WO2022110580A1 - 一种具有双电解质结构的固体氧化物电池芯片及制备方法 - Google Patents

一种具有双电解质结构的固体氧化物电池芯片及制备方法 Download PDF

Info

Publication number
WO2022110580A1
WO2022110580A1 PCT/CN2021/081647 CN2021081647W WO2022110580A1 WO 2022110580 A1 WO2022110580 A1 WO 2022110580A1 CN 2021081647 W CN2021081647 W CN 2021081647W WO 2022110580 A1 WO2022110580 A1 WO 2022110580A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
battery chip
electrolyte
inner electrode
solid oxide
Prior art date
Application number
PCT/CN2021/081647
Other languages
English (en)
French (fr)
Inventor
胡强
吴剑
Original Assignee
浙江臻泰能源科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江臻泰能源科技有限公司 filed Critical 浙江臻泰能源科技有限公司
Priority to EP21896099.5A priority Critical patent/EP4243129A1/en
Priority to US18/254,506 priority patent/US20240014425A1/en
Priority to JP2023551961A priority patent/JP2023550547A/ja
Publication of WO2022110580A1 publication Critical patent/WO2022110580A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/1213Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the electrode/electrolyte combination or the supporting material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B13/00Diaphragms; Spacing elements
    • C25B13/04Diaphragms; Spacing elements characterised by the material
    • C25B13/05Diaphragms; Spacing elements characterised by the material based on inorganic materials
    • C25B13/07Diaphragms; Spacing elements characterised by the material based on inorganic materials based on ceramics
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/17Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof
    • C25B9/19Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms
    • C25B9/21Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms two or more diaphragms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8647Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites
    • H01M4/8657Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites layered
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8875Methods for shaping the electrode into free-standing bodies, like sheets, films or grids, e.g. moulding, hot-pressing, casting without support, extrusion without support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • H01M8/0276Sealing means characterised by their form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • H01M8/028Sealing means characterised by their material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • H01M8/0286Processes for forming seals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/1213Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the electrode/electrolyte combination or the supporting material
    • H01M8/1226Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the electrode/electrolyte combination or the supporting material characterised by the supporting layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/1231Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte with both reactants being gaseous or vaporised
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/124Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte
    • H01M8/1246Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte the electrolyte consisting of oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • H01M8/2425High-temperature cells with solid electrolytes
    • H01M8/2432Grouping of unit cells of planar configuration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M2008/1293Fuel cells with solid oxide electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the invention belongs to the technical field of electrochemistry, and relates to a solid oxide battery chip and a preparation method, in particular to a solid oxide battery chip with a dual electrolyte structure and a preparation method.
  • Solid oxide battery Solid Oxide Cell, SOC
  • Solid Oxide Cell Solid Oxide Cell, SOC
  • Solid Oxide Cell, SOC Solid Oxide Cell, SOC
  • Solid Oxide Cell, SOC Solid Oxide Cell, SOC
  • Solid Oxide Cell, SOC Solid Oxide Cell, SOC
  • Solid Oxide Cell, SOC Solid Oxide Cell, SOC
  • Solid Oxide batteries, where the electrolyte provides the overall strength of the battery are called electrolyte-supported solid oxide batteries.
  • Electrolyte materials are usually doped stabilized zirconia, such as yttria doped stabilized zirconia (YSZ), Sc 2 O 3 doped stabilized zirconia (ScSZ), scandium oxide yttria doped stabilized zirconia (ScYSZ) ), scandium oxide ceria doped stabilized zirconia (ScCeSZ) or calcium oxide CaO stabilized zirconia (CSZ), etc., among which 8mol% yttria doped stabilized zirconia (8YSZ) is the most widely used.
  • YSZ yttria doped stabilized zirconia
  • ScSZ Sc 2 O 3 doped stabilized zirconia
  • ScYSZ scandium oxide yttria doped stabilized zirconia
  • ScCeSZ scandium oxide ceria doped stabilized zirconia
  • CSZ calcium oxide CaO stabilized zirconia
  • the electrolyte can also be other fluorite structure oxides, such as gadolinium oxide or samarium oxide doped stable ceria, namely GDC (gadolinia doped ceria) or SDC (samaria doped ceria), or perovskite structure oxides , such as LaSrGaMgO (LSGM), etc., these have been known to the industry [VVKharton, et al., Transport properties of solid oxide electrolyte ceramics: a brief review, Solid State Ionics, 174: 135-149 (2004)].
  • GDC gadolinia doped ceria
  • SDC samaria doped ceria
  • perovskite structure oxides such as LaSrGaMgO (LSGM), etc.
  • the material composition of the electrode can be oxides with perovskite structure, such as LaSrMnO (LSM), LaSrCoFeO (LSCF), etc., or oxides with fluorite structure, such as SDC, GDC, etc., or composites, such as LSM
  • LSM LaSrMnO
  • LSCF LaSrCoFeO
  • fluorite structure such as SDC, GDC, etc.
  • composites such as LSM
  • the composites composed of YSZ/CGO, etc. can also be precious metals such as Pt or precious metal-containing composites, such as the composites composed of Pt and YSZ, which have been known to the industry [EVTsipis, et al., Electrode materials and reaction mechanisms in solid oxide fuel cells: a brief review, J. Solid State Electrochem., 12: 1367-1391 (2008)].
  • oxygen-rich electrode the gas with lower oxygen concentration is called oxygen-depleted gas, and the corresponding electrode is called oxygen-depleted electrode.
  • the composition of oxygen-enriched gas can contain oxygen, nitrogen, argon, and helium, but the most commonly used and typical oxygen-enriched gas is air, and the corresponding electrode is called air electrode.
  • Oxygen-depleted gas can contain carbon monoxide, methane, methanol, hydrogen and other gas components with fuel properties or reducing properties, typical oxygen-depleted atmospheres such as hydrogen/water mixture, hydrogen/carbon monoxide/water vapor mixture, carbon monoxide/carbon dioxide mixture , nitrogen oxide (NOx)/nitrogen gas mixture, the corresponding electrode is called fuel electrode.
  • the oxygen-depleted and oxygen-rich electrodes are separated by an electrolyte.
  • the electrolyte needs to be as dense as possible, and its conductivity should be achieved as far as possible by ionic rather than electron migration. If there is electron conductivity in the electrolyte, there will be a short circuit current inside the cell. , the overall efficiency of the battery will drop significantly.
  • Charge transport in SOC electrolytes is usually carried by oxygen ions as carriers, i.e. oxygen ion conductance.
  • Solid oxide cells work in the temperature range of 500 to 1000 degrees Celsius, and there are two operating modes: the power generation mode Solid Oxide Fuel Cell (SOFC mode) and the electrolysis mode Solid Oxide Electrolysis Cell (SOEC mode).
  • SOFC mode Solid Oxide Fuel Cell
  • SOEC mode Solid Oxide Electrolysis Cell
  • the oxygen molecules in the oxygen-rich electrode undergo a reduction reaction to become oxygen ions (O 2- ), and the oxygen ions migrate from the oxygen-rich electrode side through electrolyte diffusion to the oxygen-poor electrode side.
  • the oxygen ions will then chemically react with the fuel gas molecules in the oxygen-depleted electrode.
  • the gas components in the oxygen-depleted electrode are hydrogen (H 2 ) and carbon monoxide (CO)
  • the chemical reactions occurring in the oxygen-depleted electrode include:
  • the macroscopic performance of the whole process is that oxygen molecules migrate from the oxygen-rich gas side through the electrolyte to the oxygen-depleted gas side, and the oxygen concentration difference between the oxygen-rich gas and the oxygen-depleted gas decreases accordingly.
  • the SOC converts the chemical energy of the oxygen-depleted gas into electrical energy and outputs it to the outside world.
  • the electrode reaction and overall electrochemical reaction in SOFC mode can be expressed as:
  • the difference in oxygen concentration between the oxygen-rich gas and the oxygen-depleted gas will decrease as the reaction proceeds.
  • the gases in the oxygen-depleted electrode such as oxygen (O 2 ), water vapor (H 2 O), carbon dioxide (CO 2 ), nitrogen oxides (NO x ) ) and other molecules
  • the oxygen molecules or oxygen ions in the form of oxygen ions (O 2- ) diffuse through the electrolyte and migrate to the oxygen-rich electrode, and the oxidation reaction occurs in the oxygen-rich electrode to become oxygen molecules.
  • the macroscopic performance of the whole process is that under the action of the external electric field, oxygen molecules migrate from the oxygen-depleted gas side with lower oxygen concentration to the oxygen-rich gas side with higher oxygen concentration through the electrolyte.
  • the SOC absorbs the electrical energy input from the outside and converts it into chemical energy of oxygen-depleted gas.
  • the electrode reaction and overall electrochemical reaction in SOEC mode can be expressed as:
  • a typical oxygen-depleted gas such as a mixture of H 2 and H 2 O, in power generation mode (SOFC), the overall reaction of SOC is: H 2 +1/2O 2 ⁇ H 2 O, in electrolytic cell mode (SOEC), The overall reaction of SOC is: H 2 O ⁇ H 2 +1/2O 2 .
  • a typical oxygen-depleted gas can also be a mixture of CO 2 , H 2 O, CO, and H 2. In the power generation mode, the total reaction of SOC is: H 2 +1/2O 2 ⁇ H 2 O, 2CO+O 2 ⁇ 2CO 2 .
  • the total reaction of SOC is H 2 O ⁇ H 2 +1/2O 2 , 2CO 2 ⁇ 2CO+O 2
  • the electrolysis product containing CO and H 2 is also called syngas, which can be processed by mature
  • the Fischer-Tropsch synthesis process continues to convert to a range of derived hydrocarbons such as methanol, ethanol, natural gas, gasoline, diesel and other mature and widely used fuels or industrial feedstocks.
  • oxygen-containing gas components are typical environmental pollutants such as nitrogen oxides NOx and sulfur oxides SOx , these pollutants can be removed by the electrolysis technology of SOC, and the chemical process can be expressed as:
  • the electrode reaction process of SOC there are at least three phase states of substances involved in the reaction, namely oxygen ions (O 2- ), electrons (e - ) and gaseous substances, such as oxygen molecules (O 2 ), water (H 2 O ) ), hydrogen (H 2 ), carbon monoxide (CO), etc.
  • oxygen ions O 2-
  • electrons e -
  • gaseous substances such as oxygen molecules (O 2 ), water (H 2 O ) ), hydrogen (H 2 ), carbon monoxide (CO), etc.
  • all the substances involved in the reaction need to have fast entry and exit channels.
  • the electrons and oxygen ions required in the reaction process must have smooth transmission channels, that is, the electrode is required to contain electrons with high conductivity.
  • oxygen-poor electrode electronic conductor materials include metals nickel (Ni), gold (Au), platinum (Pt), palladium (Pd), rhodium (Rh), etc.
  • oxygen ion conductors include yttria-doped stabilized zirconia ( YSZ), scandium oxide yttria doped stabilized zirconia (ScYSZ), scandium oxide ceria doped stabilized zirconia (ScCeSZ) or samarium oxide (Sm 2 O 3 ), gadolinium oxide (Gd 2 O 3 ), etc.
  • Hetero-stabilized cerium oxide and other materials such as SDC, GDC, etc.
  • oxygen ion conductor materials such as doped stable cerium oxide, such as SDC, GDC, etc.
  • doped stable cerium oxide such as SDC, GDC, etc.
  • the known electronic conductor materials for oxygen-rich electrodes include LaSrMnO, LaSrCoO, LaSrCoFeO and other oxides whose properties can remain stable under high temperature oxidizing atmosphere and whose specific composition can vary within a certain range, and may also be noble metals that resist high temperature oxidation.
  • the oxygen ion conductor of the oxygen-rich electrode includes yttria doped stabilized zirconia (YSZ), or samarium oxide (Sm 2 O 3 ), gadolinium oxide (Gd 2 O 3 ) doped stabilized ceria and other materials, such as SDC, GDC, etc.
  • oxides such as LaSrCoO, LaSrCoFeO and other oxides in the oxygen-rich electrode may also have a certain oxygen ion conductivity, which is also called mixed conductor in the industry.
  • oxygen ion conductivity which is also called mixed conductor in the industry.
  • the gas channels in these electrodes are usually formed by adding a certain content of pore-forming agent, such as graphite or starch, to the precursor powder slurry prepared by the electrode.
  • pore-forming agent such as graphite or starch
  • the gas flow rate leaking from the side edge of the cell is so small that it is not necessary to seal the side edge of the electrode, only high temperature Sealing material, such as glass, closes the gap between the connection plate and the electrode.
  • the main body of the gas flow flows in an air channel with a regular shape located outside the battery.
  • the geometric shape and cross-sectional shape of the air channel can be designed and manufactured according to the requirements.
  • the air passages in the electrode can neither be too large nor too large, so the low air flow rate in the electrode is one of the main factors limiting the reaction rate of the electrode.
  • the electrodes in solid oxide batteries are generally made very thin, usually 0.05-0.5mm thick, in order to minimize the diffusion of gas components into and out of the electrode, that is, the distance from the gas channel to the interface between the electrode and the electrolyte. While an electrode that is too thin helps reduce the resistance of gas diffusion into and out of the electrode, it also significantly reduces the structural strength of the cell. Batteries designed and fabricated in this way are easily broken during the assembly and use of the stack, resulting in the failure of the entire stack, which is one of the main factors limiting the commercial large-scale use of high-temperature solid oxide battery technology.
  • the common SOC configuration of solid oxide batteries is chip type.
  • the stack structure of chip SOC is realized by connecting SOC elements, sealing rings and interconnects in sequence. The whole stack is placed in a high temperature environment, which is disclosed in the public.
  • the literature has been introduced [NQMinh, System design and application, in High-Temeperature Solid Oxide Fuel Cells for the 21 st Century (2 nd Ed. ISBN: 978-0-12-410453-2), 2015.].
  • the sealing ring is generally made of glass or metal (such as gold, silver, etc.), and the material of the connecting plate is usually a high temperature alloy.
  • the alloy connecting plate usually also needs to spray a conductive anti-oxidation coating on the surface of the contacting battery to enhance its anti-oxidation ability under high temperature conditions and reduce the resistance loss of the stack connection.
  • a conductive anti-oxidation coating on the surface of the contacting battery to enhance its anti-oxidation ability under high temperature conditions and reduce the resistance loss of the stack connection.
  • SOC solid oxide battery
  • Typical using a mesh made of a metal that is resistant to high temperature oxidation such as gold (Au) or silver (Ag) to ensure good electrical contact.
  • gas flow oxygen-lean and oxygen-rich flows within the isolated space formed by the connecting plate, battery (SOC), and sealing ring, preventing leakage outside the stack.
  • the reliability of the sealing ring is not high.
