WO2022106181A1 - Terminal mural de climatisation reversible vertical - Google Patents

Terminal mural de climatisation reversible vertical Download PDF

Info

Publication number
WO2022106181A1
WO2022106181A1 PCT/EP2021/080223 EP2021080223W WO2022106181A1 WO 2022106181 A1 WO2022106181 A1 WO 2022106181A1 EP 2021080223 W EP2021080223 W EP 2021080223W WO 2022106181 A1 WO2022106181 A1 WO 2022106181A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
fins
pipe
pipes
heat exchanger
Prior art date
Application number
PCT/EP2021/080223
Other languages
English (en)
Inventor
Michel Cinier
Original Assignee
Cinier Radiateurs
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cinier Radiateurs filed Critical Cinier Radiateurs
Priority to EP21798726.2A priority Critical patent/EP4248144A1/fr
Publication of WO2022106181A1 publication Critical patent/WO2022106181A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0059Indoor units, e.g. fan coil units characterised by heat exchangers
    • F24F1/0067Indoor units, e.g. fan coil units characterised by heat exchangers by the shape of the heat exchangers or of parts thereof, e.g. of their fins
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0043Indoor units, e.g. fan coil units characterised by mounting arrangements
    • F24F1/0057Indoor units, e.g. fan coil units characterised by mounting arrangements mounted in or on a wall
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0059Indoor units, e.g. fan coil units characterised by heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0071Indoor units, e.g. fan coil units with means for purifying supplied air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0071Indoor units, e.g. fan coil units with means for purifying supplied air
    • F24F1/0076Indoor units, e.g. fan coil units with means for purifying supplied air by electric means, e.g. ionisers or electrostatic separators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F8/00Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying
    • F24F8/20Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying by sterilisation
    • F24F8/22Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying by sterilisation using UV light
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/047Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag
    • F28D1/0477Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag the conduits being bent in a serpentine or zig-zag
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/047Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag
    • F28D1/0477Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag the conduits being bent in a serpentine or zig-zag
    • F28D1/0478Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag the conduits being bent in a serpentine or zig-zag the conduits having a non-circular cross-section
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/126Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element consisting of zig-zag shaped fins
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F17/00Removing ice or water from heat-exchange apparatus
    • F28F17/005Means for draining condensates from heat exchangers, e.g. from evaporators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2221/00Details or features not otherwise provided for
    • F24F2221/54Heating and cooling, simultaneously or alternatively
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2265/00Safety or protection arrangements; Arrangements for preventing malfunction
    • F28F2265/18Safety or protection arrangements; Arrangements for preventing malfunction for removing contaminants, e.g. for degassing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2275/00Fastening; Joining
    • F28F2275/06Fastening; Joining by welding

