WO2022108324A1 - 전극 건조 자동 제어 시스템 및 전극 건조 자동 제어 방법 - Google Patents

전극 건조 자동 제어 시스템 및 전극 건조 자동 제어 방법 Download PDF

Info

Publication number
WO2022108324A1
WO2022108324A1 PCT/KR2021/016858 KR2021016858W WO2022108324A1 WO 2022108324 A1 WO2022108324 A1 WO 2022108324A1 KR 2021016858 W KR2021016858 W KR 2021016858W WO 2022108324 A1 WO2022108324 A1 WO 2022108324A1
Authority
WO
WIPO (PCT)
Prior art keywords
drying
electrode
electrode sheet
intensity
oven
Prior art date
Application number
PCT/KR2021/016858
Other languages
English (en)
French (fr)
Inventor
손진영
최상훈
전신욱
정은회
고영국
Original Assignee
주식회사 엘지에너지솔루션
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020210157703A external-priority patent/KR20220068179A/ko
Application filed by 주식회사 엘지에너지솔루션 filed Critical 주식회사 엘지에너지솔루션
Priority to US17/913,006 priority Critical patent/US20230175776A1/en
Priority to CN202180021776.XA priority patent/CN115315826A/zh
Priority to EP21895092.1A priority patent/EP4109580A4/en
Publication of WO2022108324A1 publication Critical patent/WO2022108324A1/ko

