WO2022110526A1 - 一种基于磁感原理的磁性材料b-h曲线测量方法 - Google Patents

一种基于磁感原理的磁性材料b-h曲线测量方法 Download PDF

Info

Publication number
WO2022110526A1
WO2022110526A1 PCT/CN2021/073266 CN2021073266W WO2022110526A1 WO 2022110526 A1 WO2022110526 A1 WO 2022110526A1 CN 2021073266 W CN2021073266 W CN 2021073266W WO 2022110526 A1 WO2022110526 A1 WO 2022110526A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic
curve
iron core
frequency
excitation
Prior art date
Application number
PCT/CN2021/073266
Other languages
English (en)
French (fr)
Inventor
程明
朱新凯
秦伟
王政
Original Assignee
东南大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 东南大学 filed Critical 东南大学
Priority to US17/613,847 priority Critical patent/US11965942B2/en
Publication of WO2022110526A1 publication Critical patent/WO2022110526A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/12Measuring magnetic properties of articles or specimens of solids or fluids
    • G01R33/1253Measuring galvano-magnetic properties
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/12Measuring magnetic properties of articles or specimens of solids or fluids
    • G01R33/14Measuring or plotting hysteresis curves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/12Measuring magnetic properties of articles or specimens of solids or fluids
    • G01R33/1223Measuring permeability, i.e. permeameters