  • the sealing ring needs to meet the requirements of airtightness, heat resistance cycle, high temperature reducing resistance and high temperature oxidizing atmosphere at the same time, and has certain mechanical strength and toughness requirements. It must also be close to the thermal expansion coefficient of the alloy connecting plate and the SOC cell, that is, the thermal expansion matching. - It is required that the sealing ring and the dimensional change of the seal remain approximately the same under the condition of temperature change. It is difficult for both glass and metal sealing rings to achieve these performance requirements at the same time.
  • glass sealing rings are usually very fragile and are very prone to fracture and failure during SOC stacking and thermal cycling operations, even if glass is barely used to achieve ceramic and metal sealing , the rate of temperature change it can withstand must also be very small to avoid excessive stress and excessive strain on the sealing ring, which results in very long start-up and shutdown times for stacks using common solid oxide cell technology, usually More than 10 hours, and some even more than 20 hours.
  • the flexibility of the group stack is low.
  • the single cells of the chip SOC stack are connected in series, and the sealing ring is a one-time component. Once a chip SOC stack is heat-treated, that is, after the sealing ring and the seal are fused at high temperature, such as 850 degrees Celsius to achieve sealing, the stack is assembled. Each component, including each single cell and connection board, can no longer be replaced. Therefore, the failure of any component in the entire stack will lead to the failure of the entire stack, which greatly increases the risk of actually using the chip SOC stack and significantly increases the cost of use.
  • the existing patent [CN 108336386 B] discloses a flat tube structure solid oxide electrochemical device and its preparation method
  • [CN 108321408 B.] discloses a flat tube solid oxide electrochemical device containing multiple pairs of electrodes and its preparation method
  • [CN 108336376 B] discloses a flat tube solid oxide battery structure and a preparation method thereof for improving yield and single cell power, providing a solution to the above-mentioned technical problems, this solution adopts a flat tube structure of solid oxide Oxide batteries, which can be supported by an electrolyte.
  • the battery using this technology spans the cold and hot temperature range, the battery performs electrochemical reaction at the hot end, and achieves sealing and external connection at the cold end.
  • the structural features of the battery using this technology are: 1) The air flow isolation structure required for the operation of the battery, that is, the air channel, is formed by the electrolyte, two air channel walls and a layer of separator; 2) The electrolyte, the air channel wall and the separator The three components are made of the same material or materials with similar composition; 3) There is an airway wall on the outer side of the non-airway inlet and outlet of the battery, and the airway wall must have a certain width to ensure sealing reliability. In this solution, the airway wall is used to seal the airway instead of the high-temperature sealing material commonly used in the common technology, such as glass.
  • the reserved air channel wall reduces the effective power generation area of the battery, because the composition and properties of the air channel constituent materials are close to those of the electrolyte, it is common in the chip stack technology that the thermal expansion characteristics of the components of the stack are not matched, resulting in components in the stack.
  • the problem of the flat-tube battery configuration in practical application is that it is difficult to balance the yield and electrical performance of the battery.
  • the airway surrounding structural implementation in the flat-tube approach includes at least one layer of electrolyte.
  • the electrolyte is a functional component necessary for the electrochemical reaction when the solid oxide battery is working. The thinner the electrolyte, the smaller the resistance of oxygen ion transmission, and the better the electrical performance of the battery.
  • the electrolyte part of the battery is easy to be broken during the preparation process of the battery or when the battery is operated with a large flow of air flow, which reduces the yield and reliability of the flat tube battery and increases the cost of using the technology.
  • the thickness of the electrolyte generally needs to be no less than 0.5mm, but the electrolyte with a thickness of 0.5mm will make the output power density of the battery below 100mW/cm
  • the thickness of the electrolyte should preferably not exceed 0.1mm, but such a thickness makes the electrolyte easily broken at the gas groove, so it is difficult for this technology to take into account the yield and electrical properties.
  • the airway wall at the edge of the battery must be accurately printed or attached to the corresponding paste or airway wall membrane. Designating the position increases the extra fabrication process steps, increases the fabrication process requirements of the battery, increases the cost, and also reduces the production efficiency of the battery.
  • the battery disclosed in the above-mentioned existing patents can also adopt the technical solution of electrode support.
  • the battery works also across the cold and hot temperature range.
  • the battery performs electrochemical reaction at the hot end, and realizes sealing and external connection at the cold end, but the air channel is formed around it.
  • the electrolyte is replaced with the inner electrode, so the airway is completely realized by the electrode material, the airway wall and the strength of the battery can be achieved by appropriately increasing the thickness of the inner electrode, while keeping the thickness of the electrolyte thin to facilitate the battery with larger power.
  • the sealing of the high temperature part is realized by the airway wall instead of the high temperature sealing material commonly used in ordinary technology, such as glass.
  • the width of the airway wall that must be reserved reduces the power generation area of the battery.
  • the side of the non-airway inlet and outlet of the battery must be the airway wall, when the battery is prepared, the airway wall at the edge of the battery must put the corresponding slurry.
  • the diaphragm is precisely printed or attached to a designated position, which adds additional manufacturing process steps, improves the manufacturing process requirements of the battery, increases the cost, and reduces the production efficiency of the battery.
  • this scheme is effective for improving the performance and yield of the battery, but to a limited extent, because the diffusion rate of gas in the inner electrode with lower porosity is limited, and excessively increasing the thickness of the electrode will lead to insufficient gas supply for the electrode reaction, On the other hand, the thinner inner electrode will lead to insufficient strength of the air channel, which cannot achieve high production yield of the battery.
  • the transmission area of the inner electrode current is between the high temperature area of the battery in the middle and the cold end plate that undertakes external connection and sealing functions
  • the current carrier that is, the conductive material
  • the conductive material is platinum (Pt) or nickel ( Ni) and other high-temperature-resistant metals
  • the line current collecting resistance is large.
  • the electrical conductivity of precious metals such as Pt is relatively low, about 9 ⁇ 10 4 S/cm. Due to the high price of precious metals, they can only be used in thin layers. The thickness is generally about 50 microns. 1cm, 10cm long as an example).
  • the electrical conductivity of nickel is about 1 ⁇ 10 5 S/cm, but in the electrode due to the requirement of forming, its content is generally below 60%, and the electrical conductivity of the entire inner electrode is usually only 200-250 S/cm.
  • the resistance is about 400mOhm (take the line width 1cm, thickness 1mm, length 10cm as an example), and the line current collecting resistance of the inner electrode is relatively large.
  • the operation of the battery using the above-mentioned existing patent needs to traverse the high temperature and low temperature regions, that is, the electrodes of the battery work in the high temperature region, and the sealing and external connection of the battery are realized in the low temperature region.
  • the high temperature area is transferred to the low temperature area, causing heat loss and reducing system efficiency.
  • Due to the complex preparation process of batteries using such technical solutions only rectangular or square batteries with relatively simple shapes can be prepared in practice. In this shape design, the channels for heat transfer from the high temperature area to the low temperature area are of equal size and equal cross-sectional area, and the heat loss is large.
  • a tapered structure that is, the size of the battery is gradually reduced from the high temperature working part to the low temperature sealing part, the channel for heat loss from high temperature to low temperature can be gradually narrowed, which is beneficial to reduce the heat loss rate caused by the battery. , but this is difficult to achieve in the known technical solutions due to the complexity of the process.
  • the purpose of the present invention is to solve the above-mentioned problems in the existing technology, and propose a solid oxide battery chip.
  • the technical problem to be solved is how to construct a smooth and low-resistance gas transmission channel for the rapid electrode reaction.
  • the solid oxide battery chip according to the present invention is also referred to herein as a "battery chip", or simply referred to as a "battery core”.
  • a solid oxide battery chip with a dual electrolyte structure characterized in that it includes two electrolyte layers, and the two electrolyte layers are separated by an inner electrode sandwiched therebetween, so Regularly arranged air channels are arranged inside the inner electrode, and at least two sides of the inner electrode are covered with side sealing members, and outer surface parts are arranged on the outer surface of the electrolyte, and the outer surface parts include an intermediate layer, an outer electrode , an inner electrode plate and an outer electrode plate, the inner electrode is connected with the inner electrode plate, and the outer electrode is connected with the outer electrode plate.
  • the outer electrode can be designed as an oxygen-rich electrode
  • the inner electrode can be designed as an oxygen-depleted electrode
  • the outer electrode can be designed as an oxygen-depleted electrode and the inner electrode can be designed as an oxygen-rich electrode according to operational requirements.
  • the cross-sectional equivalent diameter of a single air channel among the regularly arranged air channels arranged in the inner electrode is between 20-200 micrometers.
  • the side sealing member includes several sublayers, wherein at least one sublayer is dense and airtight, and the dense sublayer and the battery chip At least one rough and breathable sublayer is arranged between the side surfaces.
  • the outer surface member further includes a plurality of outer current collecting lines covering the outer surface of the outer electrode, and the conductivity of the outer current collecting lines is not lower than that of the outer current collecting lines. electrode.
  • the outer surface part further includes a protective layer, and the protective layer covers at least one of the outer surface parts.
  • the inner electrode and the inner electrode plate are connected by an inner bus line, and the electrical conductivity of the inner bus line is not lower than that of the inner electrode.
  • the inner bus bar is located between the side sealing member and the side surface of the battery chip.
  • the main body of the inner bus bar is arranged on the outer surface of the electrolyte, and is connected to the inner electrode through the electrolyte.
  • the inner current collecting line penetrates the electrolyte and is individually sealed by a sealing material to prevent gas leakage.
  • the battery chip is in the shape of a long strip, and the shape of the battery chip gradually narrows from the outer electrode area in the middle of the battery chip to the end face of the inlet and outlet of the airway.
  • a preparation method of a high temperature solid oxide battery chip comprising the following steps:
  • Substrate preparation After adding appropriate additives and solvents to the components constituting the inner electrode and the electrolyte in proportion, a film substrate is prepared through a casting operation, and airway precursors are prepared on some of the substrates as required.
  • Substrate stacking Align the electrolyte substrate, the inner electrode substrate with air channels, and the inner electrode substrate without air channels in a certain order, put them into a vacuum bag for vacuuming and sealing, and then put them into a vacuum bag.
  • the substrate assembly placed in the vacuum bag is placed in a press, and a laminate is formed after being pressed and fused at a high temperature;
  • the cell blank is placed in a high temperature furnace and sintered with a suitable heat treatment system. After sintering, the cell blank becomes a cell with higher strength. At the same time, during the heat treatment process, the gas channel precursor gas The chemical escapes, leaving a regular and even embedded airway in the cell.
  • the intermediate layer is subjected to high temperature heat treatment on the electrolytes on both sides of the cell after firing;
  • Reduction place the battery core after the firing of the intermediate layer into a reduction furnace for reduction, and the nickel oxide in the inner electrode is reduced to metallic nickel.
  • the reduction operation of the cells can be completed before the cells are assembled into a stack, or can be achieved by the overall reduction of the stack after the cells are assembled into a stack.
  • outer surface components of the battery cells are printed on the outer surface of the reduced battery cores, including the outer current collectors, the outer electrodes, the outer electrode plates, the inner electrode plates, the outer electrode bus lines, the inner Electrode bus lines and protective layers, etc., these components can be all printed on the intermediate layer, or part or all of them can be printed on the surface of the electrolyte. All kinds of slurries used can use a mixture of ethanol and terpineol as a solvent, and contain about 0-10% of graphite as a pore-forming agent.
  • Preparation of side sealing member Prepare a side sealing member for the battery cell that has completed the above process.
  • the side sealing member may include an inner and outer two-layer substructure.
  • the inner layer of the side sealing member is first coated, and the preferred material is graphite (C) or silicon.
  • the material is potassium calcium glass, the composition is K 2 O 12-18%, CaO 5-12%, SiO 2 60-75%;
  • Heat treatment heat treatment of the cells with the outer surface parts printed and the side seals coated. After the heat treatment, each outer surface part and its attachments form a firm connection, and at least one sublayer of the side seal members is densified;
  • the preferred heat treatment system is 850 degrees Celsius for 1 hour, the atmosphere is a reducing protective atmosphere, the hydrogen content is 5-60%, and the remaining balance gas is nitrogen.
  • Electrode strengthening The heat-treated cells can be used in practical applications. In order to further improve the electrical properties of the cells and reduce the internal resistance, electrode strengthening treatment can be performed. Typical electrode strengthening treatment methods such as dipping and other processes.
  • the solid oxide battery chip prepared according to the present invention also has the following features in addition to the features that the hot end works and the cold end realizes external connection and sealing:
  • the double electrolyte is separated by the sandwiched inner electrode, and the inner electrode is embedded with micro air passages arranged regularly.
