WO2022108319A1 - Platinum-tungsten catalyst for hydrogen preparation and method for preparing hydrogen using same - Google Patents

Platinum-tungsten catalyst for hydrogen preparation and method for preparing hydrogen using same Download PDF

Info

Publication number
WO2022108319A1
WO2022108319A1 PCT/KR2021/016837 KR2021016837W WO2022108319A1 WO 2022108319 A1 WO2022108319 A1 WO 2022108319A1 KR 2021016837 W KR2021016837 W KR 2021016837W WO 2022108319 A1 WO2022108319 A1 WO 2022108319A1
Authority
WO
WIPO (PCT)
Prior art keywords
platinum
tungsten
catalyst
supported
hydrogen
Prior art date
Application number
PCT/KR2021/016837
Other languages
French (fr)
Korean (ko)
Inventor
이관영
김찬훈
장지수
박태인
Original Assignee
고려대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 고려대학교 산학협력단 filed Critical 고려대학교 산학협력단
Publication of WO2022108319A1 publication Critical patent/WO2022108319A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/02Boron or aluminium; Oxides or hydroxides thereof
    • B01J21/04Alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/64Platinum group metals with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/652Chromium, molybdenum or tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/64Platinum group metals with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/652Chromium, molybdenum or tungsten
    • B01J23/6527Tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/16Reducing
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • C01B3/40Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts characterised by the catalyst
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Definitions

  • the present invention relates to a platinum-tungsten catalyst for hydrogen production and a method for producing hydrogen using the same.
  • renewable energy such as wind power, tidal power, geothermal heat, hydrogen energy, and solar energy is in the spotlight.
  • it is required to develop a technology for storing and supplying surplus energy so that energy can be stably supplied.
  • hydrogen energy is the most energy efficient per unit mass, there are no harmful by-products during combustion, and water, which is the main source of hydrogen, is abundant in nature and is converted into water after use. is attracting attention.
  • hydrogen can be produced using other renewable energy such as solar energy and wind power, and can be widely applied not only in various energy sources but also in other industrial fields including petrochemical fields, etc., as a future key energy source at home and abroad. is emerging as
  • Hydrogen has an excellent energy storage capacity compared to mass, but has low energy storage capacity compared to volume.
  • the storage technology is acting as the biggest obstacle to the practical use of hydrogen energy.
  • materials having a mass storage density of 10% by weight or more at 77 K are known, but the bulk storage density of these materials is 40 g/L, and the volumetric storage density is rather low for use as an actual hydrogen storage material. . Therefore, research on a technology for storing as much hydrogen as possible in a storage medium that is as light and small in volume as possible is being actively conducted.
  • materials having a hydrogen storage capacity for example, porous organic or inorganic nanomaterials such as inorganic-organic frameworks (MOFs), carbon nanotubes, zeolite, activated carbon, and metal hydride, are used.
  • MOFs inorganic-organic frameworks
  • carbon nanotubes carbon nanotubes
  • zeolite zeolite
  • activated carbon metal hydride
  • metal hydride metal hydride
  • LOHCs liquid organic hydrogen carriers
  • LOHC is a carrier for delivering hydrogen, and has a disadvantage that it should not be deteriorated at all in the process of supplying hydrogen. If LOHC is degraded in a high-temperature catalytic process, the purity of hydrogen may be reduced due to by-products generated in the process, and the catalyst may also lose its activity.
  • Dibenzyltoluene is a group of three toluene molecules, and has excellent properties that can store 6.3 wt.% of hydrogen in the molecule.
  • massive molecules require a high temperature for the dehydrogenation process, perhydro-dibenzyltoluene is generally subjected to the dehydrogenation process at a very high temperature of 300°C or higher.
  • the present invention has been devised to solve the above problems, and an object of the present invention is to provide a catalyst for hydrogen production with improved dehydrogenation activity even at a low temperature by additionally introducing tungsten as a co-catalyst to a platinum-supported catalyst.
  • Another object of the present invention is to provide a method for producing a catalyst for hydrogen production with improved dehydrogenation activity even at a low temperature by additionally introducing tungsten as a cocatalyst to the platinum-supported catalyst.
  • Another object of the present invention is to provide a method for producing hydrogen using the catalyst for hydrogen production.
  • the present invention in order to solve the above problems,
  • porous carrier Platinum supported on the pores of the porous carrier; and tungsten supported in a mixture with the platinum in the pores; provides a catalyst for hydrogen production comprising.
  • the porous carrier may be activated carbon (activated carbon) or aluminum oxide (Al 2 O 3 ).
  • the activated carbon may be selected from the group consisting of graphene oxide, carbon black, and Vulcan.
  • the tungsten may be supported after platinum is loaded on the pores of the porous carrier.
  • the platinum and the tungsten may be supported in a weight ratio of 0.9:0.1 to 0.6:0.4.
  • the present invention also includes the steps of (a) supporting a platinum precursor solution and a tungsten precursor solution in the pores of the porous carrier; and (b) reducing the porous carrier on which the platinum precursor solution and the tungsten precursor solution are supported. heat-treating the porous carrier on which the platinum precursor solution is supported; and supporting a tungsten precursor solution in the pores of the heat-treated porous carrier.
  • platinum and tungsten may be supported in a weight ratio of 0.9:0.1 to 0.6:0.4.
  • step (a) may be performed by incipient wetness impregnation.
  • the reduction in step (b) may be performed at 300 to 600° C. under a mixed gas atmosphere of hydrogen and nitrogen.
  • the present invention also comprises the steps of mixing the catalyst for hydrogen production, and a liquid organic hydrogen carrier (LOHC); and performing a dehydrogenation reaction after the mixing.
  • LOHC liquid organic hydrogen carrier
  • the liquid organic hydrogen storage is perhydro-dibenzyltoluene, cyclohexane, methyl cyclohexane, decalin, benzyl toluene, It may be selected from the group consisting of dibenzyl toluene, perhydro-N-ethylcarbazole, and 2-[(N-methylcyclohexyl)methyl]piperidine.
  • the dehydrogenation reaction may be carried out at a temperature of 250 ⁇ 300 °C for 2 to 4 hours.
  • the dehydrogenation activity is remarkably improved even at a low temperature, and thus hydrogen can be effectively obtained from the liquid organic hydrogen storage.
  • Example 2 is a graph showing the degree of dehydrogenation of the catalyst for hydrogen production prepared according to Example 2, Comparative Example 1, and Comparative Example 4 of the present invention.
  • Example 3 is a graph showing the degree of dehydrogenation of the catalyst for hydrogen production prepared according to Example 2, Comparative Example 1, Comparative Example 2, and Comparative Example 5 of the present invention.
  • An object of the present invention is to provide a catalyst for hydrogen production with improved dehydrogenation activity even at low temperatures by additionally introducing tungsten as a cocatalyst to a platinum-supported catalyst, a method for producing the same, and a method for producing hydrogen using the same.
  • the present invention first provides a porous carrier; Platinum supported on the pores of the porous carrier; and tungsten supported in a mixture with the platinum in the pores; provides a catalyst for hydrogen production comprising.
  • the porous carrier is a porous member having a plurality of pores on the surface, and contains platinum and tungsten.
  • the pores may be formed in the size of micropores, or mesopores.
  • micropores are defined as having a size of 2 nm or less, and mesopores having a size of more than 2 nm and less than 50 nm.
  • the porous carrier is preferably activated carbon (activated carbon) or aluminum oxide (Al 2 O 3 ), and the activated carbon may be selected from the group consisting of graphene oxide, carbon black, and Vulcan.
  • the aluminum oxide preferably has ⁇ -, ⁇ -, ⁇ -, and ⁇ -phases, and more preferably has a ⁇ -phase.
  • the tungsten is preferably supported after platinum is supported on the pores of the porous carrier, and the platinum and tungsten are mixed with each other and supported on the porous carrier, platinum and tungsten Since the dehydrogenation activity is remarkably improved even at low temperatures by the interaction of
  • the platinum and the tungsten are preferably supported in a weight ratio of 0.9:0.1 to 0.6:0.4.
  • the activity of the catalyst according to the present invention may be reduced.
  • the platinum-tungsten is preferably supported in an amount of 1 to 10% by weight based on the total weight of the porous carrier.
  • a method for preparing a catalyst for hydrogen production comprises the steps of (a) supporting a platinum precursor solution and a tungsten precursor solution in pores of a porous carrier; and (b) reducing the porous carrier on which the platinum precursor solution and the tungsten precursor solution are supported.
  • a platinum precursor solution and a tungsten precursor solution are supported in pores of a porous carrier.
  • the porous carrier dried at a temperature of 100 to 150° C. in order to increase the efficiency of loading platinum and tungsten into the pores of the carrier by removing the water molecules remaining in the pores.
  • the platinum precursor solution and the tungsten precursor solution are supported, the platinum precursor solution and the tungsten precursor solution are mixed and supported at the same time, the tungsten precursor solution is loaded and the platinum precursor solution is loaded, or the platinum precursor solution is loaded and then the tungsten precursor solution is loaded.
  • the solution may be supported, but as can be seen from the results of the following examples, in order to improve the dehydrogenation activity of the catalyst, it is preferable to support the tungsten precursor solution after the platinum precursor solution is supported.
  • the step (a) comprises the steps of supporting a platinum precursor solution in the pores of the porous carrier; heat-treating the porous carrier on which the platinum precursor solution is supported; and supporting the tungsten precursor solution in the pores of the heat-treated porous carrier.
  • the heat treatment may be performed at a temperature range of 200 to 400° C. for 30 minutes to 2 hours.
  • platinum and tungsten supported on the porous carrier through step (a) are preferably supported in a weight ratio of 0.9:0.1 to 0.6:0.4.
  • the amount of the supported platinum and tungsten is preferably 1 to 10% by weight based on the total weight of the porous carrier.
  • the step (a) may be performed as an incipient wetness impregnation.
  • the loading process may be repeated several times so that the platinum precursor solution and the tungsten precursor solution are sufficiently loaded, and a drying process may be performed for each loading.
  • the porous carrier is preferably activated carbon (activated carbon) or aluminum oxide (Al 2 O 3 ), and the activated carbon may be selected from the group consisting of graphene oxide, carbon black, and Vulcan.
  • the aluminum oxide preferably has ⁇ -, ⁇ -, ⁇ -, and ⁇ -phases, and more preferably has a ⁇ -phase.
  • the platinum precursor solution refers to a platinum chloride group and a platinum nitrate salt, and is not particularly limited as long as it is a salt capable of providing platinum, but for example, platinum chloride, potassium hexachloroplatinate, chloroplatinic acid and tetraammineplatinum nitrate are selected from the group consisting of can be used to be
  • the tungsten precursor solution refers to a tungsten chloride group, tungsten hydroxide and tungsten ammonium salt, and is not particularly limited as long as it is a salt capable of providing tungsten, but for example, tungsten chloride, ammonium metatungstate and ammonium paratungstate selected from the group consisting of that can be used
  • the porous carrier on which the platinum precursor solution or the tungsten precursor solution is supported may be dried at 100 to 150° C. for 8 to 24 hours.
  • step (b) the porous carrier on which the platinum precursor solution and the tungsten precursor solution are supported is reduced using a mixed gas of hydrogen and nitrogen, specifically, H 2 /N 2 in a volume ratio of 5 to 20% It is preferably carried out at 300 to 600° C. for 30 minutes to 3 hours under a gas atmosphere. Finally, a platinum-tungsten catalyst for hydrogen production according to the present invention is prepared through the reduction step.
  • the present invention also comprises the steps of mixing the catalyst for hydrogen production, and a liquid organic hydrogen carrier (LOHC); and performing a dehydrogenation reaction after the mixing.
  • LOHC liquid organic hydrogen carrier
  • the liquid organic hydrogen storage is perhydro-dibenzyltoluene, cyclohexane, methyl cyclohexane, decalin, benzyl toluene, and dibenzyl toluene.
  • the dehydrogenation reaction is preferably performed for 2 to 4 hours at a temperature of 250 ⁇ 300 °C.
  • a 5 ml vial In a 5 ml vial, 1.302 ml of distilled water and 0.0898 g of tetraammineplatinum nitrate were mixed together and stirred for 10 minutes using an ultrasonic disperser to prepare a platinum precursor solution. In a 5 ml vial, 0.434 ml of distilled water and 0.00655 g of ammonium metatungstate hydrate were mixed together and then ultrasonicated A tungsten precursor solution was prepared by stirring for 10 minutes using a disperser.
  • the platinum precursor solution was supported on 1 g of the alumina using incipient wetness impregnation. After drying at 120° C. for 12 hours, heat treatment was performed at 300° C. for 1 hour in an air atmosphere in a kiln.
  • the tungsten precursor solution was supported on the platinum-supported ⁇ -phase alumina by an initial wet loading method. After drying at 120° C. for 12 hours, and then reducing 10% H 2 /N 2 gas at 450° C. for 1 hour, platinum-tungsten catalyst for hydrogen production according to the present invention (Pt 0.9 W 0.1 /Al 2 O 3 ) was prepared. The catalyst was stored under a vacuum atmosphere.
  • Platinum-tungsten catalyst (Pt 0.8 W 0.2 /Al 2 O) for hydrogen production according to the present invention using the same method as in Example 1 except that tetraammineplatinum nitrate 0.0803 g and ammonium metatungstate hydrate 0.0132 g were used. 3 ) was prepared.
  • tungsten-supported platinum-supported hydrogen production catalyst (Pt/Al 2 O 3 ) was prepared.
  • Example 1 Using tetraammineplatinum nitrate 0.0803g, ammonium metatungstate hydrate 0.0132g, 300 °C of Example 1 (3), except that the process of heat treatment for 1 hour was not performed
  • the same method as in Example 1 A platinum-tungsten catalyst for hydrogen production (Pt 0.8 W 0.2 /Al 2 O 3 , without calcination) was prepared by using it.
  • tungsten-supported ⁇ -phase alumina platinum precursor solution A tungsten-platinum catalyst (W 0.2 Pt 0.8 /Al 2 O 3 ) for hydrogen production in which platinum was supported after tungsten was supported was prepared in the same manner as in Example 1, except that it was supported by the initial wetting method.
  • a 100 ml 3-neck flask was filled with 5 g of perhydro-dibenzyltoluene as a reactant, and each of the catalysts according to Examples 1 to 3 and Comparative Examples 1 to 3 was used in a ratio of active metal to reactant of 0.15. It was filled to a % molar ratio.
  • the inside of the reaction equipment was purged using ultra-high purity nitrogen for 30 minutes.
  • the reaction temperature was stirred and heated at 700 rpm for 30 minutes to adjust the reaction temperature to 270°C, and after reaching a steady state, the dehydrogenation reaction was performed while maintaining for 3 hours.
  • the amount of hydrogen generated during the dehydrogenation reaction was recorded in real time using a mass flow meter after cooling to 25° C.
  • Example 1 when platinum and tungsten are supported on the porous carrier in a weight ratio of 0.9:0.1 to 0.6:0.4 (Examples 1 to 3), platinum or tungsten is not supported ( Comparative Examples 1 to 2), it was confirmed that even if tungsten was supported, the dehydrogenation degree of the catalyst was remarkably improved compared to the case where it was outside the above content range (Comparative Example 3), and among them, in Example 2, that is, platinum and tungsten were 0.8: When supported in a weight ratio of 0.2, it was confirmed that the dehydrogenation degree of the catalyst was the best.
  • the catalyst for hydrogen production prepared according to Examples 1 to 3 and Comparative Examples 1 to 3 using an x-ray photoelectron spectroscopy (XPS) analysis technique The electronic state of the metal supported on the was measured.
  • XPS x-ray photoelectron spectroscopy
  • the catalyst of the present invention is supported in a mixture of platinum and tungsten on a porous carrier, the dehydrogenation activity is remarkably improved even at a low temperature, so it can be usefully used in a process for producing hydrogen from a liquid organic hydrogen storage and related fields. have.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Abstract