Definitions

  • the invention relates to the application field of electrical technology, in particular to a method for measuring the B-H curve of a magnetic material.
  • the finite element method is a method that is often used in the design and analysis of electromagnetic devices. If you want the solution results to be consistent with the real situation, on the one hand, you need to set an appropriate solution domain and apply reasonable boundary conditions, and on the other hand, you need to accurately simulate the reality of the material. characteristic. Silicon steel sheet is a soft magnetic material often used in electromagnetic devices, which has the characteristics of nonlinearity, hysteresis, conductivity and so on.
  • the technical problem to be solved by the present invention is that, in view of the defects of the background technology, a method for measuring and simulating the B-H curve at any frequency can be derived only by measuring the B-H curve at a certain frequency.
  • the method is applied to medium and high frequencies.
  • the measurement of B-H curve can obtain higher accuracy.
  • the invention proposes a method for measuring the B-H curve of a magnetic material. Based on a magnetic circuit vector model, the Epstein square ring is modeled by electromagnetic coupling.
  • the iron core of the Epstein square ring is formed by laminating silicon steel sheets to be measured, and the iron core is wound around the core. Excitation coil and detection coil with equal number of turns; the measurement method includes:
  • the magnetic resistance R mc is obtained from the reference BH curve. If the magnetic inductance L mc corresponding to the eddy current reaction at this frequency is known, the magnetic impedance of the magnetic circuit can be obtained. pass Find the magnetic potential at this time Then find the magnetic field strength Obtain a BH curve including the effect of eddy currents.
  • the numerical value of the magnetic induction L mc at different frequencies f 1 and f 2 satisfies the relationship
  • the magnetic induction value at any frequency is obtained from the magnetic induction L mc at the reference frequency.
  • the magnetic induction L mc is equivalent to a lumped parameter representing the eddy current reaction in the Epstein square-ring iron core
  • the magnetic resistance R mc is equivalent to A lumped parameter characterizing the nonlinear action of the iron core
  • the magnetic circuit vector model of the iron core is: where j represents the imaginary unit.
  • the method for measuring the BH curve of a magnetic material proposed by the present invention is based on the virtual magnetic power of the magnetic circuit vector model.
  • using magnetic potential and magnetic flux Obtain, specifically:
  • the virtual magnetic power and electric power can be converted into each other, the relationship is Among them, the real part is the active power input through the excitation winding, and the imaginary part is the input reactive power.
  • the present invention adopts the above technical scheme, and has the beneficial effects compared with the prior art:
  • the present invention considers the influence of the eddy current reaction on the B-H curve test, which can exclude the influence of the eddy current reaction to obtain a reference B-H curve, which is only used to describe the nonlinear characteristics of magnetic materials, or can be obtained by a B-H curve including the eddy current reaction at the reference frequency.
  • the invention can simplify the testing process of the B-H curve, save the testing time, and reduce the requirements for the testing equipment, especially in the testing of the medium and high frequency B-H curve, the beneficial effect is more obvious.
  • FIG. 1 is a schematic diagram of a magnetic material B-H curve test platform of the present invention.
  • FIG. 2 is a flow chart of the B-H curve test of the magnetic material of the present invention.
  • FIG. 3 is a reference B-H curve obtained by applying the present invention to exclude the influence of eddy current.
  • Fig. 4 is the contrast diagram of the 200Hz B-H curve and the measured curve obtained by applying the derivation of the present invention.
  • Fig. 5 is the contrast diagram of the 800Hz B-H curve and the measured curve obtained by applying the derivation of the present invention.
  • the invention provides a method for measuring the B-H curve of a magnetic material.
  • the equipment used for the measurement included an Epstein square circle, an AC power supply, a power analyzer and an oscilloscope.
  • the core content of the present invention is to perform electromagnetic coupling modeling on the Epstein square circle based on a magnetic circuit vector model.
  • the iron core of the Epstein square ring is made of laminated silicon steel sheets, and the excitation coil and the detection coil with equal turns are wound on the iron core.
  • Magnetic circuit vector model including magnetic potential
  • the three "magnetic elements" of magnetoresistance R mc and magnetic induction L mc interact with each other to represent the magnetic flux flowing in the magnetic circuit where the magnetic potential and the magnetic flux are vectors, and the specific relationship is The angle between the magnetic potential and the magnetic flux is
  • the virtual magnetic power in the magnetic circuit It can be calculated from the magnetic potential and the magnetic flux, and is expressed as According to the law of conservation of energy and the relationship of electromagnetic energy conversion, the virtual magnetic power in the magnetic circuit is the electrical power input by the excitation winding Converted, the two forms of power satisfy the relationship Among them, the real part represents the active power in the circuit represented by the magnetic circuit parameters, and the imaginary part represents the reactive power in the circuit represented by the magnetic circuit parameters.