  • the side of the non-airflow inlet and outlet of the cell can also contain the outlets of these air passages, which can significantly reduce the process steps of cell preparation, improve the production efficiency of the cell, and reduce the production cost of the cell;
  • the inner electrode may have multiple layers, such as the active inner electrode and the supporting inner electrode.
  • the active inner electrode is more conducive to the electrochemical reaction in terms of formula, and the supporting inner electrode is more conducive to improving the battery chip in terms of components. overall strength and/or conductivity;
  • the supply speed of the raw material gas required for the electrode reaction or the removal speed of the product gas does not vary with the thickness of the inner electrode. It decreases with the increase of the thickness of the inner electrode, but increases with the increase of the thickness of the inner electrode. At the same time, due to the increase of the thickness of the inner electrode, the overall conductance of the inner electrode and the strength of the battery chip also increase;
  • the inner airways are regularly arranged, and the equivalent diameter scale of the cross section of a single airway is between 20-200 microns, preferably between 30-60 microns.
  • An excessively large airway section will reduce the strength of the battery chip, make the battery chip fragile, and significantly reduce the yield of the battery chip, while an airway that is too small will cause an excessively large airflow pressure drop when the battery chip is working.
  • the equivalent diameter scale of a single airway should be controlled within the range of 30-60 microns.
  • the number of air passages contained in a single battery cell should be more than 6 to ensure that the battery cell has a certain ventilation capacity, so that a single battery chip can have sufficient power;
  • a sealing structure may contain multiple substructures with different materials and microstructures. Different substructures can have different functions. For example, the innermost substructure is mainly used to enhance and seal the contact of the bottom surface, and has lower requirements for air tightness, and the outermost structure is used for sealing with high air tightness requirements. More substructures can be embedded in the substructures of the outermost layer and the innermost layer according to functional requirements, but in any case, at least one layer of each sublayer of the side sealing member is dense and airtight;
  • the internal electrode current collecting structure can contain a layer of inner electrode current collecting structure, and its conductivity is high, which is used to reduce the current collecting resistance of the inner electrode.
  • the internal electrode current collecting structure can be located in the sealing layer, which is attached to the side surface of the internal electrode, or can be located in other positions, such as the surface of the cell.
  • Preferred internal electrode current collector structural materials are silver (Ag) or nickel (Ni) based coatings. Since the material cost of silver and nickel is much lower than that of precious metals such as Pt, and the electrical conductivity is higher, and because they are only used for coating on the side or side of the battery chip, there is no structural requirement, and there is a large room for adjustment of material configuration and composition.
  • the electrical conductivity of the inner electrode current collector structure can be much greater than that of commonly used nickel electrode materials.
  • the conductivity of the nickel electrode is about 250 S/cm
  • the current collector coatings of silver and nickel can achieve conductivity of 6 ⁇ 10 5 S/cm and 1 ⁇ 10 5 S/cm, respectively.
  • the line resistance of the side current collector coating with silver (Ag) material is about 17mOhm
  • the line resistance of nickel (Ni) material as the side current collector coating is about 100mOhm (with a line width of 1mm and a thickness of 0.1mm, A length of 10 cm is taken as an example), both of which are significantly smaller than the current collecting resistance of the nickel electrode of about 400 mOhm.
  • the current collecting resistance of the internal electrode of the battery chip can be significantly reduced at a lower cost.
  • the cell may adopt a tapered profile design. That is, the working surface of the battery chip at the hot end is wider, but the width of the battery chip gradually decreases along the direction of the airflow of the inner electrode until the cold end of the battery chip.
  • a tapered design can make the battery chip have as large a working area as possible in the high temperature area. In the transition area from high temperature to low temperature, the heat transfer cross-sectional area of the battery cell is gradually smaller, and the heat loss caused by the heat conduction of the battery chip is also reduced. Slow down, which can effectively improve the power output of the cell. According to the experimental results, the output power of a single cell with a tapered design can be up to about 10% higher than that of a single cell with a rectangular and equal width design.
  • the tapered design of the battery chip will also increase the airflow resistance of the inner electrode, even if the pressure drop of the inner electrode gas flowing through the battery chip increases.
  • the actual test and fluid mechanics simulation calculation show that the angle between the tapered hypotenuse of the battery chip and the straight edge of the hot end working surface is between 5-60 degrees, preferably between 10-30 degrees, the inner electrode flows through the battery chip. pressure drop is small.
  • the battery chip according to the present invention should include the following components, wherein, outside the battery chip, except for the intermediate layer, the structural components directly or indirectly attached to the electrolyte are called the outer surface of the battery chip Components, the function and material composition of each component are as follows:
  • Inner and outer electrode plates the inner and outer electrodes of the battery chip realize the electrical connection with external devices. Material preparation of nickel (Ni), gold (Au), platinum (Pt), rhodium (Ph), palladium (Pd), chromium (Cr), tungsten (W) and other elements.
  • Inner electrode Provide a place where the gas flowing through the inner electrode undergoes electrochemical reaction and the electrochemical process of the inner electrode occurs, provides the overall structural strength of the battery chip, and at least partially provides the current transmission channel of the inner electrode.
  • the inner electrode may contain different sublayer structures to realize the three functions of electrochemical reaction, strength support and current transport, respectively. Different inner electrode sublayers can be composed of materials with similar compositions.
  • the inner electrode includes two sublayers, an active inner electrode and a supporting inner electrode.
  • the composition design of the active inner electrode is more conducive to the electrochemical reaction, such as containing 50- 60% of 8YSZ and 40-50% of metallic nickel (Ni), and the design of components supporting the inner electrode is more conducive to electron transport and the strength support of battery chips, such as 30-50% of 3YSZ and 50-70% of Ni.
  • the inner electrode may also contain small amounts of other additives such as platinum, ceria, alumina, magnesia, lanthanum oxide, strontium titanate, or composites based on these additives . The content of these additives is usually below 5%, but can bring better electrochemical activity and better high temperature stability to the inner electrode.
  • Airway Provide the raw material supply and product removal channel required for the inner electrode to perform the electrode process.
  • Airways run throughout the inner electrode and extend to the edge of the battery chip.
  • the equivalent diameter of a single airway is between 20 and 200 microns, preferably between 30 and 60 microns, so as to ensure that the strength of the inner electrode will not be significantly reduced even when the airway spreads over the inner electrode.
  • Electrolyte The separator between the inner and outer electrodes, which provides a channel for the ions required for the continuous electrode reaction.
  • the electrolyte is based on doped stabilized zirconia, especially yttria doped stabilized zirconia (YSZ).
  • Inner current collector line a component that is close to the inner electrode or is a part of the inner electrode, and provides the required electron fast transport channel for the inner electrode to perform the electrode reaction.
  • the inner current collector line arranged at a proper position by a suitable material can effectively increase the overall conductivity of the inner electrode, so that the battery chip has a lower internal resistance, especially the current collector internal resistance.
  • the inner current collector has higher electronic conductivity than the inner electrode, such as silver (Ag), nickel (Ni), gold (Au), platinum (Pt), rhodium (Ph), palladium (Pd), chromium (Cr), tungsten (W) and other metal materials that are resistant to high temperature oxidation or their alloys, and can also be composed of oxides such as strontium titanate that have high temperature conductivity in a reducing atmosphere.
  • the inner current collector is arranged on the side of the battery chip where the non-gas enters and exits the end face of the battery chip, but can also be arranged on other parts of the battery chip, such as the surface of the battery chip where the external electrodes are located.
  • the inner current collector can be a special battery chip component, or it can be undertaken by the inner electrode itself.
  • Inner bus line the electron transmission channel connecting the inner current collector line and the inner electrode plate. Because of the need to carry the inner electrode current, the inner bus line generally has a larger cross-sectional area and a higher conductivity to ensure a lower resistance during electron transfer.
  • the inner bus bar has higher electronic conductivity than the inner electrode, and in terms of material composition, it can be made of metals that resist high temperature oxidation, such as silver (Ag), nickel (Ni), gold (Au), platinum (Pt), rhodium (Ph), palladium (Pd), chromium (Cr), tungsten (W), copper (Cu) and other materials and their alloys, as well as these metal materials and oxides with high temperature conductivity, such as strontium titanate, doped It is composed of a composite composed of known oxide materials with high temperature conductivity, such as stabilized ceria and doped stabilized zirconia.
  • Intermediate layer Promote the contact between the outer surface parts of the battery chip and the electrolyte, and reduce or avoid the parts that may react between these outer surface parts and the electrolyte at high temperatures.
  • the electrolyte is usually dense and smooth after high temperature sintering of the battery chip, which is not conducive to achieving and maintaining good contact between the outer surface components of the battery chip and the electrolyte.
  • the highest temperature during the preparation of the battery chip can reach 1500 degrees Celsius, and the long-term use of the battery is also maintained in the high temperature range of 500-1000 degrees Celsius.
  • the intermediate layer can not only maintain chemical stability to the electrolyte and each outer surface part of the battery chip at high temperature, but also can have a relatively rough surface after preparation, so as to achieve good contact with each outer surface part.
  • the intermediate layer can be prepared not only between the outer electrode and the electrolyte, but also between all the outer surface parts of the battery chip and the electrolyte.
  • These outer surface parts can include: outer electrodes, inner/outer electrode plates, inner/external flow lines , inner/outer collector line, protective layer, sealing structure, etc.
  • the material of the intermediate layer is composed of doped ceria (such as SDC or GDC), or a composite material of doped ceria (SDC or GDC) and doped zirconia (such as YSZ, ScYSZ).
  • doped ceria such as SDC or GDC
  • SDC or GDC a composite material of doped ceria
  • SDC or GDC doped zirconia
  • YSZ, ScYSZ doped zirconia
  • External electrode It provides a reaction place where the gas flowing through the outside of the battery chip undergoes an electrochemical reaction, and the process of the external electrode electrode is carried out.
  • the external electrode material is a composite material composed of doped cerium oxide and an anti-oxidation metal, such as Ag, Pt, Pd, etc., or a known electrode material of solid oxide battery technology, such as LaSrMnO, LaSrCoFeO, LaNiFeO such as oxides or composites based thereon.
  • the preparation process of the outer electrode may include various known electrode strengthening processes, such as impregnation of active oxides.
  • Outer collector line a component that is close to the outer electrode or is a part of the outer electrode, and provides a fast electron transport channel for the outer electrode to perform the electrode reaction.
  • the outer current collector is made of metal based on high temperature oxidation resistance, such as silver (Ag), nickel (Ni), gold (Au), platinum (Pt), rhodium (Ph), palladium (Pd), chromium (Cr), Tungsten (W) and its alloys, and oxides with high temperature conductivity, such as strontium titanate, doped stabilized ceria, doped stabilized zirconia and other known oxide materials with high temperature conductivity composite composition.
  • the outer current collector is arranged on the outer surface of the outer electrode, but can also be located on the inner surface, ie between the outer electrode and the electrolyte, or between the outer electrode and the intermediate layer.
  • the outer current collecting lines are in the form of grids to enhance the current collecting effect.
  • Protective layer a structure that directly or indirectly covers and protects various outer surface components including external electrodes.
  • the outer surface parts that the protective layer may cover include: outer electrodes, inner/outer electrode plates, inner/external flow lines, inner/outer current collecting lines, protective layers, side sealing members and sealing structures, etc.
  • the protective layer can increase the high temperature stability of the outer surface parts of the battery chip including the outer electrodes by inhibiting the volatilization and loss of effective components, and can also enhance the resistance of the outer surface parts to external gas impurities by physical filtration or chemical absorption.
  • the protective layer can be prepared from oxide and/or metal materials based on aluminum oxide, zirconium oxide, cerium oxide, silicon oxide, platinum, palladium, rhodium, etc., which can maintain stable properties under high temperature conditions.
  • Foreign exchange flow line the electron transmission channel connecting the outer collector line and the outer electrode plate. Because it needs to carry the external electrode current, the foreign exchange flow line generally has a large cross-sectional area and a high conductivity, so as to ensure that the resistance during electron transmission is small.
  • the foreign exchange flow line is made of materials with higher electronic conductivity than the outer electrode materials, such as silver (Ag), nickel (Ni), gold (Au), platinum (Pt), rhodium (Ph), palladium (Pd), chromium (Cr), tungsten (W), copper (Cu) and other metals and their alloys, and oxides with high temperature conductivity, such as strontium titanate, doped-stabilized ceria, doped-stabilized zirconia, etc. known It is composed of a composite composed of oxide materials with high temperature conductivity.