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B21/00Arrangements or duct systems, e.g. in combination with pallet boxes, for supplying and controlling air or gases for drying solid materials or objects
    • F26B21/06Controlling, e.g. regulating, parameters of gas supply
    • F26B21/10Temperature; Pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B13/00Machines and apparatus for drying fabrics, fibres, yarns, or other materials in long lengths, with progressive movement
    • F26B13/10Arrangements for feeding, heating or supporting materials; Controlling movement, tension or position of materials
    • F26B13/101Supporting materials without tension, e.g. on or between foraminous belts
    • F26B13/103Supporting materials without tension, e.g. on or between foraminous belts with mechanical supporting means, e.g. belts, rollers, and fluid impingement arrangement having a displacing effect on the materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B21/00Arrangements or duct systems, e.g. in combination with pallet boxes, for supplying and controlling air or gases for drying solid materials or objects
    • F26B21/004Nozzle assemblies; Air knives; Air distributors; Blow boxes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B21/00Arrangements or duct systems, e.g. in combination with pallet boxes, for supplying and controlling air or gases for drying solid materials or objects
    • F26B21/06Controlling, e.g. regulating, parameters of gas supply
    • F26B21/12Velocity of flow; Quantity of flow, e.g. by varying fan speed, by modifying cross flow area
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B25/00Details of general application not covered by group F26B21/00 or F26B23/00
    • F26B25/22Controlling the drying process in dependence on liquid content of solid materials or objects
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B3/00Drying solid materials or objects by processes involving the application of heat
    • F26B3/02Drying solid materials or objects by processes involving the application of heat by convection, i.e. heat being conveyed from a heat source to the materials or objects to be dried by a gas or vapour, e.g. air
    • F26B3/04Drying solid materials or objects by processes involving the application of heat by convection, i.e. heat being conveyed from a heat source to the materials or objects to be dried by a gas or vapour, e.g. air the gas or vapour circulating over or surrounding the materials or objects to be dried
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B3/00Drying solid materials or objects by processes involving the application of heat
    • F26B3/28Drying solid materials or objects by processes involving the application of heat by radiation, e.g. from the sun
    • F26B3/283Drying solid materials or objects by processes involving the application of heat by radiation, e.g. from the sun in combination with convection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0471Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B3/00Drying solid materials or objects by processes involving the application of heat
    • F26B3/28Drying solid materials or objects by processes involving the application of heat by radiation, e.g. from the sun
    • F26B3/30Drying solid materials or objects by processes involving the application of heat by radiation, e.g. from the sun from infrared-emitting elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0404Machines for assembling batteries
    • H01M10/0409Machines for assembling batteries for cells with wound electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to an automatic electrode drying control system and an electrode drying automatic control method, and more particularly, to determine the drying level from drying amount information such as the solid content of the dried electrode sheet or the surface temperature of the electrode sheet, and, accordingly, automatically It relates to an electrode drying automatic control system and an electrode drying automatic control method that can correct the amount of electrode drying in real time by operating the drying means.
  • водород batteries are sometimes classified into lithium ion batteries, lithium ion polymer batteries, lithium polymer batteries, etc. depending on the composition of the electrode and electrolyte. is increasing
  • secondary batteries depending on the shape of the battery case, a cylindrical battery and a prismatic battery in which the electrode assembly is built in a cylindrical or prismatic metal can, and a pouch-type battery in which the electrode assembly is built in a pouch-type case of an aluminum laminate sheet
  • the electrode assembly built into the battery case consists of a positive electrode, a negative electrode, and a separator structure interposed between the positive electrode and the negative electrode, and is a power generating element capable of charging and discharging. It is classified into a jelly-roll type wound with a separator interposed therebetween, and a stack type in which a plurality of positive and negative electrodes of a predetermined size are sequentially stacked with a separator interposed therebetween.
  • the positive electrode and the negative electrode are formed by applying a positive electrode slurry containing a positive electrode active material and a negative electrode slurry containing a negative electrode active material to a positive electrode current collector and a negative electrode current collector, respectively to form a positive electrode active material layer and a negative electrode active material layer, followed by drying and rolling them do.
  • the drying conditions of the electrode affect the quality and physical properties of the electrode, and in particular, the adhesion and surface bonding level of the electrode may vary greatly depending on the deviation of the drying degree in the electrode width direction during drying and the control of the drying completion time.
  • the initial process conditions were determined in advance, the electrode was dried, and after drying was completed, the drying amount was evaluated through measuring the physical properties of the sample and the process conditions were adjusted. It was not suitable for roll-to-roll continuous production process because it was difficult to reflect it in the process in real time.
  • the present invention has been devised to solve the above problems, and it is possible to automatically control the degree of electrode drying in real time to maintain a constant level of drying of the final electrode, thereby reducing product variation by automatically controlling electrode drying system and electrode
  • An object of the present invention is to provide a drying automatic control method.
  • An electrode drying automatic control system provides a space in which an electrode sheet is dried while traveling, has a drying means for applying hot air and/or radiant heat to the electrode sheet, and includes an oven partitioned into a plurality of drying sections; a measuring unit that collects information on the amount of drying of the electrode sheet that has passed through the oven and transmits the collected information to a control unit; and a control unit for determining a drying level of the electrode sheet based on the drying amount information received from the measuring unit, and controlling the drying intensity of the oven according to the determined drying level, wherein the control unit includes a plurality of drying sections control them independently.
  • the measurement unit is set to periodically collect information on the amount of drying of the electrode sheet at regular time intervals, and the control unit, whenever receiving the information on the amount of drying from the measurement unit, dry the electrode sheet By judging the level, periodically control the drying intensity of the oven.
  • the measurement unit collects drying amount information for 1 minute to 5 minutes immediately before the time when the drying intensity control by the control unit is scheduled.
  • the drying amount information is at least one selected from the solid content of the electrode sheet and the temperature of the surface of the electrode sheet.
  • control unit includes: a data input unit to which the drying amount information collected by the measuring unit and a drying amount setting value as a reference are input; a determination unit that compares the drying amount information with a set value, determines a drying level of the electrode sheet, and determines whether or not and an increase/decrease amount of drying intensity in the oven according to the comparison; and a command unit for controlling the drying strength of the oven based on the determination result of the determination unit.
  • the controller determines the drying level of the electrode sheet as one of five grades of normal, overdrying, nondrying, severe overdrying, and severe overdrying.
  • control unit when the control unit determines that the drying level of the electrode sheet is overdrying or severe overdrying, the control unit controls to reduce the drying intensity of the oven, and sets the drying level of the electrode sheet to non-drying or severe overdrying. When it is determined that the oven is not dried, the drying intensity of the oven is controlled to increase.
  • the control unit controls to increase or decrease the drying intensity for one drying section, and increases or decreases the drying level of the electrode sheet
  • the drying intensity of two or more drying sections is controlled to increase or decrease together.
  • the controller controls the drying intensity of the drying sections other than the pre-drying section among the plurality of drying sections.
  • the measurement unit transmits an average value or a median value of the collected drying amount information to the control unit.
  • the plurality of drying sections each include a drying means, and the drying means applies radiant heat to the hot air nozzle and the electrode sheet for applying convective heat by supplying hot air to the electrode sheet one or more of the heaters.
  • control unit in order to increase or decrease the drying intensity of the oven, the wind speed of the hot air nozzle, the air volume of the hot air nozzle, the temperature of the heater, and the traveling speed of the conveying roller to allow the electrode sheet to travel Controls one or more selected ones.
  • the measuring unit includes at least one of a web-gauge and a temperature measuring device for measuring the loading amount of the electrode sheet.
  • the measuring unit further includes a calculating unit, and the calculating unit calculates the solid content of the electrode from the loading amount measured by the web-gauge.
  • the method for automatically controlling electrode drying comprises the steps of: (a) inserting an electrode sheet into an oven divided into a plurality of drying sections and provided with a drying means; (b) collecting information on the amount of drying of the electrode sheet through the measuring unit; and (c) determining the drying level of the electrode by comparing the collected drying amount information with a reference value, and controlling the drying intensity of the oven according to the determined drying level, wherein step (c) includes a plurality of Independently control the drying sections of
  • the drying amount information is at least one selected from the solid content of the electrode sheet and the temperature of the surface of the electrode sheet.
  • the step (b) periodically collects information on the amount of drying of the electrode sheet at regular time intervals, and the step (c) includes when the information on the amount of drying is received by the step (b). Each time, the drying level of the electrode sheet is judged, and the drying intensity of the oven is periodically controlled.
  • the drying level of the electrode sheet is determined as one of five grades of normal, overdrying, nondrying, severe overdrying, and severe overdrying.
  • step (c) when the drying level of the electrode sheet is determined to be overdrying or not drying, controlling to increase or decrease the drying intensity for one drying section, and the drying level of the electrode sheet is determined to be severe overdrying or severe undrying, the drying intensity of two or more drying sections is controlled to increase or decrease together.
  • the drying amount information of the dried electrode sheet is collected, the drying level of the electrode is determined from the collected drying amount information, and the drying amount of the oven is controlled in real time, the degree of drying of the electrode can be automatically controlled in real time.
  • FIG. 1 is a block diagram showing the configuration of an electrode drying automatic control system according to the present invention.
  • FIG. 2 is a schematic diagram showing the structure of an electrode drying automatic control system according to an embodiment of the present invention.
  • FIG. 3 is a block diagram showing the configuration of an electrode drying automatic control system according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram showing the structure of an electrode drying automatic control system according to another embodiment of the present invention.
  • FIG. 5 is a flowchart illustrating a procedure of an automatic electrode drying control method according to the present invention.
  • FIG. 6 is a photograph taken with a thermal imaging camera of an electrode sheet dried by an automatic control method according to an embodiment of the present invention.
  • “under” another part it includes not only cases where it is “directly under” another part, but also cases where another part is in between.
  • “on” may include the case of being disposed not only on the upper part but also on the lower part.
  • the electrode drying automatic control system 100 provides a space for the electrode sheet to be dried while traveling, and includes a drying means for applying hot air and/or radiant heat to the electrode sheet, and a plurality of Oven 110 divided into drying sections of; a measurement unit 120 that collects information on the amount of drying of the electrode sheet 10 that has passed through the oven 110 and transmits the collected information to the control unit 130 ; and a control unit 130 that determines the drying level of the electrode sheet 10 based on the drying amount information received from the measuring unit 120 and controls the drying intensity of the oven 110 according to the determined drying level. Including, the control unit 130 independently controls the plurality of drying sections.
  • the drying conditions of the electrodes greatly affect the quality and physical properties of the electrodes.
  • the initial process conditions were determined in advance to dry the electrodes, and then the process conditions were adjusted through product dryness and physical property evaluation. In this case, there was a problem in that it was difficult to control the drying of the electrode in real time.
  • the electrode drying automatic control system of the present invention collects information on the drying amount of the electrode sheet in real time to determine the drying level, and according to this, independently controls a plurality of drying sections to appropriately adjust the drying amount according to the drying level of the electrode sheet. By correcting it, the degree of drying of the electrode can be automatically controlled.
  • the x-axis means the direction in which the electrode is transported
  • the y-axis is the width direction of the electrode, which means a direction perpendicular to the transport direction of the electrode in the electrode surface.
  • the z-axis is a direction perpendicular to the electrode surface, and corresponds to the injection direction of the hot air or the irradiation direction of infrared rays.
  • the electrode drying automatic control system 100 includes an oven 110 .
  • the oven 110 has a chamber shape, and provides a space in which the electrode sheet 10 is dried, and provides a space so that the electrode sheet 10 to be dried can travel inside the oven 110 , and for drying It is possible to prevent internal heat from escaping to the outside.
  • the electrode sheet 10 may have a structure in which an electrode active material layer 12 is formed by applying a slurry for forming an electrode including an electrode active material on the current collector sheet 11 .
  • the electrode slurry may be applied to at least one surface of the current collector.
  • the current collector may be a positive electrode current collector or a negative electrode current collector
  • the electrode active material may be a positive electrode active material or a negative electrode active material
  • the electrode slurry may further include a conductive material and a binder in addition to the electrode active material.
  • the positive electrode current collector is generally made to have a thickness of 3 to 500 ⁇ m.
  • the positive electrode current collector is not particularly limited as long as it has high conductivity without causing chemical change in the battery.
  • the current collector may increase the adhesion of the positive electrode active material by forming fine irregularities on the surface thereof, and various forms such as a film, sheet, foil, net, porous body, foam body, and non-woven body are possible.
  • a sheet for a negative electrode current collector it is generally made to a thickness of 3 to 500 ⁇ m.
  • a negative current collector is not particularly limited as long as it has conductivity without causing chemical change in the battery.
  • Carbon, nickel, titanium, a surface-treated material such as silver, aluminum-cadmium alloy, etc. may be used.
  • the bonding strength of the negative electrode active material may be strengthened by forming fine irregularities on the surface, and may be used in various forms such as a film, sheet, foil, net, porous body, foam, non-woven body, and the like.
  • the positive active material is a material capable of causing an electrochemical reaction, as a lithium transition metal oxide, containing two or more transition metals, for example, lithium cobalt oxide (LiCoO 2 ) substituted with one or more transition metals.
  • a lithium transition metal oxide containing two or more transition metals, for example, lithium cobalt oxide (LiCoO 2 ) substituted with one or more transition metals.
  • LiNiO 2 lithium nickel oxide
  • LiNiO 2 lithium manganese oxide substituted with one or more transition metals
  • Formula LiNi 1-y M y O 2 Lithium nickel-based oxide represented by; Li 1+z Ni 1/3 Co 1/3 Mn 1/3 O 2 , Li 1+z Ni 0.4 Mn 0.4 Co 0.2 O 2 , etc.
  • the negative electrode active material includes, for example, carbon such as non-graphitizable carbon and graphitic carbon; Li x Fe 2 O 3 (0 ⁇ x ⁇ 1), Li x WO 2 (0 ⁇ x ⁇ 1), Sn x Me 1-x Me' y O z (Me: Mn, Fe, Pb, Ge; Me' : metal composite oxides such as Al, B, P, Si, elements of Groups 1, 2, and 3 of the periodic table, halogen; 0 ⁇ x ⁇ 1;1 ⁇ y ⁇ 3;1 ⁇ z ⁇ 8); lithium metal; lithium alloy; silicon-based alloys; tin-based alloys; SnO, SnO 2 , PbO, PbO 2 , Pb 2 O 3 , Pb 3 O 4 , Sb 2 O 3 , Sb 2 O 4 , Sb 2 O 5 , GeO, GeO 2 , Bi 2 O 3 , Bi 2 O 4 , metal oxides such as Bi 2 O 5 ; conductive polymers such as polyacetylene; A Li
  • the conductive material is typically added in an amount of 1 to 30% by weight based on the total weight of the mixture including the positive active material.
  • a conductive material is not particularly limited as long as it has conductivity without causing a chemical change in the battery.
  • graphite such as natural graphite or artificial graphite
  • carbon black such as carbon black, acetylene black, Ketjen black, channel black, furnace black, lamp black, and summer black
  • conductive fibers such as carbon fibers and metal fibers
  • metal powders such as carbon fluoride, aluminum, and nickel powder
  • conductive whiskeys such as zinc oxide and potassium titanate
  • conductive metal oxides such as titanium oxide
  • Conductive materials such as polyphenylene derivatives may be used.
  • the binder is a component that assists in bonding between the active material and the conductive material and bonding to the current collector, and is typically added in an amount of 1 to 30% by weight based on the total weight of the mixture including the positive electrode active material.
  • binders include polyvinylidene fluoride, polyvinyl alcohol, carboxymethylcellulose (CMC), starch, hydroxypropylcellulose, regenerated cellulose, polyvinylpyrrolidone, tetrafluoroethylene, polyethylene, poly propylene, ethylene-propylene-diene terpolymer (EPDM), sulfonated EPDM, styrene butyrene rubber, fluororubber, various copolymers, and the like.
  • an electrode slurry may be prepared by dissolving an electrode active material, a conductive material, a binder, and the like in a solvent.
  • the solvent is not particularly limited in its kind as long as it can disperse the electrode active material and the like, and either an aqueous solvent or a non-aqueous solvent may be used.
  • the solvent may be a solvent generally used in the art, dimethyl sulfoxide (DMSO), isopropyl alcohol, N-methylpyrrolidone (NMP) ), acetone, or water, and any one of them or a mixture of two or more thereof may be used.
  • the amount of the solvent used is not particularly limited, as long as it can be adjusted so that the slurry has an appropriate viscosity in consideration of the application thickness of the slurry, production yield, workability, and the like.
  • the oven 110 is divided into a plurality of drying sections 111 , 112 , and 113 , and each of the drying sections has a drying means for drying the electrode sheet 10 therein.
  • the drying means includes a hot air nozzle 114 that supplies hot air to the electrode sheet 10 to apply convective heat, and a heater 115 that applies radiant heat to the electrode sheet 10 .
  • the hot air nozzle 114 and the heater 115 may be spaced apart from each other at regular intervals along the transport direction (MD direction, x direction) of the electrode sheet 10 and arranged on the electrode sheet 10 . Apply hot air or radiant heat in the vertical direction.
  • MD direction, x direction transport direction
  • the hot air nozzle 114 and the infrared heater 115 are shown as being located on the upper portion of the electrode sheet 10 , that is, on the lower surface of the ceiling of the oven 110 , but when the electrode active material layer is formed on both sides of the current collector, hot air
  • the nozzle 114 and the heater 115 may be respectively located on the upper and lower portions of the electrode sheet 10 .
  • FIG. 2 illustrates that a hot air nozzle and a heater are provided as drying means, the present invention is not limited thereto, and only one of them may be provided.
  • the hot air nozzle 114 includes a body portion and a spraying portion.
  • the main body constitutes the body of the hot air nozzle, and the hot air nozzle 114 is fixed to the ceiling of the oven.
  • the inside of the main body is empty, and the hot air transmitted from a hot air supply source (not shown) is transferred to the injection unit.
  • the lower surface of the main body is provided with a spraying unit.
  • the injection unit communicates with the main body, and the injection port through which the hot air is injected is formed on the lower surface of the injection unit.
  • the injection hole may have a structure in which a plurality of pores are arranged at regular intervals.
  • the heater 115 may be an infrared heater in a specific example of the present invention, and the infrared heater may include an infrared lamp that irradiates infrared rays to an electrode, and a cradle that supports or mounts the infrared lamp.
  • the shape of the infrared lamp is not particularly limited, and, for example, a rod-shaped lamp may be arranged in parallel along the transport direction of the electrode while extending in the width direction of the electrode.
  • the hot air nozzle 114 and the heater 115 may be alternately arranged along the traveling direction of the electrode sheet 10 in order to evenly supply hot air and infrared rays to the surface of the electrode sheet 10 .
  • there is no particular limitation on the arrangement form and a person skilled in the art can appropriately design and change the arrangement method of the hot air nozzle 114 and the infrared heater 115 according to drying conditions.
  • the oven 110 may include a transfer roller 116 for transferring the electrode.
  • a plurality of the conveying rollers 116 may be disposed to be spaced apart at regular intervals along the conveying direction of the electrode sheet 10 , and support the electrode sheet 10 during the drying process, and the drying is completed. is transferred to the outside of the oven 110 .
  • the oven 110 may be divided into a plurality of drying sections. When an overdrying or non-drying situation occurs in the drying process of the electrode sheet 10, it is necessary to appropriately dry the electrode sheet 10 while changing the drying intensity. By dividing the oven 110 into a plurality of drying sections, The drying intensity can be independently controlled for each drying section. Although the oven 110 is illustrated in a shape divided into three drying sections in FIG. 2 , the oven may be divided into 3 to 20 drying sections, or 5 to 15 drying sections, but is not limited thereto. . In the specification of the present invention, the three drying sections are referred to as a first drying section 111 , a second drying section 112 , and a third drying section 113 along the transport direction of the electrode sheet 10 .
  • the first drying section 111 , the second drying section 112 , and the third drying section 113 may be spaces physically partitioned by actually installing an inner wall between the drying section and the drying section. It can also be an abstractly partitioned space.
  • the electrode drying automatic control system 100 includes a measuring unit that collects information on the amount of drying of the electrode sheet that has passed through the oven, and transmits the collected information to the control unit.
  • the drying amount information is at least one of a solid content of the electrode sheet and a temperature of the surface of the electrode sheet.
  • the electrode drying automatic control system of the present invention determines the drying level of the electrode sheet through the solid content and/or temperature collected through the measurement unit.
  • the measuring unit may include at least one of a web-gauge and a temperature measuring device for measuring the loading amount of the electrode sheet in order to collect the solid content and the temperature of the electrode sheet surface.
  • the measuring units 120a and 120b include a web-gauge for measuring the loading amount of the electrode sheet, and the measuring unit 120 is the inlet of the oven 110 . And installed at each outlet, it is possible to measure the loading amount before drying of the electrode sheet and the loading amount after drying of the electrode sheet.
  • the measuring unit may further include a calculating unit to derive the solid content, and the calculating unit may derive the solid content of the electrode active material layer 12 from the measured loading amount through a pre-entered calculation formula.
  • a formula for deriving the solid content from the loading amount may use one known in the art.
  • the solid content appears higher than the reference value, and when the dry level of the electrode sheet is insufficient (not dry), the solid content appears lower than the reference value, so the solid content is It can be an indicator that can determine the drying level of the electrode sheet.
  • the electrode drying automatic control system 100 includes a control unit 130 .
  • the control unit 130 determines the drying level of the electrode based on the drying amount information received from the measuring units 120a and 120b, and controls the drying intensity of the oven 110 according to the determined drying level, The drying amount of the electrode sheet can be corrected in real time.
  • the measuring unit is set to periodically collect the drying amount information of the electrode sheet at regular time intervals, and the control unit, whenever receiving the drying amount information from the measuring unit, the electrode By judging the drying level of the sheet, the drying intensity of the oven is periodically controlled.
  • the control unit 130 of the present invention includes the drying amount collected by the measuring unit 120 .
  • a determination unit 132 that compares the drying amount information with a set value, determines the drying level of the electrode sheet, and determines whether or not and an increase/decrease amount of drying intensity in the oven according to the comparison; and a command unit 133 for controlling the drying intensity of the oven based on the determination result of the determination unit 132 .
  • the data input unit 131 may receive from the measurement unit 120 drying amount information such as a loading amount before/after drying of the electrode sheet and/or a temperature of the electrode surface, and whether the drying level of the electrode sheet is overdrying. A reference value for determining whether it is dry may be input. The dry amount information and reference value input through the data input unit are transmitted to the determination unit 132 .
