WO2022110812A1 - 一种控轧控冷高强度珠光体钢轨及其生产方法 - Google Patents

一种控轧控冷高强度珠光体钢轨及其生产方法 Download PDF

Info

Publication number
WO2022110812A1
WO2022110812A1 PCT/CN2021/104660 CN2021104660W WO2022110812A1 WO 2022110812 A1 WO2022110812 A1 WO 2022110812A1 CN 2021104660 W CN2021104660 W CN 2021104660W WO 2022110812 A1 WO2022110812 A1 WO 2022110812A1
Authority
WO
WIPO (PCT)
Prior art keywords
controlled
rail
cooling
rolling
temperature
Prior art date
Application number
PCT/CN2021/104660
Other languages
English (en)
French (fr)
Inventor
周剑华
费俊杰
董茂松
郑建国
王瑞敏
欧阳珉路
Original Assignee
武汉钢铁有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉钢铁有限公司 filed Critical 武汉钢铁有限公司
Publication of WO2022110812A1 publication Critical patent/WO2022110812A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/74Temperature control, e.g. by cooling or heating the rolls or the product
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D11/00Process control or regulation for heat treatments
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/04Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for rails
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/04Making ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum

Definitions

  • the invention relates to a controlled rolling and controlled cooling high-strength pearlite steel rail with good wear resistance and fatigue damage resistance and a production method thereof, and belongs to the field of steel rail production and application.
  • Rail manufacturers at home and abroad generally use to increase the content of C, Si, Mn elements in the rail steel, and add V, Cr and other alloy strengthening elements, and use the waste heat after rail rolling to accelerate the cooling process by using water mist mixture, compressed air and other media. , to ensure that the rail head part gets fine pearlite structure, which has high wear resistance and high hardness.
  • Patent 1 Internal high hardness pearlitic steel rail with excellent wear resistance and fatigue damage resistance and its manufacturing method
  • CN101646795A provides a high hardness pearlitic steel rail and its manufacturing method, the chemical composition of the rail Including 0.73-0.85 mass % C, 0.50-0.75 mass % Si, 0.30-1.0 mass % Mn, 0.035 mass % or less P, 0.0005-0.012 mass % S, 0.2-1.3 mass % Cr, and the rest are Fe and inevitable impurities.
  • the final rolling temperature of the rail is 850-950°C, and then at a cooling rate of 1.2-5°C/s, the temperature above the pearlite transformation start temperature is rapidly cooled to 400-650°C, and the surface layer of the rail head is obtained to a depth of at least 25mm.
  • the Vickers hardness is in HV380-HV480.
  • Patent 2 High-strength pearlitic steel rail with excellent delayed failure resistance
  • the chemical composition of the steel rail includes 0.6-1.0 mass % of C, 0.10-1.5 mass % of Si, 0.40-2.0 mass % of Mn, 0.035 mass % or less of P, 0.0005-0.012 mass % of S, and further contains selected from One or more of V: 0.5% or less, Cr: 1.5% or less, Cu: 1% or less, Ni: 1% or less, Nb: 0.05% or less, Mo: 0.5% or less, W: 1% or less, The rest is Fe and inevitable impurities.
  • the tensile strength of the rail was obtained to be more than 1200 MPa, the length of A-type inclusions on the cross section of the rail head along the longitudinal direction was 250 ⁇ m or less, and the number of inclusions per 1 mm 2 of the detected area was less than 25.
  • Patent 3 "Manufacturing method and manufacturing device of heat-treated steel rail" (CN106661651B) provides a manufacturing method and manufacturing device of heat-treated steel rail with excellent hardness and toughness of the head surface layer by adding various alloy elements.
  • the rail includes 0.75-0.85 mass % C, 0.5-1.0 mass % Si, 0.5-1.0 mass % Mn, 0.5-1.0 mass % Cr, 0-0.01 mass % V, and the remainder is Fe and inevitable impurities.
  • Patent 4 Heat Treatment Method and Device for Producing High-strength Steel Rails Using Rolling Waste Heat
  • the rail includes 0.65-0.85 mass % C, 0.21-1.2 mass % Si, 0.50-1.5 mass % Mn, and at least one of V, Cr, Ti, Mo, Cu, Ni and rare earth elements.
  • the steel rails kept in the high temperature state of the austenite region after hot rolling are continuously fed into the unit equipped with heat treatment equipment, and the cooling medium is sprayed to the steel rails through the nozzles, so that the steel rails are uniformly accelerated and cooled, and fine pearlite with gradually decreasing hardness is obtained. organize.
  • Patent 5 “Pearlite heat-treated steel rail and its production method” (CN 1793403 A) provides a pearlitic heat-treated steel rail and its production method.
  • the rail includes 0.70-0.95 mass % C, 0.20-1.10 mass % Si, 0.5-1.50 mass % Mn, 0.01-0.20 mass % V, 0.15-1.20 mass % Cr, 0.035 mass % or less of P, 0.035 mass % or less of S, and 0.005 mass % or less of Al.
  • the production method includes smelting, rolling and heat treatment.
  • the rail is cooled from 650-880°C at a cooling rate of 1-10°C/s to 400-500°C, and then naturally cooled to room temperature.
  • the tensile strength of the produced rail head is obtained. Above 1310MPa, the hardness of the rail head is above 370HB, the depth of the hardened layer is above 20mm, and it has good wear resistance.
  • Patent 6 High-carbon and high-strength heat-treated steel rail with excellent wear resistance and plasticity and its manufacturing method
  • the rail includes 0.80-1.20 mass % C, 0.20-1.20 mass % Si, 0.20-1.60 mass % Mn, 0.01-0.20 mass % V, 0.15-1.20 mass % Cr, 0.002-0.050 mass % % Ti, 0.030 mass % or less of P, 0.030 mass % or less of S, 0.010 mass % or less of Al, 0.010 mass % or less of N, and the rest are iron and inevitable impurities.
  • the production process is that the residual temperature of the hot rail after rolling is 680-900°C, the rail is cooled to 400-500°C at a cooling rate of 1.5-10°C/s, and then naturally cooled to room temperature, the tensile strength of the rail is ⁇ 1330MPa, The elongation is ⁇ 9%, the hardness of the rail head is ⁇ 380HB, the depth of the hardened layer is more than 25mm, and the organization is fine pearlite.
  • rail is considered to be difficult to achieve controlled rolling of rails because of its basically fixed rolling pass system and rolling schedule, basically constant deformation rate, and narrow adjustable range of rolling temperature. Therefore, the above patents only consider the controlled cooling process after rail rolling, resulting in that when the addition amount of alloying elements is increased, a better hardness improvement effect cannot be obtained within the cooling rate range.
  • the present invention provides a controlled rolling and controlled cooling high-strength steel rail and a production method thereof , by rationally setting the chemical composition, rolling process and post-rolling cooling process, to achieve controlled rolling that regulates recrystallization behavior, and combined with the production method of post-rolling controlled cooling, the rail strength and hardness are improved while maintaining good toughness. plasticity.
