WO2022107288A1 - 推定装置、推定方法、および、推定プログラム - Google Patents

推定装置、推定方法、および、推定プログラム Download PDF

Info

Publication number
WO2022107288A1
WO2022107288A1 PCT/JP2020/043246 JP2020043246W WO2022107288A1 WO 2022107288 A1 WO2022107288 A1 WO 2022107288A1 JP 2020043246 W JP2020043246 W JP 2020043246W WO 2022107288 A1 WO2022107288 A1 WO 2022107288A1
Authority
WO
WIPO (PCT)
Prior art keywords
subject
pupil diameter
fluctuation amount
brightness
estimation
Prior art date
Application number
PCT/JP2020/043246
Other languages
English (en)
French (fr)
Inventor
純平 山下
英毅 小矢
明 片岡
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to US18/037,596 priority Critical patent/US20230404393A1/en
Priority to PCT/JP2020/043246 priority patent/WO2022107288A1/ja
Priority to JP2022563506A priority patent/JP7444286B2/ja
Publication of WO2022107288A1 publication Critical patent/WO2022107288A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/18Eye characteristics, e.g. of the iris
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • A61B3/11Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for measuring interpupillary distance or diameter of pupils
    • A61B3/112Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for measuring interpupillary distance or diameter of pupils for measuring diameter of pupils
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • A61B3/113Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for determining or recording eye movement
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/16Devices for psychotechnics; Testing reaction times ; Devices for evaluating the psychological state
    • A61B5/163Devices for psychotechnics; Testing reaction times ; Devices for evaluating the psychological state by tracking eye movement, gaze, or pupil change

