WO2022110986A1 - 一种海底土工原位多参数探测系统及方法 - Google Patents

一种海底土工原位多参数探测系统及方法 Download PDF

Info

Publication number
WO2022110986A1
WO2022110986A1 PCT/CN2021/118463 CN2021118463W WO2022110986A1 WO 2022110986 A1 WO2022110986 A1 WO 2022110986A1 CN 2021118463 W CN2021118463 W CN 2021118463W WO 2022110986 A1 WO2022110986 A1 WO 2022110986A1
Authority
WO
WIPO (PCT)
Prior art keywords
winch
probe
subsea
geotechnical
parameter detection
Prior art date
Application number
PCT/CN2021/118463
Other languages
English (en)
French (fr)
Inventor
陈家旺
任自强
王立忠
阮东瑞
洪义
何开
高峰
周朋
梁涛
Original Assignee
浙江大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江大学 filed Critical 浙江大学
Priority to US17/630,981 priority Critical patent/US20220357478A1/en
Publication of WO2022110986A1 publication Critical patent/WO2022110986A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V11/00Prospecting or detecting by methods combining techniques covered by two or more of main groups G01V1/00 - G01V9/00
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L11/00Measuring steady or quasi-steady pressure of a fluid or a fluent solid material by means not provided for in group G01L7/00 or G01L9/00
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L5/00Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes
    • G01L5/0028Force sensors associated with force applying means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V3/00Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D1/00Investigation of foundation soil in situ
    • E02D1/02Investigation of foundation soil in situ before construction work
    • E02D1/022Investigation of foundation soil in situ before construction work by investigating mechanical properties of the soil
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V1/00Seismology; Seismic or acoustic prospecting or detecting
    • G01V1/38Seismology; Seismic or acoustic prospecting or detecting specially adapted for water-covered areas
    • G01V1/3843Deployment of seismic devices, e.g. of streamers
    • G01V1/3852Deployment of seismic devices, e.g. of streamers to the seabed