The present invention relates to a platinum-tungsten catalyst for hydrogen preparation and a method for preparing hydrogen using same. The hydrogen preparation catalyst according to the present invention comprises: a porous carrier; platinum supported on fine pores of the porous carrier; and tungsten mixed with the platinum in the fine pores and supported therein. According to the present invention, since platinum and tungsten are mixed and supported on the porous carrier, the dehydrogenation activity is remarkably improved even at a low temperature, and thus hydrogen can be effectively obtained from a liquid-phase organic hydrogen storage material.

Description

수소 제조용 백금-텅스텐 촉매 및 이를 이용한 수소의 제조방법Platinum-tungsten catalyst for hydrogen production and method for producing hydrogen using same
본 발명은 수소 제조용 백금-텅스텐 촉매 및 이를 이용하여 수소를 제조하는 방법에 관한 것이다.The present invention relates to a platinum-tungsten catalyst for hydrogen production and a method for producing hydrogen using the same.
화석연료의 매장량 감소, 연소 시 발생하는 오염 물질 및 이산화탄소로 인한 지구 온난화 등의 환경오염 문제가 심각하게 대두됨에 따라 대체 에너지 개발에 대한 전 세계적인 관심 및 수요가 폭발적으로 증가하고 있다.As environmental pollution problems such as reduction of fossil fuel reserves and global warming due to pollutants generated during combustion and carbon dioxide are seriously emerging, global interest and demand for alternative energy development is increasing explosively.
대체 에너지원으로는 풍력, 조력, 지열, 수소 에너지, 태양 에너지 등과 같은 신재생 에너지가 각광받고 있으나, 신재생 에너지는 시간 및 자연 환경에 따른 에너지원의 불안정성으로 인하여 원활한 수요 및 공급이 곤란하므로, 종래의 화석연료를 효과적으로 대체하기 위하여는 안정적으로 에너지를 공급할 수 있도록 잉여 에너지를 저장하고 공급하는 기술에 대한 개발이 요구된다.As an alternative energy source, renewable energy such as wind power, tidal power, geothermal heat, hydrogen energy, and solar energy is in the spotlight. In order to effectively replace the conventional fossil fuel, it is required to develop a technology for storing and supplying surplus energy so that energy can be stably supplied.
이러한 관점에서, 수소 에너지는, 단위 질량당 가장 에너지 효율이 높고, 연소 시 유해한 부산물이 없으며, 수소의 주된 소스인 물은 자연에 풍부하며 사용 후 물로 전환되므로 재사용이 유리하다는 점 등 다양한 장점으로 인해 주목받고 있다. 더욱이, 수소는 태양에너지, 풍력 등과 같은 다른 신재생 에너지를 이용하여 생산할 수 있고, 다양한 에너지원뿐만 아니라, 석유화학 분야를 비롯한 다른 산업분야에서도 광범위하게 적용될 수 있는 등, 국내외에서 미래의 핵심 에너지원으로 부상하고 있다.From this point of view, hydrogen energy is the most energy efficient per unit mass, there are no harmful by-products during combustion, and water, which is the main source of hydrogen, is abundant in nature and is converted into water after use. is attracting attention. Moreover, hydrogen can be produced using other renewable energy such as solar energy and wind power, and can be widely applied not only in various energy sources but also in other industrial fields including petrochemical fields, etc., as a future key energy source at home and abroad. is emerging as
일반적으로 수소 에너지의 연구 개발은 크게 수소의 제조 분야, 운반(수송) 분야, 및 저장 분야로 구분되는데, 수소는 질량 대비 에너지 저장 능력이 우수한 반면, 체적 대비 에너지 저장 능력은 낮기 때문에 수소를 효율적으로 저장하는 기술이 수소 에너지의 실용화에 가장 큰 장애 요인으로 작용하고 있다. 예를 들면, 77 K 조건에서 10 중량% 이상의 질량 저장밀도를 갖는 물질이 알려졌으나, 이러한 물질들의 부피저장 밀도는 40 g/L로서 실제 수소 저장 물질로 사용하기 위하여는 체적 저장밀도가 낮은 편이다. 따라서, 최대한 가볍고 부피가 작은 저장 매체에 가급적 많은 양의 수소를 저장하는 기술에 대한 연구가 활발히 진행되고 있다.In general, research and development of hydrogen energy is largely divided into the production field, transport (transport) field, and storage field of hydrogen. Hydrogen has an excellent energy storage capacity compared to mass, but has low energy storage capacity compared to volume. The storage technology is acting as the biggest obstacle to the practical use of hydrogen energy. For example, materials having a mass storage density of 10% by weight or more at 77 K are known, but the bulk storage density of these materials is 40 g/L, and the volumetric storage density is rather low for use as an actual hydrogen storage material. . Therefore, research on a technology for storing as much hydrogen as possible in a storage medium that is as light and small in volume as possible is being actively conducted.
이를 해결하기 위하여, 각국은 수년간 많은 연구 개발비를 투자하였고, 지금까지 연구 개발된 수소의 효율적인 저장 방법은 700 bar의 압력을 이용해 수소를 압축하는 CGH2 방법 및 영하 253 ℃에서 액화시켜 액체 수소를 보관하는 LH2 방법이 있다. 그러나 이러한 가압 또는 액화 방식은 낮은 온도를 유지해야 하며, 액상 수소의 밀도 역시 712 kg/㎥으로 낮은 수준이다.To solve this, each country has invested a lot of R&D cost for many years, and the efficient storage methods researched and developed so far include the CGH2 method, which compresses hydrogen using a pressure of 700 bar, and the storage of liquid hydrogen by liquefying it at -253 ° C. There is the LH2 method. However, this pressurization or liquefaction method must maintain a low temperature, and the density of liquid hydrogen is also low at 712 kg/m 3 .
이에 대한 대안으로서 수소 저장능을 갖는 물질, 예를 들면 무기-유기 골격구조체(Metal-organic frameworks; MOFs), 탄소나노튜브, 제올라이트, 활성탄 등의 다공성 유기 또는 무기 나노소재, 메탈하이드라이드 등이 수소 에너지를 효과적으로 저장하는 물질로 연구되고 있으나, MOFs, 다공성 나노 소재의 물리적 흡수에 의한 상온 기상 수소 저장 기술의 경우, 에너지 저장 밀도가 상대적으로 낮고, 수소의 저장 및 탈착 시 요구되는 에너지가 비교적 크기 때문에 소형화 및 모듈화가 곤란하다는 단점이 있다. As an alternative to this, materials having a hydrogen storage capacity, for example, porous organic or inorganic nanomaterials such as inorganic-organic frameworks (MOFs), carbon nanotubes, zeolite, activated carbon, and metal hydride, are used. It has been studied as a material that effectively stores energy, but in the case of room temperature gaseous hydrogen storage technology by physical absorption of MOFs and porous nanomaterials, the energy storage density is relatively low and the energy required for storage and desorption of hydrogen is relatively large. It has the disadvantage of being difficult to miniaturize and modularize.
이러한 이유로 최근에는 액체 유기 수소 운반체 (LOHCs; Liquid Organic Hydrogen Carrier)를 이용한 가역적 촉매 수소화/탈수소화 반응에 의한 수소 저장 기술이 주목받고 있으며, LOHC 기술은 미국 에너지부 (DOE)의 권고안인 5 중량% 이상의 수소를 저장할 수 있으며, 낮은 압력 가동 범위와 저장 물질의 손쉬운 재생으로 인한 기술 구현의 장점을 가지고 있다. 또한 LOHC 기술은 액상 화석 연료가 갖는 다루기 쉬운 물리적 성질과 높은 에너지 밀도로 인해 기존 액체 연료 수송 및 저장 인프라를 이용한 효율적인 이동과 저장이 가능한 에너지 저장체로 자리매김 하고 있다.For this reason, recently, hydrogen storage technology by reversible catalytic hydrogenation/dehydrogenation using liquid organic hydrogen carriers (LOHCs) has been attracting attention. It can store more hydrogen, and has advantages of technology implementation due to low pressure operation range and easy regeneration of the stored material. In addition, LOHC technology is positioned as an energy storage that can efficiently move and store using the existing liquid fuel transportation and storage infrastructure due to the easy-to-handle physical properties and high energy density of liquid fossil fuels.
한편, LOHC는 수소를 전달하는 전달체로, 수소를 공급하는 과정에서 전혀 변질되지 않아야 한다는 단점을 가지고 있다. 고온의 촉매공정에서 LOHC가 변질되면, 그 과정에서 발생하는 부산물로 인하여 수소의 순도가 저하될 수 있으며 촉매 또한 활성을 잃어버릴 수 있다. Dibenzyltoluene은 toluene 분자 3개가 뭉쳐진 형태로, 6.3 wt.%의 수소를 분자내에 저장할 수 있는 우수한 성질을 가지고 있다. 하지만 massive molecule은 탈수소화 공정에 높은 온도를 요구하기 때문에, perhydro-dibenzyltoluene은 일반적으로 300℃ 이상의 매우 높은 온도에서 탈수소화 공정을 거치게 된다. 따라서 재활용을 거치면서 열화되거나 코크가 발생할 수 있는데, 이러한 점을 예방하기 위해서는 낮은 온도에서도 높은 탈수소화 활성을 보이는 촉매가 필요하지만, 현재 알려진 촉매들의 경우 270℃ 미만에서의 perhydro-dibenzyltoluene의 탈수소화율이 매우 낮은 수준을 나타내고 있다.On the other hand, LOHC is a carrier for delivering hydrogen, and has a disadvantage that it should not be deteriorated at all in the process of supplying hydrogen. If LOHC is degraded in a high-temperature catalytic process, the purity of hydrogen may be reduced due to by-products generated in the process, and the catalyst may also lose its activity. Dibenzyltoluene is a group of three toluene molecules, and has excellent properties that can store 6.3 wt.% of hydrogen in the molecule. However, since massive molecules require a high temperature for the dehydrogenation process, perhydro-dibenzyltoluene is generally subjected to the dehydrogenation process at a very high temperature of 300℃ or higher. Therefore, deterioration or coke may occur during recycling. To prevent this, a catalyst with high dehydrogenation activity even at low temperature is required. However, in the case of currently known catalysts, the dehydrogenation rate of perhydro-dibenzyltoluene at less than 270°C It shows a very low level.
본 발명은 전술한 문제점을 해결하기 위해 안출된 것으로서, 본 발명의 목적은 백금이 담지된 촉매에 텅스텐을 조촉매로 추가 도입함으로써 낮은 온도에서도 탈수소화 활성이 향상된 수소 제조용 촉매를 제공하는 것이다.The present invention has been devised to solve the above problems, and an object of the present invention is to provide a catalyst for hydrogen production with improved dehydrogenation activity even at a low temperature by additionally introducing tungsten as a co-catalyst to a platinum-supported catalyst.
본 발명의 다른 목적은 백금이 담지된 촉매에 텅스텐을 조촉매로 추가 도입함으로써 낮은 온도에서도 탈수소화 활성이 향상된 수소 제조용 촉매의 제조방법을 제공하는 것이다.Another object of the present invention is to provide a method for producing a catalyst for hydrogen production with improved dehydrogenation activity even at a low temperature by additionally introducing tungsten as a cocatalyst to the platinum-supported catalyst.
본 발명의 또 다른 목적은 상기 수소 제조용 촉매를 이용하여 수소를 제조하는 방법을 제공하는 것이다.Another object of the present invention is to provide a method for producing hydrogen using the catalyst for hydrogen production.
본 발명은 상기 과제를 해결하기 위하여,The present invention in order to solve the above problems,
