WO2020000518A1 - 一种准自然光led光源及照明装置 - Google Patents

一种准自然光led光源及照明装置 Download PDF

Info

Publication number
WO2020000518A1
WO2020000518A1 PCT/CN2018/095314 CN2018095314W WO2020000518A1 WO 2020000518 A1 WO2020000518 A1 WO 2020000518A1 CN 2018095314 W CN2018095314 W CN 2018095314W WO 2020000518 A1 WO2020000518 A1 WO 2020000518A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
natural
quasi
red
chip
Prior art date
Application number
PCT/CN2018/095314
Other languages
English (en)
French (fr)
Inventor
曾胜
曾骄阳
曾灵芝
陈俊达
陈道蓉
许瑞龙
Original Assignee
朗昭创新控股(深圳)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201810680502.1A external-priority patent/CN109000160A/zh
Application filed by 朗昭创新控股(深圳)有限公司 filed Critical 朗昭创新控股(深圳)有限公司
Publication of WO2020000518A1 publication Critical patent/WO2020000518A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • F21K9/20Light sources comprising attachment means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • F21K9/60Optical arrangements integrated in the light source, e.g. for improving the colour rendering index or the light extraction
    • F21K9/64Optical arrangements integrated in the light source, e.g. for improving the colour rendering index or the light extraction using wavelength conversion means distinct or spaced from the light-generating element, e.g. a remote phosphor layer
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V23/00Arrangement of electric circuit elements in or on lighting devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V9/00Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters
    • F21V9/40Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters with provision for controlling spectral properties, e.g. colour, or intensity

