WO2022111312A1 - 一种光源模组及包括该光源模组的照明装置 - Google Patents

一种光源模组及包括该光源模组的照明装置 Download PDF

Info

Publication number
WO2022111312A1
WO2022111312A1 PCT/CN2021/130390 CN2021130390W WO2022111312A1 WO 2022111312 A1 WO2022111312 A1 WO 2022111312A1 CN 2021130390 W CN2021130390 W CN 2021130390W WO 2022111312 A1 WO2022111312 A1 WO 2022111312A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
source module
light source
region
peak
Prior art date
Application number
PCT/CN2021/130390
Other languages
English (en)
French (fr)
Inventor
范晓鸣
周志贤
Original Assignee
欧普照明股份有限公司
苏州欧普照明有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 欧普照明股份有限公司, 苏州欧普照明有限公司 filed Critical 欧普照明股份有限公司
Priority to EP21896813.9A priority Critical patent/EP4235824A4/en
Publication of WO2022111312A1 publication Critical patent/WO2022111312A1/zh
Priority to US18/202,259 priority patent/US20230296213A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S6/00Lighting devices intended to be free-standing
    • F21S6/002Table lamps, e.g. for ambient lighting
    • F21S6/003Table lamps, e.g. for ambient lighting for task lighting, e.g. for reading or desk work, e.g. angle poise lamps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • H01L33/502Wavelength conversion materials
    • H01L33/504Elements with two or more wavelength conversion materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/508Wavelength conversion elements having a non-uniform spatial arrangement or non-uniform concentration, e.g. patterned wavelength conversion layer, wavelength conversion layer with a concentration gradient of the wavelength conversion material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2113/00Combination of light sources
    • F21Y2113/10Combination of light sources of different colours
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]