다공성 담체; 상기 다공성 담체의 세공에 담지되는 백금; 및 상기 세공에 상기 백금과 혼재되어 담지되는 텅스텐;을 포함하는 수소 제조용 촉매를 제공한다.porous carrier; Platinum supported on the pores of the porous carrier; and tungsten supported in a mixture with the platinum in the pores; provides a catalyst for hydrogen production comprising.
본 발명에 따르면, 상기 다공성 담체는 활성탄(activated carbon) 또는 산화알루미늄(Al2O3)일 수 있다.According to the present invention, the porous carrier may be activated carbon (activated carbon) or aluminum oxide (Al 2 O 3 ).
본 발명에 따르면, 상기 활성탄은 산화 그래핀, 카본블랙, Vulcan으로 이루어진 군에서 선택될 수 있다.According to the present invention, the activated carbon may be selected from the group consisting of graphene oxide, carbon black, and Vulcan.
본 발명에 따르면, 상기 텅스텐은 상기 다공성 담체의 세공에 백금이 담지된 후에 담지될 수 있다.According to the present invention, the tungsten may be supported after platinum is loaded on the pores of the porous carrier.
본 발명에 따르면, 상기 백금과 상기 텅스텐은 0.9:0.1 내지 0.6:0.4의 중량비로 담지될 수 있다.According to the present invention, the platinum and the tungsten may be supported in a weight ratio of 0.9:0.1 to 0.6:0.4.
본 발명은 또한, (a) 다공성 담체의 세공에 백금 전구체 용액과 텅스텐 전구체 용액을 담지하는 단계; 및 (b) 상기 백금 전구체 용액과 텅스텐 전구체 용액이 담지된 상기 다공성 담체를 환원시키는 단계;를 포함하고, 상기 (a) 단계는, 상기 다공성 담체의 세공에 백금 전구체 용액을 담지하는 단계; 상기 백금 전구체 용액이 담지된 상기 다공성 담체를 열처리하는 단계; 및 상기 열처리된 상기 다공성 담체의 세공에 텅스텐 전구체 용액을 담지하는 단계;를 포함하는 수소 제조용 촉매의 제조방법을 제공한다.The present invention also includes the steps of (a) supporting a platinum precursor solution and a tungsten precursor solution in the pores of the porous carrier; and (b) reducing the porous carrier on which the platinum precursor solution and the tungsten precursor solution are supported. heat-treating the porous carrier on which the platinum precursor solution is supported; and supporting a tungsten precursor solution in the pores of the heat-treated porous carrier.
본 발명에 따르면, 상기 수소 제조용 촉매는 백금과 텅스텐이 0.9:0.1 내지 0.6:0.4의 중량비로 담지될 수 있다.According to the present invention, in the catalyst for hydrogen production, platinum and tungsten may be supported in a weight ratio of 0.9:0.1 to 0.6:0.4.
본 발명에 따르면, 상기 (a) 단계는 초기 젖음 담지법(incipient wetness impregnation)으로 수행될 수 있다.According to the present invention, step (a) may be performed by incipient wetness impregnation.
본 발명에 따르면, 상기 (b) 단계의 환원은 수소와 질소의 혼합 가스 분위기하에서 300 내지 600℃에서 수행될 수 있다.According to the present invention, the reduction in step (b) may be performed at 300 to 600° C. under a mixed gas atmosphere of hydrogen and nitrogen.
본 발명은 또한, 상기 수소 제조용 촉매, 및 액상 유기물 수소 저장체(Liquid Organic Hydrogen Carrier, LOHC)를 혼합하는 단계; 및 상기 혼합 후 탈수소화 반응을 수행하는 단계를 포함하는 수소 제조방법을 제공한다.The present invention also comprises the steps of mixing the catalyst for hydrogen production, and a liquid organic hydrogen carrier (LOHC); and performing a dehydrogenation reaction after the mixing.
본 발명에 따르면, 상기 액상 유기물 수소 저장체는 퍼하이드로-디벤질톨루엔(perhydro-Dibenzyltoluene), 시클로헥산(cyclohexane), 메틸시클로헥산(methyl cyclohexane), 데칼린(decalin), 벤질톨루엔(benzyl toluene), 디벤질톨루엔(dibenzyl toluene), 퍼하이드로N-에틸카바졸(perhydro-N-ethylcarbazole), 2-[(N-메틸시클로헥실)메틸]피페리딘으로 이루어진 군에서 선택될 수 있다.According to the present invention, the liquid organic hydrogen storage is perhydro-dibenzyltoluene, cyclohexane, methyl cyclohexane, decalin, benzyl toluene, It may be selected from the group consisting of dibenzyl toluene, perhydro-N-ethylcarbazole, and 2-[(N-methylcyclohexyl)methyl]piperidine.
본 발명에 따르면, 상기 탈수소화 반응은 250 ~ 300℃의 온도에서 2 내지 4시간 동안 수행될 수 있다.According to the present invention, the dehydrogenation reaction may be carried out at a temperature of 250 ~ 300 ℃ for 2 to 4 hours.
본 발명의 특징 및 이점들은 첨부도면에 의거한 다음의 상세한 설명으로 더욱 명백해질 것이다.The features and advantages of the present invention will become more apparent from the following detailed description taken in conjunction with the accompanying drawings.
이에 앞서 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이고 사전적인 의미로 해석되어서는 아니되며, 발명자가 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.Prior to this, the terms or words used in the present specification and claims should not be construed in the ordinary and dictionary meaning, and the inventor may properly define the concept of the term to describe his invention in the best way. Based on the principle that there is, it should be interpreted as meaning and concept consistent with the technical idea of the present invention.
본 발명에 따르면, 다공성 담체에 백금과 텅스텐이 혼재되어 담지됨으로써, 낮은 온도에서도 탈수소화 활성이 현저하게 향상되는바, 액상 유기물 수소저장체로부터 효과적으로 수소를 수득할 수 있다.According to the present invention, since platinum and tungsten are mixed and supported on the porous carrier, the dehydrogenation activity is remarkably improved even at a low temperature, and thus hydrogen can be effectively obtained from the liquid organic hydrogen storage.
도 1은 본 발명의 실시예 1 내지 실시예 3 및 비교예 1 내지 비교예 3에 따라 제조된 수소 제조용 촉매의 탈수소화도를 나타내는 그래프이다.1 is a graph showing the degree of dehydrogenation of the catalyst for hydrogen production prepared according to Examples 1 to 3 and Comparative Examples 1 to 3 of the present invention.
도 2는 본 발명의 실시예 2, 비교예 1 및 비교예 4에 따라 제조된 수소 제조용 촉매의 탈수소화도를 나타내는 그래프이다.2 is a graph showing the degree of dehydrogenation of the catalyst for hydrogen production prepared according to Example 2, Comparative Example 1, and Comparative Example 4 of the present invention.
도 3은 본 발명의 실시예 2, 비교예 1, 비교예 2 및 비교예 5에 따라 제조된 수소 제조용 촉매의 탈수소화도를 나타내는 그래프이다.3 is a graph showing the degree of dehydrogenation of the catalyst for hydrogen production prepared according to Example 2, Comparative Example 1, Comparative Example 2, and Comparative Example 5 of the present invention.
도 4는 본 발명의 실시예 1 내지 실시예 3, 비교예 1 및 비교예 3에 따라 제조된 수소 제조용 촉매의 표면에서의 전자적 특성 변화 및 이에 따른 백금 당 탈수소화 활성을 비교한 결과를 나타낸 것이다.4 shows the results of comparing the electronic properties change on the surface of the catalyst for hydrogen production prepared according to Examples 1 to 3, Comparative Examples 1 and 3 of the present invention and thus dehydrogenation activity per platinum. .
다른 식으로 정의되지 않는 한, 본 명세서에서 사용된 모든 기술적 및 과학적 용어들은 본 발명이 속하는 기술 분야에서 숙련된 전문가에 의해서 통상적으로 이해되는 것과 동일한 의미를 가진다. 일반적으로, 본 명세서에서 사용된 명명법은 본 기술 분야에서 잘 알려져 있고 통상적으로 사용되는 것이다.Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. In general, the nomenclature used herein is those well known and commonly used in the art.
본 발명에서는 백금이 담지된 촉매에 텅스텐을 조촉매로 추가 도입함으로써 낮은 온도에서도 탈수소화 활성이 향상된 수소 제조용 촉매, 이의 제조방법 및 이를 이용하여 수소를 제조하는 방법을 제공하고자 한다.An object of the present invention is to provide a catalyst for hydrogen production with improved dehydrogenation activity even at low temperatures by additionally introducing tungsten as a cocatalyst to a platinum-supported catalyst, a method for producing the same, and a method for producing hydrogen using the same.
이를 위해 먼저 본 발명은 다공성 담체; 상기 다공성 담체의 세공에 담지되는 백금; 및 상기 세공에 상기 백금과 혼재되어 담지되는 텅스텐;을 포함하는 수소 제조용 촉매를 제공한다.To this end, the present invention first provides a porous carrier; Platinum supported on the pores of the porous carrier; and tungsten supported in a mixture with the platinum in the pores; provides a catalyst for hydrogen production comprising.
이때, 상기 다공성 담체는 표면에 다수의 세공을 구비한 다공성 부재로서, 백금 및 텅스텐을 수용한다. 세공은 마이크로포어(micropore), 또는 메조포어(mesopore) 크기로 형성될 수 있다. 일반적으로, 마이크로포어는 2 ㎚ 이하, 메조포어는 2 ㎚ 초과 50 ㎚ 미만 정도의 크기로 정의되는데, 본 발명에서는 반드시 이에 한정되는 것은 아니고 백금 및 텅스텐이 혼재되어 담지될 수 있는 크기이면 족하다.In this case, the porous carrier is a porous member having a plurality of pores on the surface, and contains platinum and tungsten. The pores may be formed in the size of micropores, or mesopores. In general, micropores are defined as having a size of 2 nm or less, and mesopores having a size of more than 2 nm and less than 50 nm.
또한, 상기 다공성 담체는 활성탄(activated carbon) 또는 산화알루미늄(Al2O3)인 것이 바람직하며, 상기 활성탄은 산화 그래핀, 카본블랙, Vulcan으로 이루어진 군에서 선택될 수 있다. 또한, 상기 산화알루미늄은 θ-, δ-, γ-, α- phase를 갖는 것이 바람직하며, γ-phase를 갖는 것이 더욱 바람직하다. In addition, the porous carrier is preferably activated carbon (activated carbon) or aluminum oxide (Al 2 O 3 ), and the activated carbon may be selected from the group consisting of graphene oxide, carbon black, and Vulcan. In addition, the aluminum oxide preferably has θ-, δ-, γ-, and α-phases, and more preferably has a γ-phase.
또한, 하기 실시예의 결과로부터 알 수 있는 바와 같이, 상기 텅스텐은 상기 다공성 담체의 세공에 백금이 담지된 후에 담지되는 것이 바람직하며, 상기 백금과 텅스텐은 상호 혼재되어 다공성 담체에 담지되며, 백금과 텅스텐의 상호작용에 의해 저온에서도 탈수소화 활성이 현저하게 향상되는바, 수소 제조에 유용하게 활용될 수 있다.In addition, as can be seen from the results of the following examples, the tungsten is preferably supported after platinum is supported on the pores of the porous carrier, and the platinum and tungsten are mixed with each other and supported on the porous carrier, platinum and tungsten Since the dehydrogenation activity is remarkably improved even at low temperatures by the interaction of
또한, 하기 실시예의 결과로부터 알 수 있는 바와 같이, 상기 백금과 상기 텅스텐은 0.9:0.1 내지 0.6:0.4의 중량비로 담지되는 것이 바람직하다. 하기 실시예의 결과로부터 알 수 있는 바와 같이, 담지되는 백금과 텅스텐의 중량비가 상기 범위를 벗어나게 되면, 본 발명에 따른 촉매의 활성이 저하될 수 있다. In addition, as can be seen from the results of the following examples, the platinum and the tungsten are preferably supported in a weight ratio of 0.9:0.1 to 0.6:0.4. As can be seen from the results of the examples below, when the weight ratio of platinum and tungsten supported is out of the above range, the activity of the catalyst according to the present invention may be reduced.