Definitions

  • the present invention relates to an antiviral vertical reversible air conditioning wall terminal. It applies, in particular, to the field of air conditioning and heating of residential, office, workshop or collective premises.
  • Reversible air conditioning terminals are the parts of reversible air conditioning systems that diffuse coolness or heat in the premises. These terminals are horizontal (generally placed high up or on the floor in the premises) and unsightly. In addition, they present risks of retention and dissemination of pathogens, such as viruses and bacteria.
  • the present invention aims to remedy all or part of these drawbacks.
  • the present invention relates to a vertical reversible air conditioning wall terminal, which comprises:
  • a box the largest dimension of which defines a vertical direction, comprising an air inlet, at least one fan, a heat exchanger and an air outlet and
  • each pipe having, in the direction of the main air flow traversing the fins, a dimension greater than its dimension in the horizontal direction perpendicular to the direction of the main air flow.
  • the heat exchange surface between the fins and the pipes are maximized while reducing the fluidic resistance of the pipes in the direction of air flow on the fins.
  • the pipes have an oblong section and are produced by pressing cylindrical pipes with circular guidelines.
  • the fins and/or the pipes comprise copper.
  • the fins and/or the pipes provide an antiviral and/or antibacterial effect.
  • the fins are concertina whose edges are parallel to the direction of the main air flow.
  • the heat exchange is particularly effective.
  • the flow of water condensation on the fins and the pipes is vertical, regular and optimized, thus allowing evacuation of the condensation water.
  • At least one pipe has fins, the spacing between two tips of which is greater than the spacing between two tops of fins of at least one other pipe.
  • the heat exchange surface can differ from one pipe to another.
  • At least one pipe comprises fins whose spacing between two peaks is greater than or equal to one and a half times the spacing between two peaks of fins of at least one other pipe.
  • the two ducts farthest in the horizontal direction perpendicular to the direction of the main air flow comprise fins whose spacing between two peaks is greater than the spacing between two peaks of fins of each other pipeline.
  • the pleating at both ends in fact causes better flow: the pleats are then very close or even against the casing, so they have no free spaces like the other pleats which are between the flattened tubes.
  • a larger spacing, that is to say a larger angle between two fins, or even a smaller number of fins connected to the end pipes makes it possible to facilitate and/or force the flow of the condensation water.
  • the terminal further comprises a tray for collecting condensation water at the bottom of the heat exchanger, this tray comprising copper.
  • This tray thus provides an antiviral and/or antibacterial effect.
  • the filter comprises stainless steel and a titanium oxide catalyst.
  • the filter comprises at least one source of ultraviolet radiation.
  • the filter provides an antiviral and/or antibacterial effect.
  • the terminal comprises means for detecting the separation, even partial, of the front face, on the one hand, and of the casing, on the other hand, this detection means controlling the extinction of the source ultraviolet radiation when the front face is separated, at least partially, from the case.
  • the air inlet of the housing comprises a grille with oblique blades with respect to the direction of the main air flow.
  • the terminal further comprises, downstream of the heat exchanger, a deflector which directs at least part of the flow of air leaving the exchanger through the front face.
  • the outgoing air flow is at least partially oriented obliquely or perpendicularly with respect to the front face of the terminal.
  • each fan is upstream of the heat exchanger.
  • the inventors have determined that this configuration reduces the noise level of the ventilation, in particular by avoiding the cavitation of each fan.
  • each pipe is connected to an air vent positioned at one end of the pipe in the vertical direction.
  • FIG. 1 shows, in front view, a particular embodiment of the terminal object of the invention
  • FIG. 3 shows, in right side view, the terminal illustrated in Figures 1 and 2,
  • FIG. 5 shows, in section, the ends of a housing of the terminal illustrated in Figures 1 to 4,
  • FIG. 6 shows, in front view, the terminal illustrated in Figures 1 to 5, without its front face
  • FIG. 7 shows, in partial side view, a heat exchanger incorporated in the terminal illustrated in Figures 1 to 6,
  • FIG. 9 represents, in the form of a flowchart, the manufacturing steps of a terminal that is the subject of the invention.
  • FIG. 10 shows, in partial side view, a connection of a terminal with a reversible heat pump
  • FIG. 1 1 shows, in partial side view, a connection of a terminal with a cold heat transfer fluid circuit, on the one hand, and with a hot heat transfer fluid circuit, on the other hand.
  • lower or “low” what is at the bottom or directed downwards, in these figures.
  • the notions of vertical and horizontal derive from these definitions and are those of these figures. “Internal” is what is close to or oriented towards the central vertical plane of the terminal 20 parallel to its front face, and “external” is what is close to the peripheral surface of the terminal or oriented towards this peripheral surface.
  • a wall terminal 20 of vertical reversible air conditioning comprises a rear casing 21, the largest dimension of which defines a vertical direction.
  • the housing 21 comprises, on the left, an air inlet, or air inlet grille, 23 and a control panel 25, and, on the right, an air outlet, or air outlet grille, 24.
  • the housing 21 is surmounted, on the front side, by a front face 26 for masking the elements of the housing 21 .
  • the front face 26 comprises a peripheral frame 22, an air exhaust opening 27 through the front face 26 and a central decoration.
  • the direction and the direction of the main air flow are represented by the arrow 48, a secondary air flow being able to leave the terminal 20 through the front face 26.
  • main airflow 48 is from the left to the right of the terminal, in other embodiments (not shown) the main airflow is from the right to the left of this terminal.
  • a deflector 46 downstream of the heat exchanger 32 deflects part of the air leaving this exchanger 32 through the opening 27 of the front face 26.
  • the peripheral frame 22 includes at least one light source (not shown), for example light-emitting diodes (LEDs) or emitting light in the visible spectrum.
  • FIG. 4 is a section of terminal 20 along plane AA defined in FIG. It is observed, in Figure 4, that the housing 21 comprises, from left to right, that is to say following the main air flow, the air inlet 23, a filter 30, at least one fan 31, a heat exchanger 32 and the air outlet 24.
  • the heat exchanger 32 comprises fins 28, 38 with a main horizontal axis parallel to the flow direction of the main air flow.
  • the heat exchanger also includes pipes 36 carrying the fins 28, 38.
  • the air inlet 23 and the air outlet 24 are not symmetrical.
  • the air inlet 23 comprises a grille with blades 44 oblique with respect to the direction 48 of the main air flow. These oblique blades 44 prevent the exit of direct light radiation from inside the box 21 towards the left of the box 21 . As described with reference to FIG. 6, the potentially harmful ultraviolet light rays emitted inside the housing 21 are therefore confined there.
  • the air outlet 24 comprises blades 45 parallel to the direction 48 of the main air flow inside the housing 21. Such a configuration makes it possible to create a venturi effect which releases the air towards the space to be heated or chill.
  • the filter 30 preferably comprises a frame, for example aluminum, carrying a grid 33, comprising stainless steel ("inox") and a titanium oxide catalyst, and at least one source 34 of ultraviolet radiation illuminating the grid 33.
  • a source 34 is a light-emitting diode emitting in the ultraviolet spectrum. Thanks to these provisions, the filter 30 is antiviral.
  • the terminal 20 comprises a means of detecting (not shown) the separation, even partial, of the front face 26, on the one hand, and of the housing 21, on the other hand.
  • this detection means is an electrical contact or a switch (not shown) which is closed only when the front face 26 is positioned and locked on the case 21.
  • This detection means controls the extinction of the source of ultraviolet radiation when the front face 26 is separated, at least partially, from the casing 21 .