Definitions

  • the present invention relates to an estimation device, an estimation method, and an estimation program for estimating performance while a worker is performing a task.
  • the performance when performing the task may be good or bad.
  • a method of estimating the performance when performing the task there is a method of using the fluctuation amount of the pupil diameter of the worker.
  • task performance When estimating the performance when the worker performs a task (hereinafter, appropriately referred to as "task performance") by the method using the fluctuation amount of the pupil diameter of the worker, the worker is placed in a dark place for a predetermined time. And measure the amount of fluctuation in the pupil diameter of the worker.
  • task performance it is known that when the worker's task performance is deteriorated, for example, the worker is disturbed from sleeping for a long time, a large wave appears in the fluctuation amount of the worker's pupil diameter. (See Non-Patent Document 1).
  • the task performance of the worker is low when the fluctuation amount of the pupil diameter of the worker in the dark place is large, and the task performance of the worker is high when the fluctuation amount of the pupil diameter is small. Will be done.
  • the fluctuation of the pupil diameter that is observed in this dark place and reflects the deterioration of the task performance is hereinafter referred to as "the fluctuation of the pupil diameter that correlates with the deterioration of the performance”.
  • the reason why the worker is placed in a dark place for a predetermined time is that when the brightness of the position where the worker is watching changes, the pupil diameter is transient due to light / dark adaptation. This is because fluctuations occur. Further, even if the brightness of the position where the operator is gazing does not change, if the position where the operator is gazing is bright, the pupil diameter fluctuates. The fluctuation of the pupil diameter caused by these lights is hereinafter referred to as "light-dependent fluctuation of the pupil diameter".
  • the present invention relates to an acquisition unit that acquires the pupil diameter of the subject for estimating work performance and the brightness of the gaze target at the time of work, and the time-series data of the pupil diameter of the subject.
  • a fluctuation amount calculation unit that calculates the fluctuation amount of the pupil diameter of the subject, a determination unit that determines whether or not the brightness of the subject's gaze target is equal to or higher than a predetermined value, and a predetermined brightness of the subject's gaze target.
  • the threshold value When it is determined that the value is equal to or higher than the threshold value, it is determined that the correlation between the magnitude of the fluctuation amount of the pupil diameter of the subject and the deterioration of the work performance of the subject is low, and the brightness of the subject to be watched by the subject is predetermined. If it is determined to be lower than the threshold value of, it is determined that there is a high correlation between the magnitude of the fluctuation amount of the pupil diameter of the subject and the deterioration of the work performance of the subject, and the result of the determination and the subject are determined. It is characterized by including an estimation unit for estimating the work performance of the subject based on the fluctuation amount of the pupil diameter of the subject.
  • FIG. 1 is a diagram showing a configuration example of an estimation device.
  • FIG. 2 is a flowchart showing an example of the processing procedure of the estimation device of FIG.
  • FIG. 3 is a diagram showing an example of the processing procedure shown in FIG.
  • FIG. 4 is a diagram for explaining the time-series data of the pupil diameter of the subject and the invalid interval in the time-series data.
  • FIG. 5 is a diagram for explaining the flow of the experiment.
  • FIG. 6 is a diagram showing the experimental results.
  • FIG. 7 is a diagram showing a configuration example of a computer that executes an estimation program.
  • the estimation device estimates the work performance (task performance) of the worker during the task execution.
  • the estimation device acquires the amount of fluctuation in the pupil diameter during the task execution of the worker (the target person for estimating the task performance) and the brightness of the position (the target person to be watched) that the target person is gazing at.
  • the estimation device estimates the task performance in the mode corresponding to each of the case where the brightness of the gaze target is less than the predetermined value and the case where the brightness is equal to or more than the predetermined value.
  • the above-mentioned "light-dependent pupil diameter fluctuation” is small and the “pupil diameter correlates with the problem performance deterioration” with respect to the fluctuation of the pupil diameter of the subject. "Fluctuation of" is expected to increase.
  • the estimation device estimates that when the brightness of the gaze target of the subject is less than a predetermined value, there is a high correlation between the amount of fluctuation in the pupil diameter of the subject and the deterioration of the task performance of the subject. ..
  • the estimation device when the brightness of the gaze target of the subject is less than a predetermined value and the fluctuation amount of the pupil diameter of the subject is large, the task performance of the subject is low and the pupil diameter of the subject is low.
  • the fluctuation amount of is small, it is estimated that the task performance of the subject is high.
  • the estimation device estimates that when the brightness of the gaze target of the subject is equal to or higher than a predetermined value, the correlation between the amount of fluctuation in the pupil diameter of the subject and the deterioration of the task performance of the subject is low. ..
  • the estimation device has a high task performance of the subject when the fluctuation amount of the pupil diameter of the subject is large, and the subject's task performance is high.
  • the fluctuation amount of the pupil diameter is small, it is estimated that the task performance of the subject is low.
  • the estimation device can estimate the task performance while the subject is performing the task.
  • the task performed by the target person is a telephone answer, etc.
  • the task performed by the target person is displayed on the monitor screen.
  • the processing of visual information is considered to be the most important. Therefore, it is considered important for the estimation of the task performance that the subject's attention is directed to the monitor screen (the subject's line of sight is directed). For example, if the subject's attention is properly directed to the monitor screen, the fluctuation amount of the pupil diameter due to the change in the brightness (for example, brightness) of the monitor screen becomes large due to the above premise, so that the task performance is improved. Can be estimated.
  • the estimation device 10 includes an input / output unit 11, a storage unit 12, and a control unit 13.
  • the input / output unit 11 controls input / output of various data, for example, time-series data of the pupil diameter when the target person for estimating the task performance is performing the task, and the brightness of the gaze target of the target person (for example, it accepts input of time-series data (brightness).
  • the pupil diameter of the subject is acquired by, for example, an optical device using an infrared camera or a visible light camera.
  • the brightness of the gaze position of the subject may be acquired by, for example, the above optical device, and when the task performed by the subject is VDT (Visual Display Terminals) work, it is displayed on the display. You may estimate the approximate brightness from the global color of the screen.
  • the input / output unit 11 outputs the result of estimation of the task performance of the target person by the control unit 13.
  • the storage unit 12 stores various data referred to when the control unit 13 executes the process.
  • the control unit 13 controls the entire estimation device 10.
  • the control unit 13 includes, for example, a data acquisition unit 131, a fluctuation amount calculation unit 132, a determination unit 133, and an estimation unit 134.
  • the data acquisition unit 131 acquires time-series data of the pupil diameter of the target person, time-series data of the brightness of the gaze target of the target person, and the like via the input / output unit 11.
  • the fluctuation amount calculation unit 132 calculates the fluctuation amount of the pupil diameter of the subject based on the time-series data of the pupil diameter of the subject acquired by the data acquisition unit 131.
  • the determination unit 133 determines whether or not the brightness (for example, brightness) of the gaze target of the target person acquired by the data acquisition unit 131 is equal to or higher than a predetermined value.
  • the estimation unit 134 uses the determination result of the brightness of the gaze target of the subject determined by the determination unit 133 and the fluctuation amount of the pupil diameter of the subject calculated by the fluctuation amount calculation unit 132. Estimate the task performance of the person. Then, the estimation unit 134 outputs the result of estimation of the task performance of the subject.
  • the estimation unit 134 determines the magnitude of the fluctuation amount of the pupil diameter of the subject and the task performance of the subject. It is judged that the correlation with the decrease in is low.
  • the estimation unit 134 determines that the magnitude of the fluctuation amount of the pupil diameter of the subject has a positive correlation with the high task performance of the subject, and the fluctuation amount of the pupil diameter of the subject. It is estimated that the larger the value, the higher the task performance of the subject. Further, the estimation unit 134 estimates that the smaller the fluctuation amount of the pupil diameter of the subject, the lower the task performance of the subject.
  • the estimation unit 134 determines the magnitude of the fluctuation of the pupil diameter of the subject and the task performance of the subject. It is judged that the correlation with the decrease is high.
  • the estimation unit 134 determines that the magnitude of the fluctuation amount of the pupil diameter of the subject and the high task performance of the subject have a negative correlation, and the fluctuation amount of the pupil diameter of the subject. It is estimated that the larger the value, the lower the task performance of the subject. Further, the estimation unit 134 estimates that the smaller the fluctuation amount of the pupil diameter of the subject, the higher the task performance of the subject.
  • the estimation device 10 can estimate the task performance while the subject is performing the task.
  • the data acquisition unit 131 of the estimation device 10 acquires time-series data of the pupil diameter of the subject (S1). In addition, the data acquisition unit 131 acquires time-series data of the brightness of the gaze target of the subject (S2). Then, the data acquisition unit 131 cuts out a section for estimating the task performance from the above two time-series data (time-series data of the pupil diameter of the subject and time-series data of the brightness of the gaze target) (S3). ).
  • the determination unit 133 determines whether or not the brightness of the gaze target in the designated section (section selected from the section for which the task performance has not been estimated) is equal to or higher than the predetermined value.
  • the estimation unit 134 correlates the fluctuation of the pupil diameter of the subject with the deterioration of the task performance. It is determined that the sex is low (S6). Then, the estimation unit 134 estimates the task performance of the subject using the fluctuation amount of the pupil diameter in the designated section based on the determination result (S7). Then, it returns to S4.