  • the present invention provides a high-strength pearlitic steel rail with controlled rolling and controlled cooling.
  • Mn, 0.2-1.0% Cr, 0.05-0.1% V, 0.005-0.08% Nb, 0-0.025% P, 0-0.015% S, and the rest are Fe and inevitable impurities.
  • the controlled rolling and controlled cooling high-strength pearlite rail provided by the present invention further comprises some or all of the following technical features:
  • the tensile strength of the rail is ⁇ 1360MPa
  • the elongation is ⁇ 12%
  • the hardness of the rail head tread is ⁇ 390HB
  • the depth of the hardened layer is ⁇ 30mm
  • the structure is fine flake pearlite
  • the depth of the rail surface is 30mm.
  • the pearlite lamellar spacing is less than or equal to 90nm.
  • a method for producing a high-strength pearlitic steel rail with controlled rolling and controlled cooling as described above includes the following steps: the heating temperature is controlled at 1160-1200°C, the heating time is controlled at 140-200min; the rolling temperature is 1050-1120°C, and the final The rolling temperature is 810-880°C; after the rail rolling is completed, the hot-rolled rail head and rail bottom are subjected to on-line accelerated cooling treatment.
  • the starting cooling temperature is controlled to be 680°C and above, and the cooling rate of the rail head is 1.0-5.0°C/s, the cooling rate of the rail bottom is 0.5-2.0°C/s, after the temperature of the rail head drops to 400-500°C; stop the accelerated cooling, and naturally cool to room temperature;
  • the rail production method also includes: converter smelting, LF refining, vacuum treatment, and continuous casting processes.
  • the above processes are not particularly limited, and can be performed according to conventional rail production processes.
  • the production method of the controlled rolling and controlled cooling high-strength pearlite rail provided by the present invention further comprises some or all of the following technical features:
  • the chemical composition of the steel rail includes 0.71-0.85% C, 0.45-0.70% Si, 0.35-0.70% Mn, 0.2-1.0% Cr, 0.05-0.1% according to mass fraction. V, 0.005-0.08% Nb, 0-0.025% P, 0-0.015% S, the rest are Fe and inevitable impurities.
  • the chemical composition of the steel rail includes 0.73-0.83% C, 0.50-0.65% Si, 0.40-0.65% Mn, 0.4-0.8% Cr, 0.06-0.08% according to mass fraction.
  • V 0.01-0.04% Nb, 0-0.025% P, 0-0.015% S, the rest are Fe and inevitable impurities.
  • the heating temperature is controlled at 1170-1200°C, and the heating time is controlled at 160-180min; the rolling temperature is 1080-1120°C, and the final rolling temperature is 820-860°C.
  • the hot-rolled steel rail is subjected to on-line accelerated cooling treatment, the starting cooling temperature is controlled to be 680°C and above, and the cooling rate of the rail head is 2.0-4.0°C/s , the cooling rate of the rail bottom is 0.8-1.5 °C/s, after the temperature of the rail head drops to 420-480 °C; stop the accelerated cooling, and naturally cool to room temperature.
  • the temperature of the rail head refers to the temperature in degrees Celsius on the surface of the central part of the tread of the rail head.
  • the accelerated cooling medium is a cooling medium commonly used in the art, including but not limited to water, polymer solution, oil, compressed air, water mist or oil mist mixture.
  • the positions of the rail head, the rail bottom, and the tread surface of the steel rail according to the present invention are the positions conventionally referred to in the art, and are well known to those skilled in the art.
  • C is the most basic and cheapest strengthening element to improve the strength and hardness of rails, and is the main element to form pearlite and carbide.
  • C content range should be determined according to the specific technical requirements. If the C content is too low, the density of the lamellar cementite in the pearlite structure cannot be guaranteed, and the basic strength and hardness of the rail are insufficient, which will affect the use effect; If the C content is too high, on the one hand, the toughness and plasticity will decrease, and at the same time, the welding performance will also decrease.
  • the present invention controls the C content within the range of 0.71-0.85% by weight.
  • Si can inhibit the formation of cementite in steel, promote the transformation of ferrite, and through solid solution in ferrite, it can play a solid solution strengthening effect and improve the hardness of ferrite matrix, thereby improving the strength and hardness of steel
  • Si can increase the Acm temperature of steel, which is beneficial to improve the degree of supercooling and increase the driving force of pearlite transformation during accelerated cooling.
  • the Si content in the steel is greater than 0.7%, local segregation is likely to occur, and the welding performance of the rail is also reduced, so the Si content is controlled within the range of 0.45-0.70 wt%.
  • Mn has a solid solution strengthening effect on ferrite, which can improve the strength of ferrite and is also a carbide-forming element. After entering cementite, it can partially replace Fe atoms and improve the strength and hardness of steel. At the same time, Mn can reduce the strength of steel.
  • the pearlite transformation temperature reduces the pearlite lamella spacing; however, Mn will reduce the Acm temperature of the steel and affect the driving force of the transformation process that accelerates the cooling process, so the range of Mn content needs to be controlled. Therefore, the Mn content is controlled in the range of 0.35-0.70 wt%.
  • Cr can form a substitutional solid solution with ⁇ -Fe, which plays a role in solid solution strengthening.
  • V is a precipitation strengthening element. It combines with C and N during the cooling process of hot-rolled rails to form V(CN)x precipitates, which improve the strength and hardness of the rails, and can also prevent crystals during the welding and heating process of the rails. Grain growth and refinement of austenite grains. However, the solubility of V at room temperature is very low.
  • Nb can inhibit the growth of austenite grains, increase the critical austenitization temperature, and increase the upper temperature limit of the unrecrystallized zone, promote the accumulation of rolling deformation in the austenite zone, and refine the austenite grains.
  • Controlled cooling plays a role in refining the pearlite lamellar spacing, but too high Nb content will reduce the high temperature thermoplasticity of the steel and easily cause hot cracks in the billet, so the Nb content is controlled within the range of 0.005-0.08 wt%.
  • P and S are generally considered to be harmful residual elements in steel, which will greatly increase the crack sensitivity of steel, and at the same time will increase the low-temperature brittle transition temperature of steel and reduce the low-temperature impact performance of steel. Under the premise of affecting the performance of the rail, the lower the content of P and S, the better.