  • the magnetic induction L mc represents the reaction of the eddy current of the iron core in the magnetic circuit vector model of the Epstein square circle, which is related to the resistance R of the iron core and the frequency f of the magnetic flux, and has nothing to do with the magnitude of the magnetic flux;
  • the magnetic induction L mc can change the magnitude and phase of the magnetic flux, and the magnitude of its effect on the magnetic flux can be changed by using the magnetic reactance express,
  • the magnetoresistance R mc represents the nonlinearity of the iron core in the magnetic circuit vector model of the Epstein square circle, which is related to the saturation degree of the magnetic flux; the magnetoresistance R mc can change the magnitude of the magnetic flux, but does not change its phase.
  • the magnetic flux in the Epstein square circle is jointly determined by the magnetic induction L mc and the magnetic resistance R mc , that is, it is jointly determined by the eddy current reaction of the iron core and the nonlinearity of the iron core; the magnetic induction L mc and The combined effect of the magnetoresistance R mc is called the magnetoresistance, with is represented as a vector whose size is It is related to the magnetic potential and the magnetic flux as
  • the virtual magnetic power and electric power The numerical relationship can be interpreted as the active power input through the excitation winding divided by ⁇ is the power consumed by the magnetic inductance in the magnetic circuit, and the reactive power input through the excitation winding divided by ⁇ is the power consumed by the reluctance in the magnetic circuit;
  • the power consumed by the magnetic induction in the above-mentioned magnetic circuit is the power consumed by the eddy current of the iron core, and the power consumed by the magnetic resistance is the power stored by the iron core.
  • a voltage with a reference frequency of f is connected to the excitation winding Excitation current will be generated An induced voltage will appear on the detection coil Magnetic flux in Epstein's square iron core can be expressed as where N 2 is the number of turns of the detection coil.
  • the active power of the excitation winding is measured by the power analyzer (the copper loss of the excitation winding is removed), according to the relationship between the active power and the magnetic induction The magnetic induction L mc can be obtained.
  • the reference BH curve can be derived to obtain the BH curve including the influence of eddy current under the magnetic field of any frequency.
  • the specific process is: any magnetic density value is known
  • the magnetic resistance R mc can be obtained from the reference BH curve. If the magnetic inductance L mc corresponding to the eddy current reaction at this frequency is known, the magnetic resistance of the magnetic circuit can be obtained. then through Find the magnetic potential at this time Then the magnetic field strength can be obtained Obtain a BH curve including the effect of eddy currents.
  • the magnetic induction L mc is related to the resistance R of the iron core. Due to the influence of the skin effect, the resistance will change with the frequency of the magnetic field, and the magnetic induction will also change accordingly;
  • the numerical values of the magnetic induction L mc at different frequencies f 1 and f 2 satisfy the relationship
  • the magnetic induction value at any frequency can be obtained through the magnetic induction L mc at the reference frequency.
  • the BH curve containing the eddy current effect at any frequency can be derived from the BH curve containing the eddy current effect at the reference frequency.
  • the magnetic material B-H curve test platform shown in Figure 1 mainly includes a programmable AC power supply, an Epstein square circle, a power analyzer and an oscilloscope. Based on the measured B-H curve with a reference frequency of 400Hz, the B-H curve at 200Hz and 800Hz is derived on this basis.
  • the flow chart is shown in Figure 2:
  • the magnetic impedance value of the magnetic circuit can be obtained and then according to The magnetoresistance value R mc of the magnetic circuit can be obtained.
  • the magnetic inductance values of 200 Hz and 800 Hz can be obtained from the magnetic inductance value L mc_400 of 400 Hz, which are recorded as L mc_200 and L mc_800 respectively .
  • the corresponding magnetoresistance value R mc under a certain magnetic density B can be obtained.
  • the magnetoresistance and the magnetic induction the The magneto-impedance values at 200Hz and 800Hz can be obtained, and then the magnetomotive force values that generate the magnetic density at frequencies of 200Hz and 800Hz can be obtained Depend on The magnetic field strength H can be further obtained, and finally the BH curves at frequencies of 200Hz and 800Hz can be obtained.
  • Figures 4 and 5 are the comparison diagrams of the BH curves obtained by deduction and the measured BH curves at frequencies of 200 Hz and 800 Hz, respectively.
  • the present invention proposes a B-H curve measurement method based on the magnetic circuit vector model. If it is necessary to obtain the B-H curve at a certain high frequency, a specific high-frequency power supply is no longer required, so the difficulty of measuring the high-frequency B-H curve can be simplified, and a new idea is provided for the simulation of the characteristics of silicon steel sheets considering the eddy current reaction.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)
  • Measuring Magnetic Variables (AREA)