Definitions

  • the invention relates to the field of marine engineering technical equipment, in particular to a subsea geotechnical in-situ multi-parameter detection system and method.
  • the investigation and study of the properties of submarine soil is an essential and important part of offshore engineering construction such as offshore oil platforms, submarine tunnels, oil and gas pipelines, and optical cables.
  • the study of soil properties of sediments tens of meters below the seabed is of great significance to marine environmental surveys, seabed resource exploration, and marine development and utilization. Under the extreme environmental loads of the ocean, the collapse or excessive inclination of offshore structural foundations often occurs, resulting in excessive conventional design redundancy.
  • the safe and economical structural foundation design of marine engineering mainly depends on the efficient survey and scientific analysis of the mechanical properties of the seabed strata.
  • static penetration technology has shown unparalleled advantages in comprehensive analysis and evaluation of engineering geology due to the characteristics of field testing without sampling, wide application range, rapidity, and economy.
  • the application of static penetration technology to seabed soil survey can show its own advantages.
  • the seabed soil is generally a recent sediment, thick, saturated, loose and easily disturbed. Drilling, sampling and other operations have disturbed the soil. Field observations or laboratory tests after sampling have caused the soil to lose water and pressure, so it is impossible to obtain In situ seabed sediment soil properties; static penetration technology can obtain more real soil properties because it is tested in the actual environment of seabed soil.
  • the survey speed is fast and the efficiency is high. This advantage is more obvious when conducting a large-scale seabed soil survey, such as the routing survey of submarine cables and oil pipelines.
  • the static penetration technology equipment mostly uses a full-length straight rigid probe rod to directly press the probe into the seabed surface, resulting in radial instability and inconvenient operation, so it is not suitable for the survey of deeper seabed sediments;
  • the method of segment probe requires manual docking and requires greater labor. This detection method is only limited to shallow water operating environments and is not suitable for deep sea areas.
  • the design of a subsea geotechnical in-situ multi-parameter detection system will meet the needs of accurate survey technology and equipment for the properties of the subsea soil. Further improvement can improve the level of in-situ survey equipment for marine geotechnical engineering in my country.
  • the purpose of the present invention is to provide a subsea geotechnical in-situ multi-parameter detection system and method, which solves the problem that the current survey equipment mostly uses a full-length straight rigid probe to directly press the probe into the seabed surface, thereby causing radial instability and inconvenience in operation.
  • the method of segmented probe requires manual docking, which is not suitable for technical problems in deeper waters.
  • the solution of the present invention is:
  • a subsea geotechnical in-situ multi-parameter detection system including an overall frame, a constant velocity penetration system, a flexible probe rod, a docking assembly system and a static penetration probe;
  • the constant-speed penetration system includes two friction wheels symmetrically arranged in the same vertical plane, and a collimation mechanism is arranged on the upper and lower parts of the butt joints of the two friction wheels; the friction wheels are provided with brackets, and the brackets are provided with a hydraulic motor.
  • the motor drives the symmetrically distributed friction wheels to rotate in opposite directions, thereby driving the probe rod located in the middle of the two friction wheels to penetrate the ground at a constant speed.
  • the two brackets are connected by a hydraulic locking oil cylinder, which is used to provide the opposite extrusion friction force between the two friction wheels.
  • the two brackets are fixed on the bottom surface of the overall frame through the same base, and the base is also provided with an accumulator
  • the accumulator is connected with the hydraulic motor to absorb the pressure shock generated by the sudden stop of the movement of the actuator in the hydraulic system, avoid damage to instruments, components and sealing devices, and reduce the vibration and noise generated.
  • the bottom surface of the overall frame is also provided with a hydraulic valve box, hydraulic pipeline and underwater motor for providing hydraulic power, which are connected with the hydraulic motor and the hydraulic locking cylinder; the friction force between the friction wheel and the probe rod is adjusted through the hydraulic locking cylinder. , so as to adjust the penetration force.
  • Hydraulic valve box, hydraulic pipeline and underwater motor provide hydraulic power for the hydraulic drive system. The hydraulic valve box controls the rotation speed of the friction wheel, thereby adjusting the penetration speed of the probe rod.
  • the docking assembly system includes a winch, a docking device and a drive runner; the winch is fixed on the bottom surface of the overall frame on the rear side of the friction wheel, and the winch runner is connected with the servo motor; the drive runner is set on the support frame and connected with the servo motor; docking; The device connects and disassembles the quick docking mechanism between adjacent small segments of rigid rods.
  • the flexible probe consists of multiple rigid rods connected by armored cables, and the armored cables can simultaneously transmit signals in real time.
  • the flexible probe rod is wound around the winch, and the static probe is connected to one end of the flexible probe rod.
  • the end passes through the docking device, enters between the two friction wheels, and finally penetrates into the ground after passing through the collimation mechanism; the docking device is driven by a hydraulic motor.
  • the probe rod is connected and disassembled by the ring chuck structure.
  • the static penetration probe penetrates into the seabed soil, it can collect a variety of in-situ geotechnical data, and transmit the data to the underwater electronic cabin in real time through the signal armored cable.
  • the static penetration probe collects data on in-situ multi-parameters such as cone tip resistance, sidewall friction, pore water pressure, and resistivity.
  • the friction wheel and the bracket are detachably connected, the outer ring of the friction wheel is provided with grooves, and the grooves are provided with lines.
  • the rigid rod is a hollow cylindrical structure, and the two ends are respectively provided with a male plug and a female plug.
  • the winch includes a winch revolving frame, the winch revolving frame is installed on the base, and the inner side is provided with annular teeth, which are connected with the servo motor through gears; the base is also provided with a runner and a guide rail, and the runner is used for the winch revolving frame. Support and guidance during rotation, and guide rails are used for the guidance of flexible probe rods.
  • the winch revolving frame rotates, and the rotation takes the center of the revolving frame itself as the axis.
  • the overall frame includes a support frame, an anti-collision grille and an anti-collision rubber strip are arranged on the outside of the support frame, a hoisting frame is arranged on the top, and an anti-corrosion zinc block is arranged inside.
  • one end of the male plug is provided with a plug; one end of the female plug is provided with a groove, and the groove is embedded with a circlip; the outer edge of the groove is evenly provided with three
  • Each gap is provided with a claw; the claw is all nested on the circlip, and the other end of the female plug is connected to the gland with a screw; the plug of the male plug is inserted into the In the groove of the female plug, the retaining spring provides an inward tightening force to engage the clamping claw with the plug on the male plug.
  • a subsea geotechnical in-situ multi-parameter detection method the subsea geotechnical in-situ multi-parameter detection method is applied to a subsea geotechnical in-situ multi-parameter detection system as described in any one of the above, the subsea geotechnical in-situ multi-parameter detection system Detection methods include:
  • the winch in the docking assembly system is controlled to rotate, so that the winch drives the flexible probe rod to deploy;
  • the hydraulic motor is controlled to rotate in the opposite direction to drive the friction wheel to drive the flexible probe, so that the static probe can be pulled upwards.
  • the quick docking mechanism is opened, and the straight probe rod is divided into two rigid rods. The rigid rod is wound on the winch after driving the runner.
  • the present invention directly presses the probe into the surface of the seabed, thereby causing the problems of radial instability and inconvenient operation.
  • the flexible probe rod in the present invention has better stability.
  • the present invention requires manual docking, has greater labor requirements and is not suitable for deep-sea environments.
  • the present invention does not require manual docking, reduces labor intensity, and can perform seabed operations in deep-sea environments.
  • the flexible probe rod is used to form a rigid straight probe rod, and the friction wheel moves toward each other to pressurize the straight probe rod. The required collimation and penetration pressure ensure stability during static penetration.
