative air valve is opened; then go to step M6.
- the method for the main control unit to guide the air outlet direction of the first air supply pipe to point to the range or coordinates of the position of the human body in the ward area includes the following steps:
- the main control unit uses the machine learning method to calculate the maximum air volume and the corresponding system adjustment angle at the exit end of the blinds pointing to the human body when the position of the human body in the ward area is in different ranges or coordinates, and stores the data. ;
- the main control unit uses the machine learning method as follows: the main control unit establishes a spatial coordinate system with the geometric center of the exit end of the shutter as the coordinate center, and uses the Doppler radar sensor to sense and collect the different ranges of the position of the human body in the ward area. Or coordinates and the air volume and system adjustment angle of the shutter outlet corresponding to the range or coordinates pointing to the human body as training samples; the machine learning method adopts existing technologies, such as regression algorithm, BP neural network, etc. This process adopts existing mature technology, This embodiment is not specifically limited.
- the system adjustment angle includes the geometric center axis offset angle of the corrugated hose communicating with the shutter and the inclination angle of the blades in the shutter.
- the main control unit sets the tracking judgment time T and the effective range M of the space in the ward corresponding to the maximum air volume at the exit end of the blinds pointing to the human body; the tracking judgment time T can be manually set and adjusted; for example, it is considered that the tracking judgment is set
- the time T is 5 seconds.
- the effective range M can also be set manually, for example, the human body is in a certain coordinate position in the ward area, the exit end of the shutter points to the coordinate position where the human body is located, the coordinate position and a certain range around the coordinate position (the coordinate is in a certain range). Within the certain range), the airflow blown from the outlet end of the shutter can be detected, and the area where the detected wind speed is greater than V1 within the certain range is selected as the effective range M in this embodiment. In this embodiment, V1 is preferably 0.25m/s, of course, it can be other values.
- the effective range M can also be completed by the main control unit using machine learning methods in the initial program processing. Of course, it is necessary to use the wind speed detection device installed in the ward area, and the placement position of the wind speed detection device is integrated into the main control unit to establish a spatial coordinate system with the geometric center of the shutter exit end as the coordinate center.
- the main control unit receives and processes in real time the range or coordinates P of the position of the human body in the ward area sensed and collected by the Doppler radar sensor; that is, during the movement of the medical staff in the ward area, the Doppler radar sensor collects real-time information on the location of the human body in the ward area.
- the range or coordinate P of the location in the ward the main control unit receives and processes the data corresponding to the range or coordinate P in real time.
- step S4 when the range or coordinates P all do not exceed the effective range M, enter step S5; that is, the range or coordinates P of the medical staff walking in the ward are in the direction of the airflow blown out from the exit end of the shutter and the range of wind speed and air volume that meets the requirements (effective range).
- M go to step S5; due to the detection error of the Doppler radar sensor, it may not be possible to accurately locate the coordinates of the human body in the ward area, so it is preferable that the position of the human body in the ward area obtained by the Doppler radar sensor is a appropriate range.
- step S5 When the range or coordinate P at least partially exceeds the effective range M, and the duration is less than the tracking determination time T, go to step S5; that is, although the range or coordinate P of the medical staff in the ward may be in the direction of the airflow blown from the exit end of the blinds and meet the Outside the required range of wind speed and air volume, but if the duration is short, for example, when the tracking determination time T in this embodiment is 5 seconds, and the time when the medical staff is outside the effective range M is 3 seconds, it is still only necessary to enter step S5 .
- step S6 is entered; that is, the range or coordinate P of the medical staff walking in the ward may be in the direction of the airflow blown from the outlet end of the blinds and meet the If the required wind speed and air volume are outside the range, and the duration is relatively long, for example, the duration is 6 seconds, it is necessary to proceed to step S6.
- the main control unit retrieves the data stored in step S1, and sends a first-level tracking instruction to the blade adjusting device: to incline the blades of the shutter toward the range or coordinate P direction.
- the issuance of the first-level tracking instruction needs to be determined according to the movement range and stay time of the human body in the ward. Since the premise of the main control unit issuing the first-level tracking command is that the range or coordinates P of the human body in the ward are within the effective range M, or even if it is outside the effective range M but the duration is less than the tracking determination time T, it means that the human body is still in the effective range M.
- the direction of the airflow blown out from the outlet end of the louver is within the required range of wind speed and air volume, so it is only necessary to adjust the blade angle. Go to step S7.
- the main control unit retrieves the data stored in step S1, and sends a secondary tracking instruction to the hose adjustment device: make the geometric center axis of the corrugated hose connected to the shutter point to the range or coordinate P where the human body is located in the ward.
- the ventilation protection system for medical staff also includes a compensation hose
- the hose adjustment device on the compensation hose simultaneously receives the secondary tracking command sent by the main control unit, so that the geometric center axis of the compensation hose also points to the human body in the ward area.
- the range or coordinate P at the location.
- the issuance of the secondary tracking instruction needs to be determined according to the movement range and stay time of the human body in the ward. Go to step S7.
