WO2022110191A1 - 显示装置及其显示方法 - Google Patents

显示装置及其显示方法 Download PDF

Info

Publication number
WO2022110191A1
WO2022110191A1 PCT/CN2020/132891 CN2020132891W WO2022110191A1 WO 2022110191 A1 WO2022110191 A1 WO 2022110191A1 CN 2020132891 W CN2020132891 W CN 2020132891W WO 2022110191 A1 WO2022110191 A1 WO 2022110191A1
Authority
WO
WIPO (PCT)
Prior art keywords
sub
pixel
display
display panel
pixels
Prior art date
Application number
PCT/CN2020/132891
Other languages
English (en)
French (fr)
Inventor
周春苗
彭宽军
洪涛
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to PCT/CN2020/132891 priority Critical patent/WO2022110191A1/zh
Priority to CN202080003119.8A priority patent/CN115136227B/zh
Priority to US18/038,433 priority patent/US11928993B2/en
Publication of WO2022110191A1 publication Critical patent/WO2022110191A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/001Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes using specific devices not provided for in groups G09G3/02 - G09G3/36, e.g. using an intermediate record carrier such as a film slide; Projection systems; Display of non-alphanumerical information, solely or in combination with alphanumerical information, e.g. digital display on projected diapositive as background
    • G09G3/003Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes using specific devices not provided for in groups G09G3/02 - G09G3/36, e.g. using an intermediate record carrier such as a film slide; Projection systems; Display of non-alphanumerical information, solely or in combination with alphanumerical information, e.g. digital display on projected diapositive as background to produce spatial visual effects
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/0093Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 with means for monitoring data relating to the user, e.g. head-tracking, eye-tracking
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/26Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type
    • G02B30/33Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving directional light or back-light sources
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/011Arrangements for interaction with the human body, e.g. for user immersion in virtual reality
    • G06F3/013Eye tracking input arrangements
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/302Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays
    • H04N13/305Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays using lenticular lenses, e.g. arrangements of cylindrical lenses
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/349Multi-view displays for displaying three or more geometrical viewpoints without viewer tracking
    • H04N13/351Multi-view displays for displaying three or more geometrical viewpoints without viewer tracking for displaying simultaneously
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/366Image reproducers using viewer tracking
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/04Structural and physical details of display devices
    • G09G2300/0439Pixel structures
    • G09G2300/0452Details of colour pixel setup, e.g. pixel composed of a red, a blue and two green components
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0209Crosstalk reduction, i.e. to reduce direct or indirect influences of signals directed to a certain pixel of the displayed image on other pixels of said image, inclusive of influences affecting pixels in different frames or fields or sub-images which constitute a same image, e.g. left and right images of a stereoscopic display
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/028Improving the quality of display appearance by changing the viewing angle properties, e.g. widening the viewing angle, adapting the viewing angle to the view direction
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2354/00Aspects of interface with display user