  • Fig. 1 is the overall external schematic diagram of a kind of subsea geotechnical in-situ multi-parameter detection system provided by the present invention
  • FIG. 2 is a schematic structural diagram of a subsea geotechnical in-situ multi-parameter detection system provided by the present invention
  • FIG. 3 is a partial schematic diagram of a subsea geotechnical in-situ multi-parameter detection system provided by the present invention.
  • FIG. 4 is a schematic structural diagram of a docking device provided by the present invention.
  • FIG. 5 is a bottom view of the docking device provided by the present invention.
  • Fig. 6 is the structural representation of the collimation mechanism provided by the present invention.
  • Fig. 7 is the structural representation of the winch provided by the present invention.
  • FIG. 8 is a schematic structural diagram of a rigid rod provided by the present invention.
  • Fig. 9 is the structural representation of the female head plug provided by the present invention.
  • FIG. 10 is a schematic structural diagram of the male plug provided by the present invention.
  • a subsea geotechnical in-situ multi-parameter detection system includes an overall frame, a constant velocity penetration system, a flexible probe rod, a docking assembly system and a static penetration probe.
  • the overall frame 1 consists of a hoisting frame 1-1, a support frame 1-2, an anti-collision rubber strip 1-3 and an anti-collision grille 1-4, which are used for the support, installation and protection of the overall equipment.
  • the structure of the frame can be designed according to actual needs.
  • the support frame 1-2 includes support mounting brackets for the various mechanisms.
  • the hoisting frame 1-1 is welded on the top of the support frame 1-2, and the anti-collision rubber strip 1-3 is installed on the inner side of the support frame 1-2, and the anti-collision rubber strip 1-3 and the anti-collision grille 1 are installed on the outside for protecting the equipment. -4.
  • the constant speed penetration system includes friction wheel 2-1, bracket 2-2, hydraulic motor 2-3, base 2-4, accumulator 2-5, docking device 2-6, hydraulic locking Cylinder 2-7 and collimation mechanism 2-8.
  • the collimation mechanism 2-8 is shown in FIG. 6 .
  • the hydraulic drive system consists of hydraulic motor 2-3, base 2-4, accumulator 2-5, and hydraulic locking cylinder 2-7.
  • the constant-speed penetration system includes two friction wheels 2-1 symmetrically arranged in the same vertical plane.
  • the two friction wheels 2-1 are provided with collimation mechanisms 2-8 at the upper and lower parts of the joint, and the friction wheels 2-1 are both
  • a bracket 2-2 is provided, and a hydraulic motor 2-3 is arranged in the bracket 2-2.
  • the hydraulic motor 2-3 is used to drive the friction wheel 2-1 to rotate.
  • the two brackets 2-2 are connected by a hydraulic locking cylinder 2-7, which is used to provide the pressing friction force between the two friction wheels 2-1.
  • the two brackets 2-2 are fixed on the same base 2-4.
  • the base 2-4 is also provided with an accumulator 2-5, and the accumulator 2-5 is connected with the hydraulic motor 2-3 to absorb the sudden stop of the movement of the actuator, which is generated in the hydraulic system. pressure shock.
  • the bottom surface of the overall frame 1 is also provided with a hydraulic valve box 3 for providing hydraulic power, a hydraulic pipeline and an underwater motor 10, which are connected with the hydraulic motor 2-3 and the hydraulic locking cylinder 2-7.
  • the docking assembly system includes a winch 8, a docking device 2-6 and a driving runner 7.
  • the winch 8 is fixed on the bottom surface of the overall frame on the rear side of the friction wheel 2-1, and the driving runner 7 is set on the supporting frame 1-2.
  • Servo motor 6 is connected.
  • the winch rotating frame 8-1 is installed on the base 8-7, and the inner side is provided with an annular tooth 8-5, which meshes with the gear 8-6 on the servo motor 8-2.
  • the winch swivel 8-1 rolls on the runner 8-3.
  • the docking device consists of annular jaws 2-6-1, chucks 2-6-2, drive gears 2-6-3, drive discs 2-6-4 and positioning pins 2-6 -5 composition.
  • the chuck 2-6-2 has a structure similar to a cover. There is a through hole in the center of the top of the chuck 2-6-2 for the passage of the rigid probe rod 9-2. There are three grooves emanating from the center to the outer edge direction, a plurality of through holes are arranged on the side of the chuck 2-6-2, and a drive gear 2-6-3 is arranged in the through holes. There is a claw seat in the groove, and each claw seat is provided with an annular claw 2-6-1. There are lines on the opposite sides of the three annular claw 2-6-1.
  • the annular claw 2-6- 1 The rigid probe rod 9-2 can be clamped for docking. When the rigid probe rods 9-2 at the adjacent ends are removed, the ring-shaped jaws 2-6-1 can open the quick link mechanism on the probe rod.
  • the center of the drive disc 2-6-4 has a hole, and the side wall of the hole is provided with a threaded groove.
  • the edge is provided with annular teeth
  • the claw seat is provided with an extension downward, and the extension penetrates into the hole in the center of the driving disc 2-6-4.
  • the threaded grooves in the holes fit together, and the drive gear 2-6-3 can be connected to the drive mechanism and mesh with the annular teeth on the side edge of the drive disc 2-6-4.
  • the rotation of the drive gear 2-6-3 drives the drive disc 2-6-4 to rotate, and the threaded groove on the drive disc 2-6-4 drives the annular jaw 2-6-1 to move.
  • the static probing probe 5 is arranged on one end of the flexible probe rod 9, and one end of the flexible probe rod 9 with the static probing probe 5 is led out through the guide rail 8-4, and guided by the driving wheel 7, and passes through the docking device 2- 6 and the collimation mechanism 2-8 enter between the two friction wheels 2-1, and finally penetrate the static penetration probe 5 downward into the soil.
  • the flexible probe rod 9 is formed by butt jointing of multiple rigid rod members 9-2.
  • the flexible probe rod 9 is provided with an armored cable, and the rigid rod member 9-2 is provided with a quick link structure at both ends.
  • the quick docking mechanism is a male plug 9-1 and a female plug 9-3, and one end of the male plug 9-1 is provided with a jam.
  • One end of the female plug 9-3 is provided with a groove, the outer wall of the groove is provided with an annular groove, and the groove is embedded with a circlip 9-5 The outer edge of the groove is evenly provided with 3 gaps, and a card is installed at each gap.
  • the claw 9-4 and the clamping claw 9-4 are all nested on the retaining spring 9-5, and the other side of the female plug 9-3 is connected with a gland 9-6 by a screw 9-7.
  • the plug of the male plug 9-1 is inserted into the groove of the female plug 9-3, and the circlip 9-5 provides an inward tightening effect force, the claws 9-4 are engaged with the plugs on the male plug 9-1 to realize the butt joint of the male plug 9-1 and the female plug 9-2.
  • the present invention also provides an in-situ multi-parameter detection method for subsea geotechnical engineering, which is applied to the above-mentioned in-situ multi-parameter detection system for subsea geotechnical engineering.
  • Detection methods include:
  • the winch in the docking assembly system is controlled to rotate, so that the winch drives the flexible probe to deploy.
  • the servo motor is controlled to drive the driving wheel to rotate, so that the driving wheel drives the rigid rod to align the docking device.
  • the hydraulic motor is controlled to drive the friction wheel to rotate to drive the flexible probe rod, so that the static penetration probe penetrates into the soil under test.
  • the hydraulic motor is controlled to rotate in the opposite direction to drive the friction wheel to drive the flexible probe, so that the static probe can be pulled upwards.
  • the quick docking mechanism is opened, and the straight probe rod is divided into two rigid rods. The rigid rod is wound on the winch after driving the runner.
  • the flexible probe rod 9 is connected in series by a plurality of rigid rod members 9-2, the flexible probe rod 9 is wound on the winch 8, and one end of the rigid rod member 9-2 is wound and connected with the driving wheel 7, and the flexible probe rod 9 is wound around the driving wheel 7. The other end bypasses the driving wheel 7 and then passes through the docking device 2-6.
  • the docking device 2-6 connects the quick docking mechanisms between adjacent flexible probe rods 9, and combines the flexible probe rods 9 into a straight probe rod.
  • the hydraulic motor 2-3 drives the friction wheel 2-1 to rotate and drives the flexible probe rod 9, so that the static penetration probe 5 penetrates into the soil under test.
  • the static penetration probe 5 actually collects data on in-situ multi-parameters such as cone tip resistance, sidewall friction, pore water pressure, and resistivity during the filling process.
  • the hydraulic motor 2-3 reversely drives the friction wheel 2-1 to drive the flexible probe rod 9, and pulls the static penetration probe 5 upward.
  • the docking device 2- 6. Open the quick docking mechanism between adjacent flexible probe rods, and divide the straight probe rod into two rigid rods 9-2.
  • the rigid rod 9-2 is wound on the winch 8 after driving the runner 7.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Geophysics (AREA)
  • Analytical Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Remote Sensing (AREA)
  • Geology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Soil Sciences (AREA)
  • Mining & Mineral Resources (AREA)
  • Paleontology (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Geophysics And Detection Of Objects (AREA)
  • Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)