  • the grid 33 is accordion, with the edges, or folds, horizontal and perpendicular to the direction of the main air flow 48 to avoid pressure drops.
  • the housing 21 comprises, here, thirteen fans 31 mounted vertically and perpendicular to the direction of the main air flow 48, side by side with no space between them.
  • the fans 31 are of the low speed helical type.
  • the fans 31 are, in the direction 48 of the air flow, upstream of the exchanger 32, which reduces the risks of cavitation and noise pollution.
  • the heat exchanger 32 comprises fins 28, 38 and vertical pipes 42 terminating at the top and bottom in semi-circles 36.
  • the inlet 35 of each pipe 42 is connected to an outlet of a heat source.
  • heat transfer fluid (not shown), for example a heat exchanger or a boiler.
  • the outlet 37 of each pipe 42 is connected to an inlet of this source of heat transfer fluid.
  • the heat transfer fluid is water or glycol water, for environmental protection reasons.
  • This heat transfer fluid can also be another refrigerant.
  • the housing 21 further comprises a container 39 for collecting condensation water at the bottom of the heat exchanger 32.
  • This container is connected to a water outlet (not shown) operating by gravity or by means of a pump.
  • the material of this tray 39 comprises copper, or is even copper. Tray 39 thus provides an antiviral and/or antibacterial effect.
  • the pipes 42 of the heat exchanger 32 have, in the direction 48 of the main air flow, a dimension 49 greater than its dimension 47 in the horizontal direction perpendicular to the direction 48 of the main air flow.
  • the ratio of dimensions 49 and 47 is between 1.5 and 2.5, preferably between 1.75 and 2.5 and, more preferably, equal to two.
  • Thermal adhesives or, preferably, metal welds 43 thermally connect the pipes 42 to the fins 28, 38.
  • the heat exchange surface between the fins 28, 38 and the pipes 42 is maximized.
  • this shape reduces the fluidic resistance, to the passage of the air in circulation, of the pipes 42 in the direction of flow of the air on the fins 28, 38.
  • this shape maximizes the descent of the condensed water along the pipes 42.
  • the pipes 42 have an oblong section. This form of pipes 42 is produced, for example, by pressing cylindrical pipes with circular guidelines.
  • the fins 28, 38 are accordion, with the ridges parallel to the direction 48 of the main airflow.
  • the fins 38 are fixed to each of the pipes 42.
  • each angle of the accordion is fixed to a pipe 42.
  • the fins 28, 38 comprise copper, or even are made of copper. The fins thus provide an antiviral and/or antibacterial effect.
  • copper provides optimal heat exchange.
  • At least one pipe 42 comprises fins 28 whose spacing between two peaks is greater than the spacing between two fin peaks 38 of at least one other pipe 42.
  • the spacing between two peaks of the fins 28 is greater than or equal to one and a half times the spacing between two peaks of the fins 38. Even more preferably, the spacing between two peaks of the fins 28 is equal to twice the spacing between two peaks of the fins 38.
  • each pipe 42 is cooled by the same fin surface, whether the pipes are connected to shared fins 38 or to single fins 28.
  • single fin >> 28 a fin attached to a single pipe 42.
  • the temperature gradient at constant flow is substantially the same for each pipe 42.
  • the two ducts 42 farthest in the horizontal direction perpendicular to the direction of the main air flow comprise fins 28 whose spacing between two peaks is greater than the spacing between two peaks of fins 38 of each other pipe 42. This characteristic is illustrated in particular in FIG. 7. In other words, the single fins are positioned on the extreme pipes 42 of the heat exchanger.
  • the terminal object of the invention further comprises a secondary heat exchanger, downstream of the heat exchanger 32, which, like the exchanger 32, comprises:
  • each pipe having, in the direction of the main air flow traversing the fins, a dimension greater than its dimension in the horizontal direction perpendicular to the direction of the main air flow.
  • each pipe 42 is connected to an air vent 29 positioned at one end of the pipe in the vertical direction.
  • several pipes 42, aligned in the horizontal direction perpendicular to the direction of the air flow are connected, by a horizontal pipe for example, to one end of the pipe in the vertical direction configured to be at the top when the terminal 20 is installed.
  • the trap is installed on said horizontal pipe. Thanks to these provisions, the air which may be present in the pipes rises towards the trap which can be opened to let the air escape.
  • Figure 10 shows, in partial side view, a connection of a terminal 20 with a reversible heat pump (not shown).
  • An inlet line 71 carries the heat transfer fluid from the heat pump to the terminal 20 and a return line 72 carries the heat transfer fluid back.
  • a valve 73 controlled by the control panel 25 can assume two positions. In the open position, the valve 73 directs the heat transfer fluid coming from the pipe 71 towards the internal pipes 74 of the terminal 20. These internal pipes 74 are interconnected by bridges 75. In the closed position, the valve 73 directs the fluid coolant from line 71 directly to return line 72.
  • Figure 1 1 shows, in partial side view, a connection of a terminal 20 with a circuit 81 and 82 of hot heat transfer fluid, on the one hand, and with a circuit 84 and 85 of cold heat transfer fluid, on the other go.
  • An inlet line 81 carries the hot heat transfer fluid to the terminal 20 and a return line 82 carries the heat transfer fluid back.
  • a valve 83 controlled by the control panel 25 can assume two positions. In the open position, the valve 83 directs the hot heat transfer fluid coming from the pipe 81 towards a first part 87 of the internal pipes of the terminal 20. In the closed position, the valve 83 directs the hot heat transfer fluid coming from the pipe 81 directly towards return line 82.
  • An inlet line 84 carries the cold heat transfer fluid to the terminal 20 and a return line 85 carries the heat transfer fluid back.
  • a valve 86 controlled by control panel 25 can assume two positions. In the open position, the valve 86 directs the cold heat transfer fluid coming from the pipe 84 towards a second part 88 of the internal pipes of the terminal 20. In the closed position, the valve 86 directs the cold heat transfer fluid coming from the pipe 84 directly towards return line 85.
  • valves 83 and 86 controlling the circulation of heat transfer fluid in the different do not cause the hot heat transfer fluid and the cold heat transfer fluid to circulate simultaneously in the pipes 87 and 88.
  • the control panel 25 thus prevents the opening simultaneous valves 83 and 86.
  • the same terminal 20 can thus diffuse, depending on the open or closed position of the valves connected to these different pipes, heat or coolness.
  • This advantage is particularly important in the case of hotels equipped with a hot circuit and a cold circuit. Indeed, in such a hotel, depending on personal sensitivities, the occupant of one room may request heating while the occupant of another room requests air conditioning.
  • a method 50 for manufacturing a terminal 20 comprises a step 51 of crushing and twisting the pipes 42.
  • the fins 28, 38 are formed accordion-like, by folding of a copper plate.
  • the fins 28, 38 are welded to the pipes 42 as illustrated in FIG. 8.
  • the mechanical connectors 35 and 37 are assembled at the end of the pipes 42.
  • the pipes 42 provided with the fins 28, 38 and the inlets and outlets 35 and 37 are inserted into a heat exchanger casing 32.
  • the fans 31 are assembled on the casing , at the end of the fins 28, 38.
  • the filter 30 and the exchanger casing 32 assembled with the fans 31 are mounted in the casing 21 .
  • the electrical connections and the assembly of the control panel 25 are made.
  • the condensation water collection tray 39 is assembled at the bottom of the housing 21.
  • the front face panel 26 is shaped.
  • an optional step 62 light sources are installed in the front face 26.
  • a step 63 the decoration on the front face panel 26.
  • a step 64 the final assembly and the locking of the front face 26 on the box 21 are carried out.
  • the implementation of the present invention is all the more ecological, that is to say with a low impact on the environment, since the water, possibly glycolated, is used as a heat transfer fluid in the terminal. In fact, the quantity of refrigerant fluid in the heat pump installations and the risk of leakage thereof are thus reduced.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Thermal Sciences (AREA)
  • Geometry (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Disinfection, Sterilisation Or Deodorisation Of Air (AREA)
  • Air Filters, Heat-Exchange Apparatuses, And Housings Of Air-Conditioning Units (AREA)

