WO2022109788A1 - 一种高安全性电动车 - Google Patents

一种高安全性电动车 Download PDF

Info

Publication number
WO2022109788A1
WO2022109788A1 PCT/CN2020/131174 CN2020131174W WO2022109788A1 WO 2022109788 A1 WO2022109788 A1 WO 2022109788A1 CN 2020131174 W CN2020131174 W CN 2020131174W WO 2022109788 A1 WO2022109788 A1 WO 2022109788A1
Authority
WO
WIPO (PCT)
Prior art keywords
filling
valve body
battery pack
polyurethane
carbon dioxide
Prior art date
Application number
PCT/CN2020/131174
Other languages
English (en)
French (fr)
Inventor
朱红军
钱春虎
高裕河
Original Assignee
江苏金彭集团有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏金彭集团有限公司 filed Critical 江苏金彭集团有限公司
Priority to PCT/CN2020/131174 priority Critical patent/WO2022109788A1/zh
Priority to CN202011370384.8A priority patent/CN112519582B/zh
Publication of WO2022109788A1 publication Critical patent/WO2022109788A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0007Measures or means for preventing or attenuating collisions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/64Constructional details of batteries specially adapted for electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/66Arrangements of batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/24Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the invention relates to the technical field of electric vehicles, in particular to a high-safety electric vehicle.
  • a large-capacity battery is usually required to be arranged in the vehicle to provide sufficient instantaneous power and the longest possible cruising range.
  • the battery will generate heat when working, and the high temperature will directly affect the working performance and life of the battery; once the vehicle collides and damages the battery pack and its casing, it is extremely prone to fire, explosion and other phenomena, which is a major safety accident.
  • car batteries are usually arranged in a relatively safe position to reduce the risk of damage to the battery pack, but no matter where the battery pack is placed in the vehicle, some damage is unavoidable;
  • the oxidant (oxygen) of the battery pack will enter the position of the battery pack inside the battery pack casing through the damaged gap on the battery pack casing, providing the combustible material (oxygen) for the combustion of the battery pack, resulting in poor safety of electric vehicles.
  • the embodiment of the present application solves the technical problem of poor safety of electric vehicles in the prior art by providing a high-safety electric vehicle, realizes automatic sealing of the cracks in the battery pack casing after the vehicle battery is damaged by collision, and prevents the air inside and outside the battery pack casing from being damaged.
  • the embodiment of the present application provides a high-safety electric vehicle, including a vehicle body and a battery pack; the battery pack includes a battery unit and a battery pack casing; the high-safety electric vehicle further includes a polyurethane warehouse, a carbon dioxide warehouse, a brittle tube, case;
  • the polyurethane warehouse is filled with flame-retardant polyurethane
  • the carbon dioxide bin is filled with liquid carbon dioxide
  • the shell is sleeved on the battery pack shell
  • the material of the brittle tube is hard plastic, which is densely distributed between the battery pack casing and the casing and is fixedly connected to the battery pack casing and the casing;
  • the brittle tube includes a first brittle tube and a second brittle tube;
  • One end of the first brittle tube is closed, and the other end is communicated with the polyurethane warehouse;
  • One end of the second brittle tube is closed, and the other end is communicated with the carbon dioxide bin;
  • the brittle tube at the crack is broken at the same time, and the flame-retardant polyurethane and carbon dioxide are sprayed from the break of the brittle tube. , seal the cracks, prevent the entry of oxygen and reduce the risk of spontaneous combustion of the battery.
  • It also preferably includes an independent power supply and a pressure sensor
  • the independent power supply plays the role of providing electrical energy for the pressure sensor
  • the pressure sensor is positioned inside the polyurethane silo and/or the carbon dioxide silo, and is used to detect whether the pressure in the silo decreases, and then determine whether the flame-retardant polyurethane and/or carbon dioxide are ejected;
  • the pressure sensor is connected to the electric vehicle central control signal, and the electric vehicle central control reminds the driver of the rupture of the brittle tube according to the signal transmitted by the pressure sensor.
  • it also includes a housing gap blocking component
  • the casing gap blocking component includes a connecting hose, a polyurethane spray head, and an intelligent valve body;
  • polyurethane spray heads which are fixedly connected to the casing and located between the casing and the battery pack shell;
  • the space position of the polyurethane nozzle is located at the gap existing on the battery pack shell;
  • the connecting hose is a hose, which connects the polyurethane silo and the polyurethane spray head;
  • the intelligent valve body is positioned on the connecting hose for connecting and disconnecting the connecting hose;
  • the intelligent valve body is electrically connected to the independent power supply, and the intelligent valve body is signal-connected to the pressure sensor.
  • the pressure sensor transmits a signal to the intelligent valve body when the pressure is detected to drop. body is communicated with the connecting hose.
  • it also includes a crash force weakening component
  • the crash force weakening component includes a shell and an elastic component
  • the impact weakening component plays the role of weakening the impact of vehicle collision on the polyurethane bin and the carbon dioxide bin;
  • the outer shell is fixed on the shell, and the polyurethane warehouse and the carbon dioxide warehouse are located inside the outer shell;
  • the elastic component is positioned on the circumference of the polyurethane warehouse and the carbon dioxide warehouse, and its structure is a spring or a sponge block;
  • the polyurethane tank and the carbon dioxide tank are communicated with the brittle pipe through connecting hoses.
  • the intelligent valve body includes a control unit, an electric actuator and a valve body unit;
  • the control unit is used for receiving the signal of the pressure sensor to control the electric actuator
  • the electric actuator is positioned on the valve body unit to drive the valve body unit to open or close.
  • It also preferably includes a gap filling assembly
  • the gap filling component includes a temperature sensor, a control component, a filling hose, a filling nozzle, a filling valve body and a filling bin;
  • the temperature sensor is positioned inside the battery pack casing to detect the temperature of the battery unit
  • the temperature sensor is electrically connected to the independent power supply and signally connected to the control assembly;
  • the control assembly is used to control the action of the valve body
  • the number of the filling nozzles is multiple, all of which are fixed on the battery pack casing, and are spatially located at the gaps between the battery cells;
  • the filling hose connects all the filling nozzles, and connects the filling nozzles with the filling bin;
  • the filling bin is filled with flame-retardant polyurethane
  • the filling valve body is positioned on the filling hose for controlling the on-off of the filling hose;
  • the structure of the filling valve body is the same as that of the intelligent valve body
  • the control unit controls the filling valve body to connect to the filling hose, and the flame retardant polyurethane is sprayed from the filling nozzle to spray the filling nozzle.