  • the determination unit 132 compares the drying amount information received from the data input unit 131 with a reference value to determine whether the drying level of the electrode sheet is overdrying, undrying, or normal drying, and also determining unit 132 ) compares the drying amount information with the reference value to determine the degree of overdrying or nondrying quantitatively, and determines the control method of the drying strength.
  • the control unit controls at least one of the traveling speeds of the hot air nozzle, the heater, and the conveying roller for allowing the electrode sheet to travel in order to increase or decrease the drying intensity of the oven.
  • the command unit 133 transmits a driving operation command according to the increase/decrease amount of the drying strength determined by the determination unit to the oven.
  • the oven may increase or decrease the drying intensity in the oven according to a driving operation command received from the command unit of the control unit.
  • the oven includes a hot air nozzle for applying convection heat by supplying hot air to the electrode sheet as a drying means; and/or a heater that applies radiant heat to the electrode sheet, wherein one or more conditions of the temperature of the hot air sprayed from the hot air nozzle, the wind speed, the air volume, and the temperature of the heater are changed according to the operation operation command to determine the drying amount of the electrode sheet. can be corrected.
  • the drying amount may be corrected by controlling the rotational speed of the transfer roller for transferring the electrode sheet.
  • the control of the drying intensity as described above by the controller is not limited to one time, but is periodically performed at regular time intervals.
  • the controller may repeatedly control the drying intensity of the oven in a cycle of 5 minutes to 20 minutes, and preferably remove the drying intensity in a cycle of 6 minutes to 15 minutes,
  • the control period of the drying intensity is not limited thereto.
  • the measurement unit is also set to periodically collect the drying amount information of the electrode sheet at regular time intervals in conjunction with the drying intensity control by the control unit.
  • the measurement unit collects the drying amount information for 1 to 5 minutes immediately before the time when the drying intensity control by the control unit is scheduled. That is, in the measurement unit, the control unit controls the drying intensity of the oven, and the drying amount information of the electrode sheet is not immediately collected, but the drying strength is controlled by the controller and after a certain time elapses, information on the drying amount of the electrode sheet to collect This is because a predetermined time is required for the drying amount correction effect according to the change in the drying intensity of the oven to appear.
  • the measuring unit may transmit the average value or the median value of the drying amount information collected for the predetermined time as a representative value of the drying amount information to the controller.
  • the control unit controls the drying intensity of the drying sections other than the pre-drying section among the plurality of drying sections.
  • the shear drying section means a drying section located at the entrance of the oven. In one specific example, if the drying sections arranged from the inlet to the outlet of the oven are sequentially divided into a first drying section to an N-th drying section, the shear drying section is from the first drying section to the N/3 drying section may mean, but is not limited thereto.
  • the control unit of the present invention controls to increase or decrease the drying intensity in the remaining drying sections excluding the shear drying section among the plurality of drying sections dividing the oven.
  • the controller may determine the drying level of the electrode sheet as one of five grades of normal, overdrying, nondrying, severe overdrying, and severe overdrying.
  • the control unit determines the drying level of the electrode sheet based on the set reference value. If the drying amount information collected by the measuring unit deviates from the set reference value, but the difference is slight, it is determined as overdrying or not drying, and the measuring unit If the dry amount information collected by ' has a large difference from the set reference value, it is judged as severe overdrying or severe undrying.
  • the control unit of the present invention does not simply classify the drying level of the electrode sheet into normal, overdrying, and non-drying states, but also quantitatively grasps the degree of overdrying and undrying, and The grades are also separated. Accordingly, it is possible to perform more optimized control of the drying strength according to the drying level.
  • the controller does not control the increase or decrease of the drying strength of the oven. That is, it does not send a command for increasing/decreasing the drying intensity to the oven.
  • control unit of the present invention determines that the drying level of the electrode sheet is overdrying or severe overdrying
  • the control unit controls to reduce the drying intensity of the oven, and when determining the drying level of the electrode sheet as undry or severe overdrying , control to increase the drying intensity of the oven.
  • control unit of the present invention controls to increase or decrease the drying intensity for one drying section, and adjusts the drying level of the electrode sheet to severe overdrying or severe undrying.
  • the drying intensity of two or more drying sections is controlled to increase or decrease together.
  • the drying level of the electrode sheet is overdrying or undrying, since the drying level of the electrode sheet has a slight difference from the reference value, if the drying intensity is uniformly increased or decreased for a plurality of drying sections, the opposite effect will be produced.
  • the electrode sheet may be dried more than necessary and cause overdrying. is controlled to increase, and the drying amount information is fed back from the measurement unit, and subsequent control is performed according to the result.
  • the control is performed to increase the drying intensity in the drying section next to the drying section in which the drying intensity was previously controlled. Also, unlike this, if the feedback on the amount of drying information falls within the range of the reference value, the increase or decrease of the drying strength is not required, and thus the control for increasing or decreasing the drying strength is not performed.
  • control unit of the present invention when it is determined that the drying level of the electrode sheet is overdrying and performs control to decrease the drying intensity, control to sequentially decrease the drying intensity from the rear end drying section to the middle drying section Conversely, when it is determined that the drying level of the electrode sheet is undry, and a control to increase the drying strength is performed, a control to sequentially increase the drying strength from the front end drying section to the rear end drying section is performed. can In this way, the order of controlling the drying intensity is changed according to overdrying and nondrying in order to increase the drying amount correction efficiency.
  • the drying intensity is sequentially controlled according to the time-series sequence of the drying section, the drying intensity is not controlled for the preceding drying section. Since the correction effect is small, in order to increase the efficiency of the drying amount correction, sequential control is performed for the drying sections after the middle and middle drying sections.
  • the controller of the present invention controls the drying intensity of two or more drying sections to be increased or decreased together.
  • the control unit when it is determined that the drying level of the electrode sheet is severe overdrying and a control to reduce the drying intensity is performed, the control unit performs a control to simultaneously decrease the drying intensity in the drying section leading to the middle drying section and the rear end drying section carry out Conversely, when it is determined that the drying level of the electrode sheet is severely undry and a control to increase the drying strength is performed, the control unit performs a control to increase the drying strength at the same time in the drying section leading to the middle drying section and the rear drying section. .
  • FIG. 4 is a schematic diagram showing the structure of an electrode drying automatic control system according to another embodiment of the present invention.
  • web-gauges 221a and 221b for measuring the loading amount of electrode sheets are installed at the inlet and outlet of the oven, respectively, and the first drying section 211 and the second drying section 212 are In between, between the second drying section 212 and the third drying section 213 and at the outlet of the oven, each temperature measuring device 222 is installed.
  • the temperature measuring device may measure the temperature of the electrode surface.
  • the temperature measuring device 222 is shown to be positioned on the upper part of the electrode sheet 10 in FIG. 4 , when the electrode active material layers are formed on both sides of the current collector, the temperature measuring device 222 is disposed on both the upper and lower parts of the electrode. can be located
  • the temperature measuring device 222 may be located inside the oven 110 to measure the temperature of the surface of the electrode sheet 10 .
  • the type of the temperature measuring device is not limited as long as it can measure the temperature of the electrode surface, and specifically, it may be a temperature sensor such as a thermocouple or a thermal imaging camera.
  • the temperature measuring device 222 When the temperature measuring device 222 is a thermal imaging camera, it may be disposed through the outer wall of the oven, and in order to prevent the thermal imaging camera from being exposed to excessively high temperatures, it is located at a relatively low temperature in the oven 210 . It is preferable to do, the thermal imaging camera is preferably located in a place where the photographing field of view is not blocked by the hot air nozzle 214 and the heater 215 in the oven 210 . Therefore, the thermal imaging camera may be located where the hot air nozzle 214 and the infrared heater 215 are not disposed.
  • a cooling device for cooling the temperature measuring device may be further included.
  • the cooling device prevents the thermometer from being damaged by the high temperature environment in the oven, thereby enabling continuous temperature measurement of the electrode surface.
  • the cooling device may be fastened or attached to the temperature measuring device from the outside of the oven to prevent a temperature change inside the oven.
  • the cooling device is not particularly limited in shape as long as it can cool the temperature measuring device, but may be, for example, a cooling jacket that surrounds the temperature measuring device and contains a refrigerant or the like therein.
  • the present invention provides a method for automatically controlling electrode drying.
  • FIG. 5 is a flowchart illustrating a procedure of an automatic electrode drying control method according to the present invention.
  • the method for automatically controlling electrode drying includes the steps of: (a) putting an electrode sheet into an oven divided into a plurality of drying sections and provided with a drying means; (b) collecting information on the amount of drying of the electrode sheet through the measuring unit; and (c) determining the drying level of the electrode by comparing the collected drying amount information with a reference value, and controlling the drying intensity of the oven according to the determined drying level, wherein step (c) includes a plurality of Independently control the drying sections of
  • the step (b) periodically collects the drying amount information of the electrode sheet at regular time intervals, and the step (c) includes the drying amount information by the step (b). Each time it receives , the drying level of the electrode sheet is judged, and the drying intensity of the oven is periodically controlled. Accordingly, in the automatic electrode drying control method of the present invention, since the drying amount information of the electrode sheet is fed back in real time and the drying amount is corrected to meet the set reference value, it is possible to automatically control the drying amount uniformly.
  • an electrode sheet is prepared by applying a slurry for forming an electrode including an electrode active material on a current collector sheet. Specific details regarding the electrode sheet are the same as described above. When the electrode sheet is manufactured, it is put into the oven as described above to start drying.
  • the measuring unit collects the drying amount information of the electrode sheet.
  • the dry amount information is at least one of the solid content of the electrode sheet and the temperature of the surface of the electrode sheet.
  • the surface temperature of the electrode sheet is measured through a temperature measuring device installed inside or outside the oven, or an electrode loading amount measuring means such as a web-gauge installed at the entrance and exit of the oven, respectively. is done through
  • the measuring unit may further include a calculating unit for calculating the solid content from the loading amount of the electrode sheet before/after drying.
  • a step of determining the drying level of the electrode sheet is performed by comparing it with a reference value. If the measured drying amount is small compared to the reference value, drying is not sufficient. In order to increase the drying strength, one or more factors among the hot air temperature of the hot air nozzle in the oven, the wind speed, the air volume, and the temperature of the heater may be increased. Conversely, if the measured drying amount is large compared to the reference value, overdrying will occur. In order to reduce the drying intensity, one or more factors among the hot air temperature of the hot air nozzle in the oven, the wind speed, the air volume and the temperature of the heater may be reduced.
  • the oven can be divided into a plurality of drying sections as described above, and these can be divided into a front-end drying section, an intermediate drying section, and a rear-end drying section. , does not perform control of drying strength.
  • the shear drying section is an initial drying section in which the electrode sheet is dried immediately after finishing the coating process, and it is not desirable to periodically change the drying strength in the initial drying section in which the electrode sheet is stabilized. This is because it is sufficient to correct the drying amount in the drying section and the rear end drying section.
  • the operation conditions of the hot-air nozzles or heaters provided in the front-end drying section are not changed, and the hot-air nozzles or heaters installed in the middle-stage drying section and the rear-end drying section are operated Control the drying strength by changing the conditions.
  • the control method may be changed according to a quantitative difference between the drying level of the electrode sheet determined by the above method and a target set drying level. Specifically, in step (c), in judging the drying level of the electrode sheet, it is determined as one of five grades of normal, overdrying, nondrying, severe overdrying, and severe overdrying, and the control method according to the grade change the
  • the drying amount information of the electrode sheet collected by the measurement unit is compared with the target reference value, if the drying amount information of the electrode sheet meets the reference value, it is determined as normal, and collected by the measurement unit
  • the drying amount information of the electrode sheet and the reference value are compared, if the difference is within a predetermined range, it is judged as overdrying or not drying. If the difference is greater than the predetermined range, the drying level of the electrode sheet is judged as severe overdrying or severe underdrying.
  • the dry amount information of the electrode sheet collected by the measurement unit is ⁇ 1 compared to the reference value %, it is judged as overdrying or undrying, and when the dry amount information of the electrode sheet collected by the measuring unit exceeds ⁇ 1% compared to the reference value, it is judged as severe overdrying or severely undrying. And, it is determined that the dry amount information of the electrode sheet collected by the measuring unit is normal when it is included in the reference value range.
  • the drying intensity is controlled to increase or decrease for one drying section, and the drying level of the electrode sheet is severely overdried or When it is determined that the drying is severe, the drying intensity of two or more drying sections is controlled to increase or decrease together.
  • the control for increasing or decreasing the drying intensity of the oven is not performed.
  • the drying intensity is increased or decreased for one drying section first, and after a certain time elapses until the drying amount correction effect according to the increase or decrease of the drying intensity appears, the measuring unit
  • the drying amount can be more precisely corrected by receiving the feedback from the drying amount information, re-determining the drying level, and controlling the drying intensity of the oven accordingly.
  • a method of increasing or decreasing the drying intensity for one drying section by determining the drying level of the electrode sheet as overdrying or non-drying may be different depending on overdrying and non-drying. Specifically, when it is determined that the drying level of the electrode sheet is overdrying, a control to reduce the drying strength is performed. In this case, the drying strength is sequentially decreased from the drying section close to the outlet of the oven. For example, in an oven partitioned into a plurality of drying sections, if each drying section from the inlet to the outlet is numbered and referred to as the first drying section to the Nth drying section, the drying level of the electrode sheet is determined as overdrying.
  • control to decrease the drying intensity is performed in the Nth drying section closest to the outlet of the oven. And when a certain time elapses, when the measuring unit collects the drying amount information of the electrode sheet and compares it with the reference value, if the drying level of the electrode sheet is still overdry, take control
  • a control to increase the drying intensity must be performed.
  • the control for increasing/decreasing the drying intensity of the present invention is not performed in the initial drying section close to the entrance of the oven, for example, if the first to eighth drying sections are the initial drying sections, the second drying section following these drying sections 9 In the drying section, control to increase the drying strength is performed.
  • the measurement unit collects the drying amount information of the electrode sheet and compares it with the reference value, if the drying level of the electrode sheet is still undry, this time the control to increase the drying strength in the tenth drying section carry out
  • the drying amount of the electrode sheet may be corrected by a certain amount by the increased or decreased drying intensity.
  • the drying amount information collection process is performed in the same manner as described above.
  • the drying amount information collection may be collecting the drying amount information for 1 to 5 minutes immediately before the time point at which the subsequent drying intensity control is scheduled. That is, for 2 minutes immediately before performing the next drying strength control, or for 3 minutes immediately before performing the next drying strength control, or for 4 minutes before performing the next drying strength control, the amount of drying of the electrode sheet information can be collected.
  • the average value or the median value of the dry amount information collected for a predetermined time in this way may be recognized as the dry amount information.
  • the drying level of the electrode sheet is determined and the process of controlling the drying intensity of the oven is performed, and the drying amount information collection process, the drying level determination and the drying intensity control process are periodically performed. By repeating this, the drying level of the electrode sheet can be uniformly controlled.
  • Table 1 shows a reference value for judging the drying level of the electrode sheet, the result of the judgment, and the control method according to the embodiment of the present invention.
  • Drying strength control method 88% to 89% solids content less than 87% severe dryness In the drying section except the shear drying section, increase the drying strength (two plus control) More than 87% and less than 88% dry Increase the drying strength from the drying section after the shear drying section (one plus control) 88% ⁇ 89% normal No dry strength removal is performed. More than 89% and less than 90% overdrying Among the drying sections excluding the front drying section, the drying strength is reduced from the drying section at the rear end. (one minus control) >90% severe overdrying Decrease the drying strength in the drying section except for the shear drying section (two minus control)
  • the reference value of the set solid content is 88% to 89%. If the measured solid content is less than the set value, the drying strength is not sufficient, so the drying strength is increased. reduces the drying strength
  • a drying intensity control method by dividing the plurality of drying sections sequentially arranged from the inlet to the outlet of the oven into a first drying section, a second drying section... N-1 drying section, an N-th drying section, respectively It will be described in detail.
  • the measured solid content is within the range of 88% to 89%, since the drying level is normal, the previous drying strength may be maintained, and there is no need to perform control to increase or decrease the drying strength.
  • the drying section except for the shear drying section If the measured solid content is less than 87%, so that it is judged that the drying is severe, a control for increasing the drying strength is performed for the drying section except for the shear drying section. If the shear drying section is from the first drying section to the N/3rd drying section, the drying intensity is increased in the Nth drying section from the subsequent drying section. For convenience, this is referred to as a two-plus control.
  • a control for reducing the drying strength is performed for the drying section excluding the shear drying section. For convenience, this is referred to as a two-minus control.
  • the drying strength is increased in the drying section next to the shear drying section.
  • this is referred to as one-plus control.
  • the drying intensity is not increased in the drying section in which the drying intensity is already increased, but the drying intensity is increased in the next drying section.
  • the one-plus control is performed in the fifth drying section to increase the drying intensity of the fifth drying section by a certain amount, and after a certain period of time has elapsed, if the solid content collected from the measuring unit is 87.5%, it is still undried Because of the state, one-plus control must be performed. In this case, the control is performed to increase the drying intensity of the sixth drying section, which is the next section of the fifth drying section, by a predetermined amount, and the drying intensity of the fifth drying section is not changed.
  • the drying strength is reduced from the drying section at the rear end close to the outlet of the oven among the drying sections excluding the front drying section.
  • this is referred to as one-minus control.
  • the drying intensity is not reduced in the drying section in which the drying intensity has already been reduced, but the drying intensity is decreased in the previous drying section during the next drying intensity control.
  • control is performed in the 15th drying section to reduce the drying intensity of the 15th drying section by a certain amount, and after a certain amount of time has elapsed, if the solid content collected from the measuring unit is 89.8%, it is still excessive Since it is in a dry state, one-minus control must be performed. In this case, control is performed to decrease the drying intensity of the 14th drying section before the 15th drying section by a certain amount, and control to change the drying intensity of the 15th drying section is performed. do not perform
  • the solid content was measured at 10-minute intervals from sequence number 1 to sequence number 15, and control to increase or decrease the drying strength was performed accordingly (however, since sequence number 3 is an uncoated part, the solid content is not measured ). And for each order, the control method according to the measured solid content is described in the last column of Table 2. In addition, in the tenth to twelfth drying section columns, the numbers 0,1,2, respectively described are arbitrary values representing the increase/decrease amount of the drying intensity.
  • the dry level of the electrode sheet is determined to be undry, and one-plus control is performed. Accordingly, by increasing the drying intensity only for the tenth drying section at the front end, the drying intensity of the tenth drying section becomes 2, which is increased by 1 from the drying intensity 1 of sequence number 1, and the control for increasing the drying strength in the remaining drying sections is not performed, and the dry intensity 1 of sequence number 1 is maintained as it is.
  • step 3 since the uncoated part is dried, no control is performed.
  • the drying level of the electrode sheet is judged to be severe overdrying, and two-minus control is performed. Accordingly, in all of the tenth drying section to the twelfth drying section, a control for decreasing the drying intensity by one is performed. Accordingly, it becomes 1,0,0, which is decreased by 1 from the dry intensity of each zone in turn 2, 2,1,1.
  • the drying level of the electrode sheet is determined as normal, and control to increase or decrease the drying intensity is not performed. Accordingly, the drying intensity of the tenth drying section to the twelfth drying section is the same as each drying intensity of the drying sections in sequence number 4 .
  • sequence number 6 since the solid content is 87.7%, it is determined that the dry level of the electrode sheet is not dry, and one-plus control is performed. Accordingly, in the eleventh drying section, which is the next drying section of the tenth drying section in which the drying intensity is increased in turn 2, the drying intensity is increased. Accordingly, the drying intensity of the 10th drying section maintains 1, which is the drying intensity in turn 5, and the drying intensity of the 11th drying section is increased by 1 from 0, which is the drying intensity of the 11th drying section in turn 5, becomes this
  • step 7 since the solid content is 87.4%, the dry level of the electrode sheet is determined to be undry, and one-plus control is performed. Accordingly, only in the twelfth drying section that is the next drying section of the eleventh drying section in which the drying intensity is increased in turn 6, the drying intensity is increased by 1. Accordingly, each drying intensity in the 10th dry section to the 12th dry section becomes 1,1,1 from the dry intensity 1,1,0 in the sequence number 6 .
  • each drying intensity of the tenth to twelfth drying section becomes 2,1,1 from 1,1,1 of sequence number 7 .
  • Sequence numbers 9 to 10 all perform one-plus control, and the specific method is the same as described above.
  • the drying level of the electrode sheet is determined to be undry and one-plus control must be performed, but by controlling the drying intensity performed previously, the 10th drying section to the 12th drying section Since the drying strength of is increased by the upper limit (2), control is not performed in order not to increase the drying strength any longer.
  • FIG. 6 shows pictures taken by a thermal imaging camera of electrode sheets dried according to the control of steps 2 to 15 according to the above-described embodiment.
  • the electrode sheet dried according to the automatic drying control system according to the embodiment of the present invention exhibits a uniform temperature along the longitudinal direction. Therefore, the automatic drying control system of the present invention has an effect of manufacturing an electrode sheet having a uniform drying level.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Microbiology (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Textile Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