Abstract

Le terminal mural de climatisation réversible vertical, qui comporte : - un boîtier (21), dont la plus grande dimension définit une direction verticale, comportant une entrée d'air (23), au moins un ventilateur (31), un échangeur de chaleur (32) et une sortie d'air (24) et - une face (26) avant de masquage des éléments du boîtier vertical. L'échangeur de chaleur comporte : - des ailettes (28, 38) d'axe principal horizontal et - des canalisations (42) portant les ailettes, chaque canalisation présentant, dans la direction du flux d'air principal parcourant les ailettes, une dimension supérieure à sa dimension dans la direction horizontale perpendiculaire à la direction (48) du flux d'air principal.

Description

TERMINAL MURAL DE CLIMATISATION REVERSIBLE VERTICAL
DOMAINE TECHNIQUE DE L’INVENTION
La présente invention vise un terminal mural de climatisation réversible vertical antiviral. Elle s’applique, notamment, au domaine de la climatisation et du chauffage de locaux d’habitation, de bureau, d’atelier ou collectifs.
ÉTAT DE LA TECHNIQUE
Les terminaux de climatisation réversibles sont les parties des systèmes de climatisation réversibles qui diffusent la fraîcheur ou la chaleur dans les locaux. Ces terminaux sont horizontaux (généralement placés en hauteur ou en allège dans les locaux) et disgracieux. De plus, ils présentent des risques de rétention et de diffusion d’agents pathogènes, tels que virus et bactéries.
On connait la demande de brevet internationale WO 01/53755 qui divulgue un terminal mural de climatisation pouvant être vertical. Cependant, la forme des canalisations et la position des ailettes entraine des difficultés de condensation réduisant la capacité d’échange thermique.
On connait également la demande de brevet américain US 2013/240 187 qui divulgue un terminal horizontal de climatisation, présentant un risque accru de condensation et de défaut d’écoulement d’eau résolu par l’ajout d’une feuille de drainage.
PRÉSENTATION DE L’INVENTION
La présente invention vise à remédier à tout ou partie de ces inconvénients.
À cet effet, la présente invention vise un terminal mural de climatisation réversible vertical, qui comporte :
- un boîtier, dont la plus grande dimension définit une direction verticale, comportant une entrée d’air, au moins un ventilateur, un échangeur de chaleur et une sortie d’air et
- une face avant de masquage des éléments du boîtier vertical ; dans lequel l’échangeur de chaleur comporte :
- des ailettes d’axe principal horizontal et - des canalisations portant les ailettes, chaque canalisation présentant, dans la direction du flux d’air principal parcourant les ailettes, une dimension supérieure à sa dimension dans la direction horizontale perpendiculaire à la direction du flux d’air principal.
On rappelle ici qu’une climatisation réversible fournit chauffage ou refroidissement de l’air.
Grâce à ces dispositions, la surface d’échange thermique entre les ailettes et les canalisations sont maximisées tout en réduisant la résistance fluidique des canalisations dans la direction d’écoulement de l’air sur les ailettes.
Dans des modes de réalisation, les canalisations présentent une section oblongue et produite par écrasement à la presse de canalisations cylindriques à directrices circulaires.
Dans des modes de réalisation, les ailettes et/ou les canalisations comportent du cuivre.
Grâce à ces dispositions, les ailettes et/ou les canalisations procurent un effet antiviral et/ou antibactérien.
Dans des modes de réalisation, les ailettes sont en accordéon dont les arêtes sont parallèles à la direction du flux d’air principal.
Grâce à ces dispositions, l’échange de chaleur est particulièrement efficace. De plus, l’écoulement de la condensation d’eau sur les ailettes et les canalisations se fait de façon verticale, régulière et optimisée, permettant ainsi une évacuation de l’eau de condensation.
Dans des modes de réalisation, au moins une canalisation comporte des ailettes dont l’écartement entre deux sommets est supérieur à l’écartement entre deux sommets d’ailettes d’au moins une autre canalisation.
Grâce à ces dispositions, la surface d’échange thermique peut différer d’une canalisation à l’autre.
Dans des modes de réalisation, au moins une canalisation comporte des ailettes dont l’écartement entre deux sommets et supérieur ou égal à une fois et demie l’écartement entre deux sommets d’ailettes d’au moins une autre canalisation.
Dans des modes de réalisation, les deux canalisations les plus éloignées dans la direction horizontale perpendiculaire à la direction du flux d’air principal comportent des ailettes dont l’écartement entre deux sommets est supérieur à l’écartement entre deux sommets d’ailettes de chaque autre canalisation. Le plissage aux deux extrémités provoque en effet un meilleur écoulement : les plis sont alors très près voire contre le boîtier, ils n'ont donc pas d'espaces de libre comme les autres plis qui sont entre les tubes aplatis. Un plus grand écartement, c’est- à-dire un plus grand angle entre deux ailettes, ou encore un plus faible nombre d’ailettes connectées aux canalisations extrémales permet de faciliter et/ou forcer l'écoulement de l'eau de condensation. Dans des modes de réalisation, le terminal comporte, de plus, un bac de récupération de l’eau de condensation en bas de l’échangeur de chaleur, ce bac comportant du cuivre.
Ce bac procure ainsi un effet antiviral et/ou antibactérien.
Dans des modes de réalisation, le filtre comporte de l’acier inoxydable et un catalyseur d’oxyde de titane.
Dans des modes de réalisation, le filtre comporte au moins une source de rayonnements ultra-violets.
Grâce à chacune de ces dispositions, le filtre procure un effet antiviral et/ou antibactérien.
Dans des modes de réalisation, le terminal comporte un moyen de détection de la séparation, même partielle, de la face avant, d’une part, et du boîtier, d’autre part, ce moyen de détection commandant l’extinction de la source de rayonnements ultraviolets quand la face avant est séparée, au moins partiellement, du boîtier.
Dans des modes de réalisation, l’entrée d’air du boîtier comporte une grille à lames obliques par rapport à la direction du flux d’air principal.
Grâce à chacune de ces dispositions, une personne placée à côté du terminal ne peut pas voir de source de rayonnements ultra-violets.
Dans des modes de réalisation, le terminal comporte, de plus, en aval de l’échangeur de chaleur, un déflecteur qui oriente une partie au moins du flux d’air sortant de l’échangeur à travers la face avant.
Grâce à ces dispositions, le flux d’air sortant est au moins partiellement orienté de manière oblique ou perpendiculaire par rapport à la face avant du terminal.
Dans des modes de réalisation, chaque ventilateur est en amont de l’échangeur de chaleur.
Les inventeurs ont déterminé que cette configuration réduit le niveau sonore de la ventilation, notamment en évitant la cavitation de chaque ventilateur.
Dans des modes de réalisation, chaque canalisation est connectée à un purgeur d’air positionné à une extrémité de la canalisation selon la direction verticale. BRÈVE DESCRIPTION DES FIGURES
D’autres avantages, buts et caractéristiques particulières de l’invention ressortiront de la description non limitative qui suit d’au moins un mode de réalisation particulier du terminal de climatisation vertical antiviral objet de la présente invention, en regard des dessins annexés, dans lesquels :
- La figure 1 représente, en vue de face, un mode de réalisation particulier du terminal objet de l’invention,
- La figure 2 représente, en vue de côté gauche, le terminal illustré en figure 1 ,
- La figure 3 représente, en vue de côté droit, le terminal illustré en figures 1 et 2,
- La figure 4 représente, en section horizontale, le terminal illustré en figures 1 à 3,
- La figure 5 représente, en section, des extrémités d’un boîtier du terminal illustré en figures 1 à 4,
- La figure 6 représente, en vue de face, le terminal illustré en figures 1 à 5, sans sa face avant,
- La figure 7 représente, en vue de côté partielle, un échangeur de chaleur incorporé au terminal illustré en figures 1 à 6,
- La figure 8 représente, en coupe horizontale partielle, la partie de l’échangeur de chaleur illustrée en figure 7,
- La figure 9 représente, sous forme de logigramme, des étapes de fabrication d’un terminal objet de l’invention,
