WO2022110203A1 - 基站天线和基站 - Google Patents

基站天线和基站 Download PDF

Info

Publication number
WO2022110203A1
WO2022110203A1 PCT/CN2020/132917 CN2020132917W WO2022110203A1 WO 2022110203 A1 WO2022110203 A1 WO 2022110203A1 CN 2020132917 W CN2020132917 W CN 2020132917W WO 2022110203 A1 WO2022110203 A1 WO 2022110203A1
Authority
WO
WIPO (PCT)
Prior art keywords
radiation unit
base station
phase
radiating element
antenna
Prior art date
Application number
PCT/CN2020/132917
Other languages
English (en)
French (fr)
Inventor
何鑫
徐挺威
刘禹锡
谢国庆
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP20963091.2A priority Critical patent/EP4235970A4/en
Priority to PCT/CN2020/132917 priority patent/WO2022110203A1/zh
Priority to CN202080106636.8A priority patent/CN116325365A/zh
Publication of WO2022110203A1 publication Critical patent/WO2022110203A1/zh
Priority to US18/324,599 priority patent/US20230299477A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/30Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/246Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for base stations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/1207Supports; Mounting means for fastening a rigid aerial element
    • H01Q1/1228Supports; Mounting means for fastening a rigid aerial element on a boom
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/50Structural association of antennas with earthing switches, lead-in devices or lightning protectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/061Two dimensional planar arrays
    • H01Q21/065Patch antenna array
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/24Combinations of antenna units polarised in different directions for transmitting or receiving circularly and elliptically polarised waves or waves linearly polarised in any direction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/30Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array
    • H01Q3/34Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array by electrical means