  • Side sealing member a structure for gas isolation and sealing on the non-gas inlet and outlet end faces of the battery chip, which may contain several sub-layer mechanisms. Preferably, it contains two inner and outer side sealing sublayers, wherein the inner side sealing layer covers the side of the inner electrode of the battery chip, and is located between the inner electrode and the outer layer of the side sealing, which is used to increase the resistance of the inner electrode airflow from the side of the battery chip leaking, It can achieve good contact with the outer layer of the side seal, and maintain chemical stability with the outer layer of the side seal, and the structure of the two will not be damaged due to chemical reaction at high temperature.
  • the material of the side seal inner layer can be graphite (C) or magnesium silicate talc-based materials, such as (Mg 6 )[Si 8 ]O 20 (OH) 4 and the like.
  • the side sealing outer layer is located at the outermost layer of the side sealing member of the battery chip, and is a dense sealing structure to prevent the gas flowing through the inner electrode air channel from leaking to the outside of the battery chip.
  • the side seal outer layer may be composed of a material based on graphite or potassium lime glass. If potassium-lime glass is used, its preferred range of composition ratio is: K 2 O 12-18% CaO 5-12%, SiO 2 60-75%.
  • the present invention has the following advantages:
  • the regular microchannels embedded in the inner electrode significantly reduce the airflow resistance when the gas flows through the inner electrode, and these regular microchannels dispersed inside the inner electrode help the gas flowing through the inner electrode to be evenly distributed to all the The interface area between the electrolyte and the electrode makes the electrode reaction more sufficient and the electrical efficiency of the cell is higher;
  • the inner electrode can include multiple sub-layers, such as active inner electrode and supporting inner electrode.
  • the active inner electrode is more conducive to the electrochemical reaction in terms of formula, and the supporting inner electrode is more conducive to improving the battery in terms of composition. overall strength and/or conductivity.
  • the inner electrode can also be used as a support between the two layers of electrolyte, even if the thickness of the electrolyte is relatively thin, it can ensure a high yield;
  • the side sealing layer is set to a multi-layer structure.
  • the inner sublayer can increase the resistance of the gas flowing through the inner electrode.
  • the material of the outer sublayer is different from the inner sublayer in composition and structure. The leaked gas after decompression can be better sealed, and the structural strength can be better maintained.
  • FIG. 1 is a schematic cross-sectional view of a stack unit of a typical known solid oxide battery.
  • FIG. 2 is a top plan view of the first embodiment of the present invention.
  • FIG. 3 is a structural view of the end portion of the first embodiment of the present invention.
  • FIG. 4 is a schematic cross-sectional structural diagram of Embodiment 1 of the present invention.
  • FIG. 5 is a top plan view of the second embodiment of the present invention.
  • FIG. 6 is an exploded view of Embodiment 2 of the present invention.
  • FIG. 7 is a top plan view of the third embodiment of the present invention.
  • FIG. 8 is a top plan view of the fourth embodiment of the present invention.
  • the first embodiment is a solid oxide battery chip.
  • the battery chip adopts a rectangular long strip structure, and includes two layers of electrolyte 1 separated from each other in the thickness direction.
  • the two layers of electrolyte The inner electrode 2 is arranged between the 1, and the two sides of the inner electrode 2 are each covered with a side sealing member 4.
  • the outer surface of the electrolyte 1 is arranged with an outer surface part, and the outer surface part includes an intermediate layer 5, an outer electrode 3, an inner electrode
  • the pole plate 6 , the outer electrode plate 7 , the inner electrode 2 is connected with the inner electrode plate 6
  • the outer electrode 3 is connected with the outer electrode plate 7 .
  • the side sealing member 4 includes two sublayers, a side sealing inner layer 401 and a side sealing outer layer 402 , the side sealing inner layer 401 and the side sealing outer layer 402 .
  • the materials of the layers 402 are all different from the materials of the electrolyte 1 and the inner electrode 2.
  • the outer layer 402 of the side seal is dense and airtight, and the inner layer of the side seal is rough and breathable 401.
  • the inner and outer electrodes have their own plates to facilitate the connection between the cell and the outside world.
  • the outer electrode plate 7 and the outer electrode 3 are connected by a foreign exchange flow line 9.
  • the inner electrode 2 includes a supporting inner electrode 201 and an active inner electrode 202.
  • the connection between the electrode 2 and the inner electrode plate 6 is connected through the inner bus line 8.
  • the outer surface of the outer electrode 3 is provided with an outer current collector line 12 located on the outer surface of the outer electrode 3, and the outer current collector line 12 and the outer electrode 3 are covered with a protective layer. 13;
  • the inner electrode plate 6, the outer electrode plate 7, the outer electrode 3, the foreign exchange flow line 9, etc. are all arranged on the intermediate layer 5, and are not in direct contact with the electrolyte 1.
  • the inner electrode plate 6 and the outer electrode plate 7 are arranged at the same end of the cell, and the inner current collecting line 14 is buried in the side sealing member 4 .
  • Substrate preparation The substrates are divided into three categories: supporting inner electrode substrates, active inner electrode substrates and electrolyte substrates. The preparation process of each substrate is as follows:
  • the ceramic fine powder such as 8YSZ, NiO and GDC and other oxide fine powder, is added with appropriate amount of organic additives and solvents, such as PVB, triethanolamine, ethanol, etc. After ball milling and mixing, these ceramic fine powders are uniformly dispersed to prepare a stable slurry material.
  • the content of nickel oxide (NiO) in the support inner electrode is slightly higher, so that the inner electrode has a higher conductivity after being reduced.
  • the solid active ingredient is 8YSZ or ScYSZ.
  • (b) Substrate preparation The slurry in (a) is prepared into a film of electrolyte and internal electrode by a casting machine, the typical thickness of the electrolyte film is 5-40 microns, and the typical thickness of the internal electrode film is 100-200 microns.
  • the film is dried at 60 degrees Celsius for 2 hours and then cut into a certain size, such as a 270 ⁇ 220mm sheet, which is called a substrate.
  • the substrate prepared from the active inner electrode slurry is called the active inner electrode substrate
  • the substrate prepared from the supporting inner electrode slurry is called the supporting inner electrode substrate
  • the substrate prepared from the electrolyte slurry is called the electrolyte substrate. piece.
  • Airway precursor preparation The air channel precursor of the cell is prepared on a substrate supporting the inner electrode.
  • Typical airway precursors are slurries containing fine powders of graphite, starch or other polymer materials such as PTFE, PVC, etc.
  • the content of solid powders such as graphite, starch, PTFE, PVC, etc. is preferably in the range of 5- 30%, the solvent is terpineol.
  • Methods for preparing the precursor paste on the inner electrode substrate include methods known in the art such as screen printing and high temperature lamination.
  • Substrate stacking Align the electrolyte substrate, active inner electrode substrate, supporting inner electrode substrate containing air channel precursor, and supporting inner electrode substrate without air channel in the order shown in Figure 4 and stack them in sequence and put them in a vacuum bag Vacuum and seal. Subsequently, the sealed vacuum bag containing the substrate assembly was placed in an isostatic press, and was taken out after applying a pressure of 20 MPa in a water bath at 75 degrees Celsius for 5 minutes. After the isostatic pressing process, the substrates in the aggregate are fused with each other to form a laminate. The thickness of the laminate is about 2 mm, and the constituent layers can no longer be partially or fully separated into individual substrates.
  • the laminated body prepared by the above steps is placed in a punching machine, and is cut into a green cell blank with a specified design shape through a punching die. Typically, a laminate can be cut into 3 cell blanks with a shape of 65 ⁇ 260mm.
  • the cell blank is placed in a high-temperature furnace to select a suitable heat treatment system for high-temperature sintering.
  • high temperature sintering such as sintering at 1400°C for 2 hours, the size of the blank will shrink by 20-30% and become a cell with higher strength.
  • regular and uniform embedded micro-airways are left in the cell.
  • the intermediate layer is fired.
  • the intermediate layer is printed on the electrolyte on both sides of the cell after firing.
  • a typical interlayer material is doped cerium oxide, such as GDC or SDC, and the printing method can be a screen printing process known in the industry.
  • the cells after the firing of the intermediate layer are placed in a reduction furnace for reduction.
  • the reducing atmosphere is a mixture of hydrogen and nitrogen, wherein the hydrogen content is 70-100%, the nitrogen content is 0-30%, and the reducing condition is 680 degrees Celsius for 6 hours.
  • the nickel oxide in the inner electrode of the cell is reduced to metal nickel, which not only forms an additional gas channel in the inner electrode, but also because the formed metal nickel is an electronic conductor, the reduced inner electrode has the ability to conduct electricity. It is possible to form an electron transport channel between the high temperature region of the cell that connects the electrochemical reaction and the inner electrode plate that undertakes the connection with the outside.
  • outer surface parts of the battery cell are printed on the outer surface of the restored battery core, including the outer collector line, the outer electrode, the outer electrode plate, the inner electrode plate, the outer electrode bus line, the inner electrode bus line and the protective layer, etc. These components can be printed entirely on the intermediate layer, or partially or completely on the electrolyte surface. Since the cell has oppositely arranged electrolytes on both sides, the outer surface parts of one side of the cell can be prepared in sequence after the outer surface parts of the other side are prepared.
  • the composition of the outer collector line, the outer electrode plate, the inner electrode plate, the outer electrode bus line, and the inner electrode bus line are the same or similar, such as doped stabilized cerium oxide (SDC or GDC)
  • SDC or GDC doped stabilized cerium oxide
  • the content is 5-20%, and the silver content is 80-95%, which can be printed in the same step with the same screen.
  • the composition of the outer electrode is 30-55% doped stabilized cerium oxide (SDC or GDC) and 45-70% silver, and its printing can be done before or after printing the outer current collectors, but there is baking in between. In the drying process, the drying conditions are hot air drying at 90 degrees Celsius for 1 hour.
  • the composition of the protective layer is alumina, zirconia, silica or various composite materials based on oxides, the preferred composition is alumina, and the paste prepared from these oxides is printed or sprayed on other external surfaces after drying. on the surface parts. All kinds of slurries used in this step can use a mixture of ethanol and terpineol as a solvent, and contain about 0-10% graphite as a pore-forming agent.
  • the inner current collector line is prepared for the battery cell that has completed the printing of the external electrodes and other components. First, coat the inner current collector paste on the side of the cell.
  • the basic components are stabilized cerium oxide (SDC or GDC) content of 5-20% and silver content of 80-95%.
  • SDC or GDC stabilized cerium oxide
  • the core needs to be dried by hot air at 90 degrees Celsius for 1 hour until the slurry is cured.
  • the inner layer of the side seal can be coated on the inner current collector layer, and its basic component is graphite or magnesium silicate talc material ((Mg 6 )[Si 8 ]O 20 (OH) 4 ), after drying the inner layer of the side seal with hot air at 90 degrees Celsius for 1 hour, continue to coat the outer layer of the side seal on the inner layer of the side seal, the basic material is graphite or potassium calcium glass, and the composition is K 2 O 12-18% CaO 5-12%, SiO 2 60-75%.
  • Heat treatment is performed on the cells after the outer surface parts are printed and the side seals are coated. After the heat treatment, each outer surface part and its attachments form a firm connection, and at least the outermost layer of the side seal members is densified.
  • the preferred heat treatment system is 850 degrees Celsius for 1 hour, the atmosphere is a reducing protective atmosphere, the hydrogen content is 5-60%, and the remaining balance gas is nitrogen.
  • SDCs are known oxides with good catalytic activity and mixed ionic/electronic conductance. After immersion treatment, SDC can be dispersed into the electrode at a very fine nanometer scale, such as less than 100 nanometers, and greatly expand the reaction area of the electrode process, that is, TPB (Triple Phase Boundary, three-phase interface, that is, gas-solid electrochemical site. ), significantly reducing the resistance of the electrode process and reducing the internal resistance of the cell, which is a known technology in the industry.
  • TPB Multiple Phase Boundary, three-phase interface, that is, gas-solid electrochemical site.
  • Embodiment 2 is a diagrammatic representation of Embodiment 1:
  • the structure of the second embodiment is basically the same as that of the first embodiment, the difference is that the intermediate layer 5 can cover the entire outer wall of the electrolyte 1, or can partially cover the electrolyte 1, and the inner electrode 2
  • the connected inner electrode plates 6 and the outer electrode plates 7 connected with the outer electrodes 3 are respectively arranged at both ends of the cell, and the inner bus bar 8 is located on the end face of the cell.
  • the structure of the third embodiment is basically the same as that of the second embodiment.
  • the difference is that the two ends of the battery chip of the third embodiment adopt a tapered design, and the tapered oblique edge and the straight edge of the hot end working face are clamped.
  • the angle ⁇ is between 5 and 60 degrees, preferably between 10 and 30 degrees.
  • the temperature at the gas inlet and outlet of the inner electrode 2 differs by at least 200 degrees Celsius from the temperature at the center of the outer electrode.
  • the above design can better satisfy the above working state.
  • the outer current collector 12 is located on the outer surface of the outer electrode 3, and a connecting piece 15 for external connection is welded on the outer electrode plate 7.
  • the connecting piece 15 is made of copper, nickel, gold, Made of silver material.
  • Embodiment 4 is a diagrammatic representation of Embodiment 4:
  • the structure of the fourth embodiment is basically the same as that of the third embodiment.
  • the difference is that the inner bus bar 8 of the fourth embodiment is arranged on the surface of the cell, and its high temperature end passes through the opening on the surface of the electrolyte 1 and the inner electrode 2 Connected, the opening surface of the electrolyte 1 is also covered with a layer of sealing structure 10, the sealing structure 10 penetrates the electrolyte 1 and completely covers the opening of the electrolyte 1, including completely covering the junction of the inner bus line 8 and the inner electrode 2, to ensure flow through the The gas of the inner electrode does not leak from this port to the outside of the cell.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Fuel Cell (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Inert Electrodes (AREA)
  • Hybrid Cells (AREA)