- La figure 10 représente, en vue de côté partielle, une liaison d’un terminal avec une pompe à chaleur réversible et
- La figure 1 1 représente, en vue de côté partielle, une liaison d’un terminal avec un circuit de fluide caloporteur froid, d’une part, et avec un circuit de fluide caloporteur chaud, d’autre part.
DESCRIPTION DES MODES DE RÉALISATION
La présente description est donnée à titre non limitatif, chaque caractéristique d’un mode de réalisation pouvant être combinée à toute autre caractéristique de tout autre mode de réalisation de manière avantageuse.
On note, dès à présent, que les figures sont, chacune, à l’échelle et que les échelles des différentes figures peuvent être différentes. Dans toute la description, on appelle « supérieur >> ou « haut >> ce qui est en haut ou orienté vers le haut, sur les figures 1 à 3, 6 et 7, figures qui correspondent à la configuration d’utilisation normale du terminal 20. On appelle « inférieur >> ou « bas >> ce qui est en bas ou orienté vers le bas, dans ces figures. Les notions de vertical et horizontal découlent de ces définitions et sont celles de ces figures. On appelle « interne >> ce qui est proche de ou orienté vers le plan vertical central du terminal 20 parallèle à sa face avant, et « externe >> ce qui est proche de la surface périphérique du terminal ou orienté vers cette surface périphérique.
On appelle « avant >> ce qui est représenté en figure 1 , « gauche >> ce qui est représenté en figure 2 et qui est à gauche en figure 1 , « droit >> ce qui est représenté en figure 3 et à droite en figure 1 , et « arrière >> ce qui est représenté en haut en figures 4 et 5, à gauche en figure 2 et à droite en figure 3, et qui est, en utilisation normale du terminal, contre une paroi.
On observe, en figures 1 à 3, un terminal mural 20 de climatisation réversible vertical. Ce terminal 20 comporte un boîtier arrière 21 , dont la plus grande dimension définit une direction verticale. Le boîtier 21 comporte, à gauche, une entrée d’air, ou grille d’entrée d’air, 23 et un panneau de commande 25, et, à droite, une sortie d’air, ou grille de sortie d’air, 24. Le boîtier 21 est surmonté, du côté avant, par une face avant 26 de masquage des éléments du boîtier 21 . La face avant 26 comporte un cadre périphérique 22, une ouverture 27 d’échappement d’air à travers la face avant 26 et un décor central. La direction et le sens du flux d’air principal sont représentés par la flèche 48, un flux d’air secondaire pouvant sortir du terminal 20 à travers la face avant 26.
Bien que, dans le mode de réalisation représenté dans les figures, le flux d’air principal 48 aille de la gauche vers la droite du terminal, dans d’autres modes de réalisation (non représentés), le flux d’air principal va de la droite vers la gauche de ce terminal.
Par exemple, dans le mode de réalisation décrit dans les figures, un déflecteur 46 en aval de l’échangeur de chaleur 32 dévie une partie de l’air sortant de cet échangeur 32 à travers l’ouverture 27 de la face avant 26.
Dans des modes de réalisation, le cadre périphérique 22 comporte au moins une source de lumière (non représentée), par exemple des diodes électroluminescentes (en anglais, light-emitting diode ou LED) ou émettant de la lumière dans le spectre visible. La figure 4 est une section du terminal 20 selon le plan A-A défini en figure 1 . On observe, en figure 4, que le boîtier 21 comporte, de gauche à droite, c’est-à-dire en suivant le flux d’air principal, l’entrée d’air 23, un filtre 30, au moins un ventilateur 31 , un échangeur de chaleur 32 et la sortie d’air 24. L’échangeur de chaleur 32 comporte des ailettes 28, 38 d’axe principal horizontal parallèle à la direction d’écoulement du flux d’air principal. L’échangeur de chaleur comporte aussi des canalisations 36 portant les ailettes 28, 38.
On observe, en figure 5, que l’entrée d’air 23 et la sortie d’air 24 ne sont pas symétriques. L’entrée d’air 23 comporte une grille à lames 44 obliques par rapport à la direction 48 du flux d’air principal. Ces lames obliques 44 interdisent la sortie de rayonnements lumineux directs depuis l’intérieur du boîtier 21 vers la gauche du boîtier 21 . Comme on le décrit en regard de la figure 6, les rayons lumineux ultra-violets, potentiellement nocifs, émis à l’intérieur du boîtier 21 y sont donc confinés.
La sortie d’air 24 comporte des lames 45 parallèles à la direction 48 du flux d’air principal à l’intérieur du boîtier 21. Une telle configuration permet de créer un effet venturi qui dégage l’air vers l’espace à chauffer ou refroidir.
Comme on l’observe en figure 6, à l’intérieur du boîtier 21 , le filtre 30 comporte, préférentiellement, un cadre, par exemple en aluminium, portant une grille 33, comportant de l’acier inoxydable (« inox ») et un catalyseur d’oxyde de titane, et au moins une source 34 de rayonnements ultra-violets illuminant la grille 33. Par exemple, chaque source 34 est une diode électroluminescente émettant dans le spectre ultraviolet. Grâce à ces dispositions, le filtre 30 est antiviral.
Dans le mode de réalisation représenté, treize sources 34 sont représentées. Préférentiellement, le terminal 20 comporte un moyen de détection (non représenté) de la séparation, même partielle, de la face avant 26, d’une part, et du boîtier 21 , d’autre part. Par exemple, ce moyen de détection est un contact électrique ou un interrupteur (non représenté) qui n’est fermé que quand la face avant 26 est positionnée et verrouillée sur le boîtier 21. Ce moyen de détection commande l’extinction de la source de rayonnements ultra-violets quand la face avant 26 est séparée, au moins partiellement, du boîtier 21 .
Dans le mode de réalisation représenté, la grille 33 est en accordéon, avec les arêtes, ou plis, horizontales et perpendiculaires à la direction du flux d’air principal 48 pour éviter des pertes de charge. Le boîtier 21 comporte, ici, treize ventilateurs 31 montés verticalement et perpendiculairement à la direction du flux d’air principal 48, côte à côte sans espace intercalaire. Préférentiellement, les ventilateurs 31 sont de type hélicoïdal à faible vitesse de rotation. Les ventilateurs 31 sont, dans la direction 48 du flux d’air, en amont de l’échangeur 32, ce qui réduit les risques de cavitation et de nuisance sonore.
L’échangeur de chaleur 32 comporte des ailettes 28, 38 et des canalisations verticales 42 se terminant, en haut et en bas par des demi-cercles 36. L’entrée 35 de chaque canalisation 42 est reliée à une sortie d’une source de fluide caloporteur (non représentée), par exemple un échangeur de chaleur ou une chaudière. La sortie 37 de chaque canalisation 42 est reliée à une entrée de cette source de fluide caloporteur.
Préférentiellement, le fluide caloporteur est de l’eau ou de l’eau glycolée, pour des raisons de protection de l’environnement. Ce fluide caloporteur peut aussi être un autre fluide frigorigène.
Le boîtier 21 comporte, de plus, un bac 39 de récupération de l’eau de condensation en bas de l’échangeur de chaleur 32. Ce bac est relié à une sortie d’eau (non représentée) fonctionnant par gravité ou grâce à une pompe. Préférentiellement, le matériau de ce bac 39 comporte du cuivre, voire est du cuivre. Le bac 39 procure ainsi un effet antiviral et/ou antibactérien.
Comme on l’observe en figure 7, vue de côté, et en figure 8, vue en coupe, les canalisations 42 de l’échangeur de chaleur 32 présentent, dans la direction 48 du flux d’air principal, une dimension 49 supérieure à sa dimension 47 dans la direction horizontale perpendiculaire à la direction 48 du flux d’air principal. Préférentiellement, le ratio des dimensions 49 et 47 est compris entre 1 ,5 et 2,5, préférentiellement entre 1 ,75 et 2,5 et, plus préférentiellement, égal à deux.
Des colles thermiques ou, préférentiellement, des soudures métalliques 43 relient thermiquement les canalisations 42 aux ailettes 28, 38.
Grâce à la forme allongée dans la direction 48 du flux d’air principal des canalisations 42, la surface d’échange thermique entre les ailettes 28, 38 et les canalisations 42, ici les soudures 43, est maximisée. De plus, cette forme réduit la résistance fluidique, au passage de l’air en circulation, des canalisations 42 dans la direction d’écoulement de l’air sur les ailettes 28, 38. De plus, cette forme maximise la descente de l’eau condensée le long des canalisations 42. Dans le mode de réalisation représenté, les canalisations 42 présentent une section oblongue. Cette forme des canalisations 42 est produite, par exemple, par écrasement à la presse de canalisations cylindriques à directrices circulaires.