Definitions

  • the present disclosure relates to the field of display technology, and more particularly, to a display device and a display method thereof.
  • the naked-eye three-dimensional (3D) display technology is a display technology that utilizes the parallax characteristic of both eyes to obtain a realistic stereoscopic image with space and depth without any auxiliary equipment (such as 3D glasses). Because the stereoscopic image displayed by the naked-eye 3D display device has the advantages of real and vivid expression, good environmental appeal and strong visual impact, the application scenarios of the naked-eye 3D display device are becoming more and more extensive.
  • a multi-view naked-eye 3D display can be realized by cooperating with a two-dimensional display panel and a light splitting device, so that the stereoscopic image is more realistic.
  • the present disclosure provides a display device, which includes:
  • a display panel comprising: a base substrate, and a plurality of pixel islands located on the base substrate; the pixel islands include: a plurality of sub-pixels arranged along a first direction and a second direction; in the pixel islands , a row of the sub-pixels arranged in the first direction has the same color, and a row of the sub-pixels arranged in the second direction has different colors from each other; the first direction and the second The two directions cross each other;
  • a light splitting device located on one side of the display surface of the display panel, configured to deflect a part of the light emitted by the display panel to the first area, and deflect another part of the light to the second area;
  • the main lobe angle and the interpupillary distance angle corresponding to the pixel island in the central display area of the display panel satisfy the following relationship:
  • represents the main lobe angle
  • represents the interpupillary distance angle
  • the main lobe angle is the projection angle of the light emitted from the pixel island at the viewing position and in the first direction
  • the interpupillary distance angle is the The opening angle of the eyes relative to the display panel at the viewing position.
  • the main lobe angle and the interpupillary distance angle corresponding to the pixel island in the central display area of the display panel satisfy the following relationship:
  • the number of viewpoints corresponding to the pixel island satisfies the following relational expression:
  • n represents the number of viewpoints
  • represents the viewpoint interval angle
  • d represents the distance between adjacent viewpoints at the viewing position.
  • an eye tracker configured to detect the position of the eye, and to transmit the detected position of the eye
  • the image adjuster receives the position information of the eyeballs sent by the eyeball tracker, and switches the image data of the sub-pixels in the display panel according to the received positional information of the eyeballs.
  • it further includes: a transparent optical film layer located between the display panel and the light splitting device;
  • the thickness of the transparent optical film layer satisfies the following relationship:
  • H represents the thickness of the transparent optical film layer
  • Px represents the width of the sub-pixel in the first direction
  • L represents the distance between the viewing position and the spectroscopic device
  • T represents the interpupillary distance
  • the size of the pixel island satisfies the following relationship:
  • D represents the width of the pixel island in the first direction.
  • the light splitting device is a barrier grating, a lenticular lens, or a liquid crystal grating.
  • an embodiment of the present disclosure further provides a display method for any of the above-mentioned display devices, wherein each pixel island in the display panel includes a plurality of sub-pixel groups, and each of the sub-pixel groups is included in the first direction at least two adjacent sub-pixels;
  • the display method includes:
  • the image data of the sub-pixels in the display panel is switched; wherein, the same image data is loaded into each of the sub-pixels in the pixel group.
  • an embodiment of the present disclosure also provides a display method for any of the above-mentioned display devices, which includes:
  • the movable area satisfies the following relationship:
  • J represents the movable area of the eyeball at the viewing position
  • W represents the projection area of the light emitted from the pixel island in the central display area of the display panel at the viewing position.
  • a part of the sub-pixels in the pixel island are loaded with image data corresponding to the left eye, another part of the sub-pixels are loaded with image data corresponding to the right eye, and the rest of the sub-pixels are not loaded with image data.
  • FIG. 1 is a schematic structural diagram of a display device according to an embodiment of the present disclosure
  • FIG. 2 is a schematic plan view of a display panel according to an embodiment of the disclosure.
  • FIG. 3 is another schematic plan structure diagram of the display panel according to the embodiment of the disclosure.
  • FIG. 4 is a schematic diagram of the corresponding relationship between the main lobe angle and the interpupillary distance angle in an embodiment of the disclosure
  • FIG. 5 is a schematic diagram of a sub-pixel arrangement structure of a pixel island in an embodiment of the disclosure
  • FIG. 6 is another schematic diagram of a sub-pixel arrangement structure of a pixel island in an embodiment of the disclosure.
  • FIG. 7 is another schematic diagram of a sub-pixel arrangement structure of a pixel island in an embodiment of the disclosure.
  • FIG. 8 is a schematic flowchart of a display method provided by an embodiment of the present disclosure.
  • FIG. 9 is a schematic diagram of the correspondence between the image data loaded in each sub-pixel group and the view viewed by the human eye according to an embodiment of the disclosure.
  • FIG. 10 is a schematic flowchart of a display method provided by an embodiment of the present disclosure.
  • FIG. 11 is a schematic diagram of a display process of a display device according to an embodiment of the disclosure.
  • FIG. 12 is a schematic diagram of pixel islands displaying full-view images
  • FIG. 13 is a schematic diagram of pixel islands displaying partial viewpoint images.
  • the embodiments of the present disclosure provide a display device and a display method thereof.
  • FIG. 1 is a schematic structural diagram of a display device provided by an embodiment of the present disclosure.
  • the display device provided by an embodiment of the present disclosure may include a display panel 10 and a light splitting device 20 .
  • FIG. 2 is a schematic plan view of a display panel according to an embodiment of the disclosure.
  • the display panel 10 may include: a base substrate 101 and a plurality of pixel islands 102 located on the base substrate 101 ; pixel islands; 102 includes: a plurality of sub-pixels p arranged in the first direction x and the second direction y; in the pixel island 102, a row of sub-pixels p arranged in the first direction x has the same color and is arranged in the second direction y The colors of a row of sub-pixels p are different from each other; the first direction x and the second direction y cross each other.
  • each pixel island 102 in the display panel 10 may be consistent, and each pixel island 102 may be arranged in an array along the first direction x and the second direction y.
  • FIG. 3 is another schematic plan view of the display panel according to the embodiment of the disclosure. The pixel islands in the display panel can be arranged in the manner shown in FIG.
  • the pixel islands in each row are aligned in the first direction x, and the pixel islands in each column The islands are aligned in the second direction y, wherein a row of pixel islands 102 arranged in the first direction x may be a row of pixel islands, and a row of pixel islands 102 arranged in the second direction y may be a row of pixel islands; or , the pixel islands in the display panel can be arranged in the manner shown in FIG.
  • the staggered distance can be It is half of the width of the pixel island 102 in the second direction y, and the distance is only described here, and the staggered distance is not limited.
  • the light splitting device 20, located on the display surface side of the display panel 10, is configured to deflect a part of the light emitted from the display panel 10 to the first area, and deflect another part of the light to the second area, for example, the first area can be The area where the left eye WL is located, and the second area may be the area where the right eye WR is located;
  • the main lobe angle and the interpupillary distance angle corresponding to the pixel island 102 in the central display area of the display panel 10 satisfy the following relationship:
  • represents the main lobe angle
  • represents the interpupillary distance angle
  • the main lobe angle is the projection angle of the light emitted by the pixel island at the viewing position and in the first direction
  • Zhang angle is the central display area of the display panel.
  • FIG. 4 is a schematic diagram of the corresponding relationship between the main lobe angle and the interpupillary distance angle in the embodiment of the disclosure, as shown in FIG. 4 , in the figure, the position A is located in the central display area of the display panel 10, and the boxes 1, 2, 3 . . . n represents the projection area of the light emitted from a pixel island at the viewing position, and the main lobe angle is the angle formed by the connecting lines between the two ends of the projection area 1, 2, 3....n respectively and the position A.
  • the projection angle of the light emitted from the pixel island at the position A is ⁇ 1 at the viewing position Q1 and in the first direction x, that is, the main lobe angle at the viewing position Q1 is ⁇ 1.
  • the projection angle of the light emitted from the pixel island at the position A at the viewing position Q2 and in the first direction x is ⁇ 2, that is, the main lobe angle at the viewing position Q2 is ⁇ 2.
  • the interpupillary distance angle is the angle formed by the line connecting the left eye WL and the right eye WR with the position A at the viewing position, respectively.
  • the interpupillary distance angle at the viewing position Q1 is ⁇ 1
  • the interpupillary distance angle at the viewing position Q2 is ⁇ 2.
  • the pixel island is divided into a plurality of sub-pixels, and after the light emitted from the position of each sub-pixel passes through the light splitting device, part of it is deflected to the area where the left eye is located, and the other part is deflected to the right eye.
  • the left eye receives the left eye view
  • the right eye receives the right eye view
  • the brain fusion effect forms a stereoscopic image, thereby realizing super multi-viewpoint naked-eye 3D display.
  • the main lobe angle is set to be greater than or equal to two-thirds of the interpupillary distance angle, which can ensure that the views viewed by the user's left eye and right eye can be distinguished, preventing multi-viewpoint naked eyes
  • the 3D display image has the phenomenon of crosstalk in the view area.
  • the above-mentioned display panel may adopt a display panel with higher resolution, for example, the above-mentioned display panel may be a liquid crystal display panel, an organic electroluminescence display panel or a micro light-emitting diode display panel, Of course, the above-mentioned display panel may also be other types of display panels, which are not limited here.
  • the base substrate is generally located at the bottom of the display panel, and has the function of supporting and carrying other components. The shape and size of the base substrate can be adapted to the display panel, and the material of the base substrate can be glass or other materials with a supporting function, which is not limited herein.
  • the above-mentioned spectroscopic device can be a barrier grating, a cylindrical lens or a liquid crystal grating.
  • the spectroscopic device can also use other types of gratings, or the spectroscopic device can also be other optical devices that can perform light splitting. Do limit.
  • FIG. 5 is a schematic diagram of a sub-pixel arrangement structure of a pixel island in an embodiment of the present disclosure.
  • a pixel island 102 may include sub-pixels of three primary colors.
  • the pixel island 102 may include red sub-pixels pr, green sub-pixels Pixel pg and blue sub-pixel pb.
  • the number of red sub-pixels pr, green sub-pixels pg and blue sub-pixels pb is the same; the red sub-pixels pr are arranged in a row along the first direction x, the green sub-pixels pg are arranged in a row along the first direction x, and the blue sub-pixels
  • the pixels pb are arranged in a row along the first direction x; the red sub-pixel row, the green sub-pixel row and the blue sub-pixel row are arranged along the second direction y, so that the sub-pixels in the pixel island 102 are arranged in an array.
  • the first direction x and the second direction y may be two directions perpendicular to each other, wherein the first direction x may be a horizontal direction, and the second direction y may be a vertical direction, which is not limited herein.
  • the main lobe angle and the interpupillary distance angle corresponding to the pixel island in the central display area of the display panel satisfy the following relationship:
  • the main lobe angle is equal to three-half the interpupillary distance angle
  • the main lobe angle is set to be less than or equal to three-half of the interpupillary distance angle, which can ensure the continuity of the views viewed by the user's left eye and right eye.
  • the main lobe angle and the interpupillary distance angle corresponding to the pixel island in the central display area of the display panel satisfy the following relationship:
  • the number of viewpoints corresponding to the pixel islands satisfies the following relational expression:
  • n represents the number of viewpoints
  • represents the viewpoint interval angle
  • d represents the distance between adjacent viewpoints at the viewing position.
  • the number of viewpoints corresponding to the pixel island is: the ratio of the projection area corresponding to the pixel island at the viewing position to the viewpoint separation angle, that is, the ratio of the main lobe angle corresponding to the pixel island to the viewpoint separation angle.
  • the number M of a row of sub-pixels p in the first direction in the pixel island satisfies: M ⁇ n
  • the above-mentioned display device may further include:
  • an eye tracker configured to detect the position of the eye, and to transmit the detected position of the eye