Abstract

一种基于磁感原理的磁性材料B-H曲线测量方法。测量所用装置包括爱泼斯坦方圈、交流电源、功率分析仪和示波器。测量方法基于一种磁路矢量模型对爱泼斯坦方圈进行电磁耦合建模,爱泼斯坦方圈的铁心由被测硅钢片叠压而成,铁心上缠绕匝数相等的励磁线圈和探测线圈,测量过程是首先得到仅考虑铁心非线性磁阻的基准B-H曲线,然后再由基准B-H曲线推导获得任意频率磁场下包含涡流影响的B-H曲线。提出了只需要测定某一频率下的B-H曲线就可以推导出任一频率下B-H曲线的测量和模拟方法,该方法应用于中高频率B-H曲线的测量可获得较高的准确性。

Description

一种基于磁感原理的磁性材料B-H曲线测量方法 技术领域
本发明涉及电工技术应用领域,尤其涉及一种磁性材料B-H曲线的测量方法。
背景技术
有限元法是电磁装置设计分析过程中经常应用的方法,如果希望求解结果与真实情况一致,一方面需要设定合适的求解域,施加合理的边界条件,另一方面则需要准确模拟材料的真实特性。硅钢片是电磁装置中经常使用的一种软磁性材料,它具有非线性、磁滞、导电等特性。在常规的电磁场有限元计算中,通常仅用一条B-H曲线去模拟硅钢片的非线性特性,而忽略硅钢片的磁滞特性和涡流特性,即不考虑直流偏磁和涡流反作用对外部磁场的影响。这样的硅钢片模拟方式通常导致计算结果与真实情况有偏差,尤其一些在中高频率下工作的电磁装置,涡流反作用非常明显,结果误差更大。因此,更加准确的磁性材料测量和模拟方式仍是当前的研究热点。
围绕硅钢片的测量和模拟有许多研究工作。美国阿克伦大学的Tekgun Burak等人测量了硅钢片同时存在过饱和和直流偏磁情况下的铁耗和B-H曲线。瑞典皇家理工大学的A.J.Bergqvist提出了矢量JA模型描述硅钢片在旋转磁化情况下的磁滞特性。巴西的LeiteJ.V.等人在矢量JA模型的基础上开发了自励感应发电机的起动过程仿真模型,可以仿真硅钢片的磁滞和涡流效应对电机输出特性的影响。中国东南大学的朱洒等人采用多项式外推与饱和磁化强度相结合的方法模拟了硅钢片饱和区域的B-H曲线,得到了较好的计算结果。但是,目前关于硅钢片不同频率下B-H曲线测定和模拟方法的研究较少,如果要得到不同频率下的B-H曲线,需要逐频率依次测量,费时而且需要专门的高频实验设备。
发明内容
本发明所要解决的技术问题在于,针对背景技术的缺陷,提出了一种只需要测定某一频率下的B-H曲线就可以推导出任一频率下B-H曲线的测量和模拟方法,该方法应用于中高频率B-H曲线的测量可获得较高的准确性。
本发明提出一种磁性材料B-H曲线的测量方法,基于磁路矢量模型对爱泼斯坦方圈进行电磁耦合建模,爱泼斯坦方圈的铁心由被测硅钢片叠压而成,铁心上缠绕匝数相等的励磁线圈和探测线圈;所述测量方法包括:
(一)、基准B-H曲线测量过程:
S1、在励磁线圈上接入基准频率为f的电压
Figure PCTCN2021073266-appb-000001
将产生励磁电流
Figure PCTCN2021073266-appb-000002
在探测线圈上将出现感应电压
Figure PCTCN2021073266-appb-000003
爱泼斯坦方圈铁心中的磁通
Figure PCTCN2021073266-appb-000004
表示为
Figure PCTCN2021073266-appb-000005
其中N 2为探测线圈的匝数;
S2、去除励磁绕组铜耗后,通过功率分析仪测得通入励磁绕组的有功功率,根据有功功率与磁感的关系
Figure PCTCN2021073266-appb-000006
求得磁感L mc,ω为磁路中磁通变化的角频率;
S3、通过示波器观测每一个感应电压
Figure PCTCN2021073266-appb-000007
对应的励磁电流
Figure PCTCN2021073266-appb-000008
的最大值,由此可得出爱泼斯坦方圈铁心磁路的磁势
Figure PCTCN2021073266-appb-000009
和磁通
Figure PCTCN2021073266-appb-000010
进而可求得整个铁心的磁阻抗
Figure PCTCN2021073266-appb-000011
通过磁阻抗大小的计算公式
Figure PCTCN2021073266-appb-000012
和磁感L mc,可得出在励磁电流
Figure PCTCN2021073266-appb-000013
作用下铁心的磁阻R mc
S4、由磁通
Figure PCTCN2021073266-appb-000014
除以铁心的截面积s可得到铁心磁密
Figure PCTCN2021073266-appb-000015
通过磁阻R mc的计算公式R mc=l/(μs),可得出铁心的磁导率μ,进而可得到与磁密
Figure PCTCN2021073266-appb-000016
相对应的磁场强度
Figure PCTCN2021073266-appb-000017
其中l为铁心磁路的平均长度;
调节励磁电流
Figure PCTCN2021073266-appb-000018
重复测试流程,得到仅考虑铁心非线性磁阻的基准B-H曲线;
(二)由基准B-H曲线推导获得任意频率磁场下包含涡流影响的B-H曲线,具体过程是:
已知任一磁密值
Figure PCTCN2021073266-appb-000019
在基准B-H曲线上求得磁阻R mc,如果已知该频率下涡流反作用对应的磁感L mc,得到磁路的磁阻抗
Figure PCTCN2021073266-appb-000020
通过
Figure PCTCN2021073266-appb-000021
求得此时的磁势
Figure PCTCN2021073266-appb-000022
接着求得磁场强度
Figure PCTCN2021073266-appb-000023
得到包含涡流影响的B-H曲线。
进一步的,本发明所提出的一种磁性材料B-H曲线的测量方法,所述的磁感L mc在不同频率f 1和f 2下的数值满足关系
Figure PCTCN2021073266-appb-000024
