WO2022110415A1 - Mems 麦克风芯片 - Google Patents

Mems 麦克风芯片 Download PDF

Info

Publication number
WO2022110415A1
WO2022110415A1 PCT/CN2020/138445 CN2020138445W WO2022110415A1 WO 2022110415 A1 WO2022110415 A1 WO 2022110415A1 CN 2020138445 W CN2020138445 W CN 2020138445W WO 2022110415 A1 WO2022110415 A1 WO 2022110415A1
Authority
WO
WIPO (PCT)
Prior art keywords
diaphragm
gap
main body
mems microphone
sensing area
Prior art date
Application number
PCT/CN2020/138445
Other languages
English (en)
French (fr)
Inventor
柏杨
赵转转
王凯杰
Original Assignee
瑞声声学科技(深圳)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 瑞声声学科技(深圳)有限公司 filed Critical 瑞声声学科技(深圳)有限公司
Publication of WO2022110415A1 publication Critical patent/WO2022110415A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R19/00Electrostatic transducers
    • H04R19/04Microphones

Definitions

  • the present application relates to the technical field of acoustics and electricity, and in particular, to a MEMS microphone chip.
  • the existing capacitive MEMS microphone chip consists of a capacitor part and a base part.
  • the chip structure includes a base with a back cavity, a vibrating membrane and a fixed back plate located on the upper part of the base, and the vibrating membrane and the fixed back plate constitute a capacitor system.
  • the diaphragm is divided into an inductive diaphragm area and a non-inductive diaphragm area according to functions, and the two are divided by diaphragm slits.
  • the inductive diaphragm area is used as a vibration electrode to participate in signal output
  • the non-inductive diaphragm area is used for signal output. zone is not involved in signal output.
  • a slit is usually set between the inductive diaphragm area and the non-inductive diaphragm area, or a vent hole is set at the center of the diaphragm to adjust the low-frequency attenuation performance.
  • the diaphragm slits are parallel lines. , which is parallel to the dividing line between the base and the back cavity. Therefore, the existing chip structure still needs to be further improved in terms of low frequency sensitivity, signal-to-noise ratio and reliability.
  • the purpose of this application is to provide a MEMS microphone chip that provides low frequency attenuation performance.
  • the present application provides a MEMS microphone chip, comprising a substrate with a back cavity, a vibrating membrane disposed on the substrate, and an inner cavity covering the vibrating membrane and spaced from the vibrating membrane
  • a plurality of first groove parts are formed in the direction away from the main body part, and the slits include a first gap formed between the main body part and the main body part, and a first pro
  • the non-sensing area further includes a plurality of second protruding parts extending from the main body part toward the main body part, and the main body part is recessed in a direction away from the main body part to fit the second convex parts.
  • the protruding part forms a plurality of second groove parts, the second protruding part and the second groove part are spaced apart to form a third gap, and the third gap communicates with the first gap and the second gap and enclose the slit.
  • the MEMS microphone chip further includes a first support member sandwiched between the body portion and the base, and a second support member sandwiched between the body portion and the base.
  • the first support member is annular and is arranged around the periphery of the main body portion, the second support member is spaced apart from the first support member and is columnarly supported on opposite sides of the main body portion .
  • the first protruding portion and the second protruding portion are staggered along the extending direction of the first gap.
  • through holes are formed through the back plate.
  • At least part of the through holes are disposed opposite to the first gap.
  • the second protruding portion covers at least part of the through hole in an orthographic projection of the back plate along the vibration direction of the diaphragm.
  • the first protruding portion covers at least part of the through hole in the orthographic projection of the back plate along the vibration direction of the diaphragm.
  • edges of the first raised portion and the second raised portion are parallel to each other and are fold lines or curves.
  • a MEMS microphone chip is provided. Under the condition that the width of the diaphragm slit is the same as that in the existing structure, by arranging the convex portion and the corresponding groove portion, the diaphragm slit is increased.
  • the length of the slit can reduce the acoustic impedance of the diaphragm slit area and improve the low-frequency attenuation performance of the MEMS microphone chip; and there is no need to set a vent hole in the center of the diaphragm to adjust the low-frequency attenuation performance of the microphone, which avoids the need for a central position of the diaphragm.
  • the vent holes are provided, and the acoustic holes of the substrate opposite to them introduce the risk of foreign particles.
  • FIG. 1 is a schematic structural diagram of a MEMS microphone chip of the present application.
  • FIG. 3 is a cross-sectional view of the MEMS microphone chip shown in FIG. 1 along the A-A direction;
  • FIG. 5 is a top view of the vibrating film provided in Embodiment 2 of the present application.
  • Fig. 6 is the partial enlarged schematic diagram of A area in Fig. 5;
  • FIG. 7 is a top view of the vibrating membrane provided in Embodiment 3 of the present application.
  • Fig. 8 is the partial enlarged schematic diagram of B region in Fig. 7;
  • FIG. 9 is a partially enlarged schematic view of the projection of the diaphragm provided in the fourth embodiment of the present application on the plane where the back plate is located;
  • FIG. 10 is a schematic enlarged partial projection of the diaphragm provided in the fifth embodiment of the application on the plane where the back plate is located;
  • FIG. 11 is a schematic enlarged schematic diagram of a partial projection of the diaphragm provided in the sixth embodiment of the application on the plane where the back plate is located;
  • FIG. 12 is a schematic enlarged schematic diagram of a partial projection of the diaphragm provided in Embodiment 7 of the application on the plane where the back plate is located;
  • FIG. 13 is a schematic enlarged schematic view of a partial projection of the diaphragm provided in the eighth embodiment of the application on the plane where the back plate is located;
  • FIG. 14 is a partially enlarged schematic view of the projection of the diaphragm provided in the ninth embodiment of the present application on the plane where the back plate is located.
  • the present application provides a MEMS microphone chip 100 , the chip 100 includes a substrate 10 having a back cavity 12 , a diaphragm 20 and a back plate 30 sequentially disposed on the surface of the substrate 10 .
  • the base 10 includes an annular base 11 surrounding the back cavity 12 , the diaphragm 20 and the back plate 30 are fixed on the annular base 11 , and the diaphragm 20 is disposed on the base 10 and the back. Between the plates 30 , a cavity is formed between the diaphragm 20 and the back plate 30 ; the diaphragm 20 is spaced from the substrate 10 facing it to form a first vibration space, and the diaphragm 20 is spaced from the back plate 30 A second vibration space is formed.