Definitions

  • the present invention relates to the field of LED technology, and particularly to a quasi-natural light LED light source and a lighting device including the light source.
  • the lamps in the office are usually high color temperature light sources to improve the visibility and work mood of the staff. It contains high blue light components.
  • Working office workers have been in artificial light sources for a long time, or have been watching computers and mobile phones for a long time. Dizziness, eye pain, headache, and mental illness may occur, which seriously affect people ’s health.
  • Some people's skin is sensitive to violet light and ultraviolet light, and long-term watching the computer can cause various skin problems. In natural light, you will feel comfortable and relaxed.
  • FIG. 13 it illustrates the spectrum of a white light source using a combination of chips with multiple wavelengths, such as a three-primary-color combination structure of a red light chip, a green light chip, and a blue light chip.
  • the wavelengths are complementary to cover the visible light band as much as possible.
  • This white light has obvious sharp peaks at the three central wavelengths of red, green, and blue, while the other wavelengths are relatively low, which is far from the natural spectrum; and it is difficult to achieve uniform light mixing, and its size is large and its applicability is poor.
  • a quasi-natural light LED light source is provided, which aims to solve the technical problem that the spectrum of the traditional LED light source and natural light differ greatly, so as to protect people's vision and improve comfort and health.
  • a lighting device is provided to protect eyesight and improve comfort and health.
  • a quasi-natural LED light source which includes a base layer, at least one set of light-emitting components disposed on the base layer, and a circuit electrically connected to the light-emitting components; each group of the light-emitting components includes white light emission And a red light emitter, the white light emitter includes a first chip and an optical conversion film covering the first chip, the red light emitter includes a red light chip; white light emitted by the white light emitter and the The red light emitted by the red light emitter is mixed, and the red light is used to compensate the missing red light portion of the white light relative to the natural spectrum to form quasi-natural light; the relative spectral power of the red light in the quasi-natural light is greater than 0.60; The relative spectral power of cyan light in quasi-natural light is greater than 0.30; the relative spectral power of blue light in quasi-natural light is less than 0.75.
  • a lighting device including the above-mentioned quasi-natural LED light source.
  • the light emitted by this light source is closer to natural light. Compared to traditional white lighting, blue light is lower, and the visual experience is more comfortable. It is good for protecting eyesight, especially for young children and children. It also helps reduce blue light. Sub-health issues.
  • the relative spectral power of the blue light is increased, which solves the long-standing problem of low blue light in the research of near-natural light, which makes the quasi-natural light closer to the real natural light and further improves the color rendering index.
  • the relative spectral power of red light is increased, making the spectrum closer to natural light, and 640-700nm red light has health care functions, thereby improving the health level of quasi-natural light illumination.
  • the combination of white light emitter and red light emitter is used to obtain quasi-natural light, the structure is simple, and the variable controllability during the debugging process is good, so that the quasi-natural light debugging can be achieved, and the combination of multiple illuminants cannot be adjusted.
  • the problem of natural light, and the quasi-natural light is obtained by supplementing the red light emitter, which solves the problem that the quasi-natural light cannot be obtained through the combination of the blue light chip and the fluorescent glue.
  • the white light emitter and the red light emitter can adopt micro light emitters that meet the performance requirements.
  • the light source as a whole is a miniature lamp bead. Multiple lamp beads can be arranged in any form on the circuit boards of various lamps. Due to their volume It is compact and can be set at any position on the circuit board. It is flexible in application, the whole light is uniform and the lighting effect is good.
  • FIG. 1 is a schematic diagram of a three-dimensional structure of a quasi-natural-light LED light source according to an embodiment of the present invention
  • FIG. 2 is a top view of a quasi-natural-light LED light source according to an embodiment of the present invention
  • FIG. 3 is a sectional view of a quasi-natural LED light source according to an embodiment of the present invention.
  • FIG. 4 is a bottom view of a quasi-natural-light LED light source according to an embodiment of the present invention.
  • FIG. 5 is a schematic structural diagram of a white light emitting body of a quasi-natural light LED light source according to an embodiment of the present invention
  • FIG. 6 is a schematic diagram of a spectrum of quasi-natural light according to an embodiment of the present invention.
  • FIG. 7 is a chart of a spectrum test report of quasi-natural light shown in FIG. 6;
  • FIG. 9 is a spectrum comparison chart of a conventional near-natural light source and natural light.
  • FIG. 10 is a spectrum diagram of a white light emitter according to an embodiment of the present invention.
  • 11 is a white light spectrum chart using a 452.5-455nm blue light chip provided by an embodiment of the present invention.
  • FIG. 14 is a spectrum diagram of a near-natural light source in the prior art.
  • the spectrum emitted by a light source is often not a single wavelength, but a mixture of many different wavelengths.
  • the spectral radiation of a light source in terms of wavelength order and intensity distribution at each wavelength is called the spectral power distribution of the light source.
  • the parameters used to characterize the spectral power are divided into absolute spectral power and relative spectral power.
  • Further absolute spectral power distribution curve refers to the curve made by the absolute value of light energy of various wavelengths of spectral radiation;
  • Relative spectral power distribution curve refers to the spectral power distribution curve that compares the energy of various wavelengths of the light source's radiation spectrum with each other and normalizes the radiated power to change only within a specified range.
  • the maximum relative spectral power of the radiated power is 1, and the relative spectral powers of other wavelengths are all less than 1.
  • Any white light can be obtained by mixing the three primary colors of red, green, and blue in corresponding proportions.
  • an embodiment of the present invention provides a quasi-natural light LED light source (hereinafter referred to as “the light source”), which can be used in various lighting devices, including a device for providing living lighting, for providing special scenes.
  • Lighting device such as a device used to provide lighting for electronic products, such as a backlight.
  • the quasi-natural LED light source includes a base layer 10, at least one group of light emitting components 20 disposed on the base layer 10, and a circuit 30 electrically connected to the light emitting component 20; each group of light emitting components 20 includes a white light emitter 21 and a red light emitter 22
  • the white light emitting body 21 includes a first chip 211 and an optical conversion film 212 covering the first chip 211.
  • the red light emitting body 22 includes a red light chip.
  • the white light emitted by the white light emitting body 21 is mixed with the red light emitted by the red light emitting body 22.
  • the red light is used to compensate the missing red light portion of the white light relative to the natural spectrum to form quasi-natural light; the relative spectral power of red light in quasi-natural light is greater than 0.60; the relative spectral power of cyan light in quasi-natural light is greater than 0.30; blue light in quasi-natural light
  • the relative spectral power is less than 0.75.
  • the light produced by this product is "near natural light".
  • Near natural light means that the spectral shape (relative spectral power of the corresponding band) is close to natural light, at least some of the optical parameters are close to natural light, and the degree of closeness is not limited to a certain value.
  • the quasi-natural LED light source in this embodiment is also designed to achieve a lighting effect closer to natural light, and can reduce the proportion of blue light, which is mainly reflected in that the relative spectral power is closer to natural light and multiple optical parameters are closer to natural light.
  • the basic supporting structure of the light source is the base layer 10, the light emitting components 20 are disposed on the base layer 10, and the number of the light emitting components 20 is one, two or more groups, and the structure of each light emitting component 20 And function are consistent.
  • This embodiment is preferably a group.
  • Each group of light emitting components 20 includes a white light emitter 21 and a red light emitter 22, that is, the quasi-natural light emitted by the light source is achieved by a mixture of white light and red light.
  • red light is used to compensate for the part of white light that is missing from the natural spectrum, thereby forming quasi-natural light that is close to natural light. Referring to FIG.
  • the white light emitting body 21 includes a first chip 211 and an optical conversion film 212 covering the first chip 211.
  • the red light emitting body 22 includes at least a red light chip.
  • the colored light undergoes wavelength conversion to generate other colored light, and a plurality of colored lights are mixed to form white light, and the white light and red light are mixed to form quasi-natural light.
  • the quasi-natural light has the following spectral parameters: the relative spectral power of red light is greater than 0.60; the relative spectral power of cyan light is greater than 0.30; and the relative spectral power of blue light is less than 0.75.
  • Each group of light-emitting components 20 can emit quasi-natural light. Therefore, when the light source includes multiple groups of light-emitting components 20, quasi-natural light can also be emitted.
  • the wavelength range of various colored lights in visible light is as follows: red light (622 ⁇ 700nm), orange light (597 ⁇ 622nm), yellow light (577 ⁇ 597nm), green light (492 ⁇ 577nm), cyan light (475 ⁇ 492nm), Blue light (435 ⁇ 475nm), purple light (380 ⁇ 435nm).
  • the quasi-natural light spectrum and spectral test data are shown respectively. It can be seen from this figure that the spectrum meets the above-mentioned spectral parameters of red, cyan, and blue light. In addition, the proportion of blue light is reduced. It is good for health while being close to natural light. Referring to FIG. 9, the existing near-natural light spectrum and the natural light spectrum still have a large gap, a blue light component is high, and a significant deficiency occurs in the red light part and the blue light part.
  • the high blue light is an unquestionable fact that health is harmful. Conducive to improving recognition and improving people's mental state is also recognized common sense.
  • Conventional light sources are usually white light with high color temperature and blue light, which is difficult to take into account various needs. According to FIG. 7, under the condition of high color temperature above 4000K, the light source still satisfies the relative spectral power of blue light less than 0.75, and is a kind of high color temperature and low blue light illumination, which can have the effects of using eye health and stimulating mental state.
  • the light emitted by this light source is closer to natural light. Compared to traditional white lighting, blue light is lower, and the visual experience is more comfortable. It is good for protecting eyesight, especially for young children and children. It also helps reduce blue light. Sub-health issues.
  • the relative spectral power of blue light can be controlled at a low level while maintaining a high color temperature, which can take into account the objectives of protecting eyes, improving visual effects, and improving the mental state of users.
  • the relative spectral power of red light is increased, making the spectrum closer to natural light, and 640-700nm red light has health care functions, thereby improving the health level of quasi-natural light illumination.
  • the combination of white light emitter 21 and red light emitter 22 is used to obtain quasi-natural light, the structure is simple, and the variable controllability during the debugging process is good, which enables the debugging of quasi-natural light and solves the problem that multiple luminescent body combinations cannot be adjusted.
  • the problem of quasi-natural light is obtained, and the quasi-natural light is obtained by supplementing the red light emitter 22, which solves the problem that the quasi-natural light cannot be obtained through the combination of the blue light chip and the fluorescent glue.
  • the white light emitting body 21 and the red light emitting body 22 may adopt micro light emitting bodies that meet the performance requirements.
  • the light source is a micro lamp bead as a whole, and multiple lamp beads can be arranged in any form on the circuit boards of various lamps. Its small size can be set at any position on the circuit board, it is flexible in application, the whole light of the lamp is uniform, and the lighting effect is good.
  • the optical conversion film 212 of the white light emitting body 21 is a fluorescent film or a phosphorescent film
  • the first chip 211 is a blue light chip
  • the wavelength range of the blue light chip is 450-480 nm.
  • the wavelength range of the red light chip is 640-700nm, which can be a smaller interval within this range, for example, the wavelength range is 680-700nm, and the corresponding center wavelength is 690 ⁇ 5nm.
  • the center wavelength is usually the center value of the wavelength range, and an adjustable interval of about ⁇ 2nm is allowed. In the case of different sections, the center wavelength may also be 660 nm, 670 nm, 680 nm, and the like, and this embodiment is not limited to a certain one.
  • the wavelength range of the blue light chip is 457.5-480nm, and at least 457.5-460nm.
  • the fluorescent film includes a colloid and a fluorescent powder mixed inside the colloid.
  • the particle sizes of the red powder, green powder, and yellow-green powder are all less than 15 ⁇ m, and preferably 13 ⁇ 2 ⁇ m.
  • white light By selecting the above blue light chip and fluorescent film, white light can be obtained, and its spectrum is shown in FIG. 10. It has the following optical parameters: when the color temperature is 2700K-3000K, the relative spectral power in the 480-500nm band is greater than 0.30; the relative spectral power in the 500-640nm band is greater than 0.70; when the color temperature is 4000K-4200K, the relative spectral power in the 480-500nm band Greater than 0.45; relative spectral power in the 500-640nm band is greater than 0.65; when the color temperature is 5500K-6000K, the relative spectral power in the 480-500nm band is greater than 0.4; the relative spectral power in the 500-640nm band is greater than 0.60.
  • Such a combination of the white light emitting body 21 and the red light emitting body 22 can obtain a quasi-natural light LED light source and can emit quasi-natural light.
  • the red powder is preferably a nitride red phosphor, and more preferably, the nitride red phosphor includes CaSrAlSiN3 (1113 structure).
  • the green powder is preferably a nitrogen oxide green phosphor. More preferably, the nitrogen oxide green phosphor includes BaSi2O2N2 (1222 structure).
  • the yellow-green powder preferably includes Y3Al5Ga5O12 (that is, gallium-doped yttrium aluminum garnet).
  • CaSrAlSiN3 nitride red phosphor, BaSi2O2N2 nitrogen oxide green phosphor, and Y3Al5Ga5O12 yellow-green phosphor can all achieve the color coordinates required by each phosphor, and have better luminous intensity and stability, which is very suitable for this application.
  • All kinds of the above phosphors are commercially available.
  • Example 1 as a fluorescent film:
  • the fluorescent film is excited by blue light to obtain white light with a natural temperature of 2700K-3000K: in the spectrum, the relative spectrum in the 480-500nm band is greater than 0.30, and the relative spectrum in the 500-640nm band is greater than 0.70.
  • Example 2 as a fluorescent film
  • the fluorescent film is excited by blue light to obtain white light with a natural temperature of 4000K-4200K: in the spectrum, the relative spectrum in the 480-500nm band is greater than 0.45, and the relative spectrum in the 500-640nm band is greater than 0.65.
  • Example 3 as a fluorescent film
  • the fluorescent film is excited by blue light to obtain white light with a natural temperature of 5500K-6000K: in the spectrum, the relative spectrum in the 480-500nm band is greater than 0.40, and the relative spectrum in the 500-640nm band is greater than 0.60.
  • the spectrum of the light source is also very similar to natural light in other wavebands, but the existing near-natural light source is difficult to achieve.
  • the relative spectral power of orange light in quasi-natural light is greater than 0.55; the relative spectral power of yellow light is greater than 0.50; the relative spectral power of green light is greater than 0.35; the relative spectral power of purple light is less than 0.10, which are close to natural light .
  • the light source has stricter optical parameter requirements, such as color temperature, color tolerance, color rendering index Ra, color rendering index R9, color rendering index R12, blue color ratio, etc., while optimizing the spectrum of each band.
  • the color temperature of quasi-natural light includes 2500K-6500K, the color tolerance is less than 5, and the blue light color ratio is less than 5.7%.
  • the explicit index Ra is greater than 95, of which the explicit index of R9 is greater than 90 and the explicit index of R12 is greater than 80. According to FIG.
  • the light source can meet the above requirements, and the blue light color ratio of the light source can be reduced to less than 5.5%, the color rendering index Ra is increased to more than 97, the color rendering index R9 is more than 95, and the color rendering index R12 is 83. In other test reports, the color rendering index R12 can reach 87.
  • blue light at 440 nm of blue light has the greatest damage to vision.
  • the relative spectral power of 440 nm blue light is used as the optical parameter to be detected.
  • the blue light color ratio is lower than 5.7%
  • the relative spectral power of the 440nm blue light is lower than 0.65. This is difficult to achieve with existing eye protection electronic equipment.
  • the current "eye-protection" electronic products have a low blue-light color ratio, the suppression of the 440nm blue light that is most harmful to human eyes is not obvious, and the eye-protection function is minimal.
  • other wavelength components in blue light are necessary for vision development.
  • Significant suppression of blue light not only has ineffective eye protection effects, but also adversely affects the visual development of children, young children and other people. For example, the excessive loss of blue light components causes color weakness. , Decreased color discrimination and other issues.
  • the present invention conducts a large number of debugging experiments with the above optical parameters and spectra as targets, and finally determines to adopt the above-mentioned white light emitter 21 and red light emitter 22, and determines the light flux of the white light emitter 21 and the light of the red light emitter 22
  • the ratio of the amount of radiation based on the ratio and the corresponding electrical parameters determined experimentally, select a suitable size and number of light emitters to make the light source.
  • the light-emitting body 21 is made into a single light source, and one light source is provided with a group of light-emitting components 20. Because the light source can directly emit quasi-natural light, and can be used in various lamps, any combination can ensure its better luminous effect and strong adaptability.
  • the ratio of the light flux of the white light emitting body 21 to the light radiation amount of the red light emitting body 22 is 2-10: 1, preferably 2-3: 1. This ratio slightly fluctuates at different color temperatures.
  • the ratio of the number of white light emitters 21 to the number of red light emitters 22 is 1-8: 1, and more preferably 1-4: 1.
  • the actual light radiation amount of the red light emitting body 22 is 80-160 mW, and the total light flux of the white light emitting body 21 is 200-350 lm.
  • the four white light emitters 21 are arranged around the red light emitters 22 and are evenly distributed.
  • the two white light emitters 21 are symmetrically disposed on both sides of the red light emitter 22.
  • the mounting method of the chip it is preferable to flip the blue light chip and the red light chip on the surface of the base layer 10.
  • the flip chip is effective for connecting with the circuit 30 on the base layer 10, and it is efficient for heat dissipation.
  • Uniform film formation guarantees good consistency of the fluorescent films of different products, which can avoid the problem of poor consistency caused by the dispensing process of chip mounting.
