WO2022110779A1 - 液冷系统、应用在液冷系统的控制方法、控制装置及车辆 - Google Patents

液冷系统、应用在液冷系统的控制方法、控制装置及车辆 Download PDF

Info

Publication number
WO2022110779A1
WO2022110779A1 PCT/CN2021/101151 CN2021101151W WO2022110779A1 WO 2022110779 A1 WO2022110779 A1 WO 2022110779A1 CN 2021101151 W CN2021101151 W CN 2021101151W WO 2022110779 A1 WO2022110779 A1 WO 2022110779A1
Authority
WO
WIPO (PCT)
Prior art keywords
intelligent driving
driving control
control component
pump
temperature
Prior art date
Application number
PCT/CN2021/101151
Other languages
English (en)
French (fr)
Inventor
贾晖
许小兵
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP21896287.6A priority Critical patent/EP4245585A4/en
Publication of WO2022110779A1 publication Critical patent/WO2022110779A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • F01P7/16Controlling of coolant flow the coolant being liquid by thermostatic control
    • F01P7/164Controlling of coolant flow the coolant being liquid by thermostatic control by varying pump speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/06Control using electricity
    • F04B49/065Control using electricity and making use of computers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K11/00Arrangement in connection with cooling of propulsion units
    • B60K11/02Arrangement in connection with cooling of propulsion units with liquid cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P3/00Liquid cooling
    • F01P3/12Arrangements for cooling other engine or machine parts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P3/00Liquid cooling
    • F01P3/20Cooling circuits not specific to a single part of engine or machine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/20Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00 by changing the driving speed
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/20845Modifications to facilitate cooling, ventilating, or heating for automotive electronic casings
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/20845Modifications to facilitate cooling, ventilating, or heating for automotive electronic casings
    • H05K7/20872Liquid coolant without phase change
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B2201/00Pump parameters
    • F04B2201/12Parameters of driving or driven means
    • F04B2201/1201Rotational speed of the axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B2205/00Fluid parameters
    • F04B2205/11Outlet temperature
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/88Optimized components or subsystems, e.g. lighting, actively controlled glasses