Abstract

本发明提供了一种具有双电解质结构的固体氧化物电池芯片及制备方法,属于电化学技术领域。它包括两电解质层,两电解质层由夹于其间的內电极隔开,内电极内部布置有规律性排列的气道,且内电极的至少两个侧面覆盖有侧封构件,电解质的外表面布置有外表面部件,外表面部件包括中间层、外电极、内电极极板和外电极极板,内电极和内电极极板相连,外电极与外电极极板相连。侧面密封层设置为多层结构,位于内侧的亚层能够增加流经內电极气体外泄的阻力,位于外侧的亚层的材料与位于内侧的亚层材料的成分和结构均不同,它能够对减压后的外泄气体进行更好的密封,且能够更好地保持结构强度。

Description

一种具有双电解质结构的固体氧化物电池芯片及制备方法 技术领域
本发明属于电化学技术领域,涉及一种固体氧化物电池芯片及制备方法,特别涉及一种具有双电解质结构的固体氧化物电池芯片及制备方法。
背景技术
1、固体氧化物电池(Solid Oxide Cell,SOC)的工作原理
固体氧化物电池(Solid Oxide Cell,SOC)是一种以固体氧化物作为电解质的陶瓷电化学器件,由至少一层电解质和至少两个电极组成,由电极提供电池整体强度的称为电极支撑的固体氧化物电池,由电解质提供电池整体强度的称为电解质支撑的固体氧化物电池。电解质材料通常为掺杂稳定的氧化锆,如氧化钇掺杂稳定的氧化锆(YSZ),Sc 2O 3掺杂稳定的氧化锆(ScSZ),氧化钪氧化钇掺杂稳定的氧化锆(ScYSZ),氧化钪氧化铈掺杂稳定的氧化锆(ScCeSZ)或氧化钙CaO稳定的氧化锆(CSZ)等,其中应用最广泛的是8mol%氧化钇掺杂稳定的氧化锆(8YSZ)。电解质也可以是其他萤石结构的氧化物,如氧化钆或氧化钐掺杂稳定的氧化铈,即GDC(gadolinia doped ceria)或SDC(samaria doped ceria),也可以是钙钛矿结构的氧化物,如LaSrGaMgO(LSGM)等,这些已被业内人士所共知【V.V.Kharton,et al.,Transport properties of solid oxide electrolyte ceramics:a brief review,Solid State Ionics,174:135-149(2004)】。电极的材料组成可以是钙钛矿结构的氧化物,如LaSrMnO(LSM),LaSrCoFeO(LSCF)等,也可以是萤石结构的氧化物,如SDC,GDC等,也可以是复合物,如LSM和YSZ/CGO等组成的复合物,也可以是贵金属如Pt或含贵金属的复合物,如Pt和YSZ组成的复合物,这些已为业内人士所共知【E.V.Tsipis,et al.,Electrode materials and reaction mechanisms in solid oxide fuel cells:a brief review,J.Solid State Electrochem.,12:1367-1391(2008)】。
固体氧化物电池(SOC)工作时至少2个电极附近的氧浓度存在10倍或数个数量级的差异,以下称氧浓度较高的气体为富氧气体,工作于富氧气体中的电极称为富氧电极,氧浓度较低的气体称为贫氧气体,对应电极称为贫氧电极。富氧气体的成分可含氧气、氮气、氩气、氦气,但最常用的、最典型的富氧气体是空气,相应的电极称空气电极。贫氧气体可含有一氧化碳、甲烷、甲醇、氢气等多种具有燃料性质或还原性质的气体成分,典型的贫氧气氛如氢/水混合气,氢/一氧化碳/水汽混合气,一氧化碳/二氧化碳混合气,氮氧化合物(NOx)/氮气混合气,对应的电极称为燃料电极。贫氧和富氧电极用电解质隔开,电解质需要尽可能致密不漏气,并且其电导性应该尽可能通过离子而非 电子迁移实现,如果电解质中存在电子电导,则电池内部就会存在短路电流,电池整体效率将显著下降。SOC电解质的电荷传输通常由氧离子作为载体,即氧离子电导。
固体氧化物电池(SOC)工作在500到1000摄氏度的温度区间,可有两种工作模式:发电模式Solid Oxide Fuel Cell(SOFC模式)和电解模式Solid Oxide Electrolysis Cell(SOEC模式)。当SOC工作于发电模式,即SOFC模式时,富氧电极内的氧气分子发生还原反应变成氧离子(O 2-),氧离子从富氧电极一侧通过电解质扩散迁移到贫氧电极一侧,如果贫氧电极内存在燃料性气体分子,则氧离子就继而与贫氧电极内的燃料气体分子发生化学反应。典型的,如果贫氧电极内的气体成分有氢(H 2)和一氧化碳(CO),则贫氧电极内发生的化学反应就包括:
H 2+O 2-→H 2O+2e-
CO+O 2--→CO 2+2e-
整个过程的宏观表现为氧分子从富氧气体一侧透过电解质迁移到贫氧气体一侧,富氧气体和贫氧气体间的氧浓度差随之减小。发电模式下,SOC将贫氧气体的化学能转化电能并对外输出。以氢和氧电极为例,SOFC模式的电极反应和整体电化学反应可表示为:
阳极(贫氧电极):H 2+O 2-→H 2O+2e-
阴极(富氧电极):1/2O 2+2e-→O 2-
总反应:H 2+1/2O 2→H 2O
如果不能及时移除电极反应产物,富氧气体和贫氧气体间的氧浓度差就会随反应进行而减小。
固体氧化物电池(SOC)工作于电解模式,即SOEC模式时,贫氧电极内气体,如氧(O 2)、水蒸汽(H 2O),二氧化碳(CO 2),氮氧化物(NO x)等分子中氧分子或氧离子在外加电场的作用下,以氧离子(O 2-)的形式扩散通过电解质迁移到富氧电极,并在富氧电极内发生氧化反应成为氧分子。整个过程的宏观表现为氧分子在外界电场的作用下从氧浓度较低的贫氧气体一侧透过电解质迁移到氧浓度较高的富氧气体一侧,富氧气体和贫氧气体间的氧浓度差随之增大。在电解模式下,SOC吸收外界输入的电能,并将其转化为贫氧气体的化学能。以氢和氧电极为例,SOEC模式的电极反应和整体电化学反应可表示为:
阳极(富氧电极):O 2-→1/2O 2+2e-
阴极(贫氧电极):H 2O+2e-→H 2+O 2-
总反应:H 2O→H 2+1/2O 2
当SOC在两种模式间进行切换工作时,可实现电能和化学能间的相互转换,这个过程可能伴有热量的释放或吸收。无论SOC工作在发电(SOFC)或电解(SOEC)模式,均有可能接受外界的热能输入或本身释放热能到外界,因此利用SOC技术就可以实现电能、热能和化学能之间的相互转换。SOC工作于电解模式(SOEC)时,将电能转化为化学能存储下来,工作于发电模式(SOFC)时,将贫氧气体的化学能直接转化为电能,避免了卡诺循环对热机过程发电效率的限制,实现高效的化学能利用。
典型的贫氧气体如H 2和H 2O的混合物,在发电模式(SOFC)下,SOC的总反应为:H 2+1/2O 2→H 2O,在电解池模式(SOEC)下,SOC的总反应为:H 2O→H 2+1/2O 2。典型的贫氧气体也可以是如CO 2,H 2O,CO,H 2构成的混合物,在发电模式下,SOC的总反应为:H 2+1/2O 2→H 2O,2CO+O 2→2CO 2。在电解模式(SOEC)下,SOC的总反应是H 2O→H 2+1/2O 2,2CO 2→2CO+O 2,含CO,H 2的电解产物也称合成气,可经过成熟的费-托合成工艺继续转换为衍生的一系列碳氢化合物,如甲醇、乙醇、天然气、汽油、柴油等成熟的、被广泛使用的燃料或工业原料。当含氧元素的气体组分为氮氧化物NO x,硫氧化物SO x等典型环境污染物时,利用SOC的电解技术可去除这些污染物,其化学过程可表示为:
NO x→N 2+O 2(x=1或2)或SO x→S+O 2(x=1或2);
2、固体氧化物电池(SOC)的电极反应过程
在SOC的电极反应过程中,有至少三种相态的物质参与反应,即氧离子(O 2-),电子(e -)和气态物质,如氧分子(O 2),水(H 2O)、氢(H 2),一氧化碳(CO)等。为了电极反应过程能连续、快速的进行,所有参与反应的物质都需要有快速进出的通道,比如,反应过程需要的电子、氧离子要有顺畅的传输通道,也就是要求电极含有电子电导率高和氧离子电导率高的材料,同时还需要具有一定的气孔率,以利于高温下的气体反应物进入电极和电极反应的气体产物排出电极。已知的贫氧电极电子导体材料包括金属镍(Ni)、金(Au)、铂(Pt),钯(Pd),铑(Rh)等,氧离子导体包括氧化钇掺杂稳定的氧化锆(YSZ),氧化钪氧化钇掺杂稳定的氧化锆(ScYSZ),氧化钪氧化铈掺杂稳定的氧化锆(ScCeSZ)或氧化钐(Sm 2O 3)、氧化钆(Gd 2O 3)等掺杂稳定的氧化铈等材料,如SDC,GDC等。由于部分已知的氧离子导体材料,如掺杂稳定的氧化铈,如SDC,GDC等兼具一定的电子电导性,也常被称为混合导体。已知的富氧电极电子导体材料包括LaSrMnO,LaSrCoO,LaSrCoFeO等在高温氧化性气氛下性质能保持稳定的、具体 成分组成在一定范围内可变动的氧化物,也可能是抗高温氧化的贵金属,如银(Ag),金(Au),铂(Pt),钯(Pd),铑(Rh)等,这些抗高温氧化的贵金属同时可兼具催化剂作用,加速电极反应进行。富氧电极的氧离子导体包括氧化钇掺杂稳定的氧化锆(YSZ),或氧化钐(Sm 2O 3)、氧化钆(Gd 2O 3)掺杂稳定的氧化铈等材料,如SDC,GDC等,同时,富氧电极中的电子导体材料如LaSrCoO,LaSrCoFeO等氧化物也可能具有一定的氧离子电导性,在业内也称作混合导体。这些在业内均已被熟知【E.V.Tsipis,et al.,Electrode materials and reaction mechanisms in solid oxide fuel cells:a brief review,J.Solid State Electrochem.,12:1367-1391(2008)】。
常用的固体氧化物电池是电极支撑的,在电极中布置气体通道会导致一部分电极结构是中空的,这会显著降低电池的结构强度,气体通道的体积越大,占比越大,尺度越不均匀,电池的强度下降就越多。因此在通常的固体氧化物电池(SOC)技术中,电极内气体通道的尺度很小,在1微米以下,并且呈不规则的点状分布【M.B.Mogensen,et al.,Reversible solid-oxide cells for clean and sustainable energy,Clean Energy,1-27(2019).】。
这些电极内气体通道的成型方法通常为在电极制备的前驱粉体浆料中加入一定含量的造孔剂,比如石墨或淀粉。这些造孔剂以及部分溶剂,比如酒精、甲苯和异丙醇等,在电池的高温烧结制备过程中,经由高温受热分解挥发逸出电极,或被空气中的氧气氧化生成气态氧化物,比如二氧化碳(CO 2)逸出电极,继而在电极内留下气体孔道,这些在业界已是熟知的方法【M.Chen,et al.,Microstructural degradation of Ni/YSZ electrodes in solid oxide electrolysis cells under high current.J.Electrochem.Soc.,160:F883–F891(2013)】。
用这种方法构建的细微气体孔道无法在整个电极内形成可快速传输气体的通路,整个电池因此无法得到足够的气体供应或及时的排出气体产物,常用的补救办法是在电极外构建外置气道,富氧气和贫氧气都在各自外置气道内流动,即富氧气气道和贫氧气气道,这些气道由连接板、电池和密封玻璃围绕而成,这些在公开文献里已有介绍【M.B.Mogensen,et al.,Reversible solid-oxide cells for clean and sustainable energy,Clean Energy,1-27(2019).】。图1展示了在公开文献中可获得的典型固体氧化物电池(SOC)技术一个电池单元的横截面示意结构。可以看出,在这些典型结构中,由于气体、尤其是贫氧气在电极内部的扩散流动速率非常低,从电池侧面边缘泄露的气体流量非常小,以至于不用密封电极侧面边缘,只需用高温密封材料,如玻璃,封堵连接板和电极之间的缝隙。 在这类方案中,气流主体在位于电池外部的、具有规则外形的气道内流动,气道的几何外形和截面外形可以按照要求进行设计制作,作为反应物的气体原料先由外置气道扩散通过较致密的电极进入电极和电解质界面的电化学反应区域,发生电极反应后,作为产物的气体生成物再扩散通过较致密的电极进入外置气道被移除带走。
在这样的设计中,由于结构强度的要求,电极内的气道既不能过多,也不能过大,故电极内的气流输送速率过低是限制电极反应速率的主要因素之一,为缓解这个问题,固体氧化物电池中的电极一般都制备的很薄,厚度通常为0.05-0.5mm,以尽可能减少气体组分扩散进出电极,也就是从气道到电极和电解质界面处的距离。过薄的电极虽然有助于减少气体扩散进出电极的阻力,但也会显著降低电池的结构强度。采用这种方式设计和制作的电池在电堆的装配和使用过程中很容易破裂,进而导致整堆失效报废,这是限制高温固体氧化物电池技术商业化大规模使用的主要因素之一。
3、固体氧化物电池(SOC)的电堆装配设计
常见的固体氧化物电池SOC构型为片式,片式SOC的堆结构由SOC元件、密封环(sealing)和连接板(interconnect)等依次连接实现,整个堆置于高温环境中,这在公开文献已有介绍【N.Q.Minh,System design and application,in High-Temeperature Solid Oxide Fuel Cells for the 21 st Century(2 nd Ed.ISBN:978-0-12-410453-2),2015.】。密封环一般由玻璃或金属(如金、银等)制备、连接板材料通常为耐高温合金。合金连接板通常还需要在接触电池的表面喷涂导电的抗氧化涂层以增强其在高温条件下的抗氧化能力,减小电堆连接的电阻损失。在多数情况下,固体氧化物电池(SOC)的两面电极和合金连接板间还有一层或数层较为柔软的金属或陶瓷垫,以实现电池(SOC)和连接板的良好电接触,典型的,采用由金(Au)或银(Ag)等抗高温氧化的金属制成的网来保证良好的电接触。在一个片式SOC堆中,气流(贫氧和富氧气)在连接板、电池(SOC)和密封环构成的隔离空间内流动,避免泄露到堆外。构成片式SOC电堆的各元件,包括电池(SOC)、密封环和连接板等均需要单独制作,最后组合成堆。片式SOC堆由于电极形状规整,电流路径短,功率密度相对较大,组堆容易。片式SOC堆实际应用困难,其原因在于:
1)密封环可靠性不高。密封环需要同时满足气密、耐热循环、耐高温还原性和高温氧化性气氛,且具有一定机械强度和韧性等要求,还必须和合金连接板以及SOC电池片的热膨胀系数接近,即热膨胀匹配——要求密封环在温度变化的情况下和密封件的尺寸变化保持近似一致。无论是玻璃或是金属密封环都很难同时实现这些性能要求,比 如玻璃密封环通常很脆弱,在SOC的组堆和热循环操作中非常容易断裂失效,即使用玻璃勉强实现陶瓷和金属的密封,其可耐受的温度变化速度也必须非常小,以避免密封环承受过大应力和产生过大应变,这导致采用普通固体氧化物电池技术的电堆的启动和停机时间都非常长,通常在10个小时以上,有的甚至到20个小时以上。
2)由于各组堆元件均需单独制作,技术要求高,如各元件的平整度、强度、韧性、抗氧化性、热膨胀匹配性都有较高要求,因此片式SOC组堆成本通常较高,限制了实际应用。
3)组堆灵活性低。片式SOC堆各单体电池的连接方式为串联,并且密封环为一次性元件,一个片式SOC堆一经热处理,即密封环和密封件在高温,如850摄氏度下融合实现密封后,组堆各元件,包括各单体电池和连接板即无法再替换,因此整堆中任何一个元件失效都会导致整堆失效,这极大增加了实际使用片式SOC堆的风险,显著增加使用成本。