Definitions

  • the present application relates to the field of communication technologies, and in particular, to a base station antenna and a base station.
  • Multi-Input Multi-Output MIMO
  • the number of antenna arrays in the base station antenna is increasing, and the width of the base station antenna in the horizontal direction cannot be unlimited.
  • the arrangement of the antenna array in the horizontal direction becomes denser and denser.
  • the antenna array is generally fixed on the base plate and is parallel to the base plate, and the width of the base plate is generally limited. Under the limited width of the base plate, some antenna arrays are seriously deviated from the central axis of the base plate, which will lead to the same antenna array operating at different frequencies.
  • the degree of coincidence of the horizontal plane patterns of the generated beams (hereinafter simply referred to as the degree of coincidence of the beams) becomes poor, thereby affecting the performance of the base station antenna.
  • Embodiments of the present application provide a base station antenna and a base station, which are used to improve the coincidence of beams generated by the same antenna array operating at different frequencies.
  • a base station antenna including: a plurality of antenna arrays and a phase dispersion circuit.
  • the multiple antenna arrays include multiple radiating elements, and the multiple radiating elements include a first radiating element and a second radiating element with lateral spacing.
  • the phase dispersion circuit is used to adjust the phase slope of the electromagnetic signals of the first radiation unit and/or the second radiation unit in the working frequency band, and the phase slopes of the electromagnetic signals of the first radiation unit and the second radiation unit are different in the working frequency band, and The first radiation unit and the second radiation unit work in the same working frequency band.
  • a phase dispersion circuit is used to feed the first radiation element and the second radiation element with lateral spacing, so as to adjust the electromagnetic signal of the first radiation element and/or the second radiation element within the working frequency band.
  • the phase slope makes the phase slopes of the electromagnetic signals of the first radiating element and the second radiating element different, so as to adjust the composite beam pointing of the first radiating element and the second radiating element at different frequencies, thereby improving the same antenna working at different frequencies Coincidence of the beams produced by the array.
  • the base station antenna further includes: a feeding network.
  • the input end of the phase dispersion circuit is connected to the output end of the feeding network; the first output end of the phase dispersion circuit is connected to the input end of the first radiation unit, and the second output end of the phase dispersion circuit is connected to the input end of the second radiation unit end connection.
  • the base station antenna further includes a third radiating element, the third radiating element also works in the working frequency band, and the third output end of the phase dispersion circuit is connected to the input end of the third radiating element, wherein the phase The dispersion circuit is also used for adjusting the phase slope of the electromagnetic signal of the third radiation unit.
  • the phase dispersion circuit can be connected with more (3 or more) radiation units, in this case, the phase dispersion circuit can selectively adjust the phase slope of the electromagnetic signal of the radiation unit, as long as the radiation with lateral spacing The phase slopes of the electromagnetic signals of the units are different, so that the combined beam directions of the radiating units with lateral spacing at different frequencies can be adjusted, thereby improving the coincidence of the beams generated by the same antenna array operating at different frequencies.
  • the lateral spacing between the first radiating element and the second radiating element is 0.25-1 times the wavelength corresponding to the center frequency in the working frequency band of the antenna array. Wherein, when the lateral spacing between the first radiating element and the second radiating element is within this interval, the beam pointing can be better adjusted with less influence on the antenna gain.
  • the first synthesized beam and the second synthesized beam have different horizontal directions, wherein the first synthesized beam is the first radiating element and the The beam synthesized by the second radiation unit; the second synthesized beam is a beam synthesized by the first radiation unit and the second radiation unit when the operating frequency of the antenna array is greater than the first frequency of the antenna array.
  • the first synthetic beam and the second synthetic beam have different horizontal directions, which can realize bidirectional adjustment of the coincidence degree of the beams generated by the same antenna array operating at different frequencies.
  • the phase dispersion circuit includes the following components: a composite left-handed transmission line or a 180-degree electrical bridge.
  • the phase slope of the electromagnetic signal of the first radiation unit and/or the second radiation unit in the working frequency band can be adjusted through a composite left-right transmission line or a 180-degree electrical bridge.
  • multiple radiating elements belong to the same antenna array.
  • the phase slopes of the electromagnetic signals of the first radiation unit and/or the second radiation unit are different, thereby adjusting the first radiation unit and the second radiation unit.
  • the combined beam directions of the two radiating elements at different frequencies improve the coincidence of the beams generated by the same antenna array operating at different frequencies.
  • the electromagnetic signal includes a transmitted signal or a received signal.
  • the present application can be applied to the adjustment of the beam pattern of the base station's outward radiation, and also to the adjustment of the beam pattern when the base station is used for receiving.
  • a second aspect provides a base station, including: the base station antenna described in the first aspect.
  • the base station provided in the second aspect includes the base station antenna described in the first aspect, wherein the base station antenna includes a plurality of antenna arrays and a phase dispersion circuit, and the phase dispersion circuit is used to detect the first radiation elements and
  • the second radiating element is fed to adjust the phase slope of the electromagnetic signals of the first radiating element and/or the second radiating element within the working frequency band, so that the phase slopes of the electromagnetic signals of the first radiating element and the second radiating element are different, thereby
  • the direction of the synthesized beams of the first radiation unit and the second radiation unit at different frequencies is adjusted, thereby improving the coincidence degree of the beams generated by the same antenna array operating at different frequencies.
  • FIG. 1 is a schematic diagram of a base station antenna feeder system
  • FIG. 2 is a schematic diagram of another base station antenna feeder system
  • FIG. 3 is a schematic structural diagram of an antenna array
  • Fig. 4 is a kind of beam pointing schematic diagram
  • 5 is a schematic structural diagram of another antenna array
  • FIG. 6 is a schematic structural diagram of an antenna array according to an embodiment of the present application.
  • FIG. 7 is a schematic diagram of a phase curve of a radiation unit according to an embodiment of the present application.
  • FIG. 8 is a schematic diagram of beam pointing according to an embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of another antenna array provided by an embodiment of the present application.
  • FIG. 10 is a schematic diagram of a phase curve of another radiation unit provided by an embodiment of the present application.
  • FIG. 11 is a schematic structural diagram of another antenna array provided by an embodiment of the application.
  • phase dispersion circuit 12 is a schematic structural diagram of a phase dispersion circuit provided by an embodiment of the application.
  • FIG. 13 is a schematic diagram of a phase curve of another radiation unit provided by an embodiment of the present application.
  • FIG. 14 is a schematic structural diagram of still another phase dispersion circuit provided by an embodiment of the present application.
  • words such as “first” and “second” are used to distinguish the same or similar items with basically the same function and effect.
  • words “first”, “second” and the like do not limit the quantity and execution order, and the words “first”, “second” and the like are not necessarily different.
  • the base station antenna (hereinafter referred to as the antenna) provided in this embodiment of the present application can be applied to the base station antenna feeder system shown in FIG. 1 .
  • the base station antenna feeder system includes: an antenna, a feeder, a base station main device, a pole, and an antenna. Adjust the bracket, etc.
  • the antenna is used to convert the radio frequency signal of the base station into electromagnetic waves and radiate it in a specific manner and direction, or convert the received electromagnetic waves into radio frequency signals and feed back to the base station through a specific channel, and the antenna includes a radiation unit for the antenna in the antenna. Feed network that provides RF energy.
  • the feeder is used to connect the antenna with the main equipment of the base station, and also used to connect the radiating unit and the feeder network (not shown in the figure).
  • the base station main equipment is used to process baseband and radio frequency signals, provide channel and system capacity, and realize uplink and downlink communication functions.
  • the pole is used to support the antenna.
  • the antenna adjustment bracket is used to fix the antenna and adjust the beam downtilt angle of the antenna, thereby adjusting the coverage area of the beam.
  • the base station antenna feeder system includes: an antenna adjustment bracket, a pole, an antenna, a joint seal, a grounding device, a lightning protection Protection, feeder, feeder crossing window, base station main equipment.
  • the joint seal acts to seal the interface between the antenna and the feeder, preventing damage to the antenna caused by leakage current.
  • the grounding device plays the role of safety and anti-static. Lightning protection plays a role in safety and lightning protection.
  • the feeder passage window is used for the feeder through wall sealing installation.
  • the antenna provided in this embodiment of the present application may include multiple antenna arrays.
  • the antenna array can be fixed on the base plate and be parallel to the base plate.
  • Each antenna array may include a plurality of radiating elements, and the radiating elements may be antenna elements.
  • an antenna array in which the lateral spacing between the radiation elements (the spacing between the laterally arranged radiating elements, see FIG. 3 for details) is not all 0 can be called a non-linear array, for example, the antenna array 1 and the antenna in FIG. 3 Array 2 is a non-linear array.
  • the shape of the radiation unit with the lateral spacing from other radiation units may be the same as or different from other radiation units, as long as it can work in the same frequency band, for example, the shape of the radiation unit may be a half-wave oscillator, a slot unit, a microstrip stickers etc.
  • An antenna array working at a certain frequency can generate a beam in a certain direction. Since the antenna base plate is generally made of metal material, the beam can be reflected and converged to the required radiation direction, thereby improving the antenna gain and improving the beam performance.
  • the horizontal plane pattern of the beam of the antenna array a at different frequencies within the operating frequency band (
  • the horizontal plane refers to the cut plane of the beam used to achieve the horizontal coverage of the network, and there can be a certain vertical plane down-dip angle as needed.
  • the normal direction of the base plate, and even the deflection direction may be inconsistent. For example, referring to Fig.
  • the beam of the frequency antenna array a near the lower side frequency f1 of the operating frequency band [f1, f2] is directed to the left of the base plate normal, while the beam of the frequency antenna array a near the upper side frequency f2 is directed at the base plate normal
  • Deviation to the right leads to problems such as poor beam coincidence, poor beam pointing consistency, and serious beam skew (squint, that is, the degree to which the beam is pointing away from the normal direction of the base plate), which in turn leads to poor beam coverage consistency and poor antenna performance.
  • nonlinear arrays usually use a power divider or a phase shifter to feed the radiating elements in the nonlinear array, and improve the antenna by adjusting the laterally arranged radiating elements, that is, the phase difference between the radiating elements with lateral spacing.
  • the degree of beam pointing and beam tilt within the operating frequency band of the array Exemplarily, referring to FIG. 5 , the antenna array a includes radiating elements a1 to a5 , and the radiating element a5 is laterally spaced from other radiating elements a1 to a4 .
  • the radiating elements a1, a2 and a4 are fed by the feeders L1, L2 and L4 at the output ends of the feeding network, and the radiating elements a3 and a5 are fed by a conventional 1-to-2 (that is, 1 input and 2 output) power dividers (denoted as T1) to feed, and adjust the phase difference between the radiating elements with lateral spacing through a 1-to-2 power divider to improve the beam pointing and beam inclination in the working frequency band of the antenna array.