  • the estimation unit 134 correlates the fluctuation of the pupil diameter of the subject with the deterioration of the task performance. Is determined to be high (S8). Then, the estimation unit 134 estimates the task performance of the subject using the fluctuation amount of the pupil diameter in the designated section based on the determination result (S9). Then, it returns to S4.
  • the determination unit 133 determines whether or not the luminance of the gaze target in the designated section is equal to or higher than a predetermined value.
  • the determination unit 133 determines that the brightness of the gaze target in the designated section is equal to or higher than the predetermined value (Yes in S15)
  • the fluctuation amount of the pupil diameter in the designated section is equal to or higher than the predetermined value (Yes in S16).
  • the estimation unit 134 determines that the task performance of the designated section is high (S17). After that, it returns to S14.
  • the estimation unit 134 determines that the task performance in the designated section is low (S18). After that, it returns to S14.
  • the estimation device 10 can estimate the task performance while the worker is performing the task.
  • the fluctuation amount calculation unit 132 calculates the fluctuation amount of the pupil diameter of the subject
  • the time-series data of the pupil diameter may exclude during and before and after the blink as an invalid section.
  • the fluctuation amount calculation unit 132 detects the occurrence of blinks, considering the nature of the biological system that controls the pupil diameter, a small pupil diameter that cannot be calculated unless the eyelids are closed is measured. If this is the case (when the pupil diameter shown in FIG. 4 is equal to or less than a predetermined threshold value), an algorithm that considers blink generation may be used.
  • the fluctuation amount calculation unit 132 sets a section in which the value of the pupil diameter is equal to or less than a predetermined threshold value and a section before and after it as an invalid space. Then, the fluctuation amount calculation unit 132 excludes the data of the invalid space from the time-series data of the pupil diameter of the subject. By doing so, the fluctuation amount calculation unit 132 can accurately calculate the fluctuation amount of the pupil diameter of the subject.
  • the fluctuation amount calculation unit 132 calculates the fluctuation amount of the pupil diameter
  • the time-series data of the pupil diameter is smoothed in advance by using a low-pass filter, a moving average, or the like to reduce the measurement noise of the pupil diameter. It may be reduced.
  • the fluctuation amount calculation unit 132 first-orders the data in the section of the time-series data of the pupil diameter to be estimated for the task performance, and obtains the pupil. There is a method of taking the absolute value of the value of the time series data of the fluctuation amount of the diameter and calculating the average of the obtained absolute values.
  • the fluctuation amount calculation unit 132 calculates a value incorporating a relationship generally found in biological information as a function conversion, such as logarithmic conversion of the fluctuation amount of the pupil diameter obtained from the time-series data of the pupil diameter. May be good.
  • the gaze screen since the place where the subject gazes (the gaze screen) is dark, it can be estimated that there is a strong correlation between the amount of fluctuation in the pupil diameter of the subject and the deterioration of the task performance when the task is performed. In other words, if the amount of change in the pupil diameter of the subject during task performance is small, it should be possible to estimate that the subject's task performance is high.
  • the RT applied to the button was displayed for 1 second (1,000 ms) so that the subject could check his / her RT for each trial.
  • the pupil diameter data (Pupil data) of the subject is measured during the waiting time (Waiting time) from immediately after the start of the trial until the appearance of the target, and from this measurement result, the pupil diameter of the subject for each trial is measured. The amount of fluctuation of was calculated.
  • the flow of the above-mentioned experiment is as shown in FIG.
  • the estimation device 10 measured the pupil diameter of the subject's left eye at a frequency of 1,000 times per second using a pupil diameter measuring device using an optical device.
  • the estimation device 10 calculated the median value of the pupil diameter in the entire experiment for each subject, and regarded the section where the pupil diameter was 1/2 or less of the above median value as the section during the blinking. ..
  • the estimation device 10 sets the section during the blink and 0.2 seconds before and after the interval as a section where noise related to the blink may be included, and sets the section. Excluded as invalid data.
  • the estimation device 10 uses the data excluding the above-mentioned invalid data from the time-series data of the pupil diameter of the subject as valid data, and uses a weighting matrix called a Hanning window for the valid data.
  • the time series data of the pupil diameter was smoothed.
  • the size of the Hanning window was set to 50 points.
  • the estimation device 10 may not be able to properly perform the above smoothing. Therefore, the estimation device 10 tentatively linearly interpolates and smoothes the invalid data section of the time-series data of the pupil diameter, and performs an operation of invalidating the linearly interpolated section in a later process.
  • the estimation device 10 first-orders the time-series data of the pupil diameter, takes the absolute value of the time-series data of the obtained fluctuation amount of the pupil diameter, and calculates the average of the obtained absolute values. , The amount of variation in pupil diameter was calculated. Next, the estimation device 10 logarithmically converted the calculated fluctuation amount of the pupil diameter, and similarly, the RT was also logarithmically converted.
  • the estimation device 10 standardized the fluctuation amount of the pupil diameter and RT obtained by the above processing for each subject.
  • the standardized fluctuation amount of the pupil diameter is called the standardized amount of change in pupil data.
  • the standardized RT is called a standardized RT.
  • the estimation device 10 carried out a standardization called z-score in the above standardization.
  • This z-score subtracts the mean value of the values from each value to be standardized, and then divides the standard deviation of the values.
  • a large / small value is calculated.
  • the estimation device 10 ignores individual differences in the subject such as the amount of fluctuation in the pupil diameter and RT is always large / small, and the pupil diameter fluctuates in real time in the individual subject during the task execution. The amount of fluctuation and the difference in RT can be taken into consideration.
  • FIG. 6 shows a scatter diagram showing the relationship between the Normalized amount of change in pupil data and the Normalized RT in the obtained 687 pupil diameter fluctuations and the corresponding 687 RTs.
  • the correlation coefficient between Normalized amount of change in pupil data and Normalized RT was 0.34, and the result of a test called Permutation test was p ⁇ 0.0001, which was significant. there were.
  • the estimation device 10 acquires the fluctuation amount of the pupil diameter during the task performance of the subject, and estimates the high task performance of the subject in real time. It was shown that it can be done.
  • each component of each of the illustrated parts is a functional concept, and does not necessarily have to be physically configured as shown in the figure. That is, the specific form of distribution / integration of each device is not limited to the one shown in the figure, and all or part of them may be functionally or physically distributed / physically in arbitrary units according to various loads and usage conditions. Can be integrated and configured. Further, each processing function performed by each device may be realized by a CPU and a program executed by the CPU, or may be realized as hardware by wired logic.
  • the estimation device 10 described above can be implemented by installing a program as package software or online software on a desired computer. For example, by causing the information processing device to execute the above program, the information processing device can function as the estimation device 10 of each embodiment.
  • the information processing device referred to here includes a desktop type or notebook type personal computer.
  • information processing devices include smartphones, mobile communication terminals such as mobile phones and PHS (Personal Handyphone System), and terminals such as PDAs (Personal Digital Assistants).
  • the estimation device 10 can be implemented as a server device in which the terminal device used by the user is a client and the service related to the above processing is provided to the client.
  • the server device may be implemented as a Web server, or may be implemented as a cloud that provides services related to the above processing by outsourcing.
  • FIG. 7 is a diagram showing an example of a computer that executes an estimation program.
  • the computer 1000 has, for example, a memory 1010 and a CPU 1020.
  • the computer 1000 also has a hard disk drive interface 1030, a disk drive interface 1040, a serial port interface 1050, a video adapter 1060, and a network interface 1070. Each of these parts is connected by a bus 1080.
  • the memory 1010 includes a ROM (Read Only Memory) 1011 and a RAM (Random Access Memory) 1012.
  • the ROM 1011 stores, for example, a boot program such as a BIOS (Basic Input Output System).
  • BIOS Basic Input Output System
  • the hard disk drive interface 1030 is connected to the hard disk drive 1090.
  • the disk drive interface 1040 is connected to the disk drive 1100.
  • a removable storage medium such as a magnetic disk or an optical disk is inserted into the disk drive 1100.
  • the serial port interface 1050 is connected to, for example, a mouse 1110 and a keyboard 1120.
  • the video adapter 1060 is connected to, for example, the display 1130.
  • the hard disk drive 1090 stores, for example, OS1091, application program 1092, program module 1093, and program data 1094. That is, the program that defines each process executed by the estimation device 10 is implemented as a program module 1093 in which a code that can be executed by a computer is described.
  • the program module 1093 is stored in, for example, the hard disk drive 1090.
  • the program module 1093 for executing the same processing as the functional configuration in the estimation device 10 is stored in the hard disk drive 1090.
  • the hard disk drive 1090 may be replaced by an SSD.
  • each data used in the processing of the above-described embodiment is stored as program data 1094 in, for example, a memory 1010 or a hard disk drive 1090. Then, the CPU 1020 reads the program module 1093 and the program data 1094 stored in the memory 1010 and the hard disk drive 1090 into the RAM 1012 and executes them as needed.
  • the program module 1093 and the program data 1094 are not limited to those stored in the hard disk drive 1090, but may be stored in, for example, a removable storage medium and read by the CPU 1020 via the disk drive 1100 or the like. Alternatively, the program module 1093 and the program data 1094 may be stored in another computer connected via a network (LAN (Local Area Network), WAN (Wide Area Network), etc.). Then, the program module 1093 and the program data 1094 may be read from another computer by the CPU 1020 via the network interface 1070.
  • LAN Local Area Network
  • WAN Wide Area Network

