WO2024071710A1 - Ammonia decomposition catalyst for hydrogen generation and method for preparing same - Google Patents

Ammonia decomposition catalyst for hydrogen generation and method for preparing same Download PDF

Info

Publication number
WO2024071710A1
WO2024071710A1 PCT/KR2023/013132 KR2023013132W WO2024071710A1 WO 2024071710 A1 WO2024071710 A1 WO 2024071710A1 KR 2023013132 W KR2023013132 W KR 2023013132W WO 2024071710 A1 WO2024071710 A1 WO 2024071710A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
ammonia decomposition
zeolite
decomposition catalyst
cha
Prior art date
Application number
PCT/KR2023/013132
Other languages
French (fr)
Korean (ko)
Inventor
이강홍
남승하
신병선
서필원
오형석
김종국
허태관
김지선
Original Assignee
(주) 세라컴
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주) 세라컴 filed Critical (주) 세라컴
Publication of WO2024071710A1 publication Critical patent/WO2024071710A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/46Ruthenium, rhodium, osmium or iridium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/46Ruthenium, rhodium, osmium or iridium
    • B01J23/462Ruthenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/20Carbon compounds
    • B01J27/22Carbides
    • B01J27/224Silicon carbide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/72Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing iron group metals, noble metals or copper
    • B01J29/74Noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/72Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing iron group metals, noble metals or copper
    • B01J29/74Noble metals
    • B01J29/743CHA-type, e.g. Chabazite, LZ-218
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/04Mixing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/04Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of inorganic compounds, e.g. ammonia
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/04Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of inorganic compounds, e.g. ammonia
    • C01B3/047Decomposition of ammonia

Definitions

  • the present invention relates to an ammonia decomposition catalyst for hydrogen generation and a method for producing the same, and more specifically, to a catalyst for generating hydrogen by decomposing ammonia and a method for producing the same.
  • hydrogen is a clean energy source that does not emit carbon dioxide and emits water as a by-product.
  • Research on technologies to utilize hydrogen as a fuel is actively being conducted, and hydrogen is produced or produced for a stable supply of hydrogen. Research on the technology to be used is also in progress.
  • ammonia can store a large amount of hydrogen and maintain a stable state at room temperature, so ammonia is a method of efficiently storing and transporting hydrogen.
  • a plan to use as a hydrogen source is being proposed.
  • ammonia can store 120kg of hydrogen per 1m3 and can be an efficient hydrogen carrier in that it has a very low fire risk due to its high spontaneous ignition temperature of 651°C.
  • ammonia since ammonia has been used for industrial purposes, there is an economic advantage of utilizing existing ammonia infrastructure, so hydrogen production through ammonia decomposition is attracting attention as a realistic method.
  • the present invention is intended to provide an ammonia decomposition catalyst with a high hydrogen conversion rate by decomposing ammonia in a relatively low temperature range and a method for producing the same.
  • the present invention includes the step (a) of preparing a Ru precursor solution, immersing the Ru precursor solution in a catalyst support containing SiC, CHA-Zeolite (chabazite-zeolite), or a combination thereof ( It provides a method for producing an ammonia decomposition catalyst, including step b), and step (c) of drying and calcining the catalyst support to produce an ammonia decomposition catalyst.
  • the Ru precursor may include one selected from the group consisting of RuCl 3 ⁇ H 2 O, (NH 3 ) 6 RuCl 3 , Ru(NO)(NO 3 ) 3 , and combinations thereof. .
  • Ru may be added to distilled water and mixed and stirred.
  • the CHA-Zeolite may have a specific surface area of 300 to 1,500 m2/g.
  • the CHA-Zeolite may have a Si/Al ratio of 5 to 40.
  • the SiC may have a beta crystal structure and a specific surface area of 10 to 1,000 m2/g.
  • the catalyst support in step (c), may be dried at a temperature of 100 to 150°C and then calcined at a temperature of 400 to 600°C for 2 to 4 hours.
  • the Ru may be supported on the catalyst support in an amount of 0.1 to 30% by weight.
  • the catalyst support in which the SiC and the CHA-Zeolite are mixed may have a ratio of 5 to 95% by weight of the SiC and the CHA-Zeolite.
  • the step of coating the catalyst slurry prepared by mixing the ammonia decomposition catalyst with a predetermined binder on any one of ceramic honeycomb, metal plate, metal support, and ceramic filter may be further included.
  • the ammonia decomposition catalyst may have the form of any one of particles, pellets, monoliths, and plates.
  • the present invention provides an ammonia decomposition catalyst for hydrogen generation, characterized in that Ru is supported on a catalyst support containing SiC, CHA-Zeolite (chabazite-zeolite), or a combination thereof. do.
  • the ammonia decomposition catalyst and its manufacturing method for generating hydrogen by decomposing ammonia according to the present invention have a high hydrogen conversion rate by decomposing ammonia in a relatively low temperature region, minimizing the energy consumption consumed when extracting hydrogen from ammonia. can do.
  • FIG. 1 is a step-by-step flowchart of a method for producing an ammonia decomposition catalyst according to an embodiment of the present invention.
  • Figure 2 is a diagram showing the presence of cations in the zeolite structural skeleton.
  • Figure 3 is a diagram showing the results of X-ray diffraction analysis before and after high temperature heat treatment for CHA-Zeolite.
  • Figure 4 is a schematic diagram of an ammonia decomposition catalyst according to an embodiment of the present invention.
  • Figure 5 is a diagram showing catalysts prepared according to examples and comparative examples of the present invention.
  • Figure 6 is a diagram showing the results of catalytic activity evaluation for catalysts prepared according to Examples and Comparative Examples of the present invention.
  • FIG. 1 is a step-by-step flowchart of a method for producing an ammonia decomposition catalyst according to an embodiment of the present invention.
  • the method for producing an ammonia decomposition catalyst includes preparing a Ru precursor solution (S10), and adding SiC and CHA-Zeolite (chabazite-zeolite) to the Ru precursor solution. ), or a step of immersing a catalyst support containing a combination thereof (S20), and a step of drying and then calcining the immersed catalyst to prepare an ammonia decomposition catalyst (S30).
  • the ammonia decomposition catalyst manufactured according to the manufacturing method according to an embodiment of the present invention may have Ru supported on a catalyst support containing SiC, CHA-Zeolite (chabazite-zeolite), or a combination thereof.
  • a Ru precursor solution can be prepared to support ruthenium (Ru) on the catalyst support (S10).
  • the Ru precursor may be RuCl 3 ⁇ H 2 O, (NH 3 ) 6 RuCl 3 , Ru(NO)(NO 3 ) 3 , etc., and preferably RuCl 3 containing Ru.
  • a Ru precursor solution can be prepared by adding RuCl 3 to distilled water and mixing and stirring. At this time, the concentration of the Ru precursor solution may be 3 to 30%, and the pH may be acidic in the range of 2 to 5.
  • a catalyst support containing SiC, CHA-Zeolite (chabazite-zeolite), or a combination thereof can be immersed in the Ru precursor solution prepared in this way (S20).
  • the catalyst support according to an embodiment of the present invention must improve the reaction rate in order to lower the reaction temperature in the catalytic reaction, and the catalytic reaction rate may vary depending on the type of catalyst support.
  • properties that the catalyst support must possess in the ammonia decomposition catalyst according to an embodiment of the present invention include a large specific surface area, dispersibility of catalyst particles, thermal stability, adsorption and desorption with reactants, and thermal conductivity.
  • the catalyst support may be a SiC catalyst support.
  • the SiC catalyst support may preferably have a porous beta ( ⁇ ) crystal structure, and in this case, the pore size may be 2 to 50 ⁇ m.
  • this SiC catalyst support has higher thermal conductivity than other catalyst supports such as Al 2 O 3 , CeO 2 , TiO 2 , etc., and thus ammonia decomposition due to rapid heat transfer characteristics in the catalytic reaction. It may have the feature of saving energy supplied from outside during the reaction.
  • the catalyst support may be chabazite-zeolite.
  • CHA-Zeolite is a natural or synthetic zeolite composed of a 6-membered ring and an 8-membered ring, and the maximum pore size is It has a small pore size of 3.8 ⁇ .
  • CHA-Zeolite with this structure has a superior ammonia storage capacity compared to other zeolites (see Table 2 below). That is, since the adsorption and desorption characteristics for NH 3 , a reactant, are superior to those of other materials, it can have excellent characteristics as a support for an ammonia decomposition catalyst.
  • zeolites substituted/doped with metal ions may vary depending on the metal ion.
  • a typical zeolite is 550 When exposed to high temperatures of °C or higher, a dealumination phenomenon occurs in the Al atoms of the zeolite structure, causing the structural skeleton that makes up the zeolite to collapse, causing the loss of zeolite properties.
  • CHA-Zeolite according to an embodiment of the present invention has excellent high-temperature thermal durability due to the advantage that dealumination does not occur even when exposed to high temperatures.
  • CHA-Zeolite according to an embodiment of the present invention, as described above, Al and Si are connected through oxygen, and according to a preferred embodiment, the Si/Al ratio of CHA-Zeolite is 5 to 40. It is desirable to be
  • the Si/Al ratio is less than 5, the zeolite characteristics become hydrophilic and the ammonia adsorption characteristics decrease due to increased moisture adsorption, which may have a negative effect on the catalyst performance. In addition, it may have the effect of reducing hydrothermal durability, and when the Si/Al ratio exceeds 40, it may be difficult to form the CHA zeolite crystal structure. As the zeolite crystal structure is not formed, the ammonia adsorption characteristics and thermal durability characteristics are reduced. This may have a negative effect on catalyst performance.
  • CHA-Zeolite preferably has a specific surface area of 300 to 1,500 m2/g. If the specific surface area is less than 300 m2/g, sufficient catalytic activity as an ammonia decomposition catalyst is not achieved due to the low specific surface area. Conversely, if the specific surface area is more than 1,500 m2/g, the pore size is relatively reduced, making it difficult to effectively support Ru. there is a problem.
  • the catalyst support may be a combination of SiC and CHA-Zeolite.
  • the catalyst support may have a structure in which CHA-Zeolite is layered on SiC.
  • the SiC and CHA-Zeolite preferably have a ratio of 5 to 95% by weight. If SiC is less than 5% by weight, the thermal conductivity of the mixed catalyst support may be lowered, which may have a negative effect on catalytic activity. Conversely, if CHA-Zeolite is less than 5% by weight, the ammonia adsorption characteristics are lowered, which has a negative effect on hydrogen conversion performance. It can have an impact.
  • Ru/SiC catalyst by immersing the catalyst support containing SiC, CHA-Zeolite (chabazite-zeolite), or a combination thereof in the Ru precursor solution prepared in step S10 (S20), Ru/SiC catalyst, Ru/CHA-Zeolite catalyst , or a Ru/CHA-Zeolite-SiC catalyst can be prepared.
  • Ru/SiC catalyst by immersing the catalyst support containing SiC, CHA-Zeolite (chabazite-zeolite), or a combination thereof in the Ru precursor solution prepared in step S10 (S20), Ru/SiC catalyst, Ru/CHA-Zeolite catalyst , or a Ru/CHA-Zeolite-SiC catalyst can be prepared.
  • the catalyst support can be dried and then fired according to an embodiment of the present invention (S30).
  • the catalyst support can be dried in an oven at a temperature of 100 to 150° C., but the present invention does not specifically limit the drying method.
  • calcination is preferably performed at a temperature of 400 to 600°C for 2 to 4 hours. If calcination is performed at a temperature below 400°C, organic substances may not be removed and the mutual bond and adhesive strength between catalysts may decrease. Also, on the contrary, when firing at a temperature exceeding 600°C, there is a problem in that sintering of the catalyst support occurs and the specific surface area of the catalyst support decreases.
  • an ammonia decomposition catalyst can be prepared through steps S10 to S30, and in this ammonia decomposition catalyst, Ru is preferably supported on the catalyst support in an amount of 0.1 to 30% by weight.
  • Ru a catalytically active component
  • the content of Ru is less than 0.1% by weight, there is a problem of low hydrogen conversion rate where ammonia is decomposed to produce hydrogen.
  • the Ru content increases, but the Ru content is 30% compared to the catalyst support. If the weight percent is exceeded, the hydrogen production rate may not increase further and performance may be maintained or decreased. This is because Ru, a catalytically active component, is not dispersed in the catalyst support but aggregates, which may negatively affect hydrogen generation performance.
  • the form of the manufactured ammonia decomposition catalyst is not particularly limited, but may be formed into particles, pellets, beads, hole types, or monoliths of a certain shape by molding or processing. Or it may be a plate, etc.
  • the ammonia decomposition catalyst prepared through steps S10 to S30 may be in powder form, and the powdered ammonia decomposition catalyst is mixed with a predetermined binder to prepare a catalyst slurry, and then the catalyst slurry Can be coated on a ceramic honeycomb, a metal plate, a metal support of a certain shape, or a ceramic filter.
  • the binder is used to attach the coating material to the carrier, and the ammonia decomposition catalyst can be mixed in the aqueous solution by injecting the binder into the aqueous solution.
  • additional substances such as cellulose or wetting agent may be added for dispersion of the solution or uniformity of coating.
  • CHA-Zeolite support was added to the RuCl 3 aqueous solution and mixed for 3 hours. At this time, RuCl 3 was added as an aqueous solution at 5w/v, and the pH of the aqueous solution of RuCl 3 was adjusted to 2. Ru (2 wt%) was supported on the CHA-Zeolite support, and then the Ru-supported powder was dried in an oven at 120°C for 12 hours. Afterwards, the dried powder was calcined at 500°C for 3 hours to prepare ammonia decomposition catalyst powder (see Figure 5(b)).
  • ammonia decomposition catalyst powder was prepared in the same manner (see Figure 5(c)).
  • Ammonia decomposition catalyst powder was prepared in the same manner, except that a mixed support containing SiC support and CHA-Zeolite support mixed at a weight ratio of 90:10 was used instead of the CHA-Zeolite support of Example 1 ( Figure 5(d)) reference).
  • Ammonia decomposition catalyst powder was prepared in the same manner except that Ru was supported on the CeO 2 support using a CeO 2 support rather than the CHA-Zeolite support of Example 1 (see Figure 5(a)).
  • the catalyst was prepared in Examples 1 to 3 and Comparative Example 1, and the catalyst was installed in a fixed bed reactor. Ammonia gas was injected using a mass flow controller, and the desired reaction temperature was set using the temperature controller of the reaction furnace. Adjusted. The catalyst evaluation temperature was performed at 550°C and 500°C, and the test was performed at a space velocity of GHSV 20,000/h by injecting 100% ammonia. For catalyst analysis, the ammonia conversion rate was calculated by calculating the ammonia area using a thermal conductivity detector in an oven at 170°C using gas chromatography.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Catalysts (AREA)