  • the back plate 30 is fixed to the base 10 through a support portion 40 , and the support portion 40 is located outside the diaphragm 20 .
  • the diaphragm 20 and the back plate 30 form a capacitive system.
  • the diaphragm 20 includes a sensing area 21 and a non-sensing area 22 spaced around the sensing area 21 .
  • the non-sensing area 22 surrounds the sensing area 21 , and the sensing area 21 and the non-sensing area 22 are spaced apart from each other to form a diaphragm slit 23 that communicates with each other.
  • the non-sensing area 22 and the annular base of the substrate 10 11 phases are fixed.
  • the sensing area 21 includes a body portion 211 and a plurality of first protruding portions 212 .
  • the first protruding portions 212 are formed extending from the edge 21 a of the body portion 211 toward the non-sensing area 22 .
  • the non-sensing area 22 includes a main body portion 221 spaced from the main body portion 211 .
  • the main body portion 221 is recessed in a direction away from the main body portion 211 to form a plurality of first groove portions 222 .
  • the first grooves The portions 222 and their corresponding first raised portions 212 are matched with each other.
  • the diaphragm slit 23 includes a first gap 231 formed between the main body portion 211 and the main body portion 221 , and a first gap 231 formed between the first protruding portion 212 and the first groove portion 222 . There is a second gap 232 therebetween, and the first gap 231 communicates with the second gap 232 .
  • the width of the diaphragm slit 23 is the same as that in the existing structure, by arranging the first convex portion 212 and the corresponding first groove portion 222, the length of the diaphragm slit 23 is increased, thereby reducing the length of the diaphragm slit 23.
  • the acoustic impedance in the area of the diaphragm slit 23 improves the low-frequency attenuation performance of the MEMS microphone chip 100z; and there is no need to set a vent hole in the center of the diaphragm 20 to adjust the low-frequency attenuation performance of the microphone, avoiding the need to set the vent hole in the center of the diaphragm 20. , the risk of introducing foreign particles into the acoustic hole of the substrate facing it.
  • the sensing diaphragm area 21 is lifted from the position of the diaphragm slit 23, which increases the length and area of the vent boundary and improves the resistance of the chip structure. The ability to blow air.
  • the edge of the first protruding portion 212 and the edge of the first groove portion 222 corresponding to the first protruding portion 212 are fold lines or curves that are parallel to each other. That is, the orthographic projection of the second gap 232 formed by the first convex portion 212 and the corresponding first groove portion 222 along the vibration direction of the diaphragm 20 is a folded line or a curved line that is parallel to each other.
  • the widths of a plurality of the first protrusions 212 are equal, or the widths of the first protrusions 212 are not equal.
  • a plurality of the first protruding portions 212 are arranged at an equal distance from each other, or a plurality of the first protruding portions 212 are arranged at an unequal interval from each other.
  • the MEMS microphone chip further includes a first support member 41 sandwiched between the main body portion 221 and the substrate 10 , and a first support member 41 sandwiched between the main body portion 211 and the substrate
  • the second supporting member 42 between 10 and 10 , the heights of the first supporting member and the second supporting member along the vibration direction of the diaphragm 20 are the same.
  • the first support member 41 is annular and is disposed around the periphery of the main body portion 221 , and the second support member 42 is spaced apart from the first support member 41 and supported on the main body portion in a columnar shape. Opposite sides of 211.
  • the difference between the second embodiment and the first embodiment is that the non-sensing area 22 further includes a plurality of second parts extending from the edge 22 a of the main body part 221 to the direction of the main body part 211 .
  • the protruding portion 223 , the body portion 211 of the sensing area 21 is recessed in a direction away from the main body portion 221 to cooperate with the second protruding portion 223 to form a plurality of second groove portions 213 .
  • the second protruding portion 223 and the corresponding second recess portion 213, the second protruding portion 223 and the second recess portion 213 are spaced apart to form a third gap 233, and the third gap 233 Connecting with the first gap 231 and the second gap 232 and enclosing the diaphragm slit 23, thereby further increasing the length of the diaphragm slit 23 and reducing the acoustic impedance in the area of the diaphragm slit 23, Improve the performance of low frequency attenuation of MEMS microphone chips.
  • the edge of the first convex portion 212 and the edge of the first groove portion 222 corresponding to the first convex portion 212 are fold lines or curves that are parallel to each other.
  • the edges of the two raised portions 223 and the edges of the second groove portion 213 corresponding to the second raised portions 223 are folded lines or curved lines that are parallel to each other. That is, the second gap 232 formed by the first convex portion 212 and its corresponding first groove portion 221 , and the third gap 233 formed by the second convex portion 223 and its corresponding second groove portion 213
  • the orthographic projections along the vibration direction of the diaphragm 20 are folded lines or curves that are parallel to each other.
  • the widths of the first protruding parts 212 and the second protruding parts 223 are equal, or the widths of the first protruding parts 212 and the second protruding parts 222 are not equal.
  • a plurality of the first protruding parts 212 and the second protruding parts 223 are arranged at an equal distance from each other, or a plurality of the first protruding parts 212 and the second protruding parts 223 are arranged at an unequal distance from each other. set up.
  • the first protruding parts 212 and the second protruding parts 223 are arranged in a staggered sequence along the extending direction of the first gap 231 , that is, the first protruding parts 212 and the second protruding parts 223 are alternately arranged in sequence They are arranged on both sides of the extending direction of the first gap 231 .
  • the difference between the third embodiment and the first embodiment is that the non-sensing area 22 further includes a plurality of second parts extending from the edge 22 a of the main body part 221 to the direction of the main body part 211 .
  • the protruding portion 223 , the body portion 211 of the sensing area 21 is recessed in a direction away from the main body portion 221 to cooperate with the second protruding portion 223 to form a plurality of second groove portions 213 .
  • the second protruding portion 223 and the corresponding second recess portion 213, the second protruding portion 223 and the second recess portion 213 are spaced apart to form a third gap 233, and the third gap 233 Connecting with the first gap 231 and the second gap 232 and enclosing the diaphragm slit 23, thereby further increasing the length of the diaphragm slit 23 and reducing the acoustic impedance in the area of the diaphragm slit 23, Improve the performance of low frequency attenuation of MEMS microphone chips.