  • different products are in the same BIN position when the color temperature is the same, and the color temperature consistency is good.
  • the flip-chip also reduces the volume of the white light emitting body 21, which is beneficial to the size control of the light source.
  • the width of the white light emitting body 21 is less than 0.8 mm and the height is less than 0.3 mm.
  • the red light emitting body 22 can be controlled within the same range.
  • the distance between the adjacent white light emitting body 21 and the red light emitting body 22 is 1 mm or less.
  • the length of this light source is less than or equal to 6mm, and the width is less than 3mm.
  • the present invention is not limited to the use of flip-chips, and it is also feasible to use front-loaded chips.
  • the base layer 10 is preferably a lamellar structure made of a non-metal material.
  • the base layer 10 is provided with a reflective cup 11, the white light emitter 21 and the red light emitter 22 are disposed in the reflection cup 11, and the circuit 30 It is formed on the surface of the base layer 10, and is wrapped on the front and back sides of the base layer 10, and leads are formed outside the reflector cup 11, and a part of the circuit 30 is exposed at the bottom of the reflector cup 11, and is used for the white light emitter 21 and the red light.
  • the light-emitting body 22 is connected.
  • a reflective surface 111 is provided on the inner wall of the reflection cup 11, and the inside of the reflection cup 11 is further filled with a sealing gel (not shown).
  • the reflection surface 111 is used for reflecting white light and red light
  • the sealing gel is used to protect the reflection cup. 11 Internal structure and make the light source structure more stable, and adjust the refraction of light.
  • White light and red light are fully mixed and output through the encapsulant.
  • the light emitting angles of the white light emitting body 21 and the red light emitting body 22 may be about 160 ° to 180 °, and the light emitting angle of the light source is about 120 °.
  • the whole light source is a small and uniform quasi-natural light bead.
  • the circuit 30 has several groups of positive and negative pins, and each light emitter may correspond to a group of positive and negative pins, or several light emitters may correspond to a group of positive and negative pins.
  • driving methods there are two embodiments. One is that the white light emitting body 21 and the red light emitting body 22 are respectively connected to different positive and negative pins, and are driven separately. At this time, the respective driving currents are different, which can be performed in cooperation with the control chip. control. Secondly, the white light emitting body 21 and the red light emitting body 22 are connected in series, that is, the same positive and negative electrode pins are connected, and the same current is driven uniformly without the need of a control chip for control.
  • two white light emitters 21 and one red light emitter 22 are connected in series.
  • the two white light emitters 21 are respectively connected to a first pin 31, and the first pin 31 protrudes from the bottom of the reflection cup 11. Used to connect external power.
  • the red light emitting body 22 is connected in series between the two white light emitting bodies 21.
  • the light source may also be provided with a second pin 32.
  • the second pin 32 is not used to connect to an external power source, but is used for heat dissipation, as well as improving the overall symmetry of the light source, improving the strength, and mounting on the circuit board. stability.
  • the first embodiment described above is relatively easy to implement.
  • the spectrum debugging is an extremely long and complicated process.
  • the specific debugging process is shown below.
  • this unified driving method obviously has obvious advantages. It does not need to configure different driving currents for different light emitters, does not need to increase the control circuit 30, and only needs to supply power according to its corresponding current. Therefore, the structure is more simplified, the volume is further reduced, the application is more simple and flexible, and the cost is lower. This is the preferred circuit connection scheme of the present invention.
  • a color temperature adjustment chip may be added to the base layer 10, and the color temperature adjustment chip is provided independently of the light-emitting component 20, and accordingly, the circuit 30 is appropriately adjusted so that the color temperature adjustment chip can independently emit light or go out. Furthermore, by controlling its light emitting state, it is mixed with the quasi-natural light emitted by the light emitting component 20 to adjust the color temperature.
  • the relative spectral power of 640-700nm red light has been significantly improved when the spectrum and optical parameters of the light source meet the requirements, which is in the existing near-natural light sources. It is difficult to achieve, mainly manifested in the improvement of red light and the overall spectrum shape and other light parameters.
  • the relative spectral power of red light having a wavelength of 680 to 690 nm is greater than 0.80; the relative spectral power of red light having a wavelength of 622 to 680 nm is greater than 0.60.
  • the traditional near-natural light source will show a significant downward trend after 640nm.
  • 640-700nm red light has excellent health, physical therapy, and cosmetic effects.
  • the relative spectral power of 640-700nm red light is greater than 0.70 when the color temperature of quasi-natural light is 2700K-3000K; the relative spectral power of 640-700nm red light when the color temperature of quasi-natural light is 4000K-4200K Greater than 0.60; when the color temperature of quasi-natural light is 5500K-6000K, the relative spectral power of 640-700nm red light is greater than 0.50.
  • the embodiment of the present invention breaks the traditional convention (using a 450-455nm blue light chip), selects a blue light chip of 457.5nm-480nm, and combines the fluorescent film, so that the relative spectral power of the blue light is significantly improved, and at the same time, the R12 is significantly increased. It also helps to maintain a high color temperature while suppressing blue light.
  • the relative spectral power of the cyan light in the conventional near-natural light is lower than 0.3.
  • the relative spectral power of the cyan light in this embodiment is above 0.4.
  • FIG. 10 shows the spectrum of the white light emitter 21 in this embodiment.
  • a blue light chip of 457.5nm-460nm the relative spectral power of the blue light has reached above 0.5, such as 457.5nm-480nm.
  • the relative spectral power of blue light can be further increased.
  • the relative spectrum of the blue light is only between 0.35 and 0.38.
  • the relative spectral power of blue light in the 475-492nm band is greater than 0.30; when the color temperature of quasi-natural light is 4000K-4200K, the blue light in the 475-492nm band is relatively The spectral power is greater than 0.40; when the color temperature of quasi-natural light is 5500K-6000K, the relative spectral power of the cyan light in the 475-492nm band is greater than 0.50.
  • the optimizing process of the quasi-natural LED light source is divided into two types, one is an optimization process for different driving currents, and the other is an optimization process for the same driving current.
  • the optimization process for different drive currents includes the following steps:
  • Step S101 selecting a first light emitter, the first light emitter is used to emit white light;
  • Step S102 optimizing the spectral distribution of the first luminous body, and optimizing the white light into the first near-natural light;
  • Step S103 Determine a to-be-optimized wavelength band of the first near-natural light according to the first near-natural light spectral distribution and the natural light spectral distribution;
  • Step S104 selecting a second light emitter according to the waveband to be optimized
  • Step S105 lighting the first light emitter and the second light emitter according to a preset luminous flux ratio of the first light emitter and the second light emitter;
  • step S106 by adjusting the spectral distribution of the first light emitter and the second light emitter, the combined spectrum of the first light emitter and the second light emitter is optimized to obtain quasi-natural light.
  • the optimization process for the same drive current includes the following steps:
  • Step S201 selecting a first light emitter, the first light emitter is used to emit white light;
  • Step S202 optimize the spectral distribution of the first luminous body, and optimize the white light into the first near-natural light;
  • Step S203 Determine a to-be-optimized wavelength band of the first near-natural light according to a spectral distribution of the first near-natural light and a spectral distribution of the natural light;
  • Step S204 selecting a second light emitter according to the waveband to be optimized
  • Step S205 Determine an initial luminous flux ratio of the first luminous body and the second luminous body
  • Step S206 By adjusting the spectral distribution of the first and second light emitters, the combined spectrum of the first and second light emitters is optimized to obtain quasi-natural light and the driving current of the first and second light emitters. The same or a difference between the two is within a predetermined range; wherein the adjustment of the spectral distribution of the first light emitter and the second light emitter includes at least the adjustment of the driving current.
  • a white light emitter is selected as the first light emitter, and the white light emitter is used as the main light emitter.
  • the main light emitter includes a large wavelength range, including at least the 400-640 nm band. .
  • Optimize the white light to the first near-natural light so that the white light is as close as possible to the natural light.
  • the relative spectral power of the white light is increased as much as possible, so that the type selection of the subsequent second light-emitting body is simpler, and It is beneficial to the optimization of the combined spectrum of the two light emitters, and the first near-natural light generated by the optimized white light emitter has the characteristics described above.
  • red light of 640-700 nm needs to be supplemented. Furthermore, a second luminous body that emits red light is selected. On the one hand, it is used in combination with the first luminous body to obtain illumination light closer to natural light; on the other hand, by supplementing red light, blue light can be reduced. This conclusion can be based on the preliminary basis. The research confirmed that the content of basic research will be explained in detail later.
  • the center wavelength of the second luminous body is preferably 690 ⁇ 5 nm, and the purpose is to be as much as possible after combining with the first near-natural light spectrum.
  • the relative spectral power of red light at 640-700 nm is brought closer to the spectrum of natural light.
  • a reasonable luminous flux ratio can be selected according to the spectra of the two luminous bodies, that is, the light luminous flux between the first luminous body and the second luminous body.
  • the ratio is called “initial luminous flux ratio” here.
  • the initial luminous flux ratio is in the range of 2-10: 1.
  • the initial luminous flux ratio is in a range of 2-5: 1, and then a corresponding number of first luminous bodies and a corresponding number of second luminous bodies are lit according to a preset initial luminous flux ratio for optimization. The process of combining spectra.
  • the light flux of the first light-emitting body and the light radiation amount of the second light-emitting body are adjusted mainly by adjusting the driving current of the first light-emitting body and the second light-emitting body.
  • the driving currents of the first and second light emitters are adjusted, and the combined spectrum is monitored in real time until the relative spectral power of each band of the combined spectrum reaches a predetermined range.
  • the optical parameters of the combined spectrum are detected. If the optical parameters are unsatisfactory, the driving current is continuously adjusted until the optical parameters reach a predetermined range, at which time it is confirmed that quasi-natural light is obtained.
  • the actual ratio of the luminous flux of the first luminous body and the light radiating amount of the second luminous body, the actual driving current of the first luminous body and the second luminous body, and the corresponding optical parameters are recorded.
  • further information such as the corresponding quasi-natural light spectrum diagram, chromaticity diagram, other electrical parameters, light effect parameters, red, green, and blue ratio parameters are further stored.
  • various optical parameters of the first illuminant and the second illuminant will be saved when they are selected, such as the wavelength range, center wavelength, model, specifications, rated current, light efficiency, and so on.
  • the repeated adjustment of the driving current does not meet the requirements, there are two options: one is to adjust the formula and / or concentration and / or thickness of the fluorescent film; the other is to adjust the center wavelength of the second light emitter or increase the center wavelength.
  • a third light emitter on the second light emitter According to the previous basic research, the relationship between the fluorescent film and the spectrum optimization and the relationship between the red light and the spectrum optimization can be obtained. Under the corresponding theoretical guidance, an appropriate method can be selected to adjust the optimization scheme.
  • the first method specifically includes: first, adjusting the formula of the fluorescent film to adjust the relative spectral power of each band and the color rendering index; the formula refers to the components and the ratio of the phosphor material in the fluorescent film. Secondly, adjust the concentration of the fluorescent film to adjust the color rendering index and color temperature; the concentration refers to the content of the fluorescent powder in the fluorescent film when the formula is determined; third, adjust the thickness of the fluorescent film to adjust the color temperature.
  • the center wavelength of the second light-emitting body is adjusted or a third light-emitting body with a center wavelength different from the second light-emitting body is adjusted to be optimized after being combined with the first light-emitting body.
  • the sixth step S206 includes the following sub-steps:
  • step S21 Adjust the driving currents of the first and second light emitters, and monitor the combined spectrum in real time. When the relative spectral power of the combined spectrum reaches a predetermined range, go to step S22, otherwise repeat step S21;
  • step S22 Detect the optical parameters of the combined spectrum. When the optical parameters reach a predetermined range, go to step S23, otherwise go back to step S21;
  • Step S24 Adjust the luminous flux of the first luminous body and / or the luminous radiation of the second luminous body according to the change of the relative spectral power of the combined spectrum, and monitor the combined spectrum in real time.
  • Step S25 When the relative spectral power of the combined spectrum meets a predetermined range, perform Step S25, otherwise proceed to step S21;
  • step S25 Detect the optical parameters of the combined spectrum. When the optical parameters reach a predetermined range, confirm that quasi-natural light is obtained, and proceed to step S26, otherwise proceed to step S21.
  • S26 Record the actual driving current of the first and second light emitters, the actual ratio of the light flux of the first and second light emitters, and the optical parameters of quasi-natural light.
  • step S206 discloses the specific implementation process of step S206.
  • the corresponding number of first light emitters and second light emitters are lit according to the initial luminous flux ratio, and the light flux of the first light emitter and the second light emitter are adjusted by adjusting the driving current.
  • the amount of light radiation, the combined spectrum will change at this time.
  • the shape of the combined spectrum that is, the relative spectral power of each band
  • the shape of the combined spectrum is close to the allowable range of natural light. At this time, confirm that the spectrum meets the requirements.
  • step S23 is performed: adjusting the driving currents of the first luminous body and / or the second luminous body so that the two driving currents tend to be the same; when the currents are the same, the combined spectrum necessarily changes.
  • step S24 is performed: according to the change of the relative spectral power of the combined spectrum, further adjusting the light flux of the first luminous body and the light radiation amount of the second luminous body, and monitoring the combined spectrum in real time, the object adjusted in this step is the luminous flux or light
  • the object adjusted in this step is the luminous flux or light
  • steps S21 to S25 need to be repeated to adjust the driving current (fine adjustment is sufficient at this time) so that the relative spectral power and optical parameters conform to a predetermined range. Because in the process of repeating steps S21-S25, the steps of adjusting the drive current to be consistent are performed for each debugging. Therefore, in multiple adjustments, the current will gradually become consistent, and the adjustment range of the luminous flux and current will be Gradually decreasing, you will eventually get quasi-natural light that meets the requirements under the same driving current.
  • step S20 is performed:
  • step S21 is performed.
  • the above-mentioned white light emitter 21 and red light emitter 22 are determined, and the actual ratio of the light flux of the white light emitter 21 and the light radiation amount of the red light emitter 22 is 2-3: 1, and the current is 20 Between -100 mA, preferably 60 mA.
  • one to four white light emitters 21 and one to two red light emitters 22 form a light source in series, and the power of a single light source is about 0.5W.
  • the actual data is slightly different.
  • the corresponding data of several color temperatures can be determined according to the needs, and the corresponding products can be manufactured. For example, the lamps used in office places usually choose products with higher color temperature, and the lamps used in home usually choose products with lower color temperature.
  • the near-natural-light LED light source has a spectrum and light parameters that are close to natural light, and it is even more difficult to drive with the same current.
  • Different chips are combined. To obtain a certain kind of light, the current needs to be adjusted to meet the preset requirements.
  • the driving current of several chips is usually different. If the uniform drive, spectral shape, and light parameters meet the requirements, look for white light. The type of red light and the balance point of light flux and current are the biggest technical difficulties.
  • This embodiment solves the long-term technical problems in this field. Reflected in the light source products, that is, by simply driving the two feet in cooperation with the arrangement of the above-mentioned light-emitting components, quasi-natural light can be emitted, and the lighting quality and applicability are greatly improved.
  • Natural light in the natural world comes from the sun's luminescence. Natural light varies from season to season and even at different times of the day. It is mainly manifested in differences in spectrum and color temperature.
  • the morning sunlight in spring is most comfortable.
  • the sunlight spectrum in spring morning can be selected as a reference, and the relative spectral power and light parameters of natural light are set.
  • natural light at other times can also be used as a measure to set the corresponding parameter requirements of quasi-natural light.
  • the optimization method provided by the embodiment of the present invention is applicable to natural light at various times, and only some parameters need to be slightly adjusted.
  • the present invention also performs basic research VII: the relationship between the luminous flux of white light emitters and the optimization of quasi-natural light spectrum
  • basic research VIII the relationship between the light radiation of red light chips and the optimization of quasi-natural light spectrum.
  • basic research 7 To find the specifications of the best (cost-effective) blue light chip and the formula and concentration and thickness of the fluorescent film; to find blue light chips and fluorescent films that make the light emitted by the first luminous body close to the natural spectrum as much as possible; basic research 8
  • the aim is to find the best (cost-effective) specifications of the red light chip, to find the best value of the light radiation quantity (specification) of the red light chip that suppresses the relative spectrum of blue light, and to find the red light chip that makes the combined spectrum close to the natural spectrum as much as possible .
  • the above-mentioned basic research is the main theoretical basis for selecting the blue light chip, the fluorescent film and the red light chip, and also the theoretical basis for continuously optimizing the parameters during the spectrum debugging process.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optics & Photonics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Led Device Packages (AREA)