Definitions

  • the utility model relates to a light source module and a lighting device comprising the light source module.
  • the means of preventing myopia is relatively simple, that is, outdoor activities. Outdoors (activity) for about 2 hours a day has been proven to be effective in preventing myopia. However, due to the heavy schoolwork load for teenagers, it is not feasible to engage in long-term outdoor activities.
  • red illumination may prevent or delay the onset of myopia by preventing axial elongation caused by form deprivation or hyperopic defocus by creating a signal associated with myopic defocus.
  • this wavelength of red light can increase the content of dopamine in the retina and inhibit the increase of the eye axis caused by myopia.
  • red light promotes choroidal blood circulation and improves blood supply to the retina and sclera.
  • 3 months of repeated low-intensity red light therapy showed no retinal damage and stopped myopia progression in school-aged children.
  • the purpose of the present invention is to solve the above problems, and to find a light source module and a lighting device including the light source module which can relieve visual fatigue, prevent myopia and delay the development of myopia.
  • the technical solution adopted by the present utility model is to provide a light source module, which is characterized in that it includes:
  • the blue light generating part emits the first color light with the peak wavelength at 430-470 nm in the blue light region;
  • the cyan light generating part emits the second color light with a peak wavelength of 470-510 nm in the cyan region;
  • the yellow-green light generating part emits the third color light with a peak wavelength of 510-600 nm in the yellow-green light region;
  • the red light generating part emits a fourth color light with a peak wavelength of 600-780 nm in the red light region
  • the red light generating part includes a first additional light-emitting body and a second additional light-emitting body
  • the first additional light-emitting body is arranged as receiving part of the light emitted by the blue light generating part and converting it into light with a peak wavelength of 630-690 nm to form a main emission peak in the red light region
  • the second additional light-emitting body is arranged to receive the blue light and generate light Part of the light emitted by the light source is converted into light with a peak wavelength of 610-640 nm to form a secondary emission peak in the red light region, and the spectral intensity of the secondary emission peak is 30.0-30. 80.0%,
  • the first color light, the second color light, the third color light and the fourth color light are mixed to form the emission light of the light source module.
  • the half width of the main emission peak is not greater than 30.0 nm.
  • the blue light generating part emits a first color light with a peak wavelength of 440-460 nm in the blue light region; the cyan light generating part emits a second color light with a peak wavelength of 480-500 nm in the cyan light region.
  • the spectral radiant energy within 630-690 nm of the light emitted by the red light generating part accounts for 15.0-15.0 ⁇ 50.0%.
  • the spectral radiant energy of the light emitted by the blue light generating part in the blue light region of 430-470nm accounts for 15.0% of the total radiant energy in the visible light region of the emitted light of the light source module, that is, in the range of 380nm-780nm. ⁇ 50.0%.
  • the ratio of the spectral radiant energy of the light emitted by the cyan light generating part in the cyan light region of 470 to 510 nm to the total radiant energy of the visible light region of the emitted light of the light source module that is, in the range of 380 nm to 780 nm 10.0 to 30.0%.
  • the ratio of the spectral radiant energy of the light emitted by the cyan light generating part in the cyan light region of 470 to 510 nm to the total radiant energy of the visible light region of the emitted light of the light source module that is, in the range of 380 nm to 780 nm 10.0 to 20.0%.
  • the light emitted by the blue light generating part forms a first peak within 430-470 nm of the blue light region, and the spectral intensity of the first peak is 20.0-100.0% of the spectral intensity of the main emission peak.
  • the spectral intensity of the first peak is 30.0-80.0% of the spectral intensity of the main emission peak.
  • the light emitted by the cyan light generating part forms a second peak within 470-510 nm of the cyan light region, and the spectral intensity of the second peak is 25.0-100.0% of the spectral intensity of the main emission peak.
  • the spectral intensity of the second peak is 35.0-80.0% of the spectral intensity of the main emission peak.
  • the blue light generating part is a blue LED with an emission peak wavelength of 430-470 nm; the first additional light-emitting body is a red phosphor with a peak wavelength of 630-690 nm, and the second additional light-emitting body is a peak wave Red phosphors at 610-640nm.
  • the first additional light-emitting body is a narrow-band phosphor with a half width less than or equal to 30.0 nm.
  • the cyan light generating portion is a cyan LED or cyan phosphor with a peak wavelength of 470-510 nm; the yellow-green light generating portion is a yellow phosphor and/or green phosphor with a peak wavelength of 510-600 nm.
  • the yellow-green light generating part includes at least one green phosphor with a peak wavelength of 510-545 nm, and at least one yellow phosphor with a peak wavelength of 510-545 nm.
  • the utility model also provides a lighting device, which includes the above-mentioned light source module.
  • the light source module provided by the utility model specially optimizes the spectral distribution for the special requirements of preventing myopia, and adds narrow-band red light fluorescent powder to change the energy distribution in a specific area of the red light area.
  • Working, living and studying in the light environment provided by the light source module of the present application and the lighting device including the light source module can relieve visual fatigue, thereby preventing the occurrence of myopia and delaying the progression of myopia.
  • FIG. 1 is a schematic structural diagram of a light source module according to a preferred embodiment of the present invention.
  • Fig. 3 is the emission light spectrum diagram of preferred embodiment 1 in the present utility model
  • Fig. 4 is the emission light spectrum diagram of preferred embodiment 2 in the present utility model
  • Fig. 5 is the emission light spectrum diagram of preferred embodiment 3 in the present utility model
  • Fig. 6 is the emission light spectrum diagram of preferred embodiment 4 in the present utility model
  • Fig. 7 is the emission light spectrogram of preferred embodiment 5 in the present utility model
  • Fig. 8 is the emission light spectrum diagram of preferred embodiment 6 in the present utility model
  • Fig. 9 is the emission light spectrum diagram of preferred embodiment 7 in the present utility model.
  • FIG. 10 is a schematic structural diagram of a lighting device according to a preferred embodiment of the present invention.
  • red light LEDs on the market generate white light by mixing RGB light. Green and red phosphors are excited by a blue light chip, and then red, green, and blue are mixed to form white light. Primate studies have found that long-wavelength red illumination may prevent or delay the onset of myopia by preventing axial elongation caused by form deprivation or hyperopic defocus by creating a signal associated with myopic defocus. In a study of long-wavelength red light, it was found that this wavelength of red light can increase the content of dopamine in the retina and inhibit the increase of the eye axis caused by myopia. At the same time, red light promotes choroidal blood circulation and improves blood supply to the retina and sclera.
  • the present application considers increasing the energy of the light source module L1 in the 630-690 nm band, that is, adding a red phosphor with a peak wavelength of 630-690 nm in addition to the conventional red phosphor.
  • some studies have shown that adolescents are most sensitive to the energy in the 415-465nm blue light band, and should try to avoid them being exposed to high blue light for a long time (especially at night), because long-term high blue energy light exposure may cause their retinal epithelial cells. death, detrimental to visual health.
  • the light source module L1 of the present application also adds a cyan light generating part to replace part of the blue light energy with the energy of the cyan light region, thereby reducing the proportion of blue light in the outgoing light, and achieving a better effect of protecting eyesight.
  • a specific embodiment of the light source module L1 of the present application is a mixed light white LED package chip. As shown in FIG. 1 , it can be an LED chip with a general SMD packaging structure or a COB packaging structure.
  • the light source module L1 at least includes A blue light generating part 1 and an encapsulating part 2 covering the blue light generating part 1 .
  • the blue light generating part 1 is a blue LED chip, which is directly excited by the semiconductor material to emit light.
  • the peak wavelength of the light emission is located in the blue light region of 430-470 nm, preferably 440-460 nm, and the light color is blue.
  • the light is first color light.
  • LED chip including front-mounted or flip-chip, a single LED Chip or multiple LED Chips are connected together in series, parallel or series-parallel.
  • the blue light generating portion 1 is covered by the encapsulating portion 2, and the encapsulating portion 2 is also covered with a cyan light generating portion 201, which emits second color light with a peak wavelength of 470-510 nm in the cyan region, preferably 480-500 nm; the yellow-green light generating portion 202 , emits a third color light with a peak wavelength of 510-600 nm in the yellow-green light region; the red light generating part 203 emits a fourth color light with a peak wavelength of 600-780 nm in the red light region.
  • a cyan light generating portion 201 which emits second color light with a peak wavelength of 470-510 nm in the cyan region, preferably 480-500 nm
  • the yellow-green light generating portion 202 emits a third color light with a peak wavelength of 510-600 nm in the yellow-green light region