  • the first protruding portion 212 and the second protruding portion 223 are arranged in a non-staggered manner along the extending direction of the first gap 231 , that is, the first protruding portion 212 and the second protruding portion 223 are spaced apart and Non-alternately arranged on both sides of the extending direction of the first gap 231 .
  • Fig. 9 is a schematic diagram showing the enlarged projection of the diaphragm on the plane where the back plate is located, wherein the body portion 211 and the main body portion 221 respectively form projections 211' and 221' on the plane where the back plate is located.
  • the projection 212' of the first raised portion and the projection 223' of the second raised portion are arranged alternately, and the projection 223' of the second raised portion covers at least part of the through hole 31, that is, at least part of the through hole 31 and the The first gap 231 is directly opposite.
  • the gap 231' between the projection 211' of the main body and the projection 221' of the main body is directly opposite to the through hole 31, that is, the through hole 31 is directly opposite to the first gap 231, which can effectively reduce the pressure film damping at this position.
  • the noise is reduced and the signal-to-noise ratio of the MEMS microphone chip is improved.
  • the difference between the fifth embodiment and the third embodiment is that the back plate 30 is formed with a through hole 31 penetrating the back plate 30 .
  • 10 is an enlarged schematic view of the projection of the diaphragm on the plane where the back plate is located, wherein the body portion 211 and the main body portion 221 respectively form projections 211' and 221' on the plane where the back plate is located.
  • the projection 212' of the first raised portion and the projection 223' of the second raised portion are not staggered, and the projection 212' of the first raised portion and the projection 223' of the second raised portion cover at least part of the through hole 31, That is, at least a part of the through holes 31 are disposed opposite to the first gap 231 .
  • the gap 231' between the projection 211' of the main body and the projection 221' of the main body is directly opposite to the through hole 31, that is, the through hole 31 is directly opposite to the first gap 231, which can effectively reduce the pressure film damping at this position.
  • the noise is reduced and the signal-to-noise ratio of the MEMS microphone chip is improved.
  • the back plate 30 is formed with a through hole 31 penetrating the back plate 30 .
  • 11 is an enlarged schematic view of the projection of the diaphragm on the plane where the back plate is located, wherein the body portion 211 and the main body portion 221 respectively form projections 211' and 221' on the plane where the back plate is located.
  • the projection 212' of the first protruding portion and the projection 223' of the second protruding portion are alternately arranged, and the projection 223' of the second protruding portion covers at least part of the through hole 31.
  • the projection 223 ′ of the second raised portion is directly opposite to the through hole 31 , that is, the through hole 31 is directly opposite to the second raised portion 223 , which is conducive to the rapid release of gas in the scenarios of blowing and falling, and can effectively reduce the The compression film damping at this position reduces noise and improves the signal-to-noise ratio of the MEMS microphone chip.
  • the difference between the seventh embodiment and the third embodiment is that the back plate 30 is formed with a through hole 31 penetrating the back plate 30 .
  • 12 is an enlarged schematic view of the projection of the diaphragm on the plane where the back plate is located, wherein the body portion 211 and the main body portion 221 respectively form projections 211' and 221' on the plane where the back plate is located.
  • the projection 212' of the first raised portion and the projection 223' of the second raised portion are not staggered, and the projection 223' of the second raised portion covers at least part of the through hole 31.
  • the projection 223 ′ of the second raised portion is directly opposite to the through hole 31 , that is, the through hole 31 is directly opposite to the second raised portion 223 , which is conducive to the rapid release of gas in the scenarios of blowing and falling, and can effectively reduce the The compression film damping at this position reduces noise and improves the signal-to-noise ratio of the MEMS microphone chip.
  • the difference between the eighth embodiment and the second embodiment is that the back plate 30 is formed with a through hole 31 penetrating the back plate 30 .
  • 13 is an enlarged schematic view of the projection of the diaphragm on the plane where the back plate is located, wherein the body portion 211 and the main body portion 221 respectively form projections 211' and 221' on the plane where the back plate is located.
  • the projection 212' of the first protruding portion and the projection 223' of the second protruding portion are alternately arranged, and the projection 212' of the first protruding portion covers at least part of the through hole 31.
  • the projection 212' of the first protruding portion is directly opposite to the through hole 31, that is, the through hole 31 is facing the first protruding portion 212, which is conducive to the rapid release of gas in the scenario of blowing and falling, and can effectively reduce the The compression film damping at this position reduces noise and improves the signal-to-noise ratio of the MEMS microphone chip.
  • the difference between the ninth embodiment and the third embodiment is that the back plate 30 is formed with a through hole 31 penetrating the back plate 30 .
  • 14 is an enlarged schematic view of the projection of the diaphragm on the plane where the back plate is located, wherein the body portion 211 and the main body portion 221 respectively form projections 211' and 221' on the plane where the back plate is located.
  • the projection 212' of the first raised portion and the projection 223' of the second raised portion are not staggered, and the projection 212' of the first raised portion covers at least part of the through hole 31.
  • the projection 212' of the first protruding portion is directly opposite to the through hole 31, that is, the through hole 31 is facing the first protruding portion 212, which is conducive to the rapid release of gas in the scenario of blowing and falling, and can effectively reduce the The compression film damping at this position reduces noise and improves the signal-to-noise ratio of the MEMS microphone chip.
  • the inside and the outside in the above embodiments are relative to the MEMS microphone chip, the one facing the MEMS microphone chip is the inside, and the one facing away from the MEMS microphone chip is the outside.
  • the MEMS microphone chips provided in the embodiments of the present application are also applicable to MEMS microphone chips having a diaphragm, a substrate and a back cavity structure, such as piezoelectric and optical MEMS microphone chips.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Electrostatic, Electromagnetic, Magneto- Strictive, And Variable-Resistance Transducers (AREA)
  • Pressure Sensors (AREA)
  • Micromachines (AREA)