  • antenna array a may be one or more other antenna arrays (eg, antenna array b in FIG. 5 ).
  • the power divider or phase shifter adjusts the phase difference, if the phase of the electromagnetic signal of one radiating element (assuming it is the radiating element a3 in the antenna array a in FIG. 5 ) at a certain frequency lags behind that of the other radiating element (Assumed to be the phase of the electromagnetic signal of the radiating element a5 in the antenna array a in FIG. 5), the phase of the electromagnetic signal of the radiating element a3 lags behind the radiating element a5 in the entire working frequency band.
  • the direction of the beam is biased towards the deployment direction of the lagging radiation unit (that is, the radiation unit a3), then, when adjusting the direction of the composite beam of the radiation unit a3 and the radiation unit a5, it can only be directed to the side of the deployment direction of the radiation unit a3 make adjustments. That is to say, in the working frequency band, the existing method can only adjust the beam of the antenna array in one direction, so the beam pointing and the beam tilt degree in the working frequency band of the antenna array can only be improved in one direction. For example, the beam pointing can only be improved uniformly to the left or the beam pointing to the right.
  • the beam pointing in the working frequency band is still scattered to a certain extent, and there are still problems such as poor beam coincidence, poor beam pointing consistency, and serious beam tilt.
  • the electromagnetic signal is the signal transmitted or received by the antenna, including the received signal or the transmitted signal.
  • the radiation unit converts the radio frequency signal into an electromagnetic wave signal and radiates it outward; when the radiation unit receives the signal, it converts the electromagnetic wave signal in the space into a radio frequency signal.
  • Electromagnetic signals may refer to radio frequency signals or electromagnetic wave signals.
  • the beam of the frequency antenna array a is 60° to the left of the backplane normal, and the beam of the frequency antenna array a near the upper frequency f2 is directed at the backplane
  • the normal is 30° to the right. It can be seen that the beam pointing of the frequency antenna array a near the lower side frequency f1 is too far left. If you want to adjust it to the right by 20°, then the beam pointing of the frequency antenna array a near the upper side frequency f2 It should also be adjusted to the right.
  • the adjustment angle may be less than 20° or greater than 20°, for example, it may be 30°.
  • the beam point of the antenna array a at the frequency near the lower side frequency f1 is offset from the normal of the base plate. 40° to the left, while the beam point of the antenna array a at the frequency near the upper frequency f2 is 70° to the right of the normal line of the base plate, the beam pointing in the working frequency band is still scattered to a certain extent, and may even be more scattered than the original, resulting in Problems such as poor beam coincidence, poor beam pointing consistency, and serious beam tilt.
  • the present application provides an antenna.
  • the beam direction of the antenna array can be adjusted bidirectionally in the working frequency band, thereby improving the beam The degree of coincidence, beam pointing consistency, and beam tilt. It can be widely used in scenarios where the beam coverage consistency of different frequencies of the same antenna array and the same frequency of different antenna arrays are required to be high, for example, scenarios such as MIMO.
  • the present application provides an antenna including a plurality of antenna arrays and a phase dispersion circuit.
  • the multiple antenna arrays include multiple radiating elements.
  • the plurality of radiation units include a first radiation unit and a second radiation unit, the first radiation unit and the second radiation unit are laterally spaced apart, and the first radiation unit and the second radiation unit operate in the same working frequency band.
  • the phase dispersion circuit is used to adjust the phase slope of the electromagnetic signals of the first radiation unit and/or the second radiation unit within the working frequency band, and the phase slopes of the electromagnetic signals of the first radiation unit and the second radiation unit are different within the working frequency band.
  • the above-mentioned multiple radiation units may be located in the same antenna array, or may be located in different antenna arrays, which is not limited in this application.
  • the antenna array provided by this application is exemplified by taking multiple radiating elements located in the same antenna array as an example.
  • the implementation principles involved in this application are similar. Reference is made for understanding and will not be repeated.
  • the antenna array 60 in the antenna provided by the present application includes:
  • a plurality of radiation units (for example, there are five radiation units in FIG. 6, which are marked as 601a, 601b, 601c, 601d, and 601e), and the plurality of radiation units include a first radiation unit (eg, 601c) and a second radiation unit (For example, 601e), there is a lateral spacing between the first radiation unit and the second radiation unit;
  • the phase dispersion circuit (marked as 602 in FIG. 6 ), the phase dispersion circuit is used to adjust the phase slope of the electromagnetic signal of the first radiation unit and/or the second radiation unit in the working frequency band, and the phase slope of the first radiation unit and the second radiation unit. Electromagnetic signals have different phase slopes within the operating frequency band.
  • the antenna array 60 is a non-linear array.
  • the relative positions of the first radiation unit and the second radiation unit can be flexibly selected as required.
  • the working frequency of the antenna array 60 is within the working frequency band of the first radiation unit and the second radiation unit.
  • the lateral spacing between the first radiating element and the second radiating element is 0.25-1 times the wavelength corresponding to the center frequency in the working frequency band of the antenna array 60 .
  • the beam pointing can be better adjusted with less influence on the antenna gain.
  • the phase slope refers to the slope of the phase curve of the radiation unit, and the phase curve is used to characterize the phase change of the electromagnetic signal of the radiation unit within the working frequency band.
  • adjusting the phase slope of the electromagnetic signal of a single radiation unit will cause the phase difference of the electromagnetic signals of the radiation unit and other radiation units to change, and the change of the phase difference will affect the direction of the composite beam of the radiation unit and other radiation units.
  • the reason why the change of the phase difference will affect the direction of the composite beam of the two radiation units is that when the phase difference of the electromagnetic signals of the two radiation units is different, the effect of the interference and superposition of the electromagnetic signals is different.
  • the phase difference of the electromagnetic signal thereby changing the combined beam direction of the two radiating elements. By changing the direction of the combined beam of the two radiating elements, the beam direction of the antenna array 60 can be changed.
  • the phase dispersion circuit includes the following components: a composite left and right hand transmission line or a 180-degree bridge.
  • a composite left and right hand transmission line or a 180-degree bridge For the relevant description of the composite left-handed transmission line and the 180-degree electric bridge, please refer to Embodiment 1 and Embodiment 2 below, respectively, and will not be repeated.
  • the first output end of the phase dispersion circuit is connected to the input end of the first radiation unit, and the second output end of the phase dispersion circuit is connected to the input end of the second radiation unit.
  • the antenna array 60 is drawn as an example including five radiating elements. In order to distinguish different radiating elements, the five radiating elements are respectively denoted as radiating elements 601a to 601e.
  • the first radiation unit is 601c
  • the second radiation unit is 601e
  • the first output end of the phase dispersion circuit is connected to the input end of 601c
  • the second output end of the phase dispersion circuit is connected to the input end of 601e.
  • the antenna array 60 further includes: a feeding network 603 , the input end of the phase dispersion circuit is connected to the output end of the feeding network.
  • the feed network is used to provide RF energy to the phase dispersive circuit.
  • the feeding network 603 may also be connected to the input ends of the radiation unit 601a, the radiation unit 601b and the radiation unit 601d through the feeders L601a, L601b and L601d, respectively, to provide radio frequency energy for the radiation units.
  • the first synthesized beam and the second synthesized beam have different horizontal directions.
  • the first synthesized beam is a beam synthesized by the first radiating element and the second radiating element when the working frequency of the antenna array 60 is lower than the first frequency of the antenna array 60; the second synthesized beam is when the working frequency of the antenna array 60 is greater than that of the antenna array.
  • the first frequency of 60 is the beam synthesized by the first radiation unit and the second radiation unit.
  • the first frequency is a frequency in the working frequency band.
  • the first frequency may be the center frequency in the working frequency band.
  • the first frequency can be selected according to certain rules.
  • the beam direction of the antenna array 60 at the first frequency can be arbitrary, for example, it can be the normal direction of the backplane. In this case, when the beam of the antenna array 60 is directed within a small range (for example, 3° on the left and 3° on the right) to the left and right of the normal of the base plate at a frequency, it can be considered that the The frequency is the first frequency.
  • the antenna array 60 provided by the present application is described below by taking the beam direction of the antenna array at the first frequency as the normal direction of the base plate as an example.
  • the phase slope of the electromagnetic signal of the first radiation unit and/or the second radiation unit may be adjusted by the device in the phase dispersion circuit, so that the electromagnetic signal of the first radiation unit and/or the second radiation unit is The phase slope of the signal undergoes a sudden change, so that the phase curves of the first radiation unit and the second radiation unit intersect, and then adjust the jumper of the first radiation unit in the phase dispersion circuit (the jumper refers to the radiation unit and the phase dispersion circuit.
  • the length of the jumper between the transmission line) and/or the second radiating element makes the phase curves of the first radiating element and the second radiating element intersect at the first frequency.
  • the phase slope of the electromagnetic signal of the unit and/or the second radiation unit is adjusted so that the phase curves of the first radiation unit and the second radiation unit are parallel, and then by adjusting the jumper and/or the jumper of the first radiation unit in the phase dispersion circuit
  • the length of the jumper of the second radiation unit makes the phase slopes of the electromagnetic signals of the first radiation unit and the second radiation unit have a sudden change, and makes the phase curves of the first radiation unit and the second radiation unit intersect at the first frequency
  • adjusting the phase slope of the radiation unit in the working frequency band will affect the phase difference between the radiation unit and other radiation units, thereby affecting the direction of the combined beam of the radiation unit and other radiation units. It can be seen that adjusting the phase slope of the first radiating element and/or the second radiating element in the working frequency band through the phase dispersion circuit will affect the direction of the composite beam of the first radiating element and the second radiating element and the beam of the antenna array 60 direction.
  • the phase of the electromagnetic signal of the first radiation unit can be made ahead of the phase of the electromagnetic signal of the second radiation unit, and
  • the phase of the electromagnetic signal of the second radiation unit can be made to lead the phase of the electromagnetic signal of the first radiation unit, and the direction of the composite beam of the first radiation unit and the second radiation unit is biased towards the deployment direction of the delayed radiation unit, so that it can be realized Bidirectional adjustment of synthetic beams.
  • the electromagnetic signals of 601c and 601e are S601c and S601e, respectively.
  • the phase slopes of the phase curves of S601c and S601e are different.
  • the phase curves of S601c and S601e intersect at a first frequency (assumed to be frequency f0). In this case, according to Fig.
  • phase of S601e is ahead of the phase of S601c, 601c and S601c are
  • the direction of the composite beam of 601e is biased to the deployment direction of 601c, and is located between the base plate normal and the deployment direction of 601e (see the right side in FIG. 8), so that the deflection direction of the beam of the antenna array 60 can be compensated to the left before adjustment , for frequencies in (f0, f2], the phase of S601e lags the phase of S601c.