또한, 상기 백금-텅스텐은 상기 다공성 담체 총 중량에 대하여 1 내지 10 중량%로 담지되는 것이 바람직하다. In addition, the platinum-tungsten is preferably supported in an amount of 1 to 10% by weight based on the total weight of the porous carrier.
이하에서는 발명에 따른 수소 제조용 촉매의 제조방법에 대해 설명한다. 여기서 수소 제조용 촉매에 관한 내용은 상술하였는바, 중복되는 사항에 대해서는 설명을 생략하거나 간단하게만 기술한다.Hereinafter, a method for preparing a catalyst for hydrogen production according to the present invention will be described. Here, the content of the catalyst for hydrogen production has been described above, and the overlapping matters will be omitted or simply described.
본 발명에 따른 수소 제조용 촉매의 제조방법은 (a) 다공성 담체의 세공에 백금 전구체 용액과 텅스텐 전구체 용액을 담지하는 단계; 및 (b) 상기 백금 전구체 용액과 텅스텐 전구체 용액이 담지된 상기 다공성 담체를 환원시키는 단계;를 포함한다.A method for preparing a catalyst for hydrogen production according to the present invention comprises the steps of (a) supporting a platinum precursor solution and a tungsten precursor solution in pores of a porous carrier; and (b) reducing the porous carrier on which the platinum precursor solution and the tungsten precursor solution are supported.
본 발명에 따른 상기 수소 제조용 촉매를 제조하기 위해서는, 먼저 (a) 다공성 담체의 세공에 백금 전구체 용액과 텅스텐 전구체 용액을 담지한다. 이때, 다공성 담체는 기공 내에 잔존하는 물분자를 제거하여 담체의 기공 내부로 백금과 텅스텐이 담지되는 효율을 높이기 위해, 100 내지 150℃의 온도에서 건조된 것을 사용하는 것이 바람직할 수 있다. 또한, 상기 백금 전구체 용액과 상기 텅스텐 전구체 용액 담지 시 백금 전구체 용액과 텅스텐 전구체 용액을 혼합하여 동시에 담지하거나, 텅스텐 전구체 용액을 담지한 후 백금 전구체 용액을 담지하거나, 백금 전구체 용액을 담지한 후 텅스텐 전구체 용액을 담지할 수 있으나, 하기 실시예의 결과로부터 알 수 있는 바와 같이, 촉매의 탈수소화도 활성 향상을 위해서는 백금 전구체 용액을 담지한 후 텅스텐 전구체 용액을 담지하는 것이 바람직하다. In order to prepare the catalyst for hydrogen production according to the present invention, first (a) a platinum precursor solution and a tungsten precursor solution are supported in pores of a porous carrier. In this case, it may be preferable to use the porous carrier dried at a temperature of 100 to 150° C. in order to increase the efficiency of loading platinum and tungsten into the pores of the carrier by removing the water molecules remaining in the pores. In addition, when the platinum precursor solution and the tungsten precursor solution are supported, the platinum precursor solution and the tungsten precursor solution are mixed and supported at the same time, the tungsten precursor solution is loaded and the platinum precursor solution is loaded, or the platinum precursor solution is loaded and then the tungsten precursor solution is loaded The solution may be supported, but as can be seen from the results of the following examples, in order to improve the dehydrogenation activity of the catalyst, it is preferable to support the tungsten precursor solution after the platinum precursor solution is supported.
이를 위해, 상기 (a) 단계는, 상기 다공성 담체의 세공에 백금 전구체 용액을 담지하는 단계; 상기 백금 전구체 용액이 담지된 상기 다공성 담체를 열처리하는 단계; 및 상기 열처리된 상기 다공성 담체의 세공에 텅스텐 전구체 용액을 담지하는 단계;를 포함한다. 이때, 상기 열처리는 200 내지 400℃의 온도 범위에서 30분 내지 2시간 동안 수행될 수 있다.To this end, the step (a) comprises the steps of supporting a platinum precursor solution in the pores of the porous carrier; heat-treating the porous carrier on which the platinum precursor solution is supported; and supporting the tungsten precursor solution in the pores of the heat-treated porous carrier. In this case, the heat treatment may be performed at a temperature range of 200 to 400° C. for 30 minutes to 2 hours.
또한, 상기 (a) 단계를 통해 상기 다공성 담체에 담지되는 백금과 텅스텐은 0.9:0.1 내지 0.6:0.4의 중량비로 담지되는 것이 바람직하다. 또한, 담지되는 상기 백금과 텅스텐의 합은 상기 다공성 담체 총 중량에 대하여 1 내지 10 중량%인 것이 바람직하다. 하기 실시예의 결과로부터 알 수 있는 바와 같이, 담지되는 백금과 텅스텐의 중량비가 상기 범위를 벗어나게 되면, 본 발명에 따른 촉매의 활성이 저하될 수 있다. In addition, platinum and tungsten supported on the porous carrier through step (a) are preferably supported in a weight ratio of 0.9:0.1 to 0.6:0.4. In addition, the amount of the supported platinum and tungsten is preferably 1 to 10% by weight based on the total weight of the porous carrier. As can be seen from the results of the examples below, when the weight ratio of platinum and tungsten supported is out of the above range, the activity of the catalyst according to the present invention may be reduced.
또한, 상기 (a) 단계는 초기 젖음 담지법(incipient wetness impregnation)으로 수행될 수 있다. 초기 젖음 담지법에 따른 담지의 경우, 백금 전구체 용액과 텅스텐 전구체 용액이 충분히 담지되도록 수차례 담지 공정을 반복하고, 담지마다 건조 과정을 거칠 수 있다. 여기서, 상기 다공성 담체는 활성탄(activated carbon) 또는 산화알루미늄(Al2O3)인 것이 바람직하며, 상기 활성탄은 산화 그래핀, 카본블랙, Vulcan으로 이루어진 군에서 선택될 수 있다. 또한, 상기 산화알루미늄은 θ-, δ-, γ-, α- phase를 갖는 것이 바람직하며, γ-phase를 갖는 것이 더욱 바람직할 수 있다. 또한, 상기 백금 전구체 용액은 백금 염화물 군 및 백금 질산화물 염을 지칭하며, 백금을 제공할 수 있는 염이라면 특별히 한정되지 않으나, 예를 들어 platinum chloride, potassium hexachloroplatinate, chloroplatinic acid 및 tetraammineplatinum nitrate로 이루어진 군에서 선택되는 것을 사용할 수 있다. 또한, 상기 텅스텐 전구체 용액은 텅스텐 염화물 군, 텅스텐 수산화물 및 텅스텐 암모늄염을 지칭하며, 텅스텐을 제공할 수 있는 염이라면 특별히 한정되지 않으나, 예를 들어 tungsten chloride, ammonium metatungstate 및 ammonium paratungstate로 이루어진 군에서 선택되는 것을 사용할 수 있다. 또한, 상기 초기 젖음 담지법을 이용한 담지의 경우에는, 백금 전구체 용액 또는 텅스텐 전구체 용액이 담지된 다공성 담체를 100 ~ 150℃에서 8 ~ 24 시간 동안 건조할 수 있다.In addition, the step (a) may be performed as an incipient wetness impregnation. In the case of the loading according to the initial wet loading method, the loading process may be repeated several times so that the platinum precursor solution and the tungsten precursor solution are sufficiently loaded, and a drying process may be performed for each loading. Here, the porous carrier is preferably activated carbon (activated carbon) or aluminum oxide (Al 2 O 3 ), and the activated carbon may be selected from the group consisting of graphene oxide, carbon black, and Vulcan. In addition, the aluminum oxide preferably has θ-, δ-, γ-, and α-phases, and more preferably has a γ-phase. In addition, the platinum precursor solution refers to a platinum chloride group and a platinum nitrate salt, and is not particularly limited as long as it is a salt capable of providing platinum, but for example, platinum chloride, potassium hexachloroplatinate, chloroplatinic acid and tetraammineplatinum nitrate are selected from the group consisting of can be used to be In addition, the tungsten precursor solution refers to a tungsten chloride group, tungsten hydroxide and tungsten ammonium salt, and is not particularly limited as long as it is a salt capable of providing tungsten, but for example, tungsten chloride, ammonium metatungstate and ammonium paratungstate selected from the group consisting of that can be used In addition, in the case of the deposition using the initial wet loading method, the porous carrier on which the platinum precursor solution or the tungsten precursor solution is supported may be dried at 100 to 150° C. for 8 to 24 hours.
다음으로, 상기 (b) 단계에서는 상기 백금 전구체 용액과 텅스텐 전구체 용액이 담지된 상기 다공성 담체를 수소와 질소의 혼합가스를 이용하여 환원시키며, 구체적으로는 5~20% 부피비의 H2/N2 기체 분위기 하, 300 내지 600℃에서 30분 내지 3시간 동안 수행하는 것이 바람직하다. 상기 환원 단계를 거쳐 최종적으로 본 발명에 따른 수소 제조용 백금-텅스텐 촉매가 제조된다. Next, in step (b), the porous carrier on which the platinum precursor solution and the tungsten precursor solution are supported is reduced using a mixed gas of hydrogen and nitrogen, specifically, H 2 /N 2 in a volume ratio of 5 to 20% It is preferably carried out at 300 to 600° C. for 30 minutes to 3 hours under a gas atmosphere. Finally, a platinum-tungsten catalyst for hydrogen production according to the present invention is prepared through the reduction step.
본 발명은 또한, 상기 수소 제조용 촉매, 및 액상 유기물 수소 저장체(Liquid Organic Hydrogen Carrier, LOHC)를 혼합하는 단계; 및 상기 혼합 후 탈수소화 반응을 수행하는 단계를 포함하는 수소 제조방법을 제공한다.The present invention also comprises the steps of mixing the catalyst for hydrogen production, and a liquid organic hydrogen carrier (LOHC); and performing a dehydrogenation reaction after the mixing.
이때, 상기 액상 유기물 수소 저장체는 퍼하이드로-디벤질톨루엔(perhydro-Dibenzyltoluene), 시클로헥산(cyclohexane), 메틸시클로헥산(methyl cyclohexane), 데칼린(decalin), 벤질톨루엔(benzyl toluene), 디벤질톨루엔(dibenzyl toluene), 퍼하이드로N-에틸카바졸(perhydro-N-ethylcarbazole), 2-[(N-메틸시클로헥실)메틸]피페리딘으로 이루어진 군에서 선택될 수 있으며, 바람직하게는 퍼하이드로-디벤질톨루엔(perhydro-Dibenzyltoluene)일 수 있다.In this case, the liquid organic hydrogen storage is perhydro-dibenzyltoluene, cyclohexane, methyl cyclohexane, decalin, benzyl toluene, and dibenzyl toluene. (dibenzyl toluene), perhydro-N-ethylcarbazole, 2-[(N-methylcyclohexyl)methyl]piperidine, preferably perhydro- It may be dibenzyltoluene (perhydro-Dibenzyltoluene).
본 발명에 따르면, 상기 탈수소화 반응은 250 ~ 300℃의 온도에서 2 내지 4시간 동안 수행하는 것이 바람직하다.According to the present invention, the dehydrogenation reaction is preferably performed for 2 to 4 hours at a temperature of 250 ~ 300 ℃.
[실시예][Example]
이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 예시하기 위한 것으로, 본 발명의 범위가 이들 실시예에 의해 제한되는 것으로 해석되지 않는 것은 당업계에서 통상의 지식을 가진 자에게 있어서 자명할 것이다. 따라서 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의하여 정의된다고 할 것이다.Hereinafter, the present invention will be described in more detail through examples. These examples are only for illustrating the present invention, and it will be apparent to those of ordinary skill in the art that the scope of the present invention is not to be construed as being limited by these examples. Accordingly, the substantial scope of the present invention will be defined by the appended claims and their equivalents.