Abstract

本申请提供了MEMS麦克风芯片,包括具有背腔的基底,设置于基底上的振膜,和覆盖于振膜上且与振膜间隔有内腔的背板;振膜包括位于中部的感应区域及环绕感应区域并与感应区域相间隙设置形成振膜狭缝的非感应区域,感应区域包括本体部以及自本体部的边缘向非感应区域的方向延伸形成的若干第一凸起部,非感应区域包括与本体部间隔设置的主体部,主体部配合所述第一凸起部朝远离本体部的方向凹陷形成若干第一凹槽部狭缝包括形成在本体部与主体部之间的第一间隙、以及形成在第一凸起部与第一凹槽部之间的第二间隙,第一间隙与第二间隙连通。本申请增加了振膜狭缝的长度,从而减小振膜狭缝区域的声阻抗,改善MEMS麦克风芯片低频衰减的性能。

Description

MEMS麦克风芯片 技术领域
本申请涉及声电技术领域,尤其涉及一种MEMS麦克风芯片。
背景技术
现有电容式MEMS麦克风芯片由电容部分和基底部分组成。具体的,芯片结构包括具有背腔的基底、以及位于基底上部的振膜和固定背板,振膜与固定背板构成电容系统。当声压作用于振膜时,振膜正对背板与背对背板的两面存在压强差,使得振膜向靠近背板或远离背板的方向运动,从而引起振膜与背板之间电容的变化,实现声音信号向电信号的转换,以上即为MEMS麦克风芯片的工作原理。
现有芯片结构中,振膜根据功能分为感应振膜区和非感应振膜区,二者通过振膜狭缝进行分割,其中,感应振膜区作为振动电极参与信号输出,非感应振膜区不参与信号输出。实际终端产品应用中,由于与MEMS麦克风芯片适配的开发板的模组算法不同,因此针对不同终端需要应用不同的麦克风低频衰减性能。
在设计MEMS麦克风芯片时,通常在感应振膜区和非感应振膜区之间设置狭缝分离或者在振膜的中央位置设置泄气孔以调节低频衰减性能,振膜狭缝为相互平行的直线,其与基底和背腔的分界线平行。因此,现有芯片结构在低频灵敏度、信噪比和可靠性方面还有待进一步改进。
技术问题
本申请的目的在于提供了一种提供低频衰减性能的MEMS麦克风芯片。
技术解决方案
为达到上述目的,本申请提供了一种MEMS麦克风芯片,包括具有背腔的基底,设置于所述基底上的振膜,和覆盖于所述振膜上且与所述振膜间隔有内腔的背板;所述振膜包括位于中部的感应区域及环绕所述感应区域并与所述感应区域相间隙设置形成振膜狭缝的非感应区域,所述感应区域包括本体部以及自所述本体部的边缘向所述非感应区域的方向延伸形成的若干第一凸起部,所述非感应区域包括与所述本体部间隔设置的主体部,所述主体部配合所述第一凸起部朝远离所述本体部的方向凹陷形成若干第一凹槽部,所述狭缝包括形成在所述本体部与所述主体部之间的第一间隙、以及形成在所述第一凸起部与所述第一凹槽部之间的第二间隙,所述第一间隙与所述第二间隙连通。
优选的,所述非感应区还包括自所述主体部向所述本体部的方向延伸形成的若干第二凸起部,所述本体部朝远离所述主体部的方向凹陷配合所述第二凸起部形成若干第二凹槽部,所述第二凸起部与所述第二凹槽部间隔形成第三间隙,所述第三间隙与所述第一间隙及所述第二间隙连通并围成所述狭缝。
优选的,所述MEMS麦克风芯片还包括夹设在所述主体部与所述基底之间的第一支撑件以及夹设于所述本体部与所述基底之间的第二支撑件。
优选的,所述第一支撑件呈环状并绕设在所述主体部周缘,所述第二支撑件与所述第一支撑件间隔设置并呈柱状支撑于所述本体部的相对两侧。
优选的,所述第一凸起部和第二凸起部沿所述第一间隙的延伸方向交错布置。
优选的,所述背板贯通形成有通孔。
优选的,至少部分所述通孔与所述第一间隙正对设置。
优选的,所述第二凸起部沿所述振膜的振动方向在所述背板的正投影覆盖至少部分所述通孔。
优选的,所述第一凸起部沿所述振膜的振动方向在所述背板的正投影覆盖至少部分所述通孔。
优选的,所述第一凸起部和所述第二凸起部的边缘相互平行且为折线或曲线。
有益效果
本申请的有益效果在于:提供了一种MEMS麦克风芯片,在振膜狭缝的宽度与现有结构中相同情况下,通过设置凸起部和与之对应的凹槽部,增加了振膜狭缝的长度,从而减小振膜狭缝区域的声阻抗,改善MEMS麦克风芯片低频衰减的性能;且无需在振膜的中央位置设置泄气孔调节麦克风的低频衰减性能,避免了在振膜中央位置设置泄气孔,与其正对的基板声孔引入外来颗粒物的风险。
附图说明
图1为本申请MEMS麦克风芯片的结构示意图;
图2为本申请MEMS麦克风芯片的分解图;
图3为图1所示MEMS麦克风芯片沿A-A方向的剖视图;
图4为本申请实施例一提供的振膜的俯视图;
图5为本申请实施例二提供的振膜的俯视图;
图6为图5中A区域的局部放大示意图;
图7为本申请实施例三提供的振膜的俯视图;
图8为图7中B区域的局部放大示意图;
图9为本申请实施例四提供的振膜在背板所在平面的部分投影放大示意图;
图10为本申请实施例五提供的振膜在背板所在平面的部分投影放大示意图;
图11为本申请实施例六提供的振膜在背板所在平面的部分投影放大示意图;
图12为本申请实施例七提供的振膜在背板所在平面的部分投影放大示意图;
图13为本申请实施例八提供的振膜在背板所在平面的部分投影放大示意图;
图14为本申请实施例九提供的振膜在背板所在平面的部分投影放大示意图。
本发明的实施方式
下面结合附图和实施方式对本申请作进一步说明。