  • the heating temperature of the rail is controlled at 1160-1200°C, and the heating time is controlled at 140-200min.
  • the austenitizing temperature should not be too high to avoid excessive growth of austenite grains, but too low heating temperature will increase the load of the rolling mill. Select a reasonable heating temperature and time for specific circumstances. 9)
  • the rolling temperature of the steel rail is 1050-1120°C, and the final rolling temperature is 810-880°C. Rolling at a relatively low temperature to suppress the dynamic recrystallization during rolling, promote the accumulation of rolling deformation in the austenite region, and there are still high dislocation density and deformation subgrain inside the austenite grains after the deformation stops. , static recovery and static recrystallization will continue to occur, and finally refined austenite grains will be obtained.
  • the hot-rolled rail head and rail bottom are subjected to online accelerated cooling treatment, and the cooling temperature is controlled to be above 680 °C, the cooling rate of the rail head is 1.0-5.0 °C/s, and the rail bottom is controlled.
  • the cooling rate is 0.5-2.0°C/s, and after the temperature of the rail head drops to 400-500°C, the accelerated cooling is stopped, and the temperature is naturally cooled to room temperature.
  • a relatively small cooling rate is also applied to the rail bottom. This is because the rail head cooling rate is fast. If the rail bottom is cooled naturally, the temperature difference between the rail head and the rail bottom will be too large, which will cause the rail to bend greatly. , In order to ensure the straightness of the rail during the heat treatment process, a certain cooling rate is generally applied to the rail bottom, and the amount of metal at the bottom of the rail is smaller than that of the rail head, and the cooling rate is generally smaller than that of the rail head, so as to keep the temperature of the rail head and rail bottom as consistent as possible sex.
  • the present invention provides a controlled rolling and controlled cooling high-strength pearlitic steel rail and a production method thereof.
  • a controlled rolling and controlled cooling high-strength pearlitic steel rail in order to achieve controlled rolling that regulates recrystallization behavior, combined with the production method of controlled cooling after rolling, to improve the strength and hardness of the rail while maintaining good toughness and plasticity.
  • the tensile strength of the rail is greater than or equal to 1360MPa
  • the elongation is greater than or equal to 12%
  • the hardness of the rail head tread is greater than or equal to 390HB
  • the depth of the hardened layer is greater than or equal to 30mm
  • the organization is fine flake pearlite.
  • the rail has good wear resistance and fatigue damage resistance, the production method is simple, the operability is strong, and it is easy to popularize and apply.
  • Fig. 1 is the schematic diagram of the rolling contact wear test of the rail of the present invention; wherein, Fig. 1 (a) is a front view, and Fig. 1 (b) is a side view;
  • Fig. 2 is the pearlite lamella spacing of the controlled rolling and controlled cooling high-strength steel rail of the present invention.
  • the procedures include converter smelting, LF refining, vacuum treatment, and continuous casting.
  • the basicity of the converter slag is controlled at 2.5-3.8; when the molten steel is about 1/4, alloys and recarburizers such as silicon, manganese, and vanadium are added with the steel flow.
  • the alloys and recarburizers are all Add;
  • LF furnace treatment time should be greater than 40min;
  • RH vacuum degree ⁇ 90Pa pure vacuum treatment time should not be less than 20min
  • the casting process should be carried out under the protection of the whole process to prevent contact with air, and the cast billets should be slow cooling treatment.
  • the billet is sent to the walking beam heating furnace for heating and heat preservation, the heating temperature is 1170°C, and the heat preservation time is 160min. It is rolled into a rail with a universal rolling mill. The rolling temperature is 1060°C and the final rolling temperature is 860°C. Perform on-line accelerated cooling treatment with the rail bottom. The cooling temperature is controlled at 720°C at the beginning, the cooling rate of the rail head is 2°C/s, and the cooling rate of the rail bottom is 1°C/s. After the temperature of the rail head drops to 420°C, Stop the accelerated cooling, naturally cool to room temperature, and finally use the horizontal-vertical composite straightening process to straighten the rail.
  • the difference is that the process parameters of heating, rolling and heat treatment are as shown in Table 2, respectively.
  • the most mature and widely used U75V online heat treatment product in the industry is selected, and the tensile strength, tread hardness and elongation after fracture of the rail obtained in the example and the comparative example are tested according to the method specified in the TB/T 2344-2012 standard.
  • the performance indicators such as ratio, metallographic structure, cross-sectional Rockwell hardness and fracture toughness are shown in Table 3.
  • the M-2000 rolling contact wear testing machine was used to contact the rails of the examples and the comparative examples under the same test conditions.
  • Fatigue wear test The test is carried out by rolling the cylindrical sample relatively, measuring the weight of wear loss and observing the fatigue crack on the surface of the sample. The schematic diagram of the test is shown in Figure 1.
  • the upper sample is taken from the position 10 mm below the rail head tread of the example and the comparative example, and the lower sample is wheel steel with a Brinell hardness of 350HB.
  • test conditions are as follows:
  • Sample size thickness 8mm, inner diameter 10mm, outer diameter 20mm;
  • Test environment room temperature environment
  • the total number of rotations of the grinding 3 ⁇ 10 5 times.
  • Example 1 Basically no cracks 0.72
  • Example 2 Basically no cracks 0.66
  • Example 3 Basically no cracks 0.63
  • Example 4 Basically no cracks 0.88 Comparative Example 1 Stripped blocks appear 1.55
  • the steel rails obtained in Examples 1-4 all performed well, no fatigue cracks were observed on the surface, and the wear loss weight was also controlled in a relatively stable and uniform range.
  • the steel rail of Comparative Example 1 due to its low hardness, caused a relatively serious wear loss, and peeled off blocks appeared on the surface. It can be seen that the steel rail obtained by the present invention has better wear resistance and contact fatigue resistance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Articles (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