실시예Example 1. 백금 담지 후 텅스텐을 1. Tungsten after platinum loading 담지한supported PtPt 00 .9.9 WW 0.10.1 // AlAl 22 OO 33 촉매의 제조 Preparation of catalyst
(1) 백금 및 텅스텐 전구체 용액 제조(1) Preparation of platinum and tungsten precursor solutions
5 ml 바이알에 증류수 1.302 ml, tetraammineplatinum nitrate 0.0898 g 을 함께 섞은 후 초음파 분산기를 이용하여 10분간 교반하여 백금 전구체 용액을 제조하였고, 5 ml 바이알에 증류수 0.434 ml, ammonium metatungstate hydrate 0.00655 g 을 함께 섞은 후 초음파 분산기를 이용하여 10분간 교반하여 텅스텐 전구체 용액을 제조하였다.In a 5 ml vial, 1.302 ml of distilled water and 0.0898 g of tetraammineplatinum nitrate were mixed together and stirred for 10 minutes using an ultrasonic disperser to prepare a platinum precursor solution. In a 5 ml vial, 0.434 ml of distilled water and 0.00655 g of ammonium metatungstate hydrate were mixed together and then ultrasonicated A tungsten precursor solution was prepared by stirring for 10 minutes using a disperser.
(2) γ상 알루미나 제조(2) Preparation of γ-phase alumina
Boehmite(AlOOH) 1 내지 20 g을 공기 분위기하에서 650 ℃, 5시간 동안 소성시켜 γ상 알루미나를 제조하였다.1 to 20 g of boehmite (AlOOH) was calcined at 650° C. for 5 hours in an air atmosphere to prepare γ-phase alumina.
(3) 백금이 담지된 γ상 알루미나 제조(3) Preparation of platinum-supported γ-phase alumina
상기 백금 전구체 용액을 상기 알루미나 1g에 초기 젖음 담지법(incipient wetness impregnation)을 이용하여 담지하였다. 이후 120℃에서 12시간 동안 건조 후 소성로에서 공기 분위기하에 300℃, 1시간 동안 열처리하였다. The platinum precursor solution was supported on 1 g of the alumina using incipient wetness impregnation. After drying at 120° C. for 12 hours, heat treatment was performed at 300° C. for 1 hour in an air atmosphere in a kiln.
(4) 텅스텐이 조촉매로 첨가된 Pt0.9W0.1/Al2O3 촉매 제조(4) Preparation of Pt 0.9 W 0.1 /Al 2 O 3 catalyst to which tungsten was added as a cocatalyst
상기 백금이 담지된 γ상 알루미나에 상기 텅스텐 전구체 용액을 초기 젖음 담지법으로 담지하였다. 이후 120℃에서 12시간 동안 건조 후 10% H2/N2 기체 분위기 하, 450℃에서 1시간 동안 환원시켜, 본 발명에 따른 수소 제조용 백금-텅스텐 촉매(Pt0.9W0.1/Al2O3)를 제조하였다. 상기 촉매는 진공 분위기하에서 보관하였다.The tungsten precursor solution was supported on the platinum-supported γ-phase alumina by an initial wet loading method. After drying at 120° C. for 12 hours, and then reducing 10% H 2 /N 2 gas at 450° C. for 1 hour, platinum-tungsten catalyst for hydrogen production according to the present invention (Pt 0.9 W 0.1 /Al 2 O 3 ) was prepared. The catalyst was stored under a vacuum atmosphere.
실시예Example 2. 백금 담지 후 텅스텐을 2. Tungsten after platinum loading 담지한supported PtPt 00 .8.8 WW 0.20.2 // AlAl 22 OO 33 촉매의 제조 Preparation of catalyst
tetraammineplatinum nitrate 0.0803g을 사용하고, ammonium metatungstate hydrate 0.0132g을 사용하였다는 점을 제외하고는 실시예 1과 동일한 방법을 이용하여 본 발명에 따른 수소 제조용 백금-텅스텐 촉매(Pt0.8W0.2/Al2O3)를 제조하였다. Platinum-tungsten catalyst (Pt 0.8 W 0.2 /Al 2 O) for hydrogen production according to the present invention using the same method as in Example 1 except that tetraammineplatinum nitrate 0.0803 g and ammonium metatungstate hydrate 0.0132 g were used. 3 ) was prepared.
실시예Example 3. 백금 담지 후 텅스텐을 3. Tungsten after platinum loading 담지한supported PtPt 00 .6.6 WW 0.40.4 // AlAl 22 OO 33 촉매의 제조 Preparation of catalyst
tetraammineplatinum nitrate 0.0610g을 사용하고, ammonium metatungstate hydrate 0.0266g을 사용하였다는 점을 제외하고는 실시예 1과 동일한 방법을 이용하여 본 발명에 따른 수소 제조용 백금-텅스텐 촉매(Pt0.6W0.4/Al2O3)를 제조하였다.Platinum for hydrogen production according to the present invention using the same method as in Example 1 except that 0.0610 g of tetraammineplatinum nitrate and 0.0266 g of ammonium metatungstate hydrate were used (Pt 0.6 W 0.4 /Al 2 O) 3 ) was prepared.
비교예comparative example 1. Pt/ 1. Pt/ AlAl 22 OO 33 촉매의 제조 Preparation of catalyst
tetraammineplatinum nitrate 0.0992g을 사용하고, 텅스텐 전구체 용액 ammonium metatungstate hydrate을 사용하지 않은 점을 제외하고는 실시예 1과 동일한 방법을 이용하여 텅스텐이 담지되지 않은 백금 담지 수소 제조용 촉매(Pt/Al2O3)를 제조하였다.Using the same method as in Example 1, except that tetraammineplatinum nitrate 0.0992 g was used and tungsten precursor solution ammonium metatungstate hydrate was not used, tungsten-supported platinum-supported hydrogen production catalyst (Pt/Al 2 O 3 ) was prepared.
비교예comparative example 2. W/ 2. W/ AlAl 22 OO 33 촉매의 제조 Preparation of catalyst
ammonium metatungstate 0.0691g 사용하고, 백금 전구체 용액 tetraammineplatinum nitrate을 사용하지 않은 점을 제외하고는 실시예 1과 동일한 방법을 이용하여 백금이 담지되지 않은 텅스텐 담지 수소 제조용 촉매(W/Al2O3)를 제조하였다.Using the same method as in Example 1, except that 0.0691 g of ammonium metatungstate was used and the platinum precursor solution tetraammineplatinum nitrate was not used, platinum-free tungsten-supported catalyst for hydrogen production (W/Al 2 O 3 ) was prepared did
비교예comparative example 3. 백금 담지 후 텅스텐을 3. Tungsten after platinum loading 담지한supported PtPt 00 .2.2 WW 0.80.8 // AlAl 22 OO 33 촉매의 제조 Preparation of catalyst
tetraammineplatinum nitrate 0.0208g을 사용하고, Ammonium metatungstate hydrate 0.0546g을 사용하였다는 점을 제외하고는 실시예 1과 동일한 방법을 이용하여 수소 제조용 백금-텅스텐 촉매(Pt0.2W0.8/Al2O3)를 제조하였다.Using the same method as in Example 1, except that 0.0208 g of tetraammineplatinum nitrate and 0.0546 g of Ammonium metatungstate hydrate were used, a platinum-tungsten catalyst for hydrogen production (Pt 0.2 W 0.8 /Al 2 O 3 ) was prepared did
비교예comparative example 4. 백금 담지 시 열처리 공정을 수행하지 않고 텅스텐을 4. Tungsten without heat treatment when loading platinum 담지한supported Pt Pt 0.80.8 WW 0.20.2 /Al/Al 22 OO 33 (without calcination) 촉매의 제조(without calcination) catalyst preparation
tetraammineplatinum nitrate 0.0803g을 사용하고, ammonium metatungstate hydrate 0.0132g을 사용하되, 실시예 1의 (3)의 300℃, 1시간 동안 열처리하는 공정을 수행하지 않은 점을 제외하고는 실시예 1과 동일한 방법을 이용하여 수소 제조용 백금-텅스텐 촉매(Pt0.8W0.2/Al2O3, without calcination)를 제조하였다.Using tetraammineplatinum nitrate 0.0803g, ammonium metatungstate hydrate 0.0132g, 300 ℃ of Example 1 (3), except that the process of heat treatment for 1 hour was not performed The same method as in Example 1 A platinum-tungsten catalyst for hydrogen production (Pt 0.8 W 0.2 /Al 2 O 3 , without calcination) was prepared by using it.
비교예comparative example 5. 텅스텐 담지 후 백금을 5. Platinum after tungsten loading 담지한supported W W 0.0. 22 PtPt 00 .8.8 // AlAl 22 OO 33 촉매의 제조 Preparation of catalyst
tetraammineplatinum nitrate 0.0803g을 사용하고, ammonium metatungstate hydrate 0.0132g을 사용하되, 상기 실시예 1의 (3)과 (4)의 공정 순서를 바꾸어서, 텅스텐이 담지된 γ상 알루미나를 제조한 후, 백금 전구체 용액을 초기 젖음법으로 담지한 것을 제외하고는 실시예 1과 동일한 방법을 이용하여 텅스텐 담지 후 백금을 담지한 수소 제조용 텅스텐-백금 촉매(W0.2Pt0.8/Al2O3)를 제조하였다.Using tetraammineplatinum nitrate 0.0803 g, ammonium metatungstate hydrate 0.0132 g, but by changing the process sequence of (3) and (4) of Example 1 to prepare tungsten-supported γ-phase alumina, platinum precursor solution A tungsten-platinum catalyst (W 0.2 Pt 0.8 /Al 2 O 3 ) for hydrogen production in which platinum was supported after tungsten was supported was prepared in the same manner as in Example 1, except that it was supported by the initial wetting method.
실험예 1. 백금과 텅스텐의 담지 비율에 따른 촉매의 탈수소화 능력 측정Experimental Example 1. Measurement of the dehydrogenation capacity of the catalyst according to the loading ratio of platinum and tungsten
백금과 텅스텐의 담지 비율에 따른 촉매 성능 확인을 위해, 상기 실시예 1 내지 실시예 3 및 비교예 1 내지 비교예 3에 따라 제조된 수소 제조용 촉매의 탈수소화 능력을 측정하였다. In order to confirm the catalyst performance according to the loading ratio of platinum and tungsten, the dehydrogenation capacity of the catalyst for hydrogen production prepared according to Examples 1 to 3 and Comparative Examples 1 to 3 was measured.
구체적으로, 100 ml 3-neck flask에 반응물인 perhydro-dibenzyltoluene을 5 g 충진하고, 상기 실시예 1 내지 실시예 3 및 비교예 1 내지 비교예 3에 따른 촉매 각각을 반응물 대비 활성금속의 비율이 0.15% 몰 비율이 되도록 충진하였다. 반응장비 내부는 초고순도 질소를 이용해 30분간 퍼징(purging) 과정을 진행하였다. 반응 온도를 270℃에 맞추기 위해 30분 동안 700 rpm으로 교반하며 가열하였고, 정상 상태(steady state)에 도달한 뒤 3시간 동안 유지하며 탈수소화 반응을 진행하였다. 탈수소화 반응 중에 발생하는 수소의 양은 2개의 냉각기를 거쳐 25℃로 냉각된 후 mass flow meter를 이용하여 실시간으로 기록하였다. 반응 종료 후, 반응기는 자연냉각 방식을 이용하여 상온까지 냉각하였다. mass flow meter로 기록된 수소의 부피는 반데르발스 방정식을 이용하여 몰 수로 정량화하였으며, perhydro-dibenzyltoluene이 생성 가능한 수소의 총량에 대조하여 탈수소화도 수치를 계산하였고, 그 결과를 하기 도 1 및 표 1에 나타내었다. Specifically, a 100 ml 3-neck flask was filled with 5 g of perhydro-dibenzyltoluene as a reactant, and each of the catalysts according to Examples 1 to 3 and Comparative Examples 1 to 3 was used in a ratio of active metal to reactant of 0.15. It was filled to a % molar ratio. The inside of the reaction equipment was purged using ultra-high purity nitrogen for 30 minutes. The reaction temperature was stirred and heated at 700 rpm for 30 minutes to adjust the reaction temperature to 270°C, and after reaching a steady state, the dehydrogenation reaction was performed while maintaining for 3 hours. The amount of hydrogen generated during the dehydrogenation reaction was recorded in real time using a mass flow meter after cooling to 25° C. through two coolers. After completion of the reaction, the reactor was cooled to room temperature using a natural cooling method. The volume of hydrogen recorded with a mass flow meter was quantified in moles using the van der Waals equation, and the dehydrogenation degree was calculated by comparing the total amount of hydrogen that perhydro-dibenzyltoluene could generate, and the results are shown in FIG. 1 and Table below. 1 is shown.
촉매catalyst
Pt/Al2O3 Pt/Al 2 O 3 Pt0.9W0.1
/Al2O3
Pt 0.9 W 0.1
/Al 2 O 3
Pt0.8W0.2
/Al2O3
Pt 0.8 W 0.2