Definitions

  • the present application relates to the field of heat dissipation, and more particularly, to a liquid cooling system, a control method, a control device and a vehicle applied to the liquid cooling system.
  • Intelligent driving is a mainstream application in the field of artificial intelligence (AI).
  • AI artificial intelligence
  • Intelligent driving technology relies on the collaborative cooperation of computer vision, radar, monitoring devices and global positioning systems, so that motor vehicles can realize automatic operation without manual active operation.
  • Smart driving One of the key components in an intelligent driving vehicle is an intelligent driving control component (eg, an advanced driving assistance system (ADAS) or a mobile data center (MDC)). It will generate a lot of heat during the working process. In order to ensure that the working performance is not affected, it needs to be dissipated.
  • ADAS advanced driving assistance system
  • MDC mobile data center
  • heat dissipation methods include air cooling and liquid cooling.
  • air cooling can no longer solve the heat dissipation problem, so liquid cooling is needed. Since there is a liquid cooling system in the vehicle, how to realize the heat dissipation of the intelligent driving control components and meet the energy saving requirements of the whole vehicle through the existing liquid cooling system has become a new problem.
  • the present application provides a liquid cooling system, a control method, a control device and a vehicle applied to the liquid cooling system.
  • the liquid cooling system can simultaneously meet the requirements for heat dissipation of intelligent driving control components and energy saving of the entire vehicle.
  • a liquid cooling system in a first aspect, includes: a pump, a heat exchanger, an on-board control module, and a plurality of on-board components, the plurality of on-board components include intelligent driving control components; wherein, the pump is used for , to deliver liquid for the plurality of on-board components to dissipate heat from the plurality of on-board components; the on-board control module is used for determining the rotational speed of the pump according to the pump rotational speed requirements of the plurality of on-board components.
  • the liquid cooling system of the embodiment of the present application includes a pump, a heat exchanger, an on-board control module, and a plurality of on-board components, the plurality of on-board components include an intelligent driving control component, and the pump is used to transport liquid for the plurality of on-board components to The plurality of in-vehicle components dissipate heat. Therefore, the liquid cooling system can realize the heat dissipation of the intelligent driving control components.
  • the vehicle-mounted control module may determine the rotation speed of the pump according to the pump rotation speed requirements of the plurality of vehicle-mounted components. This enables the intelligent driving control component to participate in the speed regulation of the pump in the liquid cooling system, so as to satisfy the energy-saving demand of the whole vehicle while satisfying the heat dissipation of the intelligent driving control component.
  • the onboard control module is further configured to determine the rotational speed of the pump according to a maximum value of the pump rotational speed requirements of the plurality of onboard components.
  • the rotational speed of the pump of the liquid cooling system may be determined according to the maximum value among the pump rotational speed requirements of multiple on-board components, so that the determined rotational speed of the pump can meet the heat dissipation requirements of multiple on-board components at the same time.
  • the pump speed requirement of each vehicle-mounted component in the plurality of vehicle-mounted components is determined according to the inlet water temperature and its own flow demand.
  • the multiple on-board components are respectively connected with multiple pipelines, the multiple pipelines are connected in parallel, and the multiple pipelines are respectively connected with the pump and the pipeline.
  • the heat exchanger is connected to form a circulation loop, and the on-board control module is respectively connected with the pump and the plurality of on-board components through lines.
  • the liquid cooling system further includes: a temperature sensor, the temperature sensor is located at the liquid cooling inlets of the plurality of vehicle components, the temperature sensor is used to measure the inlet water temperature .
  • the pump speed requirement of the intelligent driving control component is determined according to temperature differences at multiple locations on the intelligent driving control component, where the temperature difference is the difference between the temperature specification and the actual temperature .
  • the temperature difference can reflect the difference between the temperature specification and the actual temperature, where the temperature specification refers to the temperature that the current location can withstand. Therefore, determining the pump speed requirement based on the temperature difference is more conducive to the normal operation of the components.
  • the temperature difference of the devices at different positions may be different during the working process. If the heat dissipation is only controlled according to the pump speed requirement determined by the temperature difference at a certain position, it may cause other parts of the The heat dissipation requirements are not met, which is not conducive to the normal operation of the entire component.
  • the pump speed requirement of the intelligent driving control component is determined by combining the temperature differences at multiple positions on the intelligent driving control component, so as to meet the heat dissipation requirements at different positions on the intelligent driving control component at the same time.
  • the pump speed requirement of the intelligent driving control component is determined according to a minimum value of temperature differences at multiple locations on the intelligent driving control component.
  • the pump speed requirement of the intelligent driving control component is determined according to a temperature interval in which the minimum temperature difference at multiple positions on the intelligent driving control component is located.
  • the pump speed requirement of the intelligent driving control component is determined according to the temperature difference and heating rate at multiple positions on the intelligent driving control component, where the temperature difference is the temperature specification and the actual temperature. difference in temperature.
  • the temperature difference can reflect the difference between the temperature specification and the actual temperature, where the temperature specification refers to the temperature that the current location can withstand. Therefore, determining the pump speed requirement based on the temperature difference is more conducive to the normal operation of the components.
  • the heating rate can reflect the power change at a certain position of the intelligent driving control component, and the change in the heating rate means that the working power at the current position changes. According to the heating rate at multiple positions on the intelligent driving control component Determining the pump speed requirement enables the pump to be adjusted in time to dissipate heat when the power of heating devices such as intelligent driving control components increases sharply.
  • the temperature difference and heating rate of devices at different positions may be different during operation. It may cause the heat dissipation requirements of other parts to be unsatisfied.
  • the pump speed requirement of the intelligent driving control component is determined by combining the temperature differences and heating rates at multiple positions on the intelligent driving control component, so as to meet the heat dissipation requirements at different positions of the intelligent driving control component at the same time.
  • the pump speed requirement of the intelligent driving control component is determined according to the minimum temperature difference and the maximum heating rate at multiple positions on the intelligent driving control component.
  • the pump speed requirement of the intelligent driving control component is determined according to the larger of the first pump speed requirement and the second pump speed requirement, wherein the first pump The rotational speed demand is determined according to the minimum value of the temperature difference at the plurality of positions on the intelligent driving control component, and the second pump rotational speed demand is determined according to the maximum value of the heating rate at the plurality of positions on the intelligent driving control component.
  • the first pump rotational speed requirement determined according to the minimum value of the temperature difference at multiple positions on the intelligent driving control component and the maximum value of the heating rate according to the multiple positions on the intelligent driving control component The larger one of the determined second pump rotational speed requirements determines the pump rotational speed requirement of the intelligent driving control part, so that the pump rotational speed requirement can not only satisfy the heat dissipation requirements at different positions of the intelligent driving control part at the same time, but also can be used in certain positions.
  • the power increases sharply, adjust the pump speed in time to dissipate heat.
  • the first pump speed requirement is determined according to a temperature interval in which the minimum temperature difference at multiple positions on the intelligent driving control component is located; and/or, the The second pump rotational speed requirement is determined according to a rate interval in which the maximum heating rate at multiple positions on the intelligent driving control component is located.
  • the pump speed requirement of the intelligent driving control component is determined according to the inlet water temperature.
  • the pump speed requirement of the intelligent driving control component is determined according to the temperature range in which the inlet water temperature is located.
  • the pump speed requirement of the intelligent driving control component is determined according to the junction temperature of the core chip on the intelligent driving control component.
  • the pump speed requirement of the intelligent driving control component is determined according to the temperature range in which the junction temperature of the core chip on the intelligent driving control component is located.
  • a second aspect provides a control method applied to a liquid cooling system, the liquid cooling system comprising: a pump, a heat exchanger and a plurality of on-board components, the plurality of on-board components including intelligent driving control components; wherein, the pump uses in which liquid is delivered to the plurality of vehicle-mounted components to dissipate heat from the plurality of vehicle-mounted components; the control method includes: obtaining the pump rotational speed requirements of the plurality of vehicle-mounted components; determining the pump according to the pump rotational speed requirements of the plurality of vehicle-mounted components speed.
  • the determining the rotational speed of the pump according to the pump rotational speed requirements of the plurality of on-board components includes: determining the rotational speed of the pump according to a maximum value of the pump rotational speed requirements of the plurality of on-board components Pump speed.
  • control method further includes: determining a pump speed requirement of the plurality of on-board components according to the inlet water temperature and the flow demand of each on-board component of the plurality of on-board components.
  • control method further includes: determining a pump speed requirement of the intelligent driving control component according to temperature differences at multiple positions on the intelligent driving control component, where the temperature difference is a temperature Difference between specification and actual temperature.
  • determining the pump speed requirement of the intelligent driving control component according to temperature differences at multiple positions on the intelligent driving control component includes: according to the temperature difference on the intelligent driving control component The minimum value of the temperature difference at each location determines the pump speed requirement of the intelligent driving control component.
  • the determining the pump speed requirement of the intelligent driving control component according to the minimum value of temperature differences at multiple positions on the intelligent driving control component includes: determining the intelligent driving control component The temperature range in which the minimum temperature difference at multiple positions on the component is located; the pump speed requirement of the intelligent driving control component is determined according to the temperature range in which the minimum temperature difference at multiple positions on the intelligent driving control component is located.
  • control method further includes: determining the temperature difference required by the pump speed of the intelligent driving control component according to temperature differences and heating rates at multiple positions on the intelligent driving control component is the difference between the temperature specification and the actual temperature.
  • the determining the pump speed requirement of the intelligent driving control component according to temperature differences and heating rates at multiple positions on the intelligent driving control component includes: according to the intelligent driving control component The minimum value of the temperature difference and the maximum value of the heating rate at various locations on the component determine the pump speed requirement of the intelligent driving control component.
  • determining the pump speed requirement of the intelligent driving control component according to the minimum value of the temperature difference and the maximum value of the heating rate at multiple positions on the intelligent driving control component includes: : comprising: determining the first pump speed requirement according to the minimum value of the temperature difference at multiple positions on the intelligent driving control part; determining the second pump speed requirement according to the maximum value of the heating rate at the multiple positions on the intelligent driving control part; The pump speed demand of the intelligent driving control component is determined according to the greater of the first pump speed demand and the second pump speed demand.
  • the determining the first pump speed requirement according to the minimum value of temperature differences at multiple positions on the intelligent driving control component includes: determining a plurality of rotational speed requirements on the intelligent driving control component The temperature interval in which the minimum temperature difference at the position is located; the rotational speed requirement of the first pump is determined according to the temperature interval in which the minimum temperature difference at a plurality of positions on the intelligent driving control component is located; and/or, according to the intelligent driving control component
  • Determining the second pump speed requirement with the maximum value of the heating rate at multiple positions on the driving control component includes: determining a rate interval in which the maximum heating rate at the multiple positions on the intelligent driving control component is located; according to the intelligent driving control The second pump speed requirement is determined by the rate interval in which the maximum rate of temperature rise at the plurality of locations on the component is located.
  • control method further includes: determining a pump speed requirement of the intelligent driving control component according to the inlet water temperature.
  • the determining the pump rotational speed requirement of the intelligent driving control component according to the inlet water temperature includes: determining the temperature range where the inlet water temperature is located; and according to the temperature where the inlet water temperature is located The interval determines the pump speed requirement of the intelligent driving control component.
  • control method further includes: determining a pump speed requirement of the intelligent driving control component according to the junction temperature of the core chip on the intelligent driving control component.
  • a control device applied to a liquid cooling system includes: a pump, a heat exchanger and a plurality of on-board components, the plurality of on-board components include intelligent driving control components; wherein, the pump is used for in order to deliver liquid for the plurality of on-board components to dissipate heat from the plurality of on-board components; the control device includes a controller, which is used for: acquiring the pump rotational speed requirements of the plurality of on-board components; according to the plurality of on-board components The pump speed requirement determines the speed of the pump.
  • the controller is further configured to: determine the rotational speed of the pump according to the maximum value of the rotational speed requirements of the pump of the plurality of on-board components.
  • the controller is further configured to: determine a pump speed requirement of the plurality of on-board components according to the inlet water temperature and the flow demand of each on-board component of the plurality of on-board components .
  • the controller is further configured to: determine a pump speed requirement of the intelligent driving control component according to temperature differences at multiple positions on the intelligent driving control component, where the temperature difference is Difference between temperature specification and actual temperature.
  • the controller is further configured to: determine the pump speed requirement of the intelligent driving control component according to the minimum value of temperature differences at multiple positions on the intelligent driving control component.
  • the controller is further configured to: determine a temperature interval in which the minimum temperature difference at multiple positions on the intelligent driving control component is located; according to the intelligent driving control The temperature range in which the minimum value of the temperature difference at the plurality of positions on the component is located determines the pump speed requirement of the intelligent driving control component.
  • the controller is further configured to: determine the pump speed requirement of the intelligent driving control component according to temperature differences and heating rates at multiple positions on the intelligent driving control component
  • the temperature difference is the difference between the temperature specification and the actual temperature.
  • the controller is further configured to: determine the intelligent driving control according to the minimum value of the temperature difference and the maximum value of the heating rate at multiple positions on the intelligent driving control component The pump speed requirement of the component.
  • the controller is further configured to: determine the first pump speed requirement according to the minimum value of temperature differences at multiple positions on the intelligent driving control component; The maximum value of the heating rate at multiple positions on the control component determines the second pump speed demand; the pump speed demand of the intelligent driving control component is determined according to the greater of the first pump speed demand and the second pump speed demand.
  • the controller is further configured to: determine a temperature interval in which the minimum temperature difference at multiple positions on the intelligent driving control component is located; according to the intelligent driving control The temperature range in which the minimum temperature difference at multiple positions on the component is located determines the first pump speed requirement; and/or, the controller is further configured to: determine the temperature increase rate at multiple positions on the intelligent driving control component The speed interval in which the maximum value is located; the rotational speed requirement of the second pump is determined according to the rate interval in which the maximum value of the heating rate at multiple positions on the intelligent driving control component is located.
  • the controller is further configured to: determine the pump speed requirement of the intelligent driving control component according to the inlet water temperature.
  • the controller is further configured to: determine the temperature range where the inlet water temperature is located; determine the pump of the intelligent driving control component according to the temperature range where the inlet water temperature is located speed requirement.
  • the controller is further configured to: determine the pump speed requirement of the intelligent driving control component according to the junction temperature of the core chip on the intelligent driving control component.
  • the controller is further configured to: determine the temperature range in which the junction temperature of the core chip on the intelligent driving control component is located; The temperature range in which the junction temperature of the core chip is located determines the pump speed requirement of the intelligent driving control component.
  • a fourth aspect provides a control device applied to a liquid cooling system, comprising an input and output interface, a processor and a memory, the processor is used to control the input and output interface to send and receive signals or information, the memory is used to store a computer program, the processing The computer program is used to call and run the computer program from the memory, so that the planning apparatus executes the method in the above-mentioned second aspect or any possible implementation manner of the second aspect.
  • a vehicle including the first aspect or the system in any possible implementation of the first aspect; and/or, including the third aspect or any possible implementation of the third aspect in the control device.
  • a computing device comprising: at least one processor and a memory, the at least one processor is coupled to the memory for reading and executing instructions in the memory to execute the second A control method in any possible implementation manner of the aspect or the second aspect.
  • a computer-readable medium stores program codes that, when the computer program codes are run on a computer, cause the computer to perform the second aspect or the second aspect.
  • the control method in any possible implementation.
  • the chip may further include a memory, in which instructions are stored, the processor is configured to execute the instructions stored in the memory, and when the instructions are executed, the The processor is configured to execute the control method in the second aspect or any possible implementation manner of the second aspect.
  • FIG. 1 is a functional block diagram of a vehicle 100 provided by an embodiment of the present application.
  • FIG. 2 is an example diagram of an intelligent driving system provided by an embodiment of the present application
  • FIG. 3 is a diagram of an application example of a cloud-side command intelligent driving vehicle provided by an embodiment of the present application
  • FIG. 4 is an example diagram of a system architecture of a liquid cooling system provided by an embodiment of the present application.
  • FIG. 5 is an example diagram of a strategy for controlling the rotational speed of a pump applied in a liquid cooling system provided by an embodiment of the present application
  • FIG. 7 is an exemplary diagram of a control device applied to a liquid cooling system provided by an embodiment of the present application.
  • FIG. 8 is an exemplary block diagram of a hardware structure of a control apparatus provided by an embodiment of the present application.
  • FIG. 1 is a functional block diagram of a vehicle 100 provided by an embodiment of the present application.
  • the vehicle 100 is configured in a fully or partially intelligent driving mode.
  • the vehicle 100 may control itself while in an intelligent driving mode, and may determine the current state of the vehicle and its surrounding environment through human manipulation, determine the possible behavior of at least one other vehicle in the surrounding environment, and determine that the other vehicle performs The confidence level corresponding to the likelihood of the possible behavior, the vehicle 100 is controlled based on the determined information.
  • the vehicle 100 may be placed to operate without human interaction.
  • Vehicle 100 may include various subsystems, such as travel system 102 , sensor system 104 , control system 106 , one or more peripherals 108 and power supply 110 , computer system 112 , and user interface 116 .
  • vehicle 100 may include more or fewer subsystems, and each subsystem may include multiple elements. Additionally, each of the subsystems and elements of the vehicle 100 may be interconnected by wire or wirelessly.
  • the travel system 102 may include components that provide powered motion for the vehicle 100 .
  • travel system 102 may include engine 118 , energy source 119 , transmission 120 , and wheels/tires 121 .
  • the engine 118 may be an internal combustion engine, an electric motor, an air compression engine, or other types of engine combinations, such as a gasoline engine and electric motor hybrid engine, an internal combustion engine and an air compression engine hybrid engine.
  • Engine 118 converts energy source 119 into mechanical energy.
  • Examples of energy sources 119 include gasoline, diesel, other petroleum-based fuels, propane, other compressed gas-based fuels, ethanol, solar panels, batteries, and other sources of electricity.
  • the energy source 119 may also provide energy to other systems of the vehicle 100 .
  • Transmission 120 may transmit mechanical power from engine 118 to wheels 121 .
  • Transmission 120 may include a gearbox, a differential, and a driveshaft.
  • transmission 120 may also include other devices, such as clutches.
  • the drive shaft may include one or more axles that may be coupled to one or more wheels 121 .
  • the sensor system 104 may include several sensors that sense information about the environment surrounding the vehicle 100 .
  • the sensor system 104 may include a positioning system 122 (the positioning system may be a global positioning system (GPS) system, a Beidou system or other positioning systems), an inertial measurement unit (IMU) 124, Radar 126 , laser rangefinder 128 and camera 130 .
  • the sensor system 104 may also include sensors of the internal systems of the vehicle 100 being monitored (eg, an in-vehicle air quality monitor, a fuel gauge, an oil temperature gauge, etc.). Sensor data from one or more of these sensors can be used to detect objects and their corresponding characteristics (position, shape, orientation, velocity, etc.). This detection and identification is a critical function for the safe operation of the autonomous vehicle 100 .
  • Radar 126 may utilize radio signals to sense objects within the surrounding environment of vehicle 100 . In some embodiments, in addition to sensing objects, radar 126 may be used to sense the speed and/or heading of objects.
  • Camera 130 may be used to capture multiple images of the surrounding environment of vehicle 100 .
  • Camera 130 may be a still camera or a video camera.
  • Control system 106 controls the operation of the vehicle 100 and its components.
  • Control system 106 may include various elements including steering system 132 , throttle 134 , braking unit 136 , sensor fusion algorithms 138 , computer vision system 140 , route control system 142 , and obstacle avoidance system 144 .
  • the steering system 132 is operable to adjust the heading of the vehicle 100 .
  • it may be a steering wheel system.
  • the throttle 134 is used to control the operating speed of the engine 118 and thus the speed of the vehicle 100 .
  • Computer vision system 140 may be operable to process and analyze images captured by camera 130 in order to identify objects and/or features in the environment surrounding vehicle 100 .
  • the objects and/or features may include traffic signals, road boundaries and obstacles.
  • Computer vision system 140 may use object recognition algorithms, Structure from Motion (SFM) algorithms, video tracking, and other computer vision techniques.
  • SFM Structure from Motion
  • computer vision system 140 may be used to map the environment, track objects, estimate the speed of objects, and the like.
  • the obstacle avoidance system 144 is used to identify, evaluate, and avoid or otherwise traverse potential obstacles in the environment of the vehicle 100 .
  • Peripherals 108 may include a wireless communication system 146 , an onboard computer 148 , a microphone 150 and/or a speaker 152 .
  • Computer system 112 may include at least one processor 113 that executes instructions 115 stored in a non-transitory computer-readable medium such as memory 114 .
  • Computer system 112 may also be multiple computing devices that control individual components or subsystems of vehicle 100 in a distributed fashion.
  • the memory 114 may contain instructions 115 (eg, program logic) executable by the processor 113 to perform various functions of the vehicle 100 , including those described above.
  • Memory 114 may also contain additional instructions, including instructions to send data to, receive data from, interact with, and/or control one or more of travel system 102 , sensor system 104 , control system 106 , and peripherals 108 . instruction.
  • memory 114 may store data such as road maps, route information, vehicle location, direction, speed, and other such vehicle data, among other information. Such information may be used by the vehicle 100 and the computer system 112 during operation of the vehicle 100 in autonomous, semi-autonomous and/or manual modes.
  • a user interface 116 for providing information to or receiving information from a user of the vehicle 100 .
  • the user interface 116 may include one or more input/output devices within the set of peripheral devices 108 , such as a wireless communication system 146 , an onboard computer 148 , a microphone 150 and a speaker 152 .
  • one or more of these components described above may be installed or associated with the vehicle 100 separately.
  • memory 114 may exist partially or completely separate from vehicle 100 .
  • the above-described components may be communicatively coupled together in a wired and/or wireless manner.
  • FIG. 1 should not be construed as a limitation on the embodiments of the present application.
  • An intelligently driven car traveling on a road can identify objects within its surroundings to determine adjustments to the current speed.
  • the objects may be other vehicles, traffic control equipment, or other types of objects.
  • each identified object may be considered independently, and based on the object's respective characteristics, such as its current speed, acceleration, distance from the vehicle, etc., may be used to determine the speed at which the intelligent driving car is to adjust.
  • the intelligently driven automotive vehicle 100 or a computing device associated with the intelligently driven vehicle 100 may be based on the characteristics of the identified objects and the state of the surrounding environment (eg, traffic, rain, ice on the road, etc.) to predict the behavior of the identified object.
  • each identified object is dependent on the behavior of the other, so it is also possible to predict the behavior of a single identified object by considering all identified objects together.
  • the vehicle 100 can adjust its speed based on the predicted behavior of the identified object.
  • an intelligent driving car can determine what steady state the vehicle will need to adjust to (eg, accelerate, decelerate, or stop) based on the predicted behavior of the object.
  • other factors may also be considered to determine the speed of the vehicle 100, such as the lateral position of the vehicle 100 in the road being traveled, the curvature of the road, the proximity of static and dynamic objects, and the like.
  • the computing device may also provide instructions to modify the steering angle of the vehicle 100 so that the intelligent driving vehicle follows a given trajectory and/or maintains contact with objects in the vicinity of the intelligent driving vehicle (eg, , cars in adjacent lanes on the road) safe lateral and longitudinal distances.
  • objects in the vicinity of the intelligent driving vehicle eg, , cars in adjacent lanes on the road
  • the intelligent driving vehicle 100 or a computing device associated with the intelligent driving vehicle 100 may also be based on the state of the vehicle and the detected environmental information, Predict whether intelligent driving is available on the road ahead, and control the switching between intelligent driving mode and manual driving mode.
  • the above-mentioned vehicle 100 can be a car, a truck, a motorcycle, a bus, a boat, an airplane, a helicopter, a lawn mower, a recreational vehicle, a playground vehicle, construction equipment, a tram, a golf cart, a train, a cart, etc.
  • the application examples are not particularly limited.
  • FIG. 2 is an example diagram of an intelligent driving system provided by an embodiment of the present application.
  • the intelligent driving system shown in FIG. 2 includes a computer system 101 , wherein the computer system 101 includes a processor 103 , and the processor 103 is coupled with a system bus 105 .
  • the processor 103 may be one or more processors, each of which may include one or more processor cores.
  • a video adapter 107 which can drive a display 109, is coupled to the system bus 105.
  • the system bus 105 is coupled to an input/output (I/O) bus 113 through a bus bridge 111 .
  • I/O interface 115 is coupled to the I/O bus.
  • I/O interface 115 communicates with various I/O devices, such as input device 117 (eg, keyboard, mouse, touch screen, etc.), media tray 121, (eg, compact disc read-only) memory, CD-ROM), multimedia interface, etc.).
  • Transceiver 123 which can transmit and/or receive radio communication signals
  • camera 155 which can capture sceneries and dynamic digital video images
  • USB universal serial bus
  • the processor 103 may be any conventional processor, including a reduced instruction set computing (reduced instruction set computer, RISC) processor, a complex instruction set computing (complex instruction set computer, CISC) processor, or a combination thereof.
  • the processor may be a dedicated device such as an application specific integrated circuit (ASIC).
  • the processor 103 may be a neural network processor or a combination of a neural network processor and the above-mentioned conventional processors.
  • computer system 101 may be located remotely from the intelligent driving vehicle and may communicate wirelessly with the intelligent driving vehicle.
  • some of the processes described herein are performed on a processor disposed within the intelligently driven vehicle, others are performed by a remote processor, including taking actions required to perform a single maneuver.
  • Network interface 129 is a hardware network interface, such as a network card.
  • the network 127 may be an external network, such as the Internet, or an internal network, such as an Ethernet network or a virtual private network (VPN).
  • the network 127 may also be a wireless network, such as a WiFi network, a cellular network, and the like.
  • the hard disk drive interface is coupled to the system bus 105 .
  • the hard drive interface is connected to the hard drive.
  • System memory 135 is coupled to system bus 105 . Data running in system memory 135 may include operating system 137 and application programs 143 of computer 101 .
  • the operating system includes a parser 139 (shell) and a kernel 141 (kernel).
  • the shell 139 is an interface between the user and the kernel of the operating system.
  • the shell is the outermost layer of the operating system.
  • the shell manages the interaction between the user and the operating system: waiting for user input, interpreting user input to the operating system, and processing various operating system output.
  • Kernel 141 consists of those parts of the operating system that manage memory, files, peripherals, and system resources. Interacting directly with hardware, the operating system kernel typically runs processes and provides inter-process communication, providing CPU time slice management, interrupts, memory management, IO management, and more.
  • the application program 143 includes programs related to controlling the intelligent driving of the car, for example, the program that manages the interaction between the intelligent driving car and the road obstacles, the program that controls the route or speed of the intelligent driving car, and the program that controls the interaction between the intelligent driving car and other intelligent driving cars on the road. .
  • Application 143 also exists on the system of deploying server 149. In one embodiment, computer system 101 may download application 143 from deploying server 14 when application 147 needs to be executed.
  • Sensor 153 is associated with computer system 101 .
  • the sensor 153 is used to detect the environment around the computer 101 .
  • the sensor 153 can detect animals, cars, obstacles and pedestrian crossings, etc. Further sensors can also detect the environment around the above-mentioned animals, cars, obstacles and pedestrian crossings, such as: the environment around animals, for example, animals appear around other animals, weather conditions, ambient light levels, etc.
  • the sensor may be a camera, an infrared sensor, a chemical detector, a microphone, or the like.
  • Computer system 112 in FIG. 1 may also receive information from or transfer information to other computer systems.
  • sensor data collected from the sensor system 104 of the vehicle 100 may be transferred to another computer for processing of the data.
  • data from the computer system 312 may be transmitted via a network to a server 320 on the cloud side (which may also be referred to as the cloud) for further processing.