本发明公开了一种控轧控冷高强度珠光体钢轨及其生产方法,所述钢轨的化学成分按照质量分数,包括0.71-0.85%的C、0.45-0.70%的Si、0.35-0.70%的Mn、0.2-1.0%的Cr、0.05-0.1%的V、0.005-0.08%的Nb、0-0.025%的P、0-0.015%的S,其余为Fe和不可避免的杂质;所述钢轨抗拉强度≥1360MPa,延伸率≥12%,轨头踏面硬度≥390HB,硬化层深度≥30mm,组织为细片状珠光体,距离钢轨表面30mm深度部位的珠光体片层间距≤90nm。本发明在提升钢轨强度和硬度的同时,保持良好的韧塑性。

Description

一种控轧控冷高强度珠光体钢轨及其生产方法 技术领域
本发明涉及一种耐磨性能和抗疲劳伤损性能良好的控轧控冷高强度珠光体钢轨及其生产方法,属于钢轨生产及应用领域。
背景技术
随着铁路列车轴重的增加,运行速度和铁路年通过总质量的不断增加,尤其是在重载货运铁路,钢轨承受的车辆重量远远大于客运铁路,钢轨的使用环境也变得更为苛刻。在这样的服役条件下,钢轨的磨耗和疲劳伤损等问题日益严重,因此需要不断提升钢轨的强度和硬度,以提高其耐磨性能和抗疲劳伤损性能。
国内外钢轨厂家一般采用增加钢轨钢中的C、Si、Mn元素的含量,并添加V、Cr等合金强化元素,利用钢轨轧后余热通过采用水雾混合气、压缩空气等介质进行加速冷却工艺,保证钢轨轨头部位得到细微的珠光体组织,从而具有高耐磨损性及高硬度。
专利1《耐磨损性和耐疲劳损伤性优良的内部高硬度型珠光体钢轨及其制造方法》(CN101646795A)提供了一种高硬度型珠光体钢轨及其制造方法,所述钢轨的化学成分包括0.73-0.85质量%的C、0.50-0.75质量%的Si、0.30-1.0质量%的Mn、0.035质量%以下的P、0.0005-0.012质量%的S、0.2-1.3质量%的Cr,其余为Fe和不可避免的杂质。钢轨终轧温度为850-950℃,接着以1.2-5℃/s的冷却速度,从珠光体相变开始温度以上的温度快速冷却至400-650℃,得到钢轨轨头表层到至少25mm深度范围的维氏硬度在HV380-HV480。
专利2《耐延迟破坏特性优良的高强度珠光体系钢轨》(CN101405419A)提供了一种抗拉强度为1200MPa以上且耐延迟破坏特性优良的高强度珠光体钢轨。所述钢轨的化学成分包括0.6-1.0质量%的C、0.10-1.5质量%的Si、0.40-2.0质量%的Mn、0.035质量%以下的P、0.0005-0.012质量%的S、还含有选自V: 0.5%以下、Cr:1.5%以下、Cu:1%以下、Ni:1%以下、Nb:0.05%以下、Mo:0.5%以下、W:1%以下中的1种或2种以上,其余为Fe和不可避免的杂质。Ca:0.001%以上,0.01%以下、O:0.002%以下、H:2ppm以下。得到钢轨抗拉强度1200MPa以上,轨头部位沿长度方向的截面上A类夹杂物长边尺寸为250μm以下,且在每1mm 2被检测面积上的存在数量少于25个。
专利3《热处理钢轨的制造方法以及制造装置》(CN106661651B)提供一种添加各种合金元素,头部表层的硬度以及韧性优秀的热处理钢轨的制造方法以及制造装置。所述钢轨包括0.75-0.85质量%的C、0.5-1.0质量%的Si、0.5%-1.0质量%的Mn、0.5-1.0质量%的Cr、0-0.01质量%的V,剩余部分为Fe以及不可避免的杂质。所述钢轨表面温度500℃以上700℃以下前,以10℃/s以上的冷却速度进行强制冷却后,在珠氏体相变终止前,以-5℃/s以上5℃/s以下的冷却速度对所述钢轨头部进行冷却。
专利4《利用轧制余热生产高强度钢轨的热处理方法及其装置》(CN1083013C)提供了一种利用轧制余热生产高强度钢轨的热处理方法。所述钢轨包括0.65-0.85质量%的C、0.21-1.2质量%的Si、0.50%-1.5质量%的Mn,以及V、Cr、Ti、Mo、Cu、Ni和稀土元素中的至少一种。将热轧后保持在奥氏体区域的高温状态的钢轨连续送入装有热处理装置的机组中,通过喷嘴向钢轨喷射冷却介质,使钢轨得到均匀的加速冷却,获得硬度逐渐降低的微细珠光体组织。
专利5《珠光体类热处理钢轨及其生产方法》(CN 1793403 A)提供了一种珠光体类热处理钢轨及其生产方法。所述钢轨包括0.70-0.95质量%的C、0.20-1.10质量%的Si、0.5%-1.50质量%的Mn、0.01%-0.20质量%的V、0.15-1.20质量%的Cr、0.035质量%以下的P、0.035质量%以下的S、0.005质量%以下的Al。其生产方法包括冶炼、轧制和热处理,从650-880℃以1-10℃/s的冷速将钢轨冷却到400-500℃,再自然冷却至室温,生产出来的钢轨轨头抗拉强度在1310MPa以上,轨头硬度在370HB以上,硬化层深度达到20mm以上,具有良好的耐磨性能。
专利6《耐磨性和塑性优良的高碳高强热处理钢轨及其制造方法》(CN 102220545 A)提供了一种耐磨性和塑性优良的高碳高强热处理钢轨及生产方法。所述钢轨包括0.80-1.20质量%的C、0.20-1.20质量%的Si、0.20%-1.60质量%的Mn、0.01%-0.20质量%的V、0.15-1.20质量%的Cr、0.002-0.050质量%的Ti、0.030质量%以下的P、0.030质量%以下的S、0.010质量%以下的Al、0.010质量%以下的N,其余为铁和不可避免的杂质。其生产工艺为轧制后热态钢轨余温为680-900℃,以1.5-10℃/s的冷速将钢轨冷却到400-500℃,再自然冷却至室温,钢轨抗拉强度≥1330MPa,延伸率≥9%,轨头硬度≥380HB,硬化层深度为25mm以上,组织为细珠光体。
钢轨作为型钢产品,因其轧制孔型系统和轧制规程基本固定,变形速率基本恒定,轧制温度可调范围窄,传统的工艺思路认为很难实现钢轨的控制轧制。因此,以上专利均只考虑了钢轨轧后控制冷却工艺,造成在增加合金元素添加量的情况下,在冷却速度范围内不能获得更好的硬度提升效果。
为此,亟需一种满足轧制过程调控再结晶行为的控轧工艺,同时结合轧后控制冷却工艺的高强度珠光体钢轨及其生产方法,以进一步提升钢轨强度和硬度,并保持良好的断后伸长率。
发明内容
