KR20180079178A - Composite catalyst support, dehydrogenation catalysts and preparation method thereof - Google Patents

Composite catalyst support, dehydrogenation catalysts and preparation method thereof Download PDF

Info

Publication number
KR20180079178A
KR20180079178A KR1020170167501A KR20170167501A KR20180079178A KR 20180079178 A KR20180079178 A KR 20180079178A KR 1020170167501 A KR1020170167501 A KR 1020170167501A KR 20170167501 A KR20170167501 A KR 20170167501A KR 20180079178 A KR20180079178 A KR 20180079178A
Authority
KR
South Korea
Prior art keywords
cerium
carrier
catalyst
dehydrogenation
dehydrogenation catalyst
Prior art date
Application number
KR1020170167501A
Other languages
Korean (ko)
Inventor
정단비
김원일
조부영
우재영
염희철
조재한
조민정
Original Assignee
주식회사 효성
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 효성 filed Critical 주식회사 효성
Publication of KR20180079178A publication Critical patent/KR20180079178A/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/391Physical properties of the active metal ingredient
    • B01J35/393Metal or metal oxide crystallite size
    • B01J35/006
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/02Boron or aluminium; Oxides or hydroxides thereof
    • B01J21/04Alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/10Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of rare earths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0215Coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C11/00Aliphatic unsaturated hydrocarbons
    • C07C11/02Alkenes
    • C07C11/06Propene
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C5/00Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
    • C07C5/32Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by dehydrogenation with formation of free hydrogen
    • C07C5/321Catalytic processes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C9/00Aliphatic saturated hydrocarbons
    • C07C9/02Aliphatic saturated hydrocarbons with one to four carbon atoms
    • C07C9/08Propane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Catalysts (AREA)

Abstract

The present invention relates to a composite catalyst carrier in which a cerium compound is doped on a carrier and content of a cerium compound is from 0.02 to 2.0 wt% based on 100 wt% of a composition of the carrier; a dehydrogenation catalyst; and a preparation method thereof. The dehydrogenation catalyst prepared using the composite catalyst carrier of the present invention can be operated under severe conditions so that efficiency of a dehydrogenation process is improved and stability and lifetime of the catalyst are increased, and a cost per process can be improved by increasing selectivity.

Description

복합 촉매 담체, 탈수소 촉매 및 그의 제조방법{COMPOSITE CATALYST SUPPORT, DEHYDROGENATION CATALYSTS AND PREPARATION METHOD THEREOF}TECHNICAL FIELD [0001] The present invention relates to a composite catalyst support, a dehydrogenation catalyst,

본 발명은 복합 촉매 담체, 탈수소 촉매 및 그의 제조방법에 관한 것으로, 더욱 상세하게는 가혹한 조건에서 운전이 가능하여 공정 효율을 향상시키면서도 촉매의 수명을 증가시킬 수 있는 복합 촉매 담체, 탈수소 촉매 및 그의 제조방법에 관한 것이다. The present invention relates to a composite catalyst carrier, a dehydrogenation catalyst, and a production method thereof, and more particularly, to a composite catalyst carrier, a dehydrogenation catalyst, and a production method thereof, which can operate under harsh conditions, ≪ / RTI >

일반적으로, 탄화수소 기체, 특히 프로판의 경우, 백금과 같은 귀금속계 또는 크롬과 같은 산화물계 탈수소 촉매를 사용하여 프로판으로부터 프로필렌을 제조하는 공정이 종래부터 공업적으로 널리 실시되고 있다. 그러나 프로판 탈수소 반응은 흡열 반응이기 때문에, 단열 반응 장치의 반응에서는 반응의 진행과 함께 반응 온도가 저하되므로 프로필렌의 생산량의 증가를 위해서는 추가적인 반응열을 일정하게 공급해 주어야 한다. 또한, 프로판 탈수소 반응은 열역학적으로 최대 프로필렌의 수율이 제한받는 가역반응에 의한 평형 반응이기 때문에 높은 전환율을 얻기 어렵다. In general, in the case of hydrocarbon gas, especially propane, a process for producing propylene from propane using a noble metal such as platinum or an oxide-based dehydrogenation catalyst such as chromium has been widely practiced industrially. However, since propane dehydrogenation reaction is an endothermic reaction, the reaction temperature of the adiabatic reaction apparatus decreases with the progress of the reaction. Therefore, in order to increase the production amount of propylene, additional reaction heat must be supplied constantly. Also, the propane dehydrogenation reaction is difficult to obtain a high conversion rate because it is an equilibrium reaction by the reversible reaction in which the yield of the maximum propylene is thermodynamically limited.

탄화수소의 촉매 탈수소화 분야에서, 활성과 선택율이 높으면서 사용 중에 높은 안정성을 나타내는 성질을 가진 개선된 촉매를 개발하고자 하는 노력이 진행되고 있다. 촉매의 안정성은 사용 중일 때 촉매 비활성화 속도를 의미한다. 촉매의 비활성화 속도는 유효 수명에 영향을 미치는 바, 그 수명을 연장시키고 가혹도가 높은 공정 조건에서 생산물의 수율을 높이기 위해, 일반적으로 촉매는 고도로 안정성인 것이 요구된다. In the field of catalyst dehydrogenation of hydrocarbons, efforts are being made to develop improved catalysts with high activity and selectivity and high stability during use. The stability of the catalyst means the rate of catalyst deactivation when in use. The rate of deactivation of the catalyst affects the useful life, and in general, the catalyst is required to be highly stable, in order to extend its lifetime and increase the yield of the product under high severity process conditions.

탄화수소의 탈수소화 반응에 사용되는 촉매의 담체로는 알루미나, 실리카, 제올라이트 등이 사용되고 있다. 이러한 탈수소 촉매에서 요구되는 특성으로는 활성성분의 함량, 조촉매의 종류, 활성성분의 분산도, 담체의 종류, 담체의 기공 특성, 담체의 산도 등을 고려하여야 한다. 그러나 기존의 촉매는 비활성화가 빠르게 진행되어 반응안정성의 측면에서 많은 개선의 여지가 있다. Alumina, silica, zeolite, and the like are used as a carrier of the catalyst used in the dehydrogenation reaction of hydrocarbons. The characteristics required for such a dehydrogenation catalyst should include the content of the active component, the type of promoter, the dispersity of the active component, the type of carrier, the pore characteristics of the carrier, and the acidity of the carrier. However, existing catalysts are inactivated rapidly and there is room for improvement in terms of reaction stability.

또한 탈수소화는 매우 높은 온도, 낮은 수소 농도 및 고압의 가혹한 조건에서 수율을 향상시킬 수 있지만, 이러한 가혹한 조건에서는 촉매의 안정성이 저하되기 때문에, 가혹한 조건에서도 안정성을 유지할 수 있는 촉매의 개발이 절실하게 요구되고 있다. In addition, dehydrogenation can improve the yield at a very high temperature, low hydrogen concentration and high pressure. However, since the stability of the catalyst is deteriorated under such a severe condition, development of a catalyst capable of maintaining stability even in harsh conditions is urgently required Is required.

본 발명은 상기와 같은 종래 기술의 문제점을 해결하기 위한 것으로서, 본 발명의 하나의 목적은 가혹한 조건에서 촉매의 안정성을 유지할 수 있는 복합 촉매 담체를 제공하는 것이다. DISCLOSURE Technical Problem The present invention has been made to solve the problems of the prior art as described above, and one object of the present invention is to provide a composite catalyst carrier which can maintain the stability of the catalyst under harsh conditions.

본 발명의 다른 목적은 생산물의 생산성을 높이고 원단위를 낮출 수 있는 선택도와 전환율이 우수한 탈수소 촉매를 제공하는 것이다. Another object of the present invention is to provide a dehydrogenation catalyst having excellent selectivity and conversion rate which can increase the productivity of products and reduce the unit cost.

본 발명의 또 다른 목적은 탈수소 촉매의 제조방법을 제공하는 것이다. It is still another object of the present invention to provide a method for producing a dehydrogenation catalyst.