  • Networks and intermediate nodes may include various configurations and protocols, including the Internet, the World Wide Web, Intranets, Virtual Private Networks, Wide Area Networks, Local Area Networks, private networks using one or more of the company's proprietary communication protocols, Ethernet, WiFi, and hypertext Transport protocol (hyper text transfer protocol, HTTP), and various combinations of the foregoing.
  • Such communications may be by any device capable of transferring data to and from other computers, such as modems and wireless interfaces.
  • data such as vehicle status and environmental information are transmitted to the cloud-side server 320 for further processing.
  • the cloud-side server can use various neural network models to identify and process these data, and feed the identification results back to the computer system 312, so that The computer system 312 can confirm whether to enable or disable the assisted intelligent driving function.
  • server 320 may include a server having multiple computers, such as a load balancing server farm, that exchange information with different nodes of the network for the purpose of receiving, processing, and transmitting data from computer system 312 .
  • the server may be configured similarly to computer system 312 , with processor 330 , memory 340 , instructions 350 , and data 360 .
  • An intelligent driving system may contain several auxiliary intelligent driving functions.
  • auxiliary intelligent driving functions such as pre-collision safety braking (pre-collision system, PCS), adaptive cruise control (adaptive cruise control, ACC), lane keeping assist (lane keeping aid, LKA), cross traffic alert (cross traffic alert, CTA), Rear cross traffic alert (RCTA), blind spot warning (BSW), off vehicle warning and traffic jam assist (TJA), etc.
  • an intelligent driving control component eg, an advanced driving assistance system (ADAS) or a mobile data center (MDC)
  • the component includes an artificial intelligence (AI) control chip and its single board, which are used to control the vehicle to achieve intelligent driving.
  • AI artificial intelligence
  • the “components" in the intelligent driving control components can also be recorded as modules, systems, devices, units, equipment, etc. For convenience of description, hereinafter collectively referred to as components.
  • the intelligent driving control components will generate a lot of heat during the working process. In order to ensure that the working performance is not affected, they need to be dissipated.
  • Commonly used heat dissipation methods include air cooling and liquid cooling.
  • the power of intelligent driving control components is getting higher and higher, and air cooling can no longer solve the heat dissipation problem, so liquid cooling is needed.
  • the intelligent driving control components can be connected to the existing liquid cooling system to realize the heat dissipation of the intelligent driving control components.
  • the rotational speed of the pump is directly set to 100% of the full speed.
  • the present application provides a liquid cooling system, in which the intelligent driving control component can participate in regulating the rotational speed of the pump in the liquid cooling system, so as to meet the heat dissipation of the intelligent driving control component and the energy saving of the whole vehicle at the same time.
  • FIG. 4 is an example diagram of a system architecture of a liquid cooling system provided by an embodiment of the present application. It should be understood that the system architecture of the liquid cooling system shown in FIG. 4 is only an example, and the liquid cooling system of the embodiment of the present application is not limited thereto. The liquid cooling system 400 will be described in detail below.
  • the liquid cooling system 400 includes a pump 410 , a heat exchanger 420 , a vehicle-mounted control module 430 and a plurality of vehicle-mounted components 440 .
  • the plurality of vehicle-mounted components 440 include an intelligent driving control component 441 and other vehicle-mounted components (eg, vehicle-mounted components 442 and vehicle-mounted components 443 ).
  • the pump 410 is used for delivering liquid to the plurality of vehicle-mounted components 440 to dissipate heat from the plurality of vehicle-mounted components 440 .
  • the on-board control module 430 is configured to determine the rotational speed of the pump 410 according to the pump rotational speed requirements of the plurality of on-board components 440 . It should be understood that determining the rotational speed of the pump 410 according to the pump rotational speed demand of the plurality of onboard components 440 is to determine the rotational speed of the pump 410 according to the pump rotational speed demand of each onboard component of the plurality of onboard components 440 .
  • the liquid cooling system of the embodiment of the present application includes a pump, a heat exchanger, an on-board control module, and a plurality of on-board components, the plurality of on-board components include an intelligent driving control component, and the pump is used to transport liquid for the plurality of on-board components to The plurality of in-vehicle components dissipate heat. Therefore, the liquid cooling system can realize the heat dissipation of the intelligent driving control components.
  • the on-board control module can determine the rotational speed of the pump according to the pump rotational speed requirements of the multiple on-board components, so that the intelligent driving control component can participate in the regulation of the rotational speed of the pump in the liquid cooling system, instead of directly using the full speed of the pump, so as to meet the requirements of intelligent driving. While controlling the heat dissipation of components, it can meet the energy-saving requirements of the whole vehicle.
  • the plurality of on-board components 440 are on-board components that generate heat during operation and need to be liquid-cooled. Therefore, in this application, the plurality of on-board components 440 may also be referred to as a plurality of components to be liquid-cooled in the vehicle .
  • the liquid cooling system may be a liquid cooling system formed by connecting the intelligent driving control component to the existing liquid cooling system in the vehicle.
  • this does not constitute a limitation to the present application.
  • it could also be a new liquid cooling system redesigned for Intelligent Ride Controls or for Intelligent Ride Controls and other in-vehicle components.
  • the liquid cooling system is regarded as a liquid cooling system formed by connecting the intelligent driving control components to the existing liquid cooling system in the vehicle. Therefore, other on-board components (for example, on-board components 442 and 443) can be considered as existing on-board components in the existing liquid cooling system.
  • the existing liquid cooling system is a motor liquid cooling system
  • the The other vehicle components may be components such as motors
  • the existing liquid cooling system is a battery liquid cooling system
  • the other vehicle components may be components such as batteries, which are not limited in this application.
  • the liquid cooling system 400 there may be one or more other vehicle-mounted components, which are not limited in this application.
  • the vehicle-mounted component 442 and the vehicle-mounted component 443 are used as examples for description below.
  • a plurality of vehicle-mounted components 440 may be respectively connected with a plurality of pipelines, the pipelines are connected in parallel, and the pipelines are respectively connected with the pump 410 and the heat exchanger 420 to form a circulation. Loops (loops formed by arrow connections).
  • the on-board control module 430 is connected to the pump 410 and the plurality of on-board components 440 through wires, respectively.
  • the positions of the pump and the heat exchanger in FIG. 4 are only used as an example, and do not constitute a limitation to the present application.
  • heat exchange can also be performed first, and then the liquid can be transferred through the pump, which is not limited in this application.
  • the liquid cooling system 400 may further include: a temperature sensor 450 .
  • a temperature sensor 450 may be located at the liquid cooling inlet of the plurality of vehicle components 440, the temperature sensor 450 being used to measure the inlet water temperature.
  • the liquid cooling system 400 may further include the pump frequency converter 411 to execute the pump operation according to the instruction of the on-board control module 430 . 410 rpm.
  • the liquid cooling system 400 can be considered as a new liquid cooling system formed by connecting the intelligent driving control component 441 to the existing liquid cooling system in the vehicle.
  • each has its own set of speed regulation strategies and can be provided to the on-board control module 430, so that the on-board control module 430 can obtain the on-board components 442 and 443. actual cooling requirements.
  • the intelligent driving control component 441 can also provide a set of speed regulation strategies to the vehicle-mounted control module 430, so that the vehicle-mounted control module 430 can compare the data from the intelligent driving
  • the heat dissipation requirements of the driving control component 441, the vehicle-mounted component 442 and the vehicle-mounted component 443 are determined, and the rotational speed of the pump 410 is determined according to the heat dissipation requirements of the above three components, so that the pump 410 can adjust the speed and save energy under the low power state of each component. In the state, the pump 410 can adjust the speed and dissipate heat.
  • the heat dissipation requirement provided by each component may be the flow requirement or the pump speed requirement in this application, and the flow requirement or the pump speed requirement may also be understood as the liquid flow rate or the pump speed required to achieve heat dissipation. It should be understood that, under normal circumstances, if the demand provided by the component is a flow demand, the onboard control module 430 also needs to convert the flow demand into a corresponding pump speed demand.
  • the rotational speed of the pump 410 is determined according to the heat dissipation requirements of the above three components, specifically, the rotational speed of the pump 410 may be determined according to the pump rotational speed requirements of the three components.
  • the vehicle-mounted control module 430 may also determine the rotation speed of the pump 410 according to the maximum value among the pump rotation speed requirements of the multiple vehicle-mounted components 440, so that the pump rotation speed can satisfy the heat dissipation of the multiple vehicle-mounted components at the same time.
  • the existing on-board components 442 and 443 due to their limited computing power, they can usually be provided to the on-board control module 430 for its own flow requirements, and the on-board control module 430 determines its corresponding pump speed through calculation. need.
  • the intelligent driving control component 441 due to its strong computing power, it can directly calculate the pump speed requirement and provide it to the on-board control module 430; This application does not limit this.
  • a method for determining the pump rotational speed requirements of the plurality of vehicle-mounted components 440 will be described in detail below.
  • each vehicle-mounted component may be determined according to its own temperature and inlet water temperature, which is not limited in this application. Therefore, optionally, the pump rotational speed requirement of each vehicle-mounted unit in the plurality of vehicle-mounted units 440 may be determined according to the inlet water temperature and its own flow rate requirement.
  • Table 1 shows a corresponding relationship between the inlet water temperature, flow demand and pump speed demand of each vehicle component. It should be understood that Table 1 is only used as an example, and does not constitute a limitation to the present application.
  • Table 1 may be pre-embedded in the vehicle-mounted control module 430, so that after obtaining the flow requirements of each vehicle-mounted component, the pump rotational speed requirements of each component can be correspondingly obtained.
  • Table 1 will be described in detail in conjunction with Table 1 below.
  • the vehicle-mounted control module 430 can calculate according to Table 1 that the pump speed requirements of the intelligent driving control unit 441 , the vehicle-mounted unit 442 , and the vehicle-mounted unit 443 are 90%, 60%, and 60%, respectively. The speed of the pump can then be adjusted according to the maximum pump speed requirement (90%).
  • the flow demand value of a certain on-board component exceeds the flow value that can be provided by 90% of the pump speed in the look-up table, it can be considered that the pump speed demand of the on-board component is the full pump speed, and further, the pump can be pumped at the full speed of the pump. speed regulation.
  • the on-board control module 430 detects that the water temperature inlet at this time is 60°C, and the flow demands received from the intelligent driving control unit 441 , on-board unit 442 , and on-board unit 443 are 6L/min, 10L/min, and 7L/min, respectively At this time, the on-board control module 430 calculates that the pump speed requirements of the intelligent driving control component 441, on-board component 442, and on-board component 443 are >90%, 90%, >60% & ⁇ 90%, respectively. Then the speed of the pump can be adjusted according to the full speed of the pump (100%).
  • the pump speed requirement of the intelligent driving control component 441 may not be determined according to the above method, but is determined by the intelligent driving control component 441 itself and provided to the vehicle-mounted control module 430. At this time, the vehicle-mounted control module 430 can directly use The pump speed requirements provided by the intelligent driving control component 441 are compared with the pump speed requirements of the on-board components 442 and 443 obtained from Table 1.
  • the intelligent driving control component 441 may determine its own pump speed requirement in one of the following three ways or any combination.
  • Method 1 Determined according to the inlet water temperature.
  • the temperature of the inlet water at this time can be queried by the on-board control module 430 to the temperature sensor 450 and notified to the driving control component 441, or the driving control component 441 can directly collect the inlet water temperature from the temperature sensor 450, which is not limited in this application. .
  • it can also be determined according to the temperature range in which the inlet water temperature is located.
  • the above calculation method can be built into the vehicle-mounted control module 430 or the intelligent driving control component 441 itself by using a look-up table.
  • Table 2 shows a corresponding relationship between the inlet water temperature and the pump speed requirement. It can be seen from Table 2 that if T in ⁇ 60°C, the corresponding pump speed requirement of the intelligent driving control part 441 is 100%; if 40 ⁇ T in ⁇ 60°C, the corresponding pump speed requirement of the intelligent driving control part 441 is 90%; if 20 ⁇ T in ⁇ 40°C, the corresponding pump speed requirement of the intelligent driving control part 441 is 60%; if T in ⁇ 20°C, the corresponding pump speed requirement of the intelligent driving control part 441 is 20%. In this way, after the inlet water temperature is obtained, the pump speed requirement can be obtained by querying Table 2 according to the temperature range in which the inlet water temperature is located.
  • Inlet water temperature T in Pump speed requirements ⁇ 60°C 100% 40°C ⁇ Tin ⁇ 60°C 90% 20°C ⁇ Tin ⁇ 40°C 60% ⁇ 20°C 20%
  • Mode 2 Determined according to the junction temperature of the core chip on the intelligent driving control component 441 .
  • junction temperature is the actual operating temperature of the semiconductors in the electronic device.
  • the pump speed requirement can be calculated according to the junction temperature by monitoring the junction temperature of the core chip in the intelligent driving control component 441 .
  • the calculation method can be built into the vehicle-mounted control module 430 or the intelligent driving control component 441 itself by using a look-up table.
  • Table 3 shows a corresponding relationship between the core chip junction temperature and the pump speed requirement.
  • T j ⁇ 95°C the corresponding pump speed requirement of the intelligent driving control component 441 is 100%; if 65°C ⁇ T j ⁇ 95°C, the corresponding pump speed requirement of the intelligent driving control component 441 is 60%; if T j ⁇ 65°C, the corresponding pump speed requirement of the intelligent driving control component 441 is 20%.
  • the pump speed requirement can be obtained by querying Table 3 according to the temperature range in which the junction temperature of the core chip is located.
  • Mode 3 Optionally, in Mode 3, it may be determined according to temperature differences at multiple locations on the intelligent driving control component 441 .
  • the temperature difference is the difference between the temperature specification and the actual temperature. Meaning that it can be determined from the difference between the temperature specification and the actual temperature at each of the multiple locations.
  • the temperature information reported by temperature sensors at multiple positions on the intelligent driving control component 441 may be obtained first.
  • multiple locations refer to the locations where multiple devices such as key chips and single boards are located.
  • a built-in operation table can be built to give the names of all reported temperature sensors and the temperature specifications of the corresponding locations (that is, the temperature that the current location can withstand), and calculate the real-time reported temperature of each reported temperature sensor and the temperature specification.
  • the difference (denoted as GAP value) is shown in Table 4.
  • the pump speed requirement may be determined according to the minimum value of the temperature differences at multiple locations.
  • it may be determined according to the temperature interval in which the minimum temperature difference at multiple positions on the intelligent driving control component is located.
  • Table 5 shows a corresponding relationship between the minimum value of the temperature difference at a plurality of locations and the pump speed demand. It can be seen from Table 3 that if GAP min ⁇ 15°C, the corresponding pump speed requirement of the intelligent driving control component 441 is 100%; if 15 ⁇ GAP min ⁇ 40°C, the corresponding pump speed requirement of the intelligent driving control component 441 is 60%; if GAP min ⁇ 40° C min , the corresponding pump speed requirement of the intelligent driving control component 441 is 20%, wherein GAP min refers to the minimum temperature difference.
  • the pump rotational speed requirement can be obtained by looking up Table 5 according to the temperature range in which the minimum temperature difference at the multiple locations is located.
  • the pump rotational speed requirement determined according to this method can ensure that the liquid flow rate provided under any water temperature and any power consumption meets the heat dissipation requirement in this state.
  • GAP min value Pump speed requirements ⁇ 15°C 100% 15°C ⁇ GAP ⁇ 40°C 60% ⁇ 40°C 20%
  • the intelligent driving control component 441 determines the pump speed requirement according to the GAP min value, it may also be determined in combination with the heating rates at multiple locations.
  • the pump speed requirement may be determined according to the larger of the first pump speed requirement and the second pump speed requirement, wherein the first pump speed requirement is based on The minimum value of the temperature difference at multiple positions on the intelligent driving control component is determined, and the second pump rotational speed requirement is determined according to the maximum value of the heating rate at the multiple positions on the intelligent driving control component.
  • first pump rotational speed requirement may be determined according to the temperature range in which the minimum temperature difference at multiple positions on the intelligent driving control component 441 is located; and/or, the second pump rotational speed requirement may be determined according to the intelligent driving control component 441 The rate interval in which the maximum value of the heating rate at the plurality of positions is located is determined.
  • the following describes and introduces the determination of the rotational speed demand of the second pump according to the rate interval in which the maximum heating rate at multiple positions on the intelligent driving control component is located with reference to Table 6.
  • the specific determination method can also be implemented by means of a built-in look-up table.
  • Table 6 shows a corresponding relationship between the maximum value of the heating rate at a plurality of locations and the pump speed requirement.
  • the corresponding pump speed requirement of the intelligent driving control component 441 is 100%; if 1 ⁇ T S-max ⁇ 2°C/s, the corresponding intelligent driving The pump speed requirement of the control unit 441 is 90%; if T S-max ⁇ 1°C/s, the pump speed requirement of the intelligent driving control unit 441 is not reported. So that after the maximum value of the heating rate at multiple positions is obtained, the pump speed requirement can be obtained through the lookup table 6 according to the rate interval in which the maximum value of the heating rate at the multiple positions is located. Therefore, when the power of the intelligent driving control component 441 increases sharply, the speed of the pump can be adjusted in time to realize heat dissipation.
  • the temperature rise rate can be calculated once per second, and if three consecutive calculations reach the relevant threshold in Table 6, the corresponding pump speed requirement is executed.
  • the pump speed requirement determined according to the minimum value of the temperature difference at multiple positions on the intelligent driving control part and the pump determined according to the maximum value of the heating rate at multiple positions on the intelligent driving control part The larger of the rotational speed requirements determines the pump rotational speed requirement of the intelligent driving control component, so that when the heating rate is high, the pump rotational speed demand determined by the heating rate can be used to control the pump for speed regulation, and when the heating rate is low, The speed of the pump can be controlled by using the pump speed demand determined by the temperature difference. Further, the speed requirement of the pump can meet the heat dissipation requirements at different positions of the intelligent driving control component at the same time, and the pump speed can be adjusted in time to dissipate heat when the power of some parts increases sharply.
  • FIG. 5 is an example diagram of a strategy for controlling the rotational speed of a pump applied in a liquid cooling system provided by an embodiment of the present application.
  • the self-calculator in the intelligent driving control unit 441 can combine the temperature difference algorithm and the heating rate algorithm to determine its own pump speed requirement.
  • the specific determination method please refer to the above method 3. It will not be repeated here.
  • on-board components 442 and 443 may determine their own flow requirements or pump speed requirements according to their own speed regulation strategies, which can be referred to in Table 1, and will not be repeated here.
  • the vehicle-mounted control module 430 obtains the requirements of each component at the same time, determines the maximum pump speed requirement from it, and issues a speed regulation command to the pump frequency converter 411 .
  • the pump inverter 411 After the pump inverter 411 receives the speed regulation command, it controls the pump 410 to execute the speed according to the maximum pump speed requirement according to the command.
  • the speed regulation strategy of this embodiment enables the intelligent driving control component to participate in the speed regulation of the pump in the liquid cooling system, so as to satisfy the heat dissipation of the intelligent driving control component and the energy saving of the whole vehicle at the same time. Moreover, when the power of the intelligent driving control component suddenly changes, it can also respond in time to dissipate heat to ensure its normal operation.
  • FIG. 6 is an example diagram of a control method applied to a liquid cooling system provided by an embodiment of the present application.
  • the liquid cooling system may be the liquid cooling system 400 in FIG. 4 .
  • the liquid cooling system includes: a pump, a heat exchanger and a plurality of on-board components, and the plurality of on-board components includes an intelligent driving control component; wherein the pump is used to transport liquid for the plurality of on-board components to dissipate heat from the plurality of on-board components.
  • the control method 600 includes steps S610 and S620, which will be described in detail below.
  • S620 Determine the rotational speed of the pump according to the rotational speed requirements of the pump of the multiple on-board components.
  • determining the rotational speed of the pump according to the pump rotational speed requirements of the plurality of on-board components includes: determining the rotational speed of the pump according to a maximum value of the pump rotational speed requirements of the plurality of on-board components.
  • control method 600 may further include: determining the pump rotational speed requirements of the plurality of on-board components according to the inlet water temperature and the flow demand of each on-board component of the plurality of on-board components.
  • control method 600 may further include: determining the pump speed requirement of the intelligent driving control component according to temperature differences at multiple positions on the intelligent driving control component, where the temperature difference is the difference between the temperature specification and the actual temperature.
  • determining the pump rotational speed requirement of the intelligent driving control component according to temperature differences at multiple locations on the intelligent driving control component includes: determining the pump rotational speed of the intelligent driving control component according to the minimum value of the temperature differences at the multiple locations on the intelligent driving control component. need.
  • determining the pump speed requirement of the intelligent driving control component according to the minimum value of the temperature difference at multiple positions on the intelligent driving control component includes: determining the temperature interval in which the minimum temperature difference at the multiple positions on the intelligent driving control component is located. ; Determine the pump speed requirement of the intelligent driving control component according to the temperature range in which the minimum temperature difference at multiple positions on the intelligent driving control component is located.
  • control method 600 further includes: determining the pump speed requirement of the intelligent driving control component according to temperature differences and heating rates at multiple positions on the intelligent driving control component, where the temperature difference is the difference between the temperature specification and the actual temperature.
  • determining the pump rotational speed requirement of the intelligent driving control component according to the temperature differences at multiple positions on the intelligent driving control component and the heating rate includes: according to the minimum value of the temperature difference and the maximum heating rate at the multiple positions on the intelligent driving control component. The value determines the pump speed requirement of the Intelligent Drive Control component.
  • determining the pump speed requirement of the intelligent driving control component according to the minimum value of the temperature difference at the multiple positions on the intelligent driving control component and the maximum value of the heating rate includes: according to the minimum temperature difference at the multiple positions on the intelligent driving control component; determine the first pump speed requirement; determine the second pump speed requirement according to the maximum value of the heating rate at multiple positions on the intelligent driving control component; determine the intelligent Pump speed requirements for driving control components.
  • determining the first pump rotational speed requirement according to the minimum value of the temperature difference at the multiple positions on the intelligent driving control component includes: determining the temperature interval in which the minimum temperature difference at the multiple positions on the intelligent driving control component is located; The temperature range in which the minimum value of the temperature difference at multiple positions on the driving control component is located determines the first pump speed requirement; and/or, the second pump speed is determined according to the maximum value of the heating rate at the multiple positions on the intelligent driving control component
  • the requirements include: determining the rate interval in which the maximum heating rate at multiple positions on the intelligent driving control component is located; determining the second pump according to the rate interval in which the maximum heating rate at multiple locations on the intelligent driving control component is located speed requirement.
  • control method 600 further includes: determining the pump speed requirement of the intelligent driving control component according to the inlet water temperature.
  • determining the pump speed requirement of the intelligent driving control component according to the inlet water temperature includes: determining the temperature range in which the inlet water temperature is located; and determining the pump speed requirement of the intelligent driving control component according to the temperature range in which the inlet water temperature is located.
  • control method 600 further includes: determining the pump speed requirement of the intelligent driving control component according to the junction temperature of the core chip on the intelligent driving control component.
  • determining the pump speed requirement of the intelligent driving control component according to the junction temperature of the core chip on the intelligent driving control component includes: determining the temperature range in which the junction temperature of the core chip on the intelligent driving control component is located; The temperature range in which the junction temperature of the upper core chip is located determines the pump speed requirement of the intelligent driving control component.
  • control method may be executed by one control device (also referred to as a controller, a control module or a control unit, etc.), or may be jointly executed by multiple control devices, which is not limited in this application.
  • one control device also referred to as a controller, a control module or a control unit, etc.
  • multiple control devices which is not limited in this application.
  • FIG. 7 is an example diagram of a control device applied to a liquid cooling system provided by an embodiment of the present application. It should be understood that the device 700 shown in FIG. 7 can be applied to a liquid cooling system, and the liquid cooling system includes: a pump, a heat exchanger, and a plurality of on-board components, and the plurality of on-board components include intelligent driving control components; wherein, the pump It is used for delivering liquid for the plurality of vehicle-mounted components to dissipate heat from the plurality of vehicle-mounted components.
  • the control device 700 includes a controller 710, and the controller 710 is configured to: obtain the pump rotational speed requirements of the plurality of on-board components; and determine the pump rotational speed according to the pump rotational speed requirements of the plurality of on-board components.
  • controller 710 may be further configured to: determine the rotational speed of the pump according to the maximum value among the rotational speed requirements of the pump of the plurality of on-board components.
  • controller 710 may be further configured to: determine the pump rotational speed requirement of the plurality of on-board components according to the inlet water temperature and the flow demand of each on-board component of the plurality of on-board components.
  • controller 710 may be further configured to: determine the pump speed requirement of the intelligent driving control component according to temperature differences at multiple positions on the intelligent driving control component, where the temperature difference is the difference between the temperature specification and the actual temperature.
  • controller 710 may be further configured to: determine the pump speed requirement of the intelligent driving control component according to the minimum value of the temperature difference at a plurality of positions on the intelligent driving control component.
  • the controller 710 can also be used to: determine the temperature range in which the minimum temperature difference at multiple positions on the intelligent driving control component is located; according to the minimum temperature difference at multiple positions on the intelligent driving control component The temperature range in which the value falls determines the pump speed requirement of the intelligent driving control component.
  • the controller 710 may be further configured to: determine the pump speed requirement of the intelligent driving control component according to the temperature differences and heating rates at multiple positions on the intelligent driving control component.
  • the temperature difference is the difference between the temperature specification and the actual temperature.
  • controller 710 may be further configured to: determine the pump speed requirement of the intelligent driving control component according to the minimum value of the temperature difference and the maximum value of the heating rate at multiple positions on the intelligent driving control component.
  • the controller 710 can also be used to: determine the temperature range in which the minimum temperature difference at multiple positions on the intelligent driving control component is located; according to the minimum temperature difference at multiple positions on the intelligent driving control component The temperature range in which the value falls determines the first pump speed requirement.
  • the controller 710 may also be used to: determine a rate interval in which the maximum value of the heating rate at multiple positions on the intelligent driving control component is located; according to the heating rates at multiple positions on the intelligent driving control component The speed interval in which the maximum value of , is located to determine the second pump speed requirement.
  • controller 710 may also be used to: determine the pump speed requirement of the intelligent driving control component according to the inlet water temperature.
  • controller 710 can also be used to: determine the temperature range in which the inlet water temperature is located; and determine the pump speed requirement of the intelligent driving control component according to the temperature range in which the inlet water temperature is located.
  • controller 710 may also be used to: determine the pump speed requirement of the intelligent driving control component according to the junction temperature of the core chip on the intelligent driving control component.
  • FIG. 8 is an exemplary block diagram of a hardware structure of a vehicle control device provided by an embodiment of the present application.
  • the apparatus 800 (the apparatus 800 may specifically be a computer device) includes a memory 810 , a processor 820 , a communication interface 830 and a bus 840 .
  • the memory 810 , the processor 820 , and the communication interface 830 are connected to each other through the bus 840 for communication.
  • the memory 810 may be a read only memory (ROM), a static storage device, a dynamic storage device, or a random access memory (RAM).
  • the memory 810 may store a program, and when the program stored in the memory 810 is executed by the processor 820, the processor 820 is configured to execute each step of the control method in the embodiment of the present application.
  • the processor 820 can be a general-purpose central processing unit (CPU), a microprocessor, an application specific integrated circuit (ASIC), a graphics processor (graphics processing unit, GPU), or one or more
  • the integrated circuit is used to execute the relevant program to realize the control method of the method embodiment of the present application.
  • Bus 840 may include pathways for communicating information between various components of device 800 (eg, memory 810, processor 820, communication interface 830).
  • the embodiments of the present application further provide a vehicle, optionally, the vehicle includes each module for executing any one of the above control methods; and/or, includes any one of the above liquid cooling systems; and/or, as any of the above control devices.
  • the disclosed system, apparatus and method may be implemented in other manners.
  • the apparatus embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not implemented.
  • the shown or discussed mutual coupling or direct coupling or communication connection may be through some interfaces, indirect coupling or communication connection of devices or units, and may be in electrical, mechanical or other forms.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit.
  • the functions, if implemented in the form of software functional units and sold or used as stand-alone products, may be stored in a computer-readable storage medium.
  • the technical solution of the present application can be embodied in the form of a software product in essence, or the part that contributes to the prior art or the part of the technical solution, and the computer software product is stored in a storage medium, including Several instructions are used to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage medium includes: U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk and other media that can store program codes .