现有专利【CN 108336386 B】公开的扁管结构固体氧化物电化学器件及其制备方法,【CN 108321408 B.】公开的含多对电极的扁管固体氧化物电化学器件及其制备方法及【CN 108336376 B】公开的一种提高成品率和单电池功率的扁管固体氧化物电池结构及其制备方法,提供解决上述技术难题的一种方案,这种方案采用一种扁管结构的固体氧化物电池,这种电池可采用电解质支撑。工作时,使用该技术的电池跨越冷热温度区间,电池在热端进行电化学反应,在冷端实现密封和外部连接。采用该技术电池的结构特征在于:1)电池运行所需的气流隔离结构,即气道,由电解质、两面气道壁和一层隔板合围而成;2)电解质、气道壁和隔板三者的构成材料为同种材料或组成相近的材料;3)电池非气道进出口的外侧面存在气道壁,且该气道壁必须具有一定的宽度来保证密封可靠性。在这种方案中以气道壁,而非普通技术中常用的高温密封材料,如玻璃来实现气道密封。虽然预留的气道壁减少了电池的有效发电面积,但由于气道构成材料的成分和性质与电解质接近,片式电堆技术中常见的由于电堆各组件热膨胀特性不配导致部件在电堆热循环过程中破裂失效,或长时间高温操作导致电堆部件间由于化学不相容而相互反应导致电堆性能衰减失效的问题得到解决或大程度的缓解。
扁管式电池构型在实际应用中的问题在于难于兼顾电池的成品率和电性能。扁管式方案中的气道围绕结构实现包括至少一层电解质。电解质是固体氧化物电池工作时,发生电化学反应所必须的功能部件,电解质越薄,氧离子传输的阻力越小,电池的电性能就越好,但薄的电解质强度较差,构成气道的电解质部分容易在电池的制备过程中或是 电池操作有大流量气流通过时破裂,这降低了扁管电池的成品率和可靠性,增加了技术的使用成本。典型的,为了使扁管电池的气槽具有足够强度,电解质的厚度一般需要不低于0.5mm,但0.5mm厚度的电解质会使电池的输出功率密度在100mW/cm 2以下,要使电池的输出功率密度增加到300mW/cm 2以上,则电解质的厚度最好不超过0.1mm,但这样的厚度使电解质在气槽处很容易破裂,因此该技术难于兼顾成品率和电性能。此外,因为电池非气道进出口的侧面必须是气道壁,因此在电池制备时,电池边缘的气道壁必须要把相应的浆料或气道壁膜片精确的印制或贴合在指定位置,这增加了额外的制备工艺步骤,提高了电池的制备工艺要求,增加了成本,也降低了电池的生产效率。
上述现有专利中公布的电池也可以采用电极支撑的技术方案,电池工作同样横跨冷热温度区间,电池在热端进行电化学反应,在冷端实现密封和外部连接,但围绕构成气道的电解质被替换为內电极,因此气道完全由电极材料来实现,气道壁以及电池的强度可以通过适当的增加内电极的厚度来实现,同时保持电解质的厚度较薄以利于电池具有较大功率。在这种方案里,电池非气道进出口的外侧面也存在气道壁,电池工作时高温部位的密封由气道壁,而非普通技术中常用的高温密封材料,如玻璃来实现。必须预留的气道壁宽度减少了电池的发电面积,同时,因为电池非气道进出口的侧面必须是气道壁,因此在电池制备时,电池边缘的气道壁必须把相应的浆料或膜片精确的印制或贴合在指定位置,这增加了额外的制备工艺步骤提高了电池的制备工艺要求,增加了成本,也降低了电池的生产效率。此外,这种方案对于提升电池的性能和成品率是有效的,但程度有限,因为气体在孔隙率较低的內电极中的扩散速度有限,过量增加电极厚度将导致电极反应的供气不足,而较薄的內电极又会导致气道的强度不足,实现不了电池的高制备成品率。
在上述现有专利中,內电极电流的传输区域为中部的电池工作高温区和承担外部连接和密封功能的冷端极板之间,电流的载体,即导电材料为铂(Pt)或镍(Ni)等耐高温的金属,线路集流电阻较大。比如,Pt等贵金属的电导率较低,约9×10 4S/cm,由于贵金属价格昂贵,只能薄层使用,厚度一般约50微米,Pt涂层集流的电阻约20mOhm(以线宽1cm,长10cm为例)。镍的电导率约1×10 5S/cm,但在电极内由于成型的要求,其含量一般在60%以下,整个內电极的电导率通常只有200-250S/cm,因此镍电极的集流电阻约400mOhm(以线宽1cm,厚度1mm,长10cm为例),內电极的线路集流电阻相对较大。
采用上述现有专利的电池工作需要横跨高温和低温区域,即电池的电极在高温区域 工作,电池的密封和外部连接在低温区域实现,因此整个电池无可避免的会在工作时把热量从高温区域传递到低温区域,造成热量流失,降低系统效率。由于使用此类技术方案的电池制备工艺复杂,实际中只能制备出外形比较简单的矩形或方形电池。在这种外形设计中,热量从高温区域传递到低温区域的通道是等尺寸、等横截面积的,热量损失较大。如果能采用一种渐缩的结构,即电池从高温的工作部位到低温的密封部位逐步缩小尺寸,则热量从高温流失到低温的通道就可以逐步收窄,有利于降低电池造成的热量流失速率,但这在已知的技术方案中由于工艺复杂,难于实现。
发明内容
本发明的目的是针对现有的技术存在上述问题,提出了一种固体氧化物电池芯片,它所要解决的技术问题是如何在为快速进行的电极反应构建通畅低阻力气体传输通道的同时,又要确保电池具有足够的结构强度,根据本发明所述的固体氧化物电池芯片在本文中也称为“电池芯片”,或直接简称为“电芯”。
本发明的目的可通过下列技术方案来实现:一种具有双电解质结构的固体氧化物电池芯片,其特征在于,包括两电解质层,所述两电解质层由夹于其间的內电极隔开,所述内电极内部布置有规律性排列的气道,且内电极的至少两个侧面覆盖有侧封构件,所述电解质的外表面布置有外表面部件,所述外表面部件包括中间层、外电极、内电极极板和外电极极板,所述内电极和内电极极板相连,所述外电极与外电极极板相连。
内外电极之间存在氧分压差,既可以将外电极设计为富氧电极,内电极设计为贫氧电极,也可以根据操作要求将外电极设计为贫氧电极,内电极设计为富氧电极。
在上述的具有双电解质层结构的固体氧化物电池芯片中,所述內电极中布置的规律性排列的多条气道中的单条气道的横截面等效直径尺度在20-200微米之间。
在上述的具有双电解质层结构的固体氧化物电池芯片中,所述侧封构件包括若干个亚层,其中至少一层亚层是致密不透气的,且所述致密亚层和所述电池芯片侧面之间至少设置有一层粗糙透气的亚层。
在上述的具有双电解质结构的固体氧化物电池芯片中,所述外表面部件还包括覆盖在外电极外表面上的若干条外集流线,且所述外集流线的电导率不低于外电极。
在上述的具有双电解质结构的固体氧化物电池芯片中,所述外表面部件还包括保护层,所述保护层至少覆盖外表面部件中的一个。
在上述的具有对称双电解质结构的固体氧化物电池芯片中,所述内电极和内电极极 板之间通过内汇流线相连,所述内汇流线的电导率不低于所述内电极。
在上述的具有对称双电解质结构的固体氧化物电池芯片中,所述内汇流线位于侧封构件和所述电池芯片侧面之间。
在上述的具有双电解质结构的固体氧化物电池芯片中,所述内汇流线的主体布置于电解质外表面,并穿透电解质与内电极相连。
在上述的具有双电解质结构的固体氧化物电池芯片中,所述内集流线穿透电解质并由密封材料单独封堵,防止漏气。
在上述的具有双电解质结构的固体氧化物电池芯片中,所述电池芯片呈长条片状,所述电池芯片外形从处于电池芯片中部的外电极区域到气道进出口端面逐渐变窄。
本发明的目的还可通过下列技术方案来实现:一种高温固体氧化物电池芯片的制备方法,其特征在于,包括以下步骤:
(1)基片制备:将构成內电极和电解质的组分按照比例添加合适的助剂和溶剂后,经流延操作制备为薄膜基片,其中部分基片上按要求需要制备出气道前驱体。
(2)基片叠层:将电解质基片、含气道的內电极基片、不含气道的內电极基片按照一定的顺序对齐叠加后放入真空袋中进行抽真空和封口,再置于真空袋中的基片集合体被置于压机中,在高温压制融合后形成叠层体;
(3)裁切:将叠层体放置于冲切机中,裁切为具有指定设计外形的电芯素坯;
(4)烧结:将电芯素坯放置于高温炉中用合适的热处理制度进行烧结,烧结后电芯素胚成为具有较高强度的电芯,同时,在热处理过程中由于气道前驱体气化逸出,电芯中留下规整均匀的内嵌气道。
(5)中间层烧制:在烧制后电芯的两面电解质上经高温热处理中间层;
(6)还原:将完成中间层烧制的电芯置于还原炉中进行还原,內电极中的氧化镍经还原成为金属镍。电芯的还原操作除了在如此处所示的,可在电芯未使用装配成堆之前完成,也可以在电芯组装成电堆后通过对电堆的整体还原来实现。
(7)外表面部件制备:在还原后的电芯外表面印制电芯的外表面部件,包括外集流线、外电极、外电极极板、內电极极板、外电极汇流线、內电极汇流线和保护层等,这些部件可以全部印制在中间层上,也可以部分的或全部的印制在电解质表面。使用的各种浆料都可以使用以乙醇和松油醇混合物为溶剂,并含有0-10%左右的石墨作为造孔剂。
(8)侧封构件制备:对完成上述工艺的电芯制备侧封构件,所述侧封构件可包括 内外两层亚结构,先涂敷侧封内层,优选材料为石墨(C)或硅酸镁滑石类材(Mg 6)[Si 8]O 20(OH) 4)。待侧封内层干燥后,再在其上继续涂敷侧封外层,优选材料为钾钙玻璃,成分K 2O 12-18%,CaO 5-12%,SiO 2 60-75%;
(9)热处理:将完成外表面部件印制和侧封涂敷的电芯进行热处理,热处理后,各外表面部件与其附着物形成牢固的连接,并且侧封构件的至少一个亚层致密化;优选的热处理制度为850摄氏度1个小时,气氛为还原保护性气氛,氢含量5-60%,其余平衡气为氮气。
(10)电极强化。经过热处理的电芯已可用于实际应用,为进一步提高电芯的电性能,降低内阻,可进行电极强化处理。典型的电极强化处理方法如浸渍等工艺。
依据本发明所制备的固体氧化物电池芯片,除同样具备热端工作,冷端实现外部连接和密封的特征外,依据本发明的电池芯片还具有以下特征:
1)双电解质为所夹的內电极分隔开,內电极内嵌有规整排布的微型气道。电芯非气流进出口端面的侧边也可以含有这些气道的出口,这可以显著减少电芯制备的工艺步骤,提高电芯的生产效率,降低电芯的生产成本;
2)內电极可能有多层,比如分为活性內电极和支撑內电极,其中活性內电极在配方上更有利于进行电化学反应,而支撑內电极在组分上更有利于提高电池芯片的整体强度和/或导电性;
3)由于有内嵌的规整微型气道,且气道的数量和位置可按需要调整,并且可以很靠近电解质,电极反应所需原料气的供应速度或产物气的排除速度并不随內电极厚度的增加而降低,反而随着內电极厚度的增加而增加,同时,由于內电极厚度的增加,內电极整体的电导和电池芯片的强度也得到增加;
4)内气道规律排列,单条气道横截面的等效直径尺度在20-200微米之间,优选30-60微米之间。过大的气道截面会降低电池芯片强度,使电池芯片易碎,显著减低电池芯片成品率,过小的气道又会造成电池芯片工作时的气流压降过大。根据实际测试结果,单条气道的等效直径尺度应控制在30-60微米范围内。与此同时,单条电芯含有的气道数量应在6条以上以保证电芯具有一定的通气能力,使单条电池芯片能具有足够的功率;
5)电芯非气道壁的侧面有专门的密封结构,一个密封结构可能含有多层亚结构,其材料和微结构不同。不同的亚结构可具有不同的功能,比如最内层的亚结构主要用于增强和密封底面的接触,对气密性要求较低,最外层的结构用于高气密性要求的密封, 最外层和最内层的亚结构中还可以根据功能需要嵌入更多的亚结构,但无论如何,侧封构件的各亚层中,至少有一层是致密不透气的;
6)可含有一层內电极集流结构,其电导率较高,用于降低内电极的集流电阻。该內电极集流结构可位于密封层内,贴合內电极侧面,也可能位于别的位置,如电芯表面。优选的內电极集流结构材料是基于银(Ag)或镍(Ni)的涂层。由于银和镍的材料成本远低于Pt等贵金属,而且电导率较高,又由于仅用于涂敷在电池芯片侧面或侧面,没有结构性要求,有较大的材料配置成分调整空间。內电极集流结构的电导率可以远远大于常用的镍电极材料。比如镍电极的电导率约250S/cm,而银和镍的集流涂层可以分别实现6×10 5S/cm和1×10 5S/cm的电导率。同样的情况下,以银(Ag)材料为侧面集流涂层的线电阻约17mOhm,以镍(Ni)材料为侧面集流涂层的线电阻约100mOhm(以线宽1mm,厚度0.1mm,长度10cm为例),二者均显著小于镍电极约400mOhm的集流电阻。显然,采用这样的內电极集流结构结构,可以较低的成本显著降低电池芯片內电极的集流电阻。
7)电芯可能采用一种渐缩的外形设计。即电池芯片在热端的工作面较宽,但电池芯片的宽度沿內电极气流方向逐步缩减直到电池芯片的冷端。这样的渐缩设计可以使电池芯片在高温区域有尽可能大的工作面积,在从高温到低温的过渡区域,电芯的传热截面积逐步较小,由于电池芯片热传导造成的热损失也被减缓,这就可以有效的提高电芯的功率输出。根据实验结果,采用渐缩设计的单电芯可比采用矩形等宽度设计的单电芯的输出功率最高可多出约10%。但是,渐缩的电池芯片设计会同时造成內电极气流阻力的增加,即使內电极气体流经电池芯片时的压降增大。经过实际测试和流体力学仿真计算表明,电池芯片渐缩斜边和热端工作面直边的夹角在5-60度之间,优选在10-30度之间时,內电极流经电池芯片的压降较小。
根据功能划分,依本发明所述的电池芯片应包括以下多个构成部件,其中,位于电池芯片外部,除中间层之外,直接或间接附着在电解质上的结构部件称为电池芯片的外表面部件,各部件的功能和材料组成如下:
1)内、外电极极板:电池芯片的内、外电极实现与外部器件电气连接的接口部件,优选的,由具有较高电导率,并抗氧化的材料,如由基于银(Ag),镍(Ni),金(Au),铂(Pt),铑(Ph),钯(Pd),铬(Cr),钨(W)等元素的材料制备。
2)內电极:提供流经內电极的气体进行电化学反应、发生内电极电化学过程的场所,提供电池芯片整体的结构强度,并至少部分的提供內电极的电流传输通道。內电极 可能含有不同的亚层结构,以分别实现电化学反应、强度支撑和电流传输三个功能。不同的內电极亚层可由组成相近的材料构成,优选的,內电极包括活性内电极和支撑內电极两个亚层,活性内电极的组分设计更有利于进行电化学反应,比如含有50-60%的8YSZ和40-50%的金属镍(Ni),而支撑內电极的组分设计更有利于电子传输和电池芯片的强度支撑,比如采用30-50%的3YSZ和50-70%的Ni。在Ni和YSZ的基本组成基础上,內电极可能还含有少量的其他添加物,如铂,氧化铈,氧化铝,氧化镁,氧化镧,钛酸锶,或以这些添加物为基础的复合物。这些添加物的含量通常在5%以下,但能给內电极带来更好的电化学活性和更好的高温稳定性。
3)气道:提供內电极进行电极过程所需的原料供应和产物移除通道。气道遍布整个內电极,并延伸到电池芯片边缘。单条气道的等效直径尺度在20-200微米之间,优选在30-60微米之间,这样可以保证气道在遍布內电极的情况下也不会显著降低內电极的强度。含有这样规整微气道布置的內电极,其厚度越大,含有的气道越多,电池芯片的供气量越足,强度也越大。
4)电解质:内外电极之间的隔膜,提供持续进行电极反应所需离子的通道。电解质的电子电导性越小越好,越气密越好。优选的,电解质以掺杂稳定的氧化锆为基本原料,尤其是氧化钇掺杂稳定氧化锆(YSZ)。
5)内集流线:紧贴內电极或本身是內电极的一部分,为内电极进行电极反应提供所需电子快速输运通道的部件。由适当材料布置在适当位置的内集流线可有效增加內电极的整体电导率,使电池芯片具有更低内阻,尤其是集流内阻。优选的,内集流线具有比内电极更高的电子电导率,比如由银(Ag),镍(Ni),金(Au),铂(Pt),铑(Ph),钯(Pd),铬(Cr),钨(W)等抗高温氧化的金属材料或其合金构成,也可由钛酸锶一类在还原性气氛下具备高温电导性的氧化物构成。优选的,内集流线布置在非气体进出电池芯片端面的电池芯片侧面,但也可布置在电池芯片的其他部位,比如外电极所在的电池芯片表面。内集流线即可以是专门的电池芯片部件,也可由內电极本身承担。
6)内汇流线:连通內集流线与內电极极板的电子传输通道。因为要承载內电极电流,内汇流线一般横截面积较大,电导率较高,以保证进行电子传输时的电阻较小。优选的,内汇流线具有比内电极更高的电子电导率,在材料组成上,可由抗高温氧化的金属,比如银(Ag),镍(Ni),金(Au),铂(Pt),铑(Ph),钯(Pd),铬(Cr),钨(W),铜(Cu)等材料及其合金,以及由这些金属材料与具有高温导电性的氧化物,比如钛酸锶、掺杂稳定的氧化铈、掺杂稳定的氧化锆等已知的具有高温导电性的氧化物材料构成 的复合物组成。