본 발명의 또 다른 목적은 본 발명의 탈수소 촉매를 이용하는 개선된 탈수소화 공정을 제공하는 것이다. It is another object of the present invention to provide an improved dehydrogenation process using the dehydrogenation catalyst of the present invention.

본 발명의 그 밖의 목적, 이점들 및 신규한 특징들은 이하의 상세한 설명과 바람직한 실시예로부터 더욱 자명해질 것이다. Other objects, advantages and novel features of the present invention will become more apparent from the following detailed description and preferred embodiments.

상술한 목적을 달성하기 위한 본 발명의 하나의 양상은, According to an aspect of the present invention,

담체 위에 세륨 화합물이 도핑되고, 담체 조성 100중량%에 대하여 세륨 화합물의 함량이 0.02 ~ 2.0 중량%인 것을 특징으로 하는 복합 촉매 담체에 관한 것이다. Wherein the carrier is doped with a cerium compound and the content of the cerium compound is 0.02 to 2.0% by weight based on 100% by weight of the carrier composition.

상기 담체는 알루미나, 실리카, 또는 이들의 혼합물일 수 있고, 바람직하게는 90% 이상의 세타 결정성을 갖는 알루미나(Al2O3)이다. The carrier may be alumina, silica, or a mixture thereof, preferably alumina (Al 2 O 3 ) having a crystallinity of 90% or more.

상술한 목적을 달성하기 위한 본 발명의 다른 양상은, According to another aspect of the present invention,

담체에 전이금속 활성성분, 보조금속, 알칼리 금속 또는 알칼리 토금속이 담지된 형태를 가지는 탈수소 촉매로서, 상기 담체가 담체 위에 세륨 화합물이 도핑되고, 담체 조성 100중량%에 대하여 세륨 화합물의 함량이 0.02 ~ 2.0 중량%인 것을 특징으로 하는 탈수소 촉매에 관한 것이다. 1. A dehydrogenation catalyst having a carrier in which a transition metal active component, an auxiliary metal, an alkali metal or an alkaline earth metal is supported, wherein the carrier is doped with a cerium compound on a carrier and the content of the cerium compound is in the range of 0.02 - 2.0% by weight of the dehydrogenation catalyst.

상술한 목적을 달성하기 위한 본 발명의 또 다른 양상은, According to another aspect of the present invention,

담체 위에 세륨 전구체 용액을 도핑후 건조소성하여, 세륨 함량이 0.02 ~ 2.0 중량%인 복합 촉매 담체를 수득하고, 수득된 복합 촉매 담체에 전이금속 활성 성분과 보조금속을 함침시킨 후, 소성하는 단계를 포함하는 것을 특징으로 하는 탈수소 촉매의 제조방법에 관한 것이다. A cerium precursor solution is doped on the carrier and then dried and fired to obtain a composite catalyst carrier having a cerium content of 0.02 to 2.0% by weight, impregnating the resulting composite catalyst carrier with a transition metal active component and an auxiliary metal, The present invention relates to a process for producing a dehydrogenation catalyst.

본 발명의 또 다른 양상은 탈수소화 가능한 탄화수소를 본 발명의 복합 촉매 담체를 포함하는 탈수소 촉매와 탈수소화 조건 하에서 접촉시키는 단계 및 탈수소화 산물을 수득하는 단계를 포함하는 것을 특징으로 하는 탈수소화 방법에 관한 것이다. Another aspect of the present invention is a dehydrogenation process comprising contacting a dehydrogenatable hydrocarbon with a dehydrogenation catalyst comprising a complex catalyst carrier of the present invention under dehydrogenation conditions and obtaining a dehydrogenation product .

본 발명에 의한 담체 위에 세륨 화합물이 도핑되고, 담체 조성 100 중량%에 대하여 세륨 화합물의 함량이 0.02 ~ 2.0 중량%인 담체 및 이를 포함하는 탄화수소 탈수소 촉매에 의하면, 공정 효율을 높일 수 있는 가혹한 조건에서 운전이 가능하여 생산량을 증가시킬 수 있다. According to the carrier and the hydrocarbon dehydrogenation catalyst containing the cerium compound doped on the carrier according to the present invention and having a cerium compound content of 0.02 to 2.0 wt% based on 100 wt% of the carrier composition, Operation is possible and the production amount can be increased.

또한 본 발명에 의하면 촉매 안정성 및 수명 증가로 촉매 반응-재생 주기를 증가시킬 수 있다. Also, according to the present invention, catalyst stability and lifetime can be increased to increase the catalyst reaction-regeneration cycle.

또한 본 발명에 의하면 선택도 증가에 의해 공정 원단위를 개선하고 생산성을 향상시킬 수 있다. According to the present invention, it is possible to improve the process unit level and increase the productivity by increasing the selectivity.

이하에서 본 발명에 대하여 보다 상세하게 설명한다. Hereinafter, the present invention will be described in more detail.

본 발명의 하나의 양상은 담체 위에 세륨 화합물이 도핑되고, 담체 조성 100중량%에 대하여 세륨 화합물의 함량이 0.02 ~ 2.0 중량%인 것을 특징으로 하는 복합 촉매 담체에 관한 것이다. One aspect of the present invention relates to a composite catalyst carrier characterized in that a carrier is doped with a cerium compound and the content of the cerium compound is from 0.02 to 2.0% by weight based on 100% by weight of the carrier composition.

본 발명에서 세륨 화합물의 함량이 0.02 중량% 미만이면, 촉매 안정성, 수명 증가, 생산량 증가 효과를 충분하게 얻을 수 없고, 이와 반대로 세륨 화합물의 함량이 2.0 중량%를 초과하면 담체내에 촉매 금속을 담지시키는 경우에 촉매 금속을 인캡슐레이션하여 활성점을 막아 촉매의 활성을 저하시킨다. If the content of the cerium compound in the present invention is less than 0.02% by weight, the catalyst stability, lifetime and productivity increase effect can not be sufficiently obtained. On the contrary, when the cerium compound content exceeds 2.0% by weight, The catalytic metal is encapsulated and the active site is blocked to lower the activity of the catalyst.

본 발명의 복합 촉매 담체는 담체에 세륨을 도핑하여 탈수소 촉매의 선택도, 안정성, 수명을 향상시킬 수 있는 복합 촉매 담체이다. The composite catalyst carrier of the present invention is a composite catalyst carrier capable of improving the selectivity, stability, and lifetime of the dehydrogenation catalyst by doping cerium onto the carrier.

본 발명에 따른 복합 촉매 담체에서, 담체로는 알루미나, 실리카 및 이의 혼합성분이 사용될 수 있으며, 바람직하게는 알루미나가 적당하다. 알루미나의 세타 결정성은 코크의 생성 정도를 결정해주는 인자로서, 90% 이상이 바람직하다. 바람직한 실시예에서, 담체의 결정형은 세타 혹은 세타와 감마의 두 결정형이 공존하는 알루미나를 사용할 수도 있다. In the composite catalyst carrier according to the present invention, alumina, silica and a mixed component thereof may be used as the carrier, preferably alumina. The crystallinity of the alumina is a factor for determining the degree of formation of coke, preferably 90% or more. In a preferred embodiment, the crystalline form of the carrier may be alumina in which two crystalline forms of theta or shea and gamma coexist.

본 발명에서 사용되는 세륨 화합물로서는 산화 세륨, 수산화 세륨, 탄산 세륨, 질산 세륨, 염화 세륨, 및 이들의 혼합물로 구성되는 군에서 선택되는 1종 이상을 사용할 수 있다. As the cerium compound used in the present invention, at least one selected from the group consisting of cerium oxide, cerium hydroxide, cerium carbonate, cerium nitrate, cerium chloride, and a mixture thereof can be used.

본 발명의 다른 양상의 탈수소 촉매는 담체에 전이금속 활성성분, 보조금속, 알칼리 금속 또는 알칼리 토금속이 담지된 형태를 가지는 탈수소 촉매로서, 상기 담체가 담체 위에 세륨 화합물이 도핑되고, 담체 조성 100중량%에 대하여 세륨 화합물의 함량이 0.02 ~ 2.0 중량%인 것을 특징으로 한다. A dehydrogenation catalyst according to another aspect of the present invention is a dehydrogenation catalyst having a carrier in which a transition metal active component, an auxiliary metal, an alkali metal or an alkaline earth metal is supported, wherein the carrier is doped with a cerium compound on a carrier, The content of the cerium compound is 0.02 to 2.0% by weight.