基于以上现有技术在高强度热处理钢轨生产中,未充分调控轧制再结晶行为,导致珠光体钢轨强度和硬度难以进一步提高的问题,本发明提供一种控轧控冷高强钢轨及其生产方法,通过合理设置化学成分、轧制工艺和轧后冷却工艺,以实现调控再结晶行为的控制轧制,并结合轧后控制冷却的生产方法,在提升钢轨强度和硬度的同时,保持良好的韧塑性。
为了解决上述技术问题,本发明提供一种控轧控冷高强度珠光体钢轨,所述钢轨的化学成分按照质量分数,包括0.71-0.85%的C、0.45-0.70%的Si、0.35-0.70%的Mn、0.2-1.0%的Cr、0.05-0.1%的V、0.005-0.08%的Nb、0-0.025%的P、0-0.015%的S,其余为Fe和不可避免的杂质。
作为上述技术方案的优选,本发明提供的控轧控冷高强度珠光体钢轨进一 步包括下列技术特征的部分或全部:
作为上述技术方案的改进,所述钢轨抗拉强度≥1360MPa,延伸率≥12%,轨头踏面硬度≥390HB,硬化层深度≥30mm,组织为细片状珠光体,距离钢轨表面30mm深度部位的珠光体片层间距≤90nm。
一种如上所述的控轧控冷高强度珠光体钢轨的生产方法,包含如下步骤:加热温度控制在1160-1200℃,加热时间控制在140-200min;开轧温度为1050-1120℃,终轧温度为810-880℃;钢轨轧制完成以后,将热轧后的钢轨轨头和轨底进行在线的加速冷却处理,其中,开始冷却温度控制为680℃及以上,轨头的冷却速度为1.0-5.0℃/s,轨底的冷却速度为0.5-2.0℃/s,待轨头温度降至400-500℃后;停止加速冷却,自然冷却至室温;
所述钢轨生产方法还包括:转炉冶炼、LF精炼、真空处理、连铸工序,对上述工序没有特别的限定,按照常规的钢轨生产工艺方法进行即可。
作为上述技术方案的优选,本发明提供的控轧控冷高强度珠光体钢轨的生产方法进一步包括下列技术特征的部分或全部:
作为上述技术方案的改进,所述钢轨的化学成分按照质量分数,包括0.71-0.85%的C、0.45-0.70%的Si、0.35-0.70%的Mn、0.2-1.0%的Cr、0.05-0.1%的V、0.005-0.08%的Nb、0-0.025%的P、0-0.015%的S,其余为Fe和不可避免的杂质。
作为上述技术方案的改进,所述钢轨的化学成分按照质量分数,包括0.73-0.83%的C、0.50-0.65%的Si、0.40-0.65%的Mn、0.4-0.8%的Cr、0.06-0.08%的V、0.01-0.04%的Nb、0-0.025%的P、0-0.015%的S,其余为Fe和不可避免的杂质。
作为上述技术方案的改进,所述加热温度控制在1170-1200℃,加热时间控制在160-180min;开轧温度为1080-1120℃,终轧温度为820-860℃。
作为上述技术方案的改进,所述钢轨轧制完成以后,将热轧后的钢轨进行在线的加速冷却处理,开始冷却温度控制为680℃及以上,轨头的冷却速度为2.0-4.0℃/s,轨底的冷却速度为0.8-1.5℃/s,待轨头温度降至420-480℃后;停止 加速冷却,自然冷却至室温。
作为上述技术方案的改进,所述钢轨轨头温度是指轨头踏面中心部位表面的摄氏温度。
作为上述技术方案的改进,所述加速冷却介质为本领域常用的冷却介质,包括但是不限于水、聚合物溶液、油、压缩空气、水雾或者油雾混合气。
本发明所述钢轨的轨头、轨底、踏面等位置为本领域常规所指的位置,是本领域技术人员所公知的。
选取上述技术参数的原因如下:1)C是提高钢轨强度和硬度的最基本最廉价的强化元素,是形成珠光体和碳化物的主要元素,一般来说,随着钢中C含量的增加,钢的强度和硬度增加,而塑性和韧性随之下降。在实际设计成分时,要根据具体技术要求确定C含量范围,C含量过低,珠光体结构中的片层渗碳体的密度得不到保证,钢轨基础强度和硬度不足,影响使用效果;而C含量过高,一方面会使得韧性和塑性下降,同时也会使焊接性能下降,因此,本发明将C含量控制在0.71-0.85重量%范围内。2)Si能抑制钢中的渗碳体形成,促进铁素体转变,并且通过固溶在铁素体中,起到固溶强化作用,提高铁素体基体硬度,从而提高钢的强度和硬度,Si可以提升钢的Acm温度,有利于提高过冷度,增加加速冷却过程中珠光体相变驱动力。而当钢中Si含量大于0.7%时,容易出现局部偏析,而且也会导致钢轨焊接性能下降,因此Si含量控制在0.45-0.70重量%范围内。3)Mn对铁素体有固溶强化作用,可以提高铁素体强度,也是碳化物形成元素,进入渗碳体后可部分代替Fe原子,提高钢的强度和硬度,同时Mn可以降低钢的珠光体相变温度,减小珠光体片层间距;但Mn会降低钢的Acm温度,影响加速冷却过程的相变过程的驱动力,需控制Mn含量范围。因此Mn含量控制在0.35-0.70重量%范围内。4)Cr可与α-Fe形成置换固溶体,起到固溶强化作用,同时Cr又是强烈的碳化物形成元素,使得钢的C曲线右移,能显著提高钢轨的强度及淬透性,显著提高钢轨热处理后的硬度,但是Cr含量增加又会降低钢的塑性和韧性,因此Cr含量控制在0.2-1.0重量%范围内。5)V是沉淀强化元素,在热轧钢轨冷却过程中与C、N结合,形成V(CN)x的沉 淀物,提高钢轨的强度和硬度,同时也能在钢轨焊接加热过程中,阻止晶粒长大,细化奥氏体晶粒。而V在室温下溶解度很低,一般认为,当V含量在0.1%左右,沉淀强化效果较为明显,再增加V含量,钢轨强度硬度进一步增高的同时,韧性会大幅下降,而当V含量过低,析出相的强化作用就不明显。因此,V含量控制在0.05-0.1重量%范围内。6)Nb可以抑制奥氏体晶粒长大,提高临界奥氏体化温度,并且可提高未再结晶区温度上限,促进奥氏体区轧制形变累计,细化奥氏体晶粒,同时配合控制冷却起到细化珠光体片层间距的作用,但是Nb含量过高会降低钢的高温热塑性,容易引起钢坯热裂纹,因此Nb含量控制在0.005-0.08重量%范围内。7)对于钢轨来说,P、S一般认为是钢中的有害残余元素,会大幅增加钢的裂纹敏感性,同时会提高钢的低温脆性转变温度,降低钢的低温冲击性能,因此,在不影响钢轨性能的前提下,要求P、S含量越低越好。8)所述钢轨的加热温度控制在1160-1200℃,加热时间控制在140-200min。