  • the direction of the combined beams of 601c and 601e is biased towards the deployment direction of 601e and lies between the base plate normal and the deployment direction of 601c (see Fig. 8), so that the deflection direction of the beam of the front antenna array 60 can be compensated and adjusted to the right.
  • the beam directions of the entire antenna array 60 can be adjusted.
  • the beam direction of the antenna array 60 can be adjusted to be closer to the normal of the base plate, and when the antenna array 60 works at f2, the beam direction of the antenna array 60 can also be adjusted. It is closer to the normal line of the base plate, so that the coincidence degree and beam pointing consistency of the antenna array 60 under different frequencies can be improved, and the beam inclination degree can be reduced.
  • the phase dispersion circuit feeds power to 601c and 601e, so that the angle between the composite beam of 601c and 601e and the normal of the base plate is +30°, so as to compensate the beam deflection of the antenna array 60 to the left, so that the beam of the antenna array 60 is directed more towards the normal of the base plate, for example , so that the included angle between the beam of the antenna array 60 and the normal of the base plate is +35°.
  • the angle between the beam pointing of the antenna array 60 before adjustment and the normal of the backplane is -40° (the negative sign indicates that the beam is located on the left side of the normal of the backplane)
  • the phase dispersion circuit is fed
  • the angle between the composite beams of 601c and 601e and the normal of the backplane is -32°, so as to compensate the beam deflection of the antenna array 60 to the right, so that the beam of the antenna array 60 is directed more towards the normal of the backplane
  • the angle between the beam of the antenna array 60 and the normal of the base plate is made to be -35°.
  • the angle between the beam of the antenna array 60 in the working frequency band and the normal of the base plate is adjusted from [-40°, +45] to [-35°, +35°], so that the The two-way adjustment of the beam pointing can improve the coincidence of the beams of the antenna array 60 under different frequencies, the consistency of the beam pointing, and reduce the beam inclination.
  • the above-mentioned adjusted included angle is only an exemplary description, and the specific adjustment needs to be based on the actual situation, and the present application is not limited to be adjusted to the same effect as the above.
  • the working principle is similar to the technical solution in the single antenna array scenario described above, which can be understood with reference and will not be repeated.
  • the beam directions of the two antenna arrays can be adjusted closer to the normal line of the base plate at each frequency within the working frequency band, so as to Improve the beam coverage overlap and beam pointing consistency of the two antenna arrays, and reduce the beam tilt.
  • MIMO performance can be improved.
  • the antenna array 60 provided by the present application can adjust the phase slope of the electromagnetic signal of the first radiating element and/or the second radiating element in the working frequency band through the phase dispersion circuit, and can adjust the combined beam of the first radiating element and the second radiating element.
  • the beam deflection of the antenna array 60 can be compensated bidirectionally, thereby improving the coincidence of the beams, the consistency of the beam pointing, reducing the degree of beam tilt, improving the consistency of the beam coverage, and improving the antenna performance.
  • the phase dispersion circuit has only two output terminals, that is, only two signals can be output.
  • the phase dispersion circuit can output signals of more channels (for example, 3 channels or more than 3 channels).
  • the phase dispersion circuit can also be used to adjust the phase slope of the electromagnetic signal of the third radiation unit.
  • the third radiation unit may have a lateral distance from the first radiation unit, or may have a lateral distance from the second radiation unit, or may have a lateral distance from both the first radiation unit and the second radiation unit.
  • the phase dispersion The circuit can selectively adjust the phase slope of the electromagnetic signal of the radiation unit. As long as the phase slope of the electromagnetic signal of the radiation unit with the lateral spacing is different, the synthetic beam direction of the radiation unit with the lateral spacing at different frequencies can be adjusted. This further improves the coincidence of the beams generated by the antenna arrays 60 operating at different frequencies.
  • the three output terminals of the phase dispersion circuit can be connected to 601b, 601c and 601e respectively.
  • the phase dispersion circuit can adjust the phase slope of the electromagnetic signal of one or more of 601b, 601c and 601e within the operating frequency band.
  • the base plate may also include one or more other antenna arrays, for example, the antenna array 70 in FIG. 9, the antenna array 70 includes radiating elements 701a to 701e.
  • the antenna array 70 may be an existing antenna array or an antenna array provided in this application, which is not limited.
  • the present application can adjust the length of the feeder at the output end of the feeder network connected to the phase dispersion circuit according to the phase change of the first radiating element and the second radiating element, or adjust the length of the feeder except the first radiating element and the second radiating element.
  • the length of the feed line of the radiating elements other than the two radiating elements, so that at the frequency f0, the phases between the longitudinally arranged radiating elements in the antenna array are equal.
  • the antenna array 60 provided in the present application may include a plurality of phase dispersion circuits, and the output ends of different phase dispersion circuits may be connected to the same radiation unit or to different radiation units, which is not limited in this application.
  • the output end of one phase dispersion circuit may be connected to the radiation elements 601c and 601e, and the output end of the other phase dispersion circuit may be connected to the radiation units 601b and 601f.
  • the adjustment of the phase slope of the electromagnetic signals of the radiation units by the plurality of phase dispersion circuits makes the phase curves of the electromagnetic signals of the radiation units intersect at the first frequency.
  • Embodiments 1 and 2 are exemplarily described below through Embodiments 1 and 2.
  • the main difference between the first embodiment and the second embodiment is that the phase dispersion circuit in the first embodiment includes a composite left and right-handed transmission line with short-circuit branches, and the phase dispersion circuit in the second embodiment includes a 180° bridge.
  • Embodiment 1 and Embodiment 2 are described below respectively.
  • the phase dispersion circuit includes a composite left-right-handed transmission line with short-circuit branches (referred to as a composite left-right-handed transmission line for short).
  • the phase dispersion circuit can be implemented by a microstrip circuit printed circuit board (PCB).
  • the microstrip circuit PCB is a three-port network.
  • the phase dispersion circuit on the microstrip circuit PCB includes a composite left and right-handed transmission line with short-circuit branches, port 1 (port1), port 2 (port 2), port 3 (port3) and jumpers .
  • port2 may be connected to the input end of the first radiation unit
  • port3 may be connected to the input end of the second radiation unit.
  • the phase dispersion circuit includes composite left and right hand transmission lines, and the number of composite left and right hand circuits with short-circuit branches on the composite left and right hand transmission lines is the number of stages of the composite left and right hand transmission lines.
  • Figure 12 is drawn with the number of stages of the composite left and right handed transmission line as 2. In actual implementation, the number of stages of the composite left and right handed transmission line may be larger or smaller, which is not limited in this application.
  • the composite left-handed transmission line can make the phase slope of S21 (the electromagnetic signal from port1 to port2) abruptly change, and the phase slope after the abrupt change is larger.
  • the phase curve between the first radiation unit and the second radiation unit can be adjusted to intersect with the phase dispersion circuit first, and then adjust the port2 and the second radiation unit. /or the jumper length of port3 such that the phase curves of the first radiating element and the second radiating element intersect at the first frequency.
  • Embodiment 2 The phase dispersion circuit includes a 180° bridge.
  • FIG. 14 shows a possible structure of a phase dispersion circuit.
  • port1 is used as the input end, connected to the output end of the feeding network, and the input isolation port port4 is connected to a snubber resistor to improve the isolation between the output ports of the bridge, thereby reducing the mutual coupling between port2 and port3.
  • the port2 jumper is connected to the first radiation unit, and the port3 jumper is connected to the second radiation unit.
  • the phase dispersion circuit of the second embodiment includes a 180° bridge, port1, port2, port3, and a jumper.
  • the phase slope of the electromagnetic signal of the first radiation unit and/or the second radiation unit is adjusted by the 180° bridge, so that the phase curve of the electromagnetic signal of the first radiation unit and/or the second radiation unit is formed with 180 in the working frequency band.
  • Two parallel lines with a phase difference of ° and then adjust the jumper length of the first radiation unit and/or the jumper length of the second radiation unit, so that the phase curves of S31 (electromagnetic signal from port1 to port3) and S21 are in the first intersect at a frequency.
  • phase curves of S31 and S21 can be intersected at the first frequency by adding 1/2 wavelength (the wavelength corresponding to the 180° phase difference) to the length of the jumper corresponding to port3 compared to the length of the jumper corresponding to port2, or , the phase curves of S31 and S21 can intersect at the first frequency by adding 1/2 wavelength to the length of the jumper corresponding to port2 compared to the length of the jumper corresponding to port3.
  • the final phase dispersion circuit makes the phase slope of the electromagnetic signal of the first radiation unit and/or the second radiation unit abruptly, and the phase curves of the electromagnetic signals of the two radiation units intersect at f0, so that the first radiation unit and The phase slopes of the electromagnetic signals of the second radiating unit are different in the working frequency band.
  • Embodiments 1 and 2 because a phase dispersion circuit and a jumper are inserted into one branch of the feed network, the phase of the output from the branch into which the phase dispersion circuit is inserted to the corresponding radiating unit will lag, Therefore, it is also necessary to adjust the phases of the remaining radiating elements in the antenna array 60 at the first frequency according to the phase required by the beam of the antenna array 60 at a specific tilt angle.
  • the phase of the remaining radiating elements in the antenna array 60 at the first frequency can be adjusted by adding or subtracting the length of each branch feeder line.
  • the antenna array 60 provided by the present application is exemplified by taking different radiating elements and other phases as examples.
  • a preset phase difference can also be added to the radiating elements according to the need of the downtilt of the antenna beam, that is, the result is obtained.
  • There is a certain phase difference between the radiating elements so that the phase distribution between the longitudinally arranged radiating elements in the antenna array is approximately linear, so as to exert the best radiation performance.
  • Embodiment 1 and Embodiment 2 of the present application only provide two types of phase dispersion circuits. In actual implementation, the structure of the phase dispersion circuit can also be other, as long as the functions required by the present application can be realized. No restrictions apply.
  • This application only takes the adjustment of the phase slope of the electromagnetic signal of the radiating element in a nonlinear array as an example for description. In actual implementation, if there are multiple nonlinear arrays, there may be a phase dispersion circuit in each nonlinear array. , so as to adjust the phase slope of the electromagnetic signal of the radiation unit in the corresponding nonlinear array, which is not limited in this application.
  • the present application also provides a base station, including: the antenna described above.
  • the base station in this application may be various forms of macro base station, micro base station (also referred to as small cell), relay station, access point (access point, AP), and the like.
  • the base station may be an evolved NodeB (evolved NodeB, eNB or eNodeB), a next generation node base station (gNB), a next generation eNB (next generation eNB, ng-eNB), a relay node (relay node) , RN), integrated access and backhaul (IAB) nodes, etc.
  • eNB or eNodeB evolved NodeB
  • gNB next generation node base station
  • gNB next generation eNB
  • ng-eNB next generation eNB
  • relay node relay node
  • IAB integrated access and backhaul