Abstract

本发明涉及海洋工程技术装备领域,具体涉及一种海底土工原位多参数探测系统及方法。系统包括两个对称设于整体框架内的摩擦轮,两摩擦轮对接处上下方均设有准直机构;绞车固设于摩擦轮后侧的整体框架底面上,绞车转轮与伺服电机相连;柔性探杆包括通过铠装电缆连接的多段刚性杆件,静力触探探头与柔性探杆一端相连,柔性探杆绕设在绞车上,带有静力触探探头一端依次穿过对接装置与准直机构后进入两摩擦轮间,最终向下将静力触探探头贯入至土体。本发明有着较好的稳定性。

Description

一种海底土工原位多参数探测系统及方法
本申请要求于2020年11月30日提交中国专利局、申请号为202011376624.5、发明名称为“一种海底土工原位多参数探测系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及海洋工程技术装备领域,特别是涉及一种海底土工原位多参数探测系统及方法。
背景技术
海底土体性质的调查研究是海上石油平台、海底隧道、油气管道、光缆等海洋工程建设必不可少的重要部分。海底以下数十米的沉积物土体性质的研究,对于海洋环境调查、海底资源勘探、海洋开发利用等各方面都具有重要意义。在海洋极端环境荷载下,海上结构基础倒塌或过度倾斜时有发生,导致常规设计冗余度过高。安全、经济的海洋工程结构基础设计主要取决于海床地层力学特性的高效勘测和科学分析。
相较于其他非原位测试方法,静力触探技术以现场测试无需取样、适合范围广、快速、经济等特点,在工程地质综合分析评价中显示了无可比拟的优越性。将静力触探技术应用到海底土体勘测则更能显示出自身的优点。海底土体一般为新近沉积物,厚度大、饱和松散且容易扰动,钻探、取样等操作对土体产生了扰动,取样后进行现场观测或室内试验已经使土体失水失压,因此无法获得原位海底沉积物土体性质;静力触探技术却因为在海底土体的实际环境中进行测试,可以获得更为真实的土体性质。并且勘测速度快、效率高,这种优势在进行大范围的海底土体勘测时更加明显,如海底电缆和输油管线的路由调查等。
目前静力触探技术装备多采用整长度的平直刚性探杆直接将探头压入海床表面,从而导致径向失稳与操作不便,因此不适用较深海床沉积物的勘测;此外,采用分段探杆的方式,则需要人工对接,有较大作业劳动要求,这种探测方法只限于浅水作业环境,并不适用于较深的海域。
因此,设计一种海底土工原位多参数探测系统,将满足针对海底土体性质的精准勘测技术与装备的需求,在深海较大的工作水深下进行海底土 体性质的勘测工作,勘测深度同时得到进一步的提升,可以提高我国海洋岩土工程原位勘测设备水平。
发明内容
本发明的目的是提供一种海底土工原位多参数探测系统及方法,解决目前勘测装备多采用整长度的平直刚性探杆直接将探头压入海床表面,从而导致径向失稳与操作不便;而采用分段探杆的方式,则需要人工对接,不适用于较深海域的技术问题。
为解决技术问题,本发明的解决方案是:
提供一种海底土工原位多参数探测系统,包括整体框架、恒速贯入系统、柔性探杆、对接组件系统和静力触探探头;
恒速贯入系统包括两个对称设于同一竖直平面内的摩擦轮,两摩擦轮对接处上下方均设有准直机构;摩擦轮上均设有支架,支架内设有液压马达,液压马达驱动对称分布的摩擦轮进行相向旋转,从而驱动位于两摩擦轮中间的探杆不断匀速贯入地面。两个支架间通过液压锁紧油缸相连,用于提供两个摩擦轮间相向的挤压摩擦力,两个支架通过同一底座固设于整体框架内的底面上,底座上还设有蓄能器,蓄能器与液压马达相连,用于吸收执行元件运动的突然停止在液压系统中产生的压力冲击,避免造成仪表、元件和密封装置的损坏以及减小产生的振动和噪声。整体框架内的底面上还设有用于提供液压动力的液压阀箱、液压管路和水下电机,与液压马达和液压锁紧油缸相连;通过液压锁紧油缸调节摩擦轮对探杆的摩擦力,从而对贯入力进行调节。液压阀箱、液压管路、水下电机为液压驱动系统提供液压动力。液压阀箱控制摩擦轮的旋转速度,从而对探杆的贯入速度进行调节。
对接组件系统包括绞车、对接装置和驱动转轮;绞车固设于摩擦轮后侧的整体框架底面上,绞车转轮与伺服电机相连;驱动转轮设于支撑框架上,与伺服电机相连;对接装置将相邻小段刚性杆件之间的快速对接机构进行对接拆卸。
柔性探杆包括通过铠装电缆连接的多段刚性杆件,铠装电缆同时可以进行信号的实时传输。柔性探杆绕设在绞车上,静力触探探头与柔性探杆 一端相连,该端穿过对接装置,进入两摩擦轮间,经过准直机构后最终贯入地面;对接装置由液压马达驱动,采用环形卡盘结构对探杆进行连接和拆卸。静力触探探头贯入海底土体时可以对多种原位土工数据进行采集,通过信号铠装电缆对数据进行实时的传输到水下电子舱。静力触探探头对锥尖阻力、侧壁摩擦力、孔隙水压力、电阻率等原位多参数进行数据采集。
作为一种改进,摩擦轮与支架可拆卸连接,摩擦轮外圈设有凹槽,凹槽上设有纹路。
作为一种改进,刚性杆件为空心圆柱体结构,两端分别设有公头塞和母头塞。
作为一种改进,绞车包括绞车旋转架,绞车旋转架安装在底座上,内侧设有环形齿,与伺服电机通过齿轮连接;底座上还设有转轮和导轨,转轮用于绞车旋转架的旋转时的支撑与导向,导轨用于柔性探杆的导向。绞车工作时绞车旋转架转动,转动以旋转架自身圆心为轴。