- step S7 Realize the automatic positioning and tracking of the human body in the ward area, and ensure that the airflow with the maximum air volume and wind speed is continuously delivered to the position of the human body.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Signal Processing (AREA)
- Physics & Mathematics (AREA)
- Fuzzy Systems (AREA)
- Mathematical Physics (AREA)
- Ventilation (AREA)
Abstract
一种临时应急医院通风系统及方法,包括负压通风系统和医护人员通风保护系统;负压通风系统包括连通医护走廊(24)和病房区(25)的第一送风管(27);医护人员通风保护系统设置在病房区(25)内并与第一送风管(27)的出口端连通,用于追踪和定位病房区(25)内人体所处位置的范围或坐标,并引导第一送风管(27)的出风方向指向该人体所处位置的范围或坐标。通过在负压通风系统的第一送风管(27)出口端设置医护人员通风保护系统,使处于病房区(25)内的医护人员及其周围空气始终受到流动气流影响,可有效降低其周围空气中的病毒含量,从而有效保护病房内医护人员的安全。
Description
本发明涉及空调通风系统技术领域,具体地指一种临时应急医院通风系统及方法。
面对突发重大公共卫生事件,临时应急医院要求快速建成收治病人。特别是传染性强的新冠病毒等突发疫情,临时应急医院就成为生命的希望,医护人员和病患一起争分夺秒与疫情搏斗,为病患提供的负压隔离病房就成为主战场,而负压隔离病房的空调系统是重中之重。由于临时应急医院建设周期短,包括负压隔离病房在内的临时应急医院,为了提高施工效率,通常采用的集装箱拼接式建筑。
而负压隔离病房通常采用同侧上送下排的气流组织方式,送风口应设置在房间上部,排风口应设置在病床床头附近。排风系统设置高效空气过滤器。在实际工程中,集装箱拼接式建筑的漏风点很多,无法真正实现设计的气流组织,只能重点确保区域间的压差控制病房部分气流组织。另外,现有的隔离病房的负压结构对医护人员而言是一种被动保护,无法将负压系统提升为对医护人员的主动保护。
国内专家学者研究认为,当含SARS的病毒空气被稀释到10000倍以上时,就不再具有传染性。因此,合理的气流组织是对医护人员最大的保护,如何让医护人员呆在病毒含量低的区域工作成为迫切解决的问题。
发明内容
本发明的目的在于克服现有传染病医院通风系统无法使病房内的医护人员始终处于病毒含量低的环境中的问题,提供一种临时应急医院通风系 统,所述医院包括医护走廊、病房区和病患走廊;所述医院通风系统包括负压通风系统、医护人员通风保护系统;
所述负压通风系统用于使医护走廊、病房区和病患走廊依次形成负压和压力梯度;所述负压通风系统包括连通所述医护走廊和所述病房区的第一送风管;
所述医护人员通风保护系统设置在所述病房区内并与所述第一送风管的出口端连通,用于追踪和定位所述病房区内人体所处位置的范围或坐标,并引导所述第一送风管的出风方向指向该人体所处位置的范围或坐标。
进一步,所述医护人员通风保护系统包括软管调节装置和波纹软管;所述软管调节装置用于驱动所述波纹软管的至少一个轴向段在径向上位移以调节出风方向。
进一步,所述软管调节装置还包括管连接件及驱动所述管连接件在径向上位移的驱动装置;所述管连接件与所述波纹软管连接。
进一步,所述医护人员通风保护系统还包括百叶窗和保护风管,所述保护风管、所述波纹软管和所述百叶窗依次连通。
进一步,所述医护人员通风保护系统还包括多普勒雷达传感器和主控单元;
所述多普勒雷达传感器用于感应收集人体在病房区内所处位置的范围或坐标信息;
所述主控单元与所述驱动装置和所述多普勒雷达传感器电连接,用于接收和处理所述多普勒雷达传感器的所述范围或坐标信息,并根据处理结果向所述驱动装置发出控制指令,使所述管连接件至所述百叶窗之间的所述波纹软管的几何中心轴指向所述人体在病房区内所处位置的范围或坐标。
进一步,所述负压通风系统包括连通所述医护走廊和所述病房区的医护通风系统和连通所述病房区和所述病患走廊的病患通风系统;
所述医护通风系统包括第一排风管、所述第一送风管和设于所述第一送风管上的第一定量风阀;
所述病患通风系统包括第二送风管、第二排风管和设于所述第二排风管上的第二定量风阀;
所述主控单元还与所述第一定量风阀、所述第二定量风阀连接用于控制所述第一定量风阀和第二定量风阀的阀门开闭。
进一步,所述驱动装置包括固定架、主动轮、从动轮、曲柄和第一电机;所述第一电机驱动所述主动轮转动;所述主动轮的中心轴与所述波纹软管的中心轴平行;所述主动轮同步啮合有至少两个所述从动轮;所述曲柄一端与所述从动轮固定并跟随所述从动轮转动,所述曲柄另一端与设置在所述管连接件上的铰接孔铰接;所述主动轮、从动轮和第一电机与所述固定架连接。
进一步,所述管连接件包括抱箍;
所述抱箍同轴套设在所述波纹软管上。
进一步,所述管连接件包括连接耳;所述连接耳沿所述波纹软管周向设置有至少两个。
进一步,所述保护风管与所述波纹软管通过第一法兰盘连接;所述波纹软管与所述百叶窗通过第二法兰盘连接;所述固定架与所述第一法兰盘连接;所述管连接件位于所述波纹软管靠近所述第一法兰盘的一端。
进一步,所述百叶窗包括窗体和叶片;所述窗体的入口端与所述第二法兰盘连接,所述叶片设于所述窗体内;所述窗体的出口端设有多普勒雷达传感器;所述百叶窗还包括叶片调节装置;所述叶片调节装置与所述叶片连接用于调节所述叶片的倾斜角度。
进一步,所述医院通风系统还包括空调系统;所述空调系统包括设于所述病房区内的室内机和设于所述医院外的室外机。