通过基准频率下的磁感L mc求得任一频率下的磁感值。
进一步的,本发明所提出的一种磁性材料B-H曲线的测量方法,将磁感L mc等效为表征爱泼斯坦方圈铁心中的涡流反作用的一个集总参数,磁阻R mc等效为表征铁心的非线性作用的一个集总参数,则铁心的磁路矢量模型为:
Figure PCTCN2021073266-appb-000025
其中,j 表示虚数单位。
进一步的,本发明所提出的一种磁性材料B-H曲线的测量方法,基于磁路矢量模型的虚拟磁功率
Figure PCTCN2021073266-appb-000026
采用磁势
Figure PCTCN2021073266-appb-000027
和磁通
Figure PCTCN2021073266-appb-000028
求得,具体是:
Figure PCTCN2021073266-appb-000029
进一步的,本发明所提出的一种磁性材料B-H曲线的测量方法,虚拟磁功率
Figure PCTCN2021073266-appb-000030
和电功率
Figure PCTCN2021073266-appb-000031
可相互转换,关系为
Figure PCTCN2021073266-appb-000032
其中,实部为通过励磁绕组输入的有功功率,虚部为输入的无功功率。
本发明采用以上技术方案,与现有技术相比所具有的有益效果:
本发明考虑了涡流反作用对B-H曲线测试的影响,既可排除涡流反作用影响得到一条基准B-H曲线,仅用于描述磁性材料的非线性特性,也可通过基准频率下包含涡流反作用的一条B-H曲线得到任一频率下包含涡流反作用的一族B-H曲线。同时,本发明可简化B-H曲线的测试过程,节省测试时间,降低对测试设备的要求,尤其在中高频B-H曲线的测试中,其有益效果更加明显。
附图说明
图1为本发明的磁性材料B-H曲线测试平台示意图。
图2为本发明的磁性材料B-H曲线测试流程图。
图3为应用本发明所测量获得的排除涡流影响的基准B-H曲线。
图4为应用本发明所推导获得的200Hz B-H曲线与实测曲线的对比图。
图5为应用本发明所推导获得的800Hz B-H曲线与实测曲线的对比图。
具体实施方式
以下结合附图对本发明的技术方案做进一步详细说明。
本发明提出了一种磁性材料B-H曲线的测量方法。测量所用装置包括爱泼斯坦方圈、交流电源、功率分析仪和示波器。本发明的核心内容是基于一种磁路矢量模型对爱泼斯坦方圈进行电磁耦合建模。爱泼斯坦方圈的铁心由被测硅钢片叠压而成,铁心上缠绕匝数相等的励磁线圈和探测线圈。
磁路矢量模型包括磁势
Figure PCTCN2021073266-appb-000033
磁阻R mc和磁感L mc三个“磁元件”,三者相互作用,可表示出磁路中流过的磁通
Figure PCTCN2021073266-appb-000034
其中磁势和磁通是矢量,具体关系是
Figure PCTCN2021073266-appb-000035
磁势和磁通的夹角是
Figure PCTCN2021073266-appb-000036
磁路中的虚拟磁功率
Figure PCTCN2021073266-appb-000037
可通过磁势和磁通计算而来,表示为
Figure PCTCN2021073266-appb-000038
根据能量守恒定律和电磁能量转换关系可知,磁路中的虚拟磁功率
Figure PCTCN2021073266-appb-000039
是由励磁绕组输入的电功率
Figure PCTCN2021073266-appb-000040
转换来的,两种形式的功率满足关系
Figure PCTCN2021073266-appb-000041
其中,实部表示由磁路参数表示的电路中的有功功率,虚部表示由磁路参数表示的电路中的无功功率。
所述的磁感L mc在爱泼斯坦方圈的磁路矢量模型中表示铁心涡流的反作用,它与铁心的电阻R和磁通的频率f有关,与磁通的大小无关;
进一步,所述的磁感L mc可以改变磁通的大小和相位,它对磁通改变作用的大小,可用磁抗
Figure PCTCN2021073266-appb-000042
表示,
Figure PCTCN2021073266-appb-000043
所述的磁阻R mc在爱泼斯坦方圈的磁路矢量模型中表示铁心的非线性,它与磁通饱和程度有关;磁阻R mc可以改变磁通的大小,但不改变其相位。
进一步,所述的爱泼斯坦方圈中的磁通是由磁感L mc和磁阻R mc共同决定的,即是由铁心的涡流反作用和铁心的非线性共同决定的;磁感L mc和磁阻R mc的共同作用称之为磁阻抗,用
Figure PCTCN2021073266-appb-000044
表示,为矢量,其大小为
Figure PCTCN2021073266-appb-000045
其与磁势和磁通的关系为
Figure PCTCN2021073266-appb-000046
进一步,所述的虚拟磁功率
Figure PCTCN2021073266-appb-000047
和电功率
Figure PCTCN2021073266-appb-000048
的数值关系可解释为通过励磁绕组输入的有功功率除以ω即是磁路中磁感消耗的功率,通过励磁绕组输入的无功功率除以ω即是磁路中磁阻消耗的功率;所述的磁路中磁感消耗的功率即为铁心涡流消耗的功率,磁阻消耗的功率即为铁心存储的功率。
基于磁路矢量模型,测量B-H曲线的具体过程如下:
在励磁绕组上接入基准频率为f的电压
Figure PCTCN2021073266-appb-000049
将产生励磁电流
Figure PCTCN2021073266-appb-000050
在探测线圈上将出 现感应电压
Figure PCTCN2021073266-appb-000051
爱泼斯坦方圈铁心中的磁通
Figure PCTCN2021073266-appb-000052
可表示为
Figure PCTCN2021073266-appb-000053
其中N 2为探测线圈的匝数。通过功率分析仪测得通入励磁绕组的有功功率(去除了励磁绕组铜耗),根据有功功率与磁感的关系
Figure PCTCN2021073266-appb-000054