需要说明的是,本申请实施例中所有方向性指示(诸如上、下、左、右、前、后、内、外、顶部、底部……)仅用于解释在某一特定姿态(如附图所示)下各部件之间的相对位置关系等,如果该特定姿态发生改变时,则该方向性指示也相应地随之改变。
实施例一
参见图1至图4,本申请提供一种MEMS麦克风芯片100,该芯片100包括具有背腔12的基底10和依次设置于基底10表面上的振膜20、背板30。
所述基底10包括围设成所述背腔12的环形底座11,所述振膜20以及所述背板30固定于所述环形底座11,所述振膜20设置于所述基底10与背板30之间,所述振膜20与所述背板30之间形成空腔;所述振膜20与其正对的基底10间隔形成第一振动空间,所述振膜20与背板30间隔形成第二振动空间。
所述背板30通过支撑部40固定于所述基底10,所述支撑部40位于所述振膜20的外侧。
所述振膜20与所述背板30组成电容系统。
当压力(声波)通过贯穿所述背板30的多个通孔31作用在所述振膜20上时,所述振膜20向靠近和远离所述背板30方向振动以使得所述振膜20与所述背板30之间电容的电容量产生变化。因此,可以生成与压力(声波)的变化相对应的电信号,该电信号通过与所述电容系统连接的外部电路输出,最终实现麦克风的功能。
参见图4,所述振膜20包括感应区域21和环绕所述感应区域21间隔设置的非感应区域22。所述非感应区域22环绕所述感应区域21,且所述感应区域21与所述非感应区域22相间隙设置形成连通的振膜狭缝23,所述非感应区域22与基底10的环形底座11相固定。
所述感应区域21包括本体部211和若干第一凸起部212,所述第一凸起部212自所述本体部211的边缘21a向所述非感应区域22的方向延伸形成。所述非感应区域22包括与所述本体部211间隔设置的主体部221,所述主体部221朝远离所述本体部211的方向凹陷形成若干第一凹槽部222,所述第一凹槽部222与其对应的第一凸起部212相互匹配。
所述振膜狭缝23包括形成在所述本体部211与所述主体部221之间的第一间隙231、以及形成在所述第一凸起部212与所述第一凹槽部222之间的第二间隙232,所述第一间隙231与所述第二间隙232连通。
在振膜狭缝23的宽度与现有结构中相同情况下,通过设置第一凸起部212和与之对应的第一凹槽部222,增加了振膜狭缝23的长度,从而减小振膜狭缝23区域的声阻抗,改善MEMS麦克风芯片100z低频衰减的性能;且无需在振膜20的中央位置设置泄气孔调节麦克风的低频衰减性能,避免了在振膜20中央位置设置泄气孔,与其正对的基板声孔引入外来颗粒物的风险。
本申请的MEMS麦克风芯片,在大声压或者小气流的吹气条件下,感应振膜区21从振膜狭缝23的位置抬起,增大了泄气边界的长度和泄气面积,提升芯片结构抵抗吹气的能力。
在本实施例中,所述第一凸起部212的边缘和与所述第一凸起部212相对应的所述第一凹槽部222的边缘为相互平行的折线或曲线。即,所述第一凸起部212与其对应的第一凹槽部222形成的第二间隙232沿所述振膜20的振动方向的正投影为相互平行的折线或曲线。
在本实施例中,若干所述第一凸起部212的宽度相等,或若干所述第一凸起部212的宽度不相等。
在本实施例中,若干所述第一凸起部212彼此等间距的设置,或若干所述第一凸起部212彼此不等间距的设置。
进一步优选地,请参阅图2,所述MEMS麦克风芯片还包括夹设在所述主体部221与所述基底10之间的第一支撑件41以及夹设于所述本体部211与所述基底10之间的第二支撑件42,所述第一支撑件与所述第二支撑件沿所述振膜20的振动方向的高度相同。
优选的,所述第一支撑件41呈环状并绕设在所述主体部221周缘,所述第二支撑件42与所述第一支撑件41间隔设置并呈柱状支撑于所述本体部211的相对两侧。
实施例二
请参阅图5至图6,实施例二与实施例一的区别在于,所述非感应区域22还包括自所述主体部221的边缘22a向所述本体部211的方向延伸形成的若干第二凸起部223,所述感应区域21的本体部211朝远离所述主体部221的方向凹陷配合所述第二凸起部223形成若干第二凹槽部213。通过设置第二凸起部223和与之对应的第二凹槽部213,所述第二凸起部223与所述第二凹槽部213间隔形成第三间隙233,所述第三间隙233与所述第一间隙231及所述第二间隙232连通并围成所述振膜狭缝23,从而进一步增加了振膜狭缝23的长度,减小振膜狭缝23区域的声阻抗,改善MEMS麦克风芯片低频衰减的性能。
在本实施例中,所述第一凸起部212的边缘和与所述第一凸起部212相对应的所述第一凹槽部222的边缘为相互平行的折线或曲线,所述第二凸起部223的边缘和与所述第二凸起部223相对应的所述第二凹槽部213的边缘为相互平行的折线或曲线。即,所述第一凸起部212与其对应的第一凹槽部221形成的第二间隙232、以及所述第二凸起部223与其对应的第二凹槽部213形成的第三间隙233沿所述振膜20的振动方向的正投影为相互平行的折线或曲线。
在本实施例中,若干所述第一凸起部212、第二凸起部223的宽度相等,或若干所述第一凸起部212、第二凸起部222的宽度不相等。
在本实施例中,若干所述第一凸起部212、第二凸起部223彼此等间距的设置,或若干所述第一凸起部212、第二凸起部223彼此不等间距的设置。
优选的,所述第一凸起部212和第二凸起部223沿所述第一间隙231的延伸方向依次交错布置,即所述第一凸起部212和第二凸起部223依次交替布置在所述第一间隙231的延伸方向的两侧。