/Al 2 O 3
Pt0.6W0.4
/Al2O3
Pt 0.6 W 0.4
/Al 2 O 3
Pt0.2W0.8
/Al2O3
Pt 0.2 W 0.8
/Al 2 O 3
W/Al2O3 W/Al 2 O 3
탈수소화도(%)Dehydrogenation degree (%) 58.0758.07 62.1862.18 64.8164.81 60.5060.50 51.9051.90 1.081.08
상기 표 1 및 하기 도 1에 나타난 바와 같이, 다공성 담체에 백금과 텅스텐을 0.9:0.1 내지 0.6:0.4의 중량비로 담지할 경우(실시예 1 내지 실시예 3), 백금 또는 텅스텐이 담지되지 않거나(비교예 1 내지 비교예 2), 텅스텐이 담지되더라도 상기 함량 범위를 벗어날 경우(비교예 3) 대비 촉매의 탈수소화도가 현저하게 향상되는 것을 확인하였으며, 그 중에서도 실시예 2 즉 백금과 텅스텐이 0.8:0.2의 중량비로 담지될 경우 촉매의 탈수소화도가 가장 우수함을 확인하였다. 상기 결과를 통해, 본 발명에 따라 다공성 담체에 백금과 텅스텐이 0.9:0.1 내지 0.6:0.4의 중량비로 담지된 실시예 1 내지 실시예 3의 촉매는 다른 촉매들 대비 수소 제조용 촉매로 유용하게 활용될 수 있음을 확인하였다. As shown in Table 1 and below, when platinum and tungsten are supported on the porous carrier in a weight ratio of 0.9:0.1 to 0.6:0.4 (Examples 1 to 3), platinum or tungsten is not supported ( Comparative Examples 1 to 2), it was confirmed that even if tungsten was supported, the dehydrogenation degree of the catalyst was remarkably improved compared to the case where it was outside the above content range (Comparative Example 3), and among them, in Example 2, that is, platinum and tungsten were 0.8: When supported in a weight ratio of 0.2, it was confirmed that the dehydrogenation degree of the catalyst was the best. Through the above results, the catalysts of Examples 1 to 3 in which platinum and tungsten were supported in a weight ratio of 0.9:0.1 to 0.6:0.4 on a porous carrier according to the present invention were usefully utilized as catalysts for hydrogen production compared to other catalysts. It was confirmed that it is possible.
실험예Experimental example 2. 백금 담지 시 열처리 공정 여부에 따른 촉매의 탈수소화 능력 측정 2. Measurement of dehydrogenation capacity of catalyst depending on whether or not heat treatment is performed on platinum loading
백금 담지 시 열처리 공정 여부에 따른 촉매 성능 확인을 위해, 상기 실시예 2, 비교예 1 및 비교예 4에 따라 제조된 수소 제조용 촉매의 탈수소화 능력을 측정하였다. 측정은 상기 실험예 1과 동일한 방법으로 진행하였으며, 측정 결과는 하기 도 2에 나타내었다.In order to confirm the catalyst performance according to whether or not the heat treatment process was performed when the platinum was supported, the dehydrogenation capacity of the catalyst for hydrogen production prepared according to Example 2, Comparative Example 1, and Comparative Example 4 was measured. The measurement was carried out in the same manner as in Experimental Example 1, and the measurement results are shown in FIG. 2 below.
도 2의 결과를 통해, 촉매 제조 시 동일하게 백금 담지 후에 텅스텐을 담지하더라도, 백금 담지 후에 열처리 공정을 수행하지 않은 촉매의 경우(비교예 4), 백금 담지 후에 열처리 공정을 수행한 촉매(실시예 2) 대비 탈수소화 능력이 현저하게 저하됨을 확인하였다. 이는 백금 담지 후에 열처리 공정 수행시에는 백금의 형상이 고정되어 텅스텐이 백금 입자 외부에 위치하지만, 백금 담지 후 열처리 공정을 수행하지 않은 촉매의 경우 환원과정에서 백금과 텅스텐이 혼합되어 촉매 표면의 구조가 달라지기 때문이다. 또한, 텅스텐이 담지되지 않은 백금 촉매(비교예 1)에 비해서도 탈수소화 능력이 현저하게 감소됨을 확인할 수 있었는바, 이러한 결과를 통해, 백금 담지 후에 수행되는 열처리 공정이 필요함을 확인하였다. Through the results of FIG. 2, even when tungsten is supported after loading platinum in the same manner as in the preparation of the catalyst, in the case of a catalyst that does not perform a heat treatment process after loading platinum (Comparative Example 4), a catalyst subjected to a heat treatment process after loading platinum (Example) 2) It was confirmed that the dehydrogenation ability was significantly lowered. This is because the shape of platinum is fixed and tungsten is located outside the platinum particles when the heat treatment process is performed after the platinum loading. because it changes. In addition, it was confirmed that the dehydrogenation ability was significantly reduced compared to the platinum catalyst on which tungsten was not supported (Comparative Example 1). Through these results, it was confirmed that the heat treatment process performed after the platinum was supported was necessary.
실험예 3. 백금과 텅스텐의 담지 순서에 따른 촉매의 탈수소화 능력 측정Experimental Example 3. Measurement of Dehydrogenation Capacity of Catalysts according to the Supporting Order of Platinum and Tungsten
백금과 텅스텐의 담지 순서에 따른 촉매의 성능 확인을 위해, 상기 실시예 2, 비교예 1, 비교예 2 및 비교예 5에 따라 제조된 수소 제조용 촉매의 탈수소화 능력을 측정하였다. 측정은 상기 실험예 1과 동일한 방법으로 진행하였으며, 측정 결과는 하기 도 3에 나타내었다.In order to confirm the performance of the catalyst according to the loading order of platinum and tungsten, the dehydrogenation capacity of the catalyst for hydrogen production prepared according to Example 2, Comparative Example 1, Comparative Example 2, and Comparative Example 5 was measured. The measurement was carried out in the same manner as in Experimental Example 1, and the measurement results are shown in FIG. 3 below.
도 3에 나타난 바와 같이, 백금과 텅스텐의 담지 순서를 달리하였을 때 동일한 백금과 텅스텐 함량을 가짐에도 탈수소화도 결과가 상이하게 관찰되었다. 구체적으로, 촉매 제조 시 동일한 함량의 백금과 텅스텐을 담지하더라도, 텅스텐을 먼저 담지한 후에 백금을 담지한 촉매의 경우(비교예 5), 백금을 먼저 담지하고 텅스텐을 담지한 촉매(실시예 2) 대비 탈수소화 능력이 현저하게 저하됨을 확인하였으며, 텅스텐이 담지되지 않은 백금 촉매(비교예 1)에 비해서도 탈수소화 능력이 현저하게 감소됨을 확인할 수 있었는바, 이러한 결과를 통해, 촉매 제조 시 백금을 먼저 담지하고 텅스텐을 담지하는 것이 바람직함을 확인하였다. As shown in FIG. 3 , different dehydrogenation results were observed even with the same platinum and tungsten content when the loading order of platinum and tungsten was changed. Specifically, even if the same content of platinum and tungsten were supported during catalyst preparation, in the case of a catalyst supporting tungsten first and then supporting platinum (Comparative Example 5), a catalyst supporting platinum and tungsten first (Example 2) It was confirmed that the dehydrogenation ability was significantly lowered compared to that, and it was confirmed that the dehydrogenation ability was significantly reduced even compared to the platinum catalyst (Comparative Example 1) on which tungsten was not supported. It was confirmed that it is preferable to support and support tungsten.
실험예 4. 백금과 텅스텐의 담지 비율에 따른 촉매의 전자상태 측정Experimental Example 4. Measurement of the electronic state of the catalyst according to the loading ratio of platinum and tungsten
백금과 텅스텐의 담지 비율에 따른 촉매 성능 확인을 위해, x-ray photoelectron spectroscopy(XPS) 분석 기법을 이용하여 상기 실시예 1 내지 실시예 3 및 비교예 1 내지 비교예 3에 따라 제조된 수소 제조용 촉매에 담지된 금속의 전자상태를 측정하였다. In order to confirm the catalyst performance according to the loading ratio of platinum and tungsten, the catalyst for hydrogen production prepared according to Examples 1 to 3 and Comparative Examples 1 to 3 using an x-ray photoelectron spectroscopy (XPS) analysis technique The electronic state of the metal supported on the was measured.
Binding energy (eV)Binding energy (eV)
Pt 4d5/2 Pt0 Pt 4d 5/2 Pt 0 Pt 4d3/2 Pt0 Pt 4d 3/2 Pt 0 W 4f7/2 W6+ W 4f 7/2 W 6+ W 4f5/2 W6+ W 4f 5/2 W 6+
Pt/Al2O3 Pt/Al 2 O 3 314.50314.50 331.50331.50 -- --
Pt0.9W0.1/Al2O3 Pt 0.9 W 0.1 /Al 2 O 3 314.47314.47 331.44331.44 35.7035.70 37.7837.78
Pt0.8W0.2/Al2O3 Pt 0.8 W 0.2 /Al 2 O 3 314.40314.40 331.35331.35 35.7035.70 37.7837.78
Pt0.6W0.4/Al2O3 Pt 0.6 W 0.4 /Al 2 O 3 314.35314.35 331.24331.24 35.6735.67 37.7237.72
Pt0.2W0.8/Al2O3 Pt 0.2 W 0.8 /Al 2 O 3 314.10314.10 331.22331.22 35.5635.56 37.6637.66
W/Al2O3 W/Al 2 O 3 -- -- 35.5035.50 37.6037.60
W0.2Pt0.8/Al2O3 W 0.2 Pt 0.8 /Al 2 O 3 314.50314.50 331.45331.45 35.5535.55 37.6737.67
상기 표 2의 결과를 통해, 텅스텐이 조촉매로 사용된 백금-알루미나 촉매에서는 텅스텐 종으로부터 백금으로의 전자 공여가 나타나는 것을 확인하였으며, 도입된 텅스텐 종의 비율이 증가할수록 공여되는 전자의 양이 증가하는 것 또한 확인하였다. 이렇게 전자가 풍부해진 백금은 반응성이 증가하여 촉매 활성이 증가하게 되며, 따라서 하기 도 4에 나타난 바와 같이 백금에서의 전자가 풍부해질수록 백금 당 탈수소화 활성이 크게 증가하는 것을 확인할 수 있다. 또한, 백금과 텅스텐의 담지 순서가 변경되는 경우에서는 이러한 전자 공여현상이 나타나지 않았으며, 이로 인한 활성증가 또한 일어나지 않음을 확인하였다.From the results of Table 2, it was confirmed that electron donation from tungsten species to platinum was shown in the platinum-alumina catalyst in which tungsten was used as a cocatalyst, and as the ratio of introduced tungsten species increased, the amount of donated electrons increased. It was also confirmed that In this way, the electron-rich platinum increases the reactivity and the catalytic activity increases. Therefore, as shown in FIG. 4 below, it can be seen that the more electrons in the platinum become, the greater the dehydrogenation activity per platinum. In addition, when the loading order of platinum and tungsten was changed, such an electron donation phenomenon did not appear, and it was confirmed that activity increase due to this also did not occur.
이상으로 본 발명 내용의 특정한 부분을 상세히 기술하였는바, 당업계의 통상의 지식을 가진 자에게 있어서 이러한 구체적 기술은 단지 바람직한 실시형태일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서, 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의하여 정의된다고 할 것이다.As described above in detail a specific part of the content of the present invention, for those of ordinary skill in the art, it is clear that this specific description is only a preferred embodiment, and the scope of the present invention is not limited thereby. something to do. Accordingly, it is intended that the substantial scope of the present invention be defined by the appended claims and their equivalents.
본 발명의 촉매는 다공성 담체에 백금과 텅스텐이 혼재되어 담지됨으로써, 낮은 온도에서도 탈수소화 활성이 현저하게 향상되는바, 액상 유기물 수소저장체로부터 수소를 생산하는 공정 및 관련 분야에 유용하게 활용될 수 있다.Since the catalyst of the present invention is supported in a mixture of platinum and tungsten on a porous carrier, the dehydrogenation activity is remarkably improved even at a low temperature, so it can be usefully used in a process for producing hydrogen from a liquid organic hydrogen storage and related fields. have.