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Ophthalmology & Optometry (AREA)
  • Surgery (AREA)
  • Public Health (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Biophysics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Veterinary Medicine (AREA)
  • Human Computer Interaction (AREA)
  • General Physics & Mathematics (AREA)
  • Multimedia (AREA)
  • Theoretical Computer Science (AREA)
  • Eye Examination Apparatus (AREA)

Abstract

推定装置(10)は、作業パフォーマンスの推定の対象者の作業時における瞳孔径および注視対象の輝度を取得する。当該対象者の注視対象の輝度が所定値以上の場合、推定装置(10)は、対象者の瞳孔径の変動量の大きさと当該対象者の作業パフォーマンスの低下との相関性が低いと判定する。一方、当該対象者の注視対象の輝度が所定の閾値よりも低い場合、推定装置(10)は、前記対象者の瞳孔径の変動量の大きさと当該対象者の作業パフォーマンスの低下との相関性が高いと判定する。そして、推定装置(10)は、判定の結果に基づき、当該対象者の瞳孔径の変動量を用いて、当該対象者の作業パフォーマンスを推定する。

Description

推定装置、推定方法、および、推定プログラム
 本発明は、作業者が課題を行っている最中のパフォーマンスを推定する、推定装置、推定方法、および、推定プログラムに関する。
 人間が目視で何かを確認しながら作業を行う(認知的な課題を行う)際、課題を行う際のパフォーマンスがよい時もあれば悪い時もある。ここで課題を行う際のパフォーマンスを推定する方法として、作業者の瞳孔径の変動量を用いる方法がある。
 上記の作業者の瞳孔径の変動量を用いる方法により、作業者が課題を行う際のパフォーマンス(以下、適宜「課題パフォーマンス」と称す)を推定する際には、作業者を所定時間、暗所に置き、当該作業者の瞳孔径の変動量を計測する。ここで、例えば、作業者が睡眠を長時間妨げられるなど、作業者の課題パフォーマンスが低下している状態にある場合、作業者の瞳孔径の変動量に大きな波が現れることが知られている(非特許文献1参照)。
 したがって、暗所中の作業者の瞳孔径の変動量が多い場合には、当該作業者の課題パフォーマンスは低く、瞳孔径の変動量が少ない場合には、当該作業者の課題パフォーマンスは高いと推定される。なお、この暗所で観測される、課題パフォーマンスの低下を反映して変化する瞳孔径の変動を、以下では「パフォーマンス低下と相関する瞳孔径の変動」と呼ぶ。
 作業者の課題パフォーマンスを推定する際に、作業者を所定時間暗所に置くのは、作業者が注視している位置の明るさが変化すると、明/暗順応により瞳孔径に一過性の変動が生じるからである。また、作業者が注視している位置の明るさが変化しなくとも、作業者が注視している位置が明るいと、瞳孔径の変動が生じるからである。なお、これらの光によって引き起こされる瞳孔径の変動を、以下では「光依存の瞳孔径の変動」と呼ぶ。
Pupillographic Assessment of Sleepiness in Sleep-deprived Healthy Subjects. Sleep, 21, 258-265.,[2020年11月2日検索]、インターネット<URL:https://pubmed.ncbi.nlm.nih.gov/9595604/> Binda, P., Pereverzeva, M., & Murray, S. O. (2013). Attention to Bright Surfaces Enhances the Pupillary Light Reflex. Journal of Neuroscience, 33(5), 2199-2204. doi:10.1523/jneurosci.3440-12.2013 [2020年11月2日検索]、インターネット<URL:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6619119/>
 しかしながら、上記の従来技術は、作業者の課題パフォーマンスを推定するためには、作業者を所定時間暗所に置く必要がある。このため、作業者が、課題を行っている最中の課題パフォーマンスを推定できないという課題があった。
 そこで、本発明は、前記した問題を解決し、作業者が課題を行っている最中の課題パフォーマンスを推定することを課題とする。
 前記した課題を解決するため、本発明は、作業パフォーマンスの推定の対象者の作業時における瞳孔径および注視対象の輝度を取得する取得部と、前記対象者の瞳孔径の時系列データから、当該対象者の瞳孔径の変動量を算出する変動量算出部と、当該対象者の注視対象の輝度が所定値以上か否かを判定する判定部と、当該対象者の注視対象の輝度が所定の閾値以上であると判定された場合、前記対象者の瞳孔径の変動量の大きさと当該対象者の作業パフォーマンスの低下との相関性が低いと判定し、当該対象者の注視対象の輝度が所定の閾値よりも低いと判定された場合、前記対象者の瞳孔径の変動量の大きさと当該対象者の作業パフォーマンスの低下との相関性が高いと判定し、前記判定の結果と、当該対象者の瞳孔径の変動量とに基づき、当該対象者の作業パフォーマンスを推定する推定部とを備えることを特徴とする。
 本発明によれば、作業者が課題を行っている最中における課題パフォーマンスを推定することができる。
図1は、推定装置の構成例を示す図である。 図2は、図1の推定装置の処理手順の例を示すフローチャートである。 図3は、図2に示す処理手順の例を示す図である。 図4は、対象者の瞳孔径の時系列データとその時系列データにおける無効区間を説明するための図である。 図5は、実験の流れを説明するための図である。 図6は、実験結果を示す図である。 図7は、推定プログラムを実行するコンピュータの構成例を示す図である。
 以下、図面を参照しながら、本発明を実施するための形態(実施形態)について説明する。本発明は、以下に説明する実施形態に限定されない。
[概要]
 まず、本実施形態の推定装置の動作概要を説明する。推定装置は、作業者の課題遂行中における作業パフォーマンス(課題パフォーマンス)を推定する。
 まず、推定装置は、作業者(課題パフォーマンスの推定の対象者)の課題遂行中における瞳孔径の変動量と、当該対象者が注視している位置(注視対象)の明るさを取得する。ここで、推定装置は、注視対象の明るさが、所定値未満との場合と所定値以上の場合とで、それぞれに対応したモードで課題パフォーマンスの推定を行う。
 例えば、対象者の注視対象の明るさが所定値未満の場合、当該対象者の瞳孔径の変動に関し、上記の「光依存の瞳孔径の変動」は少なく、「課題パフォーマンス低下と相関する瞳孔径の変動」は多くなると考えられる。
 そこで、推定装置は、対象者の注視対象の明るさが所定値未満の場合、当該対象者の瞳孔径の変動量の大きさと、当該対象者の課題パフォーマンスの低下との相関が高いと推定する。例えば、推定装置は、対象者の注視対象の明るさが所定値未満の場合において、当該対象者の瞳孔径の変動量が大きいとき、当該対象者の課題パフォーマンスは低く、当該対象者の瞳孔径の変動量が小さいとき、当該対象者の課題パフォーマンスは高いと推定する。
 一方、対象者の注視対象の明るさが所定値以上の場合、当該対象者の瞳孔径の変動に関し、前記した「光依存の瞳孔径の変動」は多く、「課題パフォーマンス低下と相関する瞳孔径の変動」は少なくなくなると考えられる。
 そこで、推定装置は、対象者の注視対象の明るさが所定値以上の場合、当該対象者の瞳孔径の変動量の大きさと、当該対象者の課題パフォーマンスの低下との相関が低いと推定する。
 ここで、対象者が注視対象により注意を向けているほうが、注視対象の明るさによって引き起こされる瞳孔径の変動は大きくなる。また、対象者が注視対象に注意を向けている場合、課題パフォーマンスは向上すると考えられる。よって、推定装置は、例えば、対象者の注視対象の明るさが所定値以上の場合において、当該対象者の瞳孔径の変動量が大きいとき、当該対象者の課題パフォーマンスは高く、当該対象者の瞳孔径の変動量が小さい場合、当該対象者の課題パフォーマンスは低いと推定する。
 このようにすることで、推定装置は、対象者が課題を行っている最中における課題フォーマンスを推定することができる。
 なお、対象者の注視対象が明るい場合において、当該対象者の瞳孔径の変動量が大きいとき課題パフォーマンスは高く、当該対象者の瞳孔径の変動量が小さいとき課題パフォーマンスは低いと推定することができる理由について説明する。
・「光依存の瞳孔径の変動」に関する前提
 例えば、対象者の注視対象の輝度の変化が生じた場合において、当該対象者が注視対象に注意を向けている(きちんと見ている)ときは、当該対象者が注視対象に視線を向けているが漫然と見ているときに比べて、注視対象の輝度変化による瞳孔径の変動は大きくなることが知られている(非特許文献2参照)。あるいは単純に、対象者の注視対象に視線が向いている場合、注視対象に視線すら向いていない場合に比べ、輝度変化による瞳孔径の変動は大きくなる。
・課題パフォーマンスの推定場面に関する分析と、課題パフォーマンスの推定が可能である理由
 対象者が行っている課題が、電話応答等である場合を除き、対象者の行う課題では、モニタ画面上に表示されている視覚情報の処理が最も重要であると考えられる。そのため、対象者の注意がモニタ画面上に向いている(対象者の視線が向いている)ことが、課題パフォーマンスの推定にとって重要と考えられる。例えば、対象者の注意がモニタ画面上にきちんと向いている場合、上記の前提により、モニタ画面の明るさ(例えば、輝度)の変化による瞳孔径の変動量は大きくなるため、これをもって課題パフォーマンスが推定することができる。