  • the gaps between the battery cells are filled, reducing the oxygen content in the battery pack and reducing the risk of fire.
  • the filling chamber includes a primary filling chamber and a secondary filling chamber;
  • the primary filling chamber and the secondary filling chamber are communicated with each other, and a control valve body is positioned at the communication position;
  • the flame detector is positioned inside the battery pack casing to detect whether the battery unit is burning;
  • the flame detector is electrically connected to the independent power supply and signally connected to the control assembly;
  • the control assembly simultaneously plays the role of controlling the control valve body switch
  • the control valve body has the same structure as the filling valve body;
  • the filling hose connects all the filling nozzles, and connects the filling nozzles with the first-stage filling bin;
  • the control component controls the control valve body to open, and the flame-retardant polyurethane in the secondary filling tank fills the primary transport in warehouse;
  • the control assembly controls the control valve body to open, and the flame-retardant polyurethane in the secondary filling bin is transported to the primary filling bin.
  • It also preferably includes a safety switch
  • the safety switch includes a soft channel, a partition, a partition positioning assembly, a compression spring and a breaker;
  • the soft channel penetrates through the first-level filling bin and the filling nozzle
  • the partition positioning assembly is positioned on the soft channel, due to the positioning of the partition;
  • the baffle plate plays the role of closing the soft channel
  • the number of the compression springs is two, which are respectively positioned on both sides of the partition;
  • the number of the breaking hammers is two, which is positioned on the end of the compression spring away from the partition plate, and is used for breaking the partition plate;
  • the structure of the breaker is a cone
  • the breaker overcomes the elastic force of the compression spring to break the partition plate and communicate with the soft channel.
  • it also includes a second carbon dioxide warehouse, a gas delivery channel, a gas spray head and a gas shut-off valve body;
  • Liquid carbon dioxide is stored inside the second carbon dioxide bin, which is positioned on the filling bin;
  • the number of the gas nozzles is multiple, all of which are fixed on the battery pack casing, and are spatially located at the gaps between the battery cells;
  • the gas transmission channel communicates the second carbon dioxide warehouse with the gas nozzle
  • the gas shut-off valve body plays the role of opening and closing the gas transmission channel, and is positioned on the gas transmission channel;
  • the structure of the shut-off valve body is the same as that of the filling valve body, and is controlled by the control assembly, and is opened simultaneously when the filling valve body is opened.
  • Fig. 1 is the structure schematic diagram 1 of the high-safety electric vehicle of the present invention
  • FIG. 2 is a partial enlarged view of the first structural schematic diagram of the high-safety electric vehicle of the present invention
  • Fig. 3 is the second structural schematic diagram of the high-safety electric vehicle of the present invention.
  • FIG. 4 is a partial enlarged view of the second structural schematic diagram of the high-safety electric vehicle of the present invention.
  • FIG. 5 is a schematic structural diagram of the filling bin and its accessories of the high-safety electric vehicle of the present invention.
  • FIG. 6 is a schematic structural diagram of a safety switch for a high-safety electric vehicle of the present invention.
  • FIG. 7 is a schematic structural diagram of the second carbon dioxide tank and its accessories of the high-safety electric vehicle of the present invention.
  • Battery pack 1 battery cell 2, battery pack casing 3, polyurethane tank 4, carbon dioxide tank 5, brittle tube 6, shell 7, first brittle tube 8, second brittle tube 9, independent power supply 10, pressure sensor 11, shell Body gap blocking component 12, connecting hose 13, polyurethane spray head 14, intelligent valve body 15, impact force weakening component 16, housing 17, elastic component 18, gap filling component 19, temperature sensor 20, filling nozzle 21, filling valve body 22.
  • FIG. 1 is the first structural schematic diagram of the invention of a high-safety electric vehicle; in the present application, a component capable of spraying flame retardant polyurethane at the damaged position of the battery pack casing 3 is provided on the battery pack casing 3, and the battery pack casing 3 is automatically sealed after a collision. The damaged position of the battery pack casing 3 is blocked to isolate internal and external oxygen, thereby reducing the risk of fire and improving vehicle safety.
  • the high-safety electric vehicle includes a vehicle body, a battery pack 1 , a polyurethane tank 4 , a carbon dioxide tank 5 , a brittle tube 6 and a casing 7 .
  • the battery pack 1 includes a battery unit 2 and a battery pack casing 3, and the number of the battery units 2 is multiple, all of which are positioned inside the battery pack casing 3 to provide power for the operation of the vehicle.
  • the interior of the polyurethane warehouse 4 is filled with flame retardant polyurethane; the flame retardant polyurethane is a polyurethane foam gap filler added with a flame retardant; the flame retardant is an organic flame retardant or an inorganic flame retardant;
  • the pressure inside the polyurethane bin 4 can be 5-6 kgf/cm 2 , and the polyurethane bin 4 is positioned on the vehicle.
  • the carbon dioxide bin 5 is filled with liquid carbon dioxide.
  • the casing 7 is sleeved on the battery pack casing 3;
  • the brittle tube 6 is made of hard plastic, which is densely distributed between the battery pack casing 3 and the casing 7 and is fixedly connected to the battery pack.
  • the material of the brittle tube 6 can be phenolic plastic, polyurethane plastic, epoxy plastic, unsaturated polyester plastic, furan plastic, silicone resin, acrylic resin, etc.
  • the brittle tube 6 includes a first brittle tube 8 and a second brittle tube 9; one end of the first brittle tube 8 is closed, and the other end is communicated with the polyurethane warehouse 4; one end of the second brittle tube 9 is closed, and the other end is communicated with the carbon dioxide bin 5; the first brittle pipe 8 and the second brittle pipe 9 form a pipe network between the battery pack shell 3 and the shell 7; the electric vehicle damages the When the battery pack casing 3 is cracked and the battery pack casing 3 is cracked, the brittle
  • the independent power supply 10 plays the role of providing electrical energy for the pressure sensor 11;
  • the pressure sensor 11 is located in the polyurethane tank 4 and/or carbon dioxide Inside the warehouse 5, it is used to detect whether the pressure in the warehouse drops, and then judge whether the flame retardant polyurethane and/or carbon dioxide is ejected;
  • the pressure sensor 11 is connected with the electric vehicle central control signal, and the electric vehicle central control is based on the pressure sensor.
  • the transmitted signal alerts the driver of the rupture of the brittle tube 6 .
  • the housing gap blocking component 12 includes a connecting hose 13, a polyurethane spray head 14 and an intelligent valve body 15;
  • the number of the polyurethane spray heads 14 is multiple, and its It is fixedly connected to the casing 7 and is located between the casing 7 and the battery pack casing 3;
  • the polyurethane spray head 14 is located at the gap existing on the battery pack casing 3 in the spatial position;