  • the red light generating part 203 emits a fourth color light with a peak
  • the cyan light generating portion 201 , the yellow-green light generating portion 202 , and the red light generating portion 203 are all phosphors, which receive part of the light emitted by the blue light generating portion 1 and convert them into light of corresponding colors.
  • the cyan light generating part 201 may also be a cyan LED with a peak wavelength in the cyan region of 470-510 nm.
  • the encapsulation part 2 includes a base material 204, which may be transparent silica gel or transparent resin, wherein the transparent resin may be one of epoxy resin and urea resin.
  • the base material 204 is doped with cyan phosphors with a peak wavelength of 470 to 510 nm in the cyan light region as the cyan light generating portion 201 , and yellow and/or green phosphors with a peak wavelength of 510 to 600 nm in the yellow-green light region as the yellow-green light generating portion 202 .
  • the red phosphor in the red light region of 600-780 nm is used as the red light generating part 203 , which is uniformly mixed and then covers the blue light generating part 1 .
  • the blue light region in this application is 430-470nm, and the blue light region It is 470-510nm, the yellow-green light region is 510-600nm, and the red light region is 600-780nm.
  • the above-mentioned cyan phosphor, yellow phosphor, green phosphor, and red phosphor can all be one kind of phosphor or a mixture of several phosphors, as long as the peak wavelength of the emitted light is within the light color range expressed by us. It is considered to be the so-called phosphor of this color.
  • the cyan light generating portion 201 is made of a single phosphor material
  • the yellow-green light generating portion 202 includes two kinds of phosphors, at least one green phosphor with a peak wavelength of 510-545 nm and at least one It is a mixture of yellow phosphors with a peak wavelength of 510-545nm. Adding two phosphors with different peak wavelengths is mainly to provide better color rendering.
  • the first color light, the second color light, the third color light and the fourth color light emitted by the blue light generating part 1, the cyan light generating part 201, the yellow-green light generating part 202 and the red light generating part 203 are mixed to form the emitted light of the light source module L1 .
  • the light source module L1 is mainly used as an illumination light source, so the synthesized emitted light is white light with a color temperature of 3000K to 6000K.
  • the red light generating part 203 adopts two kinds of phosphors, and the red light generating part 203 includes a first additional light-emitting body and a second additional light-emitting body, and the first additional light-emitting body is arranged to receive the blue light generating part 1 Part of the emitted light is converted into light with a peak wavelength of 630-690 nm to form a main emission peak in the red light region, and the second additional light-emitting body is arranged to receive part of the light emitted by the blue light generating part 1, and convert It is converted into light with a peak wavelength of 610-640 nm to form a secondary emission peak in the red region.
  • the first additional light-emitting body and the second additional light-emitting body are both red phosphors, and the difference lies in that the light-emitting peak wavelengths of the two are different.
  • the second additional luminous body is a red phosphor with a peak wave of 610-640 nm, which functions the same as the red phosphor in a conventional white LED, and mainly balances the light color.
  • the first additional luminous body is a red phosphor with a peak wavelength of 630-690 nm, which increases the energy in the 630-690 nm range.
  • the first additional illuminant is preferably a narrow-band red phosphor, that is, the half width of the phosphor is not greater than 30.0 nm. Since the main emission peak is formed by the first additional illuminant, the emission spectrum of the light source module L1 The half width of the main emission peak is not more than 30.0 nm. At the same time, in order to ensure the energy in the range of 630-690 nm, the spectral intensity of the secondary emission peak is required to be 30.0-80.0% of the spectral intensity of the main emission peak.
  • the spectral radiation energy of the light emitted by the red light generating part 203 in the red light region 600-780 nm is in the visible light region of the light emitted by the light source module L1, that is, in the range of 380-780 nm
  • the proportion of the total radiant energy is ⁇ 25.0%, especially the spectral radiant energy in the range of 630-690nm in the visible light region of the light emitted by the light source module L1, that is, the proportion of the total radiant energy in the range of 380-780nm is 15.0 ⁇ 50.0%.
  • the light source module L1 provided in this embodiment also emits light to it.
  • the blue light energy is limited.
  • the light emitted by the blue light generating part 1 forms a first peak in the blue light region of 430-470 nm, and its spectral intensity is 20.0-100.0% of the spectral intensity of the main emission peak, preferably 30.0-80.0%.
  • the spectral radiant energy of the first peak in the blue light region of 430-470 nm accounts for 15.0-50.0% of the total radiant energy in the visible light region of the emitted light of the light source module L1, that is, in the range of 380-780 nm, preferably 10.0%. ⁇ 30.0%.
  • a cyan light generating part 201 is set in the light source module L1.
  • the light emitted by the cyan light generating part 201 forms a second peak in the cyan light region at 470-510 nm, and its spectral intensity 25.0-100.0% of the spectral intensity of the main emission peak, preferably 35.0-80.0%.
  • the spectral radiant energy of the second peak in the cyan region 470-510nm accounts for 10.0-30.0% of the total radiant energy in the visible region of the emitted light of the light source module, that is, in the range of 380-780nm, preferably 10.0 to 20.0%.
  • the blue light generating portion 1, the cyan light generating portion 201, the yellow-green light generating portion 202, and the red light generating portion 203 can have various options. Some optional specific LED or phosphor types and their luminous parameters of each light generating portion are listed. Table 2 provides 7 specific embodiments, and in each embodiment, the blue light generating portion 1, the cyan light generating portion 201, the yellow-green light The specific selection of the generating part 202 and the red light generating part 203 .
  • x and y represent the coordinate values of the light color of the emitted light of the red LED on the x and y axes of the CIE1931 color coordinate system
  • Peak represents the peak wavelength of the red LED
  • Hw represents the half-width of the emission peak.
  • the above values are the actual values of the phosphors used in the examples, and do not limit the present invention, because in actual production, due to differences in the purity and particle size of the phosphors, the peak wavelength and half width of the phosphors may be different from the above data. If there is a slight deviation, the deviation value will generally be controlled within ⁇ 5nm. It should be considered that other solutions within this range are equivalent to the above phosphors.
  • each light generating part in Table 2 7 preferred embodiments of the light source module L1 of the present application are formed after being combined respectively.
  • the characteristic parameters of the emitted light of each embodiment are shown in Table 3.
  • the location of the tie is shown in Figure 2.
  • x and y represent the coordinate values of the light color of the emitted light of the light source module of the embodiment on the x and y axes of the CIE1931 color coordinate system
  • CCT is the color temperature
  • duv represents the color shift Planck locus in the color coordinate system.
  • distance and direction CRI is the color rendering index.
  • Example x y CCT duv CRI Example 1 0.4124 0.3927 3364 -0.0006 91.8
  • Example 2 0.3790 0.3784 4052 0.0012 92.0
  • Example 3 0.3798 0.3836 4067 0.0034 87.8
  • Example 4 0.3377 0.3453 5279 -0.0001 86.0
  • Example 5 0.3313 0.3475 5550 0.0038 92.5
  • Example 6 0.3252 0.3284 5854 -0.0032 91.3
  • Example 7 0.3218 0.3441 5976 0.0064 94.3
  • the yellow-green light generating portion 202 uses a mixture of yellow phosphors and green phosphors, so that the color rendering of the light source module L1 is good, and the CRI is above 85.
  • Table 4 lists the spectral characteristics of the light source module L1 in Examples 1-7.
  • Examples Figure 3-9 shows the emission spectrum of the light source module 1-7.
  • the proportion of blue light region energy is the proportion of spectral radiant energy in the 430-470nm range to the total radiant energy of the light source module L1 in the visible light region; the cyan region energy proportion is the spectral radiant energy in the 470-510nm region.
  • the proportion of the light source module L1 in the total radiant energy in the visible light region, the energy proportion in the red light region is the proportion of the spectral radiant energy in the range of 600-780nm in the total radiant energy in the visible light region of the light source module L1;
  • the energy ratio of the light region 2 is the ratio of the spectral radiant energy in the range of 630-690 nm to the total radiant energy of the light source module L1 in the visible light region.
  • the relative spectral map that is, the highest intensity in the entire spectrum is 100%, and other positions are represented by the relative ratio to the highest peak, so the blue light, cyan light, and secondary emission peaks in the table below
  • the wavelength intensity refers to the ratio of the intensity to the main emission peak.
  • the above-mentioned light source module L1 can be applied to various lamps.
  • FIG. 10 shows a lighting device according to a preferred embodiment of the present application.
  • the module L1 is set at the lamp head position.
  • the light source module L1 can also be applied to various lamps such as pendant lamps, ceiling lamps, down lamps, and spot lamps. This application does not limit this.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Led Device Packages (AREA)