Abstract

The present invention provides a method for preparing an ammonia decomposition catalyst comprising the steps of: (a) preparing a Ru precursor solution; (b) immersing the Ru precursor solution in a catalyst support containing SiC, chabazite-zeolite (CHA-Zeolite), or a combination thereof; and (c) preparing an ammonia decomposition catalyst by drying and then calcining the catalyst support.

Description

수소 발생을 위한 암모니아분해촉매 및 이의 제조방법Ammonia decomposition catalyst for hydrogen generation and its manufacturing method
본 발명은 수소 발생을 위한 암모니아분해촉매 및 이의 제조방법에 관한 것으로, 더욱 상세히는 암모니아를 분해함으로써 수소를 발생하기 위한 촉매 및 이의 제조방법에 관한 것이다.The present invention relates to an ammonia decomposition catalyst for hydrogen generation and a method for producing the same, and more specifically, to a catalyst for generating hydrogen by decomposing ammonia and a method for producing the same.
최근 화석연료의 고갈 및 환경오염 문제로 인하여 신재생 에너지에 대한 요구가 크며, 이에 대한 수단으로서 수소가 주목받고 있다.Recently, due to the depletion of fossil fuels and environmental pollution problems, there is a great demand for new and renewable energy, and hydrogen is attracting attention as a means to meet this demand.
수소는 화석연료와 달리, 이산화탄소의 배출이 없고, 물이 부산물로써 배출되는 청정에너지원으로서, 수소를 연료로서 활용하고자 하는 기술에 대한 연구가 활발히 진행되고 있으며, 안정적인 수소 공급을 위하여 수소를 생산 또는 활용하는 기술에 대한 연구 역시 함께 진행 중이다.Unlike fossil fuels, hydrogen is a clean energy source that does not emit carbon dioxide and emits water as a by-product. Research on technologies to utilize hydrogen as a fuel is actively being conducted, and hydrogen is produced or produced for a stable supply of hydrogen. Research on the technology to be used is also in progress.
수소를 압축하거나 액화하여 저장장치에 저장한 다음, 저장장치에 저장된 수소를 공급하는 방안이 제시되고 있지만, 이외에 수소를 저장할 수 있는 물질을 이용하여 수소를 저장한 다음 저장된 수소를 발생시켜 공급하는 방안도 제시되고 있다. 구체적으로, 금속수소화물(metal hydride) 이용 방법, 흡착, 탈착/탄소 (absorbents/carbon) 이용 방법, 화학적 수소저장 방법(chemical hydrogen storage) 등이 제안되고 있다. There is a proposed method of compressing or liquefying hydrogen and storing it in a storage device and then supplying the stored hydrogen in the storage device. However, another method is to store hydrogen using a material that can store hydrogen and then generate and supply the stored hydrogen. is also presented. Specifically, methods using metal hydride, adsorption, desorption/carbon (absorbents/carbon) methods, and chemical hydrogen storage methods have been proposed.
이 중 높은 수소 저장 밀도를 갖는 화학적 수소화물 방법이 주목받고 있고, 그 중 특히 암모니아는 다량의 수소를 저장할 수 있고, 상온에서 안정적인 상태를 유지할 수 있어, 수소를 효율적으로 저장하고 운송하는 방법으로서 암모니아를 수소 공급원으로 사용하는 방안이 제시되고 있다.Among these, chemical hydride methods with high hydrogen storage density are attracting attention, and among them, ammonia can store a large amount of hydrogen and maintain a stable state at room temperature, so ammonia is a method of efficiently storing and transporting hydrogen. A plan to use as a hydrogen source is being proposed.
즉, 암모니아는 1㎥ 당 120kg의 수소를 저장할 수 있고, 자연발화 온도가 651℃로 높아 화재 위험성이 아주 낮다는 점에서 효율적인 수소 운반체가 될 수 있다. 게다가, 산업적인 용도로 암모니아가 사용되어 왔기 때문에 기존 암모니아 인프라를 활용할 수 있다는 경제적 이점도 있어 암모니아 분해를 통한 수소 생산 방식이 현실적인 방안으로 주목받고 있다.In other words, ammonia can store 120kg of hydrogen per 1㎥ and can be an efficient hydrogen carrier in that it has a very low fire risk due to its high spontaneous ignition temperature of 651℃. In addition, since ammonia has been used for industrial purposes, there is an economic advantage of utilizing existing ammonia infrastructure, so hydrogen production through ammonia decomposition is attracting attention as a realistic method.
암모니아를 수소와 질소로 분해하는 공정은 흡열과정이기 때문에, 암모니아로부터 수소를 생산(또는 발생)시키기 위해서는 에너지가 필요하며, 구체적으로 하기 화학식과 같은 반응을 통해 암모니아로부터 수소가 발생할 수 있다.Since the process of decomposing ammonia into hydrogen and nitrogen is an endothermic process, energy is required to produce (or generate) hydrogen from ammonia. Specifically, hydrogen can be generated from ammonia through a reaction as shown in the following chemical formula.
[화학식][Chemical formula]
2NH3 → N2 + 3H2, △H=46.22 kJ/mol of NH3 2NH 3 → N 2 + 3H 2 , △H=46.22 kJ/mol of NH 3
이렇게 암모니아를 분해하여 수소를 발생시킬 때 요구되는 에너지 소비량을 줄이기 위한 필요 기술이 요구되고 있는 실정이며, 이러한 실정에 따라, 한국특허공개번호 제10-2021-0147910호에서는 암모니아를 분해하여 수소를 생성하는 촉매로서 루테늄(Ru)을 촉매의 활성 성분으로 사용하고, 촉매의 지지체로서 산화세륨(CeO2)과 산화란탄(La2O3)을 사용하는 기술을 개시하고 있고, 또 한국특허공개번호 제10-2021-0052938호에서는 루테늄(Ru)과 금속복합지지체로 이루어진 촉매 기술을 개시하고 있으며, 또 한국특허공개번호 제10-2019-0087810호에서는 촉매지지체로서 금속이 도핑된 제올라이트에 촉매활성물질인 루테늄이 포함된 촉매 기술을 개시하고 있다.There is a need for technology to reduce the energy consumption required when decomposing ammonia to generate hydrogen. Accordingly, in Korea Patent Publication No. 10-2021-0147910, hydrogen is generated by decomposing ammonia. discloses a technology using ruthenium (Ru) as the active ingredient of the catalyst and cerium oxide (CeO 2 ) and lanthanum oxide (La 2 O 3 ) as catalyst supports, and also disclosed in Korean Patent Publication No. In No. 10-2021-0052938, a catalyst technology consisting of ruthenium (Ru) and a metal composite support is disclosed, and in Korean Patent Publication No. 10-2019-0087810, a catalytically active material is used in zeolite doped with metal as a catalyst support. A catalyst technology containing ruthenium is being disclosed.
이 이외에, 암모니아 분해 수소 생성 루테늄계 촉매에서 MgO, ZrO2, Al2O3, TiO2, Active Carbon, Carbon nanotube 등의 지지체를 사용하는 연구들이 수행되고 있고, 지지체 종류에 따라 루테늄 촉매의 활성 차이가 발생하고 있다고 보고되고 있다. In addition to this, studies are being conducted using supports such as MgO, ZrO 2 , Al 2 O 3 , TiO 2 , Active Carbon, and Carbon nanotube in ruthenium-based catalysts for ammonia decomposition and hydrogen generation, and differences in the activity of ruthenium catalysts depending on the type of support. It is reported that is occurring.
그러나 이러한 선행 기술들은 여전히 높은 반응온도가 필요하며, 촉매 반응에 소요되는 에너지 소비량이 높은 문제가 있어, 촉매 반응 에너지 소비량 감소 측면에서 현재의 반응온도보다 낮은 온도영역에서 성능이 우수한, 즉 암모니아를 분해하여 수소로의 높은 전환율을 가지는 촉매에 대한 요구가 여전한 실정이다.However, these prior technologies still require a high reaction temperature and have the problem of high energy consumption for catalytic reaction, so in terms of reducing catalytic reaction energy consumption, they have excellent performance in a temperature range lower than the current reaction temperature, that is, decompose ammonia. Therefore, there is still a need for a catalyst with a high conversion rate to hydrogen.
본 발명은, 비교적 낮은 온도의 저온영역에서 암모니아를 분해하여 높은 수소 전환율을 가진 암모니아분해촉매 및 이의 제조방법을 제공하기 위한 것이다.The present invention is intended to provide an ammonia decomposition catalyst with a high hydrogen conversion rate by decomposing ammonia in a relatively low temperature range and a method for producing the same.