  • the connecting hose 13 is a hose, which communicates with the polyurethane silo 4 and the polyurethane spray head 14;
  • the intelligent valve body 15 is positioned on the connecting hose 13 for connecting and disconnecting the connecting hose 13.
  • the intelligent valve body 15 is electrically connected to the independent power supply 10, and the intelligent valve body 15 is signal-connected to the pressure sensor, and the pressure sensor transmits a signal to the pressure sensor when it detects a drop in pressure.
  • the intelligent valve body 15 communicates with the connecting hose 13 .
  • the intelligent valve body 15 includes a control unit, an electric actuator and a valve body unit; the control unit is used for receiving the signal of the pressure sensor 11 to control the electric actuator; the electric actuator is positioned On the valve body unit, the valve body unit is driven to open or close; the control unit can be a logic controller, which is in the prior art, and will not be repeated here.
  • the high-safety electric vehicle further includes a crash force weakening assembly 16; the crash force weakening assembly 16 includes a casing 17 and an elastic assembly 18; the crash force weakening assembly 16 serves to weaken the vehicle The impact of the collision on the polyurethane warehouse 4 and the carbon dioxide warehouse 5; the outer shell 17 is fixed on the casing 7, and the polyurethane warehouse 4 and the carbon dioxide warehouse 5 are located inside the outer shell 17 ; Described elastic assembly 18 is positioned on the circumference of described polyurethane warehouse 4 and carbon dioxide warehouse 5, and its structure is a spring or sponge block; Described polyurethane warehouse 4 and carbon dioxide warehouse 5 are connected with brittle tube 6 by connecting hose 13 Connected.
  • the collision of the vehicle causes the rupture and damage of the battery pack casing 3 and also causes the brittle tube 6 at the damaged position of the battery pack casing 3 to rupture; the liquid carbon dioxide inside the brittle tube 6 is rapidly vaporized due to the pressure change, and the brittle tube is caused by absorbing heat.
  • this embodiment adds a gap filling component 19 on the basis of the first embodiment.
  • the gap filling assembly 19 includes a temperature sensor 20, a control assembly 39, a filling hose, a filling nozzle 21, a filling valve body 22 and a filling chamber 23;
  • the temperature sensor 20 is located at The inside of the battery pack casing 3 is used to detect the temperature of the battery unit 2;
  • the temperature sensor 20 is electrically connected to the independent power supply 10, and is signally connected to the control component 39;
  • the control component 39 The action used to control the valve body (filling the valve body 22 ) can be a logic controller, which is in the prior art, and will not be repeated here; the number of the filling nozzles 21 is multiple, and they are all fixed on the battery pack.
  • the space is located at the gap between the battery cells 2; the filling hose connects all the filling nozzles 21, and connects the filling nozzles 21 with the filling bin 23; the filling
  • the interior of the silo 23 is filled with flame retardant polyurethane or ammonium phosphate dry powder, and the pressure inside the filling silo is 6-8 kgf/cm2;
  • the filling valve body 22 is positioned on the filling hose to control the filling On-off of the hose; the structure of the filling valve body 22 is the same as that of the intelligent valve body 15; when the temperature of the battery unit 2 is higher than the set temperature, the control unit controls the The filling valve body 22 is connected to the filling hose, and the flame retardant polyurethane is sprayed from the filling nozzle 21 to fill the gap between the battery cells 2, reducing the oxygen content in the battery pack and reducing fire. Risk; the set temperature is preferably a temperature between 40-80 degrees Celsius.
  • the safety of the electric vehicle is further increased.
  • the present embodiment has made the following improvements on the basis of Embodiment 2:
  • the filling chamber 23 includes a primary filling chamber 24 and a secondary filling chamber 25; the primary filling chamber 24 and the secondary filling chamber 25 communicate with each other, and a control valve body is positioned at the communication position 26;
  • the high-safety electric vehicle also includes a flame detector 27; the flame detector 27 is positioned inside the battery pack housing 3 to detect whether the battery unit 2 is burning; the flame detector 27 is connected to the
  • the independent power supply 10 is electrically connected, and is signally connected to the control assembly 39; the control assembly 39 simultaneously plays the role of controlling the switch of the control valve body 26; the control valve body 26 is connected to the control valve body 26.
  • the structure of the filling valve body 22 is the same; the filling hose connects all the filling nozzles 21, and connects the filling nozzles 21 with the first-level filling bin 24;
  • the control assembly 39 controls the control valve body 26 to open, and the resistance in the secondary filling tank 25 The burning polyurethane is transported to the primary filling bin 24;
  • the control assembly 39 controls the control valve body 26 to open, and the flame-retardant polyurethane in the secondary filling chamber 25 is charged to the primary filling chamber. 24 delivery.
  • the safety of the electric vehicle is further increased.
  • this embodiment adds a safety switch 29 on the basis of the above-mentioned embodiment; as shown in FIG. 5 and FIG.
  • the switch 29 includes a soft channel 30, a partition plate 31, a positioning assembly for the partition plate 31, a compression spring 32 and a breaker 34; the soft channel 30 passes through the primary filling chamber 24 and the filling nozzle 21; the The partition plate 31 positioning assembly is positioned on the soft channel 30, because the partition plate 31 is positioned; the partition plate 31 plays the role of closing the soft channel 30; the compression spring 32
  • the number is two, which are located on both sides of the partition plate 31 respectively; the number of the breakers 34 is two, which are located on the end of the compression spring 32 away from the partition plate 31 for use in break the partition 31; the breaker 34 has a conical structure; when the car collides, the breaker 34 overcomes the elastic force of the compression spring 32 to break the partition 31, and communicates with the the soft channel 30.
  • the safety and reliability of the gap filling component 19 are further increased.
  • this embodiment adds a second carbon dioxide tank 35, The gas delivery channel 36, the gas nozzle 37 and the gas shut-off valve body 38; as shown in Figure 3, Figure 4 and Figure 7, the second carbon dioxide warehouse 35 stores liquid carbon dioxide inside, which is positioned on the filling warehouse 23 ;
  • the number of the gas nozzles 37 is multiple, all of which are fixed on the battery pack casing 173, and are located in the gap between the battery cells 2 in space;
  • the second carbon dioxide tank 355 is communicated with the gas nozzle 37;
  • the gas shut-off valve body 38 plays the role of opening and closing the gas transmission channel 36, and is positioned on the gas transmission channel 36;
  • the gas shut-off valve body The structure of the filling valve body 22 is the same as that of the filling valve body 38 , which is controlled by the control assembly 39 and opens simultaneously when the filling valve body 22 is opened.
  • the safety of the electric vehicle is further increased.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Battery Mounting, Suspending (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