본 발명의 탈수소 촉매는 탈수소 반응 조건이 가혹할수록, 종래의 방법에 의한 촉매보다 차별화되는 개선된 성능, 즉 높은 탄화수소 전환율 및 선택도와 성능 안정성 그리고 개선된 코킹에 대한 저항성과 코크 제거 용이성을 제공한다. 본 발명의 촉매는 안정성 증대로 가혹한 공정 조건(H2/C3 ratio= 0~1.0, 고온= 550~700℃, 고압=0.0~5.0kgf/cm2 등)에서의 운전이 가능하다. The dehydrogenation catalysts of the present invention provide improved performance that is different from conventional catalysts, namely, high hydrocarbon conversion and selectivity and performance stability, and resistance to improved caulking and ease of removal of coke as the dehydrogenation reaction conditions are severer. The catalyst of the present invention can be used in a severe process condition (H2 / C3 ratio = 0 to 1.0, high temperature = 550 to 700 ° C, high pressure = 0.0 to 5.0 kg f / cm 2 Etc.) is possible.

본 발명에서 상기 전이금속 활성 성분은 백금(Pt), 팔라듐(Pd), 니켈(Ni), 코발트(Co), 루테늄(Ru), 레늄(Re), 로듐(Rh), 오스뮴(Os), 티타늄(Ti), 바나듐(V), 크롬(Cr), 망간(Mn), 철(Fe), 구리(Cu), 또는 아연(Zn)으로, 이들은 단독으로 또는 합금의 형태로 사용될 수 있다. In the present invention, the transition metal active component may be at least one selected from the group consisting of platinum (Pt), palladium (Pd), nickel (Ni), cobalt (Co), ruthenium (Ru), rhenium (Re), rhodium (Rh), osmium (Ti), vanadium (V), chromium (Cr), manganese (Mn), iron (Fe), copper (Cu) or zinc (Zn). These may be used singly or in the form of an alloy.

본 발명의 탈수소 촉매에서 상기 보조금속은 마그네슘, 칼슘, 티탄, 지르코늄, 바나듐, 니오브, 크롬, 몰리브덴, 텅스텐, 망간, 레늄, 루테늄, 오스뮴, 코발트, 로듐, 이리듐, 니켈, 동, 은, 금, 아연, 붕소, 알루미늄, 갈륨, 인듐, 규소, 게르마늄, 주석, 인, 안티몬, 비스무트, 랜턴, 프라세오디뮴, 네오디뮴, 사마륨으로 이루어지는 군으로부터 선택되는 적어도 하나의 산화물 또는 화합물을 각각 0.001 ~ 5.0 중량% 포함할 수 있다. In the dehydrogenation catalyst of the present invention, the auxiliary metal may be at least one selected from the group consisting of magnesium, calcium, titanium, zirconium, vanadium, niobium, chromium, molybdenum, tungsten, manganese, rhenium, ruthenium, osmium, cobalt, rhodium, iridium, At least one oxide or compound selected from the group consisting of zinc, boron, aluminum, gallium, indium, silicon, germanium, tin, phosphorus, antimony, bismuth, lanthanum, praseodymium, neodymium and samarium .

본 발명의 세륨 도핑된 탈수소 촉매는 다양한 용도를 가질 수 있다. 따라서 예를 들어 탄화수소 또는 다른 유기 화합물의 탈수소화, 특히 C2~C5의 선형 탄화수소의 탈수소화에 사용될 수 있다. 본 발명에서의 포화 탄화수소는 에탄, 프로판, 부탄, 이소부탄, 펜탄의 주요한 대상 반응물로 탈수소 반응에 의해 반응물로 사용된 포화 탄화수소에 상응하는 탄소 골격을 가진 올레핀 즉, 에틸렌, 프로필렌, 1-혹은 2-부틸렌, 이소부틸렌, 펜텐으로 전환된다. The cerium-doped dehydrogenation catalyst of the present invention can have a variety of uses. Thus, it can be used, for example, for dehydrogenation of hydrocarbons or other organic compounds, in particular for the dehydrogenation of C2 to C5 linear hydrocarbons. The saturated hydrocarbons in the present invention are mainly reactants of ethane, propane, butane, isobutane, pentane, and olefins having a carbon skeleton corresponding to saturated hydrocarbons used as reactants by dehydrogenation, that is, ethylene, propylene, 1- or 2- -Butylene, isobutylene, and pentene.

본 발명의 촉매는 이 밖에도 히드로황화 (hydrosulfuration), 히드로탈질화(hydrodenitrification), 탈황화, 히드로탈황화, 탈히드로할로겐화, 개질, 수증기 개질, 크래킹, 히드로크래킹, 수소화, 탈수소화, 이성질체화, 불균화(dismutation), 옥시염소화 및 탈히드로고리화, 산화 및/또는 환원 반응, 클라우스(Claus) 반응과 같은 다양한 반응의 촉매로 사용될 수 있다. The catalysts of the present invention may also be used in a variety of other processes such as hydrosulfuration, hydrodenitrification, desulfurization, hydrodesulfurization, dehydrohalogenation, reforming, steam reforming, cracking, hydrocracking, hydrogenation, dehydrogenation, isomerization, Can be used as catalysts for various reactions such as dismutation, oxychlorination and dehydrocyclization, oxidation and / or reduction reactions, Claus reaction.

본 발명의 다른 양상은 탈수소 촉매의 제조방법에 관한 것으로, 활성성분으로 백금을 이용하는 것을 예로 들어 상세히 설명하면 다음과 같다. Another aspect of the present invention relates to a method for producing a dehydrogenation catalyst, which uses platinum as an active ingredient.

본 발명의 방법에서는 알루미나, 실리카, 또는 이들의 혼합물 형태의 담체 위에 세륨 전구체 용액을 도핑한 후 건조소성하여, 세륨 함량이 0.02 ~ 2.0 중량%인 복합 촉매 담체를 수득하고, 수득된 복합 촉매 담체에 전이금속 활성 성분과 보조금속을 함침시킨 후, 소성하여 탈수소 촉매를 제조한다. In the method of the present invention, a cerium precursor solution is doped onto a support in the form of alumina, silica, or a mixture thereof, followed by dry calcination to obtain a composite catalyst carrier having a cerium content of 0.02 to 2.0 wt% The transition metal active component and the auxiliary metal are impregnated and then fired to prepare a dehydrogenation catalyst.

상기 담체는 알루미나, 실리카 또는 이들의 혼합 담체일 수 있는데, 바람직하게는 세타 결정상 또는 세타 결정상과 감마 결정상이 공존하는 알루미나로서, 90% 이상의 세타 결정성을 갖는 알루미나를 사용할 수 있다. The carrier may be alumina, silica or a mixed carrier thereof. Preferably, the alumina having a crystallite of theta or co-existing with the crystallite of theta and gamma crystal phase may be alumina having a crystallinity of 90% or more.

상기 세륨 전구체는 세륨 클로라이드, 세륨 나이트레이트, 세륨 브로마이드, 세륨 옥사이드, 세륨 하이드록사이드, 및 세륨 아세테이트 전구체로 구성되는 군으로부터 선택되는 1종 이상을 사용할 수 있다. The cerium precursor may be at least one selected from the group consisting of cerium chloride, cerium nitrate, cerium bromide, cerium oxide, cerium hydroxide, and cerium acetate precursor.

상기 세륨 전구체의 제조 시에는 세륨 전구체를 염산, 질산, 황산, 불산 및 인산으로 이루어진 군으로부터 선택되는 1종 이상의 산에 현탁시킨다. In preparing the cerium precursor, the cerium precursor is suspended in at least one acid selected from the group consisting of hydrochloric acid, nitric acid, sulfuric acid, hydrofluoric acid, and phosphoric acid.