本发明临时应急医院通风系统的有益效果是:通过在负压通风系统的第一送风管出口端设置医护人员通风保护系统;使处于病房区内的医护人员及其周围空气始终受到流动气流影响,可有效降低其周围空气中的病毒含量,从而有效保护病房内医护人员的安全。通过多普勒雷达传感器感应收集人体在病房区内所处位置的范围或坐标;通过软管调节装置调节波纹软管的几何中心轴,使其指向人体在病房区内所处位置的范围或坐标,从而使出风方向自动追踪指向病房区内人员,并且百叶窗与墙体的安装面无需设置额外的活动空间,保证百叶窗安装密封性的同时,最大化的保证病房区内人体所处位置的风量和风速,并可有效清除病房区内的滞流区或死流区。
本发明还提出一种临时应急医院的通风方法,包括以下步骤:
M1、建立负压通风系统:使医护走廊、病房区和病患走廊依次形成负压和压力梯度;包括连通所述医护走廊和所述病房区的第一送风管;
M2、建立医护人员通风保护系统:安装多普勒雷达传感器、软管调节装置、主控单元及依次连通的保护风管、波纹软管和百叶窗;将所述保护风管的入口端与所述第一送风管的出口端连通;
M3、所述主控单元判断是否有人体由所述医护走廊进入所述病房区,若有,则启动保护模式,进入步骤M4;若无,则启动正常模式,进入步骤M5;
M4、所述主控单元引导所述第一送风管的出风方向指向所述多普勒雷达传感器追踪和定位的所述病房区内人体所处位置的范围或坐标;
所述主控单元控制所述负压通风系统工作使所述医护走廊、病房区和病患走廊内的压力逐级递减;进入步骤M6;
M5、所述主控单元控制所述负压通风系统工作使所述医护走廊、病房区和病患走廊内为负压状态;进入步骤M6;
M6、重复步骤M3。
进一步,所述步骤M4中,所述主控单元引导所述第一送风管的出风方向指向所述病房区内人体所处位置的范围或坐标的方法包括以下步骤:
S1、初始程序处理:所述主控单元利用机器学习方法,计算得出人体在所述病房区内所处位置在不同的范围或坐标时百叶窗出口端保持指向人体的最大风量及对应的系统调节角度,存储数据;具体为:所述主控单元建立以百叶窗出口端几何中心为坐标中心的空间坐标系,并以所述多普勒雷达传感器感应收集的人体在病房区内所处位置的不同范围或坐标及与该范围或坐标对应的百叶窗出口端指向人体的风量和系统调节角度作为训练样本;
所述系统调节角度包括与百叶窗连通的波纹软管的几何中心轴偏移角度和百叶窗内叶片的倾斜角度;所述百叶窗出口端或所述病房区内设置有所述多普勒雷达传感器;
S2、所述主控单元设置追踪判定时间T及所述百叶窗出口端保持指向人体的最大风量时对应的病房区内空间的有效范围M;
S3、所述主控单元实时接收和处理多普勒雷达传感器感应收集的人体在病房区内所处位置的范围或坐标P;
S4、当所述范围或坐标P全部未超出所述有效范围M时,进入步骤S5;当所述范围或坐标P至少部分超出所述有效范围M,且持续时间小于所述追踪判定时间T时,进入步骤S5;
当所述范围或坐标P至少部分超出所述有效范围M,且持续时间大于等于所述追踪判定时间T时,进入步骤S6;
S5、所述主控单元调取所述步骤S 1存储的数据,向叶片调节装置发出一级追踪指令:使百叶窗的叶片朝所述范围或坐标P倾斜;进入步骤S7;
S6、所述主控单元调取所述步骤S 1存储的数据,向软管调节装置发出二级追踪指令:使与所述百叶窗连通的波纹软管的几何中心轴指向所述范围或坐标P;进入步骤S7;
S7、重复步骤S3。
本发明临时应急医院的通风方法的有益效果是:使处于病房区内的医护人员及其周围空气始终受到流动气流影响,可有效降低其周围空气中的病毒含量,从而有效保护病房内医护人员的安全。通过主控单元和多普勒雷达传感器的配合,实现对病房区内人体的自动追踪定位;主控单元根据病房区内人员所处位置的范围或坐标的不同发出相应的一级追踪指令和二级追踪指令,有效清除病房区内滞流区或死流区的同时,使出风方向根据人体所处位置的改变而自动补偿,保证指向人体所处位置的风量和风速最大化。
图1为本发明临时应急医院通风系统的平面结构示意图。
图2为图1中医护人员通风保护系统的主视结构示意图。
图3为图2中A-A面的剖视结构示意图。
图4为图3中抱箍位置变化的结构示意图。
图5为图4中抱箍位置进一步变化的结构示意图。
图6为图2中百叶窗的立体结构示意图。
图7为图6中百叶窗内水平调节装置和水平叶片的结构示意图。
图8为图6中百叶窗内竖直调节装置和竖直叶片的结构示意图。
图9为图2中出风方向改变的结构示意图。
图中:保护风管1、波纹软管2、百叶窗3、窗体3.1、普勒雷达传感器4、主控单元5、第一法兰盘6、第二法兰盘7、固定架8、主动轮9、从动轮10、曲柄11、第一电机12、抱箍13、连接耳14、水平涡轮15、竖直蜗杆16、第二电机17、竖直涡轮18、水平蜗杆19、第三电机20、铰接孔21、水平叶片22、竖直叶片23、
医护走廊24、病房区25、缓冲区25.1、病房25.2、卫生间25.3、病患走廊26、第一送风管27、第一排风管28、第一定量风阀29、第二送风管30、 第二排风管31、第二定量风阀32、电动密闭阀33、医护人员通风保护系统34、送风设备35、室内机36。
以下结合附图和具体实施例对本发明作进一步的详细描述。
如图1~9所示的临时应急医院通风系统,其中,医院包括医护走廊24、病房区25和病患走廊26;病房区25位于医护走廊24和病患走廊26之间,且病房区25可以有多个。医院通风系统包括负压通风系统、医护人员通风保护系统34和空调系统;空调系统包括设于所述病房区25内的室内机36和设于所述医院外的室外机。空调系统采用现有常规系统,本实施例不进行限定。本实施例的负压通风系统也可采用现有常规手段。本实施例的临时应急医院为集装箱拼接式建筑。
本实施例的负压通风系统用于使医护走廊24、病房区25和病患走廊26依次形成负压和压力梯度;本实施例的病房区25包括压力依次递减的缓冲区25.1、病房25.2和卫生间25.3,其中,病房25.2和卫生间25.3可以分别有多个。负压通风系统包括连通医护走廊24和病房区25的第一送风管27;具体为:负压通风系统包括连通医护走廊24和病房区25的医护通风系统和连通病房区25和病患走廊26的病患通风系统。