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Transportation (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

一种液冷系统、应用在液冷系统的控制方法及车辆,涉及人工智能、自动驾驶或智能驾驶领域,可以应用在智能汽车、网联汽车、自动驾驶汽车上。其中,该液冷系统包括:泵、换热器、车载控制模块及多个车载部件,该多个车载部件包括智能驾驶控制部件;其中,该泵用于为该多个车载部件输送液体,以对该多个车载部件进行散热;该车载控制模块用于根据该多个车载部件的泵转速需求确定该泵的转速。该液冷系统能够同时满足智能驾驶控制部件的散热以及整车节能需求。

Description

液冷系统、应用在液冷系统的控制方法、控制装置及车辆
本申请要求于2020年11月30日提交中国专利局、申请号为202011376695.5、申请名称为“液冷系统、应用在液冷系统的控制方法、控制装置及车辆”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及散热领域,并且更具体地,涉及一种液冷系统、应用在液冷系统的控制方法、控制装置及车辆。
背景技术
智能驾驶是人工智能(artificial intelligence,AI)领域的一种主流应用,智能驾驶技术依靠计算机视觉、雷达、监控装置和全球定位系统等协同合作,让机动车辆可以在不需要人工主动操作下,实现智能驾驶。智能驾驶车辆中的关键部件之一是智能驾驶控制部件(例如,高级驾驶辅助系统(advanced driving assistance system,ADAS)或移动数据中心(mobile data center,MDC))。其在工作过程中会产生大量热量,为了保障工作性能不受影响,需要对其进行散热。
常用的散热方式有风冷散热和液冷散热。随着智能驾驶控制部件算力需求的增加,智能驾驶控制部件功率越来越高,风冷已无法进一步解决其散热问题,于是需要采用液冷散热。由于车辆中已有液冷系统,那么如何通过已有液冷系统实现对智能驾驶控制部件散热的同时满足整车节能需求成为了新的问题。
发明内容
本申请提供一种液冷系统、应用在液冷系统的控制方法、控制装置及车辆,该液冷系统能够同时满足智能驾驶控制部件的散热以及整车节能需求。
第一方面,提供了一种液冷系统,该液冷系统包括:泵、换热器、车载控制模块及多个车载部件,该多个车载部件包括智能驾驶控制部件;其中,该泵用于,为该多个车载部件输送液体,以对该多个车载部件进行散热;该车载控制模块用于,根据该多个车载部件的泵转速需求确定该泵的转速。
本申请实施例的液冷系统包括泵、换热器、车载控制模块及多个车载部件,该多个车载部件包括智能驾驶控制部件,该泵用于为该多个车载部件输送液体,以对该多个车载部件进行散热。从而使得该液冷系统能够实现对智能驾驶控制部件的散热。并且,车载控制模块可以根据该多个车载部件的泵转速需求确定该泵的转速。使得该智能驾驶控制部件可以参与液冷系统中泵的转速调控,以在满足智能驾驶控制部件散热的同时满足整车节能需求。
结合第一方面,在第一方面的某些实现方式中,该车载控制模块还用于,根据该多个 车载部件的泵转速需求中的最大值确定该泵的转速。
在本申请实施例中,可以根据多个车载部件的泵转速需求中的最大值确定液冷系统的泵的转速,以使得所确定的泵的转速能够同时满足多个车载部件的散热需求。
结合第一方面,在第一方面的某些实现方式中,该多个车载部件中每个车载部件的泵转速需求根据入口水温和自身的流量需求确定。
结合第一方面,在第一方面的某些实现方式中,该多个车载部件分别与多个管路连接,该多个管路之间并联连接,该多个管路分别与该泵和该换热器连接并形成循环回路,该车载控制模块通过线路分别与该泵和该多个车载部件连接。
结合第一方面,在第一方面的某些实现方式中,该液冷系统还包括:温度传感器,该温度传感器位于该多个车载部件的液冷入口处,该温度传感器用于测量该入口水温。
结合第一方面,在第一方面的某些实现方式中,该智能驾驶控制部件的泵转速需求根据该智能驾驶控制部件上多个位置处的温差确定,该温差为温度规格与实际温度之差。
应理解,温差能够反映温度规格与实际温度之差,其中,温度规格是指当前位置所能承受的温度,温差越低,表示实际温度越接近温度规格,越不利于部件的正常运行。因而,根据温差确定泵转速需求更有利于部件的正常运行。
而且,对于智能驾驶控制部件而言,不同位置处的器件在工作过程中的温差可能并不相同,若仅根据某个位置处的温差所确定的泵转速需求控制散热,可能会使得其他部位的散热需求得不到满足,这样也不利于整个部件的正常运行。
因此,在本申请实施例中,通过结合该智能驾驶控制部件上多个位置处的温差确定智能驾驶控制部件的泵转速需求,以同时满足该智能驾驶控制部件上不同位置处的散热需求。
结合第一方面,在第一方面的某些实现方式中,该智能驾驶控制部件的泵转速需求根据该智能驾驶控制部件上多个位置处的温差的最小值确定。
在本申请实施例中,通过根据该智能驾驶控制部件上多个位置处的温差的最小值确定该智能驾驶控制部件的泵转速需求,使得所确定的泵转速需求能够满足该智能驾驶控制部件不同位置处的散热需求。
结合第一方面,在第一方面的某些实现方式中,该智能驾驶控制部件的泵转速需求根据该智能驾驶控制部件上多个位置处的温差的最小值所处的温度区间确定。
结合第一方面,在第一方面的某些实现方式中,该智能驾驶控制部件的泵转速需求根据该智能驾驶控制部件上多个位置处的温差和升温速率确定,该温差为温度规格与实际温度之差。
应理解,温差能够反映温度规格与实际温度之差,其中,温度规格是指当前位置所能承受的温度,温差越低,表示实际温度越接近温度规格,越不利于部件的正常运行。因而,根据温差确定泵转速需求更有利于部件的正常运行。
应理解,升温速率能够反映智能驾驶控制部件某个位置处的功率变化情况,升温速率发生变化就意味着当前位置处的工作功率发生变化,根据该智能驾驶控制部件上多个位置处的升温速率确定泵转速需求,能够使得在智能驾驶控制部件等发热器件的功率急剧增加时及时对泵进行调速,实现散热。
而且,对于智能驾驶控制部件而言,不同位置处的器件在工作过程中的温差和升温速 率可能并不相同,若仅根据某个位置处的温差和升温速率所确定的泵转速需求控制散热,可能会使得其他部位的散热需求得不到满足。
因此,在本申请实施例中,通过结合该智能驾驶控制部件上多个位置处的温差和升温速率确定智能驾驶控制部件的泵转速需求,以同时满足该智能驾驶控制部件不同位置处的散热需求。
结合第一方面,在第一方面的某些实现方式中,该智能驾驶控制部件的泵转速需求根据该智能驾驶控制部件上多个位置处的温差的最小值和升温速率的最大值确定。
结合第一方面,在第一方面的某些实现方式中,该智能驾驶控制部件的泵转速需求根据第一泵转速需求和第二泵转速需求中的较大者确定,其中,该第一泵转速需求根据该智能驾驶控制部件上多个位置处的温差的最小值确定,该第二泵转速需求根据该智能驾驶控制部件上多个位置处的升温速率的最大值确定。
在本申请实施例中,通过根据该智能驾驶控制部件上多个位置处的温差的最小值所确定的第一泵转速需求和根据该智能驾驶控制部件上多个位置处的升温速率的最大值所确定的第二泵转速需求中的较大者确定智能驾驶控制部件的泵转速需求,使得该泵转速需求不仅能够同时满足该智能驾驶控制部件不同位置处的散热需求,而且能够在某些位置功率急剧增加时及时调整泵转速以进行散热。
结合第一方面,在第一方面的某些实现方式中,该第一泵转速需求根据该智能驾驶控制部件上多个位置处的温差的最小值所处的温度区间确定;和/或,该第二泵转速需求根据该智能驾驶控制部件上多个位置处的升温速率的最大值所处的速率区间确定。
结合第一方面,在第一方面的某些实现方式中,该智能驾驶控制部件的泵转速需求根据入口水温确定。
结合第一方面,在第一方面的某些实现方式中,该智能驾驶控制部件的泵转速需求根据该入口水温所处的温度区间确定。
结合第一方面,在第一方面的某些实现方式中,该智能驾驶控制部件的泵转速需求根据该智能驾驶控制部件上的核心芯片的结温确定。
结合第一方面,在第一方面的某些实现方式中,该智能驾驶控制部件的泵转速需求根据该智能驾驶控制部件上的核心芯片的结温所处的温度区间确定。
第二方面,提供了一种应用在液冷系统的控制方法,该液冷系统包括:泵、换热器及多个车载部件,该多个车载部件包括智能驾驶控制部件;其中,该泵用于,为该多个车载部件输送液体,以对该多个车载部件进行散热;该控制方法包括:获取该多个车载部件的泵转速需求;根据该多个车载部件的泵转速需求确定该泵的转速。
结合第二方面,在第二方面的某些实现方式中,该根据该多个车载部件的泵转速需求确定该泵的转速包括:根据该多个车载部件的泵转速需求中的最大值确定该泵的转速。
结合第二方面,在第二方面的某些实现方式中,该控制方法还包括:根据入口水温和该多个车载部件中每个车载部件的流量需求确定该多个车载部件的泵转速需求。
结合第二方面,在第二方面的某些实现方式中,该控制方法还包括:根据该智能驾驶控制部件上多个位置处的温差确定该智能驾驶控制部件的泵转速需求,该温差为温度规格与实际温度之差。
结合第二方面,在第二方面的某些实现方式中,该根据该智能驾驶控制部件上多个位 置处的温差确定该智能驾驶控制部件的泵转速需求包括:根据该智能驾驶控制部件上多个位置处的温差的最小值确定该智能驾驶控制部件的泵转速需求。
结合第二方面,在第二方面的某些实现方式中,该根据该智能驾驶控制部件上多个位置处的温差的最小值确定该智能驾驶控制部件的泵转速需求包括:确定该智能驾驶控制部件上多个位置处的温差的最小值所处的温度区间;根据该智能驾驶控制部件上多个位置处的温差的最小值所处的温度区间确定该智能驾驶控制部件的泵转速需求。
结合第二方面,在第二方面的某些实现方式中,该控制方法还包括:根据该智能驾驶控制部件上多个位置处的温差和升温速率确定该智能驾驶控制部件的泵转速需求该温差为温度规格与实际温度之差。
结合第二方面,在第二方面的某些实现方式中,该根据该智能驾驶控制部件上多个位置处的温差和升温速率确定该智能驾驶控制部件的泵转速需求包括:根据该智能驾驶控制部件上多个位置处的温差的最小值和升温速率的最大值确定该智能驾驶控制部件的泵转速需求。
结合第二方面,在第二方面的某些实现方式中,该根据该智能驾驶控制部件上多个位置处的温差的最小值和升温速率的最大值确定该智能驾驶控制部件的泵转速需求包括:包括:根据该智能驾驶控制部件上多个位置处的温差的最小值确定第一泵转速需求;根据该智能驾驶控制部件上多个位置处的升温速率的最大值确定第二泵转速需求;根据该第一泵转速需求和该第二泵转速需求中的较大者确定该智能驾驶控制部件的泵转速需求。
结合第二方面,在第二方面的某些实现方式中,该根据该智能驾驶控制部件上多个位置处的温差的最小值确定第一泵转速需求包括:确定该智能驾驶控制部件上多个位置处的温差的最小值所处的温度区间;根据该智能驾驶控制部件上多个位置处的温差的最小值所处的温度区间确定该第一泵转速需求;和/或,该根据该智能驾驶控制部件上多个位置处的升温速率的最大值确定第二泵转速需求包括:确定该智能驾驶控制部件上多个位置处的升温速率的最大值所处的速率区间;根据该智能驾驶控制部件上多个位置处的升温速率的最大值所处的速率区间确定该第二泵转速需求。
结合第二方面,在第二方面的某些实现方式中,该控制方法还包括:根据入口水温确定该智能驾驶控制部件的泵转速需求。
结合第二方面,在第二方面的某些实现方式中,该根据入口水温确定该智能驾驶控制部件的泵转速需求包括:确定该入口水温所处的温度区间;根据该入口水温所处的温度区间确定该智能驾驶控制部件的泵转速需求。
结合第二方面,在第二方面的某些实现方式中,该控制方法还包括:根据智能驾驶控制部件上的核心芯片的结温确定该智能驾驶控制部件的泵转速需求。
结合第二方面,在第二方面的某些实现方式中,该根据智能驾驶控制部件上的核心芯片的结温确定该智能驾驶控制部件的泵转速需求包括:确定该智能驾驶控制部件上的核心芯片的结温所处的温度区间;根据该智能驾驶控制部件上的核心芯片的结温所处的温度区间确定该智能驾驶控制部件的泵转速需求。
第三方面,提供了一种应用在液冷系统的控制装置,该液冷系统包括:泵、换热器及多个车载部件,该多个车载部件包括智能驾驶控制部件;其中,该泵用于,为该多个车载部件输送液体,以对该多个车载部件进行散热;该控制装置包括控制器,该控制器用于: 获取该多个车载部件的泵转速需求;根据该多个车载部件的泵转速需求确定该泵的转速。
结合第三方面,在第三方面的某些实现方式中,该控制器还用于:根据该多个车载部件的泵转速需求中的最大值确定该泵的转速。
结合第三方面,在第三方面的某些实现方式中,该控制器还用于:根据入口水温和该多个车载部件中每个车载部件的流量需求确定该多个车载部件的泵转速需求。
结合第三方面,在第三方面的某些实现方式中,该控制器还用于:根据该智能驾驶控制部件上多个位置处的温差确定该智能驾驶控制部件的泵转速需求,该温差为温度规格与实际温度之差。
结合第三方面,在第三方面的某些实现方式中,该控制器还用于:根据该智能驾驶控制部件上多个位置处的温差的最小值确定该智能驾驶控制部件的泵转速需求。
结合第三方面,在第三方面的某些实现方式中,该控制器还用于:确定该智能驾驶控制部件上多个位置处的温差的最小值所处的温度区间;根据该智能驾驶控制部件上多个位置处的温差的最小值所处的温度区间确定该智能驾驶控制部件的泵转速需求。
结合第三方面,在第三方面的某些实现方式中,该控制器还用于:根据该智能驾驶控制部件上多个位置处的温差和升温速率确定该智能驾驶控制部件的泵转速需求该温差为温度规格与实际温度之差。
结合第三方面,在第三方面的某些实现方式中,该控制器还用于:根据该智能驾驶控制部件上多个位置处的温差的最小值和升温速率的最大值确定该智能驾驶控制部件的泵转速需求。
结合第三方面,在第三方面的某些实现方式中,该控制器还用于:根据该智能驾驶控制部件上多个位置处的温差的最小值确定第一泵转速需求;根据该智能驾驶控制部件上多个位置处的升温速率的最大值确定第二泵转速需求;根据该第一泵转速需求和该第二泵转速需求中的较大者确定该智能驾驶控制部件的泵转速需求。
结合第三方面,在第三方面的某些实现方式中,该控制器还用于:确定该智能驾驶控制部件上多个位置处的温差的最小值所处的温度区间;根据该智能驾驶控制部件上多个位置处的温差的最小值所处的温度区间确定该第一泵转速需求;和/或,该控制器还用于:确定该智能驾驶控制部件上多个位置处的升温速率的最大值所处的速率区间;根据该智能驾驶控制部件上多个位置处的升温速率的最大值所处的速率区间确定该第二泵转速需求。
结合第三方面,在第三方面的某些实现方式中,该控制器还用于:根据入口水温确定该智能驾驶控制部件的泵转速需求。
结合第三方面,在第三方面的某些实现方式中,该控制器还用于:确定该入口水温所处的温度区间;根据该入口水温所处的温度区间确定该智能驾驶控制部件的泵转速需求。
结合第三方面,在第三方面的某些实现方式中,该控制器还用于:根据智能驾驶控制部件上的核心芯片的结温确定该智能驾驶控制部件的泵转速需求。
结合第三方面,在第三方面的某些实现方式中,该控制器还用于:确定该智能驾驶控制部件上的核心芯片的结温所处的温度区间;根据该智能驾驶控制部件上的核心芯片的结温所处的温度区间确定该智能驾驶控制部件的泵转速需求。
第四方面,提供了一种应用在液冷系统的控制装置,包括输入输出接口、处理器和存储器,该处理器用于控制输入输出接口收发信号或信息,该存储器用于存储计算机程序, 该处理器用于从存储器中调用并运行该计算机程序,使得该规划装置执行上述第二方面或者第二方面的任一可能的实现方式中的方法。
第五方面,提供了一种车辆,包括如第一方面或者第一方面的任一可能的实现方式中的系统;和/或,包括如第三方面或者第三方面的任一可能的实现方式中的控制装置。
第六方面,提供了一种计算设备,包括:至少一个处理器和存储器,所述至少一个处理器与所述存储器耦合,用于读取并执行所述存储器中的指令,以执行如第二方面或者第二方面的任一可能的实现方式中的控制方法。
第七方面,提供了一种计算机可读介质,所述计算机可读介质存储有程序代码,当所述计算机程序代码在计算机上运行时,使得所述计算机执行如第二方面或者第二方面的任一可能的实现方式中的控制方法。
第八方面,提供了一种包含指令的计算机程序产品,当该计算机程序产品在计算机上运行时,使得计算机执行上述第二方面或者第二方面的任一可能的实现方式中的控制方法。
第九方面,提供一种芯片,所述芯片包括处理器与数据接口,所述处理器通过所述数据接口读取存储器上存储的指令,执行第二方面或者第二方面的任一可能的实现方式中的控制方法。
可选地,作为一种实现方式,所述芯片还可以包括存储器,所述存储器中存储有指令,所述处理器用于执行所述存储器上存储的指令,当所述指令被执行时,所述处理器用于执行第二方面或者第二方面的任一可能的实现方式中的控制方法。
附图说明
图1是本申请实施例提供的一种车辆100的功能框图;
图2是本申请实施例提供的一种智能驾驶系统的示例图;
图3是本申请实施例提供的一种云侧指令智能驾驶车辆的应用示例图;
图4是本申请实施例提供的一种液冷系统的系统架构示例图;
图5是本申请实施例提供的一种应用在液冷系统中的控制泵转速的策略示例图;
图6是本申请实施例提供的一种应用在液冷系统的控制方法的示例图;
图7是本申请实施例提供的一种应用在液冷系统的控制装置的示例图;
图8是本申请实施例提供的一种控制装置的硬件结构示例性框图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
图1是本申请实施例提供的一种车辆100的功能框图。在一个实施例中,将车辆100配置为完全或部分地智能驾驶模式。
例如,车辆100可以在处于智能驾驶模式中的同时控制自身,并且可通过人为操作来确定车辆及其周边环境的当前状态,确定周边环境中的至少一个其他车辆的可能行为,并确定其他车辆执行可能行为的可能性相对应的置信水平,基于所确定的信息来控制车辆100。在车辆100处于智能驾驶模式中时,可以将车辆100置为在没有和人交互的情况下操作。
车辆100可包括各种子系统,例如行进系统102、传感器系统104、控制系统106、一个或多个外围设备108以及电源110、计算机系统112和用户接口116。可选地,车辆100可包括更多或更少的子系统,并且每个子系统可包括多个元件。另外,车辆100的每个子系统和元件可以通过有线或者无线互连。
行进系统102可包括为车辆100提供动力运动的组件。在一个实施例中,行进系统102可包括引擎118、能量源119、传动装置120和车轮/轮胎121。引擎118可以是内燃引擎、电动机、空气压缩引擎或其他类型的引擎组合,例如,汽油发动机和电动机组成的混动引擎,内燃引擎和空气压缩引擎组成的混动引擎。引擎118将能量源119转换成机械能量。
能量源119的示例包括汽油、柴油、其他基于石油的燃料、丙烷、其他基于压缩气体的燃料、乙醇、太阳能电池板、电池和其他电力来源。能量源119也可以为车辆100的其他系统提供能量。
传动装置120可以将来自引擎118的机械动力传送到车轮121。传动装置120可包括变速箱、差速器和驱动轴。在一个实施例中,传动装置120还可以包括其他器件,比如离合器。其中,驱动轴可包括可耦合到一个或多个车轮121的一个或多个轴。
传感器系统104可包括感测关于车辆100周边的环境的信息的若干个传感器。例如,传感器系统104可包括定位系统122(定位系统可以是全球定位系统(global positioning system,GPS)系统,也可以是北斗系统或者其他定位系统)、惯性测量单元(inertial measurement unit,IMU)124、雷达126、激光测距仪128以及相机130。传感器系统104还可包括被监视车辆100的内部系统的传感器(例如,车内空气质量监测器、燃油量表、机油温度表等)。来自这些传感器中的一个或多个的传感器数据可用于检测对象及其相应特性(位置、形状、方向、速度等)。这种检测和识别是自主车辆100的安全操作的关键功能。
定位系统122可用于估计车辆100的地理位置。IMU 124用于基于惯性加速度来感测车辆100的位置和朝向变化。在一个实施例中,IMU 124可以是加速度计和陀螺仪的组合。
雷达126可利用无线电信号来感测车辆100的周边环境内的物体。在一些实施例中,除了感测物体以外,雷达126还可用于感测物体的速度和/或前进方向。