Abstract

一种光源模组包括蓝光发生部、青光发生部、黄绿光发生部、红光发生部,所述红光发生部包括第一附加发光体和第二附加发光体,所述第一附加发光体发出的光形成红光区内的主发射峰,所述第二附加发光体发出的光形成红光区内的次发射峰,所述次发射峰的光谱强度为所述主发射峰的光谱强度的30.0~80.0%,所述光源模组的发射光为色温在3000K~6000K的白光,CIE1931色空间上,与黑体轨迹BBL的距离duv=-0.007~0.007。本实用新型所提供的光源模组针对预防近视的特殊需求,专门优化了光谱分布,加入了窄带红光荧光粉,改变红光区特定区域的能量分布。在本申请光源模组及灯具提供的光环境下工作、生活、学习,可以缓解视疲劳,进而预防近视的发生以及延缓近视的进程。

Description

一种光源模组及包括该光源模组的照明装置
本申请要求了申请日为2020年11月26日,申请号为202011342042.5,发明名称为“一种光源模组及包括该光源模组的照明装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本实用新型涉及一种光源模组及包括该光源模组的照明装置。
背景技术
随着信息社会的不断深入,近视的发病率也呈快速发展趋势。十年前,日本、韩国、新加坡等国家的近视人数远高于我国,然而,2018年卫生部、教育部的联合调查显示,我国学生近视发病人数已居世界首位。近视是由于眼轴发生变化,使外界的平行光线进入眼球后,不能聚焦到视网膜上而是落在视网膜之前,这样就不可以得到一个清晰的像所形成的。目前,近视控制,主要通过佩戴框架眼镜、角膜塑形术等医学手段进行,为儿童及青少年的日常生活带来了很大的不便及困扰。预防近视的手段也比较单一,即进行户外活动。每天户外(活动)2小时左右,已被证实能有效预防近视的发生。然而,由于青少年课业负担过重,进行长时间户外活动可行性不高。
灵长类动物研究发现,长波长红光照明可能会通过创建与近视散焦相关的信号来防止由形觉剥夺或远视散焦产生的轴向伸长,从而预防近视或延缓近视发生。在一项长波长红光的研究发现,该波长的红光光照能使视网膜中多巴胺含量增多,抑制了近视导致的眼轴增加。同时,红光促进了脉络膜血液循环,改善了视网膜和巩膜的血供。在一项针对264名近视儿童的研究中发现,3个月的重复低强度红光治疗无视网膜损害,且可以停止学龄儿童近视的进展。
目前市场上的白光LED还没有针对缓解视疲劳和预防近视以及延缓近视发展而进行专业的光谱设计。而上述这些研究给了我们一个启示,是否可以通过提供一种特殊的照明光源,配合上述研究成果获得避免近视的产生效果。
发明内容
本实用新型的目的是为了解决上述问题,寻找一种可以缓解视疲劳和预防近视以及延缓近视发展的光源模组及包括该光源模组的照明装置。
本实用新型为实现上述功能,所采用的技术方案是提供一种光源模组,其特征在于,包括:
蓝光发生部,发出峰值波长位于蓝光区430~470nm的第一颜色光;
青光发生部,发出峰值波长位于青光区470~510nm的第二颜色光;
黄绿光发生部,发出峰值波长位于黄绿光区510~600nm的第三颜色光;
红光发生部,发出峰值波长位于红光区600~780nm的第四颜色光,所述红光发生部包 括第一附加发光体和第二附加发光体,所述第一附加发光体被布置为接收所述蓝光发生部所发射的部分光线,并将其转换为峰值波长位于630~690nm的光形成红光区内的主发射峰,所述第二附加发光体被布置为接收所述蓝光发生部所发射的部分光线,并将其转换为峰值波长位于610~640nm的光形成红光区内的次发射峰,所述次发射峰的光谱强度为所述主发射峰的光谱强度的30.0~80.0%,
所述第一颜色、第二颜色光、第三颜色光和第四颜色光混合形成所述光源模组的发射光,所述发射光为色温在3000K~6000K的白光,所述发射光在CIE1931色空间上,与黑体轨迹BBL的距离duv=-0.007~0.007。
优选地,所述主发射峰的半宽度不大于30.0nm。
优选地,所述蓝光发生部,发出峰值波长位于蓝光区440~460nm的第一颜色光;所述青光发生部,发出峰值波长位于青光区480~500nm的第二颜色光。
优选地,所述红光发生部发出的光在红光区600~780nm内的光谱辐射能量在所述光源模组的发射光的可见光区即380~780nm范围内的总辐射能量中的占比≥25.0%。
优选地,所述红光发生部发出的光在630~690nm内的光谱辐射能量在所述光源模组的发射光的可见光区即380~780nm范围内的总辐射能量中的占比为15.0~50.0%。
优选地,所述蓝光发生部发出的光在蓝光区430~470nm内的光谱辐射能量在所述光源模组的发射光的可见光区即380nm~780nm范围内的总辐射能量中的占比为15.0~50.0%。
优选地,所述青光发生部发出的光在青光区470~510nm内的光谱辐射能量在所述光源模组的发射光的可见光区即380nm~780nm范围内的总辐射能量中的占比为10.0~30.0%。
优选地,所述青光发生部发出的光在青光区470~510nm内的光谱辐射能量在所述光源模组的发射光的可见光区即380nm~780nm范围内的总辐射能量中的占比为10.0~20.0%。
优选地,所述蓝光发生部发出的光在蓝光区430~470nm内形成第一峰,所述第一峰的光谱强度为所述主发射峰的光谱强度的20.0~100.0%。
优选地,所述第一峰的光谱强度为所述主发射峰的光谱强度的30.0~80.0%。
优选地,所述青光发生部发出的光在青光区470~510nm内形成第二峰,所述第二峰的光谱强度为所述主发射峰的光谱强度的25.0~100.0%。
优选地,所述第二峰的光谱强度为所述主发射峰的光谱强度的35.0~80.0%。
优选地,所述光源模组的发射光在CIE1931色空间上,与黑体轨迹BBL的距离duv=-0.005~0.005。
优选地,所述蓝光发生部为发射光峰值波长在430~470nm的蓝光LED;所述第一附加发光体为峰值波长在630~690nm的红色荧光粉,所述第二附加发光体为峰值波在610~640nm的红色荧光粉。
优选地,所述第一附加发光体为半宽度小于等于30.0nm的窄带荧光粉。
优选地,所述青光发生部为峰值波长在470~510nm的青光LED或青色荧光粉;所述黄 绿光发生部为峰值波长在510~600nm的黄色荧光粉和/或绿色荧光粉。
优选地,所述黄绿光发生部包括至少一种峰值波长在510~545nm的绿色荧光粉,和至少一种峰值波长在510~545nm的黄色荧光粉。
本实用新型还提供一种照明装置,包括上述光源模组。