其中,医护通风系统包括第一送风管27、第一排风管28和设于第一送风管27上的第一定量风阀29。第一送风管27的入口端与位于医院外的送风设备35连通,第一送风管27的出口端位于病房区25内,优选为分布于病房25.2内和缓冲区25.1内,且出口端均连通有医护人员通风保护系统34。第一排风管28的入口端位于医护走廊24内,第一排风管28的出口端位于医院外。
病患通风系统包括第二送风管30、第二排风管31和设于第二排风管31上的第二定量风阀32。第二送风管30的入口端与医院外的送风设备35连通, 该送风设备35可以与第一送风管27的送风设备35相同,也可不同,第二送风管30的出口端位于靠近病患走廊26的病房区25内;第二排风管31的入口端位于病房区25内,优选为位于卫生间25.3和病房25.2内,第二排风管31的出口端位于医院外。第二送风管30上还设有电动密闭阀33。
医护人员通风保护系统34设置用于追踪和定位病房区25内人体所处位置的范围或坐标,并引导第一送风管27的出风方向指向该人体所处位置的范围或坐标。本实施例中的“人体”主要指医护人员。
医护人员通风保护系统包括多普勒雷达传感器4、软管调节装置、主控单元5及依次连通的保护风管1、波纹软管2和百叶窗3。
本实施例的保护风管1与波纹软管2通过第一法兰盘6连接;波纹软管2与百叶窗3通过第二法兰盘7连接。波纹软管2优选为圆形管体。百叶窗3包括窗体3.1和叶片;窗体3.1的入口端与第二法兰盘7连接,叶片设于窗体3.1内。
多普勒雷达传感器4用于感应收集人体在病房区内所处位置的范围或坐标信息;多普勒雷达传感器4可以设置在百叶窗3的出口端,也可以设置在病房区内。本实施例中多普勒雷达传感器4优选为设置在百叶窗3的窗体3.1的出口端上,且沿百叶窗3的出口端均匀设置有多个。
软管调节装置,用于驱动波纹软管2的至少一个轴向段在径向上位移以调节出风方向;软管调节装置包括管连接件及驱动管连接件在径向上位移的驱动装置;管连接件与波纹软管2连接;
主控单元5,与驱动装置和多普勒雷达传感器4电连接,用于接收和处理多普勒雷达传感器4的范围或坐标信息,并根据处理结果向驱动装置发出控制指令,使管连接件至百叶窗3之间的波纹软管2的几何中心轴指向人体在病房区内所处位置的范围或坐标。
主控单元还与第一定量风阀、第二定量风阀、电动密闭阀连接通过控制相应阀的开闭以实现医护走廊、病房区和病患走廊内负压的调控。
参见图3、图4、图5,驱动装置包括固定架8、主动轮9、从动轮10、曲柄11和第一电机12;第一电机12驱动主动轮9转动;主动轮9的中心轴与波纹软管2的中心轴平行;主动轮9同步啮合有至少两个从动轮10;曲柄11一端与从动轮10固定并跟随从动轮10转动,曲柄11另一端与设置在管连接件上的铰接孔21铰接;主动轮9、从动轮10和第一电机12与固定架8连接。
管连接件包括抱箍13或连接耳14;抱箍13同轴套设在波纹软管2上;抱箍13沿周向设有至少两个铰接孔21;连接耳14沿波纹软管2周向设置有至少两个,连接耳14上设置有铰接孔21。实际中,管连接件可以是抱箍13或连接耳14之一,本实施例中,管连接件为抱箍13和连接耳14,抱箍13先同轴套着在波纹软管2上,连接耳14沿抱箍13周向设置有两个,两个连接耳14处于抱箍13相邻的两个象限点位置。主动轮9设于该两个象限点之间。固定架8与第一法兰盘6连接;管连接件位于波纹软管2靠近第一法兰盘6的一端。
参见图4、图5,主动轮9在第一电机12的驱动作用下转动,与主动轮9啮合的两个从动轮10同步转动,从而带动两个从动轮10上的曲柄11转动,本实施例中的曲柄11与从动轮10的中心轴连接,从而曲柄11绕从动轮10中心轴转动;两个同步转动的曲柄11带动与其共同连接的抱箍13移动,抱箍13移动带动波纹软管2径向位移。当然,第一电机12与主动轮9之间还可以设置有减速齿轮组件。主控单元5控制第一电机12的转动角度,即可控制主动轮9的转动角度,从而控制曲柄11的转动角度,继而控制抱箍13及波纹软管2的位移量,而位移量的改变使波纹软管2内气流流通的路径改变,参见图2和图9,波纹软管2内流通气流路径改变后,气流沿着改变路 径后的波纹软管2的中心轴方向流动,并从百叶窗3的出口端流出,从而实现出风方向的调节,这种调节方式不需要改变百叶窗3的位置,因此不影响百叶窗3与墙体的安装密封性和安装位置,非常适用于对密封性要求高的传染病医院使用。
本实施例中的软管调节装置可以有多个,多个软管调节装置的管连接件沿波纹软管2的长度方向间距设置。每个软管调节装置的驱动装置独立的控制该软管调节装置的管连接件的位移量,设置有该管连接件的波纹软管2的对应一段长度的位移量也被独立调控。多个软管调节装置相配合可使波纹软管2变向更平顺,降低气流损失。
本实施例的医护人员通风保护系统还可以包括补偿软管,补偿软管的一端与保护风管1连通,补偿软管的另一端与波纹软管2靠近第二法兰盘7的一端连通,并且在补偿软管上设置有至少一个软管调节装置以用于调节补偿软管内气流流通方向。补偿软管的内径优选小于波纹软管2的内径。
为了保证最终百叶窗3的出口端的出风方向一致,并降低气流损失,补偿软管上的软管调节装置调节其气流方向与所需的百叶窗3的出口端的出风方向一致。
补偿软管可以有多个,多个补偿软管沿第一法兰盘6的周向均匀设置。
另外,补偿软管上还可设置风量调节阀门,以调节流经补偿软管的风量大小或关闭补偿软管的气流流通通道。以图2为例,补偿软管跨越第一法兰盘6和抱箍13。
当风量调节阀门开启时,保护风管1内的部分气流进入补偿软管,由于补偿软管上的软管调节装置调节补偿软管的局部段发生径向位移,使流经补偿软管的气流方向改变为所需的出风方向。而由于补偿软管与波纹软管2靠近第二法兰盘7的一端连通,因此从补偿软管吹出的气流在流经波纹软管2 较短行程后迅速以所需的出风方向从百叶窗3的出口端吹出。从补偿软管吹出的气流可对波纹软管2内的周边气流起到引流校正作用。
本实施例的百叶窗3出风方向的调节不局限于对波纹软管2的调节,还包括对百叶窗3内叶片倾斜角度的调节。当然,这种叶片可调节的方式虽然属于现有技术,但其与软管调节装置相配合使用,可保证百叶窗3出口端流出的风量和风速最大化。