实施例三
请参阅图7至图8,实施例三与实施例一的区别在于,所述非感应区域22还包括自所述主体部221的边缘22a向所述本体部211的方向延伸形成的若干第二凸起部223,所述感应区域21的本体部211朝远离所述主体部221的方向凹陷配合所述第二凸起部223形成若干第二凹槽部213。通过设置第二凸起部223和与之对应的第二凹槽部213,所述第二凸起部223与所述第二凹槽部213间隔形成第三间隙233,所述第三间隙233与所述第一间隙231及所述第二间隙232连通并围成所述振膜狭缝23,从而进一步增加了振膜狭缝23的长度,减小振膜狭缝23区域的声阻抗,改善MEMS麦克风芯片低频衰减的性能。
优选的,所述第一凸起部212和第二凸起部223沿所述第一间隙231的延伸方向非交错布置,即所述第一凸起部212和第二凸起部223间隔且非交替布置在所述第一间隙231的延伸方向的两侧。
实施例四
实施例四与实施例二的区别在于:所述背板30形成有贯通所述背板30的通孔31。如图9所示为振膜在背板所在平面的投影放大示意图,其中本体部211与主体部221分别在背板所在平面上形成投影211’与221’。第一凸起部的投影212’与第二凸起部的投影223’交错设置,且第二凸起部的投影223’覆盖至少部分通孔31,即至少部分所述通孔31与所述第一间隙231正对设置。
本体部的投影211’与主体部的投影221’之间的间隙231’与通孔31正对,即,通孔31与第一间隙231正对,可以有效降低该位置处的压膜阻尼,降低了噪声,提高了MEMS麦克风芯片的信噪比。
实施例五
实施例五与实施例三的区别在于:所述背板30形成有贯通所述背板30的通孔31。如图10所示为振膜在背板所在平面的投影放大示意图,其中本体部211与主体部221分别在背板所在平面上形成投影211’与221’。第一凸起部的投影212’与第二凸起部的投影223’非交错设置,且第一凸起部的投影212’与第二凸起部的投影223’覆盖至少部分通孔31,即至少部分所述通孔31与所述第一间隙231正对设置。
本体部的投影211’与主体部的投影221’之间的间隙231’与通孔31正对,即,通孔31与第一间隙231正对,可以有效降低该位置处的压膜阻尼,降低了噪声,提高了MEMS麦克风芯片的信噪比。
实施例六
实施例六与实施例二的区别在于:所述背板30形成有贯通所述背板30的通孔31。如图11所示为振膜在背板所在平面的投影放大示意图,其中本体部211与主体部221分别在背板所在平面上形成投影211’与221’。第一凸起部的投影212’与第二凸起部的投影223’交错设置,且第二凸起部的投影223’覆盖至少部分通孔31。
第二凸起部的投影223’与通孔31正对,即,通孔31与第二凸起部223正对,在吹气和跌落的场景下有利于气体的快速释放,同时可以有效降低该位置处的压膜阻尼,降低了噪声,提高了MEMS麦克风芯片的信噪比。
实施例七
实施例七与实施例三的区别在于:所述背板30形成有贯通所述背板30的通孔31。如图12所示为振膜在背板所在平面的投影放大示意图,其中本体部211与主体部221分别在背板所在平面上形成投影211’与221’。第一凸起部的投影212’与第二凸起部的投影223’非交错设置,且第二凸起部的投影223’覆盖至少部分通孔31。
第二凸起部的投影223’与通孔31正对,即,通孔31与第二凸起部223正对,在吹气和跌落的场景下有利于气体的快速释放,同时可以有效降低该位置处的压膜阻尼,降低了噪声,提高了MEMS麦克风芯片的信噪比。
实施例八
实施例八与实施例二的区别在于:所述背板30形成有贯通所述背板30的通孔31。如图13所示为振膜在背板所在平面的投影放大示意图,其中本体部211与主体部221分别在背板所在平面上形成投影211’与221’。第一凸起部的投影212’与第二凸起部的投影223’交错设置,且第一凸起部的投影212’覆盖至少部分通孔31。
第一凸起部的投影212’与通孔31正对,即,通孔31与第一凸起部212正对,在吹气和跌落的场景下有利于气体的快速释放,同时可以有效降低该位置处的压膜阻尼,降低了噪声,提高了MEMS麦克风芯片的信噪比。
实施例九
实施例九与实施例三的区别在于:所述背板30形成有贯通所述背板30的通孔31。如图14所示为振膜在背板所在平面的投影放大示意图,其中本体部211与主体部221分别在背板所在平面上形成投影211’与221’。第一凸起部的投影212’与第二凸起部的投影223’非交错设置,且第一凸起部的投影212’覆盖至少部分通孔31。
第一凸起部的投影212’与通孔31正对,即,通孔31与第一凸起部212正对,在吹气和跌落的场景下有利于气体的快速释放,同时可以有效降低该位置处的压膜阻尼,降低了噪声,提高了MEMS麦克风芯片的信噪比。
其中,上述各实施例中的内、外为相对MEMS麦克风芯片而言,朝向MEMS麦克风芯片的即为内,背向MEMS麦克风芯片的即为外。
本申请实施例提供的MEMS麦克风芯片同样适用于具有振膜、基底和背腔结构的MEMS麦克风芯片,如压电式和光学式MEMS麦克风芯片。
以上所述的仅是本申请的实施方式,在此应当指出,对于本领域的普通技术人员来说,在不脱离本申请创造构思的前提下,还可以做出改进,但这些均属于本申请的保护范围。