전극 시트가 주행하며 건조되는 공간을 제공하고, 전극 시트에 열풍 및/또는 복사열을 가해주는 건조 수단을 구비하며, 복수의 건조 구간들로 구획되는 오븐; 상기 오븐을 통과한 전극 시트의 건조량 정보를 수집하고, 수집된 정보를 제어부로 송출하는 측정부; 및 상기 측정부로부터 수신한 건조량 정보를 바탕으로, 전극 시트의 건조 수준을 판단하고, 상기 판단된 건조 수준에 따라 상기 오븐의 건조 세기를 제어하는 제어부를 포함하고, 상기 제어부는, 복수의 건조 구간들을 독립적으로 제어한다.

Description

전극 건조 자동 제어 시스템 및 전극 건조 자동 제어 방법
본 출원은 2020.11.18.자 한국 특허 출원 제10-2020-0154295호, 2021.11.16.자 한국 특허 출원 제10-2021-0157703호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
본 발명은, 전극 건조 자동 제어 시스템 및 전극 건조 자동 제어 방법에 관한 것으로, 상세하게는 건조된 전극 시트의 고형분 함량 또는 전극 시트의 표면 온도와 같은 건조량 정보로부터 건조 수준을 파악하고, 이에 따라 자동으로 건조 수단의 운전을 조작해 실시간으로 전극 건조량 보정이 가능한 전극 건조 자동 제어 시스템 및 전극 건조 자동 제어 방법에 관한 것이다.
최근, 충방전이 가능한 이차전지는 와이어리스 모바일 기기의 에너지원으로 광범위하게 사용되고 있다. 또한, 이차전지는, 화석 연료를 사용하는 기존의 가솔린 차량, 디젤 차량 등의 대기오염 등을 해결하기 위한 방안으로 제시되고 있는 전기자동차, 하이브리드 전기자동차 등의 에너지원으로서도 주목받고 있다. 따라서, 이차전지를 사용하는 애플리케이션의 종류는 이차전지의 장점으로 인해 매우 다양화되고 있으며, 향후에는 지금보다는 많은 분야와 제품들에 이차전지가 적용될 것으로 예상된다.
이러한 이차전지는 전극과 전해액의 구성에 따라 리튬이온 전지, 리튬이온 폴리머 전지, 리튬 폴리머 전지 등으로 분류되기도 하며, 그 중 전해액의 누액 가능성이 적으며, 제조가 용이한 리튬이온 폴리머 전지의 사용량이 늘어나고 있다. 일반적으로, 이차전지는 전지케이스의 형상에 따라, 전극조립체가 원통형 또는 각형의 금속 캔에 내장되어 있는 원통형 전지 및 각형 전지와, 전극조립체가 알루미늄 라미네이트 시트의 파우치형 케이스에 내장되어 있는 파우치형 전지로 분류되며, 전지케이스에 내장되는 전극조립체는 양극, 음극, 및 상기 양극과 상기 음극 사이에 개재된 분리막 구조로 이루어져 충방전이 가능한 발전소자로서, 활물질이 도포된 긴 시트형의 양극과 음극 사이에 분리막을 개재하여 권취한 젤리-롤형과, 소정 크기의 다수의 양극과 음극을 분리막에 개재된 상태에서 순차적으로 적층한 스택형으로 분류된다.
상기 양극 및 음극은 각각 양극 집전체 및 음극 집전체에 양극 활물질을 포함하는 양극 슬러리 및 음극 활물질을 포함하는 음극 슬러리를 도포하여 양극 활물질층 및 음극 활물질층을 형성한 후, 이를 건조 및 압연하여 형성된다.
이 때, 전극의 건조 조건은 전극의 품질 및 물성에 영향을 미치며, 특히 건조 중 전극 폭 방향에 대한 건조도 편차 및 건조 완료 시점 제어에 따라 전극의 접착력 및 표면 결합 수준이 크게 변할 수 있다. 기존에는 초기 공정 조건을 미리 결정하여 전극을 건조하고, 건조 완료 후, 샘플의 물성 측정을 통해 건조량를 평가하고 공정 조건을 조절하였는데, 이 같은 방식은 물성 측정 자체에 많은 시간이 소요되고, 건조량 평가 결과를 실시간으로 공정에 반영하기 어려워 롤-투-롤의 연속 생산 공정에서는 적합하지 않았다.
따라서, 전극의 건조량을 실시간으로 모니터링하고, 모니터링한 결과를 즉각적으로 공정에 반영해 최종 완료된 전극의 건조도를 일정하게 유지하는 전극 건조 방법에 대한 기술 개발이 필요한 실정이다.
본 발명은 상기와 같은 과제를 해결하기 위해 안출된 것으로, 전극 건조 정도를 실시간으로 자동 제어해, 최종 전극의 건조 수준을 일정하게 유지하여 제품의 편차를 감소시킬 수 있는 전극 건조 자동 제어 시스템 및 전극 건조 자동 제어 방법을 제공하는 것을 목적으로 한다.
본 발명에 따른 전극 건조 자동 제어 시스템은, 전극 시트가 주행하며 건조되는 공간을 제공하고, 전극 시트에 열풍 및/또는 복사열을 가해주는 건조 수단을 구비하며, 복수의 건조 구간들로 구획되는 오븐; 상기 오븐을 통과한 전극 시트의 건조량 정보를 수집하고, 수집된 정보를 제어부로 송출하는 측정부; 및 상기 측정부로부터 수신한 건조량 정보를 바탕으로, 전극 시트의 건조 수준을 판단하고, 상기 판단된 건조 수준에 따라 상기 오븐의 건조 세기를 제어하는 제어부를 포함하고, 상기 제어부는, 복수의 건조 구간들을 독립적으로 제어한다.
본 발명의 일 실시예에서, 상기 측정부는, 일정한 시간적 간격마다 주기적으로, 전극 시트의 건조량 정보를 수집하도록 설정되고, 상기 제어부는, 상기 측정부로부터 건조량 정보를 수신할 때마다, 전극 시트의 건조 수준을 판단해, 오븐의 건조 세기를 주기적으로 제어한다.
본 발명의 일 실시예에서, 상기 측정부는, 상기 제어부에 의한 건조 세기 제어가 예정된 시점 직전의 1분 내지 5분 동안 건조량 정보를 수집한다.
본 발명의 일 실시예에서, 상기 건조량 정보는, 전극 시트의 고형분 함량 및 전극 시트 표면의 온도 중에서 선택된 하나 이상이다.
본 발명의 일 실시예에서, 상기 제어부는, 상기 측정부에 의해 수집된 건조량 정보, 기준이 되는 건조량 설정값이 입력되는 데이터 입력부; 상기 건조량 정보와 설정값을 비교하여, 전극 시트의 건조 수준을 판단하고, 이에 따라 상기 오븐 내 건조 세기의 증감 여부 및 증감량을 결정하는 판단부; 및 상기 판단부의 판단 결과에 기반하여, 상기 오븐의 건조 세기를 제어하는 명령부를 포함한다.
본 발명의 일 실시예에서, 상기 제어부는, 전극 시트의 건조 수준을, 정상, 과건조, 미건조, 심한 과건조 및 심한 미건조의 5개의 등급 중의 하나로 판단한다.
본 발명의 일 실시예에서, 상기 제어부는, 전극 시트의 건조 수준을 과건조 또는 심한 과건조로 판단한 경우에, 상기 오븐의 건조 세기를 감소하도록 제어하고, 전극 시트의 건조 수준을 미건조 또는 심한 미건조로 판단한 경우에, 상기 오븐의 건조 세기를 증가하도록 제어한다.
본 발명의 일 실시예에서, 상기 제어부는, 전극 시트의 건조 수준을 과건조 또는 미건조로 판단한 경우에, 하나의 건조 구간에 대해 건조 세기를 증감하도록 제어하고, 전극 시트의 건조 수준을 심한 과건조 또는 심한 미건조로 판단한 경우에, 두 개 이상의 건조 구간들의 건조 세기를 함께 증감하도록 제어한다.
본 발명의 일 실시예에서, 상기 제어부는, 상기 복수의 건조 구간 중, 전단 건조 구간을 제외한 나머지 건조 구간들에 대해서, 건조 세기를 제어한다.
본 발명의 일 실시예에서, 상기 측정부는, 수집된 건조량 정보의 평균값 또는 중위값을 상기 제어부로 송출한다.
본 발명의 일 실시예에서, 상기 복수의 건조 구간들은 각각, 건조 수단을 구비하고 있으며, 상기 건조 수단은, 전극 시트에 열풍을 공급하여 대류열을 가해주는 열풍 노즐 및 전극 시트에 복사열을 가해주는 히터 중의 하나 이상을 포함한다.
본 발명의 일 실시예에서, 상기 제어부는, 상기 오븐의 건조 세기를 증감하기 위해서, 상기 열풍 노즐의 풍속, 열풍 노즐의 풍량, 상기 히터의 온도 및 전극 시트가 주행되도록 하는 이송 롤러의 주행 속도 중에서 선택된 하나 이상을 제어한다.
본 발명의 일 실시예에서, 상기 측정부는, 전극 시트의 로딩량을 측정하는 웹-게이지(web-gauge) 및 온도 측정기 중의 하나 이상을 포함한다.
본 발명의 일 실시예에서, 상기 측정부는, 연산부를 더 포함하고, 상기 연산부는, 상기 웹-게이지가 측정한 로딩량으로부터, 전극의 고형분 함량을 계산한다.
본 발명에 따른 전극 건조 자동 제어 방법은, (a) 복수의 건조 구간으로 구획되고, 건조 수단을 구비한 오븐에 전극 시트를 투입하는 단계; (b) 측정부를 통해 전극 시트의 건조량 정보를 수집하는 단계; 및 (c) 상기 수집된 건조량 정보와 기준값을 비교하여 전극의 건조 수준을 판단하고, 판단된 건조 수준에 따라, 상기 오븐의 건조 세기를 제어하는 단계를 포함하고, 상기 (c) 단계는, 복수의 건조 구간들을 독립적으로 제어한다.
본 발명의 일 실시예에서, 상기 (b) 단계에서, 상기 건조량 정보는, 전극 시트의 고형분 함량 및 전극 시트 표면의 온도 중에서 선택된 하나 이상이다.
본 발명의 일 실시예에서, 상기 (b) 단계는 일정한 시간적 간격마다 주기적으로, 전극 시트의 건조량 정보를 수집하고, 상기 (c) 단계는, 상기 (b) 단계에 의해 건조량 정보를 수신할 때마다, 전극 시트의 건조 수준을 판단해, 오븐의 건조 세기를 주기적으로 제어한다.
본 발명의 일 실시예에서, 상기 (c) 단계는, 전극 시트의 건조 수준을, 정상, 과건조, 미건조, 심한 과건조, 심한 미건조의 5개의 등급 중의 하나로 판단한다.
본 발명의 일 실시예에서, 상기 (c) 단계는, 전극 시트의 건조 수준을 과건조 또는 미건조로 판단한 경우에, 하나의 건조 구간에 대해 건조 세기를 증감하도록 제어하고, 전극 시트의 건조 수준을 심한 과건조 또는 심한 미건조로 판단한 경우에, 두 개 이상의 건조 구간들의 건조 세기를 함께 증감하도록 제어한다.
본 발명은 건조된 전극 시트의 건조량 정보를 수집하고, 수집된 건조량 정보로부터 전극의 건조 수준을 판단해, 실시간으로 오븐의 건조량을 제어하므로, 전극 건조 정도를 실시간으로 자동 제어할 수 있다.
도 1은 본 발명에 따른 전극 건조 자동 제어 시스템의 구성을 나타낸 블록도이다.
도 2는 본 발명의 일 실시예에 따른 전극 건조 자동 제어 시스템의 구조를 나타낸 개략도이다.
도 3은 본 발명의 일 실시예에 따른 전극 건조 자동 제어 시스템의 구성을 나타낸 블록도이다.
도 4는 본 발명의 다른 실시예에 따른 전극 건조 자동 제어 시스템의 구조를 나타낸 개략도이다.
도 5는 본 발명에 따른 전극 건조 자동 제어 방법의 순서를 나타낸 흐름도이다.
도 6은 본 발명의 실시예에 따른 자동 제어 방법으로 건조된 전극 시트를 열화상 카메라로 촬영한 사진이다.
이하, 본 발명에 대하여 상세히 설명하기로 한다. 이에 앞서, 본 명세서 및 특허청구범위에 사용된 용어 또는 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
본 출원에서, "포함하다" 또는 "가지다" 등의 용어는 명세서 상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다. 또한, 층, 막, 영역, 판 등의 부분이 다른 부분 "상에" 있다고 할 경우, 이는 다른 부분 "바로 위에" 있는 경우뿐만 아니라 그 중간에 또 다른 부분이 있는 경우도 포함한다. 반대로 층, 막, 영역, 판 등의 부분이 다른 부분 "하에" 있다고 할 경우, 이는 다른 부분 "바로 아래에" 있는 경우뿐만 아니라 그 중간에 또 다른 부분이 있는 경우도 포함한다. 또한, 본 출원에서 "상에" 배치된다고 하는 것은 상부뿐 아니라 하부에 배치되는 경우도 포함하는 것일 수 있다.
이하 본 발명에 대해 자세히 설명한다.
도 1은 본 발명에 따른 전극 건조 시스템의 구성을 나타낸 블록도이고, 도 2는 본 발명에 따른 전극의 건조 자동 제어 시스템의 구조를 나타낸 개략도이다. 이들 도면을 참조하면, 본 발명에 따른 전극 건조 자동 제어 시스템은(100), 전극 시트가 주행하며 건조되는 공간을 제공하고, 전극 시트에 열풍 및/또는 복사열을 가해주는 건조 수단을 구비하며, 복수의 건조 구간들로 구획되는 오븐(110); 상기 오븐(110)을 통과한 전극 시트(10)의 건조량 정보를 수집하고, 수집된 정보를 제어부(130)로 송출하는 측정부(120); 및 상기 측정부(120)로부터 수신한 건조량 정보를 바탕으로, 전극 시트(10)의 건조 수준을 판단하고, 상기 판단된 건조 수준에 따라 상기 오븐(110)의 건조 세기를 제어하는 제어부(130)를 포함하며, 상기 제어부(130)는, 복수의 건조 구간들을 독립적으로 제어한다.
전술한 바와 같이, 전극의 건조 조건은 전극의 품질 및 물성에 크게 영향을 미치는 것으로, 기존에는 초기 공정 조건을 미리 결정하여 전극을 건조한 후, 제품 건조도 및 물성 평가를 통해 공정 조건을 조절하였는데, 이 경우 전극의 건조를 실시간으로 제어하기 어렵다는 문제가 있었다.
본 발명의 전극 건조 자동 제어 시스템은, 실시간으로 전극 시트의 건조량 정보를 수집해 건조 수준을 판단하고, 이에 따라 복수의 건조 구간들을 독립적으로 제어해, 전극 시트의 건조 수준에 따라, 적절하게 건조량을 보정하여, 전극 건조 정도를 자동 제어할 수 있다.
한편, 본 발명에서, x축은 전극이 이송되는 방향을 의미하며, y축은 전극의 폭 방향으로, 전극면 내에서 전극의 이송 방향과 수직인 방향을 의미한다. z축은 전극면에 대하여 수직인 방향으로, 열풍의 분사 방향 또는 적외선의 조사 방향에 해당된다.
이하 본 발명에 따른 전극의 건조 자동 제어 시스템의 구성에 대해 자세히 설명한다.
도 2를 참조하면, 본 발명에 따른 전극 건조 자동 제어 시스템(100)은, 오븐(110)을 포함한다. 상기 오븐(110)은 챔버 형상으로, 전극 시트(10)가 건조되는 공간을 제공하는바, 건조 대상 전극 시트(10)가 오븐(110) 내부를 주행할 수 있도록 공간을 제공하고, 건조를 위해 내부의 열이 외부로 빠져나가는 것을 방지할 수 있다.
한편, 상기 전극 시트(10)는, 집전체 시트(11)상에 전극 활물질을 포함하는 전극 형성용 슬러리가 도포되어 전극 활물질층(12)이 형성된 구조일 수 있다. 상기 전극 슬러리는 집전체의 적어도 일면에 도포될 수 있다.
이 때 상기 집전체는 양극 집전체 또는 음극 집전체일 수 있고, 상기 전극 활물질은 양극 활물질 또는 음극 활물질일 수 있다. 또한 상기 전극 슬러리는 전극 활물질 외에 도전재 및 바인더를 더 포함할 수 있다.
본 발명에서, 양극 집전체의 경우 일반적으로 3 ~ 500 ㎛의 두께로 만든다. 이러한 양극 집전체는, 당해 전지에 화학적 변화를 유발하지 않으면서 높은 도전성을 가지는 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 스테인레스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 또는 알루미늄이나 스테리인레스 스틸의 표면에 카본, 니켈, 티탄, 은 등으로 표면처리한 것 등이 사용될 수 있다. 집전체는 그것의 표면에 미세한 요철을 형성하여 양극 활물질의 접착력을 높일 수도 있으며, 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태가 가능하다.
음극 집전체용 시트의 경우, 일반적으로 3 ~ 500 ㎛의 두께로 만들어진다. 이러한 음극 집전체는, 당해전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 구리, 스테인레스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 구리나 스테인레스 스틸의 표면에 카본, 니켈, 티탄, 은 등으로 표면 처리한 것, 알루미늄-카드뮴 합금 등이 사용될 수 있다. 또한, 양극 집전체와 마찬가지로, 표면에 미세한 요철을 형성하여 음극 활물질의 결합력을 강화시킬 수도 있으며, 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태로 사용될 수 있다.
본 발명에서 양극 활물질은, 전기화학적 반응을 일으킬 수 있는 물질로서, 리튬 전이금속 산화물로서, 2 이상의 전이금속을 포함하고, 예를 들어, 1 또는 그 이상의 전이금속으로 치환된 리튬 코발트 산화물(LiCoO2), 리튬 니켈 산화물(LiNiO2) 등의 층상 화합물; 1 또는 그 이상의 전이금속으로 치환된 리튬 망간 산화물; 화학식 LiNi1-yMyO2 (여기서, M = Co, Mn, Al, Cu, Fe, Mg, B, Cr, Zn 또는 Ga 이고 상기 원소 중 하나 이상의 원소를 포함, 0.01≤y≤0.7 임)으로 표현되는 리튬 니켈계 산화물; Li1+zNi1/3Co1/3Mn1/3O2, Li1+zNi0.4Mn0.4Co0.2O2 등과 같이 Li1+zNibMncCo1-(b+c+d)MdO(2-e)Ae (여기서, -0.5≤z≤0.5, 0.1≤b≤0.8, 0.1≤c≤0.8, 0≤d≤0.2, 0≤e≤0.2, b+c+d<1임, M = Al, Mg, Cr, Ti, Si 또는 Y 이고, A = F, P 또는 Cl 임)으로 표현되는 리튬 니켈 코발트 망간 복합산화물; 화학식 Li1+xM1-yM'yPO4-zXz(여기서, M = 전이금속, 바람직하게는 Fe, Mn, Co 또는 Ni 이고, M' = Al, Mg 또는 Ti 이고, X = F, S 또는 N 이며, -0.5≤x≤+0.5, 0≤y≤0.5, 0≤z≤0.1 임)로 표현되는 올리빈계 리튬 금속 포스페이트 등을 들 수 있지만, 이들만으로 한정되는 것은 아니다.
음극 활물질은, 예를 들어, 난흑연화 탄소, 흑연계 탄소 등의 탄소; LixFe2O3(0≤x≤1), LixWO2(0≤x≤1), SnxMe1-xMe'yOz (Me: Mn, Fe, Pb, Ge; Me': Al, B, P, Si, 주기율표의 1족, 2족, 3족 원소, 할로겐; 0<x≤1; 1≤y≤3; 1≤z≤8) 등의 금속 복합 산화물; 리튬 금속; 리튬 합금; 규소계 합금; 주석계 합금; SnO, SnO2, PbO, PbO2, Pb2O3, Pb3O4, Sb2O3, Sb2O4, Sb2O5, GeO, GeO2, Bi2O3, Bi2O4, Bi2O5 등의 금속 산화물; 폴리아세틸렌 등의 도전성 고분자; Li-Co-Ni 계 재료 등을 사용할 수 있다.
상기 도전재는 통상적으로 양극 활물질을 포함한 혼합물 전체 중량을 기준으로 1 내지 30 중량%로 첨가된다. 이러한 도전재는 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 천연 흑연이나 인조 흑연 등의 흑연; 카본블랙, 아세틸렌 블랙, 케첸 블랙, 채널 블랙, 퍼네이스 블랙, 램프 블랙, 서머 블랙 등의 카본블랙; 탄소 섬유나 금속 섬유 등의 도전성 섬유; 불화 카본, 알루미늄, 니켈 분말 등의 금속 분말; 산화아연, 티탄산 칼륨 등의 도전성 위스키; 산화 티탄 등의 도전성 금속 산화물; 폴리페닐렌 유도체 등의 도전성 소재 등이 사용될 수 있다.
상기 바인더는 활물질과 도전재 등의 결합과 집전체에 대한 결합에 조력하는 성분으로서, 통상적으로 양극 활물질을 포함하는 혼합물 전체 중량을 기준으로 1 내지 30 중량%로 첨가된다. 이러한 바인더의 예로는, 폴리불화비닐리덴, 폴리비닐알코올, 카르복시메틸셀룰로우즈(CMC), 전분, 히드록시프로필셀룰로우즈, 재생 셀룰로오즈, 폴리비닐피롤리돈, 테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 에틸렌-프로필렌-디엔 테르 폴리머(EPDM), 술폰화 EPDM, 스티렌 브티렌 고무, 불소 고무, 다양한 공중합체 등을 들 수 있다.