具体为,百叶窗3还包括叶片调节装置;叶片调节装置与叶片连接用于调节叶片的倾斜角度。参见图7、图8,叶片包括由窗体3.1入口端至出口端间隔设置的水平叶片22和竖直叶片23;叶片调节装置包括用于调节水平叶片22的倾斜角度的水平调节装置和用于调节竖直叶片23的倾斜角度的竖直调节装置;叶片调节装置与主控单元5电连接。
水平调节装置包括水平涡轮15、竖直蜗杆16和第二电机17;水平涡轮15与水平叶片22端部连接;竖直蜗杆16与水平涡轮15啮合;第二电机17的转动轴与竖直蜗杆16连接;第二电机17转动带动竖直蜗杆16转动,竖直蜗杆16转动带动水平涡轮15转动,从而带动水平叶片22转动。
竖直调节装置包括竖直涡轮18、水平蜗杆19和第三电机20;竖直涡轮18与竖直叶片23的端部连接;水平蜗杆19与竖直涡轮18啮合;第三电机20的转动轴与水平蜗杆19连接。第三电机20转动带动水平蜗杆19转动,水平蜗杆19转动带动竖直涡轮18转动,从而带动竖直叶片23转动。
本实施例中第一电机12、第二电机17和第三电机20的转动速度和转动角度,均由主控单元5统一调配控制,使波纹软管2的位移方向和位移量与水平叶片22和竖直叶片23的倾斜角度相适应,使气流流经波纹软管2时,气流方向改变,气流流经水平叶片22和竖直叶片23时,保持气流方向不变的同时风量最大。
本发明一种临时应急医院的通风方法,包括以下步骤:
M1、建立负压通风系统:使医护走廊、病房区和病患走廊依次形成负压和压力梯度;包括连通医护走廊和病房区的第一送风管;即安装医护通风系统和病患通风系统,具体的管线连接方式采用现有常规方法即可。
M2、建立医护人员通风保护系统:安装多普勒雷达传感器、软管调节装置、主控单元及依次连通的保护风管、波纹软管和百叶窗;将保护风管的入口端与第一送风管的出口端连通;本实施例中的病房区内设置至少两个医护人员通风保护系统,优选为设置在病房区内的病房与缓冲间之间,该区域为医护人员在病房区内的主要活动区域。
M3、主控单元判断是否有人体由医护走廊进入病房区,若有,则启动保护模式,进入步骤M4;若无,则启动正常模式,进入步骤M5;该判断方法主要由多普勒雷达传感器通过感应实现,当有医护人员从医护走廊进入病房区时,多普勒雷达传感器感应到信号变化并将变化信号反馈至主控单元,主控单元计算处理判断有人进入。当然,也可以采用其他判断方式,比如,在医护走廊进入病房区的必经之路设置与主控单元电连接的传感器。
M4、主控单元引导第一送风管的出风方向指向多普勒雷达传感器追踪和定位的病房区内人体所处位置的范围或坐标;
主控单元控制负压通风系统工作使医护走廊、病房区和病患走廊内的压力逐级递减;压力逐级递减主要通过主控单元控制第一定量风阀、第二定量风阀的开闭程度实现,比如第一定量风阀的开启程度小于第二定量风阀的开启程度;进入步骤M6。
M5、主控单元控制负压通风系统工作使医护走廊、病房区和病患走廊内为负压状态;负压状态主要通过主控单元控制第一定量风阀和第二定量风阀的开闭状态实现,比如,第一定量风阀闭合,第二定量风阀开启;进入步骤M6。
M6、重复步骤M3。
所述步骤M4中,所述主控单元引导所述第一送风管的出风方向指向所述病房区内人体所处位置的范围或坐标的方法包括以下步骤:
S1、初始程序处理:主控单元利用机器学习方法,计算得出人体在病房区内所处位置在不同的范围或坐标时百叶窗出口端保持指向人体的最大风量及对应的系统调节角度,存储数据;
其中,主控单元利用机器学习方法为:主控单元建立以百叶窗出口端几何中心为坐标中心的空间坐标系,并以多普勒雷达传感器感应收集的人体在病房区内所处位置的不同范围或坐标及与该范围或坐标对应的百叶窗出口端指向人体的风量和系统调节角度作为训练样本;机器学习方法采用现有技术,比如回归算法,BP神经网络等,此过程采用现有成熟技术,本实施例不进行具体限定。
系统调节角度包括与百叶窗连通的波纹软管的几何中心轴偏移角度和百叶窗内叶片的倾斜角度。
S2、主控单元设置追踪判定时间T及百叶窗出口端保持指向人体的最大风量时对应的病房区内空间的有效范围M;追踪判定时间T可人为设定和调节;比如,认为设定追踪判定时间T为5秒。
有效范围M也可由人工设定,比如,人体处于病房区内的某一坐标位置,百叶窗出口端指向人体所处的该坐标位置,该坐标位置及该坐标位置周围的一定范围内(该坐标处于该一定范围以内)均可检测到百叶窗出口端吹出的气流,选取该一定范围内检测到的风速大于V1的区域作为本实施例中的有效范围M。本实施例中V1优选为0.25m/s,当然,其可以是其他值。有效范围M也可在初始程序处理中由主控单元利用机器学习方法完成。当然,需要借助设置在病房区内的风速检测装置,风速检测装置的安放位置融合至主控单元建立以百叶窗出口端几何中心为坐标中心的空间坐标系中。
S3、主控单元实时接收和处理多普勒雷达传感器感应收集的人体在病房区内所处位置的范围或坐标P;即病房区内医护人员走动过程中,多普勒雷达传感器实时收集人体在病房区内所处位置的范围或坐标P,主控单元实时接收和处理该范围或坐标P对应的数据。
S4、当范围或坐标P全部未超出有效范围M时,进入步骤S5;即病房区内医护人员走动的范围或坐标P处于百叶窗出口端吹出的气流方向及符合要求的风速和风量范围(有效范围M)内,进入步骤S5;由于多普勒雷达传感器的检测误差,可能无法精准定位到病房区内人体的坐标,因此优选为多普勒雷达传感器获取的人体在病房区内所处位置为一个适当的范围。
当范围或坐标P至少部分超出有效范围M,且持续时间小于追踪判定时间T时,进入步骤S5;即病房区内医护人员走动的范围或坐标P虽然可能处于百叶窗出口端吹出的气流方向及符合要求的风速和风量范围以外,但若持续时间较短,比如,本实施例的追踪判定时间T为5秒时,医护人员处于有效范围M以外的时间为3秒,则依然只需进入步骤S5。
当范围或坐标P至少部分超出有效范围M,且持续时间大于等于追踪判定时间T时,进入步骤S6;即病房区内医护人员走动的范围或坐标P可能处于百叶窗出口端吹出的气流方向及符合要求的风速和风量范围以外,且持续时间较长,比如持续时间为6秒,则需要进入步骤S6。