상기 과제를 해결하기 위하여, 본 발명은 Ru 전구체 용액을 마련하는 (a) 단계, SiC, CHA-Zeolite(chabazite-zeolite), 또는 이들의 조합을 포함하는 촉매지지체에 상기 Ru 전구체 용액을 침지시키는 (b) 단계, 및 상기 촉매지지체를 건조 후 소성하여 암모니아분해촉매를 제조하는 (c) 단계를 포함하는 암모니아분해촉매의 제조방법을 제공한다.In order to solve the above problem, the present invention includes the step (a) of preparing a Ru precursor solution, immersing the Ru precursor solution in a catalyst support containing SiC, CHA-Zeolite (chabazite-zeolite), or a combination thereof ( It provides a method for producing an ammonia decomposition catalyst, including step b), and step (c) of drying and calcining the catalyst support to produce an ammonia decomposition catalyst.
일 실시예에 따라, 상기 Ru 전구체는 RuCl3·H2O, (NH3)6RuCl3, Ru(NO)(NO3)3 및 이들의 조합으로 이루어진 군에서 선택된 1종을 포함할 수 있다.According to one embodiment, the Ru precursor may include one selected from the group consisting of RuCl 3 ·H 2 O, (NH 3 ) 6 RuCl 3 , Ru(NO)(NO 3 ) 3 , and combinations thereof. .
일 실시예에 따라, 상기 (a) 단계는, 증류수에 Ru을 첨가하여 혼합 및 교반할 수 있다.According to one embodiment, in step (a), Ru may be added to distilled water and mixed and stirred.
일 실시예에 따라, 상기 CHA-Zeolite는 비표면적 300 ~ 1,500㎡/g일 수 있다.According to one embodiment, the CHA-Zeolite may have a specific surface area of 300 to 1,500 m2/g.
일 실시예에 따라, 상기 CHA-Zeolite는 Si/Al 비율이 5 ~ 40일 수 있다.According to one embodiment, the CHA-Zeolite may have a Si/Al ratio of 5 to 40.
일 실시예에 따라, 상기 SiC는 베타결정구조를 갖되, 비표면적 10 ~ 1,000㎡/g일 수 있다.According to one embodiment, the SiC may have a beta crystal structure and a specific surface area of 10 to 1,000 m2/g.
일 실시예에 따라, 상기 (c) 단계는, 상기 촉매지지체를 100 ~ 150℃ 온도로 건조한 후, 400 ~ 600℃의 온도로 2 ~ 4 시간 소성할 수 있다.According to one embodiment, in step (c), the catalyst support may be dried at a temperature of 100 to 150°C and then calcined at a temperature of 400 to 600°C for 2 to 4 hours.
일 실시예에 따라, 상기 Ru는 상기 촉매지지체에 0.1 ~ 30 중량%의 함량으로 담지된 것일 수 있다.According to one embodiment, the Ru may be supported on the catalyst support in an amount of 0.1 to 30% by weight.
일 실시예에 따라, 상기 SiC와 상기 CHA-Zeolite가 혼합된 상기 촉매지지체는, 상기 SiC와 상기 CHA-Zeolite가 5 ~ 95중량%의 비율일 수 있다.According to one embodiment, the catalyst support in which the SiC and the CHA-Zeolite are mixed may have a ratio of 5 to 95% by weight of the SiC and the CHA-Zeolite.
일 실시예에 따라, 상기 암모니아분해촉매를 소정의 바인더와 배합하여 제조한 촉매슬러리를 세라믹허니컴, 금속판, 메탈지지체 및 세라믹필터 중 어느 하나에 코팅하는 단계를 더 포함할 수 있다.According to one embodiment, the step of coating the catalyst slurry prepared by mixing the ammonia decomposition catalyst with a predetermined binder on any one of ceramic honeycomb, metal plate, metal support, and ceramic filter may be further included.
일 실시예에 따라, 상기 암모니아분해촉매는 입자, 펠렛, 모노리스(monolith) 및 플레이트 중 어느 하나의 형태를 가질 수 있다.According to one embodiment, the ammonia decomposition catalyst may have the form of any one of particles, pellets, monoliths, and plates.
또한, 본 발명은, 수소 발생을 위한 암모니아분해촉매에 있어서, SiC, CHA-Zeolite(chabazite-zeolite), 또는 이들의 조합을 포함하는 촉매지지체에 Ru이 담지된 것을 특징으로 하는 암모니아분해촉매를 제공한다.In addition, the present invention provides an ammonia decomposition catalyst for hydrogen generation, characterized in that Ru is supported on a catalyst support containing SiC, CHA-Zeolite (chabazite-zeolite), or a combination thereof. do.
본 발명에 따른 암모니아를 분해하여 수소를 생성하는 암모니아분해촉매 및 이의 제조방법은, 비교적 낮은 온도의 저온영역에서 암모니아를 분해하여 높은 수소 전환율을 가져, 암모니아로부터 수소를 추출시 소비되는 에너지 소비량을 최소화할 수 있다.The ammonia decomposition catalyst and its manufacturing method for generating hydrogen by decomposing ammonia according to the present invention have a high hydrogen conversion rate by decomposing ammonia in a relatively low temperature region, minimizing the energy consumption consumed when extracting hydrogen from ammonia. can do.
도 1은 본 발명의 일 실시예에 따른 암모니아분해촉매의 제조방법의 단계별 흐름도이다.1 is a step-by-step flowchart of a method for producing an ammonia decomposition catalyst according to an embodiment of the present invention.
도 2는 제올라이트 구조골격의 양이온 존재 형태를 나타낸 도면이다.Figure 2 is a diagram showing the presence of cations in the zeolite structural skeleton.
도 3은 CHA-Zeolite에 대한 고온 열처리 전후 엑스선 회절 분석 결과를 나타낸 도면이다.Figure 3 is a diagram showing the results of X-ray diffraction analysis before and after high temperature heat treatment for CHA-Zeolite.
도 4는 본 발명의 일 실시예에 따른 암모니아분해촉매의 모식도이다.Figure 4 is a schematic diagram of an ammonia decomposition catalyst according to an embodiment of the present invention.
도 5는 본 발명의 실시예와 비교예에 따라 제조된 촉매를 나타낸 도면이다.Figure 5 is a diagram showing catalysts prepared according to examples and comparative examples of the present invention.
도 6은 본 발명의 실시예와 비교예에 따라 제조된 촉매에 대한 촉매 활성도 평가 결과를 나타낸 도면이다.Figure 6 is a diagram showing the results of catalytic activity evaluation for catalysts prepared according to Examples and Comparative Examples of the present invention.
이하, 첨부된 도면을 참조하여 본 명세서에 개시된 실시 예를 상세히 설명하되, 도면 부호에 관계없이 동일하거나 유사한 구성요소는 동일한 참조 번호를 부여하고 이에 대한 중복되는 설명은 생략하기로 한다. 이하의 설명에서 사용되는 구성 요소에 대한 접미사 "모듈" 및 "부"는 명세서 작성의 용이함만이 고려되어 부여되거나 혼용되는 것으로서, 그 자체로 서로 구별되는 의미 또는 역할을 갖는 것은 아니다. 또한, 본 명세서에 개시된 실시 예를 설명함에 있어서 관련된 공지 기술에 대한 구체적인 설명이 본 명세서에 개시된 실시 예의 요지를 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다. 또한, 첨부된 도면은 본 명세서에 개시된 실시 예를 쉽게 이해할 수 있도록 하기 위한 것일 뿐, 첨부된 도면에 의해 본 명세서에 개시된 기술적 사상이 제한되지 않으며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.Hereinafter, embodiments disclosed in the present specification will be described in detail with reference to the attached drawings. However, identical or similar components will be assigned the same reference numbers regardless of reference numerals, and duplicate descriptions thereof will be omitted. The suffixes “module” and “part” for the components used in the following description are given or used interchangeably only for the ease of preparing the specification, and do not have distinct meanings or roles in themselves. Additionally, in describing the embodiments disclosed in this specification, if it is determined that detailed descriptions of related known technologies may obscure the gist of the embodiments disclosed in this specification, the detailed descriptions will be omitted. In addition, the attached drawings are only for easy understanding of the embodiments disclosed in this specification, and the technical idea disclosed in this specification is not limited by the attached drawings, and all changes included in the spirit and technical scope of the present invention are not limited. , should be understood to include equivalents or substitutes.
어떤 구성요소가 다른 구성요소에 "연결되어" 있다거나 "접속되어" 있다고 언급된 때에는, 그 다른 구성요소에 직접적으로 연결되어 있거나 또는 접속되어 있을 수도 있지만, 중간에 다른 구성요소가 존재할 수도 있다고 이해되어야 할 것이다. 반면에, 어떤 구성요소가 다른 구성요소에 "직접 연결되어" 있다거나 "직접 접속되어" 있다고 언급된 때에는, 중간에 다른 구성요소가 존재하지 않는 것으로 이해되어야 할 것이다.When a component is said to be "connected" or "connected" to another component, it is understood that it may be directly connected to or connected to the other component, but that other components may exist in between. It should be. On the other hand, when it is mentioned that a component is “directly connected” or “directly connected” to another component, it should be understood that there are no other components in between.