激光测距仪128可利用激光来感测车辆100所位于的环境中的物体。在一些实施例中,激光测距仪128可包括一个或多个激光源、激光扫描器以及一个或多个检测器,以及其他系统组件。
相机130可用于捕捉车辆100的周边环境的多个图像。相机130可以是静态相机或视频相机。
控制系统106为控制车辆100及其组件的操作。控制系统106可包括各种元件,其中包括转向系统132、油门134、制动单元136、传感器融合算法138、计算机视觉系统140、路线控制系统142以及障碍物避免系统144。
转向系统132可操作来调整车辆100的前进方向。例如在一个实施例中可以为方向盘系统。
油门134用于控制引擎118的操作速度并进而控制车辆100的速度。
制动单元136用于控制车辆100减速。制动单元136可使用摩擦力来减慢车轮121。 在其他实施例中,制动单元136可将车轮121的动能转换为电流。制动单元136也可采取其他形式来减慢车轮121转速从而控制车辆100的速度。
计算机视觉系统140可以操作来处理和分析由相机130捕捉的图像以便识别车辆100周边环境中的物体和/或特征。所述物体和/或特征可包括交通信号、道路边界和障碍物。计算机视觉系统140可使用物体识别算法、运动中恢复结构(Structure from Motion,SFM)算法、视频跟踪和其他计算机视觉技术。在一些实施例中,计算机视觉系统140可以用于为环境绘制地图、跟踪物体、估计物体的速度等等。
路线控制系统142用于确定车辆100的行驶路线。在一些实施例中,路线控制系统142可结合来自传感器138、GPS122和一个或多个预定地图的数据以为车辆100确定行驶路线。
障碍物避免系统144用于识别、评估和避免或者以其他方式越过车辆100的环境中的潜在障碍物。
当然,在一个实例中,控制系统106可以增加或替换地包括除了所示出和描述的那些以外的组件。或者也可以减少一部分上述示出的组件。
车辆100通过外围设备108与外部传感器、其他车辆、其他计算机系统或用户之间进行交互。外围设备108可包括无线通信系统146、车载电脑148、麦克风150和/或扬声器152。
在一些实施例中,外围设备108提供车辆100的用户与用户接口116交互的手段。例如,车载电脑148可向车辆100的用户提供信息。用户接口116还可操作车载电脑148来接收用户的输入。车载电脑148可以通过触摸屏进行操作。在其他情况中,外围设备108可提供用于车辆100与位于车内的其它设备通信的手段。例如,麦克风150可从车辆100的用户接收音频(例如,语音命令或其他音频输入)。类似地,扬声器152可向车辆100的用户输出音频。
无线通信系统146可以直接地或者经由通信网络来与一个或多个设备无线通信。例如,无线通信系统146可使用3G蜂窝通信,例如码分多址(code division multiple access,CDMA)、全球移动通信系统(global system for mobile communications,GSM)、通用分组无线服务技术(general packet radio service,GPRS),或者4G蜂窝通信,例如长期演进(long term evolution,LTE),或者5G蜂窝通信。无线通信系统146可利用WiFi与无线局域网(wireless local area network,WLAN)通信。在一些实施例中,无线通信系统146可利用红外链路、蓝牙等与设备直接通信。其他无线协议,例如各种车辆通信系统,例如,无线通信系统146可包括一个或多个专用短程通信(dedicated short range communications,DSRC)设备,这些设备可包括车辆和/或路边台站之间的公共和/或私有数据通信。
电源110可向车辆100的各种组件提供电力。在一个实施例中,电源110可以为可再充电锂离子或铅酸电池。这种电池的一个或多个电池组可被配置为电源为车辆100的各种组件提供电力。在一些实施例中,电源110和能量源119可一起实现,例如一些全电动车中那样。
车辆100的部分或所有功能受计算机系统112控制。计算机系统112可包括至少一个处理器113,处理器113执行存储在例如存储器114这样的非暂态计算机可读介质中的指令115。计算机系统112还可以是采用分布式方式控制车辆100的个体组件或子系统的多 个计算设备。
处理器113可以是任何常规的处理器,诸如商业可获得的CPU。可选地,该处理器可以是诸如ASIC或其它基于硬件的处理器的专用设备。尽管图1功能性地图示了处理器、存储器、和在相同块中的计算机110的其它元件,但是本领域的普通技术人员应该理解该处理器、计算机、或存储器实际上可以包括可以或者可以不存储在相同的物理外壳内的多个处理器、计算机、或存储器。例如,存储器可以是硬盘驱动器或位于不同于计算机110的外壳内的其它存储介质。因此,对处理器或计算机的引用将被理解为包括对可以或者可以不并行操作的处理器或计算机或存储器的集合的引用。不同于使用单一的处理器来执行此处所描述的步骤,诸如转向组件和减速组件的一些组件每个都可以具有其自己的处理器,所述处理器只执行与特定于组件的功能相关的计算。
在此处所描述的各个方面中,处理器可以位于远离该车辆并且与该车辆进行无线通信。在其它方面中,此处所描述的过程中的一些在布置于车辆内的处理器上执行而其它则由远程处理器执行,包括采取执行单一操纵的必要步骤。
在一些实施例中,存储器114可包含指令115(例如,程序逻辑),指令115可被处理器113执行来执行车辆100的各种功能,包括以上描述的那些功能。存储器114也可包含额外的指令,包括向行进系统102、传感器系统104、控制系统106和外围设备108中的一个或多个发送数据、从其接收数据、与其交互和/或对其进行控制的指令。
除了指令115以外,存储器114还可存储数据,例如道路地图、路线信息,车辆的位置、方向、速度以及其它这样的车辆数据,以及其他信息。这种信息可在车辆100在自主、半自主和/或手动模式中操作期间被车辆100和计算机系统112使用。
用户接口116,用于向车辆100的用户提供信息或从其接收信息。可选地,用户接口116可包括在外围设备108的集合内的一个或多个输入/输出设备,例如无线通信系统146、车车在电脑148、麦克风150和扬声器152。
计算机系统112可基于从各种子系统(例如,行进系统102、传感器系统104和控制系统106)以及从用户接口116接收的输入来控制车辆100的功能。例如,计算机系统112可利用来自控制系统106的输入以便控制转向单元132来避免由传感器系统104和障碍物避免系统144检测到的障碍物。在一些实施例中,计算机系统112可操作来对车辆100及其子系统的许多方面提供控制。
可选地,上述这些组件中的一个或多个可与车辆100分开安装或关联。例如,存储器114可以部分或完全地与车辆100分开存在。上述组件可以按有线和/或无线方式来通信地耦合在一起。
可选地,上述组件只是一个示例,实际应用中,上述各个模块中的组件有可能根据实际需要增添或者删除,图1不应理解为对本申请实施例的限制。
在道路行进的智能驾驶汽车,如上面的车辆100,可以识别其周围环境内的物体以确定对当前速度的调整。所述物体可以是其它车辆、交通控制设备、或者其它类型的物体。在一些示例中,可以独立地考虑每个识别的物体,并且基于物体的各自的特性,诸如它的当前速度、加速度、与车辆的间距等,可以用来确定智能驾驶汽车所要调整的速度。
可选地,智能驾驶汽车车辆100或者与智能驾驶车辆100相关联的计算设备(如图1的计算机系统112、计算机视觉系统140、存储器114)可以基于所识别的物体的特性和 周围环境的状态(例如,交通、雨、道路上的冰、等等)来预测所述识别的物体的行为。可选地,每一个所识别的物体都依赖于彼此的行为,因此还可以将所识别的所有物体全部一起考虑来预测单个识别的物体的行为。车辆100能够基于预测的所述识别的物体的行为来调整它的速度。换句话说,智能驾驶汽车能够基于所预测的物体的行为来确定车辆将需要调整到(例如,加速、减速、或者停止)什么稳定状态。在这个过程中,也可以考虑其它因素来确定车辆100的速度,诸如,车辆100在行驶的道路中的横向位置、道路的曲率、静态和动态物体的接近度等等。
除了提供调整智能驾驶汽车的速度的指令之外,计算设备还可以提供修改车辆100的转向角的指令,以使得智能驾驶汽车遵循给定的轨迹和/或维持与智能驾驶汽车附近的物体(例如,道路上的相邻车道中的轿车)的安全横向和纵向距离。
可选的,智能驾驶汽车车辆100或者与智能驾驶车辆100相关联的计算设备(如图1的计算机系统112、计算机视觉系统140、存储器114)还可以基于车辆的状态及检测到的环境信息,预测在前方路段智能驾驶是否可用,并控制智能驾驶模式和人工驾驶模式的切换。
上述车辆100可以为轿车、卡车、摩托车、公共汽车、船、飞机、直升飞机、割草机、娱乐车、游乐场车辆、施工设备、电车、高尔夫球车、火车、和手推车等,本申请实施例不做特别的限定。
图2是本申请实施例提供的一种智能驾驶系统的示例图。
如图2所示的智能驾驶系统包括计算机系统101,其中,计算机系统101包括处理器103,处理器103和系统总线105耦合。处理器103可以是一个或者多个处理器,其中每个处理器都可以包括一个或多个处理器核。显示适配器(video adapter)107,显示适配器可以驱动显示器109,显示器109和系统总线105耦合。系统总线105通过总线桥111和输入输出(input/output,I/O)总线113耦合。I/O接口115和I/O总线耦合。I/O接口115和多种I/O设备进行通信,比如输入设备117(如:键盘,鼠标,触摸屏等),多媒体盘(media tray)121,(例如,只读光盘(compact disc read-only memory,CD-ROM),多媒体接口等)。收发器123(可以发送和/或接受无线电通信信号),摄像头155(可以捕捉景田和动态数字视频图像)和外部通用串行总线(universal serial bus,USB)接口125。其中,可选地,和I/O接口115相连接的接口可以是USB接口。
其中,处理器103可以是任何传统处理器,包括精简指令集计算(reduced instruction set computer,RISC)处理器、复杂指令集计算(complex instruction set computer,CISC)处理器或上述的组合。可选地,处理器可以是诸如专用集成电路(application specific integrated circuit,ASIC)的专用装置。可选地,处理器103可以是神经网络处理器或者是神经网络处理器和上述传统处理器的组合。
可选地,在本文所述的各种实施例中,计算机系统101可位于远离智能驾驶车辆的地方,并且可与智能驾驶车辆无线通信。在其它方面,本文所述的一些过程在设置在智能驾驶车辆内的处理器上执行,其它由远程处理器执行,包括采取执行单个操纵所需的动作。
计算机101可以通过网络接口129和软件部署服务器149通信。网络接口129是硬件网络接口,比如,网卡。网络127可以是外部网络,比如因特网,也可以是内部网络,比如以太网或者虚拟私人网络(virtual private network,VPN)。可选地,网络127还可以是 无线网络,比如WiFi网络,蜂窝网络等。
硬盘驱动接口和系统总线105耦合。硬件驱动接口和硬盘驱动器相连接。系统内存135和系统总线105耦合。运行在系统内存135的数据可以包括计算机101的操作系统137和应用程序143。
操作系统包括解析器139(shell)和内核141(kernel)。shell 139是介于使用者和操作系统之内核(kernel)间的一个接口。shell是操作系统最外面的一层。shell管理使用者与操作系统之间的交互:等待使用者的输入,向操作系统解释使用者的输入,并且处理各种各样的操作系统的输出结果。
内核141由操作系统中用于管理存储器、文件、外设和系统资源的那些部分组成。直接与硬件交互,操作系统内核通常运行进程,并提供进程间的通信,提供CPU时间片管理、中断、内存管理、IO管理等等。
应用程序143包括控制汽车智能驾驶相关的程序,比如,管理智能驾驶的汽车和路上障碍物交互的程序,控制智能驾驶汽车路线或者速度的程序,控制智能驾驶汽车和路上其他智能驾驶汽车交互的程序。应用程序143也存在于deploying server 149的系统上。在一个实施例中,在需要执行应用程序147时,计算机系统101可以从deploying server14下载应用程序143。
例如,应用程序141可以是控制智能驾驶车辆启动或关闭辅助智能驾驶功能的程序。
传感器153和计算机系统101关联。传感器153用于探测计算机101周围的环境。举例来说,传感器153可以探测动物,汽车,障碍物和人行横道等,进一步传感器还可以探测上述动物,汽车,障碍物和人行横道等物体周围的环境,比如:动物周围的环境,例如,动物周围出现的其他动物,天气条件,周围环境的光亮度等。可选地,如果计算机101位于智能驾驶的汽车上,传感器可以是摄像头,红外线感应器,化学检测器,麦克风等。
图1中的计算机系统112还可以从其它计算机系统接收信息或转移信息到其它计算机系统。或者,从车辆100的传感器系统104收集的传感器数据可以被转移到另一个计算机对此数据进行处理。
例如,如图3所示,来自计算机系统312的数据可以经由网络被传送到云侧的服务器320(也可以称为云端)用于进一步的处理。网络以及中间节点可以包括各种配置和协议,包括因特网、万维网、内联网、虚拟专用网络、广域网、局域网、使用一个或多个公司的专有通信协议的专用网络、以太网、WiFi和超文本传输协议(hyper text transfer protocol,HTTP)、以及前述的各种组合。这种通信可以由能够传送数据到其它计算机和从其它计算机传送数据的任何设备,诸如调制解调器和无线接口。例如,将车辆的状态以及环境信息等数据传送至云侧的服务器320以进一步处理,云侧服务器可以利用多种神经网络模型对这些数据进行识别、处理,并将识别结果反馈计算机系统312,使得计算机系统312可以确认是否开启或关闭辅助智能驾驶功能。
在一个示例中,服务器320可以包括具有多个计算机的服务器,例如负载均衡服务器群,为了从计算机系统312接收、处理并传送数据的目的,其与网络的不同节点交换信息。该服务器可以被类似于计算机系统312配置,具有处理器330、存储器340、指令350、和数据360。
智能驾驶系统可以包含若干辅助智能驾驶功能。例如预碰撞安全制动(pre-collision  system,PCS)、自适应巡航控制(adaptive cruise control,ACC),车道保持辅助(lane keeping aid,LKA),横穿交通警告(cross traffic alert,CTA)、车尾横穿交通警告(rear cross traffic alert,RCTA)、盲点报警(blind spot warning,BSW)、关闭车辆报警以及交通拥堵辅助(traffic jam assist,TJA)等。
智能驾驶车辆中的关键部件之一是智能驾驶控制部件(例如,高级驾驶辅助系统(advanced driving assistance system,ADAS)或移动数据中心(mobile data center,MDC))。该部件包括人工智能(artificial intelligence,AI)控制芯片及其单板,用于控制车辆实现智能驾驶。智能驾驶控制部件中的“部件”也可以记为模块、系统、器件、单元、设备等。为便于描述,在下文统一称为部件。
智能驾驶控制部件在工作过程中会产生大量热量,为了保障工作性能不受影响,需要对其进行散热。常用的散热方式有风冷散热和液冷散热。随着智能驾驶控制部件算力需求的增加,智能驾驶控制部件功率越来越高,风冷已无法进一步解决其散热问题,于是需要采用液冷散热。由于车辆中已有液冷系统,那么便可以将智能驾驶控制部件接入已有的液冷系统来实现智能驾驶控制部件的散热。但现有技术将智能驾驶控制部件接入已有的液冷系统后,直接设置泵的转速为全速100%。在这种情况下,即使液冷系统中的各发热部件处在低功率状态时,泵也是按照全速工作,这样非常不利于整车的节能。那么如何通过已有液冷系统实现对智能驾驶控制部件散热的同时满足整车节能需求成为了新的问题。
针对上述问题,本申请提供了一种液冷系统,该液冷系统中的智能驾驶控制部件可以参与调控液冷系统中泵的转速,以同时满足智能驾驶控制部件的散热及整车节能需求。
图4是本申请实施例提供的一种液冷系统的系统架构示例图。应理解,图4所示的液冷系统的系统架构仅作为一种示例,本申请实施例的液冷系统并不局限于此。下面对该液冷系统400进行详细描述。
如图4所示,该液冷系统400包括:泵410、换热器420、车载控制模块430及多个车载部件440。其中,多个车载部件440中包括智能驾驶控制部件441及其他车载部件(例如,车载部件442和车载部件443)。
其中,泵410用于,为多个车载部件440输送液体,以对多个车载部件440进行散热。
车载控制模块430用于,根据多个车载部件440的泵转速需求确定泵410的转速。应理解,根据多个车载部件440的泵转速需求确定泵410的转速是根据多个车载部件440中每个车载部件的泵转速需求确定泵410的转速。
本申请实施例的液冷系统包括泵、换热器、车载控制模块及多个车载部件,该多个车载部件包括智能驾驶控制部件,该泵用于为该多个车载部件输送液体,以对该多个车载部件进行散热。从而使得该液冷系统能够实现对智能驾驶控制部件的散热。并且,车载控制模块可以根据该多个车载部件的泵转速需求确定该泵的转速,使得智能驾驶控制部件可以参与液冷系统中泵的转速调控,而不是直接采用泵全速,使得在满足智能驾驶控制部件散热的同时满足整车节能需求。
应理解,多个车载部件440为工作时会发热的且需要进行液冷的车载部件,因此,在本申请中,也可以将多个车载部件440称为车辆中的多个待液冷的部件。
应理解,在本申请实施例中,该液冷系统可以是将智能驾驶控制部件接入车辆中已有的液冷系统中所形成的液冷系统。但也应理解,这并不能构成对本申请的限定。在某些情 况下,也可以是为智能驾驶控制部件或为智能驾驶控制部件和其他车载部件重新设计的新的液冷系统。但为便于描述,在下文中均认为该液冷系统是将智能驾驶控制部件接入车辆中已有的液冷系统中所形成的液冷系统。因此,可以将其他车载部件(例如,车载部件442和车载部件443)认为是该已有液冷系统中已有的车载部件,例如,若该已有的液冷系统为电机液冷系统,该其他车载部件可以为电机等部件;若该已有的液冷系统为电池液冷系统,该其他车载部件可以为电池等部件,本申请对此不做限定。
应理解,在液冷系统400中,其他车载部件可以有一个也可以有多个,本申请对此不做限定。但为便于描述,在下文中均以车载部件442和车载部件443为例进行描述。
可选地,如图4所示,多个车载部件440可以分别与多个管路连接,多个管路之间并联连接,多个管路分别与泵410和换热器420连接并形成循环回路(箭头连接所形成的回路)。可选地,车载控制模块430通过线路分别与泵410和多个车载部件440连接。
可选地,图4中泵和换热器的位置仅作为一个示例,并不构成对本申请的限定。在实际操作中,也可以先进行换热再通过泵传输液体,本申请对此不作限定。
可选地,液冷系统400还可以包括:温度传感器450。温度传感器450可以位于多个车载部件440的液冷入口处,该温度传感器450用于测量入口水温。
应理解,通常泵410的转速可以通过泵变频器411(图5示出)进行调节,因此,该液冷系统400中还可以包括泵变频器411,用以根据车载控制模块430的指示执行泵410的转速。
应理解,上文提到在本申请中,可以认为液冷系统400是将智能驾驶控制部件441接入车辆中已有的液冷系统中所形成的新的液冷系统,那么对于车辆中已有的液冷系统中的车载部件442和车载部件443而言,均具有自身的一套调速策略并可以提供给车载控制模块430,使得车载控制模块430可以获取到车载部件442和车载部件443的实际散热需求。那么本申请在给已有的液冷系统中接入智能驾驶控制部件441后,智能驾驶控制部件441也可以提供一套调速策略给车载控制模块430,使得车载控制模块430可以同时比较来自智能驾驶控制部件441、车载部件442和车载部件443的散热需求,并根据上述三个部件的散热需求确定泵410的转速,从而使得各部件在低功率状态下泵410能够调速节能,在高功率状态下泵410能够调速散热。应理解,各部件所提供的散热需求在本申请中可以为流量需求或泵转速需求,流量需求或泵转速需求也可以理解为为实现散热所需的液体流量或泵转速。应理解,通常情况下,若部件提供的需求为流量需求,车载控制模块430还需将流量需求转换为相应的泵转速需求。