一种高安全性电动车,包括车体、电池组;电池组包括电池单元和电池组外壳;高安全性电动车还包括聚氨酯仓、二氧化碳仓、脆性管、壳体;聚氨酯仓内部充有阻燃聚氨酯;二氧化碳仓内充有液态二氧化碳;壳体套装在电池组外壳上;脆性管的材质为硬塑料,其密布在电池组外壳和壳体之间并固定连接在电池组外壳以及壳体上;脆性管包括第一脆性管和第二脆性管;第一脆性管一端封闭,另一端与聚氨酯仓连通;第二脆性管一端封闭,另一端与二氧化碳仓连通;电动车在碰撞时损伤电池组外壳并造成电池组外壳出现裂缝时,裂缝处的脆性管同时破裂,阻燃聚氨酯和二氧化碳从脆性管破裂处喷出,封闭裂缝,防止氧气进入进而降低电池自燃风险。

Description

一种高安全性电动车 技术领域
本发明涉及电动车技术领域,尤其涉及一种高安全性电动车。
背景技术
对于由电池提供部分或全部动力的车辆,通常需要在车辆内布置大容量的电池,以提供足够的瞬时功率和尽可能长的续航里程。
电池在工作时会产生热量,温度过高直接会影响电池的工作性能和寿命;一旦车辆发生碰撞损伤电池组及其外壳,极其容易产生起火、爆炸等现象,是一个重大的安全事故隐患。
现有技术中通常将汽车电池布置在相对安全的位置来降低电池组损伤风险,但无论将电池组安置于车辆的哪个位置,有一些损伤是不可避免的;车辆电池组外壳损伤后,空气中的助燃物(氧气)会经电池组外壳上损伤的间隙进入电池组外壳内部电池组所在位置,为电池组的燃烧提供助燃物(氧气),导致电动车安全性差。
发明内容
本申请实施例通过提供一种高安全性电动车,解决了现有技术中电动车安全性差的技术问题,实现了在车辆电池碰撞损伤后自动封堵电池组外壳裂缝,阻止电池组外壳内外空气流动进而提高电动车辆安全性的技术效果。
本申请实施例提供了一种高安全性电动车,包括车体、电池组;所述的电池组包括电池单元和电池组外壳;高安全性电动车还包括聚氨酯仓、二氧化碳仓、脆性管、壳体;
所述的聚氨酯仓内部充有阻燃聚氨酯;
所述的二氧化碳仓内充有液态二氧化碳;
所述的壳体套装在所述的电池组外壳上;
所述的脆性管的材质为硬塑料,其密布在所述的电池组外壳和壳体之间并固定连接在所述的电池组外壳以及壳体上;
所述的脆性管包括第一脆性管和第二脆性管;
所述的第一脆性管一端封闭,另一端与所述的聚氨酯仓连通;
所述的第二脆性管一端封闭,另一端与所述的二氧化碳仓连通;
电动车在碰撞时损伤所述的电池组外壳并造成电池组外壳出现裂缝时,裂缝处的所述的脆性管同时破裂,所述的阻燃聚氨酯和二氧化碳从所述的脆性管破裂处喷出,封闭裂缝,防止氧气进入进而降低电池自燃风险。
优选的还包括独立电源和压力传感器;
所述的独立电源起到为所述的压力传感器提供电能的作用;
所述的压力传感器定位在所述的聚氨酯仓和/或二氧化碳仓内部,用于检测仓体内压力是否下降,进而判断所述的阻燃聚氨酯和/或二氧化碳是否喷出;
所述的压力传感器与电动车中控信号连接,电动车中控根据压力传感器传输的信号提醒驾驶员所述脆性管的破裂情况。
优选的还包括壳体间隙封堵组件;
所述的壳体间隙封堵组件包括连接软管、聚氨酯喷头、智能阀体;
所述的聚氨酯喷头的数量为多个,其固定连接在所述的壳体上,位于所述的壳体和电池组外壳之间;
所述的聚氨酯喷头空间位置上位于所述的电池组外壳上存在的缝隙处;
所述的连接软管为软管,其连通所述的聚氨酯仓和聚氨酯喷头;
所述的智能阀体定位在所述的连接软管上,用于通断所述的连接软管;
所述的智能阀体与所述的独立电源电连接,智能阀体与所述的压力传感器信号连接,所述的压力传感器检测到压力下降时将信号传输给所述的智能阀体,智能阀体连通所述的连接软管。
优选的还包括碰撞力弱化组件;
所述的碰撞力弱化组件包括外壳和弹性组件;
所述的碰撞力弱化组件起到减弱车辆碰撞对所述的聚氨酯仓和二氧化碳仓的冲击的作用;
所述的外壳固定在所述的壳体上,所述的聚氨酯仓和二氧化碳仓位于所述的外壳的内部;
所述的弹性组件定位在所述的聚氨酯仓和二氧化碳仓的周圈,其结构是弹簧或海绵块;
所述的聚氨酯仓和二氧化碳仓通过连接软管与脆性管连通。
优选的所述的智能阀体包括控制单元、电动执行器和阀体单元;
所述的控制单元用于接收所述的压力传感器的信号,控制电动执行器;
所述的电动执行器定位在所述的阀体单元上,驱动阀体单元开或关。
优选的还包括间隙填充组件;
所述的间隙填充组件包括温度传感器、控制组件、填充软管、填充喷头、填充阀体和填充仓;
所述的温度传感器定位在所述的电池组外壳内部,用于检测电池单元的温度;
所述的温度传感器与所述的独立电源电连接,与所述的控制组件信号连接;
所述的控制组件用于控制阀体的动作;
所述的填充喷头数量为多个,均固定在所述的电池组外壳上,空间上位于所述的电池单元之间的间隙处;
所述的填充软管连接所有的填充喷头,并将填充喷头与所述的填充仓连通;
所述的填充仓内部填充有阻燃聚氨酯;
所述的填充阀体定位在所述的填充软管用于控制所述的填充软管的通断;
所述的填充阀体的结构与所述的智能阀体的结构相同;
所述的电池单元的温度高于设定温度时,所述的控制单元控制所述的填充阀体接通所述的填充软管,阻燃聚氨酯从所述的填充喷头喷出,将所述的电池单元间的间隙填满,减少电池组内的氧气含量,降低着火风险。
优选的所述的填充仓包括一级填充仓和二级填充仓;
所述的一级填充仓和二级填充仓相互连通,且连通位置定位有控制阀体;
还包括火焰探测器;
所述的火焰探测器定位在所述的电池组外壳内部,用于检测电池单元的是否燃烧;
所述的火焰探测器与所述的独立电源电性连接,与所述的控制组件信号连接;
所述的控制组件同时起到控制所述的控制阀体开关的作用;
所述的控制阀体与所述的填充阀体的结构相同;
所述的填充软管连接所有的填充喷头,并将填充喷头与所述的一级填充仓连通;
在所述的压力传感器检测出所述的聚氨酯仓和/或二氧化碳仓内部压力下降时,所述的控制组件控制所述的控制阀体打开,二级填充仓中的阻燃聚氨酯向一级填充仓中输送;
在所述的火焰探测器检测到所述的电池单元着火时,所述的控制组件控制所述的控制阀体打开,二级填充仓中的阻燃聚氨酯向一级填充仓中输送。
优选的还包括保险开关;
所述的保险开关包括软质通道、隔板、隔板定位组件、压簧和破碎锤;
所述的软质通道贯通一级填充仓和所述的填充喷头;
所述的隔板定位组件定位在所述的软质通道上,由于定位所述的隔板;
所述的隔板起到封闭所述的软质通道的作用;
所述的压簧数量为两个,分别定位在所述的隔板的两侧;