[構成例]
次に、図1を用いて推定装置10の構成例を説明する。推定装置10は、入出力部11と、記憶部12と、制御部13とを備える。
 入出力部11は、各種データの入出力を司り、例えば、課題パフォーマンスの推定の対象者が、課題を遂行している際の瞳孔径の時系列データ、当該対象者の注視対象の明るさ(例えば、輝度)の時系列データ等の入力を受け付ける。
 なお、対象者の瞳孔径は、例えば、赤外線カメラあるいは可視光カメラを利用した光学デバイスによって取得される。また、対象者の注視位置の明るさは、例えば、上記の光学デバイスによって取得してもよいし、対象者の行う課題がVDT(Visual Display Terminals)作業の場合には、ディスプレイ上に表示されている画面の大局的な色から、おおまかな明るさを推定してもよい。
 また、入出力部11は、制御部13による、当該対象者の課題パフォーマンスの推定の結果を出力する。記憶部12は、制御部13が処理を実行する際に参照する各種データを記憶する。
 制御部13は、推定装置10全体の制御を行う。この制御部13は、例えば、データ取得部131と、変動量算出部132と、判定部133と、推定部134とを備える。
 データ取得部131は、入出力部11経由で対象者の瞳孔径の時系列データ、当該対象者の注視対象の明るさの時系列データ等を取得する。
 変動量算出部132は、データ取得部131により取得された対象者の瞳孔径の時系列データに基づき、当該対象者の瞳孔径の変動量を算出する。
 判定部133は、データ取得部131により取得された対象者の注視対象の明るさ(例えば、輝度)が所定値以上か否かを判定する。
 推定部134は、判定部133により判定された対象者の注視対象の明るさの判定結果と、変動量算出部132により算出された当該対象者の瞳孔径の変動量とを用いて、当該対象者の課題パフォーマンスを推定する。そして、推定部134は、当該対象者の課題パフォーマンスの推定の結果を出力する。
 例えば、判定部133により、当該対象者の注視対象の明るさが所定の閾値以上と判定された場合、推定部134は、当該対象者の瞳孔径の変動量の大きさと当該対象者の課題パフォーマンスの低下との相関性が低いと判定する。
 一例を挙げると、推定部134は、当該対象者の瞳孔径の変動量の大きさと当該対象者の課題パフォーマンスの高さとが正の相関を持つと判定し、当該対象者の瞳孔径の変動量が大きいほど、当該対象者の課題パフォーマンスは高い状態にあると推定する。また、推定部134は、当該対象者の瞳孔径の変動量が小さいほど、当該対象者の課題パフォーマンスは低い状態にあると推定する。
 一方、判定部133により、当該対象者の注視対象の明るさが所定の閾値未満と判定された場合、推定部134は、当該対象者の瞳孔径の変動の大きさと当該対象者の課題パフォーマンスの低下との相関性が高いと判定する。
 一例を挙げると、推定部134は、当該対象者の瞳孔径の変動量の大きさと当該対象者の課題パフォーマンスの高さとが負の相関を持つと判定し、当該対象者の瞳孔径の変動量が大きいほど、当該対象者の課題パフォーマンスが低い状態にあると推定する。また、推定部134は、当該対象者の瞳孔径の変動量が小さいほど、当該対象者の課題パフォーマンスは高い状態にあると推定する。
 このようにすることで、推定装置10は、対象者が課題を行っている最中における課題パフォーマンスを推定することができる。
[処理手順の例]
 次に、図2を用いて、推定装置10の処理手順の例を説明する。まず、推定装置10のデータ取得部131は、対象者の瞳孔径の時系列データを取得する(S1)。また、データ取得部131は、当該対象者の注視対象の明るさの時系列データを取得する(S2)。そして、データ取得部131は、上記の2つの時系列データ(当該対象者の瞳孔径の時系列データおよび注視対象の明るさの時系列データ)から、課題パフォーマンスの推定を行う区間を切り出す(S3)。
 ここで、S3で切り出したすべての区間での課題パフォーマンスの推定が終了していれば(S4でYes)、処理を終了し、まだ推定していない区間があれば(S4のNo)、S5へ進む。
 S5において、判定部133は、指定区間(まだ課題パフォーマンスの推定を行っていない区間から選択された区間)における注視対象の明るさが所定値以上か否かを判定する。ここで、判定部133が、指定区間における注視対象の明るさが所定値以上と判定した場合(S5でYes)、推定部134は、対象者の瞳孔径の変動と課題パフォーマンスの低下との相関性は低いと判定する(S6)。そして、推定部134は、当該判定結果に基づき、指定区間における瞳孔径の変動量を用いて、対象者の課題パフォーマンスを推定する(S7)。そして、S4へ戻る。
 一方、判定部133が、指定区間における注視対象の明るさが所定値未満と判定した場合(S5でNo)、推定部134は、対象者の瞳孔径の変動と課題パフォーマンスの低下との相関性が高いと判定する(S8)。そして、推定部134は、当該判定結果に基づき、指定区間における瞳孔径の変動量を用いて、対象者の課題パフォーマンスを推定する(S9)。そして、S4へ戻る。
 次に、図3を用いて、図2に示した推定装置10の処理手順の一例を説明する。図3に示すS11~S14までの処理は、図2のS1~S4の処理と同様なので、図3のS15から説明する。
 S15において、判定部133は、指定区間における注視対象の輝度が所定値以上か否かを判定する。ここで、判定部133が、指定区間における注視対象の輝度が所定値以上と判定した場合(S15でYes)、指定区間中の瞳孔径の変動量が所定値以上であれば(S16でYes)、推定部134は、指定区間の課題パフォーマンスは高いと判定する(S17)。その後、S14へ戻る。一方、指定区間中の瞳孔径の変動量が所定値未満であれば場合(S16でNo)、推定部134は、指定区間の課題パフォーマンスは低いと判定する(S18)。その後、S14へ戻る。
 また、S15で、判定部133が、指定区間における注視対象の輝度が所定値未満と判定した場合(S15でNo)、指定区間中の瞳孔径の変動量が所定値以上であれば(S19でYes)、推定部134は、指定区間の課題パフォーマンスは低いと判定する(S20)。その後、S14へ戻る。一方、指定区間中の瞳孔径の変動量が所定値未満であれば(S19でNo)、推定部134は、指定区間の課題パフォーマンスは高いと判定する(S21)。その後、S14へ戻る。
 このようにすることで、推定装置10は作業者が課題を行っている最中における課題パフォーマンスを推定することができる。
[その他の実施形態]
 なお、変動量算出部132が、対象者の瞳孔径の変動量を算出する際、瞳孔径の時系列データのうち、瞬目発生中とその前後を無効区間として除外してもよい。
 ここで変動量算出部132が瞬目発生の検知をする際、瞳孔径を制御する生体システムの性質を考慮すると、瞼が閉じられた状態でなければ算出され得ないような小さな瞳孔径が計測されている場合(図4に示す瞳孔径が所定の閾値以下になった場合)に瞬目発生とみなすアルゴリズムを用いてもよい。
 例えば、対象者の瞳孔径の時系列データが、図4に示す値である場合を考える。この場合、変動量算出部132は、図4に示すように、瞳孔径の値が所定の閾値以下になった区間とその前後の区間を無効空間とする。そして、変動量算出部132は、対象者の瞳孔径の時系列データから当該無効空間のデータを除外する。このようにすることで、変動量算出部132は、対象者の瞳孔径の変動量を精度よく算出することができる。
 また、変動量算出部132が、瞳孔径の変動量を算出する際、事前に瞳孔径の時系列データをローパスフィルタや移動平均等を利用して平滑化することで、瞳孔径の計測ノイズを低減してもよい。最も簡易な瞳孔径の変動量の算出方法としては、変動量算出部132が、瞳孔径の時系列データのうち、課題パフォーマンスの推定対象となる区間におけるデータを1階微分し、得られた瞳孔径の変動量の時系列データの値の絶対値をとり、得られた絶対値の平均を算出する方法がある。
 なお、変動量算出部132は、瞳孔径の時系列データから得られた瞳孔径の変動量を対数変換する等、生体情報に一般的にみられる関係を関数変換として組み込んだ値を算出してもよい。
[実験]
 以下に、推定装置10が、課題遂行時における対象者の瞳孔径の変動量を用いて、当該対象者の課題パフォーマンスの推定が可能であることを示す実験の結果を示す。
[実験条件]
 本実験では、6人の対象者に対して、以下の課題を行う際の課題パフォーマンスを推定した。課題は、対象者が、黒い背景画面が表示されているモニタを注視し続け、白い円(ターゲット)が出現した場合に、できる限り素早くボタンを押すという試行を116回繰り返すというものである。
 本実験において、対象者が注視する場所(注視画面)は暗いため、課題遂行時における対象者の瞳孔径の変動量の大きさと課題パフォーマンスの低下との相関は強いと推定できる。換言すると、課題遂行時における対象者の瞳孔径の変動量が少ない場合、当該対象者の課題パフォーマンスは高いと推定できるはずである。
 本実験において、試行開始からターゲットが出現するまでの時間は、1秒(1,000ms:milliseconds)~8秒(8,000ms)までの間で、0.25秒(250ms)刻みでランダムに決定した。このため、対象者はターゲットの出現タイミングを予測できず、絶えず画面に注意し続ける必要がある。
 このような課題(Psychomotor Vigilanve Task:PVT)において、ターゲットが表示されてから、対象者がボタンを押すまでにかかった時間(反応時間(RT: Reaction Time))が短い試行については、当該対象者の課題パフォーマンスが高いと解釈されている(非特許文献1)。すなわち、試行ごとに算出される、対象者の瞳孔径の変動量が少ないほど、試行ごとのRTが短くなる傾向が存在すれば、推定装置10によって、注視画面が暗い場合における対象者の課題パフォーマンスをリアルタイムに推定できることが示される。