단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다.Singular expressions include plural expressions unless the context clearly dictates otherwise.
본 명세서에서, "포함한다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.In this specification, terms such as “comprise” or “have” are intended to indicate the presence of features, numbers, steps, operations, components, parts, or combinations thereof described in the specification, but are not intended to indicate the presence of one or more other features. It should be understood that this does not exclude in advance the possibility of the existence or addition of elements, numbers, steps, operations, components, parts, or combinations thereof.
도 1은 본 발명의 일 실시예에 따른 암모니아분해촉매의 제조방법의 단계별 흐름도이다.1 is a step-by-step flowchart of a method for producing an ammonia decomposition catalyst according to an embodiment of the present invention.
도 1에 도시한 바와 같이, 본 발명의 일 실시예에 따른 암모니아분해촉매의 제조방법은, Ru 전구체 용액을 마련하는 단계(S10)와, 상기 Ru 전구체 용액에 SiC, CHA-Zeolite(chabazite-zeolite), 또는 이들의 조합을 포함하는 촉매지지체를 침지시키는 단계(S20)와, 상기 침지된 촉매를 건조 후 소성하여 암모니아분해촉매를 제조하는 단계(S30)를 포함할 수 있다.As shown in FIG. 1, the method for producing an ammonia decomposition catalyst according to an embodiment of the present invention includes preparing a Ru precursor solution (S10), and adding SiC and CHA-Zeolite (chabazite-zeolite) to the Ru precursor solution. ), or a step of immersing a catalyst support containing a combination thereof (S20), and a step of drying and then calcining the immersed catalyst to prepare an ammonia decomposition catalyst (S30).
본 발명의 일 실시예에 따른 제조방법에 따라 제조된 암모니아분해촉매는 SiC, CHA-Zeolite(chabazite-zeolite), 또는 이들의 조합을 포함하는 촉매지지체에 Ru이 담지된 것일 수 있다.The ammonia decomposition catalyst manufactured according to the manufacturing method according to an embodiment of the present invention may have Ru supported on a catalyst support containing SiC, CHA-Zeolite (chabazite-zeolite), or a combination thereof.
이하, 각 단계별로 상세히 살펴보기로 한다.Below, we will look at each step in detail.
먼저, 촉매지지체에 루테늄(Ru)을 담지하기 위해 Ru 전구체 용액을 마련할 수 있다(S10).First, a Ru precursor solution can be prepared to support ruthenium (Ru) on the catalyst support (S10).
여기서, Ru 전구체는 Ru를 포함하는 RuCl3·H2O, (NH3)6RuCl3, Ru(NO)(NO3)3 등일 수 있고, 바람직하게는 RuCl3일 수 있다.Here, the Ru precursor may be RuCl 3 ·H 2 O, (NH 3 ) 6 RuCl 3 , Ru(NO)(NO 3 ) 3 , etc., and preferably RuCl 3 containing Ru.
따라서, 구체적으로 증류수에 RuCl3를 첨가하여 혼합 및 교반함으로써, Ru 전구체 용액을 마련할 수 있다. 이때 Ru 전구체 용액의 농도는 3~30%일 수 있고, pH는 2~5 범위의 산성일 수 있다.Therefore, specifically, a Ru precursor solution can be prepared by adding RuCl 3 to distilled water and mixing and stirring. At this time, the concentration of the Ru precursor solution may be 3 to 30%, and the pH may be acidic in the range of 2 to 5.
이후, 이렇게 마련된 Ru 전구체 용액에 SiC, CHA-Zeolite(chabazite-zeolite), 또는 이들의 조합을 포함하는 촉매지지체를 침지시킬 수 있다(S20).Thereafter, a catalyst support containing SiC, CHA-Zeolite (chabazite-zeolite), or a combination thereof can be immersed in the Ru precursor solution prepared in this way (S20).
본 발명의 일 실시예에 따른 촉매지지체는 촉매 반응에서 반응 온도를 낮추기 위해, 반응속도를 향상시켜야 하며, 촉매 반응속도는 촉매 지지체 종류에 따라 차이가 발생할 수 있다.The catalyst support according to an embodiment of the present invention must improve the reaction rate in order to lower the reaction temperature in the catalytic reaction, and the catalytic reaction rate may vary depending on the type of catalyst support.
또한, 본 발명의 일 실시예에 따른 암모니아분해촉매에서 촉매지지체가 보유하여야 하는 특성으로는, 넓은 비표면적, 촉매입자의 분산성, 열적안정성, 반응물질과의 흡탈착, 열전도성 등이 있다.In addition, properties that the catalyst support must possess in the ammonia decomposition catalyst according to an embodiment of the present invention include a large specific surface area, dispersibility of catalyst particles, thermal stability, adsorption and desorption with reactants, and thermal conductivity.
따라서, 구체적인 일 실시예에 따라, 촉매지지체는 SiC 촉매지지체일 수 있으며, 이때 바람직하게 SiC 촉매지지체는 베타(β) 결정구조의 다공성일 수 있고, 이때 기공 크기는 2 ~ 50㎛일 수 있다.Therefore, according to a specific embodiment, the catalyst support may be a SiC catalyst support. In this case, the SiC catalyst support may preferably have a porous beta (β) crystal structure, and in this case, the pore size may be 2 to 50㎛.
이러한 SiC 촉매지지체는, 하기 표 1에서 나타난 바와 같이, Al2O3, CeO2, TiO2 등과 같은 다른 촉매지지체에 비하여 높은 열전도도를 가지고 있기 때문에, 촉매 반응에서 빠른 열전달 특성으로 인해, 암모니아분해 반응시 외부에서 공급해주는 에너지를 절감할 수 있는 특징을 가질 수 있다.As shown in Table 1 below, this SiC catalyst support has higher thermal conductivity than other catalyst supports such as Al 2 O 3 , CeO 2 , TiO 2 , etc., and thus ammonia decomposition due to rapid heat transfer characteristics in the catalytic reaction. It may have the feature of saving energy supplied from outside during the reaction.
촉매지지체 종류Catalyst support type 열전도도(Wㆍm-1ㆍK-1)Thermal conductivity (Wㆍm -1 ㆍK -1 )
SiCSiC 320320
Al2O3 Al 2 O 3 3030
CeO2 CeO 2 1111
TiO2 TiO 2 1212
또한, 본 발명의 일 실시예에 따라 촉매지지체는 차바자이트 제올라이트(Chabazite-Zeolite)일 수 있으며, CHA-Zeolite는 천연 또는 합성 제올라이트로서 6 membered ring과 8 membered ring으로 구성되어 있으며 최대 기공 크기는 3.8Å으로 Small pore size를 갖는다. 이러한 구조를 가진 CHA-Zeolite는 다른 제올라이트에 비해 암모니아 흡장량이 우수한 특징이 있다(하기 표 2 참조). 즉, 반응물질인 NH3에 대한 흡탈착 특성이 다른 물질에 비해 우수하기 때문에, 암모니아분해촉매의 지지체로서 우수한 특징을 가질 수 있다.In addition, according to one embodiment of the present invention, the catalyst support may be chabazite-zeolite. CHA-Zeolite is a natural or synthetic zeolite composed of a 6-membered ring and an 8-membered ring, and the maximum pore size is It has a small pore size of 3.8Å. CHA-Zeolite with this structure has a superior ammonia storage capacity compared to other zeolites (see Table 2 below). That is, since the adsorption and desorption characteristics for NH 3 , a reactant, are superior to those of other materials, it can have excellent characteristics as a support for an ammonia decomposition catalyst.
제올라이트 종류Zeolite types NH3 흡장량 (mmol/g)NH 3 storage amount (mmol/g)
CHA ZeoliteCHA Zeolite 4.844.84
Zeolite XZeolite X 3.083.08
Zeolite YZeolite Y 1.311.31
Zeolite ZSM-5Zeolite ZSM-5 0.230.23
한편, 제올라이트 구조의 골격은 실리콘(Si)과 알루미늄(Al)이 각각 4개의 산소를 통해 연결되어 있으며, 알루미늄이 4개의 산소와 결합을 하게 됨에 따라 음전하를 갖는다(도 2 참조). 이러한 음전하를 상쇄하기 위하여 제올라이트에서는 양이온이 존재하게 되고, 양이온은 여러 형태의 금속이온이 치환 또는 도핑되며, 금속이온으로 치환/도핑된 제올라이트는 금속이온에 따라 특성이 달라질 수 있다.일반적인 제올라이트는 550℃ 이상의 고온에 노출 시 제올라이트 구조의 Al 원자가 Dealumination 현상이 발생되어, 제올라이트를 구성하고 있는 구조골격이 붕괴됨으로써 제올라이트 특성이 없어지는 문제점이 있다. 본 발명의 일 실시예에 따른 CHA-Zeolite는 고온에 노출되더라도 Dealumination 현상이 발생되지 않는 장점으로 인해 고온 열 내구성이 우수한 특징이 있다.Meanwhile, in the skeleton of the zeolite structure, silicon (Si) and aluminum (Al) are connected through four oxygens each, and aluminum has a negative charge as it bonds to four oxygens (see Figure 2). To offset this negative charge, cations exist in zeolite, and cations are substituted or doped with various types of metal ions, and the properties of zeolites substituted/doped with metal ions may vary depending on the metal ion. A typical zeolite is 550 When exposed to high temperatures of ℃ or higher, a dealumination phenomenon occurs in the Al atoms of the zeolite structure, causing the structural skeleton that makes up the zeolite to collapse, causing the loss of zeolite properties. CHA-Zeolite according to an embodiment of the present invention has excellent high-temperature thermal durability due to the advantage that dealumination does not occur even when exposed to high temperatures.