Abstract

本申请提供一种基站天线和基站,涉及通信技术领域。该基站天线包括:多个天线阵列以及相位色散电路。多个天线阵列包括多个辐射单元,多个辐射单元包括存在横向间距的第一辐射单元和第二辐射单元。相位色散电路用于调整第一辐射单元和/或第二辐射单元的电磁信号在工作频带内的相位斜率。本申请提供的基站天线和基站,采用相位色散电路对存在横向间距的第一辐射单元和第二辐射单元馈电,调整第一辐射单元和/或第二辐射单元的电磁信号在工作频带内的相位斜率,使第一辐射单元和第二辐射单元的电磁信号的相位斜率不同,调整第一辐射单元和第二辐射单元在不同频率下的合成波束指向,改善工作在不同频率的同一天线阵列产生波束的水平面方向图重合度。

Description

基站天线和基站 技术领域
本申请涉及通信技术领域,尤其涉及一种基站天线和基站。
背景技术
随着多收多发(Multi-Input Multi-Output,MIMO)技术以及多频多模基站天线的普及,基站天线中天线阵列的个数越来越多,而基站天线在水平方向的宽度不能无限制地增加,导致天线阵列在水平方向的排布越来越密集。
目前,天线阵列一般固定在底板上,且与底板平行,底板的宽度一般是有限的,在有限的底板宽度下,某些天线阵列严重偏离底板中轴线,会导致工作在不同频率的同一天线阵列产生的波束的水平面方向图重合度(以下简称为波束的重合度)变差,从而影响基站天线的性能。
发明内容
本申请实施例提供了一种基站天线和基站,用于改善工作在不同频率的同一天线阵列产生的波束的重合度。
为达到上述目的,本申请提供了如下技术方案:
第一方面,提供了一种基站天线,包括:多个天线阵列以及相位色散电路。其中,多个天线阵列包括多个辐射单元,并且多个辐射单元之间包括存在横向间距的第一辐射单元和第二辐射单元。相位色散电路用于调整第一辐射单元和/或第二辐射单元的电磁信号在工作频带内的相位斜率,第一辐射单元和第二辐射单元的电磁信号在工作频带内的相位斜率不同,且第一辐射单元和第二辐射单元工作在同一工作频带。
第一方面提供的基站天线,采用相位色散电路对存在横向间距的第一辐射单元和第二辐射单元馈电,从而调整第一辐射单元和/或第二辐射单元的电磁信号在工作频带内的相位斜率,使第一辐射单元和第二辐射单元的电磁信号的相位斜率不同,从而调整第一辐射单元和第二辐射单元在不同频率下的合成波束指向,进而改善工作在不同频率的同一天线阵列产生的波束的重合度。
在一种可能的实现方式中,基站天线还包括:馈电网络。其中,相位色散电路的输入端与馈电网络的输出端连接;相位色散电路的第一输出端与第一辐射单元的输入端连接,相位色散电路的第二输出端与第二辐射单元的输入端连接。通过采用馈电网络为相位色散电路提供射频能量,可以保证基站天线能够正常工作。
在一种可能的实现方式中,基站天线还包括第三辐射单元,第三辐射单元也工作在工作频带内,相位色散电路的第三输出端与第三辐射单元的输入端连接,其中,相位色散电路还用于调整第三辐射单元的电磁信号的相位斜率。其中,相位色散电路可以与更多个(3个或更多)辐射单元连接,该情况下,相位色散电路可以有选择性的调整辐射单元的电磁信号的相位斜率,只要使得有横向间距的辐射单元的电磁信号的相位斜率不同,即可调整有横向间距的辐射单元在不同频率下的合成波束指向,进而改善工作在不同频率的同一天线阵列产生的波束的重合度。
在一种可能的实现方式中,第一辐射单元和第二辐射单元的横向间距为天线阵列 的工作频带内的中心频率对应波长的0.25-1倍。其中,第一辐射单元和第二辐射单元之间的横向间距在这个区间之内时,可以在对天线增益的影响较小的情况下,更好的对波束指向进行调整。
在一种可能的实现方式中,第一合成波束与第二合成波束具有不同的水平指向,其中,第一合成波束是在天线阵列的工作频率小于天线阵列的第一频率时第一辐射单元和第二辐射单元所合成的波束;第二合成波束是在天线阵列的工作频率大于天线阵列的第一频率时第一辐射单元和第二辐射单元所合成的波束。第一合成波束与第二合成波束具有不同水平指向可以实现对工作在不同频率的同一天线阵列产生的波束的重合度实现双向的调整。
在一种可能的实现方式中,相位色散电路包括如下器件:复合左右手传输线或180度电桥。该种可能的实现方式,通过复合左右手传输线或180度电桥可以调整第一辐射单元和/或第二辐射单元的电磁信号在工作频带内的相位斜率。
在一种可能的实现方式中,多个辐射单元属于同一天线阵列。通过调整第一辐射单元和/或第二辐射单元的电磁信号在工作频带内的相位斜率,使第一辐射单元和第二辐射单元的电磁信号的相位斜率不同,从而调整第一辐射单元和第二辐射单元在不同频率下的合成波束指向,进而改善工作在不同频率的同一天线阵列产生的波束的重合度。
在一种可能的实现方式中,电磁信号包括发射信号或接收信号。本申请可以适用于基站向外辐射的波束方向图调整,也适用于基站用于接收时的波束方向图调整。
第二方面,提供了一种基站,包括:上述第一方面所记载的基站天线。第二方面提供的基站,包括第一方面所记载的基站天线,其中,基站天线包括多个天线阵列以及相位色散电路,采用相位色散电路对多个天线阵列中存在横向间距的第一辐射单元和第二辐射单元馈电,从而调整第一辐射单元和/或第二辐射单元的电磁信号在工作频带内的相位斜率,使第一辐射单元和第二辐射单元的电磁信号的相位斜率不同,从而调整第一辐射单元和第二辐射单元在不同频率下的合成波束指向,进而改善工作在不同频率同一天线阵列产生的波束的重合度。
附图说明
图1为一种基站天馈系统示意图;
图2为又一种基站天馈系统的示意图;
图3为一种天线阵列的结构示意图;
图4为一种波束指向示意图;
图5为又一种天线阵列的结构示意图;
图6为本申请实施例提供的一种天线阵列的结构示意图;
图7为本申请实施例提供的一种辐射单元的相位曲线示意图;
图8为本申请实施例提供的一种波束指向示意图;
图9为本申请实施例提供的又一种天线阵列的结构示意图;
图10为本申请实施例提供的又一种辐射单元的相位曲线示意图;
图11为本申请实施例提供的又一种天线阵列的结构示意图;
图12为本申请实施例提供的一种相位色散电路的结构示意图;
图13为本申请实施例提供的又一种辐射单元的相位曲线示意图;
图14为本申请实施例提供的又一种相位色散电路的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述。其中,在本申请的描述中,除非另有说明,“/”表示前后关联的对象是一种“或”的关系,例如,A/B可以表示A或B;本申请中的“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况,其中A,B可以是单数或者复数。并且,在本申请的描述中,除非另有说明,“多个”是指两个或多于两个。另外,为了便于清楚描述本申请实施例的技术方案,在本申请的实施例中,采用了“第一”、“第二”等字样对功能和作用基本相同的相同项或相似项进行区分。本领域技术人员可以理解“第一”、“第二”等字样并不对数量和执行次序进行限定,并且“第一”、“第二”等字样也并不限定一定不同。
本申请实施例提供的基站天线(以下简称为天线)可以应用于图1所示的基站天馈系统中,参见图1,基站天馈系统包括:天线、馈线、基站主设备、抱杆、天线调整支架等。其中,天线用于将基站的射频信号转换成电磁波按特定的方式和方向辐射出去,或将接收到的电磁波转换成射频信号经特定通道回馈给基站,并且天线包含用于为天线中的辐射单元提供射频能量的馈电网络。馈线用于连接天线与基站主设备,还用于连接辐射单元与馈电网络(图中未示出)。基站主设备用于处理基带和射频信号,提供信道及系统容量,实现上、下行通信功能。抱杆用于支撑天线。天线调整支架用于固定天线、调整天线的波束下倾角度,从而调整波束的覆盖区域。
本申请实施例提供的天线还可以应用于图2所示的基站天馈系统中,参见图2,基站天馈系统包括:天线调整支架、抱杆、天线、接头密封件、接地装置、防雷保护、馈线、馈线过线窗、基站主设备。其中,天线调整支架、抱杆、天线、基站主设备的作用可参见上文。接头密封件起到密封天线和馈线之间的接口的作用,防止漏电对天线造成损坏。接地装置起到安全和防静电的作用。防雷保护起到安全和防雷的作用。馈线过线窗用于馈线穿墙密封安装。
本申请实施例提供的天线可以包括多个天线阵列。参见图3,天线阵列可以固定在底板上,且与底板平行。每个天线阵列可以包括多个辐射单元,辐射单元可以为天线振子。其中,辐射单元之间的横向间距(横向排列的辐射单元之间的间距,具体可参见图3)不全为0的天线阵列可以称为非直线阵列,例如,图3中的天线阵列1和天线阵列2均为非直线阵列。其中,与其他辐射单元具有横向间距的辐射单元的形态可以与其他辐射单元相同,也可以不同,只要能工作在同一频带即可,例如辐射单元的形态可以为半波振子、缝隙单元、微带贴片等。工作在一定频率下的天线阵列可以产生一定方向的波束,由于天线底板一般为金属材料,可以对该波束进行反射,汇聚到所需的辐射方向,提高天线增益,从而能够提高波束性能。
针对某个天线阵列(假设为天线阵列a),在天线阵列a严重偏离底板中轴线的情况下,由于周围阵列环境不对称,天线阵列a在工作频带内不同频率下的波束的水平面方向图(水平面是指波束用于实现网络水平覆盖的切面,根据需要可以有一定的垂 直面下倾角)指向(Horizontal Beam Pointing,HBP)(为了方便描述,下文中简单描述为波束指向)会不同程度地偏离底板法线方向,甚至会出现偏转方向不一致的情况。例如,参见图4,在工作频带[f1,f2]的下边频f1附近频率天线阵列a的波束指向在底板法线偏左,而在上边频f2附近频率天线阵列a的波束指向在底板法线偏右,导致波束的重合度差、波束指向一致性差、波束倾斜(squint,即波束指向偏离底板法线方向的程度)严重等问题,进而导致波束覆盖一致性差,天线性能较差。