Claims (12)

  1. 다공성 담체;porous carrier;
    상기 다공성 담체의 세공에 담지되는 백금; 및Platinum supported on the pores of the porous carrier; and
    상기 세공에 상기 백금과 혼재되어 담지되는 텅스텐;을 포함하는 수소 제조용 촉매.Catalyst for hydrogen production comprising a; tungsten supported in a mixture with the platinum in the pores.
  2. 제1항에 있어서,According to claim 1,
    상기 다공성 담체는 활성탄(activated carbon) 또는 산화알루미늄(Al2O3)인 것을 특징으로 하는 수소 제조용 촉매.The porous carrier is a catalyst for hydrogen production, characterized in that activated carbon (activated carbon) or aluminum oxide (Al 2 O 3 ).
  3. 제2항에 있어서,3. The method of claim 2,
    상기 활성탄은 산화 그래핀, 카본블랙, Vulcan으로 이루어진 군에서 선택되는 것을 특징으로 하는 수소 제조용 촉매.The activated carbon is a catalyst for hydrogen production, characterized in that selected from the group consisting of graphene oxide, carbon black, and Vulcan.
  4. 제1항에 있어서,According to claim 1,
    상기 텅스텐은 상기 다공성 담체의 세공에 백금이 담지된 후에 담지된 것을 특징으로 하는 수소 제조용 촉매.The tungsten catalyst for hydrogen production, characterized in that the supported after platinum is supported in the pores of the porous carrier.
  5. 제1항에 있어서,According to claim 1,
    상기 백금과 상기 텅스텐은 0.9:0.1 내지 0.6:0.4의 중량비로 담지되는 것을 특징으로 하는 수소 제조용 촉매.The platinum and the tungsten are supported in a weight ratio of 0.9:0.1 to 0.6:0.4. Catalyst for hydrogen production.
  6. (a) 다공성 담체의 세공에 백금 전구체 용액과 텅스텐 전구체 용액을 담지하는 단계; 및(a) supporting the platinum precursor solution and the tungsten precursor solution in the pores of the porous carrier; and
    (b) 상기 백금 전구체 용액과 텅스텐 전구체 용액이 담지된 상기 다공성 담체를 환원시키는 단계;를 포함하고, (b) reducing the porous carrier on which the platinum precursor solution and the tungsten precursor solution are supported;
    상기 (a) 단계는, 상기 다공성 담체의 세공에 백금 전구체 용액을 담지하는 단계; 상기 백금 전구체 용액이 담지된 상기 다공성 담체를 열처리하는 단계; 및 상기 열처리된 상기 다공성 담체의 세공에 텅스텐 전구체 용액을 담지하는 단계;를 포함하는 수소 제조용 촉매의 제조방법.The step (a) comprises the steps of supporting a platinum precursor solution in the pores of the porous carrier; heat-treating the porous carrier on which the platinum precursor solution is supported; and supporting a tungsten precursor solution in the pores of the heat-treated porous carrier.
  7. 제6항에 있어서,7. The method of claim 6,
    상기 수소 제조용 촉매는 백금과 텅스텐이 0.9:0.1 내지 0.6:0.4의 중량비로 담지된 것을 특징으로 하는 수소 제조용 촉매의 제조방법.The catalyst for hydrogen production is a method for producing a catalyst for hydrogen production, characterized in that platinum and tungsten are supported in a weight ratio of 0.9:0.1 to 0.6:0.4.
  8. 제6항에 있어서,7. The method of claim 6,
    상기 (a) 단계는 초기 젖음 담지법(incipient wetness impregnation)으로 수행되는 것을 특징으로 하는 수소 제조용 촉매의 제조방법.The step (a) is a method for producing a catalyst for hydrogen production, characterized in that carried out by the initial wetness impregnation (incipient wetness impregnation).
  9. 제6항에 있어서,7. The method of claim 6,
    상기 (b) 단계의 환원은 수소와 질소의 혼합 가스 분위기하에서 300 내지 600℃에서 수행되는 것을 특징으로 하는 수소 제조용 촉매의 제조방법.The reduction of step (b) is a method for producing a catalyst for hydrogen production, characterized in that it is carried out at 300 to 600 ℃ in a mixed gas atmosphere of hydrogen and nitrogen.
  10. 제1항에 따른 수소 제조용 촉매, 및 액상 유기물 수소 저장체(Liquid Organic Hydrogen Carrier, LOHC)를 혼합하는 단계; 및Mixing the catalyst for hydrogen production according to claim 1, and a liquid organic hydrogen carrier (Liquid Organic Hydrogen Carrier, LOHC); and
    상기 혼합 후 탈수소화 반응을 수행하는 단계를 포함하는 수소 제조방법.Hydrogen production method comprising the step of performing a dehydrogenation reaction after the mixing.
  11. 제10항에 있어서,11. The method of claim 10,
    상기 액상 유기물 수소 저장체는 퍼하이드로-디벤질톨루엔(perhydro-Dibenzyltoluene), 시클로헥산(cyclohexane), 메틸시클로헥산(methyl cyclohexane), 데칼린(decalin), 벤질톨루엔(benzyl toluene), 디벤질톨루엔(dibenzyl toluene), 퍼하이드로N-에틸카바졸(perhydro-N-ethylcarbazole), 2-[(N-메틸시클로헥실)메틸]피페리딘으로 이루어진 군에서 선택되는 것을 특징으로 하는 수소 제조방법.The liquid organic hydrogen storage is perhydro-dibenzyltoluene, cyclohexane, methyl cyclohexane, decalin, benzyl toluene, and dibenzyl toluene. toluene), perhydro-N-ethylcarbazole, and 2-[(N-methylcyclohexyl)methyl]piperidine.
  12. 제10항에 있어서,11. The method of claim 10,
    상기 탈수소화 반응은 250 ~ 300℃의 온도에서 2 내지 4시간 동안 수행되는 것을 특징으로 하는 수소 제조방법.The dehydrogenation reaction is hydrogen production method, characterized in that carried out for 2 to 4 hours at a temperature of 250 ~ 300 ℃.
PCT/KR2021/016837 2020-11-20 2021-11-17 Platinum-tungsten catalyst for hydrogen preparation and method for preparing hydrogen using same WO2022108319A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2020-0156285 2020-11-20
KR20200156285 2020-11-20