본 발명에서 전이금속 활성 성분은 전자적, 물리적, 화학적으로 포화 탄화수소의 탈수소 반응에 영향을 끼칠 수 있는 물질을 말하는데, 넓게는 담체 물질은 포함하여 최종적으로 금속 미세입자, 산화물, 염화물, 황화물, 하이드라이드 형태, 할로겐 염, 옥시 클로라이드, 담체물질 또는 다른 성분끼리의 화합상태 등으로 존재할 수 있다. In the present invention, the transition metal active component refers to a substance capable of electronically, physically, and chemically influencing the dehydrogenation reaction of saturated hydrocarbons, and widely includes a carrier material and finally contains metal fine particles, oxides, chlorides, sulfides, hydrides Form, halogen salt, oxychloride, carrier material, or a combination of the other ingredients.

예를 들어, 백금 성분의 원료로는 염화 백금산, 암모늄 염화 백금염, 브로모 백금산, 백금 염화 수화물, 백금 카르보닐 염 혹은 산, 니트로화 백금 염 혹은 산 등이 가능한데 바람직하게는 염화 백금산(H2PtCl6)을 염산과 함께 공지된 함침방법(흡착법)에 의해 위에서 제조된 세륨 도핑된 복합 촉매 담체에 담지시키는 것이 좋다.For example, as a raw material of the platinum component, chloroplatinic acid, ammonium chloroplatinic acid, bromoplatinic acid, platinum chloride hydrate, platinum carbonyl salt or acid, nitroplated platinum salt or acid may be used, preferably chloroplatinic acid (H 2 PtCl 6 ) is supported on the cerium-doped mixed catalyst carrier prepared above by a known impregnation method (adsorption method) together with hydrochloric acid.

세륨 도핑된 복합 촉매 담체에 전이금속 활성 성분을 함침시키는 방법은 초기 함침법 (incipient wetness method)을 이용할 수 있고, 그 밖의 다른 함침법도 이용할 수 있다. 상기 침전법으로는 공침법 (coprecipitation method), 균일 침전법 (homogeneous precipitation method) 또는 연차 침전법 (sequential precipitation method) 등을 이용할 수 있다. 침전법으로 촉매 분말 제조 시, 구성 요소인 활성물질과 담체를 동시에 침천시킴으로, 분말상태의 촉매가 얻어지고, 활성물질의 비율을 자유롭게 조절할 수 있으며, 활성물질과 담체 사이의 상호 결합력을 강하게 하여 안정성이 우수한 촉매 분말의 제조가 가능하다. The impregnation of the transition metal active component with the cerium-doped composite catalyst carrier may be carried out by using an incipient wetness method, or by any other impregnation method. As the precipitation method, a coprecipitation method, a homogeneous precipitation method, or a sequential precipitation method can be used. In the preparation of the catalyst powder by the precipitation method, the active substance and the carrier, which are constituent elements, are simultaneously sedimented to obtain a powdery catalyst, the ratio of the active substance can be freely controlled and the mutual binding force between the active substance and the carrier is strengthened, It is possible to produce this excellent catalyst powder.

한편, 전이금속 활성성분 함유 용액의 함침은 담체 물질의 최종 제조 후에 수용액에 사용 담체 대비 약 1 중량%의 30% 농도의 염산을 적용하여, 상온에서 0.5~4시간 교반 담지 처리 후, 80~105℃에서 0.5-60 시간 동안 담지 용액을 교반시킨다. 이후 건조과정 및 소성과정을 거치는데, 100~700℃까지 0.5~60 시간 정도로 건조한 후, 500~700℃에서 0.5~20 시간 등온에서 질 소흐름 공간속도 (GHSV; Gas Hourly Space Velocity) 100~5,000 hr-1로 하는 것이 전이금속 활성성분 금속 미세입자의 고온에서의 응결을 방지하고 과잉 잔류 염소를 제거하는데 유리하다.On the other hand, the impregnation of the solution containing the transition metal active ingredient is carried out by applying hydrochloric acid at a concentration of 30% of about 1% by weight of the carrier to the aqueous solution after final preparation of the carrier material, Lt; 0 > C for 0.5-60 hours. After drying at 100 to 700 ° C. for about 0.5 to 60 hours, the gas hourly space velocity (GHSV) is 100 to 5,000 at a temperature of 500 to 700 ° C. for 0.5 to 20 hours under a drying and firing process. hr < -1 > is advantageous for preventing condensation at high temperatures of the transition metal active ingredient metal microparticles and for removing excess residual chlorine.

본 발명의 또 다른 양상은 본 발명의 탈수소 촉매를 이용하는 개선된 탈수소화 방법에 관한 것이다. Another aspect of the present invention is directed to an improved dehydrogenation process using the dehydrogenation catalyst of the present invention.

탄화수소로서 프로판을 예로 들면, 본 발명에 따른 탈수소화 방법은, 상기 탈수소 촉매를 이용하여 프로판, 수소, 산소를 함유하는 혼합기체를 600~1000℃, 바람직하게는 600~800℃의 반응 온도, 0.1~10 kgf/㎠의 기압, H2/C3 비율이 0~1.0이고, 혼합기체와 촉매와의 액체공간속도가 0.1~30 hr-1, 바람직하게는 2~20 hr-1인 조건 하에 기상반응시켜 탈수소 반응에 의해 프로판으로부터 프로필렌을 제조한다.In the dehydrogenation process according to the present invention, the mixed gas containing propane, hydrogen and oxygen is heated at a reaction temperature of 600 to 1000 ° C, preferably 600 to 800 ° C, at a reaction temperature of 0.1 The gas phase reaction is carried out under the conditions of an atmospheric pressure of 10 kgf / cm 2, an H2 / C3 ratio of 0 to 1.0, and a liquid space velocity of the mixed gas and the catalyst of 0.1 to 30 hr -1 , preferably 2 to 20 hr -1 Propylene is produced from propane by a dehydrogenation reaction.

본 발명에 따른 프로판으로부터 프로필렌의 제조방법은, 가혹한 고온의 조건에서도 효과적인 프로필렌을 제조하는 방법으로, 본 발명에 따른 탈수소 촉매를 적용할 경우, 프로필렌 생산량의 증대 및 촉매의 활성 저하가 낮다. 즉, 본 발명의 프로필렌의 제조방법은 산소의 산화반응에 의해 발생되는 반응열을 활용할 수 있으며, 반응 평형을 극복함으로써 높은 프로판 전환율을 나타낸다. 또한 반응 조건을 가혹하게 할 경우에도 촉매의 성능 감소가 적으며, 비활성화가 심해진 경우에도 장기 사용 안정성의 측면에서 개선된 효과를 보인다. 또한, 본 발명에 의한 부수적인 효과로는 촉매상의 코크를 반응 중에 제거하는 기능도 있어 이에 의한 활성 개선 효과도 있다.  The process for producing propylene from propane according to the present invention is effective for producing propylene even under severe high temperature conditions. When the dehydrogenation catalyst according to the present invention is applied, the production of propylene and the reduction in catalytic activity are low. That is, the propylene production method of the present invention can utilize the heat of reaction generated by the oxidation reaction of oxygen, and exhibits a high propane conversion rate by overcoming the reaction equilibrium. In addition, even when the reaction conditions are severer, the performance of the catalyst is decreased, and even when the deactivation is intensified, the effect is improved in terms of long-term use stability. In addition, the secondary effect of the present invention also has the function of removing the coke on the catalyst during the reaction, thereby improving the activity of the catalyst.

이하에서는 본 발명을 실시예를 참조하여 더욱 상세히 설명한다. 다만 이는 본 발명을 설명하기 위한 것으로, 본 발명의 보호범위를 제한하는 것으로 해석되어서는 아니 된다. Hereinafter, the present invention will be described in more detail with reference to examples. It should be noted, however, that this is for the purpose of illustrating the present invention and should not be construed as limiting the scope of protection of the present invention.