Claims (10)

1、一种MEMS麦克风芯片,包括具有背腔的基底,设置于所述基底上的振膜,和覆盖于所述振膜上且与所述振膜间隔有内腔的背板;其特征在于,所述振膜包括位于中部的感应区域及环绕所述感应区域并与所述感应区域相间隙设置形成振膜狭缝的非感应区域,所述感应区域包括本体部以及自所述本体部的边缘向所述非感应区域的方向延伸形成的若干第一凸起部,所述非感应区域包括与所述本体部间隔设置的主体部,所述主体部配合所述第一凸起部朝远离所述本体部的方向凹陷形成若干第一凹槽部,所述狭缝包括形成在所述本体部与所述主体部之间的第一间隙、以及形成在所述第一凸起部与所述第一凹槽部之间的第二间隙,所述第一间隙与所述第二间隙连通。
2、根据权利要求1所述的MEMS麦克风芯片,其特征在于:所述非感应区还包括自所述主体部向所述本体部的方向延伸形成的若干第二凸起部,所述本体部朝远离所述主体部的方向凹陷配合所述第二凸起部形成若干第二凹槽部,所述第二凸起部与所述第二凹槽部间隔形成第三间隙,所述第三间隙与所述第一间隙及所述第二间隙连通并围成所述狭缝。
3、根据权利要求1所述的MEMS麦克风芯片,其特征在于:所述MEMS麦克风芯片还包括夹设在所述主体部与所述基底之间的第一支撑件以及夹设于所述本体部与所述基底之间的第二支撑件。
4、根据权利要求3所述的MEMS麦克风芯片,其特征在于:所述第一支撑件呈环状并绕设在所述主体部周缘,所述第二支撑件与所述第一支撑件间隔设置并呈柱状支撑于所述本体部的相对两侧。
5、根据权利要求2所述的MEMS麦克风芯片,其特征在于:所述第一凸起部和第二凸起部沿所述第一间隙的延伸方向交错布置。
6、根据权利要求5所述的MEMS麦克风芯片,其特征在于:所述背板贯通形成有通孔。
7、根据权利要求6所述的MEMS麦克风芯片,其特征在于:至少部分所述通孔与所述第一间隙正对设置。
8、根据权利要求6或7所述的MEMS麦克风芯片,其特征在于:所述第二凸起部沿所述振膜的振动方向在所述背板的正投影覆盖至少部分所述通孔。
9、根据权利要求6或7所述的MEMS麦克风芯片,其特征在于:所述第一凸起部沿所述振膜的振动方向在所述背板的正投影覆盖至少部分所述通孔。
10、根据权利要求2所述的MEMS麦克风芯片,其特征在于:所述第一凸起部和所述第二凸起部的边缘相互平行且为折线或曲线。
 
