WO2022105941A1 - 一种空调器及其控制方法 - Google Patents

一种空调器及其控制方法 Download PDF

Info

Publication number
WO2022105941A1
WO2022105941A1 PCT/CN2022/071267 CN2022071267W WO2022105941A1 WO 2022105941 A1 WO2022105941 A1 WO 2022105941A1 CN 2022071267 W CN2022071267 W CN 2022071267W WO 2022105941 A1 WO2022105941 A1 WO 2022105941A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
semiconductor refrigeration
refrigeration device
duct
air duct
Prior art date
Application number
PCT/CN2022/071267
Other languages
English (en)
French (fr)
Inventor
张纯
张振富
王若峰
乔光宝
Original Assignee
青岛海尔空调器有限总公司
青岛海尔空调电子有限公司
海尔智家股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔空调器有限总公司, 青岛海尔空调电子有限公司, 海尔智家股份有限公司 filed Critical 青岛海尔空调器有限总公司
Publication of WO2022105941A1 publication Critical patent/WO2022105941A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/009Indoor units, e.g. fan coil units characterised by heating arrangements
    • F24F1/0097Indoor units, e.g. fan coil units characterised by heating arrangements using thermoelectric or thermomagnetic means, e.g. Peltier elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/64Electronic processing using pre-stored data
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/02Ducting arrangements
    • F24F13/06Outlets for directing or distributing air into rooms or spaces, e.g. ceiling air diffuser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/10Temperature
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • the present invention relates to the technical field of air conditioning devices, in particular to an air conditioner and a control method thereof.
  • the air conditioner is generally equipped with a four-way valve. During the conversion of heating and cooling, the effect of the two heat exchangers is switched by changing the path of the refrigerant in the system to achieve heating.
  • the existing air conditioners are generally equipped with heating wires for auxiliary heating, so as to make up for the shortcomings of the air conditioners that the heating speed is slow and is greatly affected by the ambient temperature.
  • the surface temperature of the heating wire is very high, which will volatilize the moisture in the air, making the blown air very dry and affecting the user experience.
  • the risk factor of heating wire is high. The most important thing is that the heating wire needs a certain installation space, and the size of the air conditioner often needs to be increased.
  • the heating wire is generally installed in the air duct, which not only occupies the air duct space, but also affects the air transmission in the air duct when the heating wire is not used. , increase the wind resistance.
  • the purpose of the present invention is to provide an air conditioner and a control method thereof, which solves the technical problems of poor comfort, high risk factor and occupied space of existing air conditioners with overheating wires to solve insufficient heating.
  • the invention provides an air conditioner and a control method thereof:
  • An air conditioner includes a casing, an air inlet and an air outlet located on the casing, and a fan located in the casing, an air inlet duct is formed between the fan and the air inlet, and the fan is connected to the air inlet.
  • An air outlet air duct is formed between the air outlets;
  • a condenser is installed in the air inlet air duct, and also includes:
  • the common air duct wall has an air inlet air duct side and an air outlet air duct side, the air inlet air duct side forms part of the air inlet air duct, and the air outlet air duct side forms part of the air outlet air duct;
  • the semiconductor refrigeration device is located in the installation through hole, the hot end of the semiconductor refrigeration device is used for transferring heat to the air outlet duct, and the cold end of the semiconductor refrigeration device is connected to the condenser.
  • the cold end of the semiconductor refrigeration device is connected to the end of the condenser.
  • a convex shielding portion is provided between the condenser and the fan on the air inlet air duct side of the common air duct wall.
  • the shielding portion is an arc surface.
  • the semiconductor refrigeration device comprises:
  • a mounting seat which is provided with a number of mounting holes
  • a semiconductor refrigeration chip which is installed in the installation hole
  • the cooling fin is installed on the mounting seat, and the cooling fin is connected with the cooling end of the semiconductor refrigeration sheet.
  • ribs are arranged on the heat conducting cover plate.