可求得磁感L mc。通过示波器观测每一个感应电压
Figure PCTCN2021073266-appb-000055
对应的励磁电流
Figure PCTCN2021073266-appb-000056
的最大值,由此可得出爱泼斯坦方圈铁心磁路的磁势
Figure PCTCN2021073266-appb-000057
和磁通
Figure PCTCN2021073266-appb-000058
进而可求得整个铁心的磁阻抗
Figure PCTCN2021073266-appb-000059
通过磁阻抗大小的计算公式
Figure PCTCN2021073266-appb-000060
和已知的磁感L mc,可得出在励磁电流
Figure PCTCN2021073266-appb-000061
作用下铁心的磁阻R mc。已知的磁通
Figure PCTCN2021073266-appb-000062
除以铁心的截面积s可得到铁心磁密
Figure PCTCN2021073266-appb-000063
通过磁阻R mc的计算公式R mc=l/(μs),可得出铁心的磁导率μ,进而可得到与磁密
Figure PCTCN2021073266-appb-000064
相对应的磁场强度
Figure PCTCN2021073266-appb-000065
其中l为铁心磁路的平均长度。调节励磁电流
Figure PCTCN2021073266-appb-000066
重复测试流程,可以得到基准B-H曲线,基准B-H曲线是仅考虑铁心非线性磁阻的B-H曲线。
所述的基准B-H曲线可以推导获得任意频率磁场下包含涡流影响的B-H曲线。具体过程是:已知任一磁密值
Figure PCTCN2021073266-appb-000067
可在基准B-H曲线上求得磁阻R mc,如果已知该频率下涡流反作用对应的磁感L mc,就可以得到磁路的磁阻抗
Figure PCTCN2021073266-appb-000068
进而通过
Figure PCTCN2021073266-appb-000069
求得此时的磁势
Figure PCTCN2021073266-appb-000070
进而可求得磁场强度
Figure PCTCN2021073266-appb-000071
得到包含涡流影响的B-H曲线。
所述的磁感L mc与铁心的电阻R有关,由于集肤效应的影响,电阻会随着磁场频率变化,磁感也会随之变化;
进一步,所述的磁感L mc在不同频率f 1和f 2下的数值满足关系
Figure PCTCN2021073266-appb-000072
通过基准频率下的磁感L mc可以求得任一频率下的磁感值。通过基准频率下的包含涡流影响的B-H曲线可以推导获得任一频率下包含涡流影响的B-H曲线。
图1所示的磁性材料B-H曲线测试平台,主要包括可编程交流电源、爱泼斯坦方圈、功率分析仪和示波器。基于该平台测得基准频率为400Hz的B-H曲线,在此基础上推导获得200Hz和800Hz频率下的B-H曲线,其流程图如图2所示:
首先,使用交流电源向励磁绕组施加400Hz的励磁电压
Figure PCTCN2021073266-appb-000073
通过调节励磁电压
Figure PCTCN2021073266-appb-000074
控制励磁磁场强度,利用示波器观测励磁电压峰值U E_peak和励磁电流的峰值I E_peak,利用 功率分析仪观测输入电路的有功功率P(去除励磁绕组的铜耗)。
使用励磁电压峰值U E_peak反推出铁心磁路中的磁通值
Figure PCTCN2021073266-appb-000075
使用励磁电流峰值得到磁势值
Figure PCTCN2021073266-appb-000076
使用电路有功功率P与磁通
Figure PCTCN2021073266-appb-000077
的关系
Figure PCTCN2021073266-appb-000078
可得出铁心涡流在400Hz时的磁感值L mc
使用磁势和磁通的关系
Figure PCTCN2021073266-appb-000079
可求出磁路的磁阻抗值
Figure PCTCN2021073266-appb-000080
进而根据
Figure PCTCN2021073266-appb-000081
可求出磁路的磁阻值R mc
由公式R mc=l/(μs),可求出铁心在不同磁通下的磁导率μ。根据磁通密度B和磁场强度H的关系B=μH,可求出不同磁密值B下的磁场强度H。
调节励磁电压
Figure PCTCN2021073266-appb-000082
重复上述步骤,可得到多组(B,H)数据,绘制出基准频率为400Hz时排除了涡流影响的基准B-H曲线,如图3所示。
由于不同频率下的磁感值满足关系
Figure PCTCN2021073266-appb-000083
因此由400Hz的磁感值L mc_400可得出200Hz和800Hz的磁感值,分别记作L mc_200和L mc_800。使用基准B-H曲线,可得出某一磁密B下对应磁阻值R mc,使用磁阻和磁感,由
Figure PCTCN2021073266-appb-000084
可得出200Hz和800Hz频率下的磁阻抗值,进而可求出在频率200Hz和800Hz下产生该磁密的磁动势值
Figure PCTCN2021073266-appb-000085
Figure PCTCN2021073266-appb-000086
可进一步得到磁场强度H,最后可得到200Hz和800Hz频率下的B-H曲线。图4和图5分别为200Hz和800Hz频率下推导获得的B-H曲线与实测B-H曲线的对比图。
总之,本发明提出了一种基于磁路矢量模型的B-H曲线测量方法。如果需要获得某一高频率下的B-H曲线,就不再需要特定的高频电源,因此可简化高频B-H曲线测量难度,而且为考虑涡流反作用的硅钢片特性模拟提供了新思路。
以上所述仅为本发明的较佳实施方式,本发明的保护范围并不以上述实施方式为限,但凡本领域普通技术人员根据本发明所揭示内容所作的等效修饰或变化,皆应纳入权利要求书中记载的保护范围。