7)中间层:促进电池芯片外表面部件与电解质的接触,减轻或避免这些外表面部件与电解质在高温下可能发生反应的部件。电解质经过电池芯片的高温烧结通常比较致密光滑,不利于电池芯片外表面部件与电解质实现并保持良好的接触。除此之外,在电池芯片的制备过程和使用过程中,由于温度较高,比如电池芯片制备过程中的最高温可达到1500摄氏度,电池的长期使用也保持在500-1000摄氏度的高温范围,电池芯片的外表面部件在这样的条件下,很可能由于与电解质发生反应而造成电池芯片的性能下降。因此可以通过引入一层中间层来避免或缓解这些问题。中间层不仅对电解质和电池芯片的各外表面部件在高温下能保持化学稳定,又可以在制备后具有比较粗糙的表面,实现与各外表面部件的良好接触。中间层不仅可以制备在外电极与电解质之间,也可以制备在所有的电池芯片外表面部件与电解质之间,这些外表面部件可包括:外电极、内/外电极极板、内/外汇流线、内/外集流线、保护层、密封结构等。优选的,中间层的材料由基于掺杂氧化铈(如SDC或GDC),或掺杂氧化铈(SDC或GDC)与掺杂氧化锆(如YSZ,ScYSZ)的复合材料组成。
8)外电极:提供流经电池芯片外部的气体发生电化学反应,进行外电极电极过程的反应场所。优选的,外电极材料采用由掺杂氧化铈与抗氧化金属,如Ag,Pt,Pd等构成的复合材料,也可以采用已知的固体氧化物电池技术的电极材料,如LaSrMnO,LaSrCoFeO,LaNiFeO等氧化物或基于其的复合材料。除此之外,外电极的制备过程可包括各种已知的电极强化工艺,比如活性氧化物的浸渍等工艺。
9)外集流线:紧贴外电极或本身是外电极的一部分,提供外电极进行电极反应所需电子快速传输通道的部件。优选的,外集流线由基于抗高温氧化金属,如银(Ag),镍(Ni),金(Au),铂(Pt),铑(Ph),钯(Pd),铬(Cr),钨(W)等及其合金,与具有高温导电性的氧化物,比如钛酸锶、掺杂稳定的氧化铈、掺杂稳定的氧化锆等已知的具有高温导电性的氧化物材料构成的复合物组成。优选的,外集流线布置在外电极的外表面,但也可以位于内表面,即外电极和电解质,或外电极与中间层之间。优选的,外集流线采用栅格的形式以增强集流效果。
10)保护层:直接或间接覆盖包括外电极在内的各个外表面部件,并对其进行保护的结构。保护层可能覆盖的外表面部件包括:外电极、内/外电极极板、内/外汇流线、内/外集流线、保护层、侧封构件和密封结构等。保护层可以通过抑制有效组分挥发流失来增加对包括外电极在内的电池芯片各外表面部件的高温稳定性,也可以通过物理过滤 或化学吸收的方法来增强各外表面部件对外部气体杂质,比如粉尘或水气,或其他容易让电池芯片外表面部件中毒失效的气体杂质,如芳香烃,硅烷或CO等的耐受来增加电池芯片工作的稳定性,有效延长电池芯片的使用寿命。优选的,保护层可由基于氧化铝、氧化锆、氧化铈、氧化硅、铂、钯、铑等在高温条件下可保持性质稳定的氧化物和/或金属材料来制备。
11)外汇流线:连通外集流线与外电极极板的电子传输通道。因为要承载外电极电流,外汇流线一般横截面积较大,电导率较高,以保证进行电子传输时的电阻较小。优选的,外汇流线由具有比外电极材料更高电子电导率,比如银(Ag),镍(Ni),金(Au),铂(Pt),铑(Ph),钯(Pd),铬(Cr),钨(W),铜(Cu)等金属及其合金,与具有高温导电性的氧化物,比如钛酸锶、掺杂稳定的氧化铈、掺杂稳定的氧化锆等已知的具有高温导电性的氧化物材料构成的复合物组成。
12)侧封构件:对电池芯片非气体进出端面进行气体隔离密封的结构,可含有数个亚层机构。优选的,含有内外两个侧封亚层,其中侧封内层覆盖电池芯片內电极侧面,处于內电极和侧封外层之间,用于增加內电极气流从电池芯片侧边泄露的阻力,实现与侧封外层的良好接触,并与侧封外层保持化学稳定,高温下不因发生化学反应而导致二者的结构破坏。优选的,侧封内层的材料可采用石墨(C)或硅酸镁滑石类材料,如(Mg 6)[Si 8]O 20(OH) 4等。侧封外层处于电池芯片侧封构件的最外层,是避免流经內电极气道的气体泄露到电池芯片外部的致密性密封结构。优选的,侧封外层可由基于石墨或钾钙玻璃的材料构成。若使用钾钙玻璃,其优选的成分配比范围为:K 2O 12-18%CaO 5-12%,SiO 2 60-75%。
需要指出的是,上述部件是基于执行功能的不同而划分,而不是基于它们的位置或材料组成不同来划分。在实施过程中,不同的功能部件可能由具有相似的,甚至相同的材料与同样制备工艺来制备,在这种情况下,不同的部件可能具有相同的,或相似的结构特征,这导致它们在微结构特征上不可区分。比如,外电极、外集流线,以及外汇流线即使承担的功能不一样,但它们仍然可能采用同种材料,如70%的Ag和30%的SDC构成的复合材料,和相同的制备工艺,如丝网印刷在同一操作步骤来制备。
与现有技术相比,本发明具有以下的优点:
1、嵌在內电极中的规整微通道使气体流经內电极时的气流阻力得到显著降低,并且这些分散在內电极内部的规整微通道有助于流经內电极的气体均匀的分布到所有的电解质和电极的界面区域,使电极反应更充分,电芯的电效率更高;
2、內电极可包括多个亚层,比如分为活性內电极和支撑內电极,其中活性內电极在配方上更有利于进行电化学反应,而支撑內电极在组分上更有利于提高电池的整体强度和/或导电性。
3、内电极还可以作为两层电解质之间的支撑,即使电解质的厚度相对较薄,也能保证较高的成品率;
4、侧面密封层设置为多层结构,位于内侧的亚层能够增加流经內电极气体外泄的阻力,位于外侧的亚层的材料与位于内侧的亚层材料的成分和结构均不同,它能够对减压后的外泄气体进行更好的密封,且能够更好地保持结构强度。
附图说明
图1是已知典型的固体氧化物电池一个组堆单元的横截面示意图。
图2是本发明实施例一的俯视结构图。
图3是本发明实施例一的端部侧视结构图。
图4是本发明实施例一的剖视结构示意图。
图5是本发明实施例二的俯视结构图。
图6是本发明实施例二的爆炸图。
图7是本发明实施例三的俯视结构图。
图8是本发明实施例四的俯视结构图。
图中,1、电解质;2、内电极;201、支撑内电极;202、活性内电极;3、外电极;4、侧封构件;401、侧封内层;402、侧封外层;5、中间层;6、内电极极板;7、外电极极板;8、内汇流线;9、外汇流线;10、密封结构;11、气道;12、外集流线;13、保护层;14、内集流线;15、连接片。
具体实施方式
以下是本发明的具体实施例并结合附图,对本发明的技术方案作进一步的描述,但本发明并不限于这些实施例。
实施例一:
如图2和图3所示,本实施例一为一种固体氧化物电池芯片,电池芯片采用矩形的长条片状结构,厚度方向上包括彼此分隔开的两层电解质1,两层电解质1之间布置有內电极2,且内电极2的两个侧面各覆盖有侧封构件4,电解质1的外表面布置有外表面部件,外表面部件包括中间层5、外电极3、内电极极板6、外电极极板7,内电极2 和内电极极板6相连,外电极3与外电极极板7相连。
结合图4,内电极2内部布置有规律性排列的微气道11,侧封构件4包括了侧封内层401和侧封外层402两个亚层,侧封内层401和侧封外层402的材料均不同于电解质1和內电极2的材料,同时侧封外层402是致密不透气的,侧封内层是粗糙透气401的。内外电极都有各自的极板以便于电芯与外界的连接,外电极极板7和外电极3之间由外汇流线9连接,內电极2包括支撑内电极201和活性内电极202,内电极2和內电极极板6的连接通过內汇流线8连接,外电极3外表面设置有外集流线12位于外电极3外表面,外集流线12和外电极3上覆盖有保护层13;内电极极板6、外电极极板7、外电极3、外汇流线9等均布置于中间层5上,不和电解质1直接接触。本实施例一中内电极极板6和外电极极板7布置在电芯的同一端,内集流线14埋于侧封构件4中。
本实施例一的电池芯片的制备工艺如下:
1)基片制备。基片分三类:支撑內电极基片、活性內电极基片和电解质基片,各基片的制备工艺过程如下:
(a)浆料制备。将陶瓷细粉,如8YSZ、NiO和GDC等氧化物细粉添加适量有机助剂和溶剂,如PVB,三乙醇胺、乙醇等,经球磨混合后,这些陶瓷细粉被均匀分散制备成稳定的浆料。典型的活性內电极浆料中,固体有效成分的含量为8YSZ:NiO:GDC=5:4:1(重量比),并有约20%的变动范围,在典型的支撑內电极浆料中,固体有效成分的含量为8YSZ:NiO:Al 2O 3=3.5:5.5:1(重量比),并有约20%的变动范围。支撑內电极中氧化镍(NiO)的含量略高,以使內电极在被还原后具有更高的电导率。典型的电解质浆料中,固体有效成分为8YSZ或ScYSZ。
(b)基片制备。将(a)中的浆料用流延机制备成电解质和內电极的薄膜,典型的电解质薄膜厚度为5-40微米,典型的內电极薄膜厚度为100-200微米。薄膜经60摄氏度烘干2小时候后被裁切为一定尺寸,如270×220mm的薄片,称为基片。对应的,由活性內电极浆料制备的基片称为活性內电极基片,由支撑內电极浆料制备的基片称为支撑內电极基片,由电解质浆料制备的基片称电解质基片。
(c)气道前驱体制备。将电芯的气道前驱体制备在一张支撑內电极基片上。典型的气道前驱体为含石墨,淀粉或其他的高分子材料如PTFE,PVC等细粉的浆料,这些浆料中,固体粉末如石墨,淀粉,PTFE,PVC等的含量优选范围5-30%,溶剂为松油醇。把前驱体浆料制备在內电极基片上的方法包括丝网印刷和高温压合等业内已知的方法。
2)基片叠层。将电解质基片、活性內电极基片、含气道前驱体的支撑內电极基片、不含气道的支撑內电极基片按照图4所示的顺序对齐并依次叠加后放入真空袋中进行抽真空和封口。随后,装有基片集合体的封口真空袋中被置于等静压机中,经75摄氏度的水浴中施加20MPa的压力5分钟后取出。等过等静压过程,集合体中的各张基片彼此融合,成为叠层体。叠层体厚度约2mm,各组成层不能再被部分或全部的分开为单张基片。
3)裁切。经上述步骤制备的叠层体被放置于冲切机中,经由冲切模具裁切为具有指定设计外形电芯素坯。典型的,一个叠层体可以被裁切为3条外形为65×260mm的电芯素坯。
4)烧结。将电芯素坯放置于高温炉中选择合适的热处理制度进行高温烧结。经过高温烧结,如1400℃烧结2小时,素胚尺寸将收缩20-30%,成为具有较高强度的电芯。同时,在热处理过程中由于气道前驱体气化逸出,电芯中留下规整均匀的内嵌微气道。
5)中间层烧制。在烧制后电芯的两面电解质上印制中间层。典型的中间层材料为掺杂的氧化铈,如GDC或SDC,印制方法可采用为业内共知的丝网印刷工艺。将印制了中间层的电芯在90摄氏度烘干1小时后置于高温炉中,然后升高炉温至1300摄氏度,经过2小时的煅烧后,降低炉温并控制降温速度不超过每分钟5摄氏度。待炉温降至室温,取出电芯,此时,两面的中间层已牢固的烧制在电芯的电解质外表面。
6)还原。将完成中间层烧制的电芯置于还原炉中进行还原。还原气氛为氢氮混合气,其中氢气含量70-100%,氮气含量0-30%,还原条件为680摄氏度6个小时。经过还原操作,电芯內电极中的氧化镍被还原为金属镍,这不仅在內电极中形成额外的气体通道,同时由于形成的金属镍是电子导体,还原后的內电极具备了导电能力,可以形成连接进行电化学反应的电芯高温区域和承担与外部进行连接的內电极极板之间的电子传输通道。
7)外表面部件制备。在还原后的电芯外表面印制电芯的外表面部件,包括外集流线、外电极、外电极极板、內电极极板、外电极汇流线、內电极汇流线和保护层等,这些部件可以全部印制在中间层上,也可以部分的或全部的印制在电解质表面。由于电芯具有相对布置的两面电解质,电芯一面的外表面部件可在另一面的外表面部件制备完毕后再依次制备。
电芯的外表面部件中,外集流线、外电极极板、內电极极板、外电极汇流线、內电极汇流线的成分相同或接近,比如掺杂稳定的氧化铈(SDC或GDC)含量5-20%,银 含量80-95%,可以用同一张网版在同一步骤印刷。外电极的成分为掺杂稳定的氧化铈(SDC或GDC)含量30-55%,银含量45-70%,其印刷可以在印制外集流线之前或之后,但二者之间有烘干过程,烘干条件为90摄氏度热风干燥1小时。保护层的成分为氧化铝、氧化锆,二氧化硅或基于氧化物的多种复合材料,优选的成分为氧化铝,由这些氧化物制备的浆料被印刷或喷涂在烘干后的其他外表面部件上。本步骤使用各种浆料都可以使用以乙醇和松油醇混合物为溶剂,并含有0-10%左右的石墨作为造孔剂。
8)内集流线制备。对完成外电极等部件印刷的电芯进行内集流线制备。先对电芯的侧面涂敷内集流线浆料,基本成分为掺杂稳定的氧化铈(SDC或GDC)含量5-20%,银含量80-95%,涂敷内集流线后电芯需经90摄氏度热风干燥1小时待浆料固化。
9)侧封构件制备。对完成上述工艺的电芯开始涂敷侧封内层,侧封内层可以涂敷在内集流线涂层上,其基本成分为石墨或硅酸镁滑石类材料((Mg 6)[Si 8]O 20(OH) 4),侧封内层经90摄氏度热风烘干1小时后,在侧封内层上继续涂敷侧封外层,基本材料为石墨或钾钙玻璃,成分K 2O 12-18%CaO 5-12%,SiO 2 60-75%。
10)热处理。将完成外表面部件印制和侧封涂敷的电芯进行热处理,热处理后,各外表面部件与其附着物形成牢固的连接,并且侧封构件的至少最外层致密化。优选的热处理制度为850摄氏度1个小时,气氛为还原保护性气氛,氢含量5-60%,其余平衡气为氮气。
11)电极强化。经过热处理的电芯已可用于实际应用,为进一步提高电芯的电性能,降低内阻,可进行电极强化处理。典型的电极强化处理方法如浸渍。以SDC(samaria doped ceria,氧化钐掺杂氧化铈)浸渍为例,可先将Sm(NO 3) 2,Ce(NO 3) 4按一定Sm 2O 3:CeO 2(如摩尔比20:80的Sm 2O 3:CeO 2)的配比溶解在水溶液(或pH=5左右的稀硝酸)中,然后将该溶液涂布在内外电极上,进过升温热处理(如500或300摄氏度热处理20分钟),Sm(NO 3) 2,Ce(NO 3) 4将分解进而形成具有一定比例Sm 2O 3:CeO 2掺杂稳定的化合物SDC。此过程可重复3-5次以增加SDC浸渍量。SDC是已知的、具有良好催化活性和离子/电子混合电导的氧化物。进过浸渍处理,SDC可以很细的纳米尺度,比如小于100纳米,分散进入电极内部,极大扩展电极过程的反应区域,即TPB(Triple Phase Boundary,三相界面,即气-固电化学场所),显著降低电极过程的阻力,减少电芯的内阻,这在业内的已知的技术。
实施例二:
参照图5和图6,本实施例二的结构与实施例一基本相同,不同点在于,中间层5 可以覆盖在整个电解质1外壁面上,也可以局部覆盖在电解质1上,与内电极2相连的内电极极板6以及与外电极3相连的外电极极板7分别布置在电芯的两端,内汇流线8位于电芯的端面上。
实施例三:
参照图7,本实施例三的结构与实施例二基本相同,不同点在于,本实施例三的电池芯片的两端采用了渐缩设计,渐缩斜边和热端工作面直边的夹角α在5-60度之间,优选在10-30度之间。本电池芯片在工作时,內电极2气体进出口处的温度比外电极中心的温度相差最少200摄氏度以上,上述设计能够更好地满足上述的工作状态。本实施例三的外集流线12位于外电极3外表面上,在外电极极板7上焊接了用于进行外连接的连接片15,优选的,连接片15由基于铜、镍、金、银的材料制成。
实施例四:
参照图8,本实施例四的结构与实施例三基本相同,不同点在于,本实施例四的内汇流线8布置于电芯表面,其高温端穿过电解质1表面的开口和內电极2相连,电解质1开口表面还覆盖了一层密封结构10,密封结构10渗透电解质1并完全覆盖了电解质1的开口部位,包括完全覆盖内汇流线8和內电极2的汇合连接处,确保流经内电极的气体不从此口泄露到电芯外部。
本文中所描述的具体实施例仅仅是对本发明精神作举例说明。本发明所属技术领域的技术人员可以对所描述的具体实施例做各种各样的修改或补充或采用类似的方式替代,但并不会偏离本发明的精神或者超越所附权利要求书所定义的范围。