한편, 이와 같은 전극 슬러리는 전극 활물질, 도전재 및 바인더 등을 용매에 용해시켜 제조될 수 있다. 상기 용매는 전극 활물질 등을 분산시킬 수 있는 것이면 그 종류에 특별한 제한은 없으며, 수계 용매 또는 비수계 용매를 모두 사용 가능하다. 예를 들어, 상기 용매로는 상기 용매는 당해 기술분야에서 일반적으로 사용되는 용매일 수 있으며, 디메틸설폭사이드(dimethyl sulfoxide, DMSO), 이소프로필 알코올(isopropyl alcohol), N-메틸피롤리돈(NMP), 아세톤(acetone) 또는 물 등일 수 있으며, 이들 중 1종 단독 또는 2종 이상의 혼합물이 사용될 수 있다. 상기 용매의 사용량은 슬러리의 도포 두께, 제조 수율, 작업성 등을 고려하여 슬러리가 적절한 점도를 갖도록 조절될 수 있는 정도이면 되고, 특별히 한정되지 않는다.
상기 오븐(110)은, 복수의 건조 구간들(111,112,113)로 구획되고, 상기 건조 구간들 각각은, 내부에 전극 시트(10)를 건조하기 위한 건조 수단을 구비하고 있다. 상기 건조 수단은, 전극 시트(10)에 열풍을 공급하여 대류열을 가해주는 열풍 노즐(114) 및 전극 시트(10)에 복사열을 가해주는 히터(115)를 구비한다. 도 2를 참조하면, 열풍 노즐(114) 및 히터(115)는 전극 시트(10)의 이송 방향(MD 방향, x 방향)을 따라 일정 간격으로 이격되어 배열될 수 있으며, 전극 시트(10)에 수직한 방향으로 열풍 또는 복사열을 인가한다. 도 2에서는 열풍 노즐(114) 및 적외선 히터(115)가 전극 시트(10)의 상부, 즉 오븐(110)의 천장 하면에 위치하는 것으로 도시되었으나, 전극 활물질층이 집전체의 양면에 형성된 경우 열풍 노즐(114) 및 히터(115)가 전극 시트(10)의 상부 및 하부에 각각 위치할 수 있다. 도 2에는 건조 수단으로서 열풍 노즐 및 히터를 모두 구비한 것을 예시하였으나, 이에 한정되는 것은 아니고, 이중 하나만을 구비할 수도 있다.
한편, 열풍 노즐(114)은 본체부 및 분사부를 포함한다. 상기 본체부는 열풍 노즐의 몸체를 구성하며, 열풍 노즐(114)을 오븐의 천장에 고정한다. 또한 본체부는 내부가 비어 있으며, 열풍 공급원(미도시)으로부터 전달되는 열풍을 분사부로 전달한다. 한편, 본체부의 하면에는 분사부가 마련된다. 상기 분사부는 본체부와 연통되며, 분사부의 하면에는 열풍이 분사되는 분사구가 형성된다. 상기 분사구는 복수 개의 기공이 일정 간격으로 배열되어 있는 구조일 수 있다.
한편, 히터(115)는 본 발명의 구체적 예에서 적외선 히터일 수 있으며, 적외선 히터는, 적외선을 전극에 조사하는 적외선 램프 및 상기 적외선 램프를 지지 또는 거치하는 거치대를 포함할 수 있다. 적외선 램프의 형태는 특별한 제한은 없으며, 예를 들어 막대 모양의 램프가 전극의 폭 방향으로 연장된 상태에서 전극의 이송 방향을 따라 평행하게 배열될 수 있다.
상기 열풍 노즐(114) 및 히터(115)는 전극 시트(10)의 표면에 열풍 및 적외선을 고르게 공급하기 위하여 전극 시트(10)의 진행 방향을 따라 교번하여 배열될 수 있다. 다만, 배열 형태에 특별한 제한이 있는 것은 아니며 통상의 기술자가 건조 조건에 따라 열풍 노즐(114)과 적외선 히터(115)의 배열 방식을 적절히 설계 변경 가능하다.
또한 상기 오븐(110) 내부에는 전극을 이송하기 위한 이송 롤러(116)를 포함할 수 있다. 상기 이송 롤러(116)는 전극 시트(10)의 이송 방향을 따라 다수 개가 일 정 간격으로 이격되어 배치될 수 있으며, 건조 과정에서 전극 시트(10)를 지지하고, 건조가 완료된 전극 시트(10)를 오븐(110) 외부로 이송한다. 또한, 이송 롤러의 회전 속도를 조작하여 전극 시트의 건조량을 보정할 수도 있다.
상기 오븐(110)은 복수의 건조 구간으로 구획될 수 있다. 전극 시트(10)의 건조 과정에서 과건조 또는 미건조 상황이 발생할 경우 건조 세기를 변경해 가면서 전극 시트(10)를 적절하게 건조시킬 필요가 있는데, 오븐(110)을 복수 개의 건조 구간으로 구획함으로써, 각 건조 구간 별로 건조 세기를 독립적으로 제어할 수 있다. 도 2에는 오븐(110)이 3개의 건조 구간으로 구획된 형상으로 도시되어 있으나, 오븐은 3개 내지 20개의 건조 구간, 또는 5개 내지 15 개의 건조 구간으로 구획될 수 있으며, 이에 한정되는 것은 아니다. 본 발명의 명세서에는 상기 3개의 건조 구간을 전극 시트(10)의 이송 방향을 따라 제 1 건조 구간(111), 제 2 건조 구간(112) 및 제 3 건조 구간(113)으로 명명한다.
상기 제 1 건조 구간(111), 제 2 건조 구간(112) 및 제 3 건조 구간(113)은, 건조 구간과 건조 구간 사이에 실제로 내벽을 설치하여 물리적으로 분획된 공간일 수도 있으며, 건조 조건에 따라 추상적으로 구획된 공간일 수도 있다.
본 발명에 따른 전극의 건조 자동 제어 시스템(100)은, 상기 오븐을 통과한 전극 시트의 건조량 정보를 수집하고, 수집된 정보를 제어부로 송출하는 측정부를 포함한다.
본 발명의 구체적 예에서, 상기 건조량 정보는, 전극 시트의 고형분 함량 및 전극 시트 표면의 온도 중의 하나 이상이다. 본 발명의 전극 건조 자동 제어 시스템은, 측정부를 통해 수집된 고형분 함량 또는/및 온도를 통해, 전극 시트의 건조 수준을 판단한다. 상기 측정부는 고형분 함량 및 전극 시트 표면의 온도를 수집하기 위하여, 전극 시트의 로딩량을 측정하는 웹-게이지(web-gauge) 및 온도 측정기 중의 하나 이상을 포함할 수 있다.
도 2를 참조하면, 상기 측정부(120a, 120b)는, 전극 시트의 로딩량을 측정하는 웹-게이지(web-gauge)를 포함하며, 상기 측정부(120)는, 오븐(110)의 입구 및 출구 각각에 설치되어, 전극 시트의 건조 전 로딩량과 전극 시트의 건조 후 로딩량을 측정할 수 있다. 상기 측정부는, 고형분 함량을 도출하기 위해, 연산부를 더 포함할 수 있고, 상기 연산부는 미리 입력된 계산식을 통해, 측정된 로딩량으로부터 전극 활물질 층(12)의 고형분 함량을 도출할 수 있다. 로딩량으로부터 고형분 함량을 도출하는 수식은, 당해 기술 분야에 공지된 것을 이용할 수 있다.
전극 시트의 건조 수준이, 과다한 경우(과건조)에는 고형분 함량이 기준값보다 높게 나타나고, 전극 시트의 건조 수준이, 충분하지 못한 경우(미건조)에는 고형분 함량이 기준값보다 낮게 나타나므로, 고형분 함량은 전극 시트의 건조 수준을 파악할 수 있는 지표가 될 수 있다.
본 발명에 따른 전극의 건조 자동 제어 시스템(100)은, 제어부(130)를 포함한다. 상기 제어부(130)는, 상기 측정부(120a, 120b)로부터 수신한 건조량 정보를 바탕으로 전극의 건조 수준을 판단하고, 상기 판단된 건조 수준에 따라 상기 오븐(110)의 건조 세기를 제어해, 전극 시트의 건조량을 실시간으로 보정할 수 있다.
전극 시트의 건조량을 실시간으로 보정하기 위해서, 상기 측정부는, 일정한 시간적 간격마다 주기적으로, 전극 시트의 건조량 정보를 수집하도록 설정되고, 상기 제어부는, 상기 측정부로부터 건조량 정보를 수신할 때마다, 전극 시트의 건조 수준을 판단해, 오븐의 건조 세기를 주기적으로 제어한다.
도 3은 본 발명의 일 실시예에 따른 전극의 건조 자동 제어 시스템의 구성을 나타낸 블록도로, 도 3을 참조하면, 본 발명의 제어부(130)는, 상기 측정부(120)에 의해 수집된 건조량 정보, 건조 수준 판단의 기준이 되는 건조량 설정값이 입력되는 데이터 입력부(131); 상기 건조량 정보와 설정값을 비교하여, 전극 시트의 건조 수준을 판단하고, 이에 따라 오븐 내 건조 세기의 증감 여부 및 증감량을 결정하는 판단부(132); 및 상기 판단부(132)의 판단 결과에 기반하여, 상기 오븐의 건조 세기를 제어하는 명령부(133)를 포함할 수 있다.
상기 데이터 입력부(131)는, 상기 측정부(120)로부터 전극 시트의 건조 전/후 로딩량 또는/및 전극 표면의 온도와 같은 건조량 정보를 송출받을 수 있고, 전극 시트의 건조 수준이 과건조인지 미건조인지 여부를 판단할 수 있도록 하는 기준값을 입력받을 수 있다. 그리고 데이터 입력부를 통해 입력된 건조량 정보 및 기준값은 판단부(132)에 전송된다.
상기 판단부(132)는, 데이터 입력부(131)로부터 전송받은 건조량 정보와 기준값을 비교하여 전극 시트의 건조 수준이 과건조인지, 미건조인지, 정상 건조인지 여부를 결정하며, 또한 판단부(132)는 건조량 정보와 기준값의 수치를 비교하여 과건조 또는 미건조의 정도를 정량적으로 파악해, 건조 세기의 제어 방법을 결정한다.
상기 제어부는, 상기 오븐의 건조 세기를 증감하기 위해서, 상기 열풍 노즐, 상기 히터 및 전극 시트가 주행되도록 하는 이송 롤러의 주행 속도 중의 하나 이상을 제어한다. 제어부가 이와 같은 오븐의 건조 세기를 제어하기 위해, 상기 명령부(133)는, 상기 판단부가 결정한 건조 세기의 증감량에 따른 운전 조작 명령을 상기 오븐에 송출한다.
상기 오븐은 상기 제어부의 명령부로부터 받은 운전 조작 명령에 따라 오븐 내 건조 세기를 증감할 수 있다. 오븐은 건조 수단으로서 전극 시트에 열풍을 공급하여 대류열을 가해주는 열풍 노즐; 및/또는 전극 시트에 복사열을 가해주는 히터를 포함하는데, 상기 운전 조작 명령에 따라 열풍 노즐로부터 분사되는 열풍의 온도, 풍속, 풍량, 상기 히터의 온도 중 하나 이상의 조건을 변경하여 전극 시트의 건조량을 보정할 수 있게 된다.
또한, 상기 열풍 노즐 및/또는 히터의 운전 조작 외에 전극 시트를 이송하는 이송 롤러의 회전 속도를 제어함으로써 건조량 보정을 수행할 수도 있다.
제어부에 의한 위와 같은 건조 세기의 제어는, 1회로 그치는 것이 아니라, 일정한 시간적 간격마다 주기적으로 수행된다. 하나의 구체적 예에서, 상기 제어부는, 5분 내지 20분의 주기로, 상기 오븐의 건조 세기를 반복적으로 제어할 수 있으며, 바람직하게는 6분 내지 15분을 주기로, 건조 세기를 제거할 수 있으나, 건조 세기의 제어 주기는 이에 한정되지 않는다.
또한, 상기 측정부도, 상기 제어부에 의한 건조 세기 제어에 연동하여, 일정한 시간적 간격마다 주기적으로, 전극 시트의 건조량 정보를 수집하도록 설정된다. 하나의 구체적 예에서, 상기 측정부는, 상기 제어부에 의한 건조 세기 제어가 예정된 시점 직전의 1분 내지 5분 동안 건조량 정보를 수집한다. 즉, 상기 측정부는, 제어부가 오븐의 건조 세기를 제어하고, 바로 전극 시트의 건조량 정보를 수집하는 것이 아니라, 제어부에 의한 건조 세기가 제어가 수행되고, 일정한 시간이 지난 후에, 전극 시트의 건조량 정보를 수집한다. 이는, 오븐의 건조 세기 변경에 따른 건조량 보정 효과가 나타나는 데에 소정의 시간이 필요하기 때문이다.
상기 측정부는, 상기 소정의 시간 동안 수집한 건조량 정보의 평균값 또는 중위값을, 건조량 정보의 대표값으로 하여, 이를 상기 제어부로 송출할 수 있다.
본 발명의 건조 자동 제어 시스템은, 상기 제어부가, 상기 복수의 건조 구간 중, 전단 건조 구간을 제외한 나머지 건조 구간들에 대해서, 건조 세기를 제어한다. 전단 건조 구간이란, 오븐의 입구에 위치한 건조 구간을 의미한다. 하나의 구체적 예에서, 오븐의 입구로부터 출구에 이르기까지 배치된 건조 구간들이 순차로, 제 1 건조 구간 내지 제 N 건조 구간으로 구획된다면, 전단 건조 구간은 제 1 건조 구간 내지 N/3 건조 구간까지를 의미하는 것일 수 있으나, 이에 한정되는 것은 아니다.
이와 같은 전단 건조 구간에서는, 전극 시트가 오븐에 투입된지 얼마 되지 않았으므로, 안정화 구간이기 때문에, 전단 건조 구간에서 건조 세기를 증감하더라도, 이에 따른 건조량 보정 효과가, 그 이후 구간에서의 건조량 보정 효과와 비교해 미비하다.따라서, 본 발명의 제어부는 오븐을 구획하는 복수의 건조 구간 중, 전단 건조 구간을 제외한 나머지 건조 구간에서, 건조 세기를 증감하도록 제어한다.
하나의 구체적 예에서, 상기 제어부는, 전극 시트의 건조 수준을, 정상, 과건조, 미건조, 심한 과건조 및 심한 미건조의 5개의 등급 중의 하나로 판단할 수 있다. 상기 제어부는, 설정된 기준값을 기준으로 전극 시트의 건조 수준을 판단하는데, 측정부에 의해 수집된 건조량 정보가, 설정된 기준값을 벗어나지만, 그 차이가 근소하다면 과건조 또는 미건조로 판단하고, 측정부에 의해 수집된 건조량 정보가, 설정된 기준값과 차이가 큰 경우에는, 심한 과건조 또는 심한 미건조로 판단한다.
본 발명의 제어부는, 전극 시트의 건조 수준을, 단순히 정상, 과건조, 미건조 상태로만 구분하지 않고, 여기에 더하여 과건조 및 미건조의 정도를 정량적으로 파악해, 심한 과건조 및 심한 미건조의 등급도 구분한다. 이에 따라 건조 수준에 따라, 보다 최적화된 건조 세기의 제어를 수행할 수 있다.
구체적으로, 전극 시트의 건조 수준이 정상인 경우에는, 건조 세기를 변경할 필요가 없으므로, 상기 제어부는 오븐의 건조 세기를 증감하는 제어를 수행하지 않는다. 즉, 오븐에 건조 세기의 증감을 위한 명령을 송출하지 않는다.
본 발명의 제어부는, 전극 시트의 건조 수준을 과건조 또는 심한 과건조로 판단한 경우에, 상기 오븐의 건조 세기를 감소하도록 제어하고, 전극 시트의 건조 수준을 미건조 또는 심한 미건조로 판단한 경우에, 상기 오븐의 건조 세기를 증가하도록 제어한다.
또한 본 발명의 제어부는, 전극 시트의 건조 수준을 과건조 또는 미건조로 판단한 경우에는, 하나의 건조 구간에 대해 건조 세기를 증감하도록 제어하고, 전극 시트의 건조 수준을 심한 과건조 또는 심한 미건조로 판단한 경우에, 두 개 이상의 건조 구간들의 건조 세기를 함께 증감하도록 제어한다.
전극 시트의 건조 수준이 과건조 또는 미건조인 경우는, 전극 시트의 건조 수준이, 기준값과 근소한 차이가 있는 경우이므로, 복수의 건조 구간에 대해 일률적으로 건조 세기를 증감하는 경우, 오히려 역효과를 낳을 수 있다. 예컨대, 미건조 상태를 보정하기 위해, 모든 건조 구간에 대해 건조 세기를 증가시키면, 전극 시트가 필요 이상으로 건조되어 과건조를 야기할 수 있으므로, 본 발명의 제어부는 우선 하나의 건조 구간에서 건조 세기를 증가하도록 제어하고, 측정부로부터 건조량 정보를 피드백 받아, 그 결과에 따라 후속 제어를 수행한다.
그리고, 후속 제어를 수행함에 있어서, 피드백 받은 건조량 정보가 기준값을 벗어나, 여전히 미건조 상태로 판단된다면, 이전에 건조 세기를 제어했던 건조 구간의 다음 건조 구간에서 건조 세기를 증가하도록 제어한다. 또한, 이와는 다르게 피드백 받은 건조량 정보가 기준값의 범위에 해당된다면, 건조 세기의 증감이 필요하지 않은 경우이므로, 건조 세기의 증감하는 제어를 수행하지 않는다.
또한, 본 발명의 제어부는, 전극 시트의 건조 수준이 과건조로 판단되어, 건조 세기를 감소하는 제어를 수행할 때에는, 후단 건조 구간부터 중단 건조 구간에 이르기까지 순차적으로 건조 세기를 감소시키는 제어를 수행하고, 반대로 전극 시트의 건주 수준이 미건조로 판단되어, 건조 세기를 증가하는 제어를 수행할 때에는, 전단 중단 건조 구간으부터 후단 건조 구간에 이르기까지 순차적으로 건조 세기를 증가시키는 제어를 수행할 수 있다. 이렇게 과건조와 미건조에 따라, 건조 세기의 제어 순서를 다르게 하는 것은, 건조량 보정 효율을 높이기 위함이다.
위와 같이, 건조 구간의 시계열적 순서에 따라 순차적으로 건조 세기를 제어할 때에, 전단 건조 구간에 대해서는, 건조 세기를 제어하지 않는데, 전단의 건조 구간은 초기 건조 구간으로, 건조 세기를 제어하더라도 건조량의 보정 효과가 작기 때문에, 건조량 보정의 효율성을 높이기 위해, 중단 건조 구간 이후의 건조 구간에 대해서, 순차 제어를 실시한다.
한편, 전극 시트의 건조 수준이 심한 과건조 또는 심한 미건조인 경우는, 전극 시트의 건조 수준이, 기준값과 비교해 그 차이가 상대적으로 큰 경우로, 일부 건조 구간에서만 건조 세기를 증감하는 경우, 건조량 보정 효과가 미비하다. 따라서, 이러한 경우에는, 건조 세기의 증감량을 상대적으로 크게 하기 위해서, 본 발명의 제어부는 두 개 이상의 건조 구간들의 건조 세기를 함께 증감하도록 제어한다.
구체적으로 전극 시트의 건조 수준이 심한 과건조로 판단되어, 건조 세기를 감소하는 제어를 수행할 때에는, 제어부는, 중단 건조 구간 및 후단 건조 구간에 이르는 건조 구간에서, 동시에 건조 세기를 감소하는 제어를 수행한다. 반대로 전극 시트의 건주 수준이 심한 미건조로 판단되어, 건조 세기를 증가시키는 제어를 수행할 때에는, 제어부는 중단 건조 구간 및 후단 건조 구간에 이르는 건조 구간에서, 동시에 건조 세기를 증가시키는 제어를 수행한다.
도 4는 본 발명의 다른 실시예에 따른 전극 건조 자동 제어 시스템의 구조를 나타낸 개략도이다. 도 4를 참조하면, 오븐의 입구 및 출구에 각각 전극 시트의 로딩량 측정을 위한 웹-게이지(221a, 221b)가 설치되어 있고, 제 1 건조 구간(211)과 제 2 건조 구간(212)의 사이, 제 2 건조 구간(212)과 제 3 건조 구간(213)의 사이 및 오븐의 출구에 각 온도 측정기(222)가 설치되어 있다. 상기 온도 측정기는 전극 표면의 온도를 측정할 수 있다. 아울러, 도 4에서는 온도 측정기(222)가 전극 시트(10)의 상부에 위치하는 것으로 도시되었으나, 전극 활물질층이 집전체의 양면에 형성된 경우 상기 온도 측정기(222)가 전극의 상부 및 하부에 모두 위치할 수 있다.
하나의 예에서, 상기 온도 측정기(222)는 오븐(110) 내부에 위치하여 전극 시트(10) 표면의 온도를 측정할 수 있다. 상기 온도 측정기는 전극 표면의 온도를 측정할 수 있는 것이라면 그 종류는 한정되지 아니하며, 구체적으로는 열전대와 같은 온도 센서 또는 열화상 카메라일 수 있다.
상기 온도 측정기(222)가 열화상 카메라인 경우에는 오븐의 외벽을 관통하여 배치될 수 있고, 열화상 카메라가 지나친 고온에 노출되는 것을 방지하기 위하여, 오븐(210) 내에서 상대적으로 저온인 곳에 위치하는 것이 바람직하다. 또한, 상기 열화상 카메라는 오븐(210) 내의 열풍 노즐(214) 및 히터(215)에 의해 촬영 시야가 가리지 않는 곳에 위치하는 것이 바람직하다. 따라서 열화상 카메라는 열풍 노즐(214) 및 적외선 히터(215)가 미배치된 곳에 위치할 수 있다.
또한, 오븐 내부에 설치된 온도 측정기의 파손을 방지하기 위해, 상기 온도 측정기를 냉각하는 냉각 장치(미도시)를 더 포함할 수 있다. 상기 냉각 장치는 온도 측정기가 오븐 내 고온 환경에 의해 손상되는 것을 방지하여 지속적인 전극 표면의 온도 측정을 가능하게 한다.
상기 냉각 장치는 오븐 내부의 온도 변화를 방지하기 위해 오븐의 외부에서 상기 온도 측정기에 체결 또는 부착될 수 있다. 상기 냉각 장치는 온도 측정기를 냉각할 수 있으면 그 형상에 특별한 제한은 없으나, 예를 들어 온도 측정기를 감싸며, 내부에 냉매 등이 포함된 쿨링 자켓(cooling jacket)일 수 있다.
또한, 본 발명은 전극 건조 자동 제어 방법을 제공한다.
도 5는 본 발명에 따른 전극 건조 자동 제어 방법의 순서를 나타낸 흐름도이다.
도 5를 참조하면, 본 발명에 따른 전극 건조 자동 제어 방법은, (a) 복수의 건조 구간으로 구획되고, 건조 수단을 구비한 오븐에 전극 시트를 투입하는 단계; (b) 측정부를 통해 전극 시트의 건조량 정보를 수집하는 단계; 및 (c) 상기 수집된 건조량 정보와 기준값을 비교하여 전극의 건조 수준을 판단하고, 판단된 건조 수준에 따라, 상기 오븐의 건조 세기를 제어하는 단계를 포함하고, 상기 (c) 단계는, 복수의 건조 구간들을 독립적으로 제어한다.