Claims (5)

  1. 一种磁性材料B-H曲线的测量方法,其特征在于,基于磁路矢量模型对爱泼斯坦方圈进行电磁耦合建模,爱泼斯坦方圈的铁心由被测硅钢片叠压而成,铁心上缠绕匝数相等的励磁线圈和探测线圈;所述测量方法包括:
    (一)、基准B-H曲线测量过程:
    S1、在励磁线圈上接入基准频率为f的电压
    Figure PCTCN2021073266-appb-100001
    将产生励磁电流
    Figure PCTCN2021073266-appb-100002
    在探测线圈上将出现感应电压
    Figure PCTCN2021073266-appb-100003
    爱泼斯坦方圈铁心中的磁通
    Figure PCTCN2021073266-appb-100004
    表示为
    Figure PCTCN2021073266-appb-100005
    其中N 2为探测线圈的匝数;
    S2、去除励磁绕组铜耗后,通过功率分析仪测得通入励磁绕组的有功功率,根据有功功率与磁感的关系
    Figure PCTCN2021073266-appb-100006
    求得磁感L mc,ω为磁路中磁通变化的角频率;
    S3、通过示波器观测每一个感应电压
    Figure PCTCN2021073266-appb-100007
    对应的励磁电流
    Figure PCTCN2021073266-appb-100008
    的最大值,由此可得出爱泼斯坦方圈铁心磁路的磁势
    Figure PCTCN2021073266-appb-100009
    和磁通
    Figure PCTCN2021073266-appb-100010
    进而可求得整个铁心的磁阻抗
    Figure PCTCN2021073266-appb-100011
    通过磁阻抗大小的计算公式
    Figure PCTCN2021073266-appb-100012
    和磁感L mc,可得出在励磁电流
    Figure PCTCN2021073266-appb-100013
    作用下铁心的磁阻R mc
    S4、由磁通
    Figure PCTCN2021073266-appb-100014
    除以铁心的截面积s可得到铁心磁密
    Figure PCTCN2021073266-appb-100015
    通过磁阻R mc的计算公式R mc=l/(μs),可得出铁心的磁导率μ,进而可得到与磁密
    Figure PCTCN2021073266-appb-100016
    相对应的磁场强度
    Figure PCTCN2021073266-appb-100017
    其中l为铁心磁路的平均长度;
    调节励磁电流
    Figure PCTCN2021073266-appb-100018
    重复测试流程,得到仅考虑铁心非线性磁阻的基准B-H曲线;
    (二)由基准B-H曲线推导获得任意频率磁场下包含涡流影响的B-H曲线,具体过程是:
    已知任一磁密值
    Figure PCTCN2021073266-appb-100019
    在基准B-H曲线上求得磁阻R mc,如果已知该频率下涡流反作用对应的磁感L mc,得到磁路的磁阻抗
    Figure PCTCN2021073266-appb-100020
    通过
    Figure PCTCN2021073266-appb-100021
    求得此时的磁势
    Figure PCTCN2021073266-appb-100022
    接着求得磁场强度
    Figure PCTCN2021073266-appb-100023
    得到包含涡流影响的B-H曲线。
  2. 根据权利要求1所述的一种磁性材料B-H曲线的测量方法,其特征在于,所述的磁感L mc在不同频率f 1和f 2下的数值满足关系
    Figure PCTCN2021073266-appb-100024
    通过基准频率下的磁感L mc求得任一频率下的磁感值。
  3. 根据权利要求1所述的一种磁性材料B-H曲线的测量方法,其特征在于,将磁感L mc等效为表征爱泼斯坦方圈铁心中的涡流反作用的一个集总参数,磁阻R mc等效为表征铁心的非线性作用的一个集总参数,则铁心的磁路矢量模型为:
    Figure PCTCN2021073266-appb-100025
    其中,j表示虚数单位。
  4. 如权利要求3所述的一种磁性材料B-H曲线的测量方法,其特征在于,基于磁路矢量模型的虚拟磁功率
    Figure PCTCN2021073266-appb-100026
    采用磁势
    Figure PCTCN2021073266-appb-100027
    和磁通
    Figure PCTCN2021073266-appb-100028
    求得,具体是:
    Figure PCTCN2021073266-appb-100029
  5. 如权利要求4所述的一种磁性材料B-H曲线的测量方法,其特征在于,虚拟磁功率
    Figure PCTCN2021073266-appb-100030
    和电功率
    Figure PCTCN2021073266-appb-100031
    可相互转换,关系为
    Figure PCTCN2021073266-appb-100032
    其中,实部为通过励磁绕组输入的有功功率,虚部为输入的无功功率。
PCT/CN2021/073266 2020-11-26 2021-01-22 一种基于磁感原理的磁性材料b-h曲线测量方法 WO2022110526A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/613,847 US11965942B2 (en) 2020-11-26 2021-01-22 Measurement method for B-H curve of magnetic material based on magnetic-inductance