所述的破碎锤数量为两个,定位在所述的压簧上远离所述的隔板的一端,用于破碎所述的隔板;
所述的破碎锤的结构为锥形;
汽车碰撞时,所述的破碎锤克服所述的压簧的弹力击破所述的隔板,连通所述的软质通道。
优选的还包括第二二氧化碳仓、输气通道、气体喷头和断气阀体;
所述的第二二氧化碳仓内部存储有液态二氧化碳,其定位在所述的填充仓上;
所述的气体喷头数量为多个,均固定在所述的电池组外壳上,空间上位于所述的电池单元之间的间隙处;
所述的输气通道将所述的第二二氧化碳仓和气体喷头连通;
所述的断气阀体起到通断所述的输气通道的作用,其定位在所述的输气通道上;
所述的断气阀体的结构与所述的填充阀体的结构相同,受控于所述的控制组件,在所述的填充阀体打开时同时打开。
本申请实施例中提供的一个或多个技术方案,至少具有如下技术效果或优点:
通过在车辆电池组外壳上设置能够在电池组外壳破损位置喷出阻燃聚氨酯的组件,在车辆发生碰撞后自动封堵电池组外壳破损位置,隔绝内外氧气,进而降低着火风险:有效解决了现有技术中电动车安全性差的技术问题,进而实现了在车辆电池碰撞损伤后自动封堵电池组外壳裂缝,阻止电池组外壳内外空气流动进而提高电动车辆安全性的技术效果。
附图说明
图1为本发明高安全性电动车的结构示意图一;
图2为本发明高安全性电动车结构示意图一的局部放大图;
图3为本发明高安全性电动车的结构示意图二;
图4为本发明高安全性电动车结构示意图二的局部放大图;
图5为本发明高安全性电动车的填充仓及其附件的结构示意图;
图6为本发明高安全性电动车的保险开关的结构示意图;
图7为本发明高安全性电动车的第二二氧化碳仓及其附件的结构示意图;
图中:
电池组1、电池单元2、电池组外壳3、聚氨酯仓4、二氧化碳仓5、脆性管6、壳体7、第一脆性管8、第二脆性管9、独立电源10、压力传感器11、壳体间隙封堵组件12、连接软管13、聚氨酯喷头14、智能阀体15、碰撞力弱化组件16、外壳17、弹性组件18、间隙填充组件19、温度传感器20、填充喷头21、填充阀体22、填充仓23、一级填充仓24、二级填充仓25、控制阀体26、火焰探测器27、保险开关29、软质通道30、隔板31、隔板定位组件32、压簧32、破碎锤34、第二二氧化碳仓35、输气通道36、气体喷头37、断气阀体38、控制组件39。
具体实施方式
为了便于理解本发明,下面将参照相关附图对本申请进行更全面的描述;附图中给出了本发明的较佳实施方式,但是,本发明可以以许多不同的形式来实现,并不限于本文所描述的实施方式;相反地,提供这些实施方式的目的是使对本发明的公开内容理解的更加透彻全面。
需要说明的是,本文所使用的术语“垂直”、“水平”、“上”、“下”、“左”、“右”以及类似的表述只是为了说明的目的,并不表示是唯一的实施方式。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同;本文中在本发明的说明书中所使用的术语只是为了描述具体的实施方式的目的,不是旨在于限制本发明;本文所使用的术语“和/或”包括一个或多个相关的所列项目的任意的和所有的组合。
请参阅图1,为发明高安全性电动车的结构示意图一;本申请通过在电池组外壳3上设置能够在电池组外壳3破损位置喷出阻燃聚氨酯的组件,在车辆发生碰撞后自动封堵电池组外壳3破损位置,隔绝内外氧气,进而降低着火风险,提高车辆安全性。
实施例一
如图1和图2所示,高安全性电动车包括车体、电池组1、聚氨酯仓4、二氧化碳仓5、脆性管6和壳体7。
所述的电池组1包括电池单元2和电池组外壳3,电池单元2的数量为多个,均定位在所述的电池组外壳3内部,为车辆的运行提供动力。
所述的聚氨酯仓4内部充有阻燃聚氨酯;所述的阻燃聚氨酯为添加有阻燃剂的聚氨酯泡沫填缝剂;所述的阻燃剂是有机阻燃剂或无机阻燃剂;所述的聚氨酯仓4内部的压力能够为5-6公斤力/平方厘米,聚氨酯仓4定位在车辆上。
所述的二氧化碳仓5内充有液态二氧化碳。
所述的壳体7套装在所述的电池组外壳3上;所述的脆性管6的材质为硬塑料,其密布在所述的电池组外壳3和壳体7之间并固定连接在所述的电池组外壳3以及壳体7上;所述的脆性管6的材质能够是酚醛塑料、聚氨酯塑料、环氧塑料、不饱和聚酯塑料、呋喃塑料、有机硅树脂、丙烯基树脂等;所述的脆性管6包括第一脆性管8和第二脆性管9;所述的第一脆性管8一端封闭,另一端与所述的聚氨酯仓4连通;所述的第二脆性管9一端封闭,另一端与所述的二氧化碳仓5连通;第一脆性管8和第二脆性管9在所述的电池组外壳3和壳体7之间形成管网;电动车在碰撞时损伤所述的电池组外壳3并造成电池组外壳3出现裂缝时,裂缝处的所述的脆性管6同时破裂,所述的阻燃聚氨酯和二氧化碳从所述的脆性管6破裂处喷出,封闭裂缝,防止氧气进入进而降低电池自燃风险。
优选的还包括独立电源10和压力传感器11;所述的独立电源10起到为所述的压力传感器11提供电能的作用;所述的压力传感器11定位在所述的聚氨酯仓4和/或二氧化碳仓5内部,用于检测仓体内压力是否下降,进而判断所述的阻燃聚氨酯和/或二氧化碳是否喷出;所述的压力传感器11与电动车中控信号连接,电动车中控根据压力传感器传输的信号提醒驾驶员所述脆性管6的破裂情况。
优选的还包括壳体间隙封堵组件12;所述的壳体间隙封堵组件12包括连接软管13、聚氨酯喷头14和智能阀体15;所述的聚氨酯喷头14的数量为多个,其固定连接在所述的壳体7上,位于所述的壳体7和电池组外壳3之间;所述的聚氨酯喷头14空间位置上位于所述的电池组外壳3上存在的缝隙处;所述的连接软管13为软管,其连通所述的聚氨酯仓4和聚氨酯喷头14;所述的智能阀体15定位在所述的连接软管13上,用于通断所述的连接软管13;所述的智能阀体15与所述的独立电源10电连接,智能阀体15与所述的压力传感器信号连接,所述的压力传感器检测到压力下降时将信号传输给所述的智能阀体15,智能阀体15连通所述的连接软管13。
优选的所述的智能阀体15包括控制单元、电动执行器和阀体单元;所述的控制单元用于接收所述的压力传感器11的信号,控制电动执行器;所述的电动执行器定位在所述的阀体单元上,驱动阀体单元开或关;所述的控制单元能够是逻辑控制器,为现有技术,在此 不进行赘述。