구체적으로, CHA-Zeolite에 대한 고온 열처리 전후 엑스선 회절 분석 결과를 도 3에 도시하였으며, 그 결과 고온 노출 후 CHA-Zeolite는 결정성이 유지되고 있음을 확인할 수 있었다.Specifically, the results of X-ray diffraction analysis of CHA-Zeolite before and after high-temperature heat treatment are shown in Figure 3, and as a result, it was confirmed that CHA-Zeolite maintained its crystallinity after exposure to high temperature.
이때, 본 발명의 일 실시예에 따른 CHA-Zeolite는, 전술한 바와 같이, 산소를 매개로 Al과 Si이 연결되어 있으며, 바람직한 일 실시예에 따라 CHA-Zeolite의 Si/Al 비율은 5 ~ 40인 것이 바람직하다.At this time, in CHA-Zeolite according to an embodiment of the present invention, as described above, Al and Si are connected through oxygen, and according to a preferred embodiment, the Si/Al ratio of CHA-Zeolite is 5 to 40. It is desirable to be
만약, Si/Al 비율이 5 미만 일때는 제올라이트 특성이 친수성이 되어 수분 흡착 증가로 인해 암모니아 흡착 특성이 감소하여 촉매성능에 부정적인 영향을 미칠 수 있다. 또한 수열내구성이 감소하는 영향을 미칠 수 있고, 또 Si/Al 비율이 40 초과 일 때는 CHA 제올라이트 결정구조 형성이 어려울 수 있으며, 제올라이트 결정구조가 형성되지 않아, 암모니아 흡착특성 및 열내구성의 특성이 감소하여 촉매 성능에 부정적인 영향을 미칠 수 있다. If the Si/Al ratio is less than 5, the zeolite characteristics become hydrophilic and the ammonia adsorption characteristics decrease due to increased moisture adsorption, which may have a negative effect on the catalyst performance. In addition, it may have the effect of reducing hydrothermal durability, and when the Si/Al ratio exceeds 40, it may be difficult to form the CHA zeolite crystal structure. As the zeolite crystal structure is not formed, the ammonia adsorption characteristics and thermal durability characteristics are reduced. This may have a negative effect on catalyst performance.
또한, 바람직한 일 실시예에 따른 CHA-Zeolite는 비표면적 300 ~ 1,500㎡/g인 것이 바람직하다. 만약 비표면적이 300㎡/g 미만이면 낮은 비표면적으로 인해 암모니아분해촉매로서 충분한 촉매활성이 발휘되지 않고, 이와 반대로 비표면적이 1,500㎡/g 초과이면 상대적으로 기공 크기가 줄어들어 Ru을 효과적으로 담지하기 어려운 문제가 있다.In addition, CHA-Zeolite according to a preferred embodiment preferably has a specific surface area of 300 to 1,500 m2/g. If the specific surface area is less than 300 m2/g, sufficient catalytic activity as an ammonia decomposition catalyst is not achieved due to the low specific surface area. Conversely, if the specific surface area is more than 1,500 m2/g, the pore size is relatively reduced, making it difficult to effectively support Ru. there is a problem.
또한, 본 발명의 일 실시예에 따라 촉매지지체는 SiC와 CHA-Zeolite의 조합일 수 있으며, 이때 특별히 한정하지 않으나 상기 촉매지지체는 SiC 위에 CHA-Zeolite가 적층된 구조를 가질 수 있다.Additionally, according to one embodiment of the present invention, the catalyst support may be a combination of SiC and CHA-Zeolite. In this case, there is no particular limitation, but the catalyst support may have a structure in which CHA-Zeolite is layered on SiC.
SiC와 CHA-Zeolite가 혼합된 촉매지지체는, 상기 SiC와 상기 CHA-Zeolite가 5 ~ 95 중량%의 비율인 것이 바람직하다. 만약 SiC가 5 중량% 미만인 경우 혼합 촉매지지체의 열전도성이 낮아져 촉매활성이 발휘되지 않도록 부정적인 영향을 미칠 수 있고, 이와 반대로 CHA-Zeolite가 5 중량% 미만인 경우 암모니아 흡착특성이 낮아져 수소전환성능에 부정적인 영향을 미칠 수 있다.In the catalyst support mixed with SiC and CHA-Zeolite, the SiC and CHA-Zeolite preferably have a ratio of 5 to 95% by weight. If SiC is less than 5% by weight, the thermal conductivity of the mixed catalyst support may be lowered, which may have a negative effect on catalytic activity. Conversely, if CHA-Zeolite is less than 5% by weight, the ammonia adsorption characteristics are lowered, which has a negative effect on hydrogen conversion performance. It can have an impact.
결국, S10 단계에서 마련된 Ru 전구체 용액에 상기 SiC, CHA-Zeolite(chabazite-zeolite), 또는 이들의 조합을 포함하는 촉매지지체를 침지시킴(S20)으로써, Ru/SiC 촉매, Ru/CHA-Zeolite 촉매, 또는 Ru/CHA-Zeolite-SiC 촉매가 마련될 수 있다. 각각을 모식화하여 도 4(a), 4(b) 및 4(c)에 나타내었다.Ultimately, by immersing the catalyst support containing SiC, CHA-Zeolite (chabazite-zeolite), or a combination thereof in the Ru precursor solution prepared in step S10 (S20), Ru/SiC catalyst, Ru/CHA-Zeolite catalyst , or a Ru/CHA-Zeolite-SiC catalyst can be prepared. Each is modeled and shown in Figures 4(a), 4(b), and 4(c).
이후, 본 발명의 일 실시예에 따라 상기 촉매지지체를 건조한 다음 소성할 수 있다(S30).Thereafter, the catalyst support can be dried and then fired according to an embodiment of the present invention (S30).
촉매지지체는 오븐에서 100 ~ 150℃의 온도로 건조할 수 있으나, 건조 방식에 대해 본 발명은 특별히 한정하지 않는다. 촉매지지체의 건조 후 소성은 400 ~ 600℃의 온도로 2 ~ 4 시간하는 것이 바람직하다. 만약 400℃ 미만의 온도에서 소성을 할 경우 유기물이 제거되지 않아 촉매 간의 상호 결합과 접착 강도가 떨어질 수 있다. 또한 이와 반대로 600℃ 초과의 온도에서 소성을 할 경우 촉매지지체의 소결(sintering)을 유발하여 촉매지지체의 비표면적이 낮아지는 문제가 있다.The catalyst support can be dried in an oven at a temperature of 100 to 150° C., but the present invention does not specifically limit the drying method. After drying the catalyst support, calcination is preferably performed at a temperature of 400 to 600°C for 2 to 4 hours. If calcination is performed at a temperature below 400°C, organic substances may not be removed and the mutual bond and adhesive strength between catalysts may decrease. Also, on the contrary, when firing at a temperature exceeding 600°C, there is a problem in that sintering of the catalyst support occurs and the specific surface area of the catalyst support decreases.
이렇게 상기 S10 ~ S30 단계를 통해 암모니아분해촉매가 제조될 수 있으며, 이러한 암모니아분해촉매에서 Ru는 촉매지지체에 0.1 ~ 30 중량%의 함량으로 담지된 것이 바람직하다.In this way, an ammonia decomposition catalyst can be prepared through steps S10 to S30, and in this ammonia decomposition catalyst, Ru is preferably supported on the catalyst support in an amount of 0.1 to 30% by weight.
만약, 촉매 활성 성분인 Ru의 함량이 0.1 중량% 미만인 경우, 암모니아가 분해되어 수소를 생성하는 수소전환율이 낮은 문제가 있으며, Ru 함량이 증가할수록 수소 생성률이 증가하지만 Ru의 함량이 촉매지지체 대비 30 중량%를 초과할 경우 수소 생성률이 더 증가하지 않고 성능이 유지 또는 감소할 수 있다. 왜냐하면 촉매 활성 성분인 Ru이 촉매지지체에 분산되지 않고 응집되어 수소 생성 성능에 부정적인 영향을 미칠 수 있기 때문이다.If the content of Ru, a catalytically active component, is less than 0.1% by weight, there is a problem of low hydrogen conversion rate where ammonia is decomposed to produce hydrogen. As the Ru content increases, the hydrogen production rate increases, but the Ru content is 30% compared to the catalyst support. If the weight percent is exceeded, the hydrogen production rate may not increase further and performance may be maintained or decreased. This is because Ru, a catalytically active component, is not dispersed in the catalyst support but aggregates, which may negatively affect hydrogen generation performance.