目前,非直线阵列通常采用功分器或移相器对非直线阵列中的辐射单元进行馈电,通过调整横向排列的辐射单元,也就是存在横向间距的辐射单元之间的相位差来改善天线阵列工作频带内的波束指向和波束倾斜程度。示例性的,参见图5,天线阵列a包括辐射单元a1至a5,辐射单元a5与其他辐射单元a1至a4存在横向间距。辐射单元a1、a2和a4由馈电网络输出端馈线L1、L2和L4进行馈电,辐射单元a3和a5由常规1分2(即1个输入端2个输出端)功分器(记为T1)进行馈电,通过1分2功分器调整存在横向间距的辐射单元之间的相位差来改善天线阵列工作频带内的波束指向和波束倾斜程度。天线阵列a的旁边可能还有一个或多个其它天线阵列(例如,图5中的天线阵列b)。由于功分器或移相器在进行相位差的调整后,若一个辐射单元(假设为图5天线阵列a中的辐射单元a3)在某个频率上的电磁信号的相位滞后于另一个辐射单元(假设为图5天线阵列a中辐射单元a5)的电磁信号的相位,则在整个工作频带内辐射单元a3的电磁信号的相位都滞后于辐射单元a5,由于辐射单元a3和辐射单元a5的合成波束的方向偏向于滞后的辐射单元(即辐射单元a3)的部署方向,那么,在对辐射单元a3与辐射单元a5的合成波束指向进行调整时,只能朝着辐射单元a3的部署方向一侧进行调整。也就是说,在工作频带内,现有的方法只能单方向的对天线阵列的波束进行调整,那么也就只能单方向改善天线阵列工作频带内的波束指向和波束倾斜程度。例如,只能统一往左改善波束指向或统一向右改善波束指向,工作频带内的波束指向在一定程度上还是分散的,还是存在波束的重合度差、波束指向一致性差、波束倾斜严重等问题。其中,电磁信号是天线发射或者接收的信号,包括接收信号或发射信号。例如,当辐射单元向外辐射信号时,辐射单元将射频信号转化为电磁波信号向外辐射;当辐射单元接收信号时,将空间中的电磁波信号转化为射频信号。电磁信号可以是指射频信号,也可以是指电磁波信号。
例如,若原本天线阵列a在工作频带[f1,f2]的下边频f1附近频率天线阵列a的波束指向在底板法线偏左60°,在上边频f2附近频率天线阵列a的波束指向在底板法线偏右30°,可以看到,在下边频f1附近频率天线阵列a的波束指向偏向太偏左,若想将其向右调整20°,那么上边频f2附近频率天线阵列a的波束指向也要向右调整,调整的角度可能小于20°,也可能大于20°,例如,可能为30°,此时,调整之后,在下边频f1附近频率天线阵列a的波束指向在底板法线偏左40°,而在上边频f2附近频率天线阵列a的波束指向在底板法线偏右70°,工作频带内的波束指向在一定程度上还是分散的,甚至可能分散的比原本更厉害,导致波束的重合度差、波束指向一致性差、波束倾斜严重等问题。
为了解决上述问题,本申请提供了一种天线,通过将现有天线中的功分器或移相器替换为相位色散电路,可以实现在工作频带内双向调整天线阵列的波束指向,从而 改善波束的重合度、波束指向一致性、波束倾斜。可以广泛应用于对同一天线阵列不同频率以及不同天线阵列相同频率的波束覆盖一致性要求较高的场景,例如,MIMO等场景。
下面对本申请的实现方式做详细描述:
本申请提供了一种天线,包括多个天线阵列和相位色散电路。
多个天线阵列包括多个辐射单元。多个辐射单元包括第一辐射单元和第二辐射单元,第一辐射单元和第二辐射单元存在横向间距,且第一辐射单元和第二辐射单元工作在同一工作频带。
相位色散电路用于调整第一辐射单元和/或第二辐射单元的电磁信号在工作频带内的相位斜率,第一辐射单元和第二辐射单元的电磁信号在工作频带内的相位斜率不同。
其中,上述多个辐射单元可以位于同一个天线阵列,也可以位于不同的天线阵列,本申请不作限制。本申请下文中以多个辐射单元位于同一个天线阵列为例对本申请提供的天线阵列进行示例性说明,多个辐射单元位于不同的天线阵列时,本申请涉及到的实现原理是类似的,可参考进行理解,不再赘述。
参见图6,本申请提供的位于天线中的天线阵列60,包括:
多个辐射单元(例如,图6中存在五个辐射单元,分别标记为601a、601b、601c、601d和601e),多个辐射单元中包括第一辐射单元(例如,601c)和第二辐射单元(例如,601e),第一辐射单元和第二辐射单元存在横向间距;
相位色散电路(图6中标记为602),相位色散电路用于调整第一辐射单元和/或第二辐射单元的电磁信号在工作频带内的相位斜率,第一辐射单元和第二辐射单元的电磁信号在工作频带内的相位斜率不同。
由于第一辐射单元和第二辐射单元存在横向间距,由此可知,天线阵列60为一个非直线阵列。第一辐射单元和第二辐射单元的相对位置可以根据需要灵活选取。其中,天线阵列60的工作频率在第一辐射单元与第二辐射单元的工作频带内。
可选的,第一辐射单元和第二辐射单元的横向间距为天线阵列60的工作频带内的中心频率对应波长的0.25-1倍。其中,第一辐射单元和第二辐射单元之间的横向间距在这个区间之内时,可以在对天线增益的影响较小的情况下,更好的对波束指向进行调整。
相位斜率是指辐射单元的相位曲线的斜率,相位曲线用于表征辐射单元的电磁信号在工作频带内的相位变化。两个辐射单元的电磁信号的相位斜率差异越大时,这两个辐射单元的相位色散越大。其中,调整单个辐射单元电磁信号的相位斜率会导致该辐射单元与其他辐射单元的电磁信号的相位差发生变化,相位差变化会影响该辐射单元与其他辐射单元的合成波束的指向。相位差变化会影响到两个辐射单元的合成波束的指向的原因在于:两个辐射单元的电磁信号的相位差不同时,电磁信号干涉叠加的效果不同,因此,可以通过改变两个辐射单元的电磁信号的相位差,从而改变两个辐射单元的合成波束指向。通过改变两个辐射单元的合成波束指向,从而可以改变天线阵列60的波束的方向。
可选的,相位色散电路包括如下器件:复合左右手传输线或180度电桥。关于复合左右手传输线和180度电桥的相关描述分别参见下文中的实施例一和实施例二,不 再赘述。
可选的,相位色散电路的第一输出端与第一辐射单元的输入端连接,相位色散电路的第二输出端与第二辐射单元的输入端连接。图6中以天线阵列60包括5个辐射单元为例进行绘制,为了区分不同的辐射单元,5个辐射单元分别记为辐射单元601a至601e。其中,第一辐射单元为601c,第二辐射单元为601e,相位色散电路的的第一输出端与601c的输入端连接,相位色散电路的第二输出端与601e的输入端连接。
可选的,参见图6,天线阵列60还包括:馈电网络603,相位色散电路的输入端与馈电网络的输出端连接。馈电网络用于为相位色散电路提供射频能量。其中,馈电网络603还可以通过馈线L601a、L601b和L601d分别与辐射单元601a、辐射单元601b和辐射单元601d的输入端连接,为辐射单元提供射频能量。
可选的,第一合成波束与第二合成波束具有不同的水平指向。第一合成波束是在天线阵列60的工作频率小于天线阵列60的第一频率时第一辐射单元和第二辐射单元所合成的波束;第二合成波束是在天线阵列60的工作频率大于天线阵列60的第一频率时第一辐射单元和第二辐射单元所合成的波束。其中,第一频率为工作频带中的一个频率,示例性的,第一频率可以为工作频带中的中心频率。第一频率可以根据一定的规则选择。通过确定第一频率,可以保证在其它频率下的补偿后的天线阵列60的波束指向更加的靠近天线阵列60在第一频率下的波束指向。天线阵列60在第一频率下的波束指向可以是任意的,例如,可以为底板法线方向。该情况下,当一个频率下,天线阵列60的波束指向在底板法线的左侧和右侧的一个较小的范围内(例如,左侧3°,右侧3°)时,可以认为该频率为第一频率。为了方便描述,下文中以天线阵列在第一频率下的波束指向为底板法线方向为例对本申请提供的天线阵列60进行描述。在本申请实施例中,可以通过相位色散电路中的器件对第一辐射单元和/或第二辐射单元的电磁信号的相位斜率进行调整,使得第一辐射单元和/或第二辐射单元的电磁信号的相位斜率发生一个突变,从而使得第一辐射单元和第二辐射单元的相位曲线相交,再通过调整相位色散电路中的第一辐射单元的跳线(跳线是指辐射单元与相位色散电路之间的传输线)和/或第二辐射单元的跳线的长度使得第一辐射单元和第二辐射单元的相位曲线在第一频率处相交,也可以通过相位色散电路中的器件对第一辐射单元和/或第二辐射单元的电磁信号的相位斜率进行调整,使得第一辐射单元和第二辐射单元的相位曲线平行,再通过调整相位色散电路中的第一辐射单元的跳线和/或第二辐射单元的跳线的长度使得第一辐射单元和第二辐射单元的电磁信号的相位斜率发生一个突变,并使得第一辐射单元和第二辐射单元的相位曲线在第一频率处相交,最终通过相位色散电路的调整可以使得第一辐射单元和第二辐射单元的相位曲线在第一频率处相交,从而使得在其它频率下的天线阵列60补偿后的波束指向更加的靠近天线阵列60在第一频率下的波束指向。
根据上文可知,调整辐射单元在工作频带内的相位斜率会影响到该辐射单元与其他辐射单元之间的相位差,从而影响该辐射单元与其他辐射单元合成波束的指向。由此可知,通过相位色散电路调整第一辐射单元和/或第二辐射单元在工作频带内的相位斜率会影响到第一辐射单元与第二辐射单元的合成波束的指向以及天线阵列60的波束指向。
在调整第一辐射单元和/或第二辐射单元的相位斜率的过程中,在同一工作频率上,可以使得第一辐射单元的电磁信号的相位超前于第二辐射单元的电磁信号的相位,也可以使得第二辐射单元的电磁信号的相位超前于第一辐射单元的电磁信号的相位,第一辐射单元和第二辐射单元的合成波束的方向偏向于滞后的辐射单元的部署方向,从而可以实现对合成波束的双向调整。
示例性的,基于图6所示的示例,601c和601e的电磁信号分别为S601c和S601e。S601c和S601e的相位曲线的相位斜率不同。参见图7,S601c和S601e的相位曲线在第一频率(假设为频率f0)处相交。该情况下,根据图7可知,在工作频带[f1,f2]内,由于S601c和S601e相位斜率不一致,因此,对于[f1,f0)中的频率,S601e的相位超前于S601c的相位,601c和601e的合成波束的方向偏向于601c的部署方向、且位于底板法线和601e的部署方向之间(参见图8中的右侧),从而可以向左补偿调整前天线阵列60的波束的偏转方向,对于(f0,f2]中的频率,S601e的相位滞后于S601c的相位。601c和601e的合成波束的方向偏向于601e的部署方向、且位于底板法线和601c的部署方向之间(参加图8中的左侧),从而可以向右补偿调整前天线阵列60的波束的偏转方向。
也就是说,通过调整601c和601e的合成波束的方向,可以调整整个天线阵列60的波束的方向。例如,在天线阵列60工作在f1时,可以将天线阵列60的波束的方向调整的更加的靠近底板法线,在天线阵列60工作在f2时,可以将天线阵列60的波束的方向调整的也更加的靠近底板法线,从而可以提高不同频率下的天线阵列60的波束的重合度、波束指向一致性,降低波束倾斜程度。