S5、主控单元调取步骤S1存储的数据,向叶片调节装置发出一级追踪指令:使百叶窗的叶片朝范围或坐标P方向倾斜。一级追踪指令的发出需要根据病房区内人体移动范围和停留时间而定。由于主控单元发出一级追踪指令的前提是病房区内人体走动的范围或坐标P处于有效范围M内,或即使处于有效范围M外但持续时间小于追踪判定时间T,意味着该人体依然处于百叶窗出口端吹出的气流方向及符合要求的风速和风量范围内,因此只需要调节叶片角度即可。进入步骤S7。
S6、主控单元调取步骤S1存储的数据,向软管调节装置发出二级追踪指令:使与百叶窗连通的波纹软管的几何中心轴指向病房区内人体所处的范围或坐标P。当医护人员通风保护系统还包括补偿软管时,补偿软管上的软管调节装置同步接收到主控单元发出的二级追踪指令,使补偿软管的几何中心轴也指向病房区内人体所处的范围或坐标P。二级追踪指令的发出需要根据病房区内人体移动范围和停留时间而定。进入步骤S7。
S7、重复步骤S3。实现对病房区内人体的自动定位和追踪,保证持续向人体所在方位输送最大风量和风速的气流。
以上仅是本发明的优选实施方式,本发明的保护范围并不仅局限于上述实施例,凡属于本发明思路下的技术方案均属于本发明的保护范围。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理前提下的若干改进和润饰,同样也应视为本发明的保护范围。
Claims (14)
- 一种临时应急医院通风系统,所述医院包括医护走廊、病房区和病患走廊;其特征在于:所述医院通风系统包括负压通风系统、医护人员通风保护系统;所述负压通风系统用于使医护走廊、病房区和病患走廊依次形成负压和压力梯度;所述负压通风系统包括连通所述医护走廊和所述病房区的第一送风管;所述医护人员通风保护系统设置在所述病房区内并与所述第一送风管的出口端连通,用于追踪和定位所述病房区内人体所处位置的范围或坐标,并引导所述第一送风管的出风方向指向该人体所处位置的范围或坐标。
- 根据权利要求1所述的一种临时应急医院通风系统,其特征在于:所述医护人员通风保护系统包括软管调节装置和波纹软管;所述软管调节装置用于驱动所述波纹软管的至少一个轴向段在径向上位移以调节出风方向。
- 根据权利要求2所述的一种临时应急医院通风系统,其特征在于:所述软管调节装置还包括管连接件及驱动所述管连接件在径向上位移的驱动装置;所述管连接件与所述波纹软管连接。
- 根据权利要求3所述的一种临时应急医院通风系统,其特征在于:所述医护人员通风保护系统还包括百叶窗和保护风管,所述保护风管、所述波纹软管和所述百叶窗依次连通。
- 根据权利要求4所述的一种临时应急医院通风系统,其特征在于:所述医护人员通风保护系统还包括多普勒雷达传感器和主控单元;所述多普勒雷达传感器用于感应收集人体在病房区内所处位置的范围或坐标信息;所述主控单元与所述驱动装置和所述多普勒雷达传感器电连接,用于接收和处理所述多普勒雷达传感器的所述范围或坐标信息,并根据处理结果向 所述驱动装置发出控制指令,使所述管连接件至所述百叶窗之间的所述波纹软管的几何中心轴指向所述人体在病房区内所处位置的范围或坐标。
- 根据权利要求5所述的一种临时应急医院通风系统,其特征在于:所述负压通风系统包括连通所述医护走廊和所述病房区的医护通风系统和连通所述病房区和所述病患走廊的病患通风系统;所述医护通风系统包括第一排风管、所述第一送风管和设于所述第一送风管上的第一定量风阀;所述病患通风系统包括第二送风管、第二排风管和设于所述第二排风管上的第二定量风阀;所述主控单元还与所述第一定量风阀、所述第二定量风阀连接用于控制所述第一定量风阀和第二定量风阀的阀门开闭。
- 根据权利要求3所述的一种临时应急医院通风系统,其特征在于:所述驱动装置包括固定架、主动轮、从动轮、曲柄和第一电机;所述第一电机驱动所述主动轮转动;所述主动轮的中心轴与所述波纹软管的中心轴平行;所述主动轮同步啮合有至少两个所述从动轮;所述曲柄一端与所述从动轮固定并跟随所述从动轮转动,所述曲柄另一端与设置在所述管连接件上的铰接孔铰接;所述主动轮、从动轮和第一电机与所述固定架连接。
- 根据权利要求3所述的一种临时应急医院通风系统,其特征在于:所述管连接件包括抱箍;所述抱箍同轴套设在所述波纹软管上。
- 根据权利要求3所述的一种临时应急医院通风系统,其特征在于:所述管连接件包括连接耳;所述连接耳沿所述波纹软管周向设置有至少两个。
- 根据权利要求4所述的一种临时应急医院通风系统,其特征在于:所述保护风管与所述波纹软管通过第一法兰盘连接;所述波纹软管与所述百叶窗通过第二法兰盘连接;所述管连接件位于所述波纹软管靠近所述第一法兰盘的一端。
- 根据权利要求10所述的一种临时应急医院通风系统,其特征在于:所述百叶窗包括窗体和叶片;所述窗体的入口端与所述第二法兰盘连接,所述叶片设于所述窗体内;所述百叶窗还包括叶片调节装置;所述叶片调节装置与所述叶片连接用于调节所述叶片的倾斜角度。
- 根据权利要求1所述的一种临时应急医院通风系统,其特征在于:所述医院通风系统还包括空调系统;所述空调系统包括设于所述病房区内的室内机和设于所述医院外的室外机。
- 一种临时应急医院的通风方法,其特征在于:包括以下步骤:M1、建立负压通风系统:使医护走廊、病房区和病患走廊依次形成负压和压力梯度;包括连通所述医护走廊和所述病房区的第一送风管;M2、建立医护人员通风保护系统:安装多普勒雷达传感器、软管调节装置、主控单元及依次连通的保护风管、波纹软管和百叶窗;将所述保护风管的入口端与所述第一送风管的出口端连通;M3、所述主控单元判断是否有人体由所述医护走廊进入所述病房区,若有,则启动保护模式,进入步骤M4;若无,则启动正常模式,进入步骤M5;M4、所述主控单元引导所述第一送风管的出风方向指向所述多普勒雷达传感器追踪和定位的所述病房区内人体所处位置的范围或坐标;所述主控单元控制所述负压通风系统工作使所述医护走廊、病房区和病患走廊内的压力逐级递减;进入步骤M6;M5、所述主控单元控制所述负压通风系统工作使所述医护走廊、病房区和病患走廊内为负压状态;进入步骤M6;M6、重复步骤M3。