本实用新型所提供的光源模组针对预防近视的特殊需求,专门优化了光谱分布,加入了窄带红光荧光粉,改变红光区特定区域的能量分布。在本申请光源模组及包括该光源模组的照明装置提供的光环境下工作、生活、学习,可以缓解视疲劳,进而预防近视的发生以及延缓近视的进程。
附图说明
图1是符合本实用新型优选实施例的光源模组的结构示意图;
图2是符合本实用新型的优选实施例1~7的CIE1931色坐标图;
图3是本实用新型中优选实施例1的发射光光谱图;
图4是本实用新型中优选实施例2的发射光光谱图;
图5是本实用新型中优选实施例3的发射光光谱图;
图6是本实用新型中优选实施例4的发射光光谱图;
图7是本实用新型中优选实施例5的发射光光谱图;
图8是本实用新型中优选实施例6的发射光光谱图;
图9是本实用新型中优选实施例7的发射光光谱图;
图10是本实用新型中优选实施例照明装置的结构示意图。
具体实施方式
以下结合附图和一些符合本申请的优选实施例对本申请提出的一种光源模组及照明装置作进一步详细的说明。
目前市场上常见的白光LED都是通过RGB混光来产生白光的,由蓝光芯片激发绿色及红色荧光粉,再将红、绿、蓝三色混合形成白光。而灵长类动物研究发现,长波长红光照明可能会通过创建与近视散焦相关的信号来防止由形觉剥夺或远视散焦产生的轴向伸长,从而预防近视或延缓近视发生。在一项长波长红光的研究发现,该波长的红光光照能使视网膜中多巴胺含量增多,抑制了近视导致的眼轴增加。同时,红光促进了脉络膜血液循环,改善了视网膜和巩膜的血供。因而本申请考虑在增加光源模组L1在630~690nm波段的能量,即常规的红色荧光粉以外,再另外加入一种峰值波长位于630~690nm的红色荧光粉。另外有研究表明青少年对415~465nm蓝光波段能量最为敏感,应尽量避免其长时间(尤其是夜间)处于高蓝光照射的光照下,因长时间的高蓝光能量光照射可能会导致其视网膜上皮细胞的死亡,有损视觉健康。因此,本申请光源模组L1还加入青光发生部,以青光区能量替代部分蓝光能量,降低出射光中的蓝光占比,实现更好的保护视力的效果。
本申请的光源模组L1的一个具体实施方式为一个混光的白光LED封装芯片,如图1所 示,其可以为具有一般贴片封装结构或COB封装结构LED芯片,光源模组L1至少包括一个蓝光发生部1和覆盖于蓝光发生部1的封装部2。
蓝光发生部1为蓝光LED芯片,由半导体材料直接激发发光,其发光的峰值波长位于蓝光区430~470nm,优选的为440~460nm,光色呈蓝色,这里我们称蓝光发生部1发出的光为第一颜色光。LED芯片(LED Chip),包括正装或倒装,单颗LED Chip或者多颗LED Chip按串联、并联或串并联方式连接在一起。
蓝光发生部1被封装部2所覆盖,封装部2还覆盖有青光发生部201,发出峰值波长位于青光区470~510nm,优选的为480~500nm的第二颜色光;黄绿光发生部202,发出峰值波长位于黄绿光区510~600nm的第三颜色光;红光发生部203,发出峰值波长位于红光区600~780nm的第四颜色光。在本实施方式中,青光发生部201、黄绿光发生部202、红光发生部203均为荧光粉,它们接收蓝光发生部1所发射的部分光线,并将其转换为相应颜色的光。在其他较佳实施方式中,青光发生部201也可以是发出峰值波长在青光区470~510nm的青光LED。
在本实施例中,封装部2包括基底材料204,其可以是透明硅胶或透明树脂,其中透明树脂可以选择环氧树脂、尿素树脂中的一种。基底材料204中掺入峰值波长在青光区470~510nm的青色荧光粉作为青光发生部201、峰值波长在黄绿光区510~600nm的黄色和/或绿色荧光粉作为黄绿光发生部202、峰值波长在红光区600~780nm的红色荧光粉作为红光发生部203,混合均匀后覆盖在蓝光发生部1之上。
由于颜色是一种人体的直观感受,并无精确定义各颜色的光谱界限,为了表述方便,在本申请中我们自行划分了一些颜色区间,本申请所称蓝光区为430~470nm,青光区为470~510nm,黄绿光区为510~600nm,红光区600~780nm。而上述青色荧光粉、黄色荧光粉、绿色荧光粉、红色荧光粉均可以为一种荧光粉或几种荧光粉的混合物,只需其发射光的峰值波长位于我们表述的光色区间内即可认为是所称的该色荧光粉。具体地,在本实施方式中青光发生部201为单种荧光粉材料,而黄绿光发生部202均包括两种荧光粉,由至少一种峰值波长在510~545nm的绿色荧光粉和至少一种峰值波长在510~545nm的黄色荧光粉混合而成。加入两种不同峰值波长的荧光粉,主要是为了提供更好的显色性。
蓝光发生部1、青光发生部201、黄绿光发生部202、红光发生部203发出的第一颜色、第二颜色光、第三颜色光和第四颜色光混合形成光源模组L1的发射光。该光源模组L1主要作为照明光源使用,因此合成后的发射光为色温在3000K~6000K的白光,其在CIE1931色空间上,与黑体轨迹BBL的距离duv=-0.007~0.007,优选的为duv=-0.005~0.005。
为了实现申请目的,本申请提供的解决方案重点在提高光源模组L1出射光在红光区的能量占比,特别是在630~690nm区段的能量占比。因此,在本申请实施方式中红光发生部203采用两种荧光粉,红光发生部203包括第一附加发光体和第二附加发光体,第一附加发光体被布置为接收蓝光发生部1所发射的部分光线,并将其转换为峰值波长位于630~690nm的 光形成红光区内的主发射峰,第二附加发光体被布置为接收蓝光发生部1所发射的部分光线,并将其转换为峰值波长位于610~640nm的光形成红光区内的次发射峰。第一附加发光体和第二附加发光体均为红色荧光粉,区别在于两者的发光峰值波长不同。其中第二附加发光体为峰值波在610~640nm的红色荧光粉,它起作用和在常规白光LED中的红色荧光粉相同,主要是平衡光色。而第一附加发光体为峰值波长在630~690nm的红色荧光粉,其加入增加了630~690nm区段的能量,为了保证增加的红光能量可以有效实现本申请的目的,即能量主要集中在制定波长区段,第一附加发光体优选窄带红光荧光粉,即该荧光粉的半宽度不大于30.0nm,由于主发射峰由第一附加发光体形成,因而在光源模组L1的发射光谱中主发射峰的半宽度不大于30.0nm。同时为了保证630~690nm区段的能量,要求次发射峰的光谱强度为主发射峰的光谱强度的30.0~80.0%。
在加入第一附加发光体增加红光区能量后,红光发生部203发出的光在红光区600~780nm内的光谱辐射能量在光源模组L1发射光的可见光区即380~780nm范围内的总辐射能量中的占比≥25.0%,特别是在630~690nm内的光谱辐射能量在光源模组L1发射光的可见光区即380~780nm范围内的总辐射能量中的占比为15.0~50.0%。