Dans le mode de réalisation représenté, les ailettes 28, 38 sont en accordéon, avec les arêtes parallèles à la direction 48 du flux d’air principal. Préférentiellement, lorsque les ailettes 38 sont positionnées entre deux canalisations, les ailettes 38 sont fixées à chacune des canalisations 42. En d’autres termes, chaque angle de l’accordéon est fixé à une canalisation 42. Préférentiellement, les ailettes 28, 38 comportent du cuivre, voire sont en cuivre. Les ailettes procurent ainsi un effet antiviral et/ou antibactérien. De plus, le cuivre procure un échange thermique optimal.
Dans des modes de réalisation, au moins une canalisation 42 comporte des ailettes 28 dont l’écartement entre deux sommets est supérieur à l’écartement entre deux sommets d’ailettes 38 d’au moins une autre canalisation 42. Préférentiellement, l’écartement entre deux sommets des ailettes 28 est supérieur ou égal à une fois et demie l’écartement entre deux sommets des ailettes 38. Encore plus préférentiellement, l’écartement entre deux sommets des ailettes 28 est égal à deux fois l’écartement entre deux sommets des ailettes 38.
Ainsi, chaque canalisation 42 est refroidie par une même surface d’ailette, que les canalisations soient connectées à des ailettes partagées 38 ou à des ailettes simples 28. On appelle « ailette partagée >> 38, une ailette connectée à deux canalisations 42 et « ailette simple >> 28 une ailette fixée à une unique canalisation 42.
Grâce à ces dispositions, le gradient de température à flux constant est sensiblement le même pour chaque canalisation 42.
Dans des modes de réalisations préférentiels, les deux canalisations 42 les plus éloignées dans la direction horizontale perpendiculaire à la direction du flux d’air principal comportent des ailettes 28 dont l’écartement entre deux sommets est supérieur à l’écartement entre deux sommets d’ailettes 38 de chaque autre canalisation 42. Cette caractéristique est notamment illustrée en figure 7. En d’autres termes, les ailettes simples sont positionnées sur les canalisations 42 extrêmes de l’échangeur de chaleur.
Dans des modes de réalisation non représentés, le terminal objet de l’invention comporte, de plus, un échangeur de chaleur secondaire, en aval de l’échangeur de chaleur 32, qui, comme l’échangeur 32, comporte :
- des ailettes d’axe principal horizontal et - des canalisations portant les ailettes, chaque canalisation présentant, dans la direction du flux d’air principal parcourant les ailettes, une dimension supérieure à sa dimension dans la direction horizontale perpendiculaire à la direction du flux d’air principal.
Dans des modes de réalisation, chaque canalisation 42 est connectée à un purgeur d’air 29 positionné à une extrémité de la canalisation selon la direction verticale. Préférentiellement, plusieurs canalisations 42, alignées selon direction horizontale perpendiculaire à la direction du flux d’air sont connectées, par une canalisation horizontale par exemple, à une extrémité de la canalisation selon la direction verticale configurée pour être en haut lorsque le terminal 20 est installé, le purgeur est installé sur ladite canalisation horizontale. Grâce à ces dispositions, l’air qui peut être présent dans les canalisations remonte vers le purgeur qui peut être ouvert pour laisser s’échapper l’air. La figure 10 représente, en vue de côté partielle, une liaison d’un terminal 20 avec une pompe à chaleur réversible (non représentée). Une canalisation d’entrée 71 transporte le fluide caloporteur de la pompe à chaleur vers le terminal 20 et une canalisation de retour 72 transporte le fluide caloporteur en retour. Une vanne 73 commandée par le panneau de commande 25 peut prendre deux positions. Dans la position ouverte, la vanne 73 oriente le fluide caloporteur provenant de la canalisation 71 vers les canalisations internes 74 du terminal 20. Ces canalisations internes 74 sont reliées entre elles par des ponts 75. Dans la position fermée, la vanne 73 oriente le fluide caloporteur provenant de la canalisation 71 directement vers la canalisation de retour 72.
La figure 1 1 représente, en vue de côté partielle, une liaison d’un terminal 20 avec un circuit 81 et 82 de fluide caloporteur chaud, d’une part, et avec un circuit 84 et 85 de fluide caloporteur froid, d’autre part.
Une canalisation d’entrée 81 transporte le fluide caloporteur chaud vers le terminal 20 et une canalisation de retour 82 transporte le fluide caloporteur en retour. Une vanne 83 commandée par le panneau de commande 25 peut prendre deux positions. Dans la position ouverte, la vanne 83 oriente le fluide caloporteur chaud provenant de la canalisation 81 vers une première partie 87 des canalisations internes du terminal 20. Dans la position fermée, la vanne 83 oriente le fluide caloporteur chaud provenant de la canalisation 81 directement vers la canalisation de retour 82.
Une canalisation d’entrée 84 transporte le fluide caloporteur froid vers le terminal 20 et une canalisation de retour 85 transporte le fluide caloporteur en retour. Une vanne 86 commandée par le panneau de commande 25 peut prendre deux positions. Dans la position ouverte, la vanne 86 oriente le fluide caloporteur froid provenant de la canalisation 84 vers une deuxième partie 88 des canalisations internes du terminal 20. Dans la position fermée, la vanne 86 oriente le fluide caloporteur froid provenant de la canalisation 84 directement vers la canalisation de retour 85.
Bien entendu, les positions des vannes 83 et 86 commandant la circulation de fluide caloporteur dans les différentes ne font pas circuler simultanément le fluide caloporteur chaud et le fluide caloporteur froid dans les canalisations 87 et 88. Le panneau de commande 25 interdit ainsi l’ouverture simultanée des vannes 83 et 86.
Le même terminal 20 peut ainsi diffuser, en fonction de la position ouverte ou fermée des vannes reliées à ces différentes canalisations, de la chaleur ou de la fraîcheur. Cet avantage est particulièrement important dans le cas d’hôtels munis d’un circuit chaud et d’un circuit froid. En effet, dans un tel hôtel, en fonction des sensibilités personnelles, l’occupant d’une chambre peut demander du chauffage pendant que l’occupant d’une autre chambre demande de la climatisation.
Comme illustré en figure 9, un procédé 50 de fabrication d’un terminal 20 comporte une étape 51 d’écrasement et de torsion des canalisations 42. Au cours d’une étape 52, on constitue les ailettes 28, 38 en accordéon, par pliage d’une plaque de cuivre. Au cours d’une étape 53, on soude les ailettes 28, 38 sur les canalisations 42 comme illustré en figure 8. Au cours d’une étape 54, on assemble les connecteurs mécaniques 35 et 37 en extrémité des canalisations 42. Au cours d’une étape 55, on insère les canalisations 42 munies des ailettes 28, 38 et des entrées et sorties 35 et 37 dans un carter d’échangeur de chaleur 32. Au cours d’une étape 56, on assemble les ventilateurs 31 sur le carter, en extrémité des ailettes 28, 38. Au cours d’une étape 57, on assemble les sources 34 de rayonnements ultra-violets et une grille d’acier inoxydable (« inox ») dopée avec un catalyseur d’oxyde de titane, pliée en accordéon, pour former le filtre 30. Au cours d’une étape 58, on monte le filtre 30 et le carter d’échangeur 32 assemblé aux ventilateurs 31 , dans le boîtier 21 . Au cours d’une étape 59, on effectue les branchements électriques et le montage du panneau de commande 25.
Au cours d’une étape 60, on assemble le bac 39 de récupération de l’eau de condensation en bas du boîtier 21. Au cours d’une étape 61 , on met en forme le panneau de face avant 26. Au cours d’une étape 62 optionnelle, on installe des sources de lumière dans la face avant 26. Au cours d’une étape 63, on assemble le décor sur le panneau de face avant 26. Au cours d’une étape 64, on effectue le montage final et le verrouillage de la face avant 26 sur le boîtier 21 .
La mise en oeuvre de la présente invention est d’autant plus écologique, c’est-à- dire avec un faible impact sur l’environnement, que l’eau, éventuellement glycolée, sert de fluide caloporteur dans le terminal. En effet, on diminue ainsi la quantité de fluide frigorigène des installations par pompe à chaleur et le risque de fuite de celles-ci.