因此,上述根据上述三个部件的散热需求确定泵410的转速,具体可以是根据三个部件的泵转速需求确定泵410的转速。
可选地,车载控制模块430还可以根据多个车载部件440的泵转速需求中的最大值确定泵410的转速,以使得该泵的转速能够同时满足多个车载部件的散热。
可选地,针对已有车载部件442和车载部件443,由于其算力有限,通常情况下可以提供给车载控制模块430自身的流量需求,车载控制模块430再通过计算确定出其对应的泵转速需求。而对于智能驾驶控制部件441,由于其算力较强,那么可以自己直接计算出泵转速需求提供给车载控制模块430;也可以先提供流量需求,再通过车载控制模块430转化为泵转速需求,本申请对此不作限定。
下面将详细介绍一种多个车载部件440的泵转速需求的确定方式。
应理解,在某固定入口水温下,泵转速需求与流量需求为一一对应关系。其中,流量需求可以由各个车载部件根据自身温度和入口水温进行确定,本申请对此不做限定。因此,可选地,多个车载部件440中每个车载部件的泵转速需求可以根据入口水温和自身的流量需求确定。
表1示出了一种各个车载部件入口水温、流量需求和泵转速需求的对应关系。应理解,表1仅作为一种示例,不构成对本申请的限定。
可选地,可以将表1预埋在车载控制模块430内,使其在获取到各个车载部件的流量需求后对应得到各个部件的泵转速需求。下面结合表1对本示例进行详细介绍。
如表1所示,在某个固定入口水温下,对于每个车载部件的流量需求都有对应的泵转速需求。例如,若车载控制模块430检测到此时的水温入口为40℃,同时收到智能驾驶控制部件441、车载部件442、车载部件443的流量需求分别为3L/min、4L/min、2L/min,则车载控制模块430可以根据表1计算出智能驾驶控制部件441、车载部件442、车载部件443的泵转速需求分别为90%、60%、60%。则可以按照其中最大的泵转速需求(90%)进行泵的调速。
表1:
Figure PCTCN2021101151-appb-000001
应理解,若某一车载部件的流量需求值超出查询表中泵转速90%所能提供的流量值时,则可以认为该车载部件的泵转速需求为泵全速,进一步则可以按照泵全速进行泵的调速。例如,若车载控制模块430检测到此时的水温入口为60℃,同时收到智能驾驶控制部件441、车载部件442、车载部件443的流量需求分别为6L/min、10L/min、7L/min,此时车载控制模块430计算出智能驾驶控制部件441、车载部件442、车载部件443的泵转速需求分别为>90%、90%、>60%&<90%。则可以按照泵全速(100%)进行泵的调速。
除此之外,智能驾驶控制部件441的泵转速需求也可以不按照上述方式进行确定,而是通过智能驾驶控制部件441自身确定并提供给车载控制模块430,此时车载控制模块430可以直接使用智能驾驶控制部件441所提供的泵转速需求与从表1所获取的车载部件442、车载部件443的泵转速需求进行比较。
可选地,智能驾驶控制部件441可以通过如下三种方式之一或任意组合确定自身泵转速需求。
方式1:根据入口水温确定。
应理解,不同于上述表1所示的方式,在本方式1中,可以仅通过入口水温,按照智能驾驶控制部件441满功率工作时判断所需的最小流量并同时算出所需的泵转速需求。
可选地,此时的入口水温可以通过车载控制模块430查询温度传感器450并告知能驾驶控制部件441,也可以驾驶控制部件441直接去从温度传感器450采集入口水温,本申请对此不做限定。
可选地,还可以根据入口水温所处的温度区间确定。
具体地,可以将上述计算方法采用查询表内置在车载控制模块430或智能驾驶控制部件441自身。示例性地,表2示出了一种入口水温与泵转速需求的对应关系。从表2可以看出,若T in≥60℃,对应的智能驾驶控制部件441的泵转速需求为100%;若40≤T in<60℃,对应的智能驾驶控制部件441的泵转速需求为90%;若20≤T in<40℃,对应的智能驾驶控制部件441的泵转速需求为60%;若T in<20℃,对应的智能驾驶控制部件441的泵转速需求为20%。使得在获取到入口水温后,可以根据入口水温所处的温度区间,通过查询表2获取泵转速需求。
表2:
入口水温T in 泵转速需求
≥60℃ 100%
40℃≤Tin<60℃ 90%
20℃≤Tin<40℃ 60%
<20℃ 20%
方式2:根据智能驾驶控制部件441上的核心芯片的结温确定。
应理解,结温是电子设备中半导体的实际工作温度。
在本方式中,可以通过监控智能驾驶控制部件441内的核心芯片的结温,依据结温计算出泵转速需求。
可选地,还可以根据该智能驾驶控制部件440上的核心芯片的结温所处的温度区间确定。
具体地,可以将该计算方法采用查询表内置在车载控制模块430或智能驾驶控制部件441自身。示例性地,表3示出了一种核心芯片结温与泵转速需求的对应关系。从表3可以看出,若T j≥95℃,对应的智能驾驶控制部件441的泵转速需求为100%;若65℃<T j<95℃,对应的智能驾驶控制部件441的泵转速需求为60%;若T j≤65℃,对应的智能驾驶控制部件441的泵转速需求为20%。使得在获取到核心芯片结温后,可以根据核心芯片结温所处的温度区间,通过查询表3获取泵转速需求。
表3:
核心芯片结温T j 泵转速需求
≥95℃ 100%
65℃<Tj<95℃ 60%
≤65℃ 20%
方式3:可选地,在方式3中可以根据智能驾驶控制部件441上多个位置处的温差确定。
其中,温差为温度规格与实际温度之差。意味着可以根据多个位置处中每个位置处的温度规格与实际温度之差确定。
具体地,可以先获取智能驾驶控制部件441上多个位置处的温度传感器上报的温度信息。其中,多个位置指关键芯片和单板等多个器件所在的位置。并且可以内置一张运算表,给出所有上报温度传感器的名称及对应位置的温度规格(即当前位置所能承受的温度),计算出每个上报温度传感器实时上报的温度与温度规格之间的差值(记为GAP值),如表4所示。
表4:
位置 对应位置处的温度规格 实时上报温度 温度差值
A 125℃ 100℃ 25℃
B 105℃ 90℃ 15℃
C 100℃ 90℃ 10℃
D 110℃ 100℃ 10℃
E 95℃ 90℃ 5℃
可选地,在获取到多个位置处的温差之后,就可以根据多个位置处的温差的最小值确定泵转速需求。
可选地,可以根据智能驾驶控制部件上多个位置处的温差的最小值所处的温度区间确定。
具体地,同样可以通过内置查询表的方式实现。示例性地,表5示出了一种多个位置处的温差的最小值与泵转速需求的对应关系。从表3可以看出,若GAP min≤15℃,对应的智能驾驶控制部件441的泵转速需求为100%;若15<GAP min<40℃,对应的智能驾驶控制部件441的泵转速需求为60%;若GAP min≥40℃ min,对应的智能驾驶控制部件441的泵转速需求为20%,其中,GAP min指温差的最小值。使得在获取到多个位置处的温差的最小值后,可以根据多个位置处的温差的最小值所处的温度区间,通过查询表5获取泵转速需求。根据该方式所确定的泵转速需求可以保证在任意水温、任意功耗下所提供的液体流量满足该状态下的散热需求。
表5:
GAP min 泵转速需求
≤15℃ 100%
15℃<GAP<40℃ 60%
≥40℃ 20%
可选地,智能驾驶控制部件441在根据GAP min值确定泵转速需求的同时,还可以结合多个位置处的升温速率确定。
具体地,可以结合智能驾驶控制部件441上多个位置处的升温速率的最大值确定。
在根据GAP min值结合多个位置处的升温速率的最大值确定泵转速需求时,可以根据第一泵转速需求和第二泵转速需求中的较大者确定,其中,第一泵转速需求根据智能驾驶控制部件上多个位置处的温差的最小值确定,第二泵转速需求根据智能驾驶控制部件上多个位置处的升温速率的最大值确定。
进一步地,上述第一泵转速需求可以根据智能驾驶控制部件441上多个位置处的温差的最小值所处的温度区间确定;和/或,第二泵转速需求可以根据智能驾驶控制部件441上多个位置处的升温速率的最大值所处的速率区间确定。
上述表5已经对根据智能驾驶控制部件441上多个位置处的温差的最小值所处的温度区间确定泵转速需求(即第一泵转速需求)进行了介绍,此处不再赘述。
下面结合表6对根据智能驾驶控制部件上多个位置处的升温速率的最大值所处的速率区间确定第二泵转速需求进行描述介绍。具体地,具体的确定方式也可以通过内置查询表的方式实现。示例性地,表6示出了一种多个位置处的升温速率的最大值与泵转速需求的对应关系。从表6可以看出,若T S-max≥2℃/s,对应的智能驾驶控制部件441的泵转速需求为100%;若1<T S-max<2℃/s,对应的智能驾驶控制部件441的泵转速需求为90%;若T S-max≤1℃/s,不上报智能驾驶控制部件441的泵转速需求。使得在获取到多个位置处的升温速率的最大值后,可以根据多个位置处的升温速率的最大值所处的速率区间,通过查询表6获取泵转速需求。从而能够使得在智能驾驶控制部件441的功率急剧增加时及时对泵进行调速,实现散热。
表6:
温升速率T S-max 泵转速需求
≥2℃/s 100%
1℃/s<Ts<2℃/s 90%
≤1℃/s 不上报
应理解,在实际操作过程中,温升速率可以按照每秒计算一次,若连续计算三次均达到表6中的相关阈值,则执行相应的泵转速需求。
在本方式中,通过根据该智能驾驶控制部件上多个位置处的温差的最小值所确定的泵转速需求和根据该智能驾驶控制部件上多个位置处的升温速率的最大值所确定的泵转速需求中的较大者确定智能驾驶控制部件的泵转速需求,从而能够使得在升温速率较高时, 可以采用升温速率所确定的泵转速需求控制泵进行调速,在升温速率较低时,可以采用温差所确定的泵转速需求控制泵进行调速。进一步使得该泵转速需求能够同时满足该智能驾驶控制部件不同位置处的散热需求,且能够在某些部位功率急剧增加时及时调整泵转速以进行散热。
应理解,上述方式3也可以应用在其他类设备,该其他类设备同时具有多个关键位置的温度监控点即可,本申请对此不作限定。
以上对本申请的液冷系统及各种实现方式进行了详细介绍。下面将结合图5对本申请的一种优选控制策略进行简单介绍。作为一种优选方式,图5是本申请实施例提供的一种应用在液冷系统中的控制泵转速的策略示例图。
如图5所示,在液冷系统的实际工作中,智能驾驶控制部件441中的自身运算器可以综合温差算法和升温速率算法确定自身的泵转速需求,具体的确定方式可以参见上述方式3,此处不再赘述。
其他车载部件442和443可以按照其自身调速策略确定出自身的流量需求或泵转速需求,可参见表1,不再赘述。
车载控制模块430同时获取各个部件的需求,从中确定出最大的泵转速需求并向泵变频器411发出调速指令。
在泵变频器411接收到调速指令后,根据指令控制泵410按照最大的泵转速需求执行转速。
本实施例的调速策略使得智能驾驶控制部件能够参与液冷系统中泵的调速,以同时满足智能驾驶控制部件的散热以及整车节能需求。而且,在智能驾驶控制部件功率发生突变时,也能够及时作出响应对其进行散热,保证其正常工作。
图6是本申请实施例提供的一种应用在液冷系统的控制方法的示例图。其中,液冷系统可以为图4中的液冷系统400。液冷系统包括:泵、换热器及多个车载部件,多个车载部件包括智能驾驶控制部件;其中,泵用于,为多个车载部件输送液体,以对多个车载部件进行散热。控制方法600包括步骤S610和步骤S620,下面对这些步骤进行详细描述。
S610,获取多个车载部件的泵转速需求。
S620,根据多个车载部件的泵转速需求确定泵的转速。
可选地,根据多个车载部件的泵转速需求确定泵的转速包括:根据所多个车载部件的泵转速需求中的最大值确定泵的转速。
可选地,控制方法600还可以包括:根据入口水温和多个车载部件中每个车载部件的流量需求确定多个车载部件的泵转速需求。
可选地,控制方法600还可以包括:根据智能驾驶控制部件上多个位置处的温差确定智能驾驶控制部件的泵转速需求,温差为温度规格与实际温度之差。
可选地,根据智能驾驶控制部件上多个位置处的温差确定智能驾驶控制部件的泵转速需求包括:根据智能驾驶控制部件上多个位置处的温差的最小值确定智能驾驶控制部件的泵转速需求。
可选地,根据智能驾驶控制部件上多个位置处的温差的最小值确定智能驾驶控制部件的泵转速需求包括:确定智能驾驶控制部件上多个位置处的温差的最小值所处的温度区间;根据智能驾驶控制部件上多个位置处的温差的最小值所处的温度区间确定智能驾驶控 制部件的泵转速需求。
可选地,控制方法600还包括:根据智能驾驶控制部件上多个位置处的温差和升温速率确定智能驾驶控制部件的泵转速需求,温差为温度规格与实际温度之差。
可选地,根据智能驾驶控制部件上多个位置处的温差和升温速率确定智能驾驶控制部件的泵转速需求包括:根据智能驾驶控制部件上多个位置处的温差的最小值和升温速率的最大值确定智能驾驶控制部件的泵转速需求。
可选地,根据智能驾驶控制部件上多个位置处的温差的最小值和升温速率的最大值确定智能驾驶控制部件的泵转速需求包括:根据智能驾驶控制部件上多个位置处的温差的最小值确定第一泵转速需求;根据智能驾驶控制部件上多个位置处的升温速率的最大值确定第二泵转速需求;根据第一泵转速需求和第二泵转速需求中的较大者确定智能驾驶控制部件的泵转速需求。
可选地,根据智能驾驶控制部件上多个位置处的温差的最小值确定第一泵转速需求包括:确定智能驾驶控制部件上多个位置处的温差的最小值所处的温度区间;根据智能驾驶控制部件上多个位置处的温差的最小值所处的温度区间确定第一泵转速需求;和/或,根据智能驾驶控制部件上多个位置处的升温速率的最大值确定第二泵转速需求包括:确定智能驾驶控制部件上多个位置处的升温速率的最大值所处的速率区间;根据智能驾驶控制部件上多个位置处的升温速率的最大值所处的速率区间确定第二泵转速需求。
可选地,控制方法600还包括:根据入口水温确定智能驾驶控制部件的泵转速需求。
可选地,根据入口水温确定智能驾驶控制部件的泵转速需求包括:确定入口水温所处的温度区间;根据入口水温所处的温度区间确定智能驾驶控制部件的泵转速需求。
可选地,控制方法600还包括:根据智能驾驶控制部件上的核心芯片的结温确定智能驾驶控制部件的泵转速需求。
可选地,根据智能驾驶控制部件上的核心芯片的结温确定智能驾驶控制部件的泵转速需求包括:确定智能驾驶控制部件上的核心芯片的结温所处的温度区间;根据智能驾驶控制部件上的核心芯片的结温所处的温度区间确定智能驾驶控制部件的泵转速需求。
应理解,在实际操作中,上述控制方法可以由一个控制装置(也可以称为控制器、控制模块或控制单元等)执行,也可以由多个控制装置共同执行,本申请对此不作限定。
图7是本申请实施例提供的一种应用在液冷系统的控制装置的示例图。应理解,图7所示的装置700可以应用在液冷系统中,该液冷系统包括:泵、换热器及多个车载部件,该多个车载部件包括智能驾驶控制部件;其中,该泵用于,为该多个车载部件输送液体,以对该多个车载部件进行散热。
该控制装置700包括控制器710,该控制器710用于:获取该多个车载部件的泵转速需求;根据该多个车载部件的泵转速需求确定该泵的转速。
可选地,该控制器710还可以用于:根据该多个车载部件的泵转速需求中的最大值确定该泵的转速。
可选地,该控制器710还可以用于:根据入口水温和该多个车载部件中每个车载部件的流量需求确定该多个车载部件的泵转速需求。
可选地,该控制器710还可以用于:根据该智能驾驶控制部件上多个位置处的温差确定该智能驾驶控制部件的泵转速需求,该温差为温度规格与实际温度之差。
可选地,该控制器710还可以用于:根据该智能驾驶控制部件上多个位置处的温差的最小值确定该智能驾驶控制部件的泵转速需求。
可选地,该控制器710还可以用于:确定该智能驾驶控制部件上多个位置处的温差的最小值所处的温度区间;根据该智能驾驶控制部件上多个位置处的温差的最小值所处的温度区间确定该智能驾驶控制部件的泵转速需求。
可选地,该控制器710还可以用于:根据该智能驾驶控制部件上多个位置处的温差和升温速率确定该智能驾驶控制部件的泵转速需求该温差为温度规格与实际温度之差。
可选地,该控制器710还可以用于:根据该智能驾驶控制部件上多个位置处的温差的最小值和升温速率的最大值确定该智能驾驶控制部件的泵转速需求。
可选地,该控制器710还可以用于:根据该智能驾驶控制部件上多个位置处的温差的最小值确定第一泵转速需求;根据该智能驾驶控制部件上多个位置处的升温速率的最大值确定第二泵转速需求;根据该第一泵转速需求和该第二泵转速需求中的较大者确定该智能驾驶控制部件的泵转速需求。
可选地,该控制器710还可以用于:确定该智能驾驶控制部件上多个位置处的温差的最小值所处的温度区间;根据该智能驾驶控制部件上多个位置处的温差的最小值所处的温度区间确定该第一泵转速需求。
可选地,该控制器710还可以用于:确定该智能驾驶控制部件上多个位置处的升温速率的最大值所处的速率区间;根据该智能驾驶控制部件上多个位置处的升温速率的最大值所处的速率区间确定该第二泵转速需求。
可选地,该控制器710还可以用于:根据入口水温确定该智能驾驶控制部件的泵转速需求。
可选地,该控制器710还可以用于:确定该入口水温所处的温度区间;根据该入口水温所处的温度区间确定该智能驾驶控制部件的泵转速需求。
可选地,该控制器710还可以用于:根据智能驾驶控制部件上的核心芯片的结温确定该智能驾驶控制部件的泵转速需求。
可选地,该控制器710还可以用于:确定该智能驾驶控制部件上的核心芯片的结温所处的温度区间;根据该智能驾驶控制部件上的核心芯片的结温所处的温度区间确定该智能驾驶控制部件的泵转速需求。
图8是本申请实施例提供的一种车辆控制装置的硬件结构示例性框图。该装置800(该装置800具体可以是一种计算机设备)包括存储器810、处理器820、通信接口830以及总线840。其中,存储器810、处理器820、通信接口830通过总线840实现彼此之间的通信连接。
存储器810可以是只读存储器(read only memory,ROM),静态存储设备,动态存储设备或者随机存取存储器(random access memory,RAM)。存储器810可以存储程序,当存储器810中存储的程序被处理器820执行时,处理器820用于执行本申请实施例的控制方法的各个步骤。
处理器820可以采用通用的中央处理器(central processing unit,CPU),微处理器,应用专用集成电路(application specific integrated circuit,ASIC),图形处理器(graphics processing unit,GPU)或者一个或多个集成电路,用于执行相关程序,以实现本申请方法 实施例的控制方法。
处理器820还可以是一种集成电路芯片,具有信号的处理能力。在实现过程中,本申请的控制方法的各个步骤可以通过处理器820中的硬件的集成逻辑电路或者软件形式的指令完成。
上述处理器820还可以是通用处理器、数字信号处理器(digital signal processing,DSP)、专用集成电路(ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器810,处理器820读取存储器810中的信息,结合其硬件完成本申请实施例的控制装置中包括的模块所需执行的功能,或者执行本申请方法实施例的控制方法。
通信接口830使用例如但不限于收发器一类的收发装置,来实现装置800与其他设备或通信网络之间的通信。
总线840可包括在装置800各个部件(例如,存储器810、处理器820、通信接口830)之间传送信息的通路。
本申请实施例还提供了一种车辆,可选地,该车辆包括用于执行如上述任一种控制方法的各个模块;和/或,包括如上述任一种液冷系统;和/或,如上述任一种控制装置。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储 在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (34)