优选的,如图2所示,高安全性电动车还包括碰撞力弱化组件16;所述的碰撞力弱化组件16包括外壳17和弹性组件18;所述的碰撞力弱化组件16起到减弱车辆碰撞对所述的聚氨酯仓4和二氧化碳仓5的冲击的作用;所述的外壳17固定在所述的壳体7上,所述的聚氨酯仓4和二氧化碳仓5位于所述的外壳17的内部;所述的弹性组件18定位在所述的聚氨酯仓4和二氧化碳仓5的周圈,其结构是弹簧或海绵块;所述的聚氨酯仓4和二氧化碳仓5通过连接软管13与脆性管6连通。
本申请实施例实际运行时,车辆碰撞导致电池组外壳3破裂损坏同时导致电池组外壳3破损位置的脆性管6破裂;脆性管6内部的液态二氧化碳因压强变化迅速气化,吸收热量导致脆性管6破裂位置附近的空气因温度迅速降低出现小液滴,从脆性管6破裂处喷出的阻燃聚氨酯与水(空气中的水分)迅速反应,快速发泡,堵漏,阻止气体流通,降低减少起火风险;此时压力传感器11检测到所述的聚氨酯仓4和/或二氧化碳仓5内压力下降,所述的壳体间隙封堵组件12运行,所述的智能阀体15连通所述的连接软管13,阻燃聚氨酯从所述的聚氨酯喷头14喷出,封堵电池组外壳3上原始存在的缝隙。
上述本申请实施例中的技术方案,至少具有如下的技术效果或优点:
解决了现有技术中电动车安全性差的技术问题,实现了在车辆电池碰撞损伤后自动封堵电池组外壳裂缝,阻止电池组外壳内外空气流动进而提高电动车辆安全性的技术效果。
实施例二
为了进一步的提高电动车的安全性,降低电池组1着火风险,本实施例在实施例一的基础上增设了间隙填充组件19。
如图1和图2所示,所述的间隙填充组件19包括温度传感器20、控制组件39、填充软管、填充喷头21、填充阀体22和填充仓23;所述的温度传感器20定位在所述的电池组外壳3内部,用于检测电池单元2的温度;所述的温度传感器20与所述的独立电源10电连接,与所述的控制组件39信号连接;所述的控制组件39用于控制阀体(填充阀体22)的动作,能够是逻辑控制器,为现有技术,在此不进行赘述;所述的填充喷头21数量为多个,均固定在所述的电池组外壳3上,空间上位于所述的电池单元2之间的间隙处;所述的填充软管连接所有的填充喷头21,并将填充喷头21与所述的填充仓23连通;所述的填充仓23内部填充有阻燃聚氨酯或磷酸铵盐干粉,填充仓内部压力为6-8公斤力/平方厘米; 所述的填充阀体22定位在所述的填充软管用于控制所述的填充软管的通断;所述的填充阀体22的结构与所述的智能阀体15的结构相同;所述的电池单元2的温度高于设定温度时,所述的控制单元控制所述的填充阀体22接通所述的填充软管,阻燃聚氨酯从所述的填充喷头21喷出,将所述的电池单元2间的间隙填满,减少电池组内的氧气含量,降低着火风险;所述的设定温度优选为40-80摄氏度之间的一个温度。
上述本申请实施例中的技术方案,至少具有如下的技术效果或优点:
相较上述实施例,进一步的增加了电动车的安全性。
实施例三
考虑到实施例二中的间隙填充组件19运行时(填满电池单元2之间的间隙)所需喷出的阻燃聚氨酯的量会因实际的电池组外壳3是否损坏而不同(电池组外壳3损坏后由填充喷头21喷出的阻燃聚氨酯可能从裂缝处挤出,阻燃聚氨酯的需求量较电池组外壳3未损坏2要大),同时也会因电池单元2是否已经起火有关(起火温度过高,影响阻燃聚氨酯发泡);本着实用和节约原则,本实施例在实施例二的基础上做了如下改进:
如图5所示,所述的填充仓23包括一级填充仓24和二级填充仓25;所述的一级填充仓24和二级填充仓25相互连通,且连通位置定位有控制阀体26;高安全性电动车还包括火焰探测器27;所述的火焰探测器27定位在所述的电池组外壳3内部,用于检测电池单元2的是否燃烧;所述的火焰探测器27与所述的独立电源10电性连接,与所述的控制组件39信号连接;所述的控制组件39同时起到控制所述的控制阀体26开关的作用;所述的控制阀体26与所述的填充阀体22的结构相同;所述的填充软管连接所有的填充喷头21,并将填充喷头21与所述的一级填充仓24连通;
在所述的压力传感器11检测出所述的聚氨酯仓4和/或二氧化碳仓5内部压力下降时,所述的控制组件39控制所述的控制阀体26打开,二级填充仓25中的阻燃聚氨酯向一级填充仓24中输送;
在所述的火焰探测器27检测到所述的电池单元2着火时,所述的控制组件39控制所述的控制阀体26打开,二级填充仓25中的阻燃聚氨酯向一级填充仓24中输送。
上述本申请实施例中的技术方案,至少具有如下的技术效果或优点:
相较上述实施例,进一步的增加了电动车的安全性。
实施例四
考虑到所述的填充阀体22的开启由信号控制,可靠性较低,故本实施例在上述实施例的基础上增设了保险开关29;如图5和图6所示,所述的保险开关29包括软质通道30、隔板31、隔板31定位组件、压簧32和破碎锤34;所述的软质通道30贯通一级填充仓24和所述的填充喷头21;所述的隔板31定位组件定位在所述的软质通道30上,由于定位所述的隔板31;所述的隔板31起到封闭所述的软质通道30的作用;所述的压簧32数量为两个,分别定位在所述的隔板31的两侧;所述的破碎锤34数量为两个,定位在所述的压簧32上远离所述的隔板31的一端,用于破碎所述的隔板31;所述的破碎锤34的结构为锥形;汽车碰撞时,所述的破碎锤34克服所述的压簧32的弹力击破所述的隔板31,连通所述的软质通道30。
上述本申请实施例中的技术方案,至少具有如下的技术效果或优点:
相较上述实施例,进一步的增加了间隙填充组件19安全性和可靠性。
实施例五
为了在所述的间隙填充组件19运行时降低所述的电池组壳体3内部的温度并促进阻燃聚氨酯的发泡;本实施例在上述实施例的基础上增设了第二二氧化碳仓35、输气通道36、气体喷头37和断气阀体38;如图3、图4和图7所示,所述的第二二氧化碳仓35内部存储有液态二氧化碳,其定位在所述的填充仓23上;所述的气体喷头37数量为多个,均固定在所述的电池组外壳173上,空间上位于所述的电池单元2之间的间隙处;所述的输气通道36将所述的第二二氧化碳仓355和气体喷头37连通;所述的断气阀体38起到通断所述的输气通道36的作用,其定位在所述的输气通道36上;所述的断气阀体38的结构与所述的填充阀体22的结构相同,受控于所述的控制组件39,在所述的填充阀体22打开时同时打开。
上述本申请实施例中的技术方案,至少具有如下的技术效果或优点:
相较上述实施例,进一步的增加了电动车的安全性。
以上所述仅为本发明的优选实施方式,并不用于限制本发明,对于本领域技术人员来说,本发明可以有各种更改和变化。凡在本发明精神和原则内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (9)