Claims

REVENDICATIONS
1. Terminal (20) mural de climatisation réversible vertical, qui comporte :
- un boîtier (21 ), dont la plus grande dimension définit une direction verticale, comportant une entrée d’air (23), au moins un ventilateur (31 ), un échangeur de chaleur (32) et une sortie d’air (24) et
- une face (26) avant de masquage des éléments du boîtier vertical ; caractérisé en ce que l’échangeur de chaleur comporte :
- des ailettes (28, 38) d’axe principal horizontal et
- des canalisations (42) portant les ailettes, chaque canalisation présentant, dans la direction du flux d’air principal parcourant les ailettes, une dimension (49) supérieure à sa dimension (47) dans la direction horizontale perpendiculaire à la direction (48) du flux d’air principal.
2. Terminal (20) selon la revendication 1 , dans lequel les canalisations (42) présentent une section oblongue et sont produites par écrasement à la presse de canalisations cylindriques à directrices circulaires.
3. Terminal (20) selon l’une des revendications 1 ou 2, dans lequel les ailettes (28, 38) et/ou les canalisations (42) comportent du cuivre.
4. Terminal (20) selon l’une des revendications 1 à 3, dans lequel les ailettes (28, 38) sont en accordéon dont les arêtes sont parallèles à la direction (48) du flux d’air principal.
5. Terminal (20) selon la revendication 4, dans lequel au moins une canalisation (42) comporte des ailettes (28) dont l’écartement entre deux sommets est supérieur à l’écartement entre deux sommets d’ailettes (38) d’au moins une autre canalisation (42).
6. Terminal (20) selon la revendication 5, dans lequel au moins une canalisation (42) comporte des ailettes (28) dont l’écartement entre deux sommets et supérieur ou égal à une fois et demie l’écartement entre deux sommets d’ailettes (38) d’au moins une autre canalisation (42).
7. Terminal (20) selon l’une des revendications 5 ou 6, dans lequel les deux canalisations (42) les plus éloignées dans la direction horizontale perpendiculaire à la direction du flux d’air principal comportent des ailettes (28) dont l’écartement entre deux sommets est supérieur à l’écartement entre deux sommets d’ailettes (38) de chaque autre canalisation (42).
8. Terminal (20) selon l’une des revendications 1 à 7, qui comporte, de plus, un bac (39) de récupération de l’eau de condensation en bas de l’échangeur de chaleur (32), ce bac comportant du cuivre.
9. Terminal (20) selon l’une des revendications 1 à 8, dans lequel le filtre (30) comporte de l’acier inoxydable et un catalyseur d’oxyde de titane.
10. Terminal (20) selon l’une des revendications 1 à 9, dans lequel le filtre (30) comporte au moins une source de rayonnements ultra-violets (34).
11 . Terminal (20) selon la revendication 10, qui comporte un moyen de détection de la séparation, même partielle, de la face avant (26), d’une part, et du boîtier (21 ), d’autre part, ce moyen de détection commandant l’extinction de la source de rayonnements ultra-violets quand la face avant est séparée, au moins partiellement, du boîtier.
12. Terminal (20) selon l’une des revendications 1 à 1 1 , dans lequel l’entrée d’air (23) du boîtier (21 ) comporte une grille à lames (44) obliques par rapport à la direction (48) du flux d’air principal.
13. Terminal (20) selon l’une des revendications 1 à 12, qui comporte, de plus, en aval de l’échangeur de chaleur (32), un déflecteur (46) qui oriente une partie au moins du flux d’air sortant de l’échangeur à travers la face avant (26).
14. Terminal (20) selon l’une des revendications 1 à 13, dans lequel chaque ventilateur (31 ) est en amont de l’échangeur de chaleur (32).
15. Terminal (20) selon l’une des revendications 1 à 14, dans lequel chaque canalisation (42) est connectée à un purgeur d’air (29) positionné à une extrémité de la canalisation (42) selon la direction verticale.
PCT/EP2021/080223 2020-11-20 2021-10-29 Terminal mural de climatisation reversible vertical WO2022106181A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP21798726.2A EP4248144A1 (fr) 2020-11-20 2021-10-29 Terminal mural de climatisation reversible vertical