另外有研究表明青少年对415~465nm蓝光波段能量最为敏感,应尽量避免其长时间(尤其是夜间)处于高蓝光照射的光照下,因此该实施方式中提供的光源模组L1还对其发射光的蓝光能量进行了限制。蓝光发生部1发出的光在蓝光区430~470nm内形成第一峰,其光谱强度为主发射峰的光谱强度的20.0~100.0%,优选地为30.0~80.0%。且第一峰在蓝光区430~470nm内的光谱辐射能量在光源模组L1的发射光的可见光区即380nm~780nm范围内的总辐射能量中的占比为15.0~50.0%,优选地为10.0~30.0%。
青光的加入可部分补偿蓝光减少的部分,因此在光源模组L1中设置青光发生部201,青光发生部201发出的光在青光区470~510nm内形成第二峰,其光谱强度为主发射峰的光谱强度的25.0~100.0%,优选地为35.0~80.0%。且第二峰在青光区470~510nm内的光谱辐射能量在所述光源模组的发射光的可见光区即380nm~780nm范围内的总辐射能量中的占比为10.0~30.0%,优选地为10.0~20.0%。
上面介绍的是本申请的一较佳实施方式,在具体实施时,蓝光发生部1、青光发生部201、黄绿光发生部202、红光发生部203均可以有多种选择,下面表1给出了各个光发生部的一些可选的具体LED或荧光粉类型及其发光参数,表2给出了7个具体实施例,以及各实施例中蓝光发生部1、青光发生部201、黄绿光发生部202、红光发生部203的具体选型。
表1
No 材料名称 类型 x y Peak(nm) Hw(nm)
1 B-435nm 蓝光LED 0.164 0.015 435 24.0
2 B-450nm 蓝光LED 0.153 0.027 450 21.8
3 BG-495nm 青光LED 0.084 0.423 495 34.2
4 PBG490 青色荧光粉 0.081 0.428 495 33.2
5 PG-GaAG 绿色荧光粉 0.356 0.568 530 106.2
6 PG-LuAG 绿色荧光粉 0.378 0.566 535 107.6
7 PY-YAG 黄色荧光粉 0.449 0.533 555 117.3
8 PR620 红色荧光粉 0.620 0.379 615 81.5
9 PR630 红色荧光粉 0.638 0.362 630 94.2
10 PR660 红色荧光粉 0.710 0.289 660 18.3
11 PR680 红色荧光粉 0.720 0.280 680 7.0
表1中x、y表示红光LED的发射光的光色在CIE1931色坐标系上的x、y轴上的坐标值,Peak表示红光LED的峰值波长,Hw表示发射峰的半宽度。以上数值都是实施例中采用的荧光粉的实际数值,并不是对本实用新型的限定,因为在实际生产中由于荧光粉纯度、颗粒大小的不同其峰值波长和半宽度都有可能会和以上数据稍有偏差,这个偏差值一般会被控制在±5nm之间,应该认为在这个范围内的其他方案是等同于上述荧光粉的。
表2
Figure PCTCN2021130390-appb-000001
依据表2中的各光发生部的选型,分别组合后形成本申请光源模组L1的7个较佳实施例,各实施例的发射光的特征参数如表3所示,在CIE1931色坐标系上的位置见图2。其中x、y表示实施例光源模组的发射光的光色在CIE1931色坐标系上的x、y轴上的坐标值,CCT为色温,duv表示在色坐标系里色彩偏移普朗克轨迹的距离与方向,CRI为显色指数。
表3
实施例 x y CCT duv CRI
实施例1 0.4124 0.3927 3364 -0.0006 91.8
实施例2 0.3790 0.3784 4052 0.0012 92.0
实施例3 0.3798 0.3836 4067 0.0034 87.8
实施例4 0.3377 0.3453 5279 -0.0001 86.0
实施例5 0.3313 0.3475 5550 0.0038 92.5
实施例6 0.3252 0.3284 5854 -0.0032 91.3
实施例7 0.3218 0.3441 5976 0.0064 94.3
表3中可见虽然本申请的光源模组L1增加了红光区能量,且降低了蓝光区能量,但是由于青光发生部201的加入,其光色仍然保持为白光光色,在在CIE1931色空间上,与黑体轨迹BBL的距离duv=-0.007~0.007,且大部分duv=-0.005~0.005,如图2所示。而黄绿光发生部202采用黄色荧光粉和绿色荧光粉的混合体,使得光源模组L1的显色性较好,CRI都在85以上。
为了达到本申请所需要的缓解视疲劳,预防近视的目的,其主要是由不同波段的能量占比实现的,表4列出了实施例1-7中光源模组L1的光谱特征,实施例1-7光源模组的发射光光谱图如图3-9所示。其中蓝光区能量占比为430~470nm区段内的光谱辐射能量在光源模组L1在可见光区总辐射能量中的占比;青光区能量占比为470~510nm区段内的光谱辐射能量在光源模组L1在可见光区总辐射能量中的占比,红光区能量占比为600~780nm区段内的光谱辐射能量在光源模组L1在可见光区总辐射能量中的占比;红光区2能量占比为630~690nm区段内的光谱辐射能量在光源模组L1在可见光区总辐射能量中的占比。另外对于光谱强度,我们采用了相对光谱图,即以整个光谱中最高强度为100%,其他位置皆以和最高峰的相对比值来表示,因此下表中的蓝光、青光、次发射峰峰值波长强度,均是指和主发射峰的强度比值。
表4
Figure PCTCN2021130390-appb-000002
从表4中可见,实施例1-7的发射光的光谱均符合在实施方式中提出的能量分布要求,在后续试验中发现实施例1-7的光源模组L1,在实现照明效果的同时,可在一定程度上缓解疲劳,有望实现预防近视的目的。
上述光源模组L1可应用各类灯具,图10示出了本申请一较佳实施例照明装置,该照明装置于该实施中具体为台灯,包括由灯头61、灯杆62、底座63,光源模组L1设置在灯头位置。在其他较佳实施例中光源模组L1也可应用于吊灯、吸顶灯、筒灯、射灯等各类灯具。本申请对此不作限定。
上文对本实用新型优选实施例的描述是为了说明和描述,并非想要把本实用新型穷尽或局限于所公开的具体形式,显然,可能做出许多修改和变化,这些修改和变化可能对于本领域技术人员来说是显然的,应当包括在由所附权利要求书定义的本实用新型的范围之内。