실시예Example 1: 탈수소 촉매 제조 1: Preparation of dehydrogenation catalyst

촉매 합성에 사용된 담체로 감마 결정성을 갖고, 평균 지름이 1.65 ㎜이며, 충진 밀도가 0.56 g/㎖인 구형의 상용 알루미나를 구입하였다. 그 이후 준비된 세륨 나이트레이트 (CeN3O9·6H2O) 용액을 담체 무게 대비 0.4% 염산 (HCl, >35%), 담체 무게 대비 0.15% 질산, 증류수는 담체 무게 대비 2배를 넣어 녹인 후 3시간 교반후 회전증발기를 이용하여 80℃, 25 rpm 3시간 담지 후 감압 증발 시켰다. 그 이후, 소성로에서 1050℃에서 2 시간 열처리 후 230℃에서 24 시간 동안 건조하였다.A spherical commercial alumina having a gamma crystallinity and an average diameter of 1.65 mm and a packing density of 0.56 g / ml was obtained as the carrier used in the catalyst synthesis. After that, a solution of cerium nitrate (CeN 3 O 9 .6H 2 O) was prepared by dissolving 0.4% hydrochloric acid (HCl,> 35%) based on the weight of carrier and 0.15% nitric acid and distilled water After stirring for 3 hours, the mixture was supported on a rotary evaporator at 80 DEG C and 25 rpm for 3 hours and then evaporated under reduced pressure. Thereafter, it was heat-treated at 1050 ° C for 2 hours in a firing furnace, and then dried at 230 ° C for 24 hours.

이어서 Ce-도핑된 알루미나 담체에 주석, 백금, 칼륨을 순차적으로 담지하였다. 주석 염화물 (SnCl2, >99%, Sigma)을 담체 무게 대비 0.3%, 염산 (HCl, >35%, JUNSEI) 0.5%, 질산 (HNO3, 70%, Yakuri) 0.1%을 담체 무게 대비 2배인 증류수에 넣어 놓인 후, 앞서 제조된 담체 15g을 넣어 담지하였다.Subsequently, tin, platinum and potassium were sequentially carried on the Ce-doped alumina support. Tin chloride (SnCl 2,> 99%, Sigma) with 0.3% carrier weight, hydrochloric acid (HCl,> 35%, JUNSEI ) 0.5%, nitric acid (HNO 3, 70%, Yakuri ) 2 times with 0.1% carrier weight ratio After put in distilled water, 15 g of the carrier prepared above was added and carried.

담지액은 회전증발기를 이용하여 건조하였으며, 80℃에서 3시간 동안 25 rpm으로 교반한 후, 감압 상태 80℃에서 1.5시간 동안 25 rpm으로 회전시켜 건조하였다. 이후, 가열로에서 600℃에서 2시간 소성하고 230℃로 24시간동안 건조하였다. The supported liquid was dried using a rotary evaporator, stirred at 25 rpm for 3 hours at 80 ° C, and then rotated at 25 rpm for 1.5 hours under reduced pressure at 80 ° C. Then, it was baked at 600 ° C for 2 hours in a heating furnace and dried at 230 ° C for 24 hours.

이후, 주석이 담지된 알루미나 15g을 염화 백금산(H2PtCl6·6H2O, 99.95%, Aldrich) 담체 대비 0.5%, 염산 0.5%, 질산 0.3%가 녹아있는 담체 대비 2배인 증류수에 넣어 담지하였다. 담지액은 회전증발기를 이용하여 건조하였으며, 80℃에서 3시간 동안 25 rpm으로 교반한 후, 감압 상태 80℃에서 1.5시간 동안 25 rpm으로 회전시켜 건조하였다. 이후, 가열로에서 550℃에서 2시간 소성하고 230℃로 24시간동안 건조하였다.Thereafter, 15 g of tin-supported alumina was carried in distilled water twice as much as the carrier in which 0.5% of hydrochloric acid, 0.5% of hydrochloric acid and 0.3% of nitric acid was dissolved in a platinum chloride (H 2 PtCl 6 .6H 2 O, 99.95%, Aldrich) carrier . The supported liquid was dried using a rotary evaporator, stirred at 25 rpm for 3 hours at 80 ° C, and then rotated at 25 rpm for 1.5 hours under reduced pressure at 80 ° C. Then, it was baked at 550 캜 for 2 hours in a heating furnace and dried at 230 캜 for 24 hours.

이후, 주석과 백금이 담지된 알루미나 15g을 질산 칼륨 (KNO3, >99%, Sigma) 담체 대비 1%, 염산 0.5%가 녹아있는 담체 대비 2배인 증류수에 넣어 담지하였다. 담지액은 회전증발기를 이용하여 건조하였으며, 80℃에서 3시간 동안 25 rpm으로 교반한 후, 감압 상태 80℃에서 1.5시간 동안 25 rpm으로 회전시켜 건조하였다. 이후, 가열로에서 600℃에서 2시간 소성하고 230℃로 24시간동안 건조하였다.Then, 15 g of alumina bearing tin and platinum was loaded in distilled water twice as much as the carrier in which 1% of potassium nitrate (KNO 3 ,> 99%, Sigma) carrier and 0.5% of hydrochloric acid were dissolved. The supported liquid was dried using a rotary evaporator, stirred at 25 rpm for 3 hours at 80 ° C, and then rotated at 25 rpm for 1.5 hours under reduced pressure at 80 ° C. Then, it was baked at 600 ° C for 2 hours in a heating furnace and dried at 230 ° C for 24 hours.

실시예Example 2 내지 5 2 to 5

세륨 화합물의 함량을 하기 표 1에 나타낸 바와 같이 조정한 것을 제외하고는 실시예 1과 동일하게 실시하여, 세륨-도핑된 알루미나 담체에 주석, 백금, 칼륨을 순차적으로 담지한, 백금-주석-칼륨/알루미나 촉매 (Pt-Sn-K/Al2O3)를 제조하였다.The procedure of Example 1 was repeated, except that the content of cerium compound was adjusted as shown in Table 1, and platinum-tin-potassium / alumina catalyst (Pt-Sn-K / Al 2 O 3) was prepared.

비교예Comparative Example 1 One

실시예 1에서 세륨을 도핑하지 않은 알루미나를 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 수행하여 백금-주석-칼륨/알루미나 촉매 (Pt-Sn-K/Al2O3)를 제조하였다.A platinum-tin-potassium / alumina catalyst (Pt-Sn-K / Al 2 O 3 ) was prepared in the same manner as in Example 1 except that alumina without cerium doping was used in Example 1.

비교예Comparative Example 2 2

세륨 화합물의 함량이 2.1 wt%가 되도록 한 것을 제외하고는 실시예 1과 동일하게 실시하여, 세륨-도핑된 알루미나 담체에 주석, 백금, 칼륨을 순차적으로 담지하여, 백금-주석-칼륨/알루미나 촉매 (Pt-Sn-K/Al2O3)를 제조하였다.Tin-potassium / alumina catalyst was prepared by sequentially carrying out tin, platinum and potassium on a cerium-doped alumina support in the same manner as in Example 1 except that the cerium compound content was adjusted to 2.1 wt% (Pt-Sn-K / Al 2 O 3 ).

험예 1: 탈수소 촉매의 성능 시험 Test 1: Performance test of dehydrogenation catalyst

본 발명에 따른 탈수소 촉매의 성능을 확인하기 위하여, 하기와 같은 실험을 수행하였다. 상기 표 1에 나타낸 바와 같이 세륨 화합물의 농도를 달리하며, 실시예 1 및 비교예 1에서 제조된 촉매 1.5 g을 부피가 7 ㎖인 석영반응기 내에 각각 충진한 후, 프로판, 수소, 산소 혼합기체를 공급하여 탈수소 반응을 각각 수행하였다. 이때, 수소와 프로판의 비율은 1:1, 프로판과 산소의 비율은 30:1로 고정하였으며, 반응온도는 650℃, 압력은 1.5 절대압력, 액체공간속도는 15 hr-1로 유지하면서 탈수소 반응을 수행하였다. 반응 후의 기체 조성은 반응 장치와 연결된 기체 크로마토그래피로 분석하여 프로판 전환율, 반응 후 생성물 중의 프로필렌 선택도, 프로필렌 수율을 구하여, 그 결과를 하기 표 1에 나타내었다.In order to confirm the performance of the dehydrogenation catalyst according to the present invention, the following experiment was conducted. As shown in Table 1, 1.5 g of the catalyst prepared in Example 1 and Comparative Example 1 were filled in a quartz reactor having a volume of 7 ml, respectively, at different concentrations of the cerium compound, and then propane, hydrogen, And the dehydrogenation reaction was carried out respectively. At this time, the ratio of hydrogen to propane was fixed to 1: 1, the ratio of propane to oxygen was set to 30: 1, the reaction temperature was maintained at 650 ° C., the pressure was maintained at 1.5 absolute pressure and the liquid space velocity was maintained at 15 hr -1 . Respectively. The gas composition after the reaction was analyzed by gas chromatography connected to the reaction apparatus to determine the propane conversion, the propylene selectivity in the product after the reaction, and the propylene yield, and the results are shown in Table 1 below.