  • the fins of the cooling fins are in contact with the fins of the condenser.
  • the semiconductor refrigeration device is elongated, and the longitudinal direction of the semiconductor refrigeration device is the same as the longitudinal direction of the condenser.
  • a control method based on the above air conditioner, the method is:
  • the semiconductor refrigeration device When the indoor temperature is greater than or equal to the set temperature - the set value, the semiconductor refrigeration device is turned on, otherwise, the semiconductor refrigeration device is turned off.
  • the above-mentioned control method of an air conditioner when the indoor temperature ⁇ set temperature-set value, the operating power of the semiconductor refrigeration device is controlled according to the relationship between the indoor temperature and the set temperature, and the set temperature and the set temperature are controlled.
  • the difference in the indoor temperature is positively correlated with the operating power.
  • the air conditioner of the present invention comprises a casing, an air inlet and an air outlet located on the casing, and a fan located in the casing, and an air intake is formed between the fan and the air inlet.
  • a condenser is installed in the air inlet air duct;
  • the air conditioner also includes a common air duct wall and a semiconductor refrigeration device, and the common air duct wall has the air inlet air duct side and the air outlet.
  • the air inlet air duct side forms part of the air inlet air duct
  • the air outlet air duct side forms part of the air outlet air duct
  • the common air duct wall is provided with a mounting through hole
  • the semiconductor refrigeration device is located in the installation through hole, and the semiconductor refrigeration device The hot end of the device is used to transfer heat to the outlet air duct, and the cold end of the semiconductor refrigeration device is connected to the condenser.
  • the semiconductor refrigeration device works, the heating capacity is higher than the cooling capacity, and its thermal efficiency is very high.
  • the semiconductor refrigeration device also has the advantages of high energy density, no noise, and small size.
  • the invention utilizes the characteristics of the semiconductor refrigeration device, which is energized, cools and heats the other, embeds the semiconductor refrigeration device in the air duct of the air conditioner, the heating end is used for auxiliary heating in the air conditioning heating mode, and the refrigerating end is attached to the condenser, Through the heat transfer with the condenser, the temperature difference between the two sides of the semiconductor device is maintained, so that it can continue to work stably. Therefore, the present invention has high comfort and low risk. Since the semiconductor refrigeration device is embedded in the air duct, it does not occupy the space in the air duct and does not need to increase the volume of the air conditioner. The most important thing is that the semiconductor refrigeration device does not affect the airflow in the air duct. interference, without wind resistance.
  • the semiconductor refrigerating device when the difference between the set temperature and the indoor temperature is greater than the set value, the semiconductor refrigerating device is turned on, and the heat generated by the semiconductor refrigerating device supplements the heat generated by the air-conditioning refrigerating cycle system, thereby improving the heating comfort.
  • the danger of the present invention is small, because the semiconductor refrigeration device is embedded in the air duct, it does not occupy the space in the air duct, and does not need to increase the volume of the air conditioner. The most important thing is that the semiconductor refrigeration device will not interfere with the airflow in the air duct. Create wind resistance.
  • FIG. 1 is a schematic diagram of a window type air conditioner according to a specific embodiment of the present invention.
  • FIG. 2 is a schematic diagram of FIG. 1B-B.
  • FIG. 3 is an enlarged view of the semiconductor refrigeration device in FIG. 2 .
  • FIG. 4 is an exploded view of a part of an air duct in a window type air conditioner according to a specific embodiment of the present invention.
  • FIG. 5 is a schematic diagram of a semiconductor refrigeration device according to an embodiment of the present invention.
  • FIG. 6 is an exploded view of a semiconductor refrigeration device according to a specific embodiment of the present invention.
  • FIG. 7 and 8 are flowcharts of a method for controlling an air conditioner according to a specific embodiment of the present invention.
  • Air outlet duct
  • the terms “installed”, “connected” and “connected” should be understood in a broad sense, for example, it may be a fixed connection or a It is a detachable connection, or an integral connection; it can be a mechanical connection or an electrical connection; it can be directly connected, or indirectly connected through an intermediate medium, or it can be the internal communication between two components.