또한, 제조된 상기 암모니아분해촉매의 형태는 특별히 한정하지 않으나, 성형이나 가공 등에 의해 소정 형태의 입자(particle), 펠렛(pellet), 비드(bead), 홀타입(hole type), 모노리스(monolith) 또는 플레이트(plate) 등일 수 있다.In addition, the form of the manufactured ammonia decomposition catalyst is not particularly limited, but may be formed into particles, pellets, beads, hole types, or monoliths of a certain shape by molding or processing. Or it may be a plate, etc.
한편, 다음으로, 상기 S10 ~ S30 단계를 통해 제조된 암모니아분해촉매는 분말형태일 수 있고, 분말인 암모니아분해촉매는 소정의 바인더(binder)와 배합하여 촉매 슬러리(slurry)로 제조한 다음 촉매슬러리를 세라믹허니컴, 금속판, 소정 형태의 메탈지지체 또는 세라믹필터에 코팅할 수 있다.Meanwhile, the ammonia decomposition catalyst prepared through steps S10 to S30 may be in powder form, and the powdered ammonia decomposition catalyst is mixed with a predetermined binder to prepare a catalyst slurry, and then the catalyst slurry Can be coated on a ceramic honeycomb, a metal plate, a metal support of a certain shape, or a ceramic filter.
바인더는 담체에 코팅물질을 부착하기 위한 것으로, 수용액 상에서 바인더를 주입하여 수용액 상에서 암모니아분해촉매를 혼합(mixing)할 수 있다. 이때, 용액의 분산이나 코팅의 균일성 등을 위해 cellulose나 wetting agent 등의 물질을 더 첨가할 수 있다. 이때 첨가된 cellulose, wetting agent의 함량은 총 함량(중량%)의 0.1~3.5%의 범위 내에서 사용하는 것이 바람직하다.The binder is used to attach the coating material to the carrier, and the ammonia decomposition catalyst can be mixed in the aqueous solution by injecting the binder into the aqueous solution. At this time, additional substances such as cellulose or wetting agent may be added for dispersion of the solution or uniformity of coating. At this time, it is desirable to use the added cellulose and wetting agent within the range of 0.1 to 3.5% of the total content (% by weight).
왜냐하면, 상기 첨가물질의 범위인 총 함량의 0.1~3.5%를 범위 벗어나면, 슬러리 용액의 점도 및 pH가 크게 변화하고, 이로 인해 Ru 등의 활성성분이 촉매 슬러리 내부에서 분산이 잘되지 않으며, 코팅이 불균일하게 되기 때문이다.This is because, if the additive material range is outside the range of 0.1 to 3.5% of the total content, the viscosity and pH of the slurry solution change significantly, and as a result, active ingredients such as Ru are not dispersed well inside the catalyst slurry, and the coating This is because it becomes uneven.
실시예1Example 1
RuCl3 수용액에 CHA-Zeolite 지지체를 투입하여 3시간동안 혼합하였다. 이때 RuCl3 는 수용액 5w/v로 첨가하였으며, 이때 RuCl3의 수용액의 pH는 2로 조절하였다. CHA-Zeolite 지지체에 Ru(2wt%)을 담지시킨 다음, Ru이 담지된 파우더(powder)를 오븐에서 12시간 동안 120℃로 건조시켰다. 이후 건조된 파우더를 500℃에서 3시간 동안 소성하여 암모니아분해촉매 파우더를 제조하였다(도 5(b) 참조).CHA-Zeolite support was added to the RuCl 3 aqueous solution and mixed for 3 hours. At this time, RuCl 3 was added as an aqueous solution at 5w/v, and the pH of the aqueous solution of RuCl 3 was adjusted to 2. Ru (2 wt%) was supported on the CHA-Zeolite support, and then the Ru-supported powder was dried in an oven at 120°C for 12 hours. Afterwards, the dried powder was calcined at 500°C for 3 hours to prepare ammonia decomposition catalyst powder (see Figure 5(b)).
실시예2Example 2
앞선 실시예1의 CHA-Zeolite 지지체가 아닌 SiC 지지체를 사용한 것 이외에, 나머지는 동일하게 암모니아분해촉매 파우더를 제조하였다(도 5(c) 참조).Except that a SiC support was used instead of the CHA-Zeolite support of Example 1, ammonia decomposition catalyst powder was prepared in the same manner (see Figure 5(c)).
실시예3Example 3
앞선 실시예1의 CHA-Zeolite 지지체가 아닌 SiC 지지체와 CHA-Zeolite 지지체가 중량비 90:10로 혼합된 혼합지지체를 사용한 것 이외에, 나머지는 동일하게 암모니아분해촉매 파우더를 제조하였다(도 5(d) 참조).Ammonia decomposition catalyst powder was prepared in the same manner, except that a mixed support containing SiC support and CHA-Zeolite support mixed at a weight ratio of 90:10 was used instead of the CHA-Zeolite support of Example 1 (Figure 5(d)) reference).
비교예1Comparative Example 1
앞선 실시예1의 CHA-Zeolite 지지체가 아닌 CeO2 지지체를 사용하여, CeO2 지지체에 Ru을 담지시킨 것 이외에, 나머지는 동일하게 암모니아분해촉매 파우더를 제조하였다(도 5(a) 참조).Ammonia decomposition catalyst powder was prepared in the same manner except that Ru was supported on the CeO 2 support using a CeO 2 support rather than the CHA-Zeolite support of Example 1 (see Figure 5(a)).
실험예1Experimental Example 1
(1) 실험 평가 조건 및 방법(1) Experimental evaluation conditions and methods
상기 실시예1 ~ 3, 그리고 비교예1에서 촉매를 제조하고, 고정층 반응기에서 촉매를 장착한 후, Mass flow controller를 이용하여 암모니아 가스를 주입하였으며, 반응 전기로의 온도 컨트롤러를 이용하여 원하는 반응온도를 조절하였다. 촉매 평가 온도는 550℃와 500℃에서 수행하였으며, 100% 암모니아를 주입하여 공간속도 GHSV 20,000/h에서 시험을 수행하였다. 촉매 분석은 Gas Chromatography를 이용하여 Oven 170℃ 조건에서 열전도도 검출기를 이용하여 암모니아 면적을 계산하여 암모니아 전환율을 산정하였다. The catalyst was prepared in Examples 1 to 3 and Comparative Example 1, and the catalyst was installed in a fixed bed reactor. Ammonia gas was injected using a mass flow controller, and the desired reaction temperature was set using the temperature controller of the reaction furnace. Adjusted. The catalyst evaluation temperature was performed at 550℃ and 500℃, and the test was performed at a space velocity of GHSV 20,000/h by injecting 100% ammonia. For catalyst analysis, the ammonia conversion rate was calculated by calculating the ammonia area using a thermal conductivity detector in an oven at 170°C using gas chromatography.
(2) 실험결과(2) Experiment results
상기 실시예1 ~ 3, 그리고 비교예1에서 제조된 촉매에 대한 촉매 활성도 평가 결과, 도 6에 도시한 바와 같이, 저온영역인 반응 온도 550℃와 500℃에서 Ru(2)/SiC+Chabazite-Zeolite > Ru(2)/SiC > Ru(2)/Chabazite-Zeolite > Ru(2)/CeO2 순으로 성능이 우수한 것으로 나타났다. 이는 CHA-Zeolite와 SiC의 지지체가 적용된 촉매가 암모니아 흡착량, 열전도도, 열적 안정성 등의 특성이 개선되어 암모니아분해 성능이 증진된 것으로 예측된다. As a result of evaluating the catalytic activity of the catalysts prepared in Examples 1 to 3 and Comparative Example 1, as shown in FIG. 6, Ru(2)/SiC+Chabazite- The performance was found to be excellent in the following order: Zeolite > Ru(2)/SiC > Ru(2)/Chabazite-Zeolite > Ru(2)/CeO 2 . It is predicted that the catalyst with CHA-Zeolite and SiC support has improved ammonia adsorption capacity, thermal conductivity, and thermal stability, thereby improving ammonia decomposition performance.
이상으로 본 발명의 바람직한 실시예를 도면을 참고하여 상세하게 설명하였다. 본 발명의 설명은 예시를 위한 것이며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 쉽게 변형이 가능하다는 것을 이해할 수 있을 것이다.Above, preferred embodiments of the present invention have been described in detail with reference to the drawings. The description of the present invention is for illustrative purposes, and those skilled in the art will understand that the present invention can be easily modified into other specific forms without changing its technical idea or essential features.
따라서, 본 발명의 범위는 상기 상세한 설명보다는 후술하는 특허청구범위에 의하여 나타내어지며, 특허청구범위의 의미, 범위 및 그 균등 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.Accordingly, the scope of the present invention is indicated by the claims described later rather than the detailed description above, and all changes or modified forms derived from the meaning and scope of the claims and their equivalent concepts are included in the scope of the present invention. must be interpreted.