본 발명의 전극 건조 자동 제어 방법에 따르면, 상기 (b) 단계는, 일정한 시간적 간격마다 주기적으로, 전극 시트의 건조량 정보를 수집하고, 상기 (c) 단계는, 상기 (b) 단계에 의해 건조량 정보를 수신할 때마다, 전극 시트의 건조 수준을 판단해, 오븐의 건조 세기를 주기적으로 제어한다. 따라서, 본 발명의 전극 건조 자동 제어 방법은, 실시간으로 전극 시트의 건조량 정보를 피드백 받아, 설정된 기준값에 부합하도록 건조량을 보정하므로, 자동으로 건조량을 균일하게 제어할 수 있다.
이하 본 발명에 따른 전극 건조 자동 제어 방법의 각 단계에 대해 자세히 설명한다.
<전극의 제조>
먼저, 집전체 시트 상에 전극 활물질을 포함하는 전극 형성용 슬러리를 도포하여 전극 시트가 제조된다. 상기 전극 시트에 관한 구체적인 내용은 앞서 설명한 바와 동일하다. 전극 시트가 제조되면, 앞서 설명한 바와 같은 오븐에 투입하여 건조를 시작한다.
<전극 시트의 건조 및 건조량 정보 수집>
전극 시트가 오븐에 투입되면, 전극 시트는 오븐 내부를 주행하면서, 히터 및 열풍 노즐과 같은 건조 수단에 의해, 슬러리 내의 용매가 제거되어 건조된다. 그리고, 측정부는 전극 시트의 건조량 정보를 수집한다. 상기 건조량 정보는, 전극 시트의 고형분 함량 및 전극 시트 표면의 온도 중의 하나 이상이다. 측정부에 의한 건조량 정보의 수집 과정은, 오븐의 내부 또는 외부에 설치된 온도 측정기를 통해 전극 시트의 표면 온도를 측정하거나, 또는 오븐의 입구 및 출구에 각 설치된 웹-게이지와 같은 전극 로딩량 측정 수단을 통해 이루어진다.
하나의 구체적 예에서 측정부는, 건조 전/후 전극 시트의 로딩량으로부터 고형분 함량을 계산하는 연산부를 더 포함할 수 있다.
<건조 수준 판단 및 건조 세기 제어>
상기 측정부로부터 고형분 함량 또는 전극 시트 표면의 온도와 같은 건조량 정보를 수득하게 되면, 이를 기준값과 비교하여 전극 시트의 건조 수준을 판단하는 단계가 수행된다. 측정된 건조량이 기준값과 비교해 작은 경우에는 건조가 충분치 못한 것이므로, 건조 세기를 증가시키기 위해, 오븐 내의 열풍 노즐의 열풍 온도, 풍속, 풍량 및 히터의 온도 중 하나 이상의 인자를 증가시킬 수 있다. 반대로 측정된 건조량이 기준값과 비교해 큰 경우에는 과건조가 일어나 것이므로, 건조 세기를 감소시키기 위해 오븐 내의 열풍 노즐의 열풍 온도, 풍속, 풍량 및 히터의 온도 중 하나 이상의 인자를 감소시킬 수 있다.
한편, 오븐은 전술한 바와 같이 복수의 건조 구간으로 구획 가능하고, 이들은, 전단 건조 구간, 중단 건조 구간 및 후단 건조 구간으로 구분될 수 있는데, 본 발명의 전극 건조 자동 제어 방법은, 전단 건조 구간에서는, 건조 세기의 제어를 수행하지 않는다. 전단 건조 구간은 코팅 공정을 종료한 직후의 전극 시트가 건조되는 초기 건조 구간으로, 전극 시트가 안정화되는 초기 건조 구간에서 건조 세기를 주기적으로 변경하는 것은 바람직하지 않고, 건조량 보정 효율 측면에서, 중단 건조 구간 및 후단 건조 구간에서의 건조량 보정으로 족하기 때문이다.
따라서, 건조 세기의 제어가 필요한 경우라도, 전단 건조 구간에 대해서는, 전단 건조 구간내 구비된 열풍 노즐 또는 히터의 운전 조건을 변경하지 않고, 중단 건조 구간 및 후단 건조 구간 내에 설치된 열풍 노즐 또는 히터의 운전 조건을 변경해 건조 세기를 제어한다.
또한, 본 발명의 전극 건조 자동 제어 방법은, 상기와 같은 방법으로 판단된 전극 시트의 건조 수준과, 목표로 하는 설정 건조 수준과의 정량적 차이에 따라 제어 방법을 달리할 수 있다. 구체적으로, 상기 (c) 단계는, 전극 시트의 건조 수준을, 판단함에 있어서, 정상, 과건조, 미건조, 심한 과건조 및 심한 미건조의 5개의 등급 중의 하나로 판단하고, 등급에 따라 제어 방법을 달리한다.
본 발명의 제어방법은, 측정부에 의해 수집된 전극 시트의 건조량 정보와, 목표로 하는 기준값을 비교하였을 때, 전극 시트의 건조량 정보가 기준값에 부합하면, 정상으로 판단하고, 측정부에 의해 수집된 전극 시트의 건조량 정보와 기준값을 비교하였을 때, 그 차이가 소정의 범위 내라면, 과건조 또는 미건조로 판단하며, 그 차이가 소정의 범위를 초과해 큰 경우라면, 해당 전극 시트의 건조 수준은 심한 과건조 또는 심한 미건조로 판단한다.
예컨대, 전극 시트의 건조 수준을 고형분 함량을 통해 판단하고, 미리 설정된 고형분 함량의 기준값이 88% 내지 89%인 경우를 가정하면, 측정부가 수집한 전극 시트의 건조량 정보가, 상기 기준값과 비교해 ±1% 이내의 값인 경우는, 과건조 또는 미건조로 판단하고, 측정부가 수집한 전극 시트의 건조량 정보가, 상기 기준값과 비교해 ±1%를 초과하는 값인 경우에는, 심한 과건조 또는 심한 미건조로 판단하며, 측정부가 수집한 전극 시트의 건조량 정보가, 상기 기준값 범위에 포함되는 겅우에는 정상으로 판단하는 것이다.
본 발명의 전극 건조 자동 제어 방법은, 전극 시트의 건조 수준을 과건조 또는 미건조로 판단한 경우에, 하나의 건조 구간에 대해 건조 세기를 증감하도록 제어하고, 전극 시트의 건조 수준을 심한 과건조 또는 심한 미건조로 판단한 경우에, 두 개 이상의 건조 구간들의 건조 세기를 함께 증감하도록 제어한다. 그리고, 전극 시트의 건조 수준을 정상으로 판단한 경우에는, 오븐의 건조 세기가 적절한 것이므로, 오븐의 건조 세기를 증감하는 제어를 수행하지 않는다.
전극 시트의 건조 수준이 과건조 또는 미건조인 경우에는, 우선 하나의 건조 구간에 대해서 건조 세기를 증감시키고, 건조 세기의 증감에 따른 건조량 보정 효과가 나타날 때까지 일정 시간이 경과된 후, 측정부로부터 건조량 정보를 피드백 받아 건조 수준을 다시 판단해, 그에 따른 오븐의 건조 세기 제어를 수행함으로써, 보다 정밀하게 건조량을 보정할 수 있다.
그리고, 전극 시트의 건조 수준을 과건조 또는 미건조로 판단하여, 하나의 건조 구간에 대해 건조 세기를 증감하는 방법은, 과건조와 미건조에 따라서도 그 방법이 다를 수 있다. 구체적으로, 전극 시트의 건조 수준을 과건조로 판단한 경우에, 건조 세기를 감소시키는 제어를 해야하는데, 이때 오븐의 출구로부터 가까운 건조 구간부터 순차적으로 건조 세기를 감소시킨다. 가령, 복수의 건조 구간들로 구획된 오븐에서, 입구로부터 출구까지의 각 건조 구간들에 순번을 매겨서, 제 1 건조 구간 내지 제 N 건조 구간으로 칭한다면, 전극 시트의 건조 수준을 과건조로 판단한 경우, 오븐의 출구와 가장 가까운 제 N 건조 구간에서 건조 세기를 감소시키는 제어를 수행한다. 그리고 일정한 시간이 경과되어, 측정부가 전극 시트의 건조량 정보를 수집하고, 이를 기준값과 비교하였을 때, 만약 전극 시트의 건조 수준이 여전히 과건조라면, 이번에는 N-1 건조 구간에서 건조 세기를 감소시키는 제어를 수행한다.
이와 반대로, 전극 시트의 건조 수준을 미건조로 판단한 경우에는, 건조 세기를 증가시키는 제어를 수행해야 하는데, 이 때에는 과건조와 다르게, 오븐의 입구로부터 가까운 건조 구간부터 순차적으로 건조 세기를 증가시키는 제어를 수행한다. 본 발명에서는, 오븐의 입구와 가까운 초기 건조 구간에서는 본 발명의 건조 세기를 증감하는 제어를 수행하지 않으므로, 가령 제 1 건조 구간 내지 제 8 건조 구간이 초기 건조 구간이라면, 이들 건조 구간의 다음인 제 9 건조 구간에서, 건조 세기를 증가시키는 제어를 수행한다. 그리고 일정한 시간이 경과되어, 측정부가 전극 시트의 건조량 정보를 수집하고, 이를 기준값과 비교하였을 때, 만약 전극 시트의 건조 수준이 여전히 미건조라면, 이번에는 제 10 건조 구간에서 건조 세기를 증가시키는 제어를 수행한다.
한편, 전극 시트의 건조 수준이 심한 과건조 또는 심한 미건조인 경우에는, 하나의 건조 구간에 대해서만 건조 세기를 변경하는 것으로는, 건조량 보정 효과가 나타나기에 충분하지 않을 수 있으므로, 두 개 이상의 건조 구간들의 건조 세기를 동시에 증감하도록 제어함으로써, 전극 시트의 건조 수준에 따른 적절한 건조 세기의 제어를 수행할 수 있다.
상기와 같이 오븐의 건조 세기를 증감하는 제어를 수행한 후에는, 일정 시간 동안 증감된 건조 세기로 전극 시트를 건조하는 과정을 수행한다. 이에 따라 증감된 건조 세기에 의해, 전극 시트의 건조량이 일정량 보정될 수 있다. 그리고 다시 전극 시트의 건조 수준을 파악하기 위해 전술한 바와 같은 방법으로 건조량 정보 수집 과정을 수행한다.
이때, 건조량 정보 수집은, 후속하는 건조 세기 제어가 예정된 시점 직전의 1분 내지 5 분 동안 건조량 정보를 수집하는 것일 수 있다. 즉, 다음의 건조 세기제어를 수행하기 직전의 2분 동안, 또는 다음의 건조 세기 제어를 수행하기 직전의 3분 동안, 또는 다음의 건조 세기 제어를 수행하기 이전의 4분 동안, 전극 시트의 건조량 정보를 수집할 수 있다. 그리고 이렇게 소정의 시간 동안 수집된 건조량 정보의 평균값 또는 중위값을 건조량 정보로 파악할 수 있다.
이 같이 파악된 건조량 정보를 바탕으로 전술한 바와 동일하게 전극 시트의 건조 수준을 판단하고 오븐의 건조 세기를 제어하는 과정을 수행하며, 건조량 정보 수집 과정, 건조 수준 판단 및 건조 세기 제어 과정을 주기적으로 반복하여 수행함으로써, 전극 시트의 건조 수준을 균일하게 제어할 수 있다.
이하, 본 발명의 실시예를 통해 본 발명의 자동 제어 시스템을 보다 상세히 설명하기로 한다. 아래의 표 1은 본 발명의 일 실시예에서, 전극 시트의 건조 수준을 판단하는 기준값과, 이에 따른 판단 결과 및 제어 방법을 나타내고 있다.
기준값 측정부에서 수집한 전극 시트의 고형분 함량 건조 수준 판단 건조 세기 제어방법
기준값: 고형분 함량이 88%~89% 87% 미만 심한 미건조 전단 건조 구간을 제외한 건조 구간에서, 건조 세기를 증가시킴
(투 플러스 제어)
87% 이상 88% 미만 미건조 전단 건조 구간의 다음 건조 구간에서 부터 건조 세기를 증가시킴
(원 플러스 제어)
88%~89% 정상 건조 세기 제거를 수행하지 아니함.
89% 초과 90% 이하 과건조 전단 건조 구간을 제외한 건조 구간 중, 후단의 건조 구간에서 부터 건조 세기를 감소시킴.
(원 마이너스 제어)
90% 초과 심한 과건조 전단 건조 구간을 제외한 건조 구간에서 건조 세기를 감소시킴
(투 마이너스 제어)
상기 표 1을 참조하면, 설정된 고형분 함량의 기준값은 88 %내지 89%이다. 만약 측정된 고형분 함량이 상기 설정값보다 작은 경우에는 그 만큼 건조가 충분치 못한 것이므로, 건조 세기를 증가시키고, 반대로 측정된 고형분 함량이 상기 설정값보다 큰 경우에는 그 만큼 과건조가 된 것이므로, 건조 세기를 감소시킨다.
오븐의 입구로부터 출구에 이르기가지 순차 배열된 복수의 건조 구간들을, 각각 제 1 건조 구간, 제 2 건조 구간... 제 N-1 건조 구간, 제 N 건조 구간으로 구분하여, 건조 세기 제어 방법을 상세히 설명한다.
우선, 측정된 고형분 함량이 88% 내지 89%의 범위 내에 있다면, 건조 수준이 정상이므로, 종전의 건조 세기를 유지해도 되므로, 건조 세기를 증감하는 제어를 수행할 필요가 없다.
측정된 고형분 함량이, 87% 미만이어서 심한 미건조로 판단한다면, 전단 건조 구간을 제외한 건조 구간에 대해서, 건조 세기를 증가시키는 제어를 수행한다. 전단 건조 구간이 제 1 건조 구간부터 제 N/3 까지라면, 그 다음의 건조 구간부터 제 N 건조 구간에서, 건조 세기를 증가시킨다. 이를 편의상 투 플러스 제어로 칭한다.
측정된 고형분 함량이, 90%를 초과하여 심한 과건조로 판단한다면, 전단 건조 구간을 제외한 건조 구간에 대해서, 건조 세기를 감소시키는 제어를 수행한다. 이를 편의상 투 마이너스 제어로 칭한다.
측정된 고형분 함량이, 87% 이상 88% 미만이어서 미건조로 판단한다면, 전단 건조 구간의 다음 건조 구간에서 건조 세기를 증가시킨다. 이를 편의상 원 플러스 제어로 칭한다. 원 플러스 제어는, 후속하는 건조 세기 제어 시, 이미 건조 세기를 증가시킨 건조 구간에 대해서는 건조 세기를 증가시키지 아니하고, 다음의 건조 구간에서 건조 세기를 증가시킨다. 예컨대, 제 5 건조 구간에서 원 플러스 제어를 수행해, 제 5 건조 구간의 건조 세기를 일정량 증가시키는 제어를 수행하고, 일정한 시간이 경과한 후, 측정부로부터 수집한 고형분 함량이 87.5% 라면 여전히 미건조 상태므로로 원 플러스 제어를 수행해야 하는데, 이 때에는 제 5 건조 구간의 다음 구간인 제 6 건조 구간의 건조 세기를 일정량 증가시키는 제어를 수행하며, 제 5 건조 구간의 건조 세기는 변경하지 않는다.
측정된 고형분 함량이, 89% 초과 90% 이하여서, 과건조로 판단하다면, 전단 건조 구간을 제외간 건조 구간 중, 오븐의 출구와 가까운 후단의 건조 구간에서 부터 건조 세기를 감소시킨다. 이를 편의상 원 마이너스 제어로 칭한다. 원 마이너스 제어는, 다음의 건조 세기 제어시, 이미 건조 세기를 감소시킨 건조 구간에 대해서는, 건조 세기를 감소시키지 아니하고, 그 이전의 건조 구간에서 건조 세기를 감소시킨다. 예컨대, 제 15 건조 구간에서 원 마이너스 제어를 수행해, 제 15 건조 구간의 건조 세기를 일정량 감소시키는 제어를 수행하고, 일정한 시간이 경과한 후, 측정부로부터 수집한 고형분 함량이 89.8% 라면, 여전히 과건조 상태이므로, 원 마이너스 제어를 수행해야 하는데, 이 때에는, 제 15 건조 구간의 이전인 제 14 건조 구간의 건조 세기를 일정량 감소시키는 제어를 수행하며, 제 15 건조 구간의 건조 세기를 변경하는 제어를 수행하지 않는다.
이하, 하기 표 2를 참조하여, 본 발명의 제어 시스템 및 제어 방법을 보다 상세히 설명한다.
순번 시각 고형분
함량
제 10 건조 구간 제 11 건조 구간 제 12 건조 구간 제어 방법
1 09:25 87.9 1 1 1 -
2 09:35 87.6 2 1 1 원 플러스제어
3 09:45 NA - - - 미코팅이므로 제어X
4 09:55 91.8 1 0 0 투 마이너스 제어
5 10:05 88.2 1 0 0 Target
6 10:15 87.7 1 1 0 원 플러스 제어
7 10:25 87.4 1 1 1 원 플러스 제어
8 10:35 87.2 2 1 1 원 플러스 제어
9 10:45 87.5 2 2 1 원 플러스 제어
10 10:55 87.3 2 2 2 원 플러스 제어
11 11:05 87.3 2 2 2 상한
12 11:15 94.6 1 1 1 투 마이너스 제어
13 11:25 88.4 1 1 1 Target
14 11:35 87.8 2 1 1 원 플러스 제어
15 11:45 87.6 2 2 1 원 플러스 제어
상기 표 2를 참조하면, 순번 1 에서 순번 15까지 10분 간격으로 고형분 함량을 측정하고, 이에 따라 건조 세기를 증감하는 제어를 수행하였다(다만, 순번 3은 미코팅부이므로 고형분 함량을 측정하지 않음). 그리고 각 순번 별로, 측정된 고형분 함량에 따른 제어 방법이 표 2의 마지막 열에 기재되어 있다. 또한, 제 10 내지 제 12 건조 구간 열에, 각 기재된 0,1,2의 숫자는 건조 세기의 증감량을 나타내는 임의의 값이다.
상기 표 2를 참조하여, 본 발명의 자동 제어 시스템 및 자동 제어 방법을 자세히 설명한다.
순번 2에서는 고형분 함량이 87.6% 이므로, 전극 시트의 건조 수준을 미건조로 판단하고, 원 플러스 제어를 수행한다. 이에 따라 전단에 있는 제 10 건조 구간에 대해서만 건조 세기를 증가시켜, 제 10 건조 구간의 건조 세기는, 순번 1의 건조 세기 1에서 1 만큼 증가한 2가 되고, 나머지 건조 구간에서는 건조 세기를 증가하는 제어를 수행하지 않아, 순번 1의 건조 세기 1을 그대로 유지한다.
순번 3에서는 미코팅부의 건조이므로, 제어를 수행하지 않는다.
순번 4에서는, 고형분 함량이 91.8% 이므로, 전극 시트의 건조 수준을 심한 과건조로 판단하고, 투 마이너스 제어를 수행한다. 이에 따라 제 10 건조 구간 내지 제 12 건조 구간 모두에 대해서, 건조 세기를 모두 1씩 감소시키는 제어를 수행한다. 이에 따라 순번 2에서의 각 존의 건조 세기 2,1,1에서 1씩 감소한 1,0,0이 되는 것이다.
순번 5에서는, 고형분 함량이 88.2%이므로, 전극 시트의 건조 수준을 정상으로 판단하고, 건조 세기를 증감하는 제어를 수행하지 않는다. 이에 따라 제 10 건조 구간 내지 제 12 건조 구간의 건조 세기는, 순번 4에서의 건조 구간들의 각 건조 세기와 동일하다.
순번 6에서는, 고형분 함량이 87.7% 이므로, 전극 시트의 건조 수준을 미건조로 판단하고, 원 플러스 제어를 수행한다. 이에 따라 순번 2에서 건조 세기를 증가시킨 제 10 건조 구간의 다음 건조 구간인 제 11 건조 구간에서, 건조 세기를 증가시킨다. 이에 따라, 제 10 건조 구간의 건조 세기는 순번 5에서의 건조 세기인 1을 유지하고, 제 11 건조 구간의 건조 세기는, 순번 5 에서 제 11 건조 구간의 건조 세기인 0에서 1만큼 증가시킨 1이 된다.
순번 7에서는, 고형분 함량이 87.4% 이므로, 전극 시트의 건조 수준을 미건조로 판단하고, 원 플러스 제어를 수행한다. 이에 따라 순번 6에서 건조 세기를 증가시킨 제 11 건조 구간의 다음 건조 구간인 제 12 건조 구간에서만, 건조 세기를 1 만큼 증가시킨다. 따라서, 제 10 건조 구간 내지 제 12 건조 구간의 각 건조 세기는, 순번 6에서의 건조 세기 1,1,0에서, 1,1,1이 되는 것이다.
순번 8에서는, 고형분 함량이 87.2% 이므로, 전극 시트의 건조 수준을 미건조로 판단하고, 원 플러스 제어를 수행한다. 앞서서 제 10 건조 구간 내지 제 12 건조 구간에서, 순차적으로 건조 세기를 증가시켰으므로, 다시 제 10 건조 구간에서만 건조 세기를 1만큼 증가시킨다. 이에 따라 제 10 건조 구간 내지 제 12 건조 구간의 각 건조 세기는 순번 7의 1,1,1에서 2,1,1이 되는 것이다.
순번 9 내지 순번 10은 모두 원 플러스 제어를 수행하는데, 그 구체적 방법은 전술한 내용과 동일하다.
순번 11에서는, 고형분 함량이 87.3% 이므로, 전극 시트의 건조 수준을 미건조로 판단하고, 원 플러스 제어를 수행해야 하지만, 앞서 수행한 건조 세기의 제어에 의해, 제 10 건조 구간 내지 제 12 건조 구간의 건조 세기를 상한(2) 만큼 증가시켰으므로, 더 이상 건조 세기를 증가시키지 않기 위해, 제어를 수행하지 않는다.
순번 12 내지 순번 15에서의 제어 방법은, 전술한 내용 중 일부와 동일하므로, 상세한 설명은 생략한다.
도 6은 상술한 실시예에 따라 순번 2 내지 순번 15의 제어에 따라 건조된 전극 시트를 열화상 카메라로 촬영한 사진을 도시하고 있다. 도 6을 참조하면, 본 발명의 실시예에 따른 자동 건조 제어 시스템에 따라 건조된 전극 시트는 길이 방향을 따라 균일한 온도를 나타내고 있다. 따라서 본 발명의 자동 건조 제어 시스템은 건조 수준이 균일한 전극 시트를 제조하는 효과가 있다.
이상의 설명은 본 발명의 기술 사상을 예시적으로 설명한 것에 불과한 것으로서, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 다양한 수정 및 변형이 가능할 것이다. 따라서, 본 발명에 개시된 도면들은 본 발명의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 도면에 의하여 본 발명의 기술 사상의 범위가 한정되는 것은 아니다. 본 발명의 보호범위는 아래의 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술 사상은 본 발명의 권리범위에 포함되는 것으로 해석되어야 할 것이다.