  • installed should be understood in a broad sense, for example, it may be a fixed connection or a It is a detachable connection, or an integral connection; it can be a mechanical connection or an electrical connection; it can be directly connected, or indirectly connected through an intermediate medium, or it can be the internal communication between two components.
  • the air conditioner of this embodiment adds a semiconductor refrigeration device on the basis of the existing normal air duct.
  • the normal air duct of the air conditioner includes an air inlet air duct between the fan and the air inlet and an air outlet air duct between the fan and the air outlet.
  • the common air duct wall has the air inlet air duct side and the air outlet air duct side.
  • the air inlet air duct side forms part of the air inlet air duct, and the air outlet Part of the outlet air duct is formed on the side of the air duct, and installation through holes are opened on the wall of the common air duct; the semiconductor refrigeration device is located in the installation through hole, and the hot end of the semiconductor refrigeration device is used to transfer heat to the air outlet air duct.
  • the cold end is connected to the condenser.
  • the semiconductor refrigeration device is embedded in the air duct of the air conditioner, the heating end is used for auxiliary heating in the heating mode of the air conditioner, and the cooling end is attached to the condenser.
  • the cooling capacity generated by the cold end is not enough to offset the heat generated by the hot end, while the cold end is located at the end of the condenser, and the cooling capacity generated by the cooling end is absorbed by the condenser.
  • the heat generated is offset, so the thermal efficiency of the semiconductor refrigeration device is very high, and the effect of air supply when the heating mode is turned on can be achieved.
  • the semiconductor refrigeration device since the semiconductor refrigeration device is embedded in the air duct, it does not occupy the space in the air duct and does not need to increase the volume of the air conditioner. Most importantly, the semiconductor refrigeration device does not interfere with the airflow in the air duct and does not generate wind resistance.
  • the air conditioner as a window type air conditioner as an example.
  • the type of the air conditioner is not limited to a window type air conditioner.
  • the air conditioner can also be a vertical type air conditioner, a wall-mounted air conditioner, etc.
  • the solution of installing the semiconductor refrigeration device on the duct wall and installing the semiconductor refrigeration device on the common air duct wall is within the protection scope of the present invention.
  • the window air duct integrates a semiconductor module, and the window air duct itself is used as the sealing support structure of the semiconductor module, and the semiconductor module is used as a part of the air duct structure to simplify the structure of the window air conditioner.
  • the semiconductor refrigeration device uses the characteristics of the semiconductor refrigeration sheet, when the heating function of the air conditioner is enabled, the fan and the semiconductor refrigeration device work at the same time, and the semiconductor refrigeration device assists in heating, improving the heating efficiency of the air conditioner and improving the user experience. Optimize the heating function of the air conditioner without increasing the size of the air conditioner.
  • An air conditioner includes a casing 1 , an air inlet 11 and an air outlet 12 located on the casing 1 , a fan 14 located in the casing 1 , a heat exchanger 13 and a semiconductor refrigeration device 2 . Since the semiconductor refrigeration device 2 in this embodiment is mainly used in the heating mode of the air conditioner, in the heating mode of the air conditioner, the heat exchanger 13 is the condenser 13 , therefore, the heat exchanger 13 in this embodiment is the condenser 13 Be explained.
  • the air inlet 11 and the air outlet 12 in this embodiment are both located on the front panel of the housing 1, and the air inlet 11 is located below the air outlet 12.
  • the positions of the air inlet 11 and the air outlet 12 can be adjusted according to requirements. Not limited.
  • an air inlet duct 15 is formed between the fan 14 and the air inlet 11
  • an outlet air duct 16 is formed between the fan 14 and the air outlet 12
  • the air inlet duct 15 is provided with a condenser 13 .
  • the air inlet duct 15 is located below the air outlet duct 16
  • the fan 14 is located behind the condenser 13 .