Claims (12)

  1. Ru 전구체 용액을 마련하는 (a) 단계;(a) preparing a Ru precursor solution;
    SiC, CHA-Zeolite(chabazite-zeolite), 또는 이들의 조합을 포함하는 촉매지지체에 상기 Ru 전구체 용액을 침지시키는 (b) 단계; 및(b) immersing the Ru precursor solution in a catalyst support containing SiC, CHA-Zeolite (chabazite-zeolite), or a combination thereof; and
    상기 침지된 촉매를 건조 후 소성하여 암모니아분해촉매를 제조하는 (c) 단계;(c) preparing an ammonia decomposition catalyst by drying and calcining the immersed catalyst;
    를 포함하는 암모니아분해촉매의 제조방법.Method for producing an ammonia decomposition catalyst comprising.
  2. 제 1 항에 있어서,According to claim 1,
    상기 Ru 전구체는 RuCl3·H2O, (NH3)6RuCl3, Ru(NO)(NO3)3 및 이들의 조합으로 이루어진 군에서 선택된 1종을 포함하는 것을 특징으로 하는 암모니아분해촉매의 제조방법.The Ru precursor is an ammonia decomposition catalyst characterized in that it includes one selected from the group consisting of RuCl 3 ·H 2 O, (NH 3 ) 6 RuCl 3 , Ru(NO)(NO 3 ) 3 and combinations thereof. Manufacturing method.
  3. 제 1 항에 있어서,According to claim 1,
    상기 (a) 단계는,In step (a),
    증류수에 Ru을 첨가하여 혼합 및 교반하는 것을 특징으로 하는 암모니아분해촉매의 제조방법.A method for producing an ammonia decomposition catalyst, characterized in that Ru is added to distilled water, mixed and stirred.
  4. 제 1 항에 있어서,According to claim 1,
    상기 CHA-Zeolite는 비표면적 300 ~ 1,500㎡/g인 것을 특징으로 하는 암모니아분해촉매의 제조방법.A method for producing an ammonia decomposition catalyst, characterized in that the CHA-Zeolite has a specific surface area of 300 to 1,500 m2/g.
  5. 제 1 항에 있어서,According to claim 1,
    상기 CHA-Zeolite는 Si/Al 비율이 5 ~ 40인 것을 특징으로 하는 암모니아분해촉매의 제조방법.A method of producing an ammonia decomposition catalyst, characterized in that the CHA-Zeolite has a Si/Al ratio of 5 to 40.
  6. 제 1 항에 있어서,According to claim 1,
    상기 SiC는 베타결정구조를 갖되, 비표면적 10 ~ 1,000㎡/g인 것을 특징으로 하는 암모니아분해촉매의 제조방법.A method for producing an ammonia decomposition catalyst, wherein the SiC has a beta crystal structure and a specific surface area of 10 to 1,000 m2/g.
  7. 제 1 항에 있어서,According to claim 1,
    상기 (c) 단계는,In step (c),
    상기 촉매지지체를 100 ~ 150℃ 온도로 건조한 후, 400 ~ 600℃의 온도로 2 ~ 4 시간 소성하는 것을 특징으로 하는 암모니아분해촉매의 제조방법.A method for producing an ammonia decomposition catalyst, characterized in that the catalyst support is dried at a temperature of 100 to 150°C and then calcined at a temperature of 400 to 600°C for 2 to 4 hours.
  8. 제 1 항에 있어서,According to claim 1,
    상기 Ru는 상기 촉매지지체에 0.1 ~ 30 중량%의 함량으로 담지된 것을 특징으로 하는 암모니아분해촉매의 제조방법.A method for producing an ammonia decomposition catalyst, characterized in that the Ru is supported on the catalyst support in an amount of 0.1 to 30% by weight.
  9. 제 1 항에 있어서,According to claim 1,
    상기 SiC와 상기 CHA-Zeolite가 혼합된 상기 촉매지지체는, 상기 SiC와 상기 CHA-Zeolite가 5 ~ 95중량%의 비율인 것을 특징으로 하는 암모니아분해촉매의 제조방법.The catalyst support in which the SiC and the CHA-Zeolite are mixed is a method of producing an ammonia decomposition catalyst, characterized in that the SiC and the CHA-Zeolite are in a ratio of 5 to 95% by weight.
  10. 제 1 항에 있어서,According to claim 1,
    상기 암모니아분해촉매를 소정의 바인더와 배합하여 제조한 촉매슬러리를 세라믹허니컴, 금속판, 메탈지지체 및 세라믹필터 중 어느 하나에 코팅하는 단계;Coating a catalyst slurry prepared by mixing the ammonia decomposition catalyst with a predetermined binder on any one of ceramic honeycomb, metal plate, metal support, and ceramic filter;
    를 더 포함하는 것을 특징으로 하는 암모니아분해촉매의 제조방법.A method for producing an ammonia decomposition catalyst, characterized in that it further comprises.
  11. 제 1 항에 있어서,According to claim 1,
    상기 암모니아분해촉매는 입자, 펠렛, 비드, 홀 타입, 모노리스(monolith) 및 플레이트 중 어느 하나의 형태를 갖는 것을 특징으로 하는 암모니아분해촉매의 제조방법.A method of producing an ammonia decomposition catalyst, characterized in that the ammonia decomposition catalyst has any one of the forms of particles, pellets, beads, hole type, monolith, and plate.
  12. 수소 발생을 위한 암모니아분해촉매에 있어서,In the ammonia decomposition catalyst for hydrogen generation,
    SiC, CHA-Zeolite(chabazite-zeolite), 또는 이들의 조합을 포함하는 촉매지지체에 Ru이 담지된 것을 특징으로 하는 암모니아분해촉매.An ammonia decomposition catalyst characterized in that Ru is supported on a catalyst support containing SiC, CHA-Zeolite (chabazite-zeolite), or a combination thereof.
PCT/KR2023/013132 2022-09-30 2023-09-04 Ammonia decomposition catalyst for hydrogen generation and method for preparing same WO2024071710A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020220125230A KR20240046358A (en) 2022-09-30 2022-09-30 Ammonia decomposition catalyst for generating hydrogen
KR10-2022-0125230 2022-09-30