Claims (15)

  1. 一种光源模组,其特征在于,包括:
    蓝光发生部,发出峰值波长位于蓝光区430~470nm的第一颜色光;
    青光发生部,发出峰值波长位于青光区470~510nm的第二颜色光;
    黄绿光发生部,发出峰值波长位于黄绿光区510~600nm的第三颜色光;
    红光发生部,发出峰值波长位于红光区600~780nm的第四颜色光,所述红光发生部包括第一附加发光体和第二附加发光体,所述第一附加发光体被布置为接收所述蓝光发生部所发射的部分光线,并将其转换为峰值波长位于630~690nm的光形成红光区内的主发射峰,所述第二附加发光体被布置为接收所述蓝光发生部所发射的部分光线,并将其转换为峰值波长位于610~640nm的光形成红光区内的次发射峰,所述次发射峰的光谱强度为所述主发射峰的光谱强度的30.0~80.0%,
    所述第一颜色、第二颜色光、第三颜色光和第四颜色光混合形成所述光源模组的发射光,所述发射光为色温在3000K~6000K的白光,所述发射光在CIE1931色空间上,与黑体轨迹BBL的距离duv=-0.007~0.007。
  2. 如权利要求1所述的光源模组,其特征在于,所述主发射峰的半宽度不大于30.0nm,所述蓝光发生部,发出峰值波长位于蓝光区440~460nm的第一颜色光;所述青光发生部,发出峰值波长位于青光区480~500nm的第二颜色光,所述光源模组的发射光在CIE1931色空间上,与黑体轨迹BBL的距离duv=-0.005~0.005。
  3. 如权利要求2所述的光源模组,其特征在于,所述红光发生部发出的光在红光区600~780nm内的光谱辐射能量在所述光源模组的发射光的可见光区即380~780nm范围内的总辐射能量中的占比≥25.0%。
  4. 如权利要求3所述的光源模组,其特征在于,所述红光发生部发出的光在630~690nm内的光谱辐射能量在所述光源模组的发射光的可见光区即380~780nm范围内的总辐射能量中的占比为15.0~50.0%。
  5. 如权利要求2所述的光源模组,其特征在于,所述蓝光发生部发出的光在蓝光区430~470nm内的光谱辐射能量在所述光源模组的发射光的可见光区即380nm~780nm范围内的总辐射能量中的占比为15.0~50.0%。
  6. 如权利要求1所述的光源模组,其特征在于,所述青光发生部发出的光在青光区470~510nm内的光谱辐射能量在所述光源模组的发射光的可见光区即380nm~780nm范围内的总辐射能量中的占比为10.0~30.0%。
  7. 如权利要求6所述的光源模组,其特征在于,所述青光发生部发出的光在青光区470~510nm内的光谱辐射能量在所述光源模组的发射光的可见光区即380nm~780nm范围内的总辐射能量中的占比为10.0~20.0%。
  8. 如权利要求2所述的光源模组,其特征在于,所述蓝光发生部发出的光在蓝光区430~470nm内形成第一峰,所述第一峰的光谱强度为所述主发射峰的光谱强度的20.0~100.0%。
  9. 如权利要求8所述的光源模组,其特征在于,所述第一峰的光谱强度为所述主发射峰的光谱强度的30.0~80.0%。
  10. 如权利要求2所述的光源模组,其特征在于,所述青光发生部发出的光在青光区470~510nm内形成第二峰,所述第二峰的光谱强度为所述主发射峰的光谱强度的25.0~100.0%。
  11. 如权利要求10所述的光源模组,其特征在于,所述第二峰的光谱强度为所述主发射峰的光谱强度的35.0~80.0%。
  12. 如权利要求1-12任一所述的光源模组,其特征在于,所述蓝光发生部为发射光峰值波长在430~470nm的蓝光LED;所述第一附加发光体为峰值波长在630~690nm的红色荧光粉,所述第二附加发光体为峰值波在610~640nm的红色荧光粉,所述第一附加发光体为半宽度小于等于30.0nm的窄带荧光粉。
  13. 如权利要求12所述的光源模组,其特征在于,所述青光发生部为峰值波长在470~510nm的青光LED或青色荧光粉;所述黄绿光发生部为峰值波长在510~600nm的黄色荧光粉和/或绿色荧光粉。
  14. 如权利要求13所述的光源模组,其特征在于,所述黄绿光发生部包括至少一种峰值波长在510~545nm的绿色荧光粉,和至少一种峰值波长在510~545nm的黄色荧光粉。
  15. 一种照明装置,其特征在于,包括:如权利要求1至14中任意一项所述的光源模组。
PCT/CN2021/130390 2020-11-26 2021-11-12 一种光源模组及包括该光源模组的照明装置 WO2022111312A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP21896813.9A EP4235824A4 (en) 2020-11-26 2021-11-12 LIGHT SOURCE MODULE AND LIGHTING APPARATUS COMPRISING SAID LIGHT SOURCE MODULE
US18/202,259 US20230296213A1 (en) 2020-11-26 2023-05-25 Light source module and lighting device comprising the light source module