Abstract

一种准自然光LED光源,包括基底层(10)、设置于基底层(10)上的至少一组发光组件(20)及与发光组件(20)连接的电路(30);发光组件(20)包括白光发光体(21)和红光发光体(22),白光发光体(21)包括第一芯片和光学转换膜,红光发光体(22)包括红光芯片;红光用于补偿白光相对于自然光谱缺失的红光部分,形成准自然光;准自然光中红光的相对光谱功率大于0.60;青光的相对光谱功率大于 0.30;蓝光的相对光谱功率小于 0.75。本光源可发出准自然光,降低蓝光,提高青光和红光,保护视力,减少亚健康问题,提升显指,同时由于提升了红光进而提升了健康照明等级;另外光源构成简洁,利于调试和应用,可靠性高,适应性好。

Description

一种准自然光LED光源及照明装置 技术领域
本发明涉及LED技术领域,特别涉及一种准自然光LED光源及包括该光源的照明装置。
背景技术
人造光源的出现,解决了夜晚或黑暗环境的照明问题,但是普通人造光照明给人们带来的危害也是不容忽视的。这种危害主要来源于人造光相对于自然光而言的光谱不完整性以及较高的蓝光成分和波长更短的紫光和紫外光成分,使人产生不自然不舒适之感。
在可见光中,紫外线、紫光和蓝光对人眼的伤害最为严重。紫光对眼睛的伤害在眼球的前半部(如眼睑癌,白内障,睑裂斑,异状贅片等)。蓝光对眼睛的伤害是在眼球的后半部,会导致黄斑区病变。因为蓝光会加速视网膜里的黄斑区的感光细胞和视网膜色素上皮细胞的氧化压力而导致损伤,而这两种细胞都是不可再生的,一但损伤后就会影响视力且不可逆,严重的甚至导致失明。蓝光对眼睛的伤害,尤其是对未成年学生和儿童的视力损害比较明显,会导致儿童色弱,降低儿童的辨色能力,并且导致未成年人近视率的攀升。
我们在关注光的客观视觉效应的同时,还应考虑人对光的感受,如光对人的健康、情绪、舒适性以及对生理变化的影响。例如,办公场所的灯具通常为高色温光源,以提升可视度和工作人员的工作情绪。其中含有较高的蓝光成分,工作上班族长期处于人造光源的照明环境中,或者长时间注视电脑、手机,会出现眼晕、眼痛、头痛、精神不佳等现象,严重影响人们的健康,还有部分人的皮肤对紫光和紫外线较敏感,长期注视电脑会导致各种皮肤问题。而处于自然光环境下,则会感觉到舒适和轻松。
毋庸置疑的是,最理想的照明光是自然光,自然光照明一直是照明行业的愿景。现有LED技术中的白光照明产品,其光谱和自然光相差依然较大。如图12,其示意了一种采用蓝光芯片结合荧光粉的白光源的光谱,由于芯片的波长范围和发光强度以及荧光粉的波长范围有一定限制,使得这种组合结构与自然光的光谱差别仍然较大,尤其是蓝光比例过高。如图13,其示意了一种采用多种波长的芯片组合的白光源的光谱,例如红光芯片、绿光芯片和蓝光芯片的三原色组合结构,通过波长互补尽可能的覆盖可见光的波段,但是这种白光存在红、绿、蓝三个中心波长的明显尖峰,而其他波长又比较低,与自然光谱相差甚远;而且难以做到均匀混光,且尺寸较大,适用性差。
可见,现有技术中的预获得近自然光的光源,均存在和自然光相差较大的缺陷。而在科技快速发展的今天,存在视力缺陷的儿童和亚健康人群的比例却越来越大,提供健康的准自然光照明、改善儿童视力、保障人们健康已经成为迫切的社会需求。
技术问题
本发明实施例的目的在于:第一方面,提供一种准自然光LED光源,旨在解决传统LED光源与自然光的光谱相差较大的技术问题,以保护人们视力,提升舒适度及健康水平。第二方面,提供一种照明装置,用以保护视力,提升舒适度及健康水平。
技术解决方案
为解决上述技术问题,本发明实施例采用的技术方案是:
第一方面,提供一种准自然光LED光源,包括基底层、设置于所述基底层上的至少一组发光组件,以及与所述发光组件电连接的电路;每组所述发光组件包括白光发光体和红光发光体,所述白光发光体包括第一芯片和覆盖所述第一芯片的光学转换膜,所述红光发光体包括红光芯片;所述白光发光体发射的白光与所述红光发光体发射的红光混合,所述红光用于补偿所述白光相对于自然光谱缺失的红光部分,形成准自然光;所述准自然光中红色光的相对光谱功率大于0.60;所述准自然光中青色光的相对光谱功率大于 0.30;所述准自然光中蓝色光的相对光谱功率小于 0.75。
第二方面,提供了一种照明装置,包括上述准自然光LED光源。
有益效果
第一,本光源发出的光更加接近自然光,相比于传统白光照明,蓝光更低,视觉感受更加舒适,有利于保护视力,尤其是幼儿和儿童视力,还有利于减少由于蓝光过高导致的亚健康问题。
第二,在降低蓝光的同时提升了青光相对光谱功率,解决了近自然光研究中长期存在的青光偏低的问题,使得准自然光更加接近真实自然光,也使得显色指数进一步提升。
第三,提升了红光的相对光谱功率,使得光谱更加接近自然光,640-700nm红光具有保健功能,进而提升了准自然光照明的健康等级。
第四,采用白光发光体和红光发光体组合的形式获得准自然光,结构简洁,在调试过程中变量可控性好,使准自然光的调试得以实现,解决多个发光体组合无法调出准自然光的问题,并且通过补充红光发光体获得准自然光,解决了通过蓝光芯片和荧光胶结合的方式无法获得准自然光的问题。
第五,白光发光体和红光发光体可以采用满足性能要求的微型发光体,光源整体为一微型灯珠,可多个灯珠以任意形式布置于各种灯具的电路板上,由于其体积小巧,可设置于电路板的任意位置,应用灵活,灯具整体发光均匀,照明效果好。
附图说明
图1是本发明实施例提供的准自然光LED光源的立体结构示意图;
图2是本发明实施例提供的准自然光LED光源的俯视图;
图3是本发明实施例提供的准自然光LED光源的剖视图;
图4是本发明实施例提供的准自然光LED光源的仰视图;
图5是本发明实施例提供的准自然光LED光源的白光发光体的结构示意图;
图6是本发明实施例提供的准自然光的光谱示意图;
图7是图6所示准自然光的光谱测试报告图;
图8是本发明实施例提供的准自然光光源和自然光的光谱对比图;
图9是现有近自然光光源和自然光的光谱对比图;
图10是本发明实施例提供的白光发光体的光谱图;
图11是本发明实施例提供的采用452.5-455nm蓝光芯片的白光光谱图;
图12是现有技术中白光光源的第一种光谱图;
图13是现有技术中白光光源的第二种光谱图;
图14是现有技术中近自然光光源的一种光谱图。
本发明的实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。
为了说明本发明所述的技术方案,以下结合具体附图及实施例进行详细说明。
技术术语的解释说明:
1.相对光谱功率:
一种光源所发射的光谱往往不是单一的波长,而是由许多不同波长的混合辐射所组成。光源的光谱辐射按波长顺序和各波长强度分布称为光源的光谱功率分布。
用于表征光谱功率大小的参数分为绝对光谱功率和相对光谱功率。进而绝对光谱功率分布曲线:指以光谱辐射的各种波长光能量绝对值所作的曲线;
相对光谱功率分布曲线:指将光源辐射光谱的各种波长的能量进行相互比较,作归一化处理后使辐射功率仅在规定的范围内变化的光谱功率分布曲线。辐射功率最大的相对光谱功率为1,其他波长的相对光谱功率均小于1。
2.色比:
任何白光均可由红、绿、蓝三原色以相应比例混合得到,为了表示R、G、B三原色各自在白光总量中的相对比例,引入色度坐标r、g、b,其中,r=R/(R+G+B),g= G/(R+G+B),b= B/(R+G+B),r+g+b=1,r、g、b分别为红光色比、绿光色比、蓝光色比。
请参阅图1至图4,本发明实施例提供一种准自然光LED光源(以下简称为“本光源”),可用于各种照明装置,包括用于提供生活照明的装置,用于提供特殊场景照明的装置,用于提供电子产品照明(例如背光)的装置等。准自然光LED光源包括基底层10、设置于基底层10上的至少一组发光组件20,以及与发光组件20电连接的电路30;每组发光组件20包括白光发光体21和红光发光体22,白光发光体21包括第一芯片211和覆盖第一芯片211的光学转换膜212,红光发光体22包括红光芯片;白光发光体21发射的白光与红光发光体22发射的红光混合,红光用于补偿白光相对于自然光谱缺失的红光部分,形成准自然光;准自然光中红色光的相对光谱功率大于0.60;准自然光中青色光的相对光谱功率大于 0.30;准自然光中蓝色光的相对光谱功率小于 0.75。
在LED照明领域,研究接近自然光的照明光源是本领域的发展趋势之一,也是众多研究人员和单位一直在努力的方向,现有技术中也出现一些致力于接近自然光的照明产品,通常称这种产品产生的光为“近自然光”,近自然光指光谱形状(相应波段的相对光谱功率)与自然光接近,至少部分光学参数与自然光接近,该接近的程度不局限于某数值。本实施例中的准自然光LED光源同样旨在实现与自然光更为接近的照明效果,并且能够降低蓝光的比例,主要表现在相对光谱功率更为接近自然光,多个光学参数更为接近自然光。
具体地,如上所述,本光源的基本支撑结构为基底层10,发光组件20设置在基底层10上,发光组件20的数量为一组、两组或更多组,各发光组件20的结构和功能都是一致的。本实施例优选为一组。每一组发光组件20都包括白光发光体21和红光发光体22,即,本光源发出准自然光是通过白光和红光的混合实现的。其中,红光用于补偿白光相对于自然光谱缺失的那部分,进而形成接近自然光的准自然光。参考图5,该白光发光体21包括第一芯片211和覆盖第一芯片211的光学转换膜212,红光发光体22至少包括红光芯片,通过光学转换膜212将第一芯片211发出的单色光进行波长转换,产生其他色光,多种色光混合后形成白光,该白光和红光混合后形成准自然光。该准自然光具有如下光谱参数,红色光的相对光谱功率大于0.60;青色光的相对光谱功率大于 0.30;蓝色光的相对光谱功率小于 0.75。每组发光组件20都可以发出准自然光,因此在本光源包含了多组发光组件20的情况下,同样能够发出准自然光。
可见光中各种色光的波长范围如下:红色光(622~700nm),橙色光(597~622nm),黄色光(577~597nm),绿色光(492~577nm),青色光(475~492nm),蓝色光(435~475nm),紫色光(380~435nm)。
如图6至图8,分别示意了准自然光的光谱图和光谱测试数据,通过该图可以看出,该光谱满足上述红光、青光和蓝光的光谱参数,另外,蓝光的比例被降低,在接近自然光的同时还有利于健康。参考图9,现有的近自然光光谱和自然光光谱仍然差距较大,蓝光成分较高,同时在红光部分和青光部分出现明显的不足。
另外,在本领域内,根据大量的传统白光照明的规律,白光色温越高,其短波长成分的比例越高,蓝光越高,而高蓝光危害健康是毫无疑义的事实,同时高色温有利于提升辨识度,提升人的精神状态也是公认的常识,常规光源通常是高色温高蓝光的白光,难以兼顾各方面的需求。根据图7所示,本光源在4000K以上的高色温情况下,仍满足蓝光相对光谱功率小于0.75,是一种高色温低蓝光照明,能够同时具有用眼健康和激励精神状态的效果。
本发明实施例提供的光源至少具有如下效果:
第一,本光源发出的光更加接近自然光,相比于传统白光照明,蓝光更低,视觉感受更加舒适,有利于保护视力,尤其是幼儿和儿童视力,还有利于减少由于蓝光过高导致的亚健康问题。
第二,能够在保持高色温的情况下控制蓝光相对光谱功率处于较低水平,可兼顾护眼和提升视觉效果及改善用户精神状态的目的。
第三,在降低蓝光的同时提升了青光相对光谱功率,解决了近自然光研究中长期存在的青光偏低的问题,使得准自然光更加接近真实自然光,也使得显色指数进一步提升。
第四,提升了红光的相对光谱功率,使得光谱更加接近自然光,640-700nm红光具有保健功能,进而提升了准自然光照明的健康等级。
第五,采用白光发光体21和红光发光体22组合的形式获得准自然光,结构简洁,在调试过程中变量可控性好,使准自然光的调试得以实现,解决多个发光体组合无法调出准自然光的问题,并且通过补充红光发光体22获得准自然光,解决了通过蓝光芯片和荧光胶结合的方式无法获得准自然光的问题。
第六,白光发光体21和红光发光体22可以采用满足性能要求的微型发光体,光源整体为一微型灯珠,可多个灯珠以任意形式布置于各种灯具的电路板上,由于其体积小巧,可设置于电路板的任意位置,应用灵活,灯具整体发光均匀,照明效果好。
在本实施例中,白光发光体21的光学转换膜212为荧光膜或者磷光膜,第一芯片211为蓝光芯片,该蓝光芯片的波长范围为450-480nm。
红光芯片的波长范围为640-700nm,具体可以是在该范围内的某个更小区间,例如波长范围为680-700nm,对应中心波长为690±5nm。中心波长通常为波长范围的中心值,且允许有±2nm左右可调区间。针对不同区间的情况,中心波长还可以是660nm、670nm、680nm等等,本实施例不局限于某一种。优选地,蓝光芯片的波长范围为457.5-480nm,至少为457.5-460nm。