  • the image adjuster receives the position information of the eyeball sent by the eye tracker, and switches the image data of the sub-pixels in the display panel according to the received position information of the eyeball.
  • the eye tracker can be fixed on one side of the display surface of the display panel.
  • the eye tracker can locate the position of the human eye by detecting the position of the eyeball, so as to determine the position of the human eye.
  • the image adjuster switches the image data of the sub-pixels in the display panel according to the received eyeball position information to refresh the corresponding left eye view and right eye view. view.
  • the positioning accuracy range of the eye tracker needs to ensure the projection width of the sub-pixels in the corresponding pixel island. In order to achieve a smooth transition of the three-dimensional image, the positioning accuracy range of the eye tracker needs to be less than or equal to 4mm.
  • the above-mentioned display device may further include: a transparent optical film layer 30 located between the display panel 10 and the light splitting device 20 ;
  • the thickness of the transparent optical film layer 30 satisfies the following relationship:
  • H represents the thickness of the transparent optical film layer
  • Px represents the width of the sub-pixel in the first direction
  • L represents the distance between the viewing position and the spectroscopic device
  • T represents the interpupillary distance, generally around 4cm.
  • the transparent optical film layer 30 can be made of optical glass or optical resin material, or other transparent optical materials, which are not limited here.
  • the thickness of the transparent optical film layer 30 can be adjusted according to the width Px of the sub-pixels in the first direction, the interpupillary distance T and the distance L between the viewing position and the spectroscopic device, so that the three-dimensional effect of the display device is better.
  • the size of the pixel island satisfies the following relationship:
  • D represents the width of the pixel island in the first direction.
  • the three-dimensional image formed by the display device can meet the resolution of the retina, so that the human eye can The retina is able to form a three-dimensional image after receiving the left eye view and the right eye view.
  • an embodiment of the present disclosure also provides a display method for any of the above-mentioned display devices. Since the principle of solving problems of the display method is similar to that of the above-mentioned display device, the implementation of the display method can refer to the implementation of the above-mentioned display device. , and the repetition will not be repeated.
  • FIG. 6 is another schematic diagram of the sub-pixel arrangement structure of the pixel island in the embodiment of the disclosure
  • FIG. 7 is another schematic diagram of the sub-pixel arrangement structure of the pixel island in the embodiment of the disclosure.
  • Each pixel island 102 in the panel includes a plurality of sub-pixel groups 102', and each sub-pixel group 102' includes at least two sub-pixels p adjacent to each other in the first direction x. 6 and 7 illustrate that the pixel island 102 includes three rows and sixteen columns of sub-pixels as an example.
  • the number and arrangement of sub-pixels in the pixel island can be set according to actual requirements, which are not limited here.
  • FIG. 6 is another schematic diagram of the sub-pixel arrangement structure of the pixel island in the embodiment of the disclosure
  • FIG. 7 is another schematic diagram of the sub-pixel arrangement structure of the pixel island in the embodiment of the disclosure.
  • Each pixel island 102 in the panel includes a plurality of sub-pixel groups 102', and each sub-pixel group 102' includes
  • each sub-pixel group 102 ′ includes four columns of sub-pixels p as an example for illustration.
  • each sub-pixel group 102 ′ includes two columns of sub-pixels p as an example for illustration.
  • the number of sub-pixels in the sub-pixel group is set according to actual requirements, which is not limited here. In the specific implementation, the number of sub-pixels in each sub-pixel group of the pixel island can be set to be the same, that is, the pixel islands are averagely grouped to obtain multiple sub-pixel groups. In addition, the number of sub-pixels in each sub-pixel group of the pixel island is also It can be set to be different, which is not limited here.
  • FIG. 8 is a schematic flowchart of a display method provided by an embodiment of the present disclosure. As shown in FIG. 8 , the display method in an embodiment of the present disclosure may include:
  • S201 detect the position information of the user's eyes; for example, an eye tracker can be set in the display panel to track the position information of the eye;
  • the display method by detecting the position information of the user's eyes, and according to the detected position information of the user's eyes, the images of the sub-pixels in the display panel are switched, so as to refresh the left eye and the right eye in the corresponding viewing mode.
  • the view information of the position can accurately control the switching between the left eye view and the right eye view.
  • the same image data is loaded into each sub-pixel in the sub-pixel group, which reduces the data volume of the two-dimensional display panel at a single moment, and also reduces the data volume of the three-dimensional data, which solves the problem of using high-resolution display panels.
  • the difficulty of driving in multi-view 3D display and the huge amount of 2D data transmission at the same time are conducive to the realization of real-time 3D scene reproduction.
  • FIG. 9 is a schematic diagram of the correspondence between the image data loaded in each sub-pixel group and the view viewed by the human eye in the embodiment of the disclosure
  • FIG. 9 is a schematic diagram of the pixel island structure shown in FIG. 6 as an example, that is, Each sub-pixel group in FIG. 9 includes four columns of sub-pixels. As shown in FIG. 6 and FIG. 9 , the eyes of the user are at different positions from time t1 to time t4 .
  • the image data of the thirteenth view is simultaneously input to each sub-pixel in the first sub-pixel group 102a, and the image data of the first view is simultaneously input to each sub-pixel in the second sub-pixel group 102b, so that the projection area is
  • the left eye WL at the position receives the image of the 1st view, and the right eye WR receives the image of the thirteenth view.
  • the image data of the 14th view is simultaneously input to each sub-pixel in the first sub-pixel group 102a, and the image data of the second view is simultaneously input to each sub-pixel in the second sub-pixel group 102b, so that the projection area is The left eye WL at the position receives the image of the 2nd view, and the right eye WR receives the image of the 14th view. Other times, and so on. In this way, it is only necessary to input image data of 4 gray scales to the pixel island at each moment. Compared with inputting 16 gray scales to each sub-pixel in the pixel island, time-division multiplexing is used for one sub-pixel multiplexing four times, and each sub-pixel is multiplexed four times. The amount of data input to the pixel island at one moment is reduced to 25% of the original.
  • the grouping method shown in FIG. 7 can also be used for display, that is, two adjacent columns of sub-pixels are used for signal contract control, so that the amount of data input to the pixel island at each moment is reduced to 50% of the original, and can be reduced Crosstalk between left eye view and right eye view.
  • an embodiment of the present disclosure also provides a display method for any of the above-mentioned display devices. Since the principle of solving problems of the display method is similar to that of the above-mentioned display device, the implementation of the display method can refer to the implementation of the above-mentioned display device. , and the repetition will not be repeated.
  • FIG. 10 is a schematic flowchart of the display method provided by the embodiment of the present disclosure. As shown in FIG. 10 , the display method of any of the above-mentioned display devices provided by the embodiment of the present disclosure may include:
  • S301 detect the position information of the user's eyes; for example, an eye tracker may be set in the display panel to track the position information of the eye;
  • the movable area satisfies the following relation:
  • J represents the movable area of the eyeball at the viewing position
  • W represents the projection area of the light emitted from the pixel island in the central display area of the display panel at the viewing position, that is, the main lobe viewing area, a main lobe viewing area W and A main lobe angle ⁇ corresponds to.
  • the display method by detecting the position information of the user's eyes, when it is detected that the position of the eyeball exceeds the corresponding movable area, the image data of the sub-pixels in the display panel is switched. Moreover, at each moment, the viewpoints in the main lobe angle are distributed in the movable areas of the left and right eyes, so that when the user watches the display panel, each eye has a certain movable area when moving. The same parallax can be obtained when the left eye and the right eye move and watch in the moving area, and the positioning accuracy of the eye tracker only needs to be located within the range of the moving area, and does not need to be located at every viewpoint.
  • the eye tracker only needs to meet the minimum interpupillary distance angle of 1/2, that is, the accuracy of the eye tracker only needs to be greater than 1°.
  • the accuracy of the eye tracker at least meets the viewpoint interval.
  • the angle generally 0.2° ⁇ 0.4° is the pupil size, which reduces the precision requirements of the eye tracker, reduces the cost of the device, and can ensure the continuity of the viewpoints of the three-dimensional display.
  • FIG. 11 is a schematic diagram of a display process of a display device in an embodiment of the present disclosure. As shown in FIG. 11 , the left eye can move between 1-n/2 viewpoints, the right eye can move between n/2-n viewpoints, and the left and right eyes can move between Not only does the eye have minimal crosstalk, but the same parallax can be achieved during movement.
  • the positioning accuracy of the eye tracker only needs to be positioned to the movable area at a minimum, that is, the positioning accuracy is half of the main lobe viewing area.
  • the eye tracker feeds back the position information corresponding to the eye to the image adjuster, and the image adjuster switches the image data of sub-pixels to realize the overall switching of multi-viewpoint images, thereby eliminating 3D image reflection. Transfer area to achieve continuous viewing of super multi-space 3D images.
  • image data is loaded into each sub-pixel corresponding to viewpoints 1 to 16, and viewpoints 1 to 16 are displayed in the projection area, wherein the left eye corresponds to viewpoints 1 to 8, and the right eye corresponds to viewpoints 9 to 16 , when the left eye moves in the range of 1 to 8 viewpoints, and the right eye moves in the range of 9 to 16 viewpoints, continuous parallax viewing can be realized for the left and right eyes.
  • the eye tracker sends the position information of the eyeball to the image adjuster, and the image adjuster refreshes the image data of each sub-pixel corresponding to the 9th to 24th viewpoints according to the position information of the eyeball , in which 9 to 24 viewpoints are displayed in the projection area, wherein the left eye corresponds to 9 to 16 viewpoints, and the right eye corresponds to 17 to 24 viewpoints, so as to achieve continuous reading in a horizontal super-large space with dense super-multiple viewpoints.
  • the left and right eyes can obtain the largest movable area of 1/3 of the main lobe viewing area, the left eye can move between 1 ⁇ n/3 viewpoints, and the right eye can move between 1 and n/3 viewpoints.
  • the left and right eyes When moving between 2n/3 ⁇ n viewpoints, the left and right eyes not only have the smallest crosstalk, but also can obtain the same parallax during the movement.
  • the positioning accuracy of the eye tracker only needs to be positioned to the movable area at a minimum, that is, the positioning accuracy is 1/3 of the main lobe viewing area.
  • the image adjuster switches the image data of the sub-pixels to realize the overall switching of multi-viewpoint images, thereby eliminating the 3D image inversion area and realizing continuous viewing of super multi-space 3D images.
  • a part of the sub-pixels in the pixel island are loaded with image data corresponding to the left eye, another part of the sub-pixels are loaded with image data corresponding to the right eye, and the rest of the sub-pixels are not loaded with image data.
  • the data volume of the two-dimensional display panel can be reduced, and the data volume of the three-dimensional data can also be reduced, which solves the difficulty of driving when using a high-resolution display panel to achieve super multi-view 3D display, and the huge amount of 2D data transmission at the same time. problem, which is beneficial to realize real-time 3D scene reproduction.
  • FIG. 12 is a schematic diagram of a pixel island displaying a full-view image.
  • QL represents a sub-pixel corresponding to the left-eye view
  • QR represents a sub-pixel corresponding to the right-eye view.
  • the main lobe view area is distributed with 16 viewpoints as an example.
  • the left eye in the pixel island corresponds to viewpoints 1 to 8
  • the right eye corresponds to viewpoints 9 to 16
  • the left eye corresponds to viewpoints 9 to 16
  • the right eye corresponds to viewpoints 17 to 24.
  • FIG. 13 is a schematic diagram of a pixel island displaying partial viewpoint images.
  • QL represents a sub-pixel corresponding to the left-eye view
  • QR represents a sub-pixel corresponding to the right-eye view.
  • the main lobe view area is distributed with 15 viewpoints as an example.
  • the left eye in the pixel island corresponds to viewpoints 1 to 5
  • the right eye corresponds to viewpoints 10 to 15, and the signals at the positions of viewpoints 6 to 9 can be turned off.
  • the left eye corresponds to viewpoints 6 to 10
  • the right eye corresponds to viewpoints 16 to 20
  • the signals at the positions of viewpoints 11 to 15 can be turned off.
  • the display process shown in FIG. 13 can reduce the amount of 3D data input at each moment to 2/3 of that in full driving.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • General Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Human Computer Interaction (AREA)
  • Testing, Inspecting, Measuring Of Stereoscopic Televisions And Televisions (AREA)