  1. 一种高安全性电动车,包括车体、电池组;所述的电池组包括电池单元和电池组外壳;其特征在于,高安全性电动车还包括聚氨酯仓、二氧化碳仓、脆性管、壳体;
    所述的聚氨酯仓内部充有阻燃聚氨酯;
    所述的二氧化碳仓内充有液态二氧化碳;
    所述的壳体套装在所述的电池组外壳上;
    所述的脆性管的材质为硬塑料,其密布在所述的电池组外壳和壳体之间并固定连接在所述的电池组外壳以及壳体上;
    所述的脆性管包括第一脆性管和第二脆性管;
    所述的第一脆性管一端封闭,另一端与所述的聚氨酯仓连通;
    所述的第二脆性管一端封闭,另一端与所述的二氧化碳仓连通;
    电动车在碰撞时损伤所述的电池组外壳并造成电池组外壳出现裂缝时,裂缝处的所述的脆性管同时破裂,所述的阻燃聚氨酯和二氧化碳从所述的脆性管破裂处喷出,封闭裂缝,防止氧气进入进而降低电池自燃风险。
  2. 根据权利要求1所述的高安全性电动车,其特征在于,还包括独立电源和压力传感器;所述的独立电源起到为所述的压力传感器提供电能的作用;
    所述的压力传感器定位在所述的聚氨酯仓和/或二氧化碳仓内部,用于检测仓体内压力是否下降,进而判断所述的阻燃聚氨酯和/或二氧化碳是否喷出;
    所述的压力传感器与电动车中控信号连接,电动车中控根据压力传感器传输的信号提醒驾驶员所述脆性管的破裂情况。
  3. 根据权利要求2所述的高安全性电动车,其特征在于,还包括壳体间隙封堵组件;
    所述的壳体间隙封堵组件包括连接软管、聚氨酯喷头、智能阀体;
    所述的聚氨酯喷头的数量为多个,其固定连接在所述的壳体上,位于所述的壳体和电池组外壳之间;
    所述的聚氨酯喷头空间位置上位于所述的电池组外壳上存在的缝隙处;
    所述的连接软管为软管,其连通所述的聚氨酯仓和聚氨酯喷头;
    所述的智能阀体定位在所述的连接软管上,用于通断所述的连接软管;
    所述的智能阀体与所述的独立电源电连接,智能阀体与所述的压力传感器信号连接,所述的压力传感器检测到压力下降时将信号传输给所述的智能阀体,智能阀体连通所述的连接软管。
  4. 根据权利要求3其中之一所述的高安全性电动车,其特征在于,还包括碰撞力弱化组件; 所述的碰撞力弱化组件包括外壳和弹性组件;
    所述的碰撞力弱化组件起到减弱车辆碰撞对所述的聚氨酯仓和二氧化碳仓的冲击的作用;
    所述的外壳固定在所述的壳体上,所述的聚氨酯仓和二氧化碳仓位于所述的外壳的内部;
    所述的弹性组件定位在所述的聚氨酯仓和二氧化碳仓的周圈,其结构是弹簧或海绵块;
    所述的聚氨酯仓和二氧化碳仓通过连接软管与脆性管连通。
  5. 根据权利要求3所述的高安全性电动车,其特征在于,所述的智能阀体包括控制单元、电动执行器和阀体单元;
    所述的控制单元用于接收所述的压力传感器的信号,控制电动执行器;
    所述的电动执行器定位在所述的阀体单元上,驱动阀体单元开或关。
  6. 根据权利要求1至5其中之一所述的高安全性电动车,其特征在于,还包括间隙填充组件;
    所述的间隙填充组件包括温度传感器、控制组件、填充软管、填充喷头、填充阀体和填充仓;
    所述的温度传感器定位在所述的电池组外壳内部,用于检测电池单元的温度;
    所述的温度传感器与所述的独立电源电连接,与所述的控制组件信号连接;
    所述的控制组件用于控制阀体的动作;
    所述的填充喷头数量为多个,均固定在所述的电池组外壳上,空间上位于所述的电池单元之间的间隙处;
    所述的填充软管连接所有的填充喷头,并将填充喷头与所述的填充仓连通;
    所述的填充仓内部填充有阻燃聚氨酯;
    所述的填充阀体定位在所述的填充软管用于控制所述的填充软管的通断;
    所述的填充阀体的结构与所述的智能阀体的结构相同;
    所述的电池单元的温度高于设定温度时,所述的控制单元控制所述的填充阀体接通所述的填充软管,阻燃聚氨酯从所述的填充喷头喷出,将所述的电池单元间的间隙填满,减少电池组内的氧气含量,降低着火风险。
  7. 根据权利要求6所述的高安全性电动车,其特征在于,所述的填充仓包括一级填充仓和二级填充仓;
    所述的一级填充仓和二级填充仓相互连通,且连通位置定位有控制阀体;
    还包括火焰探测器;
    所述的火焰探测器定位在所述的电池组外壳内部,用于检测电池单元的是否燃烧;
    所述的火焰探测器与所述的独立电源电性连接,与所述的控制组件信号连接;
    所述的控制组件同时起到控制所述的控制阀体开关的作用;
    所述的控制阀体与所述的填充阀体的结构相同;
    所述的填充软管连接所有的填充喷头,并将填充喷头与所述的一级填充仓连通;
    在所述的压力传感器检测出所述的聚氨酯仓和/或二氧化碳仓内部压力下降时,所述的控制组件控制所述的控制阀体打开,二级填充仓中的阻燃聚氨酯向一级填充仓中输送;
    在所述的火焰探测器检测到所述的电池单元着火时,所述的控制组件控制所述的控制阀体打开,二级填充仓中的阻燃聚氨酯向一级填充仓中输送。
  8. 根据权利要求7所述的高安全性电动车,其特征在于,还包括保险开关;
    所述的保险开关包括软质通道、隔板、隔板定位组件、压簧和破碎锤;
    所述的软质通道贯通一级填充仓和所述的填充喷头;
    所述的隔板定位组件定位在所述的软质通道上,由于定位所述的隔板;
    所述的隔板起到封闭所述的软质通道的作用;
    所述的压簧数量为两个,分别定位在所述的隔板的两侧;
    所述的破碎锤数量为两个,定位在所述的压簧上远离所述的隔板的一端,用于破碎所述的隔板;
    所述的破碎锤的结构为锥形;
    汽车碰撞时,所述的破碎锤克服所述的压簧的弹力击破所述的隔板,连通所述的软质通道。
  9. 根据权利要求8所述的高安全性电动车,其特征在于,还包括第二二氧化碳仓、输气通道、气体喷头和断气阀体;
    所述的第二二氧化碳仓内部存储有液态二氧化碳,其定位在所述的填充仓上;
    所述的气体喷头数量为多个,均固定在所述的电池组外壳上,空间上位于所述的电池单元之间的间隙处;
    所述的输气通道将所述的第二二氧化碳仓和气体喷头连通;
    所述的断气阀体起到通断所述的输气通道的作用,其定位在所述的输气通道上;
    所述的断气阀体的结构与所述的填充阀体的结构相同,受控于所述的控制组件,在所述的填充阀体打开时同时打开。
PCT/CN2020/131174 2020-11-24 2020-11-24 一种高安全性电动车 WO2022109788A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2020/131174 WO2022109788A1 (zh) 2020-11-24 2020-11-24 一种高安全性电动车
CN202011370384.8A CN112519582B (zh) 2020-11-24 2020-11-30 一种高安全性电动车