荧光膜包括胶体和混合于胶体内部的荧光粉,荧光粉包括红粉、绿粉和黄绿粉;红粉的色坐标为X:0.660~0.716,Y:0.340~0.286;绿粉的色坐标为X:0.064~0.081,Y:0.488~0.507;黄绿粉的色坐标为X:0.367~0.424,Y:0.571~0.545;红粉、绿粉和黄绿粉的重量比为:红粉:绿粉:黄绿粉=(0.010~0.035):(0.018~0.068):(0.071~0.253);荧光膜的浓度为17%~43%。红粉、绿粉和黄绿粉的粒径均小于15μm,优选为13±2μm。
通过选择上述蓝光芯片和荧光膜,可以获得白光,其光谱如图10所示。其具有如下光学参数:色温为2700K-3000K时,480-500nm波段的相对光谱功率大于0.30;500-640nm波段的相对光谱功率大于0.70;色温为4000K-4200K时,480-500nm波段的相对光谱功率大于0.45;500-640nm波段的相对光谱功率大于0.65;色温为5500K-6000K时,480-500nm波段的相对光谱功率大于0.4;500-640nm波段的相对光谱功率大于0.60。这种白光发光体21与上述红光发光体22组合,可以得到准自然光LED光源,能够发出准自然光。
进一步地,进一步地,红粉优选为氮化物红色荧光粉,更优选地,所述氮化物红色荧光粉包括CaSrAlSiN3(1113结构)。而绿粉优选为氮氧化物绿色荧光粉,更优选地,所述氮氧化物绿色荧光粉包括BaSi2O2N2(1222结构)。而所述黄绿粉优选包括Y3Al5Ga5O12(即镓掺杂钇铝石榴石)。CaSrAlSiN3类氮化物红色荧光粉、BaSi2O2N2类氮氧化物绿色荧光粉和Y3Al5Ga5O12黄绿荧光粉,均可达到各自荧光粉需要的色坐标,而且具有更好的发光强度和稳定性,非常适合用于本发明实施例的荧光粉中。上述荧光粉的种类均可在市场上购得。
作为荧光膜的实施例1:
一种荧光膜,含有AB硅胶、CaSrAlSiN3红色荧光粉(色坐标,X:0.660-0.716,Y:0.286-0.340)、BaSi2O2N2绿色荧光粉(色坐标,X:0.064-0.081,Y:0.488-0.507)和Y3Al5Ga5O12黄绿荧光粉(色坐标,X:0.367-0.424,Y:0.545-0.571);其中,CaSrAlSiN3红色荧光粉、BaSi2O2N2绿色荧光粉和Y3Al5Ga5O12黄绿荧光粉的重量比为(0.020-0.035):(0.018-0.030):(0.140-0.253),该三种荧光粉在荧光膜中的质量百分含量为33-43%。
该荧光膜通过蓝光激发,可获得色温为2700K-3000K的近自然光的白光:光谱中,480-500nm波段的相对光谱大于0.30,500-640nm波段的相对光谱大于0.70。
作为荧光膜的实施例2
一种荧光膜,含有AB硅胶、CaSrAlSiN3红色荧光粉(色坐标,X:0.660-0.716,Y:0.286-0.340)、BaSi2O2N2绿色荧光粉(色坐标,X:0.064-0.081,Y:0.488-0.507)和Y3Al5Ga5O12黄绿荧光粉(色坐标,X:0.367-0.424,Y:0.545-0.571);其中,CaSrAlSiN3红色荧光粉、BaSi2O2N2绿色荧光粉和Y3Al5Ga5O12黄绿荧光粉的重量比为(0.010-0.022):(0.020-0.040):(0.080-0.140),该三种荧光粉在荧光膜中的质量百分含量为25-35%。
该荧光膜通过蓝光激发,可获得色温为4000K-4200K的近自然光的白光:光谱中,480-500nm波段的相对光谱大于0.45,500-640nm波段的相对光谱大于0.65。
作为荧光膜的实施例3
一种荧光膜,含有AB硅胶、CaSrAlSiN3红色荧光粉(色坐标,X:0.660-0.716,Y:0.286-0.340)、BaSi2O2N2绿色荧光粉(色坐标,X:0.064-0.081,Y:0.488-0.507)和Y3Al5Ga5O12黄绿荧光粉(色坐标,X:0.367-0.424,Y:0.545-0.571);其中,CaSrAlSiN3红色荧光粉、BaSi2O2N2绿色荧光粉和Y3Al5Ga5O12黄绿荧光粉的重量比为(0.010-0.020):(0.030-0.068):(0.071-0.130),该三种荧光粉在荧光膜中的质量百分含量为17-27%。
该荧光膜通过蓝光激发,可获得色温为5500K-6000K的近自然光的白光:光谱中,480-500nm波段的相对光谱大于0.40,500-640nm波段的相对光谱大于0.60。
进一步地,参考图8和图9,本光源的光谱在其他波段也和自然光极其相似,而现有近自然光光源则难以实现。如图6和图7,准自然光中橙色光的相对光谱功率大于0.55;黄色光的相对光谱功率大于0.50;绿色光的相对光谱功率大于0.35;紫色光的相对光谱功率小于0.10,均与自然光接近。
另外,本光源在各波段光谱更为优化的同时,还具有严格的光学参数要求,如色温,色容差,显色指数Ra 、显色指数R9、显色指数R12以及蓝光色比等等。具体地,准自然光的色温包含2500K-6500K,色容差小于5,蓝光色比小于5.7%。显指Ra大于95,其中,R9的显指大于90,R12的显指大于80。根据图7可以确定本光源能够满足上述要求,并且本光源的蓝光色比可以降低到5.5%以下,显色指数Ra提高到97以上,显色指数R9达到95以上,显色指数R12达到了83,在其他测试报告中,显色指数R12可以达到87。
进一步地,蓝光中440nm的蓝光对视力的伤害最大,作为进一步的优化方案,本实施例还将440nm蓝光的相对光谱功率作为待检测的光学参数。在蓝光色比低于5.7%的情况下,440nm蓝光的相对光谱功率低于0.65。这是现有的护眼电子设备难以实现的。现有的“护眼”电子产品,其蓝光色比虽然较低,但是其中对人眼伤害最大的440nm蓝光的抑制并不明显,护眼功能微乎其微。而蓝光中的其他波段成分对视力发育是必要的,大幅度抑制蓝光不仅护眼效果不明显,还会对儿童、幼儿等人群的视力发育造成不良影响,例如由于蓝光成分的过分缺失,导致色弱,辨色能力下降等问题。
本发明是以上述光学参数和光谱为目标进行大量的调试实验,最终确定采用上述的白光发光体21和红光发光体22,以及确定了白光发光体21的光通量和红光发光体22的光辐射量之比,基于该比例和实验确定的相应电参数,选取合适规格和数量的发光体制作上述光源。
优选采用微型的白光发光体21和红光发光体22,根据光通量比和安装空间的大小选择小规格且性价比较高的蓝光芯片和红光芯片,优先选择尽量少的红光发光体22和白光发光体21,制作成单颗光源,一颗光源设置一组发光组件20。由于该光源可以直接发出准自然光,进而可以用于各种灯具中,任意组合,均可保证其较佳的发光效果,适应性强。
具体地,该白光发光体21的光通量和红光发光体22的光辐射量之比为2-10:1, 优选为2-3:1。在不同的色温下,该比例略有浮动。在一个实施例中,白光发光体21的数量和红光发光体22的数量比为1-8:1,进一步优选为1-4:1。实际红光发光体22的光辐射量为80-160mW,白光发光体21的总光通量为200-350lm。
在一种实施例中,白光发光体21有四个,红光发光体22有一个,四个白光发光体21设置于红光发光体22的周围且均匀分布。
在另一种实施例中,白光发光体21有两个,红光发光体22有一个,两个白光发光体21对称地设置于红光发光体22的两侧。
关于芯片的安装方式,优选将蓝光芯片和红光芯片倒装于基底层10的表面,倒装芯片有利于和基底层10上的电路30有效连接,有利于高效散热,可以通过设备在芯片上统一成膜,保证不同产品的荧光膜一致性好,进而可以避免正装芯片的点胶过程造成一致性差的问题,同时,使得不同产品在色温相同时处于同一BIN位,色温一致性好。
另外,倒装芯片也使得白光发光体21的体积进一步减小,有利于光源尺寸控制。在本实施例中,白光发光体21的宽度小于0.8mm,高度小于0.3mm,红光发光体22可控制在同样范围内。相邻的白光发光体21和红光发光体22间距为1mm以下。本光源的长度小于或等于6mm,宽度小于3mm。
当然,本发明不局限于采用倒装芯片,采用正装芯片也是可行的。
在一种实施例中,基底层10优选为非金属材料制作的片层结构,基底层10上设有反射杯11,白光发光体21、红光发光体22设置于反射杯11中,电路30形成于基底层10的表面,且包裹于基底层10的正反两面,并在反射杯11之外形成引脚,反射杯11的底部露出部分电路30,用于与白光发光体21和红光发光体22连接。
更进一步地,反射杯11的内壁设有反光面111,反射杯11内部还填充有封装胶体(图未示),反光面111用于将白光和红光进行反射,封装胶体用于保护反射杯11内部结构和使光源结构更加稳定,并对光线进行折射调整。白光和红光充分混合后经过封装胶体输出。具体地,白光发光体21和红光发光体22的发光角度可以为160°左右至180°,光源的出光角度为120°左右。整个光源为小型均匀发光的准自然光灯珠。
在本实施例中,电路30具有若干组正负极引脚,可以每个发光体对应一组正负极引脚,或者若干个发光体对应一组正负极引脚。在驱动方式上,有两种实施例,其一,白光发光体21和红光发光体22分别连接不同的正负极引脚,单独驱动,此时各自的驱动电流不同,可以配合控制芯片进行控制。其二,白光发光体21和红光发光体22串联,即连接相同的正负极引脚,统一相同电流驱动,不需控制芯片进行控制。
参考图1和图2,两个白光发光体21和一个红光发光体22串联,两个白光发光体21分别连接一个第一引脚31,第一引脚31自反射杯11底部伸出,用于连接外部电源。红光发光体22串联于两个白光发光体21之间。
进一步地,该光源还可以设有第二引脚32,该第二引脚32不用于连接外部电源,而是用于散热,以及提升光源整体的对称性,提升强度和安装于电路板上的稳定性。
上述第一种实施例较容易实施。而第二种实施例,其光谱调试是极其漫长且复杂的过程,具体的调试过程如后文所示。但是这种统一驱动的方式显然具有明显的优势,其不需要针对不同发光体配置不同的驱动电流,不需要增加控制电路30,仅需要按照其对应的电流供电即可。因此,在结构上更为简化,体积进一步减小,应用更加简便灵活,成本更低。此为本发明优选的电路连接方案。
进一步地,本发明实施例还可以在基底层10上增设一个色温调节芯片,该色温调节芯片独立于发光组件20设置,相应地,对电路30进行适当调整,使色温调节芯片可以独立发光或熄灭,进而通过控制其发光状态,与发光组件20发出的准自然光进行混合,调节色温。
关于本光源的光学性能,还需提及的是,本光源在光谱和光参数均满足要求的情况下,640-700nm红光的相对光谱功率得到了明显提升,这在现有的近自然光光源中是难于实现的,主要表现为红光的提升和整个光谱形状及其他光参数难以兼顾。本实施例中,如图6,波长为680~690nm的红光相对光谱功率大于0.80;波长为622~680nm的红光相对光谱功率大于 0.60。如图9和图14,传统近自然光光源会在640nm之后的波段出现明显下降的趋势。640-700nm红光具有优异的保健、理疗、美容作用。
并且,经过不同色温光源的测试,准自然光的色温为2700K-3000K时,640-700nm红光的相对光谱功率大于0.70;准自然光的色温为4000K-4200K时,640-700nm红光的相对光谱功率大于0.60;准自然光的色温为5500K-6000K时,640-700nm红光的相对光谱功率大于0.50。
还需提及的是,在众多的近自然光LED光源中,青光比例是难于提升的,在拉低蓝光的情况下更加难以提升青光,同时与青光对应的显指R12也是难以提升的。本发明实施例一方面通过突破传统惯例(采用450-455nm蓝光芯片),选择了457.5nm-480nm的蓝光芯片,结合荧光膜,使得青光的相对光谱功率得到明显提升,同时提升显指R12,也在一定程度上有助于在抑制蓝光的同时能够保持较高色温。如图11,传统近自然光中的青光相对光谱功率低于0.3,如图6和图7,本实施例中的青光相对光谱功率达到0.4以上。
进一步参考图10和图11,图10所示为本实施例中白光发光体21的光谱,采用457.5nm-460nm的蓝光芯片时,青光相对光谱功率已经达到0.5以上,如采用457.5nm-480nm的蓝光芯片,青光相对光谱功率可以进一步提升。图11中采用452.5-455nm蓝光芯片时,青光相对光谱仅为0.35-0.38之间。
并且,经过不同色温光源的测试,准自然光的色温为2700K-3000K时,475-492nm波段的青光相对光谱功率大于0.30;准自然光的色温为4000K-4200K时,475-492nm波段的青光相对光谱功率大于0.40;准自然光的色温为5500K-6000K时,475-492nm波段的青光相对光谱功率大于0.50。