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011350288.7A CN112540330B (zh) 2020-11-26 2020-11-26 一种基于磁感原理的磁性材料b-h曲线测量方法
CN202011350288.7 2020-11-26

Publications (1)

Publication Number Publication Date
WO2022110526A1 true WO2022110526A1 (zh) 2022-06-02

Family

ID=75016836

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/073266 WO2022110526A1 (zh) 2020-11-26 2021-01-22 一种基于磁感原理的磁性材料b-h曲线测量方法

Country Status (3)

Country Link
US (1) US11965942B2 (zh)
CN (1) CN112540330B (zh)
WO (1) WO2022110526A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52146674A (en) * 1976-05-31 1977-12-06 Yokogawa Hokushin Electric Corp Iron loss measuring apparatus
WO2005106720A2 (en) * 2004-04-30 2005-11-10 Dunlop Aerospace Limited Method of determining a hysteresis curve and apparatus
CN103197267A (zh) * 2013-02-28 2013-07-10 南京邮电大学 一种磁芯损耗分离计算方法
KR20130098766A (ko) * 2012-02-28 2013-09-05 창원대학교 산학협력단 회전기의 철손 산출 방법
CN105425178A (zh) * 2015-12-08 2016-03-23 云南电力试验研究院(集团)有限公司 一种基于任意波形低频电源的铁磁元件铁芯损耗测量方法
CN106326595A (zh) * 2016-09-06 2017-01-11 中国矿业大学 一种改进的开关磁阻电机铁损计算模型
CN106908745A (zh) * 2017-01-10 2017-06-30 云南电力试验研究院(集团)有限公司 一种基于低频方波的铁磁元件励磁特性和空载损耗的试验和计算方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5265611A (en) * 1988-09-23 1993-11-30 Siemens Aktiengellschaft Apparatus for measuring weak, location-dependent and time-dependent magnetic field
US9206672B2 (en) * 2013-03-15 2015-12-08 Fastcap Systems Corporation Inertial energy generator for supplying power to a downhole tool
CN104198966A (zh) * 2014-09-15 2014-12-10 河北工业大学 电工磁性材料异常损耗测量方法及其装置
CN105929347B (zh) * 2016-07-20 2019-02-22 福州大学 一种快速的磁性材料磁特性测量方法
JP6922260B2 (ja) * 2017-03-03 2021-08-18 日本製鉄株式会社 信号発生装置および信号発生方法
CN111190128B (zh) * 2018-11-15 2022-10-18 北京自动化控制设备研究所 一种磁阻电机铁磁材料bh特性检测算法
CN110399677B (zh) * 2019-07-25 2022-10-28 国网山西省电力公司电力科学研究院 基于偏磁状态下改进j-a公式的变压器直流偏磁仿真模拟方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52146674A (en) * 1976-05-31 1977-12-06 Yokogawa Hokushin Electric Corp Iron loss measuring apparatus
WO2005106720A2 (en) * 2004-04-30 2005-11-10 Dunlop Aerospace Limited Method of determining a hysteresis curve and apparatus
KR20130098766A (ko) * 2012-02-28 2013-09-05 창원대학교 산학협력단 회전기의 철손 산출 방법
CN103197267A (zh) * 2013-02-28 2013-07-10 南京邮电大学 一种磁芯损耗分离计算方法
CN105425178A (zh) * 2015-12-08 2016-03-23 云南电力试验研究院(集团)有限公司 一种基于任意波形低频电源的铁磁元件铁芯损耗测量方法
CN106326595A (zh) * 2016-09-06 2017-01-11 中国矿业大学 一种改进的开关磁阻电机铁损计算模型
CN106908745A (zh) * 2017-01-10 2017-06-30 云南电力试验研究院(集团)有限公司 一种基于低频方波的铁磁元件励磁特性和空载损耗的试验和计算方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YU ZHANG ; N. ALATAWNEH ; M.C. CHENG ; P. PILLAY: "Magnetic core losses measurement instrumentations and a dynamic hysteresis loss model", ELECTRICAL POWER&ENERGY CONFERENCE (EPEC), 2009 IEEE, 22 October 2009 (2009-10-22), Piscataway, NJ, USA , pages 1 - 5, XP031642183, ISBN: 978-1-4244-4508-0 *

Also Published As

Publication number Publication date
US20220342014A1 (en) 2022-10-27
CN112540330B (zh) 2021-10-08
CN112540330A (zh) 2021-03-23
US11965942B2 (en) 2024-04-23

Similar Documents

Publication Publication Date Title
Krings et al. Influence of the welding process on the performance of slotless PM motors with SiFe and NiFe stator laminations
WO2014114141A1 (zh) 基于小信号斜率映射的电流互感器剩磁检测方法
CN111879996A (zh) 基于电磁式电压互感器的暂态过电压反算方法
Daut et al. Magnetizing current, harmonic content and power factor as the indicators of transformer core saturation
Patsios et al. Dynamic finite element hysteresis model for iron loss calculation in non-oriented grain iron laminations under PWM excitation
Wang et al. Eddy current loss in grain-oriented steel laminations due to normal leakage flux
Krings et al. Experimental characterization of magnetic materials for electrical machine applications
Yu et al. Loss characteristics and model verification of soft magnetic composites under non-sinusoidal excitation
Enokizono Vector magnetic property and magnetic characteristic analysis by vector magneto-hysteretic E&S model
Da Luz et al. Three-phase transformer modeling using a vector hysteresis model and including the eddy current and the anomalous losses
Ibrahim et al. Novel equipment for the measurement of core losses in laminations for advanced machines
WO2022110526A1 (zh) 一种基于磁感原理的磁性材料b-h曲线测量方法
Li et al. Numerical Model for Eddy-current Loss of Wound Core in Single-Phase Transformer
WO2022110529A1 (zh) 一种基于磁感原理的磁性材料涡流损耗计算方法
CN206960634U (zh) 测量谐波激励下变压器铁芯材料磁滞回线所用装置
CN111913141B (zh) 磁滞损耗的确定方法、装置
Tsai Effects of Core Materials and Operating Parameters on Core Losses in a Brushless DC Motor
JP6578845B2 (ja) 電磁場解析装置、電磁場解析方法、およびプログラム
Zhang et al. An improved modeling of vector magnetic properties of electrical steel sheet for FEM application and its experimental verification
Breining et al. Iron loss measurement of nonoriented silicon and cobalt iron electrical steel sheets at liquid nitrogen temperature using ring specimen
Zhao et al. Analytical study and corresponding experiments for iron loss inside laminated core under ac-dc hybrid excitation
Chen et al. Research on dynamic magnetic flux measurement under DC-biased magnetization by the type-c transducer
Yue et al. Considerations of the magnetic field uniformity for 2-D rotational core loss measurement
Xing et al. Finite element calculation loss analysis of large transformers under the influence of GIC
Lu et al. The Mid-Frequency Magnetic Property Modeling of an Electrical Steel Sheet Using a Dynamic JA model Considering Magnetic Domain Energy and Fractional Derivative Operator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21896046

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21896046

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 21896046

Country of ref document: EP

Kind code of ref document: A1