作为一种改进,整体框架包括支撑框架,支撑框架外部设有防撞格栅和防撞橡胶条,顶部设有吊装架,内部设有防腐锌块。
作为一种改进,所述公头塞一端设有卡塞;所述母头塞一端设有凹槽,所述凹槽内嵌有卡簧;所述凹槽的外缘上均匀设有3个缺口,每个缺口处安装有卡爪;所述卡爪均嵌套在所述卡簧上,所述母头塞另一端用螺钉连接压盖;所述公头塞的卡塞塞入所述母头塞的凹槽中,所述卡簧提供向内收紧的作用力,将所述卡爪与所述公头塞上的卡塞相扣。
一种海底土工原位多参数探测方法,所述海底土工原位多参数探测方法应用于如上述任意一项所述的一种海底土工原位多参数探测系统,所述海底土工原位多参数探测方法包括:
在静力触探探头灌入过程中,控制对接组件系统中的绞车转动,以使所述绞车带动柔性探杆布放;
控制伺服电机带动驱动转轮转动以使所述驱动转轮带动刚性杆件对准对接装置;
控制液压锁紧油缸驱动摩擦轮相向运动,使柔性探杆的两侧均与摩擦轮紧贴;
控制液压马达驱动摩擦轮旋转以带动所述柔性探杆,使所述静力触探探头贯入到被测土体中;
在静力触探探头回收过程中,控制液压马达反向旋转驱动摩擦轮带动柔性探杆使得所述静力触探探头向上拉出,同时,控制所述对接装置将相邻柔性探杆间的快速对接机构打开,将平直探杆分成两段刚性杆件,刚性杆通过驱动转轮后缠绕于绞车上。
与现有技术相比,本发明的有益效果是:
1、本发明相较于整长度的平直刚性探杆直接将探头压入海床表面,从而导致径向失稳与操作不便的问题,本发明采用柔性探杆的方式有着较好的稳定性。
2、本发明相较于分段探杆的方式,则需要人工对接,有较大作业劳动要求且不适用于深海环境,本发明无需人工进行对接,减少劳动强度,可以进行深海环境下的海底静力触探作业。利用柔性探杆组成刚性平直探杆,使用摩擦轮相向运动对平直探杆进行加压,同时摩擦轮旋转使探杆向被测土体贯入,保证了探杆贯入土体探测时需要的准直度和贯入压力,保证静力触探过程中的稳定性。
说明书附图
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是本发明提供的一种海底土工原位多参数探测系统的整体外部示意图;
图2是本发明提供的一种海底土工原位多参数探测系统的结构示意图;
图3是本发明提供的一种海底土工原位多参数探测系统的局部示意图;
图4是本发明提供的对接装置的结构示意图;
图5是本发明提供的对接装置的仰视图;
图6是本发明提供的准直机构的结构示意图;
图7是本发明提供的绞车的结构示意图;
图8是本发明提供的刚性杆件的结构示意图;
图9是本发明提供的母头塞的结构示意图;
图10是本发明提供的公头塞的结构示意图。
其中:1—整体框架;1-1—吊装架;1-2—支撑框架;1-3—防撞橡胶条;1-4—防撞格栅;2—恒速贯入系统;2-1—摩擦轮;2-2—支架;2-3—液压马达;2-4—底座;2-5—蓄能器;2-6—对接装置;2-7—液压锁紧油缸;2-8—准直机构;3—液压阀箱;4—电子舱;5—静力触探探头;6—伺服电机;7—驱动转轮;8—绞车;8-1—绞车旋转架;8-2—伺服电机;8-3—转轮;8-4—导轨;8-5—环形齿;8-6—齿轮;8-7—底座;9—柔性探杆;9-1—公头塞;9-2—刚性杆件;9-3—母头塞;9-4—卡爪;9-5—卡簧;9-6—压盖;9-7—螺钉;10—水下电机。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图和具体实施方式对本发明作进一步详细的说明。
如图2所示,一种海底土工原位多参数探测系统,包括整体框架、恒速贯入系统、柔性探杆、对接组件系统和静力触探探头。
如图1所示,整体框架1由吊装架1-1、支撑框架1-2、防撞橡胶条1-3和防撞格栅1-4组成,用于整体设备的支撑安装保护作用,整体框架的结构可以根据实际需要进行设计。在本实例中,支撑框架1-2包括各个机构的支撑安装支架。吊装架1-1焊设于支撑框架1-2顶部,支撑框架1-2内侧安装防撞橡胶条1-3,外侧设有用于保护设备的防撞橡胶条1-3和防撞格栅1-4。
如图3所示,恒速贯入系统包括摩擦轮2-1、支架2-2、液压马达2-3、底座2-4、蓄能器2-5、对接装置2-6、液压锁紧油缸2-7和准直机构2-8。其中,准直机构2-8如图6所示。液压驱动系统由液压马达2-3、底座2-4、蓄能器2-5、液压锁紧油缸2-7组成。恒速贯入系统包括两个对称设于同一竖直平面内的摩擦轮2-1,两摩擦轮2-1对接处上下方均设有准直机构2-8,摩擦轮2-1上均设有支架2-2,支架2-2内设有液压马达2-3,液压马达2-3用于驱动摩擦轮2-1转动。两个支架2-2间通过液压锁紧油缸2-7相连,用于提供两个摩擦轮2-1间相向的挤压摩擦力,两个支架2-2通过同一底座2-4固设于整体框架1内的底面上,底座2-4上还设有蓄能器2-5,蓄能器2-5与液压马达2-3相连,吸收执行元件运动的突然停止在液压系统中产生的压力冲击。整体框架1内的底面上还设有用于提供液压动力的液压阀箱3、液压管路和水下电机10,与液压马达2-3和液压锁紧油缸2-7相连。