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/131174 WO2022109788A1 (zh) 2020-11-24 2020-11-24 一种高安全性电动车

Publications (1)

Publication Number Publication Date
WO2022109788A1 true WO2022109788A1 (zh) 2022-06-02

Family

ID=74995202

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/131174 WO2022109788A1 (zh) 2020-11-24 2020-11-24 一种高安全性电动车

Country Status (2)

Country Link
CN (1) CN112519582B (zh)
WO (1) WO2022109788A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113362997A (zh) * 2021-05-20 2021-09-07 重庆柒安电线电缆(集团)有限责任公司 一种耐挤压电缆
CN114441977B (zh) * 2021-12-31 2024-04-05 重庆特斯联智慧科技股份有限公司 一种机器人电池安全监测系统及监测方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102013711A (zh) * 2010-10-13 2011-04-13 上海磁浮交通发展有限公司 高电压大功率蓄电池组保护系统及其监控方法
CN102842738A (zh) * 2012-09-04 2012-12-26 西安交通大学 一种电动汽车用锂离子电池阻燃防爆装置及方法
CN103329307A (zh) * 2011-01-18 2013-09-25 锂电池科技有限公司 由多个电化学蓄能器组成的蓄电池
DE102012020324A1 (de) * 2012-10-12 2014-04-17 Jungheinrich Aktiengesellschaft Batterie für ein Flurförderzeug
WO2018131221A1 (ja) * 2017-01-13 2018-07-19 株式会社村田製作所 電池トレイ用フタ、フタ付き電池トレイおよび電池の製造方法
CN109065799A (zh) * 2018-09-30 2018-12-21 吉林大学 一种新型纯电动汽车动力锂电池箱体
CN211350737U (zh) * 2019-12-28 2020-08-25 江西省中子能源有限公司 一种适用于锂电池仓的阻燃机构

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1428132A (en) * 1972-07-20 1976-03-17 Post Office Method of constructing double-skin boxes particularly for lead- acid batteries
CN104953083B (zh) * 2015-06-08 2017-06-30 浙江超威创元实业有限公司 一种防止电池起火爆炸的电芯结构和具有该电芯结构的锂离子电池
CN106252549B (zh) * 2016-08-01 2019-03-19 上海豪骋智能科技有限公司 一种轻质、安全电芯支架及动力电池包
CN206134764U (zh) * 2016-09-22 2017-04-26 河源市新凌嘉新能源材料研究院 一种电动车锂电池组的智能保护装置
CN110406395A (zh) * 2019-07-22 2019-11-05 江苏奥新新能源汽车有限公司 一种电动汽车防爆燃电池包

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102013711A (zh) * 2010-10-13 2011-04-13 上海磁浮交通发展有限公司 高电压大功率蓄电池组保护系统及其监控方法
CN103329307A (zh) * 2011-01-18 2013-09-25 锂电池科技有限公司 由多个电化学蓄能器组成的蓄电池
CN102842738A (zh) * 2012-09-04 2012-12-26 西安交通大学 一种电动汽车用锂离子电池阻燃防爆装置及方法
DE102012020324A1 (de) * 2012-10-12 2014-04-17 Jungheinrich Aktiengesellschaft Batterie für ein Flurförderzeug
WO2018131221A1 (ja) * 2017-01-13 2018-07-19 株式会社村田製作所 電池トレイ用フタ、フタ付き電池トレイおよび電池の製造方法
CN109065799A (zh) * 2018-09-30 2018-12-21 吉林大学 一种新型纯电动汽车动力锂电池箱体
CN211350737U (zh) * 2019-12-28 2020-08-25 江西省中子能源有限公司 一种适用于锂电池仓的阻燃机构

Also Published As

Publication number Publication date
CN112519582B (zh) 2023-09-01
CN112519582A (zh) 2021-03-19

Similar Documents

Publication Publication Date Title
WO2022109788A1 (zh) 一种高安全性电动车
CN109432634B (zh) 一种集装箱式锂离子电池储能系统的消防方法
KR102178601B1 (ko) 압축공기포를 이용한 ess 화재 예방 시스템
KR102552703B1 (ko) 전기자동차 주차장용 자동소화시스템
CN109568833A (zh) 一种动力电池包防复燃自动灭火装置与方法
CN207587767U (zh) 一种锂离子电池防火防爆装置
KR20150058138A (ko) 자동 소화구
Rao et al. Study of fire tests and fire safety measures on lithiumion battery used on ships
JP2014144033A (ja) 消火装置
CN112103444A (zh) 箱体、电池、用电设备及电池的制造方法
CN203447673U (zh) 一种管网式自动灭火装置
CN106807004B (zh) 一种电池系统及其自动干粉灭火装置
RU2537134C1 (ru) Способы и устройства для подавления опасности и сигнализации
CN114899509A (zh) 一种多触发方式的新能源汽车动力电池自动降温及灭火装置
CN201469938U (zh) 一种加油机用快速灭火装置
CN113663254A (zh) 一种储能电站电池箱声学低压细水雾灭火防控装置
KR20230001501U (ko) 멀티 스테이지 에너지 스토리지 소방 시스템
CN217391442U (zh) 一种车载阻燃气、灭火剂及消防水复合式消防装置
CN217444530U (zh) 船用储能集装箱
CN206464069U (zh) 一种带有灭火装置的撕碎系统
CN205612900U (zh) 油库消防系统
CN113750403B (zh) 一种用于汽车动力电池的阻燃灭火系统和方法
CN217697708U (zh) 一种具有自动消防功能的电池充电装置
CN215691194U (zh) 一种分布储压式全氟己酮火灾抑制系统
CN213609518U (zh) 电动车用密封式主动防火锂电池结构

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20962679

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20962679

Country of ref document: EP

Kind code of ref document: A1