- 根据权利要求13所述的一种临时应急医院的通风方法,其特征在于:所述步骤M4中,所述主控单元引导所述第一送风管的出风方向指向所述病房区内人体所处位置的范围或坐标的方法包括以下步骤:S1、初始程序处理:所述主控单元利用机器学习方法,计算得出人体在所述病房区内所处位置在不同的范围或坐标时百叶窗出口端保持指向人体的最大风量及对应的系统调节角度,存储数据;S2、所述主控单元设置追踪判定时间T及所述百叶窗出口端保持指向人体的最大风量时对应的病房区内空间的有效范围M;S3、所述主控单元实时接收和处理多普勒雷达传感器感应收集的人体在病房区内所处位置的范围或坐标P;S4、当所述范围或坐标P全部未超出所述有效范围M时,进入步骤S5;当所述范围或坐标P至少部分超出所述有效范围M,且持续时间小于所述追踪判定时间T时,进入步骤S5;当所述范围或坐标P至少部分超出所述有效范围M,且持续时间大于等于所述追踪判定时间T时,进入步骤S6;S5、所述主控单元调取所述步骤S1存储的数据,向叶片调节装置发出一级追踪指令:使百叶窗的叶片朝所述范围或坐标P倾斜;进入步骤S7;S6、所述主控单元调取所述步骤S1存储的数据,向软管调节装置发出二级追踪指令:使与所述百叶窗连通的波纹软管的几何中心轴指向所述范围或坐标P;进入步骤S7;S7、重复步骤S3。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011364975.4 | 2020-11-27 | ||
CN202011364975.4A CN112484201B (zh) | 2020-11-27 | 2020-11-27 | 一种临时应急医院通风系统及方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022111492A1 true WO2022111492A1 (zh) | 2022-06-02 |
Family
ID=74937131
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2021/132616 WO2022111492A1 (zh) | 2020-11-27 | 2021-11-24 | 一种临时应急医院通风系统及方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN112484201B (zh) |
WO (1) | WO2022111492A1 (zh) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112484201B (zh) * | 2020-11-27 | 2022-05-10 | 中建三局第一建设工程有限责任公司 | 一种临时应急医院通风系统及方法 |
CN113158593B (zh) * | 2021-04-13 | 2023-02-07 | 中南建筑设计院股份有限公司 | 一种基于人工智能的医院病房通风系统智能设计方法 |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5761908A (en) * | 1994-06-10 | 1998-06-09 | Air Quality Engineering | Apparatus suited for ventilating rooms contaminated with infectious disease organisms |
CN1884776A (zh) * | 2006-06-22 | 2006-12-27 | 中国建筑科学研究院空气调节研究所 | 动态隔离式传染病隔离病房 |
CN103308907A (zh) * | 2012-03-07 | 2013-09-18 | 珠海格力电器股份有限公司 | 人体位置的识别方法及装置和空调器 |
CN209910090U (zh) * | 2019-04-10 | 2020-01-07 | 浙江宝工智能科技有限公司 | 一种工业冷气机的摆头装置 |
CN111271789A (zh) * | 2020-03-20 | 2020-06-12 | 海润新风(重庆)智能技术有限公司 | 平疫结合使用的负压病房以及通风控制方法 |
CN111425023A (zh) * | 2020-04-17 | 2020-07-17 | 深圳市罗湖区人民医院 | 普通病房与负压隔离病房转换系统 |
CN211822887U (zh) * | 2020-03-20 | 2020-10-30 | 海润新风(重庆)智能技术有限公司 | 一种平疫结合使用的负压病房 |
CN211953020U (zh) * | 2020-03-31 | 2020-11-17 | 重庆海润绿色科技集团有限公司 | 平疫双用的移动应急隔离方舱通风空调控制系统 |
CN112484286A (zh) * | 2020-11-27 | 2021-03-12 | 中建三局第一建设工程有限责任公司 | 一种百叶窗出风方向自动调节系统及方法 |
CN112484201A (zh) * | 2020-11-27 | 2021-03-12 | 中建三局第一建设工程有限责任公司 | 一种临时应急医院通风系统及方法 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4421347B2 (ja) * | 2004-03-29 | 2010-02-24 | 高砂熱学工業株式会社 | 置換換気システム |
CN211953053U (zh) * | 2020-03-31 | 2020-11-17 | 重庆海润绿色科技集团有限公司 | 用于负压病房单元的安全健康舒适空气环境营造系统 |
CN111425985A (zh) * | 2020-04-15 | 2020-07-17 | 中信建筑设计研究总院有限公司 | 一种临时应急医院通用空调、通风模块结构及用法和应用 |