对接组件系统包括绞车8、对接装置2-6和驱动转轮7,绞车8固设于摩擦轮2-1后侧的整体框架底面上,驱动转轮7设于支撑框架1-2上,与伺服电机6相连。如图7所示,绞车旋转架8-1安装在底座8-7上,内侧设有环形齿8-5,与伺服电机8-2上的齿轮8-6相啮合。绞车旋转架8-1在转轮8-3上滚动。如图4和5所示,对接装置由环形卡爪2-6-1,卡盘2-6-2,驱动齿轮2-6-3,驱动圆盘2-6-4和定位钉2-6-5组成。卡盘2-6-2为类似盖的结构,卡盘2-6-2顶部中心开有通孔,用于刚性探杆9-2的通过,卡盘2-6-2顶部盘面上均匀设有三个自中心向外缘方向发散的凹槽,卡盘2-6-2侧部设有多个通孔,通孔内设有驱动齿轮2-6-3。凹槽内设有卡爪座,每个卡爪座上均设有环形卡爪2-6-1,三个环形卡爪2-6-1相对侧上有纹路,环形卡爪2-6-1可以夹持刚性探杆9-2进行对接,拆除相邻两端刚性探杆9-2时环形卡爪2-6-1可以将探杆上的快速连杆机构打开。卡盘2-6-2下方内部设有驱动圆盘2-6-4,驱动圆盘2-6-4中心开孔,孔的侧壁设有螺纹槽,驱动圆盘2-6-4外缘设有环形齿,卡爪座向下设有延伸部,延伸部深入到驱动圆盘2-6-4中心的孔内,延伸部上设有螺纹,螺纹与驱动圆盘2-6-4孔内的螺纹槽相契合,驱动齿轮2-6-3可连接驱动机构并与驱动圆盘2-6-4侧缘的环形齿相啮合。驱动齿轮2-6-3旋转带动驱动 圆盘2-6-4旋转,驱动圆盘2-6-4上的螺纹槽带动环形卡爪2-6-1进行移动。静力触探探头5设于柔性探杆9一端,柔性探杆9带有静力触探探头5的一端通过导轨8-4导出,并通过驱动转轮7导向,依次穿过对接装置2-6与准直机构2-8后进入两摩擦轮2-1间,最终向下将静力触探探头5贯入至土体。
如图8所示,柔性探杆9由多段钢性杆件9-2对接而成,柔性探杆9内设有铠装电缆,刚性杆件9-2两端装有快速连杆结构。如图9和10所示,快速对接机构为公头塞9-1和母头塞9-3,公头塞9-1一端设有卡塞。母头塞9-3一端设有凹槽,凹槽外壁上设有环形槽,凹槽内嵌有卡簧9-5凹槽外缘上均匀设有3个缺口,每个缺口处安装有卡爪9-4,卡爪9-4均嵌套在卡簧9-5上,母头塞9-3另一侧用螺钉9-7连接有压盖9-6。公头塞9-1与母头塞9-3对接时,公头塞9-1的卡塞塞入母头塞9-3的凹槽中,卡簧9-5提供向内收紧的作用力,将卡爪9-4与公头塞9-1上的卡塞相扣,实现公头塞9-1与母头塞9-2的对接。
本发明还提供一种海底土工原位多参数探测方法,所述海底土工原位多参数探测方法应用于上述所述的一种海底土工原位多参数探测系统,所述海底土工原位多参数探测方法包括:
在静力触探探头灌入过程中,控制对接组件系统中的绞车转动,以使所述绞车带动柔性探杆布放。
控制伺服电机带动驱动转轮转动以使所述驱动转轮带动刚性杆件对准对接装置。
控制液压锁紧油缸驱动摩擦轮相向运动,使柔性探杆的两侧均与摩擦轮紧贴。
控制液压马达驱动摩擦轮旋转以带动所述柔性探杆,使所述静力触探探头贯入到被测土体中。
在静力触探探头回收过程中,控制液压马达反向旋转驱动摩擦轮带动柔性探杆使得所述静力触探探头向上拉出,同时,控制所述对接装置将相邻柔性探杆间的快速对接机构打开,将平直探杆分成两段刚性杆件,刚性杆通过驱动转轮后缠绕于绞车上。
本发明的工作过程如下:
(1)柔性探杆9由多个刚性杆件9-2串联连接,柔性探杆9缠绕在绞车8上,刚性杆件9-2的一端与驱动转轮7缠绕连接,柔性探杆9的另一端绕过驱动转轮7后穿过对接装置2-6,对接装置2-6将相邻柔性探杆9之间的快速对接机构进行连接,将柔性探杆9组合成平直探杆。
(2)静力触探探头5贯入过程中,伺服电机8-2上安装的齿轮通过与环形齿8-5啮合,当伺服电机21转动时带动绞车8转动,绞车8带动柔性探杆9进行布放。伺服电机6带动驱动转轮7转动,驱动转轮10带动刚性杆件对准对接装置2-6,对接装置2-6将相邻两端刚性杆件9-2进行对接,将柔性探杆9组合成平直探杆。液压锁紧油缸2-7驱动摩擦轮2-1相向运动,使柔性探杆9的两侧均与摩擦轮2-1紧贴,摩擦轮2-1可以更换以适用于不同尺寸的柔性探杆9。液压马达2-3驱动摩擦轮2-1旋转带动柔性探杆9,使静力触探探头5贯入到被测土体中。静力触探探头5在灌入过程中实对锥尖阻力、侧壁摩擦力、孔隙水压力、电阻率等原位多参数进行数据采集。
(3)将静力触探探头5回收时,液压马达2-3反向旋转驱动摩擦轮2-1带动柔性探杆9,将静力触探探头5向上拉出,同时,对接装置2-6将相邻柔性探杆间的快速对接机构打开,将平直探杆分成两段刚性杆件9-2,刚性杆9-2通过驱动转轮7后缠绕于绞车8上。
本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。对于实施例公开的系统而言,由于其与实施例公开的方法相对应,所以描述的比较简单,相关之处参见方法部分说明即可。
本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处。综上所述,本说明书内容不应理解为对本发明的限制。