奥氏体化温度不宜太高,以避免奥氏体晶粒过度长大,但是加热温度过低会增加轧机载荷,同时为保证合金元素溶解于奥氏体,加热温度也不宜太低,应根据具体情况选择合理的加热温度和时间。9)所述钢轨的开轧温度为1050-1120℃、终轧温度为810-880℃。以相对低的温度轧制,以抑制轧制过程中的动态再结晶,促使奥氏体区轧制形变累积,变形停止后奥氏体晶粒内部仍存在较高的位错密度和变形亚晶,会继续发生静态回复和静态再结晶,最终获得细化的奥氏体晶粒。10)钢轨轧制完成以后,将热轧后的钢轨轨头和轨底进行在线的加速冷却处理,开始冷却温度控制为680℃以上,轨头的冷却速度为1.0-5.0℃/s,轨底的冷却速度为0.5-2.0℃/s,待轨头温度降至400-500℃后;停止加速冷却,自然冷却至室温。通过对轧后钢轨进行加速冷却,增加奥氏体向珠光体转变的过冷度,从而获得片层间距更加细小的珠光体,提高钢轨的硬度和强度。同时在轨头加速冷却的同时,对轨底也施加相对较小的冷却速度,这是因为轨头冷却速度较快,如果轨底自然冷却,轨头轨底温度差过大会造成钢轨大幅度弯曲,为了保证热处理过程中钢轨平直度,一般对轨底也要施加一定的冷却速度,而轨底金属量小于轨头,冷速一般也要小于轨头,尽量保持轨头轨 底的温度一致性。
与现有技术相比,本发明的技术方案具有如下有益效果:本发明提供一种控轧控冷高强度珠光体钢轨及其生产方法,通过合理设置化学成分、轧制工艺和轧后冷却工艺,以实现调控再结晶行为的控制轧制,并结合轧后控制冷却的生产方法,在提升钢轨强度和硬度的同时,保持良好的韧塑性。钢轨抗拉强度≥1360MPa,延伸率≥12%,轨头踏面硬度≥390HB,硬化层深度≥30mm以上,组织为细片状珠光体,距离钢轨表面30mm深度部位的珠光体片层间距≤90nm,钢轨具有良好的耐磨性能和抗疲劳伤损性能,该生产方法简单,可操作性强,易于推广应用。
上述说明仅是本发明技术方案的概述,为了能够更清楚了解本发明的技术手段,而可依照说明书的内容予以实施,并且为了让本发明的上述和其他目的、特征和优点能够更明显易懂,以下结合优选实施例,详细说明如下。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例的附图作简单地介绍。
图1是本发明钢轨滚动接触磨损试验示意图;其中,图1(a)是主视图,图1(b)是侧视图;
图2是本发明控轧控冷高强钢轨珠光体片层间距。
具体实施方式
下面详细说明本发明的具体实施方式,其作为本说明书的一部分,通过实施例来说明本发明的原理,本发明的其他方面、特征及其优点通过该详细说明将会变得一目了然。
本发明实施例1-4的冶炼化学成分分别按照表1所示。
表1实施例的化学成分
Figure PCTCN2021104660-appb-000001
Figure PCTCN2021104660-appb-000002
实施例1:
按照常规的钢轨冶炼和浇铸方法进行,工序包括转炉冶炼、LF精炼、真空处理、连铸。其中,转炉炉渣碱度控制在2.5-3.8;出钢水1/4左右时,随钢流加入硅、锰、钒等合金和增碳剂,钢水出至3/4时,合金、增碳剂全部加入;LF炉处理时间应大于40min;RH真空度≤90Pa,纯真空处理时间应不低于20min,浇铸过程应在全程保护下进行,防止与空气接触,同时浇铸成的钢坯应进行缓冷处理。钢坯送入步进梁加热炉中加热并保温,加热温度1170℃,保温时间160min,用万能轧机轧制成钢轨,开轧温度1060℃,终轧温度860℃,将热轧后的钢轨轨头和轨底进行在线的加速冷却处理,开始冷却温度控制为720℃,轨头的冷却速度为2℃/s,轨底的冷却速度为1℃/s,待轨头温度降至420℃后,停止加速冷却,自然冷却至室温,最后采用平立复合矫直工艺对钢轨进行矫直。
实施例2-4:
按照实施例1的方法进行,所不同的是,加热、轧制及热处理工艺参数分别按照表2所示。
表2实施例和对比例的加速冷却工艺参数
Figure PCTCN2021104660-appb-000003
对比例选取目前行业内最为成熟、应用范围最广的U75V在线热处理产品, 按照TB/T 2344-2012标准规定的方法检验实施例和对比例中所得钢轨的抗拉强度、踏面硬度、断后伸长率、金相组织、横断面洛式硬度和断裂韧性等性能指标,结果见表3。
表3实施例和对比例的性能情况
Figure PCTCN2021104660-appb-000004
可以看出,实施例1-4所得到的钢轨强度和硬度均要优于U75V在线热处理钢轨,而且具有更好的韧塑性,金相组织均为细片珠光体。
为了验证本发明所得钢轨相比U75V在线热处理钢轨具有更好的耐磨性和抗接触疲劳性能,采用M-2000型滚动接触磨损试验机,在相同试验条件下对实施例和对比例钢轨进行接触疲劳磨损试验。试验通过圆柱试样相对滚动,测量磨损失重量和观察试样表面的疲劳裂纹情况,试验示意图如图1所示。
上试样分别取自实施例和对比例钢轨轨头踏面以下10mm深度的位置,下试样为布氏硬度350HB的车轮钢。
试验条件如下:
试样尺寸:厚度8mm,内径10mm,外径20mm;
试验载荷:300N;
试验环境:室温环境;
转速:上试样180r/min,下试样200r/min;
滑差率:10%;
对磨总转数:3×10 5次。
接触疲劳磨损试验结果见表4。
表4实施例和对比例的接触疲劳磨损试验结果
  试样表面磨损情况 磨损失重量/g
实施例1 基本无裂纹 0.72
实施例2 基本无裂纹 0.66
实施例3 基本无裂纹 0.63
实施例4 基本无裂纹 0.88
对比例1 出现剥离掉块 1.55
在接触疲劳磨损试验中,实施例1-4所得到的钢轨均表现良好,表面基本未观察到疲劳裂纹,磨损失重量也控制在较稳定和均匀的范围。而对比例1的钢轨,由于硬度较低,导致了比较严重的磨损失重,表面出现了剥离掉块。可以看出,本发明所得的钢轨具有更好的耐磨性和抗接触疲劳性能。
本发明所列举的各原料,以及本发明各原料的上下限、区间取值,以及工艺参数(如温度、时间等)的上下限、区间取值都能实现本发明,在此不一一列举实施例。
以上所述是本发明的优选实施方式而已,当然不能以此来限定本发明之权利范围,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和变动,这些改进和变动也视为本发明的保护范围。