以下,简要说明该准自然光LED光源的优化过程。
该准自然光LED光源的优化过程分为两种,其一是针对不同驱动电流的优化过程,其二是针对相同驱动电流的优化过程。
针对不同驱动电流的优化过程包括下述步骤:
步骤S101,选取第一发光体,所述第一发光体用于发出白光;
步骤S102,优化所述第一发光体的光谱分布,将所述白光优化为第一近自然光;
步骤S103,根据所述第一近自然光的光谱分布以及自然光的光谱分布,确定所述第一近自然光的待优化波段;
步骤S104,根据所述待优化波段选择第二发光体;
步骤S105,按照预设的第一发光体和第二发光体的光通量比点亮第一发光体和第二发光体;
步骤S106,通过调节所述第一发光体和第二发光体的光谱分布,优化所述第一发光体和第二发光体的组合光谱,获得准自然光。
针对相同驱动电流的优化过程包括下述步骤:
步骤S201,选取第一发光体,所述第一发光体用于发出白光;
步骤S202,优化第一发光体的光谱分布,将白光优化为第一近自然光;
步骤S203,根据第一近自然光的光谱分布以及自然光的光谱分布,确定所述第一近自然光的待优化波段;
步骤S204,根据所述待优化波段选择第二发光体;
步骤S205,确定第一发光体和第二发光体的初始光通量比;
步骤S206,通过调节第一发光体和第二发光体的光谱分布,优化第一发光体和第二发光体的组合光谱,获得准自然光且所述第一发光体和第二发光体的驱动电流相同或二者之差在预定范围内;其中,对第一发光体和第二发光体的光谱分布的调节至少包括对驱动电流的调节。
可见,两种优化过程主要区别于第六步。在第二种优化过程中,最后需要在驱动电流相同的情况下获得准自然光。而该区别直接导致这两种优化过程的难易程度差别巨大。
在两种优化过程的前五步骤中,首先,选取白光发光体作为第一发光体,以该白光发光体作为主发光体,主发光体所包含的波长范围较大,至少包括400-640nm波段。将白光优化为第一近自然光,使得该白光尽可能的接近自然光,在优化过程中,使白光的相对光谱功率尽可能的提高,这样,使后续第二发光体的类型选择更为简单,并且有利于对两发光体组合光谱的优化,优化后的白光发光体产生的第一近自然光具有前文所述的特征。
参考该第一近自然光光谱,可以确定需要补充640-700nm红光。进而选择发红光的第二发光体,其一方面用于和第一发光体组合,获得更加接近自然光的照明光线;另一方面,通过补充红光,可以减低蓝光,该结论可以通过前期基础研究确认,关于基础研究的内容会在后文详细说明。
进一步地,根据第一近自然光的光谱曲线,并通过大量组合光谱调试实验,确定该第二发光体的中心波长选择优选为690±5nm,目的在于和第一近自然光光谱结合后能够尽可能的使640-700nm红光的相对光谱功率接近自然光的光谱。
在第五步中,在确定第一发光体和第二发光体后,可以根据两发光体的光谱,选择合理的光通量比,即第一发光体的光通量和第二发光体的光辐射量之比,此处称之为“初始光通量比”,根据上述第一近自然光和红光的波长范围以及光谱特征,可以初步确定该初始光通量比在2-10:1的范围内是可行的。进一步地,通过实验可以进一步确定该初始光通量比在2-5:1的范围内,然后按照预设的初始光通量比点亮相应数量的第一发光体和相应数量的第二发光体,进行优化组合光谱的过程。
第一种优化方式中的第六步骤:
主要通过调整第一发光体和第二发光体的驱动电流调整第一发光体的光通量和第二发光体的光辐射量。首先,调节第一发光体和第二发光体的驱动电流,并实时监控组合光谱,直至组合光谱的各波段相对光谱功率均达到预定范围。然后,检测组合光谱的光学参数,若光学参数不合格,继续调整驱动电流,直至光学参数达到预定范围,此时确认获得准自然光。最后,记录第一发光体的光通量和第二发光体的光辐射量的实际比例、第一发光体和第二发光体的实际驱动电流以及对应的光学参数。
优选的,进一步保存相应的准自然光的光谱图,色品图,其他电参数,光效参数,红、绿、蓝色比参数等等信息。当然,第一发光体和第二发光体的各种光学参数,在其被选定时即会保存,例如波长范围,中心波长,型号,规格,额定电流,光效等等。
在反复调整驱动电流均不能满足要求时,可以有两种选择,其一,调整荧光膜的配方和/或浓度和/或厚度;其二,调整第二发光体的中心波长或者增加中心波长不同于第二发光体的第三发光体。根据前期的基础研究,可以得到荧光膜与光谱优化的关系,和红光与光谱优化的关系,在对应的理论指导下,可以选择合适的方式调整优化方案。
具体地,第一种方式具体包括:第一,调整荧光膜的配方调节各波段的相对光谱功率,以及显色指数;该配方指荧光膜中荧光粉材料的组分和配比。第二,调整荧光膜的浓度调节显色指数和色温;该浓度指在配方确定的情况下,荧光粉在荧光膜中的含量大小;第三,调整荧光膜的厚度调节色温。
在第二种方式中,调整第二发光体的中心波长或者增加中心波长不同于第二发光体的第三发光体,使之与第一发光体组合后进行优化。通过进行大量的基础研究,可以确定第二发光体对组合光谱分布和光参数也具有重要的影响。
第二种优化方式中的第六步骤:
不仅要获得准自然光,还要满足驱动电流一致,或者在允许的小范围内略有差别,使得在实际工作时,采用相同电流驱动时不会导致光谱和光参数的明显变化。以下详细说明第二种优化方式的第六步骤:
该第六步骤S206包括下述子步骤:
S21:调节第一发光体和第二发光体的驱动电流,并实时监控组合光谱,当组合光谱的相对光谱功率达到预定范围时,进行步骤S22,否则重复进行步骤S21;
S22:检测组合光谱的光学参数,当光学参数达到预定范围时,进行步骤S23,否则返回进行步骤S21;
S23:调节第一发光体和/或第二发光体的驱动电流,使两驱动电流趋于一致;
S24:根据组合光谱的相对光谱功率的变化,调整第一发光体的光通量和/或第二发光体的光辐射量,并实时监控组合光谱,当组合光谱的相对光谱功率符合预定范围时,进行步骤S25,否则进行步骤S21;
S25:检测组合光谱的光学参数,当光学参数达到预定范围时,确认获得准自然光,进行步骤S26,否则进行步骤S21;
S26:记录第一发光体和第二发光体的实际驱动电流、第一发光体的光通量和第二发光体的光辐射量的实际比例以及准自然光的光学参数。
以上步骤揭示了步骤S206的具体实现过程,首先,根据初始光通量比点亮相应数量的第一发光体和第二发光体,通过调节驱动电流分别调节第一发光体的光通量和第二发光体的光辐射量,此时组合光谱会发生变化,经过若干次调试之后,组合光谱的形状(即各波段的相对光谱功率)与自然光接近到允许范围内,此时确认光谱满足要求。
在此基础上,查看光学参数,如果光学参数满足预设的范围,则确定获得准自然光,如果光学参数不满足预设的范围,则反复调整驱动电流,使光参数满足要求。
在光谱和光参数均符合要求后,此时驱动电流通常是不一致的,为了实现统一驱动,需进行后续的调整,该调整过程是漫长且复杂的。首先进行步骤S23:调节第一发光体和/或第二发光体的驱动电流,使两驱动电流趋于一致;当电流一致时,组合光谱必然发生变化。进而,进行步骤S24:根据组合光谱的相对光谱功率的变化,进一步调整第一发光体的光通量和第二发光体的光辐射量,并实时监控组合光谱,此步骤中调整的对象为光通量或者光辐射量,当组合光谱的相对光谱功率符合预定范围时,检测组合光谱的光学参数,当光学参数达到预定范围时,确认获得准自然光。这是理想情况。
然而,调整光通量后,相对光谱功率难于符合预定范围,光学参数也容易出现波动。因此,还需要重复进行步骤S21至S25,重新调节驱动电流(此时为微调即可),使相对光谱功率和光学参符合预定范围。由于在重复步骤S21-S25的过程中,每次调试均会进行将驱动电流调为一致的步骤,因此,在多次的调整中,电流将逐渐趋于一致,对光通量和电流的调整幅度将逐渐减小,最终会得到在驱动电流一致的情况下获得满足要求的准自然光。
进一步地,在组合光谱的优化过程中,可能存在如下情况:经过较多次调节驱动电流,仍不能使光谱或者光参数满足要求,此时,进行步骤S20:
调整光学转换膜212的配方和/或浓度和/或厚度,然后再进行步骤S21;
或者,调整第二发光体的中心波长,然后进行步骤S21;
或者,增加中心波长不同于第二发光体中心波长的第三发光体,然后进行步骤S21。
在实际的优化过程中,涉及到荧光膜的调整、红光发光体22的调整以及反复多次的驱动电流和光通量的调整,才能获得最终的结果。
最后,调试结束后需要记录相应参数,该数据用于为光源的生产制造提供必要的信息。
经过上述优化过程,确定了上述的白光发光体21和红光发光体22,且白光发光体21的光通量和红光发光体22的光辐射量的实际比例为2-3:1,电流为20-100mA之间,优选为60mA。优选1-4个白光发光体21和1-2个红光发光体22串联构成一个光源,单颗光源的功率为0.5W左右。色温不同的情况下,实际数据略有不同。可以根据需要确定几种色温的相应数据,制造相应产品。例如,用于办公场所的灯具,通常选择色温较高的产品,用于家居的灯具,通常选择色温较低的产品。
目前的近自然光LED光源,其光谱和光参数均接近自然光已经不易,而采用相同电流驱动更是难上加难。不同的芯片组合在一起,若要获得某种光,需要调整电流来达到预设的要求,几种芯片的驱动电流通常是不同的,若统一驱动、光谱形状、光参数均符合要求,寻找白光和红光的类型和光通量及电流的平衡点是最大的技术困难,本实施例解决了该领域内长期以来的技术难题。体现在光源产品上,即通过简单的两脚驱动配合上述发光组件的布置,即可发射准自然光,照明品质和适用性得以极大提升。
在本发明实施例涉及的基础研究如下:
基础研究一:准自然光光谱的研究。
自然界中的自然光来源于太阳发光,自然光在一年四季乃至一天中的不同时段均有差别,主要表现为光谱和色温的差别。春季清晨的阳光最使人感觉舒适,本发明实施例中,可选择春季清晨的阳光光谱作为参考,对准自然光的相对光谱功率和光参数进行设定。当然,这是一种优选的实施例,而其他时间的自然光同样可以用于作为衡量标准来设定准自然光的相应参数要求。本发明实施例提供的优化方法适用于各种时间的自然光,只需将某些参数做略微调整即可。
基础研究二:光谱形状与荧光膜配方的关系。研究表明,荧光膜配方与其相应的光谱形状关系很大;改变配方中某一种粉的比例,将直接改变其相应波长段的相对光谱功率,其比例越大,对应波长的相对光谱功率越大,同时也会改变显色指数。基于此,当光谱形状和显指不符合要求时,可以根据具体波段选择提高或降低某种粉的比例,或者改变某种粉的色坐标参数。
基础研究三:光谱形状与荧光膜浓度的关系。研究表明,在配方不变的情况下,荧光粉浓度越高,490-700nm的相对光谱功率也会越来越高,直至超过蓝光光谱功率,随着蓝光的相对光谱功率降低,色温会随之下降,光色也在改变,显指也随之改变。基于此,可以通过改变浓度来改变显指和色温。但是,浓度调整到了一定的状态,色温仍不符合要求时,还需改变荧光膜中各种粉的配方比例,才能确保不同色温的光色符合国际标准(即标准色温的色坐标)。
基础研究四:光谱形状和色温与荧光膜厚度的关系。研究表明,在配方和浓度不变的情况下,荧光膜厚度越大,色温越低。基于此,当色温不满足要求时,可以通过改变厚度调整色温,且对其他参数影响较小。
基础研究五:驱动电流与光谱形状变化关系。研究表明,驱动电流与光谱形状变化关系是:(1)增大任何一种芯片(蓝光芯片或红光芯片)的驱动电流,将会改变其相应光谱功率;(2)通过调整两种芯片的驱动电流,可以得到最佳的光谱优化结果;(3)增大其中一种芯片的驱动电流以增大其光通量,会抑制另一种芯片的相对光谱。基于此,可以通过调整驱动电流的方式调整组合光谱,并且抑制蓝光,即可以通过增加红光芯片的方式抑制蓝光。
基础研究六:红光芯片规格与光辐射量的关系。研究表明,红光芯片规格与光辐射量的关系是:在恒定的驱动电流条件下,一般情况下,随着芯片规格的增加,其光辐射量会增大。基于此,可以根据最终实际的光通量比,确定选择性价比最佳的红光芯片的规格。该性价比最佳是指规格尽量小,但能够满足焊接要求,光效尽量高,可靠性好,同时兼顾价格。
本发明还进行了基础研究七:白光发光体的光通量与准自然光光谱优化的关系,基础研究八:红光芯片的光辐射量与准自然光光谱优化的关系。进行基础研究七旨在寻找(性价比)最佳的蓝光芯片的规格和荧光膜配方及浓度和厚度;尽可能寻找使得第一发光体发出的光接近自然光谱的蓝光芯片和荧光膜;基础研究八旨在寻找(性价比)最佳的红光芯片的规格,寻找抑制蓝光相对光谱的红光芯片的光辐射量(规格)的最佳值,并且尽可能寻找使得组合光谱接近自然光谱的红光芯片。
上述基础研究是选择蓝光芯片、荧光膜和红光芯片的主要理论依据,也是光谱调试过程中不断优化参量的理论依据。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (20)