 

 

 

 
성능 (Performance ( wt%wt% ) [반응시간 () [Reaction time ( 1hr1hr )) 성능 (Performance ( wt%wt% ) [반응시간 () [Reaction time ( 5hr5hr ))

 

 
세륨화합물
함량
Cerium compound
content
전환율Conversion Rate 선택도Selectivity 수율yield 전환율Conversion Rate 선택도Selectivity 수율yield
비교예 1Comparative Example 1 0 wt%0 wt% 37.5 37.5 93.1  93.1 34.9 34.9 35.1  35.1 94.4  94.4 33.1 33.1 비교예 2Comparative Example 2 2.1 wt%2.1 wt% 36.3 36.3 93.0  93.0 33.8 33.8 34.8  34.8 94.1  94.1 32.7 32.7 실시예 1Example 1 0.02 wt%0.02 wt% 38.0 38.0 93.2  93.2 35.4 35.4 35.8  35.8 94.8  94.8 33.9 33.9 실시예 2 Example 2 0.1 wt%0.1 wt% 39.5 39.5 93.2  93.2 36.8 36.8 37.4  37.4 94.8  94.8 35.5 35.5 실시예 3Example 3 0.5 wt%0.5 wt% 39.7 39.7 93.5  93.5 37.1 37.1 37.7  37.7 95.2  95.2 35.9 35.9 실시예 4Example 4 1.0 wt%1.0 wt% 38.3 38.3 93.3  93.3 35.7 35.7 36.4  36.4 94.7  94.7 34.5 34.5 실시예 5Example 5 2.0 wt%2.0 wt% 37.8 37.8 93.2  93.2 35.2 35.2 35.8  35.8 94.5  94.5 33.8 33.8

상기 표 1에 나타난 바와 같이, 본 발명에 따른 세륨을 도핑한 촉매의 프로판 전환율은 37.8%~39.7%이고, 생성물 중의 프로필렌 선택도는 93.2%~93.5%, 프로필렌 수율은 35.2~37.1%로 매우 높은 촉매 활성을 나타내었다. 또한 반응시간이 증가함에 따라 촉매 활성도 높게 유지되고 있음을 확인하였다. 반면, 세륨을 도핑하지 않은 일반 알루미나로만 구성된 비교예 1의 촉매 및 세륨 화합물의 범위가 본 발명의 범위를 벗어나는 촉매(비교예 2)는 본 발명의 촉매(실시예 1~5)에 비해 안정성은 비슷하지만, 초기 활성이 차이가 나는 것을 확인할 수 있다. As shown in Table 1, the cerium-doped catalyst according to the present invention had a propane conversion of 37.8% to 39.7%, a propylene selectivity of 93.2% to 93.5% and a propylene yield of 35.2 to 37.1% Catalyst activity. It was also confirmed that the catalyst activity was maintained high as the reaction time increased. On the other hand, the catalyst of Comparative Example 1 composed of only general alumina not doped with cerium, and the catalyst whose range of the cerium compound is out of the range of the present invention (Comparative Example 2), has higher stability than the catalyst of the present invention (Examples 1 to 5) Although similar, we can see that the initial activity is different.

이상에서 본 발명의 바람직한 구현예를 들어 본 발명을 상세하게 설명하였으나 본 발명은 상술한 구현예에 한정되지 않으며, 본 발명의 기술적 사상의 범위 내에서 본 발명이 속하는 기술 분야의 당업자에 의해 많은 변형이 가능함은 자명할 것이다. 따라서 본 발명의 진정한 보호범위는 첨부된 특허청구범위 및 그와 균등한 범위로 정해져야 할 것이다. While the present invention has been particularly shown and described with reference to exemplary embodiments thereof, it is to be understood that the invention is not limited to the disclosed exemplary embodiments. This will be obvious. Accordingly, the true scope of protection of the present invention should be defined in the appended claims and their equivalents.

Claims (17)