Abstract

一种显示装置及其显示方法,其中,显示装置包括:显示面板(10),包括:衬底基板(101),以及位于衬底基板(101)之上的多个像素岛(102);像素岛(102)包括:沿第一方向(x)和第二方向(y)排列的多个子像素(p);在像素岛(102)中,在第一方向(x)上排列的一排子像素(p)的颜色相同,在第二方向(y)上排列的一排子像素(p)的颜色互不相同;第一方向(x)与第二方向(y)相互交叉;分光器件(20),位于显示面板(10)的显示面一侧,被配置为将显示面板(10)出射的一部分光线偏折至第一区域,将另一部分光线偏折至第二区域;显示面板(10)的中心显示区域内的像素岛(102)对应的主瓣角与瞳距角满足以下关系式:其中,α表示主瓣角,β表示瞳距角。这样,可以使左右眼视图能够区分开,防止出现视区串扰的现象。

Description

显示装置及其显示方法 技术领域
本公开涉及显示技术领域,尤指一种显示装置及其显示方法。
背景技术
裸眼三维(three dimensional,3D)显示技术是一种利用双眼具有视差的特性,在不需要任何辅助设备(例如3D眼镜)的情况下,即可获得具有空间、深度的逼真立体形象的显示技术。由于裸眼3D显示装置显示的立体影像具有真实生动的表现力、较好的环境感染力和强烈的视觉冲击力等优点,裸眼3D显示装置的应用场景越来越广泛。
在相关技术中,将二维显示面板与分光器件配合可以实现多视点裸眼3D显示,使立体影像更加逼真,然而,多视点裸眼3D显示容易出现视区串扰现象。
发明内容
本公开实施提供的显示装置,其中,包括:
显示面板,包括:衬底基板,以及位于所述衬底基板之上的多个像素岛;所述像素岛包括:沿第一方向和第二方向排列的多个子像素;在所述像素岛中,在所述第一方向上排列的一排所述子像素的颜色相同,在所述第二方向上排列的一排所述子像素的颜色互不相同;所述第一方向与所述第二方向相互交叉;
分光器件,位于所述显示面板的显示面一侧,被配置为将所述显示面板出射的一部分光线偏折至第一区域,将另一部分光线偏折至第二区域;
所述显示面板的中心显示区域内的所述像素岛对应的主瓣角与瞳距角满足以下关系式:
Figure PCTCN2020132891-appb-000001
其中,α表示主瓣角,β表示瞳距角;所述主瓣角为所述像素岛出射的光线在观看位置处且在所述第一方向上的投影角度;所述瞳距角为在观看位置处双眼相对于所述显示面板的张角。
可选地,在本公开实施例中,所述显示面板的中心显示区域内的所述像素岛对应的主瓣角与瞳距角满足以下关系式:
Figure PCTCN2020132891-appb-000002
可选地,在本公开实施例中,所述像素岛对应的视点数量满足以下关系式:
Figure PCTCN2020132891-appb-000003
Figure PCTCN2020132891-appb-000004
其中,n表示视点数量;γ表示视点间隔角;d表示相邻视点在观看位置处的间距。
可选地,在本公开实施例中,还包括:
眼球追踪器,被配置为检测眼球的位置,并发送检测到的眼球的位置信息;
图像调整器,接收所述眼球追踪器发送的眼球的位置信息,并根据接收到的眼球的位置信息,切换所述显示面板中所述子像素的图像数据。
可选地,在本公开实施例中,还包括:位于所述显示面板与所述分光器件之间的透明光学膜层;
所述透明光学膜层的厚度满足以下关系式:
Figure PCTCN2020132891-appb-000005
其中,H表示所述透明光学膜层的厚度;Px表示所述子像素在所述第一方向上的宽度;L表示观看位置与所述分光器件之间的距离;T表示双眼瞳距。
可选地,在本公开实施例中,所述像素岛的尺寸满足以下关系式:
Figure PCTCN2020132891-appb-000006
其中,D表示所述像素岛在所述第一方向上的宽度。
可选地,在本公开实施例中,所述分光器件为障壁光栅、柱状透镜或液晶光栅。
相应地,本公开实施例还提供了一种上述任一显示装置的显示方法,其中,显示面板中的每一个像素岛包括多个子像素组,每一个所述子像素组包括在第一方向上相邻的至少两个子像素;
所述显示方法,包括:
检测用户双眼的位置信息;
根据检测到的用户双眼的所述位置信息,对显示面板中子像素的图像数据进行切换;其中,向所述像素组中的各所述子像素中加载相同的图像数据。
相应地,本公开实施例还提供了一种上述任一显示装置的显示方法,其中,包括:
检测用户双眼的位置信息;
在检测到眼球的位置超出对应的可动区域时,切换显示面板中子像素的图像数据;
其中,所述可动区域满足以下关系式:
Figure PCTCN2020132891-appb-000007
其中,J表示眼球在观看位置处的可动区域;W表示所述显示面板的中心显示区域内的所述像素岛出射的光线在观看位置处的投影区域。
可选地,在本公开实施例中,还包括:
向所述像素岛中的一部分所述子像素加载对应于左眼的图像数据,另一部分所述子像素加载对应于右眼的图像数据,其余的所述子像素不加载图像数据。
附图说明
图1为本公开实施例提供的显示装置的结构示意图;
图2为本公开实施例中显示面板的平面结构示意图;
图3为本公开实施例中显示面板的另一平面结构示意图;
图4为本公开实施例中主瓣角与瞳距角的对应关系示意图;
图5为本公开实施例中像素岛的子像素排列结构的示意图;
图6为本公开实施例中像素岛的子像素排列结构的另一示意图;
图7为本公开实施例中像素岛的子像素排列结构的另一示意图;
图8为本公开实施例提供的显示方法的流程示意图;
图9为本公开实施例中各子像素组中加载的图像数据与人眼观看的视图之间的对应关系示意图;
图10为本公开实施例提供的显示方法的流程示意图;
图11为本公开实施例中显示装置的显示过程示意图;
图12为像素岛显示全视点图像的示意图;
图13为像素岛显示部分视点图像的示意图。
具体实施方式
针对多视点裸眼3D显示容易出现视区串扰现象的问题,本公开实施例提供了一种显示装置及其显示方法。
下面结合附图,对本公开实施例提供的显示装置及其显示方法的具体实施方式进行详细地说明。附图中各部件的大小和形状不反映真实比例,目的只是示意说明本公开内容。
图1为本公开实施例提供的显示装置的结构示意图,如图1所示,本公开实施例提供的显示装置,可以包括:显示面板10,及分光器件20。
图2为本公开实施例中显示面板的平面结构示意图,结合图1和图2,显示面板10可以包括:衬底基板101,以及位于衬底基板101之上的多个像素岛102;像素岛102包括:沿第一方向x和第二方向y排列的多个子像素p;在像素岛102中,在第一方向x上排列的一排子像素p的颜色相同,在第二方向y上排列的一排子像素p的颜色互不相同;第一方向x与第二方向y相 互交叉。在具体实施时,显示面板10中的各像素岛102的结构可以一致,各像素岛102沿第一方向x和第二方向y可以呈阵列排布。图3为本公开实施例中显示面板的另一平面结构示意图,显示面板中的各像素岛可以按照图2所示的方式进行排列,各行像素岛在第一方向x上对齐设置,各列像素岛在第二方向y对齐设置,其中,在第一方向x上排列的一排像素岛102可以为一行像素岛,在第二方向y上排列的一排像素岛102可以为一列像素岛;或者,显示面板中的各像素岛可以按照图3所示的方式进行排列,即各行像素岛在第一方向x上对齐设置,各列像素岛在第二方向y错开一定距离,例如错开的距离可以为像素岛102在第二方向y上的宽度的一半,此处只是距离说明,不对错开的距离进行限定。
分光器件20,位于显示面板10的显示面一侧,被配置为将显示面板10出射的一部分光线偏折至第一区域,将另一部分光线偏折至第二区域,例如,第一区域可以为左眼WL所在的区域,第二区域可以为右眼WR所在的区域;
显示面板10的中心显示区域内的像素岛102对应的主瓣角与瞳距角满足以下关系式:
Figure PCTCN2020132891-appb-000008