  1. 一种准自然光LED光源,其特征在于,包括基底层、设置于所述基底层上的至少一组发光组件,以及与所述发光组件电连接的电路;每组所述发光组件包括白光发光体和红光发光体,所述白光发光体包括第一芯片和覆盖所述第一芯片可以直接写蓝光芯片的光学转换膜可以直接写荧光膜,所述红光发光体包括红光芯片;所述白光发光体发射的白光与所述红光发光体发射的红光混合,所述红光用于补偿所述白光相对于自然光谱缺失的红光部分,形成准自然光;所述准自然光中红色光的相对光谱功率大于0.60;所述准自然光中青色光的相对光谱功率大于 0.30;所述准自然光中蓝色光的相对光谱功率小于 0.75。
  2. 如权利要求1所述的准自然光LED光源,其特征在于,所述光学转换膜为荧光膜。
  3. 如权利要求1所述的准自然光LED光源,其特征在于,所述光学转换膜为磷光膜。
  4. 如权利要求1所述的准自然光LED光源,其特征在于,所述准自然光的色温范围为2500K-6500K,所述准自然光的色容差小于5,所述准自然光中的蓝光色比小于5.7%。
  5. 如权利要求1所述的准自然光LED光源,其特征在于,所述第一芯片为蓝光芯片,所述蓝光芯片的波长范围为450-480nm;所述红光芯片的波长范围为640-700nm。
  6. 如权利要求5所述的准自然光LED光源,其特征在于,所述蓝光芯片的波长范围为457.5-480nm。
  7. 如权利要求6所述的准自然光LED光源,其特征在于,所述白光具有如下光学参数:
    所述白光的色温为2700K-3000K时,480-500nm波段的相对光谱功率大于0.30;500-640nm波段的相对光谱功率大于0.70;
    所述白光的色温为4000K-4200K时,480-500nm波段的相对光谱功率大于0.45;500-640nm波段的相对光谱功率大于0.65;
    所述白光的色温为5500K-6000K时,480-500nm波段的相对光谱功率大于0.4;500-640nm波段的相对光谱功率大于0.60。
  8. 如权利要求2所述的准自然光LED光源,其特征在于,所述荧光膜包括胶体和混合于所述胶体内部的荧光粉,所述荧光粉包括红粉、绿粉和黄绿粉;
    所述红粉的色坐标为X:0.660~0.716,Y:0.340~0.286;
    所述绿粉的色坐标为X:0.064~0.081,Y:0.488~0.507;
    所述黄绿粉的色坐标为X:0.367~0.424,Y:0.571~0.545;
    所述红粉、绿粉和黄绿粉的重量比为:
    红粉:绿粉:黄绿粉=(0.010~0.035):(0.018~0.068):(0.071~0.253);
    所述荧光膜的浓度为17%~43%。
  9. 如权利要求8所述的准自然光LED光源,其特征在于,所述红粉、绿粉和黄绿粉的粒径均小于15μm。
  10. 如权利要求1所述的准自然光LED光源,其特征在于,
    所述准自然光中橙色光的相对光谱功率大于0.55;
    所述准自然光中黄色光的相对光谱功率大于0.50;
    所述准自然光中绿色光的相对光谱功率大于0.35;
    所述准自然光中紫色光的相对光谱功率小于0.10。
  11. 如权利要求1所述的准自然光LED光源,其特征在于,所述准自然光的显指Ra大于95,其中,R9的显指大于90,R12的显指大于80。
  12. 如权利要求1所述的准自然光LED光源,其特征在于,所述第一芯片和红光芯片倒装于所述基底层的表面,所述准自然光LED光源的长度小于或等于6mm,所述准自然光LED光源的宽度小于3mm。
  13. 如权利要求1所述的准自然光LED光源,其特征在于,所述第一芯片和红光芯片正装于所述基底层的表面。
  14. 如权利要求1所述的准自然光LED光源,其特征在于,在一组所述发光组件中,所述白光发光体的数量和所述红光发光体的数量比为1~8:1,所述白光发光体的总光通量与所述红光发光体的总光辐射量比为2-10:1。
  15. 如权利要求1所述的准自然光LED光源,其特征在于,所述基底层为非金属材料。
  16. 如权利要求15所述的准自然光LED光源,其特征在于,所述基底层上设有反射杯,所述白光发光体和红光发光体设置于所述反射杯中,所述电路形成于所述基底层的表面,且在所述反射杯的底部与所述白光发光体和红光发光体连接。
  17. 如权利要求1所述的准自然光LED光源,其特征在于,所述白光发光体和红光发光体通过相同的驱动电流统一驱动。
  18. 如权利要求1所述的准自然光LED光源,其特征在于,所述白光发光体和红光发光体通过不同的驱动电流分别驱动。
  19. 如权利要求1所述的准自然光LED光源,其特征在于,所述基底层还设有至少一个色温调节芯片,所述色温调节芯片与所述电路连接,通过控制所述色温调节芯片的发光状态调节所述准自然光LED光源的色温。
  20. 一种照明装置,其特征在于,包括权利要求1所述的准自然光LED光源。
PCT/CN2018/095314 2018-06-27 2018-07-11 一种准自然光led光源及照明装置 WO2020000518A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201810680502.1 2018-06-27
CN201810680502.1A CN109000160A (zh) 2018-06-27 2018-06-27 一种准自然光led光源及照明装置
CN201821008069.9 2018-06-27
CN201821008069 2018-06-27