例如,在频率f1附近,调整前天线阵列60的波束指向与底板法线之间的夹角为+45°(正号表示波束位于底板法线的右侧),这时相位色散电路馈电给601c和601e,使得601c和601e的合成波束与底板法线之间的夹角为+30°,从而向左补偿天线阵列60的波束偏转,让天线阵列60的波束指向更加偏向底板法线,例如,使得天线阵列60的波束与底板法线之间的夹角为+35°。类似的,在频率f2附近,调整前天线阵列60的波束指向与底板法线之间的夹角为-40°(负号表示波束位于底板法线的左侧),这时相位色散电路馈电给601c和601e,使其601c和601e的合成波束与底板法线之间的夹角为-32°,从而向右补偿天线阵列60的波束偏转,让天线阵列60的波束指向更加偏向底板法线,例如,使得天线阵列60的波束与底板法线之间的夹角为-35°。也就是说,将工作频带内的天线阵列60的波束与底板法线之间的夹角从[-40°,+45]调整到[-35°,+35°],实现了天线阵列60的波束指向的双向调整,从而可以提高不同频率下的天线阵列60的波束的重合度、波束指向一致性,降低波束倾斜程度。需要说明的是,上述所调整的夹角角度仅为一个举例性的说明,具体的调整需要依据实际情况,本申请并不限制为一定要调整为与上述相同的效果。
针对工作在同一频率的多个天线阵列,工作原理是与以上描述的单一天线阵列场景下的技术方案类似的,可参考进行理解,不再赘述。例如,若有两个天线阵列,工作频带均为[f1,f2]时,则可以将两个天线阵列的波束的方向在工作频带内的各个频率下,调整的更加的靠近底板法线,从而提高两个天线阵列的波束覆盖重合度、波束指向一致性,降低波束倾斜程度。当用于MIMO场景时,可以改善MIMO性能。
本申请提供的天线阵列60,通过相位色散电路调整第一辐射单元和/或第二辐射单元的电磁信号在工作频带内的相位斜率,可以调整第一辐射单元和第二辐射单元的合成波束的方向,通过调整该合成波束偏转方向可以双向补偿天线阵列60的波束偏转,从而提高波束的重合度、波束指向一致性,降低波束倾斜程度,提高波束覆盖一致性,进而提高天线性能。
上述实施例中,相位色散电路仅仅有两个输出端,也就是说,仅仅可以输出两路信号。在实际实现时,相位色散电路可以输出更多路(例如,3路或大于3路)的信号。示例性的,在相位色散电路输出3路信号时,相位色散电路的第三输出端与第三辐射单元的输入端连接,第三辐射单元属于天线阵列60。该情况下,相位色散电路还可以用于调整第三辐射单元的电磁信号的相位斜率。
其中,第三辐射单元可以与第一辐射单元存在横向间距,或者可以与第二辐射单元存在横向间距,也可以与第一辐射单元和第二辐射单元都存在横向间距,该情况下,相位色散电路可以有选择性的调整辐射单元的电磁信号的相位斜率,只要使得有横向间距的辐射单元的电磁信号的相位斜率不同,即可调整有横向间距的辐射单元在不同频率下的合成波束指向,进而改善工作在不同频率的天线阵列60产生的波束的重合度。
示例性的,参见图9,相位色散电路的三个输出端可以分别连接601b、601c和601e。相位色散电路可以调整601b、601c和601e中的一个或多个的电磁信号在工作频带内的相位斜率。需要说明的是,底板上除了包含天线阵列60之外,还可以包括其他一个或多个天线阵列,例如,图9中的天线阵列70,天线阵列70包括辐射单元701a至701e。天线阵列70可以为现有的天线阵列也可以为本申请提供的天线阵列,不作限制。
需要说明的是,天线阵列在进行设计时,需要调整各个辐射单元之间的相位差,使在频率f0下,天线阵列中纵向(即垂直于横向的方向)排列的各个辐射单元之间的相位相等,从而保证天线增益。因此,可选的,本申请可以根据第一辐射单元和第二辐射单元的相位的变化,调整相位色散电路所连接的馈电网络输出端的馈线的长度,或者,调整除第一辐射单元和第二辐射单元之外的辐射单元的馈线的长度,从而使在频率f0下,天线阵列中纵向排列的各个辐射单元之间的相位相等。示例性的,基于图6所示的示例,调整相位色散电路所连接的馈电网络输出端的馈线的长度,或者,调整L601a、L601b和L601d的长度用于补偿天线阵列60中辐射单元601a、601b和601d针对第一频率的相位,从而使在频率f0下,天线阵列中纵向排列的各个辐射单元之间的相位相等,例如,图10所示。其中,图10中的S601a、S601b和S601d分别是指辐射单元601a、601b和601d的电磁信号。
另外,本申请提供的天线阵列60可以包括多个相位色散电路,不同的相位色散电路的输出端可以连接相同的辐射单元,也可以连接不同的辐射单元,本申请不做限制。示例性的,参见图11,一个相位色散电路的输出端可以连接辐射单元601c和601e,另一个相位色散电路的输出端可以连接辐射单元601b和601f。通过多个相位色散电路对辐射单元电磁信号的相位斜率的调整使得各个辐射单元的电磁信号的相位曲线在第一频率处相交。
为了使得本申请实施例更加的清楚,以下通过实施例一和实施例二对上述实施例进行示例性说明。实施例一和实施例二的区别主要在于,实施例一中的相位色散电路 包括带短路枝节的复合左右手传输线,实施例二中的相位色散电路包括180°电桥。以下对实施例一和实施例二分别进行描述。
实施例一、相位色散电路包括带短路枝节的复合左右手传输线(简称为复合左右手传输线)。
参见图12,相位色散电路可以通过微带电路印制电路板(printed circuit board,PCB)实现。微带电路PCB是一个三端口网络,在微带电路PCB上的相位色散电路包括带短路枝节的复合左右手传输线、端口1(port1)、端口2(port 2)、端口3(port3)以及跳线。port2可以与第一辐射单元的输入端连接,port3可以与第二辐射单元的输入端连接。相位色散电路中包括复合左右手传输线,复合左右手传输线上的带短路枝节的复合左右手电路的个数即复合左右手传输线的级数。图12是以复合左右手传输线的级数为2进行绘制的,在实际实现时,复合左右手传输线的级数可以更大或更小,本申请不作限制。
其中,复合左右手传输线可以使得S21(从port1到port2的电磁信号)的相位斜率产生一个突变,突变后的相位斜率更大。在调整第一辐射单元和/或第二辐射单元的电磁信号的相位斜率时,可以先通过相位色散电路将第一辐射单元与第二辐射单元之间的相位曲线调整成相交,再调整port2和/或port3的跳线长度从而使得第一辐射单元和第二辐射单元的相位曲线在第一频率处相交。
复合左右手传输线的级数越大,可以对第一辐射单元和第二辐射单元的电磁信号的相位斜率的调整幅度越大,则对第一辐射单元和第二辐射单元的合成波束的方向调整幅度越大。例如,图13中的(b)相比图13中的(a),对第一辐射单元和第二辐射单元的电磁信号的相位差的调整幅度越大,调整的效率也就越高。
实施例二、相位色散电路包括180°电桥。
参见图14,图14示出了一种相位色散电路的可能的结构。其中,port1作为输入端,接馈电网络输出端,输入隔离口port4接一个吸收电阻,用于改善电桥输出端口间的隔离度,从而减少port2和port3之间的互耦。port2跳线接第一辐射单元,port3跳线接第二辐射单元。
实施例二的相位色散电路包括180°电桥、port1、port2、port3、以及跳线。通过180°电桥来调整第一辐射单元和/或第二辐射单元的电磁信号的相位斜率,使得第一辐射单元和/或第二辐射单元的电磁信号的相位曲线在工作频带内形成具有180°相位差的两条平行线,再通过调整第一辐射单元的跳线长度和/或第二辐射单元的跳线长度,使得S31(从port1到port3的电磁信号)与S21的相位曲线在第一频率处相交。具体的,可以通过将port3对应的跳线长度相比port2对应的跳线长度多加1/2波长(180°相位差所对应的波长)使得S31与S21的相位曲线在第一频率处相交,或者,可以通过将port2对应的跳线长度相比port3对应的跳线长度多加1/2波长使得S31与S21的相位曲线在第一频率处相交。需要说明的是,最终相位色散电路使得第一辐射单元和/或第二辐射单元的电磁信号的相位斜率产生突变,两个辐射单元电磁信号的相位曲线在f0处相交,使得第一辐射单元和第二辐射单元的电磁信号在工作频带内的相位斜率不同。其余详细说明可参见实施例一进行理解,不再赘述。
在实施例一和实施例二中,因为在馈电网络的一个支路插入了相位色散电路以及跳 线,使插入了相位色散电路的那个支路输出到对应的辐射单元的相位会发生滞后,所以还需要根据天线阵列60的波束在特定倾角所需的相位分别调整天线阵列60中其余辐射单元在第一频率下的相位。其中,可以通过加减各支路馈线线长来调整天线阵列60中其余辐射单元在第一频率下的相位。
上述实施例中以不同的辐射单元等相位为例对本申请提供的天线阵列60进行示例性说明,在实际实现时,也可以根据天线波束下倾的需要给辐射单元加预置相位差,即使得辐射单元之间具有一定的相位差,使得天线阵列中纵向排列的辐射单元之间的相位分布大致呈线性,以便发挥最佳辐射性能。
本申请实施例中的附图中,天线阵列的个数、天线阵列中的辐射单元的个数、天线阵列中的辐射单元的位置等仅仅为示例,在实际实现时,可以比图示的更多或更少或与图示中的位置不同,本申请不作限制。本申请实施例一和实施例二仅仅示例性的提供了两种相位色散电路,在实际实现时,相位色散电路的构造还可以为其他,只要可以实现本申请所需的功能即可,本申请不作限制。
本申请仅仅以一个非直线阵列中的辐射单元的电磁信号的相位斜率进行调整为例进行说明,在实际实现时,若存在多个非直线阵列,每个非直线阵列中都可以存在相位色散电路,从而对对应的非直线阵列中的辐射单元的电磁信号的相位斜率进行调整,本申请不作限制。本申请还提供了一种基站,包括:上文中所记载的天线。本申请中的基站可以为各种形式的宏基站、微基站(也称为小站)、中继站、接入点(access point,AP)等。例如,基站可以为演进型基站(evolved NodeB,eNB或eNodeB)、下一代基站节点(next generation node base station,gNB)、下一代eNB(next generation eNB,ng-eNB)、中继节点(relay node,RN)、接入回传一体化(integrated access and backhaul,IAB)节点等。在采用不同的无线接入技术(radio access technology,RAT)的系统中,具备基站功能的设备的名称可能会有所不同。例如,LTE系统中可以称为eNB或eNodeB,5G系统或NR系统中可以称为gNB,本申请对基站的具体名称不作限定。