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR2011967A FR3116593B1 (fr) 2020-11-20 2020-11-20 Terminal mural de climatisation réversible vertical antiviral
FRFR2011967 2020-11-20

Publications (1)

Publication Number Publication Date
WO2022106181A1 true WO2022106181A1 (fr) 2022-05-27

Family

ID=74045945

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2021/080223 WO2022106181A1 (fr) 2020-11-20 2021-10-29 Terminal mural de climatisation reversible vertical

Country Status (3)

Country Link
EP (1) EP4248144A1 (fr)
FR (1) FR3116593B1 (fr)
WO (1) WO2022106181A1 (fr)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001053755A1 (fr) 2000-01-20 2001-07-26 Vent-Rite Valve Corporation Dispositif de climatisation modulaire
JP2005156092A (ja) * 2003-11-28 2005-06-16 Fujitsu General Ltd 空気調和機
FR2865406A1 (fr) * 2004-01-22 2005-07-29 Acanthe Diffuseur a effet parietal
US20130240187A1 (en) 2010-12-22 2013-09-19 Sharp Kabushiki Kaisha Heat exchanger and air conditioner equipped with same
WO2014206483A1 (fr) * 2013-06-28 2014-12-31 Electrolux Appliances Aktiebolag Sèche-linge à pompe à chaleur et procédé pour optimiser l'échange de chaleur d'un tel un sèche-linge à pompe à chaleur
CN206113711U (zh) * 2016-10-20 2017-04-19 湘潭县顺业污水处理有限公司 一种热解炉及其换热器
CN211177137U (zh) * 2019-12-20 2020-08-04 孔令营 一种空调专用无动力空净装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001053755A1 (fr) 2000-01-20 2001-07-26 Vent-Rite Valve Corporation Dispositif de climatisation modulaire
JP2005156092A (ja) * 2003-11-28 2005-06-16 Fujitsu General Ltd 空気調和機
FR2865406A1 (fr) * 2004-01-22 2005-07-29 Acanthe Diffuseur a effet parietal
US20130240187A1 (en) 2010-12-22 2013-09-19 Sharp Kabushiki Kaisha Heat exchanger and air conditioner equipped with same
WO2014206483A1 (fr) * 2013-06-28 2014-12-31 Electrolux Appliances Aktiebolag Sèche-linge à pompe à chaleur et procédé pour optimiser l'échange de chaleur d'un tel un sèche-linge à pompe à chaleur
CN206113711U (zh) * 2016-10-20 2017-04-19 湘潭县顺业污水处理有限公司 一种热解炉及其换热器
CN211177137U (zh) * 2019-12-20 2020-08-04 孔令营 一种空调专用无动力空净装置

Also Published As

Publication number Publication date
FR3116593B1 (fr) 2023-02-10
FR3116593A1 (fr) 2022-05-27
EP4248144A1 (fr) 2023-09-27

Similar Documents

Publication Publication Date Title
US10386076B2 (en) Systems and methods for heat recovery
US8852307B2 (en) Filter unit, filtration method and system
EP2446197B1 (fr) Radiateur reversible
EP3537082B1 (fr) Ventilo-convecteur avec echangeur thermique et repartition du debit d'air optimises
FR2896866A1 (fr) Echangeur de chaleur compact a haute temperature,tel qu'un recuperateur
WO2022106181A1 (fr) Terminal mural de climatisation reversible vertical
FR3116600A3 (fr) Terminal mural de climatisation réversible vertical antiviral
FR2991034A1 (fr) Intercalaire pour echangeur thermique et echangeur thermique associe
ES2664417T3 (es) Aparato de calentamiento de agua con conmutador de presión de aire
FR3048489B1 (fr) Systeme de ventilation d'un batiment
EP3061634B1 (fr) Dispositif de chauffage, ventilation et/ou climatisation pour véhicule automobile
FR2513360A1 (fr) Dispositif de chauffage du type forme d'un radiateur a gaz mural, de faible puissance, et a circuit etanche et echangeur thermique a plaques utilise dans celui-ci
FR1465161A (fr) Dispositif servant à installer un appareil à gaz
EP0030183B1 (fr) Corps de chauffe pour chaudières domestiques de chauffage central à eau chaude par le gaz
FR2510245A1 (fr) Echangeurs de chaleur a surfaces d'echange plissee et systemes de prelevement des calories evacuees par les fumees sortant des chambres de combustion
FR3026474B1 (fr) Dispositif de stockage thermique, module d'echange d'energie thermique et installation de climatisation comprenant ledit dispositif
EP2761232B1 (fr) Système d'échange thermique pour conditionner l'air intérieur d'un espace
WO2021123557A1 (fr) Module de refroidissement pour véhicule automobile à turbomachine tangentielle
BE475882A (fr)
BE529635A (fr)
BE475881A (fr)
BE449279A (fr)
FR2539500A1 (fr) Dispositif recuperateur de chaleur a surfaces d'echanges multiples
BE638929A (fr)
BE493374A (fr)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21798726

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021798726

Country of ref document: EP

Effective date: 20230620

WWE Wipo information: entry into national phase

Ref document number: 523450665

Country of ref document: SA