 なお、本課題では、対象者がボタン押した直後に、そのボタン押しにかかったRTが1秒間(1,000ms)表示され、当該対象者が試行ごとに自分のRTを確認できるようにした。
 また、対象者の瞳孔径のデータ(Pupil data)は、試行開始直後からターゲットが出現するまでの待機時間(Waiting time)中に計測し、この計測結果から、試行ごとの当該対象者の瞳孔径の変動量を算出した。上述した実験の流れは図5に示す通りである。
[瞳孔径の算出過程]
 以下に、本実験における、対象者の瞳孔径の変動量の算出過程を示す。
 まず、推定装置10は、光学装置による瞳孔径計測装置を用いて、1秒間に1,000回の頻度で、対象者の左目の瞳孔径を計測した。
 次に、推定装置10は、対象者ごとに実験全体における瞳孔径の中央値を算出し、瞳孔径が上記の中央値の1/2以下になっている区間を瞬目中の区間とみなした。推定装置10は、対象者の瞳孔径の時系列データのうち、上記の瞬目中の区間と、その前後0.2秒を瞬目に関連したノイズが含まれる可能性のある区間とし、当該区間を無効データとして除外した。
 次に、推定装置10は、対象者の瞳孔径の時系列データのうち、上記の無効データを除外したデータを有効データとし、当該有効データに対し、ハニング窓と呼ばれる重み行列を用いて、当該瞳孔径の時系列データの平滑化を行った。なお、ハニング窓の大きさは50ポイントとした。
 ここで上記の有効データの連続区間が短い場合(例えば、瞬目が高頻度で発生している場合等)、推定装置10は、上記の平滑化が適切に行えない可能性がある。そのため、推定装置10は、瞳孔径の時系列データのうち、無効データの区間は仮に線形補完して平滑化を行い、線形補完した区間は、後の処理で無効とする操作を行った。
 次に、推定装置10は、瞳孔径の時系列データを1階微分し、得られた瞳孔径の変動量の時系列データの絶対値をとり、得られた絶対値の平均を算出することで、瞳孔径の変動量を算出した。次に、推定装置10は、算出した瞳孔径の変動量を対数変換し、同様にRTも対数変換した。
 最後に、推定装置10は、上記の処理により得られた瞳孔径の変動量およびRTを、対象者ごとに標準化した。標準化した瞳孔径の変動量を、標準化済み瞳孔径変動量(Normalized amount of change in pupil data)と呼ぶ。また、標準化したRTを、標準化済み(Normalized RT)と呼ぶ。
 推定装置10は、上記の標準化において、z-scoreと呼ばれる標準化を実施した。このz-scoreは、標準化の対象となるそれぞれの値から、値の平均値を減算した後、値の標準偏差を除算する。このz-scoreによれば、対象者個人の中で、瞳孔径の変動量やRTが、相対的に大きかった/小さかった場合に、大きな/小さな値が算出される。これにより、推定装置10は、瞳孔径の変動量やRTが常に大きい/小さいといった対象者の個人差を無視して、課題遂行中に対象者個人の中でリアルタイムに変動していた瞳孔径の変動量やRTの差を考慮することができる。
[実験結果]
 推定装置10は、対象者の瞳孔径の計測区間で、当該対象者が目を閉じていた試行などの無効試行を除外した結果、上記の手続きによって687個の瞳孔径の変動量と696個のRTのデータが得られた。
 このデータのうち、得られた687個の瞳孔径の変動量と、それに対応した687個のRTにおいて、Normalized amount of change in pupil dataとNormalized RTの関係を示す、散布図を図6に示す。このデータにおいて、Normalized amount of change in pupil dataとNormalized RTの相関係数(ピアソンのr)を調べた結果、0.34であり、Permutation testと呼ばれる検定を実施した結果、p<0.0001であり、有意であった。
 すなわち、各試行において、瞳孔径の変動量が大きいほどRTが大きくなることが示された。換言すると、試行ごとに算出される瞳孔径の変動量が小さいほど、試行ごとのRTが短くなる傾向が存在することが示された。このことから、対象者の注視画面が暗い場合に、推定装置10が当該対象者の課題遂行中における瞳孔径の変動量を取得することで、当該対象者の課題パフォーマンスの高さをリアルタイムに推定できることが示された。
[システム構成等]
 また、図示した各部の各構成要素は機能概念的なものであり、必ずしも物理的に図示のように構成されていることを要しない。すなわち、各装置の分散・統合の具体的形態は図示のものに限られず、その全部又は一部を、各種の負荷や使用状況等に応じて、任意の単位で機能的又は物理的に分散・統合して構成することができる。さらに、各装置にて行われる各処理機能は、その全部又は任意の一部が、CPU及び当該CPUにて実行されるプログラムにて実現され、あるいは、ワイヤードロジックによるハードウェアとして実現され得る。
 また、前記した実施形態において説明した処理のうち、自動的に行われるものとして説明した処理の全部又は一部を手動的に行うこともでき、あるいは、手動的に行われるものとして説明した処理の全部又は一部を公知の方法で自動的に行うこともできる。この他、上記文書中や図面中で示した処理手順、制御手順、具体的名称、各種のデータやパラメータを含む情報については、特記する場合を除いて任意に変更することができる。
[プログラム]
 前記した推定装置10は、パッケージソフトウェアやオンラインソフトウェアとしてプログラムを所望のコンピュータにインストールさせることによって実装できる。例えば、上記のプログラムを情報処理装置に実行させることにより、情報処理装置を各実施形態の推定装置10として機能させることができる。ここで言う情報処理装置には、デスクトップ型又はノート型のパーソナルコンピュータが含まれる。また、その他にも、情報処理装置にはスマートフォン、携帯電話機やPHS(Personal Handyphone System)等の移動体通信端末、さらには、PDA(Personal Digital Assistant)等の端末等がその範疇に含まれる。
 また、推定装置10は、ユーザが使用する端末装置をクライアントとし、当該クライアントに上記の処理に関するサービスを提供するサーバ装置として実装することもできる。この場合、サーバ装置は、Webサーバとして実装することとしてもよいし、アウトソーシングによって上記の処理に関するサービスを提供するクラウドとして実装することとしてもかまわない。
 図7は、推定プログラムを実行するコンピュータの一例を示す図である。コンピュータ1000は、例えば、メモリ1010、CPU1020を有する。また、コンピュータ1000は、ハードディスクドライブインタフェース1030、ディスクドライブインタフェース1040、シリアルポートインタフェース1050、ビデオアダプタ1060、ネットワークインタフェース1070を有する。これらの各部は、バス1080によって接続される。
 メモリ1010は、ROM(Read Only Memory)1011及びRAM(Random Access Memory)1012を含む。ROM1011は、例えば、BIOS(Basic Input Output System)等のブートプログラムを記憶する。ハードディスクドライブインタフェース1030は、ハードディスクドライブ1090に接続される。ディスクドライブインタフェース1040は、ディスクドライブ1100に接続される。例えば磁気ディスクや光ディスク等の着脱可能な記憶媒体が、ディスクドライブ1100に挿入される。シリアルポートインタフェース1050は、例えばマウス1110、キーボード1120に接続される。ビデオアダプタ1060は、例えばディスプレイ1130に接続される。
 ハードディスクドライブ1090は、例えば、OS1091、アプリケーションプログラム1092、プログラムモジュール1093、プログラムデータ1094を記憶する。すなわち、上記の推定装置10が実行する各処理を規定するプログラムは、コンピュータにより実行可能なコードが記述されたプログラムモジュール1093として実装される。プログラムモジュール1093は、例えばハードディスクドライブ1090に記憶される。例えば、推定装置10における機能構成と同様の処理を実行するためのプログラムモジュール1093が、ハードディスクドライブ1090に記憶される。なお、ハードディスクドライブ1090は、SSDにより代替されてもよい。
 また、上述した実施形態の処理で用いられる各データは、プログラムデータ1094として、例えばメモリ1010やハードディスクドライブ1090に記憶される。そして、CPU1020が、メモリ1010やハードディスクドライブ1090に記憶されたプログラムモジュール1093やプログラムデータ1094を必要に応じてRAM1012に読み出して実行する。
 なお、プログラムモジュール1093やプログラムデータ1094は、ハードディスクドライブ1090に記憶される場合に限らず、例えば着脱可能な記憶媒体に記憶され、ディスクドライブ1100等を介してCPU1020によって読み出されてもよい。あるいは、プログラムモジュール1093及びプログラムデータ1094は、ネットワされたーク(LAN(Local Area Network)、WAN(Wide Area Network)等)を介して接続他のコンピュータに記憶されてもよい。そして、プログラムモジュール1093及びプログラムデータ1094は、他のコンピュータから、ネットワークインタフェース1070を介してCPU1020によって読み出されてもよい。
10 推定装置
11 入出力部
12 記憶部
13 制御部
131 データ取得部
132 変動量算出部
133 判定部
134 推定部