其中,α表示主瓣角,β表示瞳距角;主瓣角为像素岛出射的光线在观看位置处且在第一方向上的投影角度;瞳距角为在观看位置处双眼相对于显示面板的张角。其中,显示面板的中心显示区域可以理解为:显示面板的显示区域的几何中心附近的区域,且显示区域的几何中心位于中心显示区域内部。
图4为本公开实施例中主瓣角与瞳距角的对应关系示意图,如图4所示,图中,位置A位于显示面板10的中心显示区域内,方框1、2、3….n表示一个像素岛出射的光线在观看位置处的投影区域,主瓣角为投影区域1、2、3….n两端分别与位置A的连线构成的夹角。位置A处的像素岛出射的光线在观看位置Q1处且在第一方向x的投影角度为α1,即观看位置Q1处的主瓣角为 α1。位置A处的像素岛出射的光线在观看位置Q2处且在第一方向x的投影角度为α2,即观看位置Q2处的主瓣角为α2。瞳距角为观看位置处左眼WL与右眼WR分别与位置A的连线构成的夹角。观看位置Q1处的瞳距角为β1,观看位置Q2处的瞳距角为β2。
本公开实施例提供的显示装置中,将像素岛分割为多个子像素,各子像素所在的位置出射的光线经过分光器件后,一部分偏折至左眼所在的区域,另一部分偏折至右眼所在的区域,用户在观看显示装置时,左眼接收左眼视图,右眼接收右眼视图,经大脑融合作用形成立体图像,从而实现超多视点裸眼3D显示。当主瓣角等于三分之二倍的瞳距角时,用户在观看位置观看显示装置时,用户的双眼不会落在同一个像素岛对应的投影区域内,也就是说,用户的左眼和右眼不会重复观看同一个像素岛,将主瓣角设置为大于或等于三分之二倍的瞳距角,可以保证用户的左眼和右眼观看的视图能够区分开,防止多视点裸眼3D显示的影像出现视区串扰的现象。
在具体实施时,为了使三维显示效果较好,上述显示面板可以采用分辨率较高的显示面板,例如,上述显示面板可以为液晶显示面板、有机电致发光显示面板或微型发光二极管显示面板,当然,上述显示面板也可以为其他类型的显示面板,此处不做限定。在显示面板中,衬底基板一般位于显示面板的底部,具有支撑以及承载其它部件的作用。衬底基板的形状和尺寸可以与显示面板相适应,衬底基板的材料可以为玻璃,也可以为其他具有支撑作用的材料,在此不做限定。
可选地,上述分光器件可以为障壁光栅、柱状透镜或液晶光栅,当然,分光器件也可以采用其他类型的光栅,或者,分光器件也可以为其他能够起到分光作用的光学器件,此处不做限定。
图5为本公开实施例中像素岛的子像素排列结构的示意图,同时参照图5,一个像素岛102中可以包括三基色的子像素,例如,像素岛102可以包括红色子像素pr、绿色子像素pg和蓝色子像素pb。其中,红色子像素pr、绿色子像素pg和蓝色子像素pb的数量相同;红色子像素pr沿第一方向x排列成 一行,绿色子像素pg沿第一方向x排列成一行,蓝色子像素pb沿第一方向x排列成一行;红色子像素行、绿色子像素行和蓝色子像素行沿第二方向y排列,从而使像素岛102中的子像素呈阵列排布。可选地,第一方向x和第二方向y可以为相互垂直的两个方向,其中第一方向x可以为水平方向,第二方向y可以为竖直方向,在此不做限定。
进一步地,本公开实施例提供的上述显示装置,参照图4,显示面板的中心显示区域内的像素岛对应的主瓣角与瞳距角满足以下关系式:
Figure PCTCN2020132891-appb-000009
当主瓣角等于二分之三倍的瞳距角时,用户在观看位置观看显示装置时,用户的双眼落在同一个像素岛对应的投影区域内,并且,此时用户的双眼在该投影区域内存在一个可动空间,将主瓣角设置为小于或等于二分之三倍的瞳距角,可以保证用户的左眼和右眼观看的视图连续性较好。
综上,显示面板的中心显示区域内的像素岛对应的主瓣角与瞳距角满足以下关系式:
Figure PCTCN2020132891-appb-000010
这样,既能够保证左眼和右眼观看的视图不会发生串扰,又能够保证左眼和右眼观看的视图连续性较好,提高多视点裸眼3D显示的显示效果。
在具体实施时,本公开实施例提供的上述显示装置中,像素岛对应的视点数量满足以下关系式:
Figure PCTCN2020132891-appb-000011
Figure PCTCN2020132891-appb-000012
其中,n表示视点数量;γ表示视点间隔角;d表示相邻视点在观看位置处的间距。
本公开实施例中,像素岛对应的视点数量为:像素岛在观看位置对应的投影区域与视点间隔角的比值,即像素岛对应的主瓣角与视点间隔角的比值。通过将像素岛对应的视点数量设置在上述范围内,可以保证用户在观看位置 水平定点观看显示装置时,左眼和右眼接收的视图正确且串扰较低。
此外,显示面板的中心显示区域内的像素岛对应的主瓣角与瞳距角还满足关系式:α=β+γ·k;其中,k为整数,且k>2。
并且,像素岛中第一方向上一排子像素p的数量M满足:M≥n,像素岛尺寸的纵横比K满足:K=3/M,以使三维图像与二维图像比例一致,解决三维图像的片源处理问题。
在具体实施时,本公开实施例提供的上述显示装置中,还可以包括:
眼球追踪器,被配置为检测眼球的位置,并发送检测到的眼球的位置信息;
图像调整器,接收眼球追踪器发送的眼球的位置信息,并根据接收到的眼球的位置信息,切换显示面板中子像素的图像数据。
本公开实施例中,可以将眼球追踪器固定于显示面板的显示面一侧,当用户观看显示面板时,眼球追踪器可以通过检测眼球的位置,实现对人眼位置的定位,以确定人眼的相对坐标位置,图像调整器接收到眼球追踪器发送的眼球的位置信息后,根据接收到的眼球的位置信息,切换显示面板中子像素的图像数据,以刷新对应的左眼视图和右眼视图。其中,眼球追踪器的定位精度范围需保证对应像素岛中子像素的投影宽度,为了实现三维图像的平滑过渡,眼球追踪器的定位精度范围需小于等于4mm。
此外,本公开实施例提供的上述显示装置中,如图1所示,还可以包括:位于显示面板10与分光器件20之间的透明光学膜层30;
透明光学膜层30的厚度满足以下关系式:
Figure PCTCN2020132891-appb-000013
其中,H表示透明光学膜层的厚度;Px表示子像素在第一方向上的宽度;L表示观看位置与分光器件之间的距离;T表示双眼瞳距,一般在4cm左右。
在实际应用中,透明光学膜层30可以采用光学玻璃或光学树脂材料制作,或者,也可以采用其他透明光学材料,此处不做限定。可以根据子像素在第 一方向上的宽度Px、双眼瞳距T及观看位置与分光器件之间的距离L,来调节透明光学膜层30的厚度,以使显示装置的三维效果更好。
本公开实施例提供的上述显示装置中,像素岛的尺寸满足以下关系式:
Figure PCTCN2020132891-appb-000014
其中,D表示像素岛在第一方向上的宽度。
在观看位置处,若像素岛在第一方向上的宽度与人眼的张角小于一分角(即1/60°),则显示装置形成的三维影像能够满足视网膜的分辨率,使人眼的视网膜能够在接收左眼视图和右眼视图后形成三维图像。
基于同一发明构思,本公开实施例还提供了一种上述任一显示装置的显示方法,由于该显示方法解决问题的原理与上述显示装置相似,因此该显示方法的实施可以参见上述显示装置的实施,重复之处不再赘述。
图6为本公开实施例中像素岛的子像素排列结构的另一示意图,图7为本公开实施例中像素岛的子像素排列结构的另一示意图,如图6和图7所示,显示面板中的每一个像素岛102包括多个子像素组102',每一个子像素组102'包括在第一方向x上相邻的至少两个子像素p。图6和图7中以像素岛102包括三行十六列子像素为例进行示意,在具体实施时,可以根据实际需求设置像素岛中子像素的数量和排布方式,此处不做限定。图6中以每一个子像素组102'中包括四列子像素p为例进行示意,图7中以每一个子像素组102'中包括两列子像素p为例进行示意,在实际应用时,可以根据实际需求对子像素组中子像素的数量进行设置,此处不做限定。在具体实施时,像素岛的各子像素组中的子像素数量可以设置为相同,即对像素岛进行平均分组得到多个子像素组,此外,像素岛的各子像素组中的子像素数量也可以设置为不相同,此处不做限定。
图8为本公开实施例提供的显示方法的流程示意图,如图8所示,本公开实施例中的显示方法,可以包括:
S201、检测用户双眼的位置信息;例如,可以在显示面板中设置眼球追 踪器,以追踪眼球的位置信息;
S202、根据检测到的用户双眼的位置信息,对显示面板中子像素的图像数据进行切换;其中,向像素组中的各子像素中加载相同的图像数据。
本公开实施例提供的显示方法中,通过检测用户双眼的位置信息,并根据检测到的用户双眼的位置信息,对显示面板中子像素的图像进行切换,以刷新左眼和右眼在对应观看位置的视图信息,可以准确的控制左眼视图与右眼视图的切换。并且,向子像素组中各子像素中加载相同的图像数据,降低了单一时刻二维显示面板的数据量,同时也降低了三维数据的数据量,解决了采用高分辨率的显示面板实现超多视点3D显示时驱动困难,及同一时刻2D数据传输量巨大的问题,有利于实现实时3D场景再现。
图9为本公开实施例中各子像素组中加载的图像数据与人眼观看的视图之间的对应关系示意图,并且,图9中以图6所示的像素岛结构为例进行示意图,即图9中每一个子像素组中包括四列子像素,结合图6和图9所示,在t1时刻至t4时刻用户的双眼分别在不同的位置。在t1时刻时,向第一子像素组102a中的各子像素同时输入第13视图的图像数据,向第二子像素组102b中的各子像素同时输入第1视图的图像数据,使投影区域位置处的左眼WL接收到第1视图的图像,右眼WR接收到第13视图的图像。在t2时刻时,向第一子像素组102a中的各子像素同时输入第14视图的图像数据,向第二子像素组102b中的各子像素同时输入第2视图的图像数据,使投影区域位置处的左眼WL接收到第2视图的图像,右眼WR接收到第14视图的图像。其他时刻,以此类推。这样,每一个时刻只需向像素岛输入4个灰阶的图像数据,相比于向像素岛中的各子像素分别输入16个灰阶,采用时分复用一个子像素复用四次,每一个时刻向像素岛输入的数据量降低为原来的25%。
此外,也可以采用图7所示的分组方式进行显示,即采用相邻两列子像素进行信号合同控制,这样,每一个时刻向像素岛输入的数据量降为原来的50%,并且,可以降低左眼视图与右眼视图之间的串扰。
基于同一发明构思,本公开实施例还提供了一种上述任一显示装置的显 示方法,由于该显示方法解决问题的原理与上述显示装置相似,因此该显示方法的实施可以参见上述显示装置的实施,重复之处不再赘述。
图10为本公开实施例提供的显示方法的流程示意图,如图10所示,本公开实施例提供的上述任一显示装置的显示方法,可以包括:
S301、检测用户双眼的位置信息;例如,可以在显示面板中设置眼球追踪器,以追踪眼球的位置信息;
S302、在检测到眼球的位置超出对应的可动区域时,切换显示面板中子像素的图像数据;
其中,可动区域满足以下关系式:
Figure PCTCN2020132891-appb-000015
其中,J表示眼球在观看位置处的可动区域;W表示显示面板的中心显示区域内的像素岛出射的光线在观看位置处的投影区域,即主瓣视区,一个主瓣视区W与一个主瓣角α对应。
本公开实施例提供的显示方法中,通过检测用户双眼的位置信息,当检测到眼球的位置超出对应的可动区域时,切换显示面板中子像素的图像数据。并且,在每一时刻,主瓣角的视区内视点分布于左右眼的可动区域内,这样,用户在观看显示面板时,每只眼睛在移动时都有一定的可动区域,在可动区域内左眼和右眼移动观看时可以获得相同的视差,眼球追踪器的定位精度只需要定位到可动区域的范围即可,无需定位到每一个视点。在具体实施时,眼球追踪器最低只需满足1/2的瞳距角即可,即眼球追踪器的精度只要大于1°即可,相比于相关技术中眼球追踪器的精度至少满足视点间隔角(一般取0.2°~0.4°即瞳孔大小),降低了眼球追踪器的精度要求,降低了器件成本,并且,能够保证三维显示的视点连续性。
当主瓣角满足:
Figure PCTCN2020132891-appb-000016
时,例如,
Figure PCTCN2020132891-appb-000017
主瓣视区W内分布n个视点时,则左右眼可获得最大的可动区域为主瓣视区W的一半。图11为本公开实施例中显示装置的显示过程示意图,如图11所示,左眼可以在1~n/2视点之 间移动,右眼可以在n/2~n视点之间移动,左右眼不仅串扰最小且移动过程中可以获得相同的视差。眼球追踪器的定位精度只需要最小定位到可动区域即可,即定位精度为主瓣视区的一半。当眼睛在移动过程中超出可动区域,眼球追踪器将眼睛对应的位置信息反馈给图像调整器,图像调整器切换对子像素的图像数据,实现多视点图像的整体切换,从而消除3D图像反转区,实现超多空间3D图像连续观看。
继续参照图11,在t1时刻,向对应1~16视点的各子像素加载图像数据,在投影区域中显示1~16视点,其中,左眼对应1~8视点,右眼对应9~16视点,当左眼在1~8视点范围内移动,右眼在9~16视点范围内移动,可以实现左右眼连续视差观看。在t2时刻,当左眼移动到9视点位置处,眼球追踪器将眼球的位置信息发送至图像调整器,图像调整器根据眼球的位置信息,刷新对应9~24视点的各子像素的图像数据,其中,在投影区域中显示9~24视点,其中,左眼对应9~16视点,右眼对应17~24视点,从而实现水平超大空间连读密集超多视点。
当主瓣角满足:
Figure PCTCN2020132891-appb-000018
时,例如
Figure PCTCN2020132891-appb-000019
当主瓣视区W内分布n个视点时,则左右眼可获得最大的可动区域为主瓣视区的1/3,左眼可以在1~n/3视点之间移动,右眼可以在2n/3~n视点之间移动,左右眼不仅串扰最小且移动过程中可以获得相同的视差。眼球追踪器的定位精度只需要最小定位到可动区域即可,即定位精度为主瓣视区的1/3,当眼睛在移动过程中超出可动区域,眼球追踪器将眼睛对应的位置信息反馈给图像调整器,图像调整器切换对子像素的图像数据,实现多视点图像的整体切换,从而消除3D图像反转区,实现超多空间3D图像连续观看。
进一步地,本公开实施例提供的上述显示方法中,还可以包括:
向像素岛中的一部分子像素加载对应于左眼的图像数据,另一部分子像素加载对应于右眼的图像数据,其余的子像素不加载图像数据。
这样,可以降低二维显示面板的数据量,同时也降低了三维数据的数据 量,解决了采用高分辨率的显示面板实现超多视点3D显示时驱动困难,及同一时刻2D数据传输量巨大的问题,有利于实现实时3D场景再现。
图12为像素岛显示全视点图像的示意图,如图12所示,图中QL表示左眼视图对应的子像素,QR表示右眼视图对应的子像素。以主瓣角满足:
Figure PCTCN2020132891-appb-000020
且主瓣视区内分布16视点为例。在位置1处,像素岛中左眼对应1~8视点,右眼对应9~16视点,在位置2处,左眼对应9~16视点,右眼对应17~24视点。
图13为像素岛显示部分视点图像的示意图,如图13所示,图中QL表示左眼视图对应的子像素,QR表示右眼视图对应的子像素。以主瓣角满足:
Figure PCTCN2020132891-appb-000021
且主瓣视区内分布15视点为例。在位置1处,像素岛中左眼对应1~5视点,右眼对应10~15视点,可以关闭6~9视点位置处的信号。在位置2处,左眼对应6~10视点,右眼对应16~20视点,可以关闭11~15视点位置处的信号。相比于图12所示的显示过程,图13所示的显示过程,可以使每一时刻输入的3D数据量降低为全驱动时的2/3。
尽管已描述了本公开的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例作出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本公开范围的所有变更和修改。
显然,本领域的技术人员可以对本公开实施例进行各种改动和变型而不脱离本公开实施例的精神和范围。这样,倘若本公开实施例的这些修改和变型属于本公开权利要求及其等同技术的范围之内,则本公开也意图包含这些改动和变型在内。