  1. 一种液冷系统,其特征在于,所述液冷系统包括:泵、换热器、车载控制模块及多个车载部件,所述多个车载部件包括智能驾驶控制部件;
    其中,所述泵用于,为所述多个车载部件输送液体,以对所述多个车载部件进行散热;
    所述车载控制模块用于,根据所述多个车载部件的泵转速需求确定所述泵的转速。
  2. 根据权利要求1所述的液冷系统,其特征在于,所述车载控制模块还用于,根据所述多个车载部件的泵转速需求中的最大值确定所述泵的转速。
  3. 根据权利要求1或2所述的液冷系统,其特征在于,所述多个车载部件中每个车载部件的泵转速需求根据入口水温和自身的流量需求确定。
  4. 根据权利要求3所述的液冷系统,其特征在于,所述多个车载部件分别与多个管路连接,所述多个管路之间并联连接,所述多个管路分别与所述泵和所述换热器连接并形成循环回路,所述车载控制模块通过线路分别与所述泵和所述多个车载部件连接。
  5. 根据权利要求3或4所述的液冷系统,其特征在于,所述液冷系统还包括:温度传感器,所述温度传感器位于所述多个车载部件的液冷入口处,所述温度传感器用于测量所述入口水温。
  6. 根据权利要求1至5中任一项所述的液冷系统,其特征在于,所述智能驾驶控制部件的泵转速需求根据所述智能驾驶控制部件上多个位置处的温差确定,所述温差为温度规格与实际温度之差。
  7. 根据权利要求6所述的液冷系统,其特征在于,所述智能驾驶控制部件的泵转速需求根据所述智能驾驶控制部件上多个位置处的温差的最小值确定。
  8. 根据权利要求7所述的液冷系统,其特征在于,所述智能驾驶控制部件的泵转速需求根据所述智能驾驶控制部件上多个位置处的温差的最小值所处的温度区间确定。
  9. 根据权利要求1至5中任一项所述的液冷系统,其特征在于,所述智能驾驶控制部件的泵转速需求根据所述智能驾驶控制部件上多个位置处的温差和升温速率确定,所述温差为温度规格与实际温度之差。
  10. 根据权利要求9所述的液冷系统,其特征在于,所述智能驾驶控制部件的泵转速需求根据所述智能驾驶控制部件上多个位置处的温差的最小值和升温速率的最大值确定。
  11. 根据权利要求10所述的液冷系统,其特征在于,所述智能驾驶控制部件的泵转速需求根据第一泵转速需求和第二泵转速需求中的较大者确定,其中,所述第一泵转速需求根据所述智能驾驶控制部件上多个位置处的温差的最小值确定,所述第二泵转速需求根据所述智能驾驶控制部件上多个位置处的升温速率的最大值确定。
  12. 根据权利要求11所述的液冷系统,其特征在于,所述第一泵转速需求根据所述智能驾驶控制部件上多个位置处的温差的最小值所处的温度区间确定;和/或,所述第二泵转速需求根据所述智能驾驶控制部件上多个位置处的升温速率的最大值所处的速率区间确定。
  13. 根据权利要求1至12中任一项所述的液冷系统,其特征在于,所述智能驾驶控制部件的泵转速需求根据入口水温确定。
  14. 根据权利要求13所述的液冷系统,其特征在于,所述智能驾驶控制部件的泵转速需求根据所述入口水温所处的温度区间确定。
  15. 根据权利要求1至14中任一项所述的液冷系统,其特征在于,所述智能驾驶控制部件的泵转速需求根据所述智能驾驶控制部件上的核心芯片的结温确定。
  16. 根据权利要求15所述的液冷系统,其特征在于,所述智能驾驶控制部件的泵转速需求根据所述智能驾驶控制部件上的核心芯片的结温所处的温度区间确定。
  17. 一种应用在液冷系统的控制方法,其特征在于,所述液冷系统包括:泵、换热器及多个车载部件,所述多个车载部件包括智能驾驶控制部件;其中,所述泵用于,为所述多个车载部件输送液体,以对所述多个车载部件进行散热;
    所述控制方法包括:
    获取所述多个车载部件的泵转速需求;
    根据所述多个车载部件的泵转速需求确定所述泵的转速。
  18. 根据权利要求17所述的控制方法,其特征在于,所述根据所述多个车载部件的泵转速需求确定所述泵的转速包括:
    根据所述多个车载部件的泵转速需求中的最大值确定所述泵的转速。
  19. 根据权利要求17或18所述的控制方法,其特征在于,所述控制方法还包括:
    根据入口水温和所述多个车载部件中每个车载部件的流量需求确定所述多个车载部件的泵转速需求。
  20. 根据权利要求17至19中任一项所述的控制方法,其特征在于,所述控制方法还包括:
    根据所述智能驾驶控制部件上多个位置处的温差确定所述智能驾驶控制部件的泵转速需求,所述温差为温度规格与实际温度之差。
  21. 根据权利要求20所述的控制方法,其特征在于,所述根据所述智能驾驶控制部件上多个位置处的温差确定所述智能驾驶控制部件的泵转速需求包括:
    根据所述智能驾驶控制部件上多个位置处的温差的最小值确定所述智能驾驶控制部件的泵转速需求。
  22. 根据权利要求21所述的控制方法,其特征在于,所述根据所述智能驾驶控制部件上多个位置处的温差的最小值确定所述智能驾驶控制部件的泵转速需求包括:
    确定所述智能驾驶控制部件上多个位置处的温差的最小值所处的温度区间;
    根据所述智能驾驶控制部件上多个位置处的温差的最小值所处的温度区间确定所述智能驾驶控制部件的泵转速需求。
  23. 根据权利要求17至19中任一项所述的控制方法,其特征在于,所述控制方法还包括:
    根据所述智能驾驶控制部件上多个位置处的温差和升温速率确定所述智能驾驶控制部件的泵转速需求,所述温差为温度规格与实际温度之差。
  24. 根据权利要求23所述的控制方法,其特征在于,所述根据所述智能驾驶控制部件上多个位置处的温差和升温速率确定所述智能驾驶控制部件的泵转速需求包括:
    根据所述智能驾驶控制部件上多个位置处的温差的最小值和升温速率的最大值确定所述智能驾驶控制部件的泵转速需求。
  25. 根据权利要求24所述的控制方法,其特征在于,所述根据所述智能驾驶控制部件上多个位置处的温差的最小值和升温速率的最大值确定所述智能驾驶控制部件的泵转速需求包括:
    根据所述智能驾驶控制部件上多个位置处的温差的最小值确定第一泵转速需求;
    根据所述智能驾驶控制部件上多个位置处的升温速率的最大值确定第二泵转速需求;
    根据所述第一泵转速需求和所述第二泵转速需求中的较大者确定所述智能驾驶控制部件的泵转速需求。
  26. 根据权利要求25所述的控制方法,其特征在于,所述根据所述智能驾驶控制部件上多个位置处的温差的最小值确定第一泵转速需求包括:
    确定所述智能驾驶控制部件上多个位置处的温差的最小值所处的温度区间;
    根据所述智能驾驶控制部件上多个位置处的温差的最小值所处的温度区间确定所述第一泵转速需求;和/或,
    所述根据所述智能驾驶控制部件上多个位置处的升温速率的最大值确定第二泵转速需求包括:
    确定所述智能驾驶控制部件上多个位置处的升温速率的最大值所处的速率区间;
    根据所述智能驾驶控制部件上多个位置处的升温速率的最大值所处的速率区间确定所述第二泵转速需求。
  27. 根据权利要求17至26中任一项所述的控制方法,其特征在于,所述控制方法还包括:
    根据入口水温确定所述智能驾驶控制部件的泵转速需求。
  28. 根据权利要求27所述的控制方法,其特征在于,所述根据入口水温确定所述智能驾驶控制部件的泵转速需求包括:
    确定所述入口水温所处的温度区间;
    根据所述入口水温所处的温度区间确定所述智能驾驶控制部件的泵转速需求。
  29. 根据权利要求17至28中任一项所述的控制方法,其特征在于,所述控制方法还包括:
    根据智能驾驶控制部件上的核心芯片的结温确定所述智能驾驶控制部件的泵转速需求。
  30. 根据权利要求29所述的控制方法,其特征在于,所述根据智能驾驶控制部件上的核心芯片的结温确定所述智能驾驶控制部件的泵转速需求包括:
    确定所述智能驾驶控制部件上的核心芯片的结温所处的温度区间;
    根据所述智能驾驶控制部件上的核心芯片的结温所处的温度区间确定所述智能驾驶控制部件的泵转速需求。
  31. 一种应用在液冷系统的控制装置,其特征在于,包括:输入输出接口、处理器和存储器,该处理器用于控制输入输出接口收发信号或信息,该存储器用于存储计算机程序,该处理器用于从存储器中调用并运行该计算机程序,使得该控制装置执行如权利要求17至30中任一项所述的控制方法。
  32. 一种计算设备,其特征在于,包括:至少一个处理器和存储器,所述至少一个处理器与所述存储器耦合,用于读取并执行所述存储器中的指令,以执行如权利要求17至 30中任一项所述的控制方法。
  33. 一种计算机可读介质,其特征在于,所述计算机可读介质存储有程序代码,当所述计算机程序代码在计算机上运行时,使得所述计算机执行如权利要求17至30中任一项所述的控制方法。
  34. 一种车辆,其特征在于,包括如权利要求1至16中任一项所述的系统。
PCT/CN2021/101151 2020-11-30 2021-06-21 液冷系统、应用在液冷系统的控制方法、控制装置及车辆 WO2022110779A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP21896287.6A EP4245585A4 (en) 2020-11-30 2021-06-21 LIQUID COOLING SYSTEM, CONTROL METHOD AND CONTROL DEVICE THEREFOR, AND VEHICLE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011376695.5 2020-11-30
CN202011376695.5A CN114576148B (zh) 2020-11-30 2020-11-30 液冷系统、应用在液冷系统的控制方法、控制装置及车辆