Claims (19)

  1. 전극 시트가 주행하며 건조되는 공간을 제공하고, 전극 시트에 열풍 및/또는 복사열을 가해주는 건조 수단을 구비하며, 복수의 건조 구간들로 구획되는 오븐;
    상기 오븐을 통과한 전극 시트의 건조량 정보를 수집하고, 수집된 정보를 제어부로 송출하는 측정부; 및
    상기 측정부로부터 수신한 건조량 정보를 바탕으로, 전극 시트의 건조 수준을 판단하고, 상기 판단된 건조 수준에 따라 상기 오븐의 건조 세기를 제어하는 제어부를 포함하고,
    상기 제어부는, 복수의 건조 구간들을 독립적으로 제어하는 전극 건조 자동 제어 시스템.
  2. 제 1 항에 있어서, 상기 측정부는, 일정한 시간적 간격마다 주기적으로, 전극 시트의 건조량 정보를 수집하도록 설정되고,
    상기 제어부는, 상기 측정부로부터 건조량 정보를 수신할 때마다, 전극 시트의 건조 수준을 판단해, 오븐의 건조 세기를 주기적으로 제어하는 전극 건조 자동 제어 시스템.
  3. 제 2 항에 있어서, 상기 측정부는, 상기 제어부에 의한 건조 세기 제어가 예정된 시점 직전의 1분 내지 5분 동안 건조량 정보를 수집하는 전극 건조 자동 제어 시스템.
  4. 제 1 항에 있어서, 상기 건조량 정보는, 전극 시트의 고형분 함량 및 전극 시트 표면의 온도 중에서 선택된 하나 이상인 전극 건조 자동 제어 시스템.
  5. 제 1 항에 있어서, 상기 제어부는,
    상기 측정부에 의해 수집된 건조량 정보, 기준이 되는 건조량 설정값이 입력되는 데이터 입력부;
    상기 건조량 정보와 설정값을 비교하여, 전극 시트의 건조 수준을 판단하고, 이에 따라 상기 오븐 내 건조 세기의 증감 여부 및 증감량을 결정하는 판단부; 및
    상기 판단부의 판단 결과에 기반하여, 상기 오븐의 건조 세기를 제어하는 명령부를 포함하는 전극의 건조 자동 제어 시스템.
  6. 제 1 항에 있어서, 상기 제어부는, 전극 시트의 건조 수준을,
    정상, 과건조, 미건조, 심한 과건조 및 심한 미건조의 5개의 등급 중의 하나로 판단하는 전극의 건조 자동 제어 시스템.
  7. 제 6 항에 있어서, 상기 제어부는,
    전극 시트의 건조 수준을 과건조 또는 심한 과건조로 판단한 경우에, 상기 오븐의 건조 세기를 감소하도록 제어하고,
    전극 시트의 건조 수준을 미건조 또는 심한 미건조로 판단한 경우에, 상기 오븐의 건조 세기를 증가하도록 제어하는 전극의 건조 자동 제어 시스템.
  8. 제 6 항에 있어서, 상기 제어부는,
    전극 시트의 건조 수준을 과건조 또는 미건조로 판단한 경우에, 하나의 건조 구간에 대해 건조 세기를 증감하도록 제어하고,
    전극 시트의 건조 수준을 심한 과건조 또는 심한 미건조로 판단한 경우에, 두 개 이상의 건조 구간들의 건조 세기를 함께 증감하도록 제어하는 전극의 자동 제어 시스템.
  9. 제 1 항에 있어서, 상기 제어부는, 상기 복수의 건조 구간 중, 전단 건조 구간을 제외한 나머지 건조 구간들에 대해서, 건조 세기를 제어하는 전극 건조 자동 제어 시스템.
  10. 제 1 항에 있어서, 상기 측정부는, 수집된 건조량 정보의 평균값 또는 중위값을 상기 제어부로 송출하는 전극 건조 자동 제어 시스템.
  11. 제 1 항에 있어서, 상기 복수의 건조 구간들은 각각, 건조 수단을 구비하고 있으며,
    상기 건조 수단은, 전극 시트에 열풍을 공급하여 대류열을 가해주는 열풍 노즐 및 전극 시트에 복사열을 가해주는 히터 중의 하나 이상을 포함하는 전극 건조 자동 제어 시스템.
  12. 제 11 항에 있어서, 상기 제어부는, 상기 오븐의 건조 세기를 증감하기 위해서, 상기 열풍 노즐의 풍속, 열풍 노즐의 풍량, 상기 히터의 온도 및 전극 시트가 주행되도록 하는 이송 롤러의 주행 속도 중에서 선택된 하나 이상을 제어하는 전극 건조 자동 제어 시스템.
  13. 제 1 항에 있어서, 상기 측정부는, 전극 시트의 로딩량을 측정하는 웹-게이지(web-gauge) 및 온도 측정기 중에서 선택된 하나 이상을 포함하는 전극 건조 자동 제어 시스템.
  14. 제 13 항에 있어서, 상기 측정부는, 연산부를 더 포함하고,
    상기 연산부는, 상기 웹-게이지가 측정한 로딩량으로부터, 전극의 고형분 함량을 계산하는 전극 건조 자동 제어 시스템.
  15. (a) 복수의 건조 구간으로 구획되고, 건조 수단을 구비한 오븐에 전극 시트를 투입하는 단계;
    (b) 측정부를 통해 전극 시트의 건조량 정보를 수집하는 단계; 및
    (c) 상기 수집된 건조량 정보와 기준값을 비교하여 전극의 건조 수준을 판단하고, 판단된 건조 수준에 따라, 상기 오븐의 건조 세기를 제어하는 단계를 포함하고, 상기 (c) 단계는, 복수의 건조 구간들을 독립적으로 제어하는 전극 건조 자동 제어 방법.
  16. 제 15 항에 있어서, 상기 (b) 단계에서, 상기 건조량 정보는, 전극 시트의 고형분 함량 및 전극 시트 표면의 온도 중에서 선택된 하나 이상인 전극 건조 자동 제어 방법.
  17. 제 15 항에 있어서, 상기 (b) 단계는 일정한 시간적 간격마다 주기적으로, 전극 시트의 건조량 정보를 수집하고,
    상기 (c) 단계는, 상기 (b) 단계에 의해 건조량 정보를 수신할 때마다, 전극 시트의 건조 수준을 판단해, 오븐의 건조 세기를 주기적으로 제어하는 전극 건조 자동 제어 방법.
  18. 제 15 항에 있어서, 상기 (c) 단계는, 전극 시트의 건조 수준을,
    정상, 과건조, 미건조, 심한 과건조, 심한 미건조의 5개의 등급 중의 하나로 판단하는 것을 포함하는 전극 건조 자동 제어 방법.
  19. 제 18 항에 있어서, 상기 (c) 단계는,
    전극 시트의 건조 수준을 과건조 또는 미건조로 판단한 경우에, 하나의 건조 구간에 대해 건조 세기를 증감하도록 제어하고,
    전극 시트의 건조 수준을 심한 과건조 또는 심한 미건조로 판단한 경우에, 두 개 이상의 건조 구간들의 건조 세기를 함께 증감하도록 제어하는 전극 건조 자동 제어 방법.
PCT/KR2021/016858 2020-11-18 2021-11-17 전극 건조 자동 제어 시스템 및 전극 건조 자동 제어 방법 WO2022108324A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US17/913,006 US20230175776A1 (en) 2020-11-18 2021-11-17 Automatic Electrode Drying Control System and Automatic Electrode Drying Control Method
CN202180021776.XA CN115315826A (zh) 2020-11-18 2021-11-17 自动电极干燥控制系统和自动电极干燥控制方法
EP21895092.1A EP4109580A4 (en) 2020-11-18 2021-11-17 AUTOMATIC ELECTRODE DRYING CONTROL SYSTEM AND AUTOMATIC ELECTRODE DRYING CONTROL METHOD