Claims (9)

  1. 一种控轧控冷高强度珠光体钢轨,其特征在于:所述钢轨的化学成分按照质量分数,包括0.71-0.85%的C、0.45-0.70%的Si、0.35-0.70%的Mn、0.2-1.0%的Cr、0.05-0.1%的V、0.005-0.08%的Nb、0-0.025%的P、0-0.015%的S,其余为Fe和不可避免的杂质。
  2. 如权利要求1所述的控轧控冷高强度珠光体钢轨,其特征在于:所述钢轨抗拉强度≥1360MPa,延伸率≥12%,轨头踏面硬度≥390HB,硬化层深度≥30mm,组织为细片状珠光体,距离钢轨表面30mm深度部位的珠光体片层间距≤90nm。
  3. 一种如权利要求1所述的控轧控冷高强度珠光体钢轨的生产方法,其特征在于,包含如下步骤:加热温度控制在1160-1200℃,加热时间控制在140-200min;开轧温度为1050-1120℃,终轧温度为810-880℃;钢轨轧制完成以后,将热轧后的钢轨轨头和轨底进行在线的加速冷却处理,其中,开始冷却温度控制为680℃及以上,轨头的冷却速度为1.0-5.0℃/s,轨底的冷却速度为0.5-2.0℃/s,待轨头温度降至400-500℃后;停止加速冷却,自然冷却至室温;
    所述钢轨生产方法还包括:转炉冶炼、LF精炼、真空处理、连铸工序,对上述工序没有特别的限定,按照常规的钢轨生产工艺方法进行即可。
  4. 如权利要求3所述的控轧控冷高强度珠光体钢轨的生产方法,其特征在于:所述钢轨的化学成分按照质量分数,包括0.71-0.85%的C、0.45-0.70%的Si、0.35-0.70%的Mn、0.2-1.0%的Cr、0.05-0.1%的V、0.005-0.08%的Nb、0-0.025%的P、0-0.015%的S,其余为Fe和不可避免的杂质。
  5. 如权利要求3所述的控轧控冷高强度珠光体钢轨的生产方法,其特征在于:所述钢轨的化学成分按照质量分数,包括0.73-0.83%的C、0.50-0.65%的Si、0.40-0.65%的Mn、0.4-0.8%的Cr、0.06-0.08%的V、0.01-0.04%的Nb、0-0.025%的P、0-0.015%的S,其余为Fe和不可避免的杂质。
  6. 如权利要求3所述的控轧控冷高强度珠光体钢轨的生产方法,其特征在于:所述加热温度控制在1170-1200℃,加热时间控制在160-180min;开轧温度为1080-1120℃,终轧温度为820-860℃。
  7. 如权利要求3所述的控轧控冷高强度珠光体钢轨的生产方法,其特征在于:所述钢轨轧制完成以后,将热轧后的钢轨进行在线的加速冷却处理,开始冷却温度控制为680℃及以上,轨头的冷却速度为2.0-4.0℃/s,轨底的冷却速度为0.8-1.5℃/s,待轨头温度降至420-480℃后;停止加速冷却,自然冷却至室温。
  8. 如权利要求3所述的控轧控冷高强度珠光体钢轨的生产方法,其特征在于:所述钢轨轨头温度是指轨头踏面中心部位表面的摄氏温度。
  9. 如权利要求3所述的控轧控冷高强度珠光体钢轨的生产方法,其特征在于:所述加速冷却介质为本领域常用的冷却介质,包括但是不限于水、聚合物溶液、油、压缩空气、水雾或者油雾混合气。
PCT/CN2021/104660 2020-11-30 2021-07-06 一种控轧控冷高强度珠光体钢轨及其生产方法 WO2022110812A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011370358.5 2020-11-30
CN202011370358.5A CN112501512A (zh) 2020-11-30 2020-11-30 一种控轧控冷高强度珠光体钢轨及其生产方法

Publications (1)

Publication Number Publication Date
WO2022110812A1 true WO2022110812A1 (zh) 2022-06-02

Family

ID=74967611

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/104660 WO2022110812A1 (zh) 2020-11-30 2021-07-06 一种控轧控冷高强度珠光体钢轨及其生产方法

Country Status (2)