CN111578495A (zh) * | 2020-04-25 | 2020-08-25 | 国泰瑞安股份有限公司 | 一种中央空调出风控制系统 |
-
2020
- 2020-11-27 CN CN202011364975.4A patent/CN112484201B/zh active Active
-
2021
- 2021-11-24 WO PCT/CN2021/132616 patent/WO2022111492A1/zh active Application Filing
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5761908A (en) * | 1994-06-10 | 1998-06-09 | Air Quality Engineering | Apparatus suited for ventilating rooms contaminated with infectious disease organisms |
CN1884776A (zh) * | 2006-06-22 | 2006-12-27 | 中国建筑科学研究院空气调节研究所 | 动态隔离式传染病隔离病房 |
CN103308907A (zh) * | 2012-03-07 | 2013-09-18 | 珠海格力电器股份有限公司 | 人体位置的识别方法及装置和空调器 |
CN209910090U (zh) * | 2019-04-10 | 2020-01-07 | 浙江宝工智能科技有限公司 | 一种工业冷气机的摆头装置 |
CN111271789A (zh) * | 2020-03-20 | 2020-06-12 | 海润新风(重庆)智能技术有限公司 | 平疫结合使用的负压病房以及通风控制方法 |
CN211822887U (zh) * | 2020-03-20 | 2020-10-30 | 海润新风(重庆)智能技术有限公司 | 一种平疫结合使用的负压病房 |
CN211953020U (zh) * | 2020-03-31 | 2020-11-17 | 重庆海润绿色科技集团有限公司 | 平疫双用的移动应急隔离方舱通风空调控制系统 |
CN111425023A (zh) * | 2020-04-17 | 2020-07-17 | 深圳市罗湖区人民医院 | 普通病房与负压隔离病房转换系统 |
CN112484286A (zh) * | 2020-11-27 | 2021-03-12 | 中建三局第一建设工程有限责任公司 | 一种百叶窗出风方向自动调节系统及方法 |
CN112484201A (zh) * | 2020-11-27 | 2021-03-12 | 中建三局第一建设工程有限责任公司 | 一种临时应急医院通风系统及方法 |
Also Published As
Publication number | Publication date |
---|---|
CN112484201A (zh) | 2021-03-12 |
CN112484201B (zh) | 2022-05-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2022111492A1 (zh) | 一种临时应急医院通风系统及方法 | |
CN102494390B (zh) | 智能空气调节系统、送风装置及智能空气调节方法 | |
CN106196505B (zh) | 一种新风机组的智能控制方法及应用该方法的新风机组 | |
CN108019901A (zh) | 一种定向调节空调 | |
US20210172779A1 (en) | Systems and methods for control of an air duct | |
CN112113302A (zh) | 一种生物安全隔离环境的动态控制方法及设备 | |
CN111720941B (zh) | 一种绿色建筑用室内通风调节系统 | |
CN112484286A (zh) | 一种百叶窗出风方向自动调节系统及方法 | |
CN111076335B (zh) | 负压隔离病房新风系统及其调试方法 | |
CN115823729A (zh) | 一种空调自吸式调节装置及控制方法 | |
CN114110868A (zh) | 一种智能物联负压病房通风管理系统 | |
CN203286697U (zh) | 浴室自动控制通风换气装置 | |
CN207407498U (zh) | 中央空调垂直出风角度调节器 | |
CN212006155U (zh) | 空调系统 | |
CN212957826U (zh) | 一种具有压力转换功能的隔离装置 | |
CN208059203U (zh) | 一种智能新风系统 | |
CN207299296U (zh) | 一种侧墙壁挂式新风机 | |
CN106091216A (zh) | 一种噪声水平达到nc35的环保节能送风系统及其控制方法 | |
CN207395091U (zh) | 一种民用太阳能通风器 | |
CN219346704U (zh) | 一种用于老人看护的室内空气更换装置 | |
CN111457538A (zh) | 一种供热建筑内的暖气通风装置及其使用方法 | |
CN219437722U (zh) | 一种农业组培用恒温大棚风冷装置 | |
CN219550748U (zh) | 一种绿色建筑设计节能通风结构 | |
CN212777763U (zh) | 一种绿色建筑的通风节能设备 | |
CN209415687U (zh) | 一种室内外空气交换机 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21896993 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21896993 Country of ref document: EP Kind code of ref document: A1 |