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2020-0154295 2020-11-18
KR20200154295 2020-11-18
KR10-2021-0157703 2021-11-16
KR1020210157703A KR20220068179A (ko) 2020-11-18 2021-11-16 전극 건조 자동 제어 시스템 및 전극 건조 자동 제어 방법

Publications (1)

Publication Number Publication Date
WO2022108324A1 true WO2022108324A1 (ko) 2022-05-27

Family

ID=81709360

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/016858 WO2022108324A1 (ko) 2020-11-18 2021-11-17 전극 건조 자동 제어 시스템 및 전극 건조 자동 제어 방법

Country Status (4)

Country Link
US (1) US20230175776A1 (ko)
EP (1) EP4109580A4 (ko)
CN (1) CN115315826A (ko)
WO (1) WO2022108324A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220033761A (ko) * 2020-09-10 2022-03-17 주식회사 엘지에너지솔루션 전극 건조 장치 및 전극 건조 방법

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101286003B1 (ko) * 2006-03-09 2013-07-15 삼성에스디아이 주식회사 이차 전지의 전극 슬러리 건조 방법 및 장치
KR101477870B1 (ko) * 2011-12-28 2014-12-30 닛산 지도우샤 가부시키가이샤 전극 건조 방법, 전극 건조 제어 방법, 전극 건조 장치 및 전극 건조 제어 장치
KR20160037672A (ko) * 2014-09-29 2016-04-06 주식회사 엘지화학 전극 건조장치
JP5984643B2 (ja) * 2012-11-29 2016-09-06 株式会社メイコー 電極シート乾燥装置及び電極シート乾燥方法
KR20180125721A (ko) * 2017-05-16 2018-11-26 주식회사 엘지화학 이차전지 전극 건조오븐 제어 자동화 시스템
KR20210157703A (ko) 2020-06-22 2021-12-29 주식회사 바이오솔루션 일회용 캔에 소포장된 실험용 용액

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5540000A (en) * 1995-05-10 1996-07-30 Eastman Kodak Company Method of photosensitive material drying
DE19911394A1 (de) * 1999-03-15 2000-09-21 Voith Sulzer Papiertech Patent Verfahren zum Betreiben einer Maschine zur Herstellung und/oder Veredelung von Materialbahnen
JP5897808B2 (ja) * 2011-03-29 2016-03-30 東レエンジニアリング株式会社 電極板の製造装置
CN108906536A (zh) * 2018-07-19 2018-11-30 深圳市赢合科技股份有限公司 一种锂电池涂布机干燥系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101286003B1 (ko) * 2006-03-09 2013-07-15 삼성에스디아이 주식회사 이차 전지의 전극 슬러리 건조 방법 및 장치
KR101477870B1 (ko) * 2011-12-28 2014-12-30 닛산 지도우샤 가부시키가이샤 전극 건조 방법, 전극 건조 제어 방법, 전극 건조 장치 및 전극 건조 제어 장치
JP5984643B2 (ja) * 2012-11-29 2016-09-06 株式会社メイコー 電極シート乾燥装置及び電極シート乾燥方法
KR20160037672A (ko) * 2014-09-29 2016-04-06 주식회사 엘지화학 전극 건조장치
KR20180125721A (ko) * 2017-05-16 2018-11-26 주식회사 엘지화학 이차전지 전극 건조오븐 제어 자동화 시스템
KR20210157703A (ko) 2020-06-22 2021-12-29 주식회사 바이오솔루션 일회용 캔에 소포장된 실험용 용액

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4109580A4

Also Published As

Publication number Publication date
EP4109580A1 (en) 2022-12-28
US20230175776A1 (en) 2023-06-08
CN115315826A (zh) 2022-11-08
EP4109580A4 (en) 2023-11-22

Similar Documents

Publication Publication Date Title
KR20220030745A (ko) 전극 건조 장치 및 전극 건조 방법
WO2020116858A1 (ko) 이차전지용 양극 활물질, 이의 제조 방법, 이를 포함하는 이차전지용 양극
WO2020032471A1 (ko) 리튬 이차전지용 전극 및 그를 포함하는 리튬 이차전지
KR20220068179A (ko) 전극 건조 자동 제어 시스템 및 전극 건조 자동 제어 방법
WO2022108324A1 (ko) 전극 건조 자동 제어 시스템 및 전극 건조 자동 제어 방법
WO2022119185A1 (ko) 전극의 건조 시스템 및 전극의 건조 방법
KR20220074758A (ko) 전극 건조 시스템 및 전극 건조 방법
WO2022019532A1 (ko) 전지셀 용량 측정 장치 및 전지셀 용량 측정 방법
WO2019078688A2 (ko) 리튬 이차전지용 양극 활물질, 이의 제조방법, 이를 포함하는 리튬 이차전지용 양극 및 리튬 이차전지
WO2022203434A1 (ko) 양극 활물질의 제조방법
WO2022055018A1 (ko) 전극 건조 장치 및 전극 건조 방법
KR20220030751A (ko) 전극 건조 자동 제어 시스템 및 전극 건조 자동 제어 방법
WO2021112607A1 (ko) 이차전지용 양극재의 제조방법
WO2018226070A1 (ko) 음극, 상기 음극을 포함하는 이차 전지, 및 상기 음극의 제조 방법
WO2022114797A1 (ko) 전극 건조 시스템 및 전극 건조 방법
KR20220030748A (ko) 전극의 실시간 표면 건조 상태 평가 장치 및 이를 포함하는 건조 장치
WO2024117764A1 (ko) 전극 건조 시스템 및 이를 이용한 전극 건조 방법
WO2022103072A1 (ko) 전극 코팅 장치 및 전극 코팅 방법
KR20220030756A (ko) 전극의 실시간 건조도 편차 평가 방법 및 전극의 건조 방법
WO2022225237A1 (ko) 이차전지용 전극 건조 조건 자동화 시스템
WO2022086009A1 (ko) 전극 슬러리의 코팅 균일성이 우수한 전극 제조 시스템 및 이를 이용한 전극 제조 방법
WO2023085654A1 (ko) 무지부의 열 주름을 방지할 수 있는 전극 시트 건조 장치
WO2022039407A1 (ko) 전극의 압연 방법
WO2024151027A1 (ko) 전극 건조 설비 및 이를 포함하는 전극 건조 시스템
WO2021118141A1 (ko) 전극 활물질 슬러리 도포 전 시트형 집전체의 열처리를 위한 열처리부를 포함하는 이차전지용 전극 제조장치, 및 열처리 과정을 포함하는 이차전지용 전극 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21895092

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021895092

Country of ref document: EP

Effective date: 20220919

NENP Non-entry into the national phase

Ref country code: DE