Claims (8)

  1. 一种海底土工原位多参数探测系统,其特征在于,包括整体框架、恒速贯入系统、对接组件系统、柔性探杆和静力触探探头;
    所述恒速贯入系统包括两个对称设于同一竖直平面内的摩擦轮,两摩擦轮对接处上下方均设有准直机构;摩擦轮上均设有支架,支架内设有液压马达,液压马达用于驱动摩擦轮转动;两个支架间通过液压锁紧油缸相连,用于提供两个摩擦轮间相向的挤压摩擦力,两个支架通过同一底座固设于整体框架内的底面上,底座上还设有蓄能器,蓄能器与液压马达相连;所述整体框架内的底面上还设有用于提供液压动力的液压阀箱、液压管路和水下电机,与液压马达和液压锁紧油缸相连;
    所述对接组件系统包括绞车、对接装置和驱动转轮;绞车固设于所述摩擦轮后侧的整体框架底面上,绞车转轮与伺服电机相连,所述驱动转轮设于支撑框架上,与伺服电机相连;
    所述柔性探杆包括通过铠装电缆连接的多段刚性杆件,静力触探探头设于柔性探杆一端;柔性探杆绕设在绞车上,带有静力触探探头的一端依次穿过驱动转轮、对接装置与准直机构,并进入所述两摩擦轮间,最终贯入地面,所述对接装置用于连接和拆卸多段刚性杆件。
  2. 根据权利要求1中所述的一种海底土工原位多参数探测系统,其特征在于,所述整体框架包括支撑框架;所述支撑框架外部设有防撞格栅和防撞橡胶条,顶部设有吊装架,内部设有防腐锌块。
  3. 根据权利要求1中所述的一种海底土工原位多参数探测系统,其特征在于,所述摩擦轮与支架可拆卸连接,摩擦轮外圈设有凹槽,凹槽上设有纹路。
  4. 根据权利要求1中所述的一种海底土工原位多参数探测系统,其特征在于,所述刚性杆件为空心圆柱体结构,两端分别设有快速连杆机构。
  5. 根据权利要求4中所述的一种海底土工原位多参数探测系统,其特征在于,所述快速连杆机构为公头塞和母头塞。
  6. 根据权利要求1中所述的一种海底土工原位多参数探测系统,其特征在于,所述绞车包括绞车旋转架,绞车旋转架安装在底座上,内侧设有环形齿,与伺服电机通过齿轮连接;底座上还设有转轮和导轨,转轮用于 绞车旋转架的旋转时的支撑与导向,导轨用于柔性探杆的导向。
  7. 根据权利要求5中所述的一种海底土工原位多参数探测系统,其特征在于,所述公头塞一端设有卡塞;所述母头塞一端设有凹槽,所述凹槽内嵌有卡簧;所述凹槽的外缘上均匀设有3个缺口,每个缺口处安装有卡爪;所述卡爪均嵌套在所述卡簧上,所述母头塞另一端用螺钉连接压盖;所述公头塞的卡塞塞入所述母头塞的凹槽中,所述卡簧提供向内收紧的作用力,将所述卡爪与所述公头塞上的卡塞相扣。
  8. 一种海底土工原位多参数探测方法,其特征在于,所述海底土工原位多参数探测方法应用于如权利要求1-7任意一项所述的一种海底土工原位多参数探测系统,所述海底土工原位多参数探测方法包括:
    在静力触探探头灌入过程中,控制对接组件系统中的绞车转动,以使所述绞车带动柔性探杆布放;
    控制伺服电机带动驱动转轮转动以使所述驱动转轮带动刚性杆件对准对接装置;
    控制液压锁紧油缸驱动摩擦轮相向运动,使柔性探杆的两侧均与摩擦轮紧贴;
    控制液压马达驱动摩擦轮旋转以带动所述柔性探杆,使所述静力触探探头贯入到被测土体中;
    在静力触探探头回收过程中,控制液压马达反向旋转驱动摩擦轮带动柔性探杆使得所述静力触探探头向上拉出,同时,控制所述对接装置将相邻柔性探杆间的快速对接机构打开,将平直探杆分成两段刚性杆件,刚性杆通过驱动转轮后缠绕于绞车上。
PCT/CN2021/118463 2020-11-30 2021-09-15 一种海底土工原位多参数探测系统及方法 WO2022110986A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/630,981 US20220357478A1 (en) 2020-11-30 2021-09-15 Seabed geotechnical in-situ multi-parameter detection system and method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011376624.5A CN112630859B (zh) 2020-11-30 2020-11-30 一种海底土工原位多参数探测系统
CN202011376624.5 2020-11-30

Publications (1)

Publication Number Publication Date
WO2022110986A1 true WO2022110986A1 (zh) 2022-06-02

Family

ID=75306999

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/118463 WO2022110986A1 (zh) 2020-11-30 2021-09-15 一种海底土工原位多参数探测系统及方法

Country Status (3)