담체 위에 세륨 화합물이 도핑되고, 담체 조성 100 중량%에 대하여 세륨 화합물의 함량이 0.02 ~ 2.0 중량%인 것을 특징으로 하는 복합 촉매 담체.
Wherein the carrier is doped with a cerium compound and the content of the cerium compound is from 0.02 to 2.0% by weight based on 100% by weight of the carrier composition.
제1항에 있어서, 상기 세륨 화합물이 산화 세륨, 수산화 세륨, 탄산 세륨, 질산 세륨, 염화 세륨, 및 이들의 혼합물로 구성되는 군에서 선택되는 1종 이상인 것을 특징으로 하는 복합 촉매 담체.
The composite catalyst carrier according to claim 1, wherein the cerium compound is at least one selected from the group consisting of cerium oxide, cerium hydroxide, cerium carbonate, cerium nitrate, cerium chloride, and mixtures thereof.
제1항에 있어서, 상기 담체는 세타 결정상이 90% 이상인 세타 결정상 또는 세타 결정상과 감마 결정상이 공존하는 알루미나 (Al2O3)인 것을 특징으로 하는 복합 촉매 담체.
The composite catalyst carrier according to claim 1, wherein the support is alumina (Al 2 O 3 ) in which a theta crystal phase or a theta crystal phase and a gamma crystal phase coexist with each other in which the theta crystal phase is 90% or more.
담체에 전이금속 활성성분, 보조금속, 알칼리 금속 또는 알칼리 토금속이 담지된 형태를 가지는 탈수소 촉매로서, 상기 담체가 담체 위에 세륨 화합물이 도핑되고, 담체 조성 100중량%에 대하여 세륨 화합물의 함량이 0.02 ~ 2.0 중량%인 것을 특징으로 하는 탄화수소 탈수소 촉매.
1. A dehydrogenation catalyst having a carrier in which a transition metal active component, an auxiliary metal, an alkali metal or an alkaline earth metal is supported, wherein the carrier is doped with a cerium compound on a carrier and the content of the cerium compound is in the range of 0.02 - 2.0% by weight based on the total weight of the hydrocarbon dehydrogenation catalyst.
제1항에 있어서, 상기 세륨 화합물이 산화 세륨, 수산화 세륨, 탄산 세륨, 질산 세륨, 염화 세륨, 및 이들의 혼합물로 구성되는 군에서 선택되는 1종 이상인 것을 특징으로 하는 탄화수소 탈수소 촉매.
The hydrocarbon dehydrogenation catalyst according to claim 1, wherein the cerium compound is at least one selected from the group consisting of cerium oxide, cerium hydroxide, cerium carbonate, cerium nitrate, cerium chloride, and a mixture thereof.
제1항에 있어서, 상기 담체는 세타 결정상이 90% 이상인 세타 결정상 또는 세타 결정상과 감마 결정상이 공존하는 알루미나 (Al2O3)인 것을 특징으로 하는 탄화수소 탈수소 촉매.
The hydrocarbon dehydrogenation catalyst according to claim 1, wherein the carrier is alumina (Al 2 O 3 ) in which a theta crystal phase or a theta crystal phase and a gamma crystal phase coexist with each other in which the theta crystal phase is 90% or more.
제4항에 있어서, 상기 전이금속 활성 성분은 백금(Pt), 팔라듐(Pd), 니켈(Ni), 코발트(Co), 루테늄(Ru), 레늄(Re), 로듐(Rh), 오스뮴(Os), 티타늄(Ti), 바나듐(V), 크롬(Cr), 망간(Mn), 철(Fe), 구리(Cu), 아연(Zn) 또는 이들의 임의의 합금인 것을 특징으로 하는 탄화수소 탈수소 촉매.
The method of claim 4, wherein the transition metal active component is selected from the group consisting of platinum (Pt), palladium (Pd), nickel (Ni), cobalt (Co), ruthenium (Ru), rhenium (Re), rhodium ), Titanium (Ti), vanadium (V), chromium (Cr), manganese (Mn), iron (Fe), copper (Cu), zinc (Zn) .
제4항에 있어서, 상기 보조금속은 마그네슘, 칼슘, 티탄, 지르코늄, 바나듐, 니오브, 크롬, 몰리브덴, 텅스텐, 망간, 레늄, 루테늄, 오스뮴, 코발트, 로듐, 이리듐, 니켈, 동, 은, 금, 아연, 붕소, 알루미늄, 갈륨, 인듐, 규소, 게르마늄, 주석, 인, 안티몬, 비스무트, 랜턴, 프라세오디뮴, 네오디뮴, 및 사마륨으로 구성되는 군으로부터 선택되는 적어도 하나의 산화물 또는 화합물을 각각 0.001 ~ 5.0 중량%로 포함하는 것을 특징으로 하는 탄화수소 탈수소 촉매.
The method of claim 4, wherein the auxiliary metal is selected from the group consisting of magnesium, calcium, titanium, zirconium, vanadium, niobium, chromium, molybdenum, tungsten, manganese, rhenium, ruthenium, osmium, cobalt, rhodium, iridium, nickel, 0.001 to 5.0% by weight of at least one oxide or compound selected from the group consisting of zinc, boron, aluminum, gallium, indium, silicon, germanium, tin, phosphorus, antimony, bismuth, lanthanum, praseodymium, neodymium, Wherein the hydrocarbon dehydrogenation catalyst is a hydrocarbon dehydrogenation catalyst.
제4항에 있어서, 상기 촉매는 Pt-Sn-K/Ce-Al2O3 촉매로서, 알루미나 담체 중의 세륨 화합물의 함량이 0.02 ~ 2.0 중량%인 것을 특징으로 하는 탄화수소 탈수소 촉매.
The method of claim 4, wherein the catalyst is Pt-Sn-K / Ce- Al 2 O 3 as the catalyst, a hydrocarbon dehydrogenation catalyst, characterized in that the content of the cerium compound in the alumina support is 0.02 to 2.0% by weight.
제4항에 있어서, 상기 탄화수소는 C2~C5의 선형 탄화수소인 것을 특징으로 하는 탄화수소 탈수소 촉매.
The hydrocarbon dehydrogenation catalyst according to claim 4, wherein the hydrocarbon is a C2 to C5 linear hydrocarbon.
담체 위에 세륨 전구체 용액을 도핑후 건조소성하여 세륨 함량이 0.02 ~ 2.0 중량%인 복합 촉매 담체를 수득하고, 수득된 복합 촉매 담체에 전이금속 활성 성분과 보조금속을 함침시킨 후, 소성하는 단계를 포함하는 것을 특징으로 하는 탈수소 촉매의 제조방법.
A cerium precursor solution is doped on the carrier, followed by drying and firing to obtain a composite catalyst carrier having a cerium content of 0.02 to 2.0 wt%, impregnating the resulting composite catalyst carrier with a transition metal active component and an auxiliary metal, and then firing Wherein the dehydrogenation catalyst is produced by a method comprising the steps of:
제11항에 있어서, 상기 담체는 세타 결정상 또는 세타 결정상과 감마 결정상이 공존하는 알루미나로서, 90% 이상의 세타 결정성을 갖는 알루미나인 것을 사용하는 것을 특징으로 하는 탈수소 촉매의 제조방법.
The process for producing a dehydrogenation catalyst according to claim 11, wherein the carrier is alumina in which a theta crystal phase or a crystallite phase and a gamma crystal phase coexist, wherein alumina having 90% or more crystallinity of theta is used.
제11항에 있어서, 상기 세륨 전구체는 세륨 클로라이드, 세륨 나이트레이트, 세륨 브로마이드, 세륨 옥사이드, 세륨 하이드록사이드, 및 세륨 아세테이트 전구체로부터 선택되는 1종 이상을 사용하는 것을 특징으로 하는 탈수소 촉매의 제조방법.
The process for producing a dehydrogenation catalyst according to claim 11, wherein the cerium precursor is at least one selected from cerium chloride, cerium nitrate, cerium bromide, cerium oxide, cerium hydroxide, and cerium acetate precursor .
제13항에 있어서, 상기 세륨 전구체는 염산, 질산, 황산, 불산 및 인산으로 이루어진 군으로부터 선택되는 1종 이상의 산에 현택되는 것을 특징으로 하는 탈수소 촉매의 제조방법.
14. The method of claim 13, wherein the cerium precursor is adsorbed on at least one acid selected from the group consisting of hydrochloric acid, nitric acid, sulfuric acid, hydrofluoric acid, and phosphoric acid.
제11항에 있어서, 상기 담체에 세륨 도핑 후의 소성은 700℃~1200℃에서 진행하는 것을 특징으로 하는 탈수소 촉매의 제조방법.
12. The method according to claim 11, wherein the calcination of the support after cerium doping is performed at 700 ° C to 1200 ° C.
탈수소화 가능한 탄화수소를 제4항 내지 제10항 중 어느 한 항에 기재된 촉매와 탈수소화 조건 하에서 접촉시키는 단계 및 탈수소화 산물을 수득하는 단계를 포함하는 것을 특징으로 하는 탈수소화 방법.
Contacting the dehydrogenatable hydrocarbon with the catalyst according to any one of claims 4 to 10 under dehydrogenation conditions and obtaining a dehydrogenation product.
제16항에 있어서, 상기 방법은 제4항 내지 제10항 중 어느 한 항의 탈수소 촉매를 이용하여 프로판, 수소, 산소를 함유하는 혼합기체를 600~1000℃의 반응 온도, 0.1~10 kgf/㎠의 기압, H2/C3 비율이 0~1.0이고, 혼합기체와 촉매와의 액체공간속도(LHSV)가 0.1~30 hr-1인 조건 하에 기상반응시켜 프로판으로부터 프로필렌의 제조하는 것을 특징으로 하는 탈수소화 방법.
The method of claim 16, wherein the mixed gas containing propane, hydrogen, and oxygen is heated at a reaction temperature of 600 to 1000 占 폚, 0.1 to 10 kgf / cm < 2 >, using a dehydrogenation catalyst of any one of claims 4 to 10, Wherein the propane is subjected to a gas phase reaction under a condition that the gas pressure and the H2 / C3 ratio are 0 to 1.0 and the liquid space velocity (LHSV) of the mixed gas and the catalyst is 0.1 to 30 hr -1 , Way.
KR1020170167501A 2016-12-29 2017-12-07 Composite catalyst support, dehydrogenation catalysts and preparation method thereof KR20180079178A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20160181923 2016-12-29
KR1020160181923 2016-12-29

Publications (1)

Publication Number Publication Date
KR20180079178A true KR20180079178A (en) 2018-07-10

Family

ID=62915843

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020170167501A KR20180079178A (en) 2016-12-29 2017-12-07 Composite catalyst support, dehydrogenation catalysts and preparation method thereof

Country Status (1)