Publications (1)

Publication Number Publication Date
WO2024071710A1 true WO2024071710A1 (en) 2024-04-04

Family

ID=90478416

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/013132 WO2024071710A1 (en) 2022-09-30 2023-09-04 Ammonia decomposition catalyst for hydrogen generation and method for preparing same

Country Status (2)

Country Link
KR (1) KR20240046358A (en)
WO (1) WO2024071710A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013237045A (en) * 2013-07-08 2013-11-28 Nippon Shokubai Co Ltd Catalyst converting ammonia to nitrogen and hydrogen, method for manufacturing the catalyst, and method for converting ammonia using the catalyst
JP2018094478A (en) * 2016-12-09 2018-06-21 トヨタ自動車株式会社 Scr catalyst system
KR20190087810A (en) * 2018-01-17 2019-07-25 한국과학기술연구원 Zeolite based catalysts for ammonia dehydrogenation, method for forming the same and method for producing hydrogen from ammonia using the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102304406B1 (en) 2019-11-01 2021-09-23 (주)원익머트리얼즈 Ruthenium-based ammonia decomposition catalyst and preparation method thereof
EP4159311A4 (en) 2020-05-28 2024-07-10 Korea Res Inst Chemical Tech Ammonia cracking catalyst, and method of cracking ammonia and generating hydrogen by using same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013237045A (en) * 2013-07-08 2013-11-28 Nippon Shokubai Co Ltd Catalyst converting ammonia to nitrogen and hydrogen, method for manufacturing the catalyst, and method for converting ammonia using the catalyst
JP2018094478A (en) * 2016-12-09 2018-06-21 トヨタ自動車株式会社 Scr catalyst system
KR20190087810A (en) * 2018-01-17 2019-07-25 한국과학기술연구원 Zeolite based catalysts for ammonia dehydrogenation, method for forming the same and method for producing hydrogen from ammonia using the same

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
EL-SHAFIE, MOSTAFA ET AL.: "Development of zeolite-based catalyst for enhancement hydrogen production from ammonia decomposition", CATALYSIS TODAY, vol. 397, 15 November 2021 (2021-11-15), pages 103 - 112, XP087085101, [retrieved on 20220000], DOI: 10.1016/j.cattod.2021.11.022 *
PINZON, M. ET AL.: "Hydrogen production by ammonia decomposition over ruthenium supported on SiC catalyst", JOURNAL OF INDUSTRIAL AND ENGINEERING CHEMISTRY, vol. 94, 11 November 2020 (2020-11-11), pages 326 - 335, XP086442975, [retrieved on 20210000], DOI: 10.1016/j.jiec.2020.11.003 *

Also Published As

Publication number Publication date
KR20240046358A (en) 2024-04-09

Similar Documents

Publication Publication Date Title
US7070752B2 (en) Supported perovskite-type oxides and methods for preparation thereof
RU2743043C2 (en) Synthesis of aei and cu-aei zeolites
CN101160170B (en) Precious metal water-gas shift catalyst with oxide support modified with rare earth elements
WO2020075920A1 (en) Composite ternary catalyst composed of composite oxide support and single atom, and preparation method therefor
CN107519911B (en) Nickel-based catalyst prepared by using organic micromolecular additive and application of nickel-based catalyst in methanation reaction
CN103272604A (en) Fly ash catalyst for hydrogen production implemented by catalytic reforming of bio-oil and preparation method of fly ash catalyst
WO2012151776A1 (en) Modified catalyst for producing methanol by catalytic hydrogenation of carbon dioxide and method for preparing same
WO2023033528A1 (en) Method for preparing catalyst for ammonia decomposition using cation-anion double hydrolysis
KR20190056421A (en) High silica AEI zeolite
WO2022108319A1 (en) Platinum-tungsten catalyst for hydrogen preparation and method for preparing hydrogen using same
WO2018066751A1 (en) Solid raw material for carbon dioxide absorbent, carbon dioxide absorbent composition comprising same, and carbon dioxide absorbent prepared using same
WO2013105780A1 (en) Method for manufacturing homogenous support catalyst for carbon nanotubes
WO2024071710A1 (en) Ammonia decomposition catalyst for hydrogen generation and method for preparing same
WO2012105756A1 (en) Nickel-m-alumina xerogel catalyst, method for preparing same, and method for preparing methane using the catalyst
US20160136622A1 (en) Monolithic structured catalyst for carbon monoxide gase-phase coupling to dialkyl oxalate & preparation method and application thereof
Chen et al. Readily processed multifunctional SiC catalytic filter for industrial emissions control
CN101912792B (en) Catalyst used in preparation of COx-free hydrogen through ammonia decomposition reaction and preparation method thereof
WO2017090864A1 (en) Cobalt-supported catalyst for low-temperature reforming reaction and production method therefor
CN106622351A (en) Preparation method for tar-removing catalyst of nickel-based nanometer compound carrier
CN108114712B (en) Pt/TiO2Preparation method of monolithic oxidation catalyst
CN102527394A (en) Nickel-based catalyst and preparation method thereof
CN116116405A (en) Single-atom cluster type noble metal integral type silk screen catalyst for CO reduction of NO
WO2023001139A1 (en) Method and device for treating nitrous oxide tail gas by using fuel cell
CN113582133B (en) Ammonia catalysis and hydrogen separation integrated membrane, preparation method and application
JP2011518930A (en) Use of noble metal based catalysts to reduce the tar content in gases derived from gasification processes

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23872830

Country of ref document: EP

Kind code of ref document: A1