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011342042.5 2020-11-26
CN202011342042.5A CN112420902A (zh) 2020-11-26 2020-11-26 一种光源模组及包括该光源模组的照明装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/202,259 Continuation US20230296213A1 (en) 2020-11-26 2023-05-25 Light source module and lighting device comprising the light source module

Publications (1)

Publication Number Publication Date
WO2022111312A1 true WO2022111312A1 (zh) 2022-06-02

Family

ID=74842422

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/130390 WO2022111312A1 (zh) 2020-11-26 2021-11-12 一种光源模组及包括该光源模组的照明装置

Country Status (4)

Country Link
US (1) US20230296213A1 (zh)
EP (1) EP4235824A4 (zh)
CN (1) CN112420902A (zh)
WO (1) WO2022111312A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112420902A (zh) * 2020-11-26 2021-02-26 欧普照明股份有限公司 一种光源模组及包括该光源模组的照明装置
CN113937202B (zh) * 2021-09-29 2024-05-14 佛山市国星光电股份有限公司 白光光源及白光光源系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107623064A (zh) * 2017-09-06 2018-01-23 中国科学院长春光学精密机械与物理研究所 模拟黑体辐射光谱的led光源及其制备方法与应用
CN111081852A (zh) * 2019-12-31 2020-04-28 广州硅能照明有限公司 全光谱led光源以及led灯
US20200176646A1 (en) * 2017-01-13 2020-06-04 Intematix Corporation Narrow-Band Red Phosphors for LED Lamps
US20200303598A1 (en) * 2019-03-22 2020-09-24 Samsung Electronics Co., Ltd. White light emitting module
CN112420902A (zh) * 2020-11-26 2021-02-26 欧普照明股份有限公司 一种光源模组及包括该光源模组的照明装置
CN214625083U (zh) * 2020-11-26 2021-11-05 欧普照明股份有限公司 一种光源模组及包括该光源模组的照明装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI716151B (zh) * 2018-10-22 2021-01-11 優美特創新材料股份有限公司 含複合式色彩轉換光學材料之背光模組
CN109545941B (zh) * 2018-11-29 2021-11-12 江苏博睿光电有限公司 一种荧光体混合物及其发光装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200176646A1 (en) * 2017-01-13 2020-06-04 Intematix Corporation Narrow-Band Red Phosphors for LED Lamps
CN107623064A (zh) * 2017-09-06 2018-01-23 中国科学院长春光学精密机械与物理研究所 模拟黑体辐射光谱的led光源及其制备方法与应用
US20200303598A1 (en) * 2019-03-22 2020-09-24 Samsung Electronics Co., Ltd. White light emitting module
CN111081852A (zh) * 2019-12-31 2020-04-28 广州硅能照明有限公司 全光谱led光源以及led灯
CN112420902A (zh) * 2020-11-26 2021-02-26 欧普照明股份有限公司 一种光源模组及包括该光源模组的照明装置
CN214625083U (zh) * 2020-11-26 2021-11-05 欧普照明股份有限公司 一种光源模组及包括该光源模组的照明装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4235824A4

Also Published As

Publication number Publication date
CN112420902A (zh) 2021-02-26
EP4235824A1 (en) 2023-08-30
EP4235824A4 (en) 2024-04-10
US20230296213A1 (en) 2023-09-21

Similar Documents

Publication Publication Date Title
CN107565006B (zh) 一种具有日光可见光部分光谱结构的led光源及灯具
WO2022111312A1 (zh) 一种光源模组及包括该光源模组的照明装置
CN109119411A (zh) 一种多波长芯片组合激发的led光源
CN108458323B (zh) 一种降低蓝光危害的led灯珠荧光粉、led灯珠及其制备方法
CN108922955B (zh) 一种光源模组及包括该光源模组的照明装置
CN110212076B (zh) 一种光源模组及包括该光源模组的照明装置
WO2020248748A1 (zh) 节律照明用的led光源
CN104848093B (zh) 具蓝光伤害改善设计的背光模块及使用其的显示模块
CN110085724B (zh) 一种护眼led光源
WO2020000511A1 (zh) 一种led光源的优化方法
CN108843983A (zh) 一种高红光的准自然光光源及灯具
CN214625083U (zh) 一种光源模组及包括该光源模组的照明装置
CN111720758A (zh) 光源模组、灯具
CN117238902A (zh) 一种全光谱led光源
WO2022143329A1 (zh) 一种光源模组及包括该光源模组的照明装置
CN108878624A (zh) 一种白光led光源及照明装置
CN212644312U (zh) 灯具
WO2022111307A1 (zh) 光源模组、灯具
CN110233197A (zh) 一种光源模组及包括该光源模组的照明装置
WO2020000512A1 (zh) 一种准自然光led光源的优化方法
CN210723022U (zh) 护眼led光源
CN220963343U (zh) 光源、终端设备
WO2020000518A1 (zh) 一种准自然光led光源及照明装置
CN212725358U (zh) 一种led灯珠
CN117366514A (zh) 一种光源及照明装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21896813

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021896813

Country of ref document: EP

Effective date: 20230525

NENP Non-entry into the national phase

Ref country code: DE