Country Link
KR (1) KR20180079178A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111054385A (en) * 2018-10-16 2020-04-24 中国石油化工股份有限公司 Catalyst for dehydrogenation reaction of light alkane and preparation method thereof
KR102320432B1 (en) 2020-11-03 2021-11-01 에스케이가스 주식회사 Dehydrogenating catalyst for manufacturing olefin from alkane gas, and a method thereof
US11179703B2 (en) 2018-02-23 2021-11-23 Lg Chem. Ltd. Catalyst for processing oxychlorination of hydrocarbon, preparation method therefor, and preparation method of oxychlorinated compound of hydrocarbon using same
CN114433062A (en) * 2021-12-31 2022-05-06 杭州凯大催化金属材料股份有限公司 Preparation method of isobutane dehydrogenation catalyst and application of isobutane dehydrogenation catalyst in preparation of isobutene
KR20220069833A (en) * 2020-11-20 2022-05-27 고려대학교 산학협력단 Pt-W catalyst for synthesis of hydrogen, and Method of preaparing hydrogen using the Pt-W catalyst
WO2022108353A1 (en) * 2020-11-20 2022-05-27 고려대학교 산학협력단 Pt-re catalyst for synthesis of hydrogen, and method of preparing hydrogen using same
CN114763316A (en) * 2021-01-15 2022-07-19 中国科学院大学 Method for preparing propylene by directly dehydrogenating propane through efficient catalysis of mesoporous spinel
CN115337955A (en) * 2021-05-12 2022-11-15 中国石油化工股份有限公司 Novel dehydrogenation catalyst, preparation method thereof and application of novel dehydrogenation catalyst in preparation of isobutene through isobutane dehydrogenation
CN115501885A (en) * 2021-06-23 2022-12-23 中国石油化工股份有限公司 Organic hydrogen storage compound dehydrogenation catalyst and preparation method and application thereof
WO2023136591A1 (en) * 2022-01-11 2023-07-20 한국과학기술원 Sintering-resistant metal catalyst supported on single atomic ce-doped metal oxides, method of preparing same, and use thereof
CN114618470B (en) * 2020-12-10 2023-11-17 中国科学院大连化学物理研究所 Composite catalyst and preparation method and application thereof
ES2957010R1 (en) * 2020-12-04 2024-06-06 Heesung Catalysts Corp Dehydrogenation catalyst with controlled carrier pores
WO2024128638A1 (en) * 2022-12-13 2024-06-20 울산과학기술원 Catalyst for dehydrogenation reaction based on palladium, method for producing same, and dehydrogenation reaction method using same

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11179703B2 (en) 2018-02-23 2021-11-23 Lg Chem. Ltd. Catalyst for processing oxychlorination of hydrocarbon, preparation method therefor, and preparation method of oxychlorinated compound of hydrocarbon using same
CN111054385A (en) * 2018-10-16 2020-04-24 中国石油化工股份有限公司 Catalyst for dehydrogenation reaction of light alkane and preparation method thereof
KR102320432B1 (en) 2020-11-03 2021-11-01 에스케이가스 주식회사 Dehydrogenating catalyst for manufacturing olefin from alkane gas, and a method thereof
KR20220069833A (en) * 2020-11-20 2022-05-27 고려대학교 산학협력단 Pt-W catalyst for synthesis of hydrogen, and Method of preaparing hydrogen using the Pt-W catalyst
WO2022108353A1 (en) * 2020-11-20 2022-05-27 고려대학교 산학협력단 Pt-re catalyst for synthesis of hydrogen, and method of preparing hydrogen using same
KR20220069839A (en) * 2020-11-20 2022-05-27 고려대학교 산학협력단 Pt-Re catalyst for synthesis of hydrogen, and Method of preaparing hydrogen using the Pt-Re catalyst
WO2022108319A1 (en) * 2020-11-20 2022-05-27 고려대학교 산학협력단 Platinum-tungsten catalyst for hydrogen preparation and method for preparing hydrogen using same
ES2957010R1 (en) * 2020-12-04 2024-06-06 Heesung Catalysts Corp Dehydrogenation catalyst with controlled carrier pores
CN114618470B (en) * 2020-12-10 2023-11-17 中国科学院大连化学物理研究所 Composite catalyst and preparation method and application thereof
CN114763316A (en) * 2021-01-15 2022-07-19 中国科学院大学 Method for preparing propylene by directly dehydrogenating propane through efficient catalysis of mesoporous spinel
CN114763316B (en) * 2021-01-15 2023-10-20 中国科学院大学 Method for preparing propylene by directly dehydrogenating propane through high-efficiency catalysis of Kong Jian spar
CN115337955A (en) * 2021-05-12 2022-11-15 中国石油化工股份有限公司 Novel dehydrogenation catalyst, preparation method thereof and application of novel dehydrogenation catalyst in preparation of isobutene through isobutane dehydrogenation
CN115337955B (en) * 2021-05-12 2024-02-20 中国石油化工股份有限公司 Novel dehydrogenation catalyst, preparation method thereof and application of novel dehydrogenation catalyst in preparation of isobutene through isobutane dehydrogenation
CN115501885A (en) * 2021-06-23 2022-12-23 中国石油化工股份有限公司 Organic hydrogen storage compound dehydrogenation catalyst and preparation method and application thereof
CN115501885B (en) * 2021-06-23 2023-08-04 中国石油化工股份有限公司 Organic hydrogen storage compound dehydrogenation catalyst and preparation method and application thereof
CN114433062B (en) * 2021-12-31 2024-02-06 杭州凯大催化金属材料股份有限公司 Preparation method of isobutane dehydrogenation catalyst and application of isobutane dehydrogenation catalyst in preparation of isobutene
CN114433062A (en) * 2021-12-31 2022-05-06 杭州凯大催化金属材料股份有限公司 Preparation method of isobutane dehydrogenation catalyst and application of isobutane dehydrogenation catalyst in preparation of isobutene
WO2023136591A1 (en) * 2022-01-11 2023-07-20 한국과학기술원 Sintering-resistant metal catalyst supported on single atomic ce-doped metal oxides, method of preparing same, and use thereof
WO2024128638A1 (en) * 2022-12-13 2024-06-20 울산과학기술원 Catalyst for dehydrogenation reaction based on palladium, method for producing same, and dehydrogenation reaction method using same

Similar Documents

Publication Publication Date Title
KR20180079178A (en) Composite catalyst support, dehydrogenation catalysts and preparation method thereof
US10960384B2 (en) Dehydrogenation catalyst
US5219816A (en) Dehydrogenation catalysts and process for preparing the catalysts
KR101539170B1 (en) Reforming catalyst and process
JP2010534553A (en) Zinc ferrite catalyst, method for producing the same, and method for producing 1,3-butadiene using the same
JP2000061306A (en) Supported catalyst usable in conversion reaction of organic compound
KR101921407B1 (en) Dehydrogenation catalysts and preparation method thereof
KR20120077688A (en) Metal catalyst for dehydrogenation having improved selectivity
KR20210018566A (en) Preparation method of propane dehydrogenation catalyst
KR102162079B1 (en) Method of preparing catalyst support and dehydrogenation catalysts
JPS6116791B2 (en)
KR101951537B1 (en) Composite catalyst support, dehydrogenation catalysts and preparation method thereof
US5214227A (en) Low pressure dehydrogenation of light paraffins
RU2535206C2 (en) Method of producing polymetallic catalyst with optimised
KR102046771B1 (en) Dehydrogenation catalyst
KR101406563B1 (en) A catalyst for dehydrogenation and dehydroisomerization of n-butane and a method for producing a mixture of n-butane, 1,3-butadiene and iso-butene using the same
KR102134386B1 (en) Preparation of dehydrogenation catalysts having excellent dispersion
KR102035470B1 (en) Dehydrogenation catalyst
KR102478028B1 (en) Transition Metal-Noble Metal Complex Oxide Catalysts Prepared by One-Pot for Dehydrogenation and Use Thereof
KR101306814B1 (en) Catalysts based on Zirconia for Direct dehydrogenation, Preparing method thereof, and Preparing method of Butenes using the same
CN112058255B (en) Alkane dehydrogenation catalyst and preparation method thereof
WO1993012879A1 (en) Dehydrogenation catalysts and process for using same
KR102035471B1 (en) Preparation of dehydrogenation catalysts having superior selectivity
KR20180078425A (en) Composite catalyst support, dehydrogenation catalysts and preparation method thereof
KR102113122B1 (en) Method of preparing dehydrogenation catalysts

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
AMND Amendment