Publications (1)

Publication Number Publication Date
WO2020000518A1 true WO2020000518A1 (zh) 2020-01-02

Family

ID=68985894

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/095314 WO2020000518A1 (zh) 2018-06-27 2018-07-11 一种准自然光led光源及照明装置

Country Status (1)

Country Link
WO (1) WO2020000518A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230151950A1 (en) * 2021-11-18 2023-05-18 Huizhou King Star Technology Co., Ltd. Full-spectrum eye-protecting led lamp panel structure and lamp

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102182944A (zh) * 2011-03-28 2011-09-14 浙江英特来光电科技有限公司 具有红光芯片的led白灯
US20110316443A1 (en) * 2010-06-29 2011-12-29 National Tsing Hua University Illuminating apparatus and illuminating method thereof
CN103474424A (zh) * 2013-09-27 2013-12-25 五邑大学 一种红色芯片直封led光源
CN103775862A (zh) * 2012-10-25 2014-05-07 深圳市福明电子科技有限公司 一种全色谱led照明灯具及其制作方法
CN206130577U (zh) * 2016-10-21 2017-04-26 深圳市耀铭豪智能科技有限公司 一种全光谱led照明装置
KR20170108319A (ko) * 2016-03-17 2017-09-27 (주)위너에코텍 식물 성장용 led 조명장치

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110316443A1 (en) * 2010-06-29 2011-12-29 National Tsing Hua University Illuminating apparatus and illuminating method thereof
CN102182944A (zh) * 2011-03-28 2011-09-14 浙江英特来光电科技有限公司 具有红光芯片的led白灯
CN103775862A (zh) * 2012-10-25 2014-05-07 深圳市福明电子科技有限公司 一种全色谱led照明灯具及其制作方法
CN103474424A (zh) * 2013-09-27 2013-12-25 五邑大学 一种红色芯片直封led光源
KR20170108319A (ko) * 2016-03-17 2017-09-27 (주)위너에코텍 식물 성장용 led 조명장치
CN206130577U (zh) * 2016-10-21 2017-04-26 深圳市耀铭豪智能科技有限公司 一种全光谱led照明装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230151950A1 (en) * 2021-11-18 2023-05-18 Huizhou King Star Technology Co., Ltd. Full-spectrum eye-protecting led lamp panel structure and lamp

Similar Documents

Publication Publication Date Title
CN109000160A (zh) 一种准自然光led光源及照明装置
WO2020000511A1 (zh) 一种led光源的优化方法
CN108843983A (zh) 一种高红光的准自然光光源及灯具
CN108922956A (zh) 一种低蓝光led光源及照明装置
CN109027719A (zh) 一种色温可调的led光源组件及照明装置
WO2020248748A1 (zh) 节律照明用的led光源
CN108826069A (zh) 一种护眼台灯
CN202484932U (zh) 弱蓝色光谱led复合光源总成
CN108826098A (zh) 一种植物生长灯
CN108878624A (zh) 一种白光led光源及照明装置
WO2020000512A1 (zh) 一种准自然光led光源的优化方法
WO2020000518A1 (zh) 一种准自然光led光源及照明装置
CN108899311A (zh) 一种led光源制造方法
CN117238902A (zh) 一种全光谱led光源
CN208572493U (zh) 一种色温可调的led光源组件及照明装置
CN108843984A (zh) 一种全自然光谱led发光体及照明装置
CN109027779A (zh) 一种高青光led发光件及照明设备
CN111720758A (zh) 光源模组、灯具
CN107248511B (zh) 一种具有低司辰节律因子的三基色白光led
WO2020000520A1 (zh) 荧光粉组合物及其制备方法
CN214625083U (zh) 一种光源模组及包括该光源模组的照明装置
CN202259428U (zh) 一种白光led封装结构
WO2020000517A1 (zh) 一种全自然光谱led发光体及照明装置
CN103196068A (zh) 一种led光源模块及具有其的灯具
CN208674162U (zh) 一种高青光led发光组件及照明设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18924001

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18924001

Country of ref document: EP

Kind code of ref document: A1