Claims (10)

  1. 一种具有双电解质结构的固体氧化物电池芯片,其特征在于,包括两层电解质层,两层所述电解质层由夹于其间的內电极隔开,所述内电极内部布置有规律性排列的多条气道,且内电极的至少两个侧面覆盖有侧封构件,所述电解质的外表面布置有外表面部件,所述外表面部件包括中间层、外电极、内电极极板和外电极极板,所述内电极与所述内电极极板相连,所述外电极与所述外电极极板相连。
  2. 根据权利要求1所述的具有双电解质结构的固体氧化物电池芯片,所述內电极中布置的规律性排列的多条气道中的单条气道的横截面等效直径尺度在20-200微米之间。
  3. 根据权利要求1所述的具有双电解质结构的固体氧化物电池芯片,其特征在于,所述侧封构件包括若干个亚层,其中至少一层亚层是致密不透气的,且所述致密不透气的亚层和所述的电池芯片的侧面之间设置有至少一层粗糙透气的亚层。
  4. 根据权利要求1所述的具有双电解质结构的固体氧化物电池芯片,其特征在于,所述外表面部件还包括覆盖在外电极外表面上的若干条外集流线,且所述外集流线的电导率不低于外电极。
  5. 根据权利要求1所述的具有双电解质结构的固体氧化物电池芯片,其特征在于,所述外表面部件还包括保护层,所述保护层至少覆盖外表面部件中的一个。
  6. 根据权利要求1所述的具有双电解质结构的固体氧化物电池芯片,其特征在于,所述内电极和内电极极板之间通过内汇流线相连,所述内汇流线的电导率不低于所述内电极。
  7. 根据权利要求6所述的具有双电解质结构的固体氧化物电池芯片,其特征在于,所述内汇流线位于侧封构件和所述电池芯片侧面之间。
  8. 根据权利要求6所述的具有双电解质结构的固体氧化物电池芯片,其特征在于,所述内汇流线至少部分的布置于所述外电极所在的电解质一侧的表面,并通过在所述电解质上的开口与内电极相连。在所述电解质开口的表面处覆盖有一层密封结构,完全覆盖密封住所述内汇流线和所述內电极在所述电解质开口的汇合连接处。
  9. 根据权利要求1所述的具有双电解质结构的固体氧化物电池芯片,其特征在于, 所述电池芯片呈长条片状,所述电池芯片外形从处于电池芯片中部的外电极区域到气道进出口端面逐渐变窄,渐缩的斜边和电池芯片中部的外电极区域直边的夹角在5°~60°之间。
  10. 一种制备权利要求1-9任意一条所述具有双电解质结构的固体氧化物电池芯片的制备方法,其特征在于,包括以下步骤:
    (1)基片制备:将构成內电极和电解质的组分按照比例添加合适的助剂和溶剂后,经流延操作制备为薄膜基片;
    (2)基片叠层:将电解质基片、含气道的內电极基片、不含气道的內电极基片按照一定的顺序对齐叠加后放入真空袋中进行抽真空和封口,再将置于真空袋中的基片集合体经高温压制融合后形成叠层体;
    (3)裁切:将叠层体放置于冲切设备中,裁切为具有指定设计外形的电池芯片素坯;
    (4)烧结:将电池芯片素坯放置于高温炉中用合适的热处理制度进行烧结,烧结后的电池芯片素胚收缩尺寸,并成为具有较高强度的电池芯片,同时,在热处理过程中由于气道前驱体气化逸出,电池芯片的內电极中留下规整均匀的内嵌气道;
    (5)中间层烧制:在烧制后电池芯片的两面电解质上经高温热处理制备中间层;
    (6)还原:将完成中间层烧制的电池芯片置于还原炉中进行还原,內电极中的氧化镍经还原成为金属镍;
    (7)外表面部件制备:在还原后的电池芯片外表面印制外表面部件;
    (8)侧封构件制备:对完成上述工艺的电池芯片制备侧封构件,先制备粗糙透气的侧封内层,待侧封内层干燥后,再在其上继续制备致密不透气的侧封外层;
    (9)热处理:将完成外表面部件印制和侧封构件制备的电池芯片进行热处理,热处理后,各外表面部件与其附着物形成牢固的连接,并且侧封构件中至少有一层致密化;
    (10)电极强化。
PCT/CN2021/081647 2020-11-25 2021-03-18 一种具有双电解质结构的固体氧化物电池芯片及制备方法 WO2022110580A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP21896099.5A EP4243129A1 (en) 2020-11-25 2021-03-18 Solid oxide cell chip with double-electrolyte structure and preparation method
US18/254,506 US20240014425A1 (en) 2020-11-25 2021-03-18 Solid oxide cell (soc) chip with double-electrolyte structure and preparation method thereof
JP2023551961A JP2023550547A (ja) 2020-11-25 2021-03-18 二重電解質構造を有する固体酸化物電池チップ及びその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011337853.6 2020-11-25
CN202011337853.6A CN112467164B (zh) 2020-11-25 2020-11-25 一种具有双电解质结构的固体氧化物电池芯片及制备方法

Publications (1)

Publication Number Publication Date
WO2022110580A1 true WO2022110580A1 (zh) 2022-06-02

Family

ID=74799892

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/081647 WO2022110580A1 (zh) 2020-11-25 2021-03-18 一种具有双电解质结构的固体氧化物电池芯片及制备方法

Country Status (5)

Country Link
US (1) US20240014425A1 (zh)
EP (1) EP4243129A1 (zh)
JP (1) JP2023550547A (zh)
CN (1) CN112467164B (zh)
WO (1) WO2022110580A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112467164B (zh) * 2020-11-25 2021-09-24 浙江臻泰能源科技有限公司 一种具有双电解质结构的固体氧化物电池芯片及制备方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102084527A (zh) * 2008-03-20 2011-06-01 丹麦科技大学 用于固体氧化物电解池堆的复合玻璃密封件
JP2017134941A (ja) * 2016-01-26 2017-08-03 株式会社デンソー 燃料電池単セル
CN107959036A (zh) * 2016-10-14 2018-04-24 中国科学院宁波材料技术与工程研究所 一种平板型结构的固体氧化物燃料电池的制备方法
CN108321408A (zh) 2017-12-28 2018-07-24 胡强 含多对电极的扁管固体氧化物电化学器件及其制备方法
CN108336386A (zh) 2017-12-28 2018-07-27 浙江臻泰电子科技有限公司 扁管结构固体氧化物电化学器件及其制备方法
CN108336376A (zh) 2017-12-28 2018-07-27 胡强 一种提高成品率和单电池功率的扁管固体氧化物电池结构及其制备方法
CN109216740A (zh) * 2017-07-07 2019-01-15 中国科学院宁波材料技术与工程研究所 一种中空对称sofc电池的阳极支撑体及其制备方法
CN112467165A (zh) * 2020-11-25 2021-03-09 浙江臻泰能源科技有限公司 具有内嵌规律性布置气道的固体氧化物电池及制备方法
CN112467164A (zh) * 2020-11-25 2021-03-09 浙江臻泰能源科技有限公司 一种具有双电解质结构的固体氧化物电池芯片及制备方法
CN213905412U (zh) * 2020-11-25 2021-08-06 浙江臻泰能源科技有限公司 一种具有双电解质结构的固体氧化物电池芯片

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102084527A (zh) * 2008-03-20 2011-06-01 丹麦科技大学 用于固体氧化物电解池堆的复合玻璃密封件
JP2017134941A (ja) * 2016-01-26 2017-08-03 株式会社デンソー 燃料電池単セル
CN107959036A (zh) * 2016-10-14 2018-04-24 中国科学院宁波材料技术与工程研究所 一种平板型结构的固体氧化物燃料电池的制备方法
CN109216740A (zh) * 2017-07-07 2019-01-15 中国科学院宁波材料技术与工程研究所 一种中空对称sofc电池的阳极支撑体及其制备方法
CN108321408A (zh) 2017-12-28 2018-07-24 胡强 含多对电极的扁管固体氧化物电化学器件及其制备方法
CN108336386A (zh) 2017-12-28 2018-07-27 浙江臻泰电子科技有限公司 扁管结构固体氧化物电化学器件及其制备方法
CN108336376A (zh) 2017-12-28 2018-07-27 胡强 一种提高成品率和单电池功率的扁管固体氧化物电池结构及其制备方法
CN112467165A (zh) * 2020-11-25 2021-03-09 浙江臻泰能源科技有限公司 具有内嵌规律性布置气道的固体氧化物电池及制备方法
CN112467164A (zh) * 2020-11-25 2021-03-09 浙江臻泰能源科技有限公司 一种具有双电解质结构的固体氧化物电池芯片及制备方法
CN213905412U (zh) * 2020-11-25 2021-08-06 浙江臻泰能源科技有限公司 一种具有双电解质结构的固体氧化物电池芯片

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
E. V. TSIPIS ET AL.: "Electrode materials and reaction mechanisms in solid oxide fuel cells: a brief review", J. SOLID STATE ELECTROCHEM., vol. 12, 2008, pages 1367 - 1391, XP019593289
M. B. MOGENSEN ET AL.: "Reversible solid-oxide cells for clean and sustainable energy", CLEAN ENERGY, 2019, pages 1 - 27
M. B. MOGENSEN ET AL.: "Reversible solid-oxide cells for clean and sustainable energy", CLEAN ENERGY., 2019, pages 1 - 27
M. CHEN ET AL.: "Microstructural degradation of Ni/YSZ electrodes in solid oxide electrolysis cells under high current", J. ELECTROCHEM. SOC., vol. 160, 2013, pages F883 - F891, XP055839166, DOI: 10.1149/2.098308jes
N. Q. MINH: "System design and application, in High-Temperature Solid Oxide Fuel Cells for the 21st Century", 2015
V. V. KHARTON ET AL.: "Transport properties of solid oxide electrolyte ceramics: a brief review", SOLID STATE IONICS., vol. 174, 2004, pages 135 - 149, XP004663560, DOI: 10.1016/j.ssi.2004.06.015

Also Published As

Publication number Publication date
JP2023550547A (ja) 2023-12-01
EP4243129A1 (en) 2023-09-13
CN112467164B (zh) 2021-09-24
US20240014425A1 (en) 2024-01-11
CN112467164A (zh) 2021-03-09

Similar Documents

Publication Publication Date Title
US6653009B2 (en) Solid oxide fuel cells and interconnectors
Khan et al. Flat-tubular solid oxide fuel cells and stacks: a review
US20070117006A1 (en) Direct Fabrication of Copper Cermet for Use in Solid Oxide Fuel Cell
CN107431216B (zh) 电化学反应单元及燃料电池堆
WO2005011019A2 (en) Solid oxide fuel cell interconnect with catalytic coating
WO2004100284A2 (en) Direct hydrocarbon fuel cells
CN107017423B (zh) 一种低温固体氧化物燃料电池及其制备方法
JP3914990B2 (ja) 円筒型燃料電池
JP2016525268A (ja) 固体酸化物燃料電池およびその製造方法
US20080299434A1 (en) Solid oxide type fuel cell and manufacturing method thereof
US8697313B2 (en) Method for making a fuel cell from a solid oxide monolithic framework
CN108321408B (zh) 含多对电极的扁管固体氧化物电化学器件及其制备方法
WO2022110580A1 (zh) 一种具有双电解质结构的固体氧化物电池芯片及制备方法
US8715886B1 (en) Method for making a fuel cell
CN213905412U (zh) 一种具有双电解质结构的固体氧化物电池芯片
CN112467165B (zh) 具有内嵌规律性布置气道的固体氧化物电池及制备方法
CN108336386B (zh) 扁管结构固体氧化物电化学器件及其制备方法
JP5455271B1 (ja) 燃料電池
US20090162723A1 (en) Integrated Single-Chamber Solid Oxide Fuel Cells
Guangyao et al. New solid state fuel cells-green power source for 21st century
JP5095878B1 (ja) 燃料電池
CN213905411U (zh) 一种具有内嵌规律性布置气道的固体氧化物电池
JP5455268B1 (ja) 燃料電池
JP5074004B2 (ja) 固体酸化物形燃料電池及びその製造方法
JP2002358980A (ja) 固体電解質型燃料電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21896099

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023551961

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 18254506

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021896099

Country of ref document: EP

Effective date: 20230605