Publications (1)

Publication Number Publication Date
WO2022108319A1 true WO2022108319A1 (en) 2022-05-27

Family

ID=81709411

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/016837 WO2022108319A1 (en) 2020-11-20 2021-11-17 Platinum-tungsten catalyst for hydrogen preparation and method for preparing hydrogen using same

Country Status (2)

Country Link
KR (1) KR102628990B1 (en)
WO (1) WO2022108319A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116920837A (en) * 2023-06-13 2023-10-24 北京海望氢能科技有限公司 Dehydrogenation catalyst, preparation method and application thereof in preparation of carbazole through diphenylamine dehydrogenation

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR970009880A (en) * 1995-08-25 1997-03-27 백영배 Composite metal catalyst composition for dehydrogenation reaction and preparation method thereof
JP2005203266A (en) * 2004-01-16 2005-07-28 Kansai Electric Power Co Inc:The Hydrogen production method and hydrogen production system
KR20180079178A (en) * 2016-12-29 2018-07-10 주식회사 효성 Composite catalyst support, dehydrogenation catalysts and preparation method thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3287191A1 (en) 2016-08-26 2018-02-28 Friedrich-Alexander-Universität Erlangen-Nürnberg Catalytically active compositions of matter

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR970009880A (en) * 1995-08-25 1997-03-27 백영배 Composite metal catalyst composition for dehydrogenation reaction and preparation method thereof
JP2005203266A (en) * 2004-01-16 2005-07-28 Kansai Electric Power Co Inc:The Hydrogen production method and hydrogen production system
KR20180079178A (en) * 2016-12-29 2018-07-10 주식회사 효성 Composite catalyst support, dehydrogenation catalysts and preparation method thereof

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
BETTI CAROLINA P., BADANO JUAN M., RIVAS IVANA L., MAZZIERI VANINA A., MACCARRONE M. JULIANA, COLOMA-PASCUAL FERNANDO, VERA CARLOS: "Sulfur Resistance of Pt-W Catalysts", JOURNAL OF CHEMISTRY, HINDAWI PUBLISHING CORPORATION, US, vol. 2013, 1 January 2013 (2013-01-01), US , pages 1 - 8, XP055931299, ISSN: 2090-9063, DOI: 10.1155/2013/502014 *
TIAN MING-HUA; YANG YANG; DESMOND COOPER; LIU FENG; ZHU ZHI-QIANG; LI QIAO-XIA: "Pt-Surface-Enriched Platinum–Tungsten Bimetallic Nanoparticles Catalysts on Different Carbon Supports for Electro-Oxidation of Ethanol", CATALYSIS LETTERS, J.C. BALTZER, NEW YORK, vol. 150, no. 12, 13 May 2020 (2020-05-13), New York , pages 3386 - 3393, XP037273525, ISSN: 1011-372X, DOI: 10.1007/s10562-020-03238-4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116920837A (en) * 2023-06-13 2023-10-24 北京海望氢能科技有限公司 Dehydrogenation catalyst, preparation method and application thereof in preparation of carbazole through diphenylamine dehydrogenation
CN116920837B (en) * 2023-06-13 2024-05-03 北京海望氢能科技有限公司 Dehydrogenation catalyst, preparation method and application thereof in preparation of carbazole through diphenylamine dehydrogenation

Also Published As

Publication number Publication date
KR102628990B1 (en) 2024-01-25
KR20220069833A (en) 2022-05-27

Similar Documents

Publication Publication Date Title
CN111892018B (en) Method for providing high purity hydrogen
WO2010056092A9 (en) Organic framework
US20140328749A1 (en) Use of a process for hydrogen production
CN111892017A (en) Method for preparing high-purity high-pressure hydrogen from organic liquid
WO2021225254A1 (en) Catalyst in which catalytic metal is supported on hexagonal support, and preparation method therefor
WO2022108319A1 (en) Platinum-tungsten catalyst for hydrogen preparation and method for preparing hydrogen using same
WO2020075920A1 (en) Composite ternary catalyst composed of composite oxide support and single atom, and preparation method therefor
US20100113263A1 (en) Non-pyrophoric shift reaction catalyst and method of preparing the same
US11198111B2 (en) Catalyst for dehydrogenation reaction for liquid organic hydrogen carriers (LOHC) and manufacturing method for the same
WO2019117381A1 (en) Catalyst support, for preparing hydrogen, having three-dimensional heterogeneous pores and phosphorus added thereto for catalyst deactivation prevention, and method for preparing same
Li et al. Embedded MoN@ C nanocomposites as an advanced catalyst for ammonia decomposition to COx-free hydrogen
WO2012105756A1 (en) Nickel-m-alumina xerogel catalyst, method for preparing same, and method for preparing methane using the catalyst
CN100593510C (en) Method for preparing carbon nanotube
US20050281734A1 (en) Method for manufacturing mesoporous alumina molecular sieve and alumina nanotube and use of the alumina nanotube for storage of h2
KR102311550B1 (en) Metal-Impregnated Activated Carbon For Adsorbing Ammonia, Preparation Method Therefor, and Uses Thereof
WO2022191522A1 (en) Pt-pd catalyst for synthesis of hydrogen and method of preparing hydrogen using same
WO2023090930A1 (en) Pt-mo catalyst for synthesis of hydrogen, and method of preaparing hydrogen using pt-mo catalyst
Jin et al. Solid‐Phase Hydrogen Storage Based on NH3BH3‐SiO2 Nanocomposite for Thermolysis
KR102642228B1 (en) Platinum catalyst for preparing hydrogen based on lanthanum-alumina support and method of preparing hydrogen using the same
WO2019156275A1 (en) Lignin decomposition catalyst and lignin decomposition method using same
WO2022108353A1 (en) Pt-re catalyst for synthesis of hydrogen, and method of preparing hydrogen using same
WO2024122937A1 (en) Ammonia decomposing catalyst and method for producing same
KR20240048499A (en) Pt-Ta catalyst for synthesis of hydrogen, and Method of preaparing hydrogen using the Pt-Ta catalyst
WO2024071710A1 (en) Ammonia decomposition catalyst for hydrogen generation and method for preparing same
KR20230046179A (en) Platinum Supported Catalysts Having Improved Reversibility of Hydroganation/Dehydrogenation, and Method for Storing and Releasing Hydrogen Using the Same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21895087

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21895087

Country of ref document: EP

Kind code of ref document: A1