Publications (1)

Publication Number Publication Date
WO2022110779A1 true WO2022110779A1 (zh) 2022-06-02

Family

ID=81755228

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/101151 WO2022110779A1 (zh) 2020-11-30 2021-06-21 液冷系统、应用在液冷系统的控制方法、控制装置及车辆

Country Status (3)

Country Link
EP (1) EP4245585A4 (zh)
CN (1) CN114576148B (zh)
WO (1) WO2022110779A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116225192A (zh) * 2023-05-08 2023-06-06 之江实验室 一种散热系统的控制方法、装置、存储介质及电子设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014121999A (ja) * 2012-12-21 2014-07-03 Toyota Motor Corp 電気自動車
CN109552021A (zh) * 2019-01-23 2019-04-02 核心驱动科技(金华)有限公司 冷却控制系统、冷却控制方法、冷却控制器和电动汽车
CN110239383A (zh) * 2019-05-31 2019-09-17 南京康尼机电股份有限公司 新能源汽车大功率充电冷却系统及其监测方法
CN110758088A (zh) * 2018-07-27 2020-02-07 长城汽车股份有限公司 混合动力汽车的热管理系统、控制方法及车辆
CN210680637U (zh) * 2019-10-30 2020-06-05 北京百度网讯科技有限公司 车辆
CN111347833A (zh) * 2018-12-20 2020-06-30 株式会社斯巴鲁 电动车的温度调节控制系统

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6352055B1 (en) * 1999-11-24 2002-03-05 Caterpillar Inc. Engine water pump control system
DE10163943A1 (de) * 2001-12-22 2003-07-03 Bosch Gmbh Robert Verfahren zur Ansteuerung von elektrisch betätigbaren Komponenten eines Kühlsystems, Computerprogramm, Steuergerät, Kühlsystem und Brennkraftmaschine
CN106080237B (zh) * 2016-06-23 2019-08-09 广州汽车集团股份有限公司 车载充电机、电池液冷系统及电动汽车
US11480094B2 (en) * 2016-07-27 2022-10-25 Monza Tech S.r.l. Motor cooling system
CN107472001B (zh) * 2016-12-08 2019-11-22 宝沃汽车(中国)有限公司 冷却水泵的控制方法、装置及车辆
CN108119350A (zh) * 2017-12-28 2018-06-05 华晨鑫源重庆汽车有限公司 车辆冷却水泵控制系统以及方法
CN109649156B (zh) * 2019-01-02 2022-02-18 南京金龙客车制造有限公司 一种自适应调节的电动汽车冷却系统及其控制方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014121999A (ja) * 2012-12-21 2014-07-03 Toyota Motor Corp 電気自動車
CN110758088A (zh) * 2018-07-27 2020-02-07 长城汽车股份有限公司 混合动力汽车的热管理系统、控制方法及车辆
CN111347833A (zh) * 2018-12-20 2020-06-30 株式会社斯巴鲁 电动车的温度调节控制系统
CN109552021A (zh) * 2019-01-23 2019-04-02 核心驱动科技(金华)有限公司 冷却控制系统、冷却控制方法、冷却控制器和电动汽车
CN110239383A (zh) * 2019-05-31 2019-09-17 南京康尼机电股份有限公司 新能源汽车大功率充电冷却系统及其监测方法
CN210680637U (zh) * 2019-10-30 2020-06-05 北京百度网讯科技有限公司 车辆

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4245585A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116225192A (zh) * 2023-05-08 2023-06-06 之江实验室 一种散热系统的控制方法、装置、存储介质及电子设备

Also Published As

Publication number Publication date
CN114576148A (zh) 2022-06-03
EP4245585A4 (en) 2024-05-01
EP4245585A1 (en) 2023-09-20
CN114576148B (zh) 2024-01-30

Similar Documents

Publication Publication Date Title
US11823568B2 (en) Dynamic speed limit for vehicles and autonomous vehicles
WO2021052213A1 (zh) 调整油门踏板特性的方法和装置
WO2021212379A1 (zh) 车道线检测方法及装置
WO2021102955A1 (zh) 车辆的路径规划方法以及车辆的路径规划装置
US20220289252A1 (en) Operational Design Domain Odd Determining Method and Apparatus and Related Device
CN112230642B (zh) 道路可行驶区域推理方法及装置
CN113525373B (zh) 一种车辆的变道控制系统、控制方法以及变道控制装置
WO2022077195A1 (zh) 电子机械制动方法和电子机械制动装置
WO2021168669A1 (zh) 车辆控制方法及装置
WO2022022384A1 (zh) 车辆运动状态识别方法及装置
WO2022056899A1 (zh) 车辆测速装置的故障诊断方法和故障诊断装置
WO2021103536A1 (zh) 一种车辆调控方法、装置及电子设备
WO2022156309A1 (zh) 一种轨迹预测方法、装置及地图
CN113460033A (zh) 一种自动泊车方法以及装置
US20220309806A1 (en) Road structure detection method and apparatus
WO2022022344A1 (zh) 一种自动驾驶行车控制方法及装置
WO2022110779A1 (zh) 液冷系统、应用在液冷系统的控制方法、控制装置及车辆
WO2022052872A1 (zh) 自动驾驶方法及装置
WO2022061702A1 (zh) 驾驶提醒的方法、装置及系统
WO2021217646A1 (zh) 检测车辆可通行区域的方法及装置
WO2023202096A1 (zh) 一种车辆中数据的处理方法以及相关设备
WO2022068643A1 (zh) 多任务部署的方法及装置
WO2022057745A1 (zh) 一种辅助驾驶的控制方法及装置
EP4159564A1 (en) Method and device for planning vehicle longitudinal motion parameters
WO2022041820A1 (zh) 换道轨迹的规划方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21896287

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021896287

Country of ref document: EP

Effective date: 20230613

NENP Non-entry into the national phase

Ref country code: DE