Claims (10)

  1. 一种显示装置,其中,包括:
    显示面板,包括:衬底基板,以及位于所述衬底基板之上的多个像素岛;所述像素岛包括:沿第一方向和第二方向排列的多个子像素;在所述像素岛中,在所述第一方向上排列的一排所述子像素的颜色相同,在所述第二方向上排列的一排所述子像素的颜色互不相同;所述第一方向与所述第二方向相互交叉;
    分光器件,位于所述显示面板的显示面一侧,被配置为将所述显示面板出射的一部分光线偏折至第一区域,将另一部分光线偏折至第二区域;
    所述显示面板的中心显示区域内的所述像素岛对应的主瓣角与瞳距角满足以下关系式:
    Figure PCTCN2020132891-appb-100001
    其中,α表示主瓣角,β表示瞳距角;所述主瓣角为所述像素岛出射的光线在观看位置处且在所述第一方向上的投影角度;所述瞳距角为在观看位置处双眼相对于所述显示面板的张角。
  2. 如权利要求1所述的显示装置,其中,所述显示面板的中心显示区域内的所述像素岛对应的主瓣角与瞳距角满足以下关系式:
    Figure PCTCN2020132891-appb-100002
  3. 如权利要求2所述的显示装置,其中,所述像素岛对应的视点数量满足以下关系式:
    Figure PCTCN2020132891-appb-100003
    Figure PCTCN2020132891-appb-100004
    其中,n表示视点数量;γ表示视点间隔角;d表示相邻视点在观看位置处的间距。
  4. 如权利要求2所述的显示装置,其中,还包括:
    眼球追踪器,被配置为检测眼球的位置,并发送检测到的眼球的位置信息;
    图像调整器,接收所述眼球追踪器发送的眼球的位置信息,并根据接收到的眼球的位置信息,切换所述显示面板中所述子像素的图像数据。
  5. 如权利要求1所述的显示装置,其中,还包括:位于所述显示面板与所述分光器件之间的透明光学膜层;
    所述透明光学膜层的厚度满足以下关系式:
    Figure PCTCN2020132891-appb-100005
    其中,H表示所述透明光学膜层的厚度;Px表示所述子像素在所述第一方向上的宽度;L表示观看位置与所述分光器件之间的距离;T表示双眼瞳距。
  6. 如权利要求1~5任一项所述的显示装置,其中,所述像素岛的尺寸满足以下关系式:
    Figure PCTCN2020132891-appb-100006
    其中,D表示所述像素岛在所述第一方向上的宽度。
  7. 如权利要求1~6任一项所述的显示装置,其中,所述分光器件为障壁光栅、柱状透镜或液晶光栅。
  8. 一种如权利要求1~7任一项所述的显示装置的显示方法,其中,显示面板中的每一个像素岛包括多个子像素组,每一个所述子像素组包括在第一方向上相邻的至少两个子像素;
    所述显示方法,包括:
    检测用户双眼的位置信息;
    根据检测到的用户双眼的所述位置信息,对显示面板中子像素的图像数据进行切换;其中,向所述像素组中的各所述子像素中加载相同的图像数据。
  9. 一种如权利要求1~7任一项所述的显示装置的显示方法,其中,包括:
    检测用户双眼的位置信息;
    在检测到眼球的位置超出对应的可动区域时,切换显示面板中子像素的 图像数据;
    其中,所述可动区域满足以下关系式:
    Figure PCTCN2020132891-appb-100007
    其中,J表示眼球在观看位置处的可动区域;W表示所述显示面板的中心显示区域内的所述像素岛出射的光线在观看位置处的投影区域。
  10. 如权利要求9所述的显示方法,其中,还包括:
    向所述像素岛中的一部分所述子像素加载对应于左眼的图像数据,另一部分所述子像素加载对应于右眼的图像数据,其余的所述子像素不加载图像数据。
PCT/CN2020/132891 2020-11-30 2020-11-30 显示装置及其显示方法 WO2022110191A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/CN2020/132891 WO2022110191A1 (zh) 2020-11-30 2020-11-30 显示装置及其显示方法
CN202080003119.8A CN115136227B (zh) 2020-11-30 2020-11-30 显示装置及其显示方法
US18/038,433 US11928993B2 (en) 2020-11-30 2020-11-30 Display device and display method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/132891 WO2022110191A1 (zh) 2020-11-30 2020-11-30 显示装置及其显示方法