Country Link
US (1) US20220357478A1 (zh)
CN (1) CN112630859B (zh)
WO (1) WO2022110986A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115094860A (zh) * 2022-08-10 2022-09-23 武汉吉欧信海洋科技股份有限公司 一种新型海床式连续贯入静力触探装置
CN116716864A (zh) * 2023-08-09 2023-09-08 深圳市普罗海洋科技有限责任公司 一种用于浅地层多参数勘测的海床静力触探系统和方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112630859B (zh) * 2020-11-30 2022-09-23 浙江大学 一种海底土工原位多参数探测系统
CN113865777B (zh) * 2021-09-30 2022-08-12 中国海洋大学 一种可自动化折叠的孔压探杆装置及其工作方法
CN115522526B (zh) * 2022-11-07 2023-02-24 中交第四航务工程勘察设计院有限公司 海床式静力触探贯入装备及贯入方法
CN115783197B (zh) * 2022-12-12 2023-07-07 青岛海洋地质研究所 一种适用于深海潜器的辅助触底装置及实现方法
CN116837812A (zh) * 2023-03-07 2023-10-03 广州海洋地质调查局 一种基于海底基盘的海床式静力触探系统和方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004347490A (ja) * 2003-05-23 2004-12-09 National Institute Of Advanced Industrial & Technology 貫入プローブ
CN102002932A (zh) * 2010-09-16 2011-04-06 上海市城市建设设计研究院 静力触探设备及静力触探试验方法
CN106638536A (zh) * 2016-11-18 2017-05-10 东南大学 一种双轮式海洋静力触探贯入设备及其贯入方法
CN107476276A (zh) * 2017-09-14 2017-12-15 中国海洋大学 一种海床式静力触探贯入装置及其控制方法
CN109099972A (zh) * 2018-09-20 2018-12-28 中国科学院深海科学与工程研究所 海底沉积物原位环境监测系统
CN112630859A (zh) * 2020-11-30 2021-04-09 浙江大学 一种海底土工原位多参数探测系统

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5696920B2 (ja) * 2010-01-19 2015-04-08 玉田 興基 海底地下探査掘削機
CN102116018B (zh) * 2011-01-06 2012-05-09 中国地质大学(武汉) 双油缸组全液压连续贯入静力触探机
CN108645917B (zh) * 2016-02-06 2020-07-28 自然资源部第一海洋研究所 一种压载贯入式海底沉积物声学特性原位测量装置及方法
CN109823485B (zh) * 2019-03-06 2023-08-29 中国海洋大学 第二代滩浅海沉积物强度原位检测装置
CN110658328B (zh) * 2019-11-01 2023-09-15 中国科学院武汉岩土力学研究所 一种浅层含气地层的便携式原位气体含量量测装置及方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004347490A (ja) * 2003-05-23 2004-12-09 National Institute Of Advanced Industrial & Technology 貫入プローブ
CN102002932A (zh) * 2010-09-16 2011-04-06 上海市城市建设设计研究院 静力触探设备及静力触探试验方法
CN106638536A (zh) * 2016-11-18 2017-05-10 东南大学 一种双轮式海洋静力触探贯入设备及其贯入方法
CN107476276A (zh) * 2017-09-14 2017-12-15 中国海洋大学 一种海床式静力触探贯入装置及其控制方法
CN109099972A (zh) * 2018-09-20 2018-12-28 中国科学院深海科学与工程研究所 海底沉积物原位环境监测系统
CN112630859A (zh) * 2020-11-30 2021-04-09 浙江大学 一种海底土工原位多参数探测系统

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115094860A (zh) * 2022-08-10 2022-09-23 武汉吉欧信海洋科技股份有限公司 一种新型海床式连续贯入静力触探装置
CN116716864A (zh) * 2023-08-09 2023-09-08 深圳市普罗海洋科技有限责任公司 一种用于浅地层多参数勘测的海床静力触探系统和方法
CN116716864B (zh) * 2023-08-09 2023-10-27 深圳市普罗海洋科技有限责任公司 一种用于浅地层多参数勘测的海床静力触探系统和方法

Also Published As

Publication number Publication date
CN112630859B (zh) 2022-09-23
US20220357478A1 (en) 2022-11-10
CN112630859A (zh) 2021-04-09

Similar Documents

Publication Publication Date Title
WO2022110986A1 (zh) 一种海底土工原位多参数探测系统及方法
US9476292B2 (en) Deepwater drilling condition based marine riser mechanical behavior test simulation system and test method
KR101670303B1 (ko) 해양 시추 장치 및 해양 시추 방법
US20030230409A1 (en) Instrumentation assembly for an offshore riser
CN100516872C (zh) 海床土体液化现场监测设备
CN115127716B (zh) 小型局部壁面应力解除法岩体参数原位测试系统及方法
CN103438870B (zh) 近海底微地形地貌动态监测方法与装置
CN1009967B (zh) 井眼地震波接收器
CN101864929B (zh) 一种海洋水下勘察基盘
CN105222969A (zh) 倾角阶梯来流海洋立管涡激-参激耦合振动试验装置
CN101655364A (zh) 深海管道位姿精确测量装置
CN105203297A (zh) 可改变海洋立管束空间布置的涡激振动试验装置
CN201183947Y (zh) 水上静力触探机
CN113216127A (zh) 一种浅海升沉式静力触探设备
CN112629396A (zh) 一种深水管道回接位姿测量装置
CN105203282A (zh) 局部流速增大倾角阶梯流海洋立管束涡激振动试验装置
CN213363837U (zh) 一种深海混输立管用光纤传感器固定装置
CN114482000A (zh) 一种基于数据实时传输的海床式静力触探装备
CN209959238U (zh) 一种用于井下水平分支孔内的地震探测装置
WO2021000342A1 (zh) 一种大范围软土场地土体参数连续测量装置
CN205875237U (zh) 平行地震法确定基桩长度的检测装置
Storteboom et al. Efficiency examined of hands-free Cone Penetration Testing using the SingleTwist™ with COSON
CN105203283A (zh) 局部流速增大立管束空间布置可变的涡激振动试验装置
CN113482602B (zh) 一种超深自平衡随钻原位测试系统及施工方法
CN105157940A (zh) 倾角阶梯来流条件深海张紧式单根立管涡激振动试验装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21896490

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21896490

Country of ref document: EP

Kind code of ref document: A1