Country Link
CN (1) CN112501512A (zh)
WO (1) WO2022110812A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115433866A (zh) * 2022-08-23 2022-12-06 包头钢铁(集团)有限责任公司 一种低成本高质量高速钢轨钢的冶炼方法
CN115466834A (zh) * 2022-08-26 2022-12-13 包头钢铁(集团)有限责任公司 一种采用水雾冷却介质生产U71MnH钢轨热处理方法
CN115558835A (zh) * 2022-10-13 2023-01-03 包头钢铁(集团)有限责任公司 一种高强度、高硬度在线热处理稀土钢轨材料的生产方法
WO2024027264A1 (zh) * 2022-08-05 2024-02-08 攀钢集团攀枝花钢铁研究院有限公司 一种具有高屈服强度的中等强度钢轨及其生产方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112501512A (zh) * 2020-11-30 2021-03-16 武汉钢铁有限公司 一种控轧控冷高强度珠光体钢轨及其生产方法
CN113930667B (zh) * 2021-09-03 2022-11-01 武汉钢铁有限公司 磨耗和滚动接触疲劳良好耦合的钢轨及其生产方法
CN113981325A (zh) * 2021-11-03 2022-01-28 攀钢集团攀枝花钢铁研究院有限公司 一种中等强度钢轨及其生产方法
CN114908296A (zh) * 2022-05-31 2022-08-16 鞍钢股份有限公司 一种高硬度在线热处理钢轨及其制造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102220545A (zh) * 2010-04-16 2011-10-19 攀钢集团有限公司 耐磨性和塑性优良的高碳高强热处理钢轨及其制造方法
CN105112786A (zh) * 2015-09-29 2015-12-02 燕山大学 一种超级珠光体钢轨钢及其制备方法
CN107723594A (zh) * 2017-10-10 2018-02-23 攀钢集团研究院有限公司 耐内部损伤性珠光体钢轨及其制造方法
WO2020050737A1 (ru) * 2018-09-04 2020-03-12 Акционерное Общество "Евраз Объединенный Западно-Сибирский Металлургический Комбинат" Способ изготовления железнодорожных рельсов повышенной износостойкости и контактной выносливости.
CN112501512A (zh) * 2020-11-30 2021-03-16 武汉钢铁有限公司 一种控轧控冷高强度珠光体钢轨及其生产方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000178690A (ja) * 1998-03-31 2000-06-27 Nippon Steel Corp 耐摩耗性、耐内部疲労損傷性に優れたパ―ライト系レ―ルおよびその製造法
CN101880822B (zh) * 2010-07-21 2012-05-30 武汉钢铁(集团)公司 用于客运钢轨的热轧高韧性碳素钢
ES2826878T3 (es) * 2015-04-22 2021-05-19 Nippon Steel Corp Chapa de acero laminada en caliente, material de acero y procedimiento para producir chapa de acero laminada en caliente
CN111607738B (zh) * 2020-06-30 2021-12-17 武汉钢铁有限公司 耐腐蚀高强度珠光体钢轨及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102220545A (zh) * 2010-04-16 2011-10-19 攀钢集团有限公司 耐磨性和塑性优良的高碳高强热处理钢轨及其制造方法
CN105112786A (zh) * 2015-09-29 2015-12-02 燕山大学 一种超级珠光体钢轨钢及其制备方法
CN107723594A (zh) * 2017-10-10 2018-02-23 攀钢集团研究院有限公司 耐内部损伤性珠光体钢轨及其制造方法
WO2020050737A1 (ru) * 2018-09-04 2020-03-12 Акционерное Общество "Евраз Объединенный Западно-Сибирский Металлургический Комбинат" Способ изготовления железнодорожных рельсов повышенной износостойкости и контактной выносливости.
CN112501512A (zh) * 2020-11-30 2021-03-16 武汉钢铁有限公司 一种控轧控冷高强度珠光体钢轨及其生产方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024027264A1 (zh) * 2022-08-05 2024-02-08 攀钢集团攀枝花钢铁研究院有限公司 一种具有高屈服强度的中等强度钢轨及其生产方法
CN115433866A (zh) * 2022-08-23 2022-12-06 包头钢铁(集团)有限责任公司 一种低成本高质量高速钢轨钢的冶炼方法
CN115433866B (zh) * 2022-08-23 2024-02-23 包头钢铁(集团)有限责任公司 一种低成本高质量高速钢轨钢的冶炼方法
CN115466834A (zh) * 2022-08-26 2022-12-13 包头钢铁(集团)有限责任公司 一种采用水雾冷却介质生产U71MnH钢轨热处理方法
CN115558835A (zh) * 2022-10-13 2023-01-03 包头钢铁(集团)有限责任公司 一种高强度、高硬度在线热处理稀土钢轨材料的生产方法

Also Published As

Publication number Publication date
CN112501512A (zh) 2021-03-16

Similar Documents

Publication Publication Date Title
WO2022110812A1 (zh) 一种控轧控冷高强度珠光体钢轨及其生产方法
CA2721736C (en) High carbon content and high strength heat-treated steel rail and method for producing the same
US8210019B2 (en) Method for producing pearlitic rail excellent in wear resistance and ductility
WO2022033128A1 (zh) 一种正火态交货的100-120mm厚海上风电管桩用FH36钢板及其制备方法
CN108929986B (zh) 一种高强度耐磨汽车制动用热轧钢板及其生产工艺
WO2023029630A1 (zh) 磨耗和滚动接触疲劳良好耦合的钢轨及其生产方法
JPH11229079A (ja) 超高強度ラインパイプ用鋼板およびその製造法
US20160060736A1 (en) Pearlitic steel rail with high strength and toughness and producing method thereof
CN107739983A (zh) 一种过共析钢轨及其生产方法
WO2023173803A1 (zh) 一种客货混运铁路用耐滚动接触疲劳钢轨及其生产方法
JP5267306B2 (ja) 高炭素鋼レールの製造方法
KR20200066512A (ko) 냉간가공성 및 ssc 저항성이 우수한 초고강도 강재 및 그 제조방법
WO2020108595A1 (zh) 一种高表面质量、低屈强比热轧高强度钢板及制造方法
WO2021057899A1 (zh) 一种高扩孔复相钢及其制造方法
CN111549278B (zh) 一种690MPa级低温高强抗震焊接结构钢板及其制造方法
JP2013014847A (ja) 耐摩耗性および延性に優れたパーライト系レールの製造方法
JP3764710B2 (ja) 靭性および延性に優れたパーライト系レールの製造方法
JP2001003140A (ja) 靭性および延性に優れた高強度パーライト系レールおよびその製造方法
JPH09206804A (ja) 延性および靭性に優れた高強度レールの製造法
CN110387510B (zh) 用于降低磁浮列车摩擦损耗的f型轨及其制备方法
JP2912123B2 (ja) 耐表面損傷性に優れた高強度・高靭性ベイナイト系レールの製造法
JPH06279927A (ja) 延性および靭性に優れた高強度レールおよびその製造法
CN112301200A (zh) 一种具有抗延迟断裂性能的钢轨及其制备方法
CN115287541B (zh) 一种高碳高韧性重载车轮钢及车轮生产方法
KR100431848B1 (ko) 저온조직이 없는 고실리콘 첨가 고탄소 선재의 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21896320

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21896320

Country of ref document: EP

Kind code of ref document: A1