Publications (1)

Publication Number Publication Date
WO2022110191A1 true WO2022110191A1 (zh) 2022-06-02

Family

ID=81753913

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/132891 WO2022110191A1 (zh) 2020-11-30 2020-11-30 显示装置及其显示方法

Country Status (3)

Country Link
US (1) US11928993B2 (zh)
CN (1) CN115136227B (zh)
WO (1) WO2022110191A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023245551A1 (zh) * 2022-06-23 2023-12-28 京东方科技集团股份有限公司 显示装置及其驱动方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1614505A (zh) * 2003-11-06 2005-05-11 日本电气株式会社 三维图像显示设备、便携终端设备、显示面板及蝇眼透镜
CN106773033A (zh) * 2016-12-22 2017-05-31 武汉大学 一种基于柱透镜光栅裸眼3d视区几何建模方法
CN107396087A (zh) * 2017-07-31 2017-11-24 京东方科技集团股份有限公司 裸眼三维显示装置及其控制方法
CN108174182A (zh) * 2017-12-30 2018-06-15 上海易维视科技股份有限公司 三维跟踪式裸眼立体显示视区调整方法及显示系统
US20190058874A1 (en) * 2017-08-16 2019-02-21 Korea Institute Of Science And Technology Method of forming dynamic maximal viewing zone of autostereoscopic display apparatus
CN111552093A (zh) * 2020-06-05 2020-08-18 京东方科技集团股份有限公司 一种显示面板及其显示方法和显示装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4572095B2 (ja) * 2004-07-15 2010-10-27 Nec液晶テクノロジー株式会社 液晶表示装置、携帯機器及び液晶表示装置の駆動方法
JP5743859B2 (ja) * 2011-11-14 2015-07-01 株式会社東芝 画像処理装置、方法、及び画像表示装置
JP5711104B2 (ja) * 2011-12-14 2015-04-30 株式会社東芝 画像表示装置、方法、プログラム、及び画像処理装置
TWI524125B (zh) * 2014-04-16 2016-03-01 友達光電股份有限公司 畫素陣列
US10440344B2 (en) * 2016-01-27 2019-10-08 Samsung Electronics Co., Ltd. Method and apparatus for correcting image error in naked-eye three-dimensional (3D) display
CN108307187B (zh) * 2016-09-28 2024-01-12 擎中科技(上海)有限公司 裸眼3d显示设备及其显示方法
WO2019042048A1 (zh) * 2017-08-31 2019-03-07 昆山国显光电有限公司 像素结构、掩膜版及显示装置
CN108565277B (zh) * 2018-01-04 2021-09-28 上海天马有机发光显示技术有限公司 显示面板及其制作方法
CN111223904B (zh) * 2019-12-20 2023-04-18 京东方科技集团股份有限公司 显示面板及其制备方法、显示装置及其控制方法
US20220350207A1 (en) * 2020-11-09 2022-11-03 Boe Technology Group Co., Ltd. Display Device
CN114545650A (zh) * 2020-11-24 2022-05-27 京东方科技集团股份有限公司 一种显示模组、显示装置和显示方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1614505A (zh) * 2003-11-06 2005-05-11 日本电气株式会社 三维图像显示设备、便携终端设备、显示面板及蝇眼透镜
CN106773033A (zh) * 2016-12-22 2017-05-31 武汉大学 一种基于柱透镜光栅裸眼3d视区几何建模方法
CN107396087A (zh) * 2017-07-31 2017-11-24 京东方科技集团股份有限公司 裸眼三维显示装置及其控制方法
US20190058874A1 (en) * 2017-08-16 2019-02-21 Korea Institute Of Science And Technology Method of forming dynamic maximal viewing zone of autostereoscopic display apparatus
CN108174182A (zh) * 2017-12-30 2018-06-15 上海易维视科技股份有限公司 三维跟踪式裸眼立体显示视区调整方法及显示系统
CN111552093A (zh) * 2020-06-05 2020-08-18 京东方科技集团股份有限公司 一种显示面板及其显示方法和显示装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023245551A1 (zh) * 2022-06-23 2023-12-28 京东方科技集团股份有限公司 显示装置及其驱动方法

Also Published As

Publication number Publication date
CN115136227A (zh) 2022-09-30
US11928993B2 (en) 2024-03-12
CN115136227B (zh) 2023-11-17
US20240005824A1 (en) 2024-01-04

Similar Documents

Publication Publication Date Title
US10448005B2 (en) Stereoscopic display device and parallax image correcting method
CN101887175B (zh) 空间图像显示器
CN100419500C (zh) 2d/3d可切换显示器
JP2018506735A (ja) マルチビューピクセル指向性バックライトモジュール及び裸眼3d表示装置
CN103209333A (zh) 利用时间分割的自由立体三维图像显示装置
US6888540B2 (en) Autostereoscopic display driver
CN104079919A (zh) 使用主动亚像素渲染的高密度多视点图像显示系统及方法
CN105372823B (zh) 立体显示装置
CN110536124A (zh) 显示装置及其操作方法
CN103235415A (zh) 基于光栅的多视点自由立体显示器
CN109917549B (zh) 一种近眼可穿戴设备及其显示方法
KR20140134512A (ko) 입체 영상 표시 장치 및 입체 영상 표시 방법
US8629945B2 (en) 3D liquid crystal display system
CN111323935A (zh) N视点三维显示装置及其驱动方法
CN105388623A (zh) 一种显示装置
CN113917700A (zh) 一种三维光场显示系统
WO2022110191A1 (zh) 显示装置及其显示方法
US7489319B2 (en) Light source device for three-dimensional display
KR101471654B1 (ko) 변형 델타 화소구조를 갖는 3차원 영상표시장치
CN114981711B (zh) 显示装置及其驱动方法
CN102722044B (zh) 立体显示系统
CN115605801A (zh) 一种光场显示装置及其显示方法
KR101961014B1 (ko) 무안경방식 입체 디스플레이 시스템
KR101190050B1 (ko) 입체영상 표시장치 및 그 구동 방법
CN112415765B (zh) 一种裸眼立体显示装置和显示方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20963079

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18038433

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205N DATED 21/07/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 20963079

Country of ref document: EP

Kind code of ref document: A1