Claims (9)

  1.  作業パフォーマンスの推定の対象者の作業時における瞳孔径および注視対象の輝度を取得する取得部と、
     前記対象者の瞳孔径の時系列データから、当該対象者の瞳孔径の変動量を算出する変動量算出部と、
     当該対象者の注視対象の輝度が所定値以上か否かを判定する判定部と、
     当該対象者の注視対象の輝度が所定の閾値以上であると判定された場合、前記対象者の瞳孔径の変動量の大きさと当該対象者の作業パフォーマンスの低下との相関性が低いと判定し、当該対象者の注視対象の輝度が所定の閾値よりも低いと判定された場合、前記対象者の瞳孔径の変動量の大きさと当該対象者の作業パフォーマンスの低下との相関性が高いと判定し、前記判定の結果と、当該対象者の瞳孔径の変動量とに基づき、当該対象者の作業パフォーマンスを推定する推定部と
     を備えることを特徴とする推定装置。
  2.  前記推定部は、
     前記注視対象の輝度が所定の閾値以上であると判定された場合、当該対象者の瞳孔径の変動量が大きいほど当該対象者の作業パフォーマンスは高いと推定し、前記注視対象の輝度が所定の閾値よりも低いと判定された場合、当該対象者の瞳孔径の変動量が大きいほど当該対象者の作業パフォーマンスは低いと推定する
     ことを特徴とする請求項1に記載の推定装置。
  3.  前記推定部は、
     前記注視対象の輝度が所定の閾値以上であると判定された場合、当該対象者の瞳孔径の変動量が小さいほど当該対象者の作業パフォーマンスは低いと推定し、前記注視対象の輝度が所定の閾値よりも低いと判定された場合、当該対象者の瞳孔径の変動量が小さいほど当該対象者の作業パフォーマンスは高いと推定する
     ことを特徴とする請求項1に記載の推定装置。
  4.  前記変動量算出部は、
     前記対象者の瞳孔径の時系列データのうち、前記瞳孔径の値が所定の閾値以下である期間における瞳孔径の時系列データを、前記対象者の瞳孔径の時系列データから除外し、前記除外した前記時系列データから、前記対象者の瞳孔径の変動量を算出する、
     ことを特徴とする請求項1に記載の推定装置。
  5.  前記変動量算出部は、
     前記対象者の瞳孔径の時系列データをローパスフィルタまたは移動平均を用いて平滑化して、前記対象者の瞳孔径の変動量を算出する、
     ことを特徴とする請求項1に記載の推定装置。
  6.  前記変動量算出部は、
     前記対象者の瞳孔径の時系列データを1階微分し、前記1階微分した時系列データの値の絶対値をとり、前記時系列データの値の絶対値の平均値を算出し、前記算出した平均値を用いて、前記対象者の瞳孔径の変動量を算出する、
     ことを特徴とする請求項1に記載の推定装置。
  7.  前記変動量算出部は、さらに、
     前記算出した対象者の瞳孔径の変動量を対数変換した値を、前記対象者の瞳孔径の変動量とする
     ことを特徴とする請求項1に記載の推定装置。
  8.  推定装置により実行される推定方法であって、
     作業パフォーマンスの推定の対象者の作業時における瞳孔径および注視対象の輝度を取得する取得工程と、
     前記対象者の瞳孔径の時系列データから、当該対象者の瞳孔径の変動量を算出する変動量算出工程と、
     当該対象者の注視対象の輝度が所定値以上か否かを判定する判定工程と、
     当該対象者の注視対象の輝度が所定の閾値以上であると判定された場合、前記対象者の瞳孔径の変動量の大きさと当該対象者の作業パフォーマンスの低下との相関性が低いと判定し、当該対象者の注視対象の輝度が所定の閾値よりも低いと判定された場合、前記対象者の瞳孔径の変動量の大きさと当該対象者の作業パフォーマンスの低下との相関性が高いと判定し、前記判定の結果と、当該対象者の瞳孔径の変動量とに基づき、当該対象者の作業パフォーマンスを推定する推定工程と
     を含むことを特徴とする推定方法。
  9.  作業パフォーマンスの推定の対象者の作業時における瞳孔径および注視対象の輝度を取得する取得工程と、
     前記対象者の瞳孔径の時系列データから、当該対象者の瞳孔径の変動量を算出する変動量算出工程と、
     当該対象者の注視対象の輝度が所定値以上か否かを判定する判定工程と、
     当該対象者の注視対象の輝度が所定の閾値以上であると判定された場合、前記対象者の瞳孔径の変動量の大きさと当該対象者の作業パフォーマンスの低下との相関性が低いと判定し、当該対象者の注視対象の輝度が所定の閾値よりも低いと判定された場合、前記対象者の瞳孔径の変動量の大きさと当該対象者の作業パフォーマンスの低下との相関性が高いと判定し、前記判定の結果と、当該対象者の瞳孔径の変動量とに基づき、当該対象者の作業パフォーマンスを推定する推定工程と
     コンピュータに実行させること特徴とする推定プログラム。
PCT/JP2020/043246 2020-11-19 2020-11-19 推定装置、推定方法、および、推定プログラム WO2022107288A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US18/037,596 US20230404393A1 (en) 2020-11-19 2020-11-19 Estimation device, estimation method, and estimation program
PCT/JP2020/043246 WO2022107288A1 (ja) 2020-11-19 2020-11-19 推定装置、推定方法、および、推定プログラム
JP2022563506A JP7444286B2 (ja) 2020-11-19 2020-11-19 推定装置、推定方法、および、推定プログラム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/043246 WO2022107288A1 (ja) 2020-11-19 2020-11-19 推定装置、推定方法、および、推定プログラム

Publications (1)

Publication Number Publication Date
WO2022107288A1 true WO2022107288A1 (ja) 2022-05-27

Family

ID=81708649

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/043246 WO2022107288A1 (ja) 2020-11-19 2020-11-19 推定装置、推定方法、および、推定プログラム

Country Status (3)

Country Link
US (1) US20230404393A1 (ja)
JP (1) JP7444286B2 (ja)
WO (1) WO2022107288A1 (ja)