Claims (9)

  1. 一种基站天线,其特征在于,所述基站天线包括:
    多个天线阵列,所述多个天线阵列包括多个辐射单元,所述多个辐射单元包括第一辐射单元和第二辐射单元,所述第一辐射单元和所述第二辐射单元存在横向间距,且所述第一辐射单元和所述第二辐射单元工作在同一工作频带;
    相位色散电路,所述相位色散电路用于调整所述第一辐射单元和/或所述第二辐射单元的电磁信号在所述工作频带内的相位斜率,所述第一辐射单元和所述第二辐射单元的电磁信号在所述工作频带内的相位斜率不同。
  2. 根据权利要求1所述的基站天线,其特征在于,所述基站天线还包括:馈电网络;
    所述相位色散电路的输入端与所述馈电网络的输出端连接;
    所述相位色散电路的第一输出端与所述第一辐射单元的输入端连接,所述相位色散电路的第二输出端与所述第二辐射单元的输入端连接。
  3. 根据权利要求1或2所述的基站天线,其特征在于,所述多个辐射单元还包括第三辐射单元,所述第三辐射单元工作在所述工作频带,所述相位色散电路的第三输出端与第三辐射单元的输入端连接;所述相位色散电路还用于调整所述第三辐射单元的电磁信号在所述工作频带内的相位斜率。
  4. 根据权利要求1-3任一项所述的基站天线,其特征在于,所述第一辐射单元和所述第二辐射单元的横向间距为所述天线阵列的所述工作频带内的中心频率对应波长的0.25-1倍。
  5. 根据权利要求1-4任一项所述的基站天线,其特征在于,
    第一合成波束与第二合成波束具有不同的水平指向;
    其中,所述第一合成波束是在所述天线阵列的工作频率小于所述天线阵列的第一频率时所述第一辐射单元和所述第二辐射单元所合成的波束;所述第二合成波束是在所述天线阵列的工作频率大于所述天线阵列的第一频率时所述第一辐射单元和所述第二辐射单元所合成的波束。
  6. 根据权利要求1-5任一项所述的基站天线,其特征在于,所述相位色散电路包括如下器件:复合左右手传输线或180度电桥。
  7. 根据权利要求1-6任一项所述的基站天线,其特征在于,所述多个辐射单元属于同一所述天线阵列。
  8. 根据权利要求1-7任一项所述的基站天线,其特征在于,所述电磁信号包括发射信号或接收信号。
  9. 一种基站,其特征在于,所述基站包括权利要求1-权利要求8中任一项所述的基站天线。
PCT/CN2020/132917 2020-11-30 2020-11-30 基站天线和基站 WO2022110203A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP20963091.2A EP4235970A4 (en) 2020-11-30 2020-11-30 BASE STATION ANTENNA AND BASE STATION
PCT/CN2020/132917 WO2022110203A1 (zh) 2020-11-30 2020-11-30 基站天线和基站
CN202080106636.8A CN116325365A (zh) 2020-11-30 2020-11-30 基站天线和基站
US18/324,599 US20230299477A1 (en) 2020-11-30 2023-05-26 Base Station Antenna and Base Station

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/132917 WO2022110203A1 (zh) 2020-11-30 2020-11-30 基站天线和基站

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/324,599 Continuation US20230299477A1 (en) 2020-11-30 2023-05-26 Base Station Antenna and Base Station

Publications (1)

Publication Number Publication Date
WO2022110203A1 true WO2022110203A1 (zh) 2022-06-02

Family

ID=81753934

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/132917 WO2022110203A1 (zh) 2020-11-30 2020-11-30 基站天线和基站

Country Status (4)

Country Link
US (1) US20230299477A1 (zh)
EP (1) EP4235970A4 (zh)
CN (1) CN116325365A (zh)
WO (1) WO2022110203A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116783777A (zh) * 2020-12-31 2023-09-19 华为技术有限公司 馈电网络、天线、天线系统、基站及波束赋形方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101689696A (zh) * 2007-06-21 2010-03-31 艾利森电话股份有限公司 用于通过波束操控来补偿辐射波束的方法
CN202217794U (zh) * 2011-08-31 2012-05-09 华南理工大学 一种双频双正交相位输出功分馈电网络
US9088059B1 (en) * 2013-05-28 2015-07-21 The United States Of America, As Represented By The Secretary Of The Navy Equal phase and equal phased slope metamaterial transmission lines
CN107359424A (zh) * 2017-07-03 2017-11-17 广东博纬通信科技有限公司 一种阵列天线
CN111682321A (zh) * 2020-06-01 2020-09-18 摩比天线技术(深圳)有限公司 多波束天线

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106329035A (zh) * 2016-08-30 2017-01-11 电子科技大学 复合左右手结构宽带移相器
EP3460905B8 (en) * 2017-09-21 2022-06-22 Nokia Shanghai Bell Co., Ltd. Multiple band antenna
US11018427B2 (en) * 2018-08-03 2021-05-25 Commscope Technologies Llc Multiplexed antennas that sector-split in a first band and operate as MIMO antennas in a second band

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101689696A (zh) * 2007-06-21 2010-03-31 艾利森电话股份有限公司 用于通过波束操控来补偿辐射波束的方法
CN202217794U (zh) * 2011-08-31 2012-05-09 华南理工大学 一种双频双正交相位输出功分馈电网络
US9088059B1 (en) * 2013-05-28 2015-07-21 The United States Of America, As Represented By The Secretary Of The Navy Equal phase and equal phased slope metamaterial transmission lines
CN107359424A (zh) * 2017-07-03 2017-11-17 广东博纬通信科技有限公司 一种阵列天线
CN111682321A (zh) * 2020-06-01 2020-09-18 摩比天线技术(深圳)有限公司 多波束天线

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4235970A4 *

Also Published As

Publication number Publication date
CN116325365A (zh) 2023-06-23
EP4235970A1 (en) 2023-08-30
EP4235970A4 (en) 2023-12-27
US20230299477A1 (en) 2023-09-21

Similar Documents

Publication Publication Date Title
US9030363B2 (en) Method and apparatus for tilting beams in a mobile communications network
US7952532B2 (en) Antenna device, feed circuit, and radio-wave transmission/reception method
CN104009277B (zh) 一种天线设备和天线阵列
CN113748572A (zh) 具有成角度馈电柄的辐射元件和包括该辐射元件的基站天线
US11757195B2 (en) Antenna element and electronic device
US20120077504A1 (en) Super Economical Broadcast System
EP1995821B1 (en) Feed network device, antenna feeder subsystem, and base station system
AU2008305785B2 (en) Antenna arrangement for a multi radiator base station antenna
US20230344113A1 (en) Base station antenna
US20230299477A1 (en) Base Station Antenna and Base Station
CN112787109A (zh) 一种基于7×8巴特勒矩阵的毫米波多波束天线
US20190349783A1 (en) Multi-band cellular antenna system
US11545736B2 (en) Base station antenna
WO2023231761A1 (zh) 天线、通信设备和通信系统
WO2023087899A1 (zh) 一种天线和通信设备
US20230216562A1 (en) Signal processing device and base station antenna
CN111864407B (zh) 一种准八木天线阵列及毫米波基站设备
CN110571512B (zh) 一种用于超视距无线通信的平面角分集天线
CN215299516U (zh) 一种基于5g多通道水平面大张角射灯天线
CN210692769U (zh) 贴片天线、天线阵列及电子设备
WO2023071839A1 (zh) 馈电电路,天线设备,通信设备及通信系统
WO2021129713A1 (zh) 一种滤波器、移相器以及相关装置
RU2474936C1 (ru) Устройство для получения переключаемой поляризации сигнала
WO2023051471A1 (zh) 一种天线系统及基站天馈系统
US20230344103A1 (en) Base station antenna

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20963091

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020963091

Country of ref document: EP

Effective date: 20230522

NENP Non-entry into the national phase

Ref country code: DE