PCT/CN2020/138445 2020-11-30 2020-12-23 Mems 麦克风芯片 WO2022110415A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202022824858.3U CN214154840U (zh) 2020-11-30 2020-11-30 Mems麦克风芯片
CN202022824858.3 2020-11-30

Publications (1)

Publication Number Publication Date
WO2022110415A1 true WO2022110415A1 (zh) 2022-06-02

Family

ID=77567700

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/138445 WO2022110415A1 (zh) 2020-11-30 2020-12-23 Mems 麦克风芯片

Country Status (2)

Country Link
CN (1) CN214154840U (zh)
WO (1) WO2022110415A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101959103A (zh) * 2010-04-19 2011-01-26 瑞声声学科技(深圳)有限公司 振膜和包括该振膜的麦克风
CN204316746U (zh) * 2014-11-28 2015-05-06 歌尔声学股份有限公司 一种mems传感器和mems麦克风
JP2015188946A (ja) * 2014-03-27 2015-11-02 新日本無線株式会社 Mems素子
US20150382091A1 (en) * 2014-06-27 2015-12-31 Samsung Electro-Mechanics Co., Ltd. Microphone
CN209218393U (zh) * 2018-09-26 2019-08-06 瑞声声学科技(深圳)有限公司 Mems麦克风
US20190342670A1 (en) * 2018-05-03 2019-11-07 Db Hitek Co., Ltd. Mems microphone, method of manufacturing the same and mems microphone package including the same
US10681472B2 (en) * 2017-09-11 2020-06-09 Db Hitek Co., Ltd. MEMS microphone and method of manufacturing the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101959103A (zh) * 2010-04-19 2011-01-26 瑞声声学科技(深圳)有限公司 振膜和包括该振膜的麦克风
JP2015188946A (ja) * 2014-03-27 2015-11-02 新日本無線株式会社 Mems素子
US20150382091A1 (en) * 2014-06-27 2015-12-31 Samsung Electro-Mechanics Co., Ltd. Microphone
CN204316746U (zh) * 2014-11-28 2015-05-06 歌尔声学股份有限公司 一种mems传感器和mems麦克风
US10681472B2 (en) * 2017-09-11 2020-06-09 Db Hitek Co., Ltd. MEMS microphone and method of manufacturing the same
US20190342670A1 (en) * 2018-05-03 2019-11-07 Db Hitek Co., Ltd. Mems microphone, method of manufacturing the same and mems microphone package including the same
CN209218393U (zh) * 2018-09-26 2019-08-06 瑞声声学科技(深圳)有限公司 Mems麦克风

Also Published As

Publication number Publication date
CN214154840U (zh) 2021-09-07

Similar Documents

Publication Publication Date Title
CN105191350B (zh) 静电容量式传感器、声音传感器以及麦克风
US9351062B2 (en) Microphone unit
JP5252104B1 (ja) 静電容量型センサ、音響センサ及びマイクロフォン
TWI508574B (zh) Microphone unit
US20100166235A1 (en) Silicon condenser microphone
CN104488290B (zh) 静电容量型传感器、声音传感器及传声器
JP2009044600A (ja) マイクロホン装置およびその製造方法
CN115175069A (zh) 动圈式扬声器
JP5928163B2 (ja) 静電容量型センサ、音響センサ及びマイクロフォン
US11895452B2 (en) Bone conduction microphone
WO2022000852A1 (zh) 振动传感器
JP5636795B2 (ja) マイクロホンユニット
KR101514567B1 (ko) 음향 소자 및 이를 구비하는 마이크로폰 패키지
WO2022110415A1 (zh) Mems 麦克风芯片
JP2006311106A (ja) 音響センサ
JP2006332799A (ja) 音響センサ
US20220116715A1 (en) Micro-electro-mechanical system acoustic sensor, micro-electro-mechanical system package structure and method for manufacturing the same
CN112261561B (zh) 一种mems发声装置
WO2023206721A1 (zh) Mems 麦克风
WO2022000853A1 (zh) 振动传感器
JP2016144046A (ja) 音響センサ
WO2022104928A1 (zh) Mems麦克风芯片
US20220353621A1 (en) Silicon microphone
CN217283376U (zh) 一种封装件
JP2006325034A (ja) 音響センサ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20963303

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20963303

Country of ref document: EP

Kind code of ref document: A1