Citations (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07116119A (ja) * 1993-10-21 1995-05-09 Nippon Telegr & Teleph Corp <Ntt> カオス状態の測定方法及び測定装置並びに健康状態の判定方法及び判定装置
JPH07255669A (ja) * 1994-03-24 1995-10-09 Sony Corp 状態検出装置および表示装置
JPH11316884A (ja) * 1998-01-28 1999-11-16 Daimler Benz Ag 覚醒状態を求める装置
JP2008246013A (ja) * 2007-03-30 2008-10-16 National Univ Corp Shizuoka Univ 眠気検知装置
JP2009078006A (ja) * 2007-09-26 2009-04-16 Honda Motor Co Ltd 眠気状態判定装置
WO2010143455A1 (ja) * 2009-06-11 2010-12-16 株式会社日立製作所 表示装置
WO2011042989A1 (ja) * 2009-10-09 2011-04-14 Kikuchi Kouichi 視認情景に対する視認者情感判定装置
JP2014050649A (ja) * 2012-09-10 2014-03-20 Nippon Telegr & Teleph Corp <Ntt> 疲労感評価装置、疲労感評価方法、及びプログラム
JP2014095987A (ja) * 2012-11-08 2014-05-22 Denso Corp 車載機および車両安全制御システム
JP2014100227A (ja) * 2012-11-19 2014-06-05 Toyota Motor Corp 集中度推定装置、集中度推定方法、運転支援装置及び運転支援方法
WO2015072202A1 (ja) * 2013-11-18 2015-05-21 ソニー株式会社 瞳孔径に基づく眼の疲労検出のための情報処理装置、方法、およびプログラム
WO2015159374A1 (ja) * 2014-04-15 2015-10-22 株式会社メニコン 回折多焦点眼用レンズおよび回折多焦点眼用レンズの製造方法
JP2016002109A (ja) * 2014-06-13 2016-01-12 パナソニックIpマネジメント株式会社 活動評価装置、評価処理装置、プログラム
WO2016143759A1 (ja) * 2015-03-06 2016-09-15 株式会社 脳機能研究所 感情推定装置及び感情推定方法
JP2016167189A (ja) * 2015-03-10 2016-09-15 Necエンジニアリング株式会社 酒気帯び検知装置及びルームミラー装置
JP2018108130A (ja) * 2016-12-28 2018-07-12 株式会社ブレインウェイ 視覚利用脳トレーニングシステム
JP2019030491A (ja) * 2017-08-08 2019-02-28 日本電信電話株式会社 運動パフォーマンス推定装置、トレーニング装置、それらの方法、およびプログラム
WO2019043896A1 (ja) * 2017-08-31 2019-03-07 富士通株式会社 検知プログラム、検知方法、および検知システム
JP2019055161A (ja) * 2017-09-19 2019-04-11 Kikura株式会社 瞳孔径変化の呼吸及び脈拍の影響を排除する手法と刺激による瞳孔径変化に基づく視認者情感判定装置、視認者情感判定システム及びプログラム。
JP2019204416A (ja) * 2018-05-25 2019-11-28 トヨタ自動車株式会社 状態判定装置
WO2020194529A1 (ja) * 2019-03-26 2020-10-01 日本電気株式会社 興味判定装置、興味判定システム、興味判定方法及びプログラムが格納された非一時的なコンピュータ可読媒体

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7255669B2 (ja) 2019-03-20 2023-04-11 株式会社島津製作所 X線撮像装置
JP7116119B2 (ja) 2020-04-27 2022-08-09 大陽日酸株式会社 冷鉄源の溶解・精錬炉、及び溶解・精錬炉の操業方法

Patent Citations (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07116119A (ja) * 1993-10-21 1995-05-09 Nippon Telegr & Teleph Corp <Ntt> カオス状態の測定方法及び測定装置並びに健康状態の判定方法及び判定装置
JPH07255669A (ja) * 1994-03-24 1995-10-09 Sony Corp 状態検出装置および表示装置
JPH11316884A (ja) * 1998-01-28 1999-11-16 Daimler Benz Ag 覚醒状態を求める装置
JP2008246013A (ja) * 2007-03-30 2008-10-16 National Univ Corp Shizuoka Univ 眠気検知装置
JP2009078006A (ja) * 2007-09-26 2009-04-16 Honda Motor Co Ltd 眠気状態判定装置
WO2010143455A1 (ja) * 2009-06-11 2010-12-16 株式会社日立製作所 表示装置
WO2011042989A1 (ja) * 2009-10-09 2011-04-14 Kikuchi Kouichi 視認情景に対する視認者情感判定装置
JP2014050649A (ja) * 2012-09-10 2014-03-20 Nippon Telegr & Teleph Corp <Ntt> 疲労感評価装置、疲労感評価方法、及びプログラム
JP2014095987A (ja) * 2012-11-08 2014-05-22 Denso Corp 車載機および車両安全制御システム
JP2014100227A (ja) * 2012-11-19 2014-06-05 Toyota Motor Corp 集中度推定装置、集中度推定方法、運転支援装置及び運転支援方法
WO2015072202A1 (ja) * 2013-11-18 2015-05-21 ソニー株式会社 瞳孔径に基づく眼の疲労検出のための情報処理装置、方法、およびプログラム
WO2015159374A1 (ja) * 2014-04-15 2015-10-22 株式会社メニコン 回折多焦点眼用レンズおよび回折多焦点眼用レンズの製造方法
JP2016002109A (ja) * 2014-06-13 2016-01-12 パナソニックIpマネジメント株式会社 活動評価装置、評価処理装置、プログラム
WO2016143759A1 (ja) * 2015-03-06 2016-09-15 株式会社 脳機能研究所 感情推定装置及び感情推定方法
JP2016167189A (ja) * 2015-03-10 2016-09-15 Necエンジニアリング株式会社 酒気帯び検知装置及びルームミラー装置
JP2018108130A (ja) * 2016-12-28 2018-07-12 株式会社ブレインウェイ 視覚利用脳トレーニングシステム
JP2019030491A (ja) * 2017-08-08 2019-02-28 日本電信電話株式会社 運動パフォーマンス推定装置、トレーニング装置、それらの方法、およびプログラム
WO2019043896A1 (ja) * 2017-08-31 2019-03-07 富士通株式会社 検知プログラム、検知方法、および検知システム
JP2019055161A (ja) * 2017-09-19 2019-04-11 Kikura株式会社 瞳孔径変化の呼吸及び脈拍の影響を排除する手法と刺激による瞳孔径変化に基づく視認者情感判定装置、視認者情感判定システム及びプログラム。
JP2019204416A (ja) * 2018-05-25 2019-11-28 トヨタ自動車株式会社 状態判定装置
WO2020194529A1 (ja) * 2019-03-26 2020-10-01 日本電気株式会社 興味判定装置、興味判定システム、興味判定方法及びプログラムが格納された非一時的なコンピュータ可読媒体

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
NISHIYAMA, JUNPEI; TANIDA, KOJI; KUSUMI, MASASHI; HIRATA, YUTAKA: "Evaluation of the Drowsiness by Pupil Fluctuation", TRANSACTIONS OF JAPANESE SOCIETY FOR MEDICAL AND BIOLOGICAL ENGINEERING, vol. 46, no. 2, 1 January 2008 (2008-01-01), JP , pages 212 - 217, XP055940407, ISSN: 1347-443X, DOI: 10.11239/jsmbe.46.212 *

Also Published As

Publication number Publication date
US20230404393A1 (en) 2023-12-21
JP7444286B2 (ja) 2024-03-06
JPWO2022107288A1 (ja) 2022-05-27

Similar Documents

Publication Publication Date Title
US10531793B2 (en) Monitoring system for monitoring head mounted device wearer
Fieguth et al. Automated measurement of bulbar redness
JP2018005726A5 (ja)
Quek et al. Comparing performance of discomfort glare metrics in high and low adaptation levels
US20160110846A1 (en) Automatic display image enhancement based on user&#39;s visual perception model
US10824227B2 (en) Method and system for operating a display apparatus
US11178389B2 (en) Self-calibrating display device
Li-yuan et al. The research of quality of experience evaluation method in pervasive computing environment
CN109982637B (zh) 利用未参考的音频系统精确地估计纯音阈值的方法
CN109478316B (zh) 实时自适应阴影和高光增强
KR101846743B1 (ko) 톤 맵핑 영상에 대한 객관적 화질 평가 방법 및 장치
WO2020232855A1 (zh) 基于微表情调节屏幕显示的方法及装置
Engelke et al. Framework for optimal region of interest–based quality assessment in wireless imaging
WO2022107288A1 (ja) 推定装置、推定方法、および、推定プログラム
EP3364371A1 (en) User device, server, and computer program stored in computer-readable medium for determining vision information
Narwaria et al. Study of high dynamic range video quality assessment
CN110706161B (zh) 图像的亮度调整方法、介质、设备及装置
Engelke et al. Human observer confidence in image quality assessment
JP7559924B2 (ja) 推定装置、推定方法、および、推定プログラム
US11232367B1 (en) Apparatus and method for forecasted performance level adjustment and modification
Schulze et al. The conversion of bulbar redness grades using psychophysical scaling
US20180217865A1 (en) Performing disruptive tasks based on user state
CN111223054A (zh) 超声图像评估方法和装置
Koščević et al. HD-RACE: Spray-based local tone mapping operator
JP7244466B2 (ja) クラウドソーシング基盤プロジェクトの作業進行速度による作業単価調整方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20962451

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022563506

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20962451

Country of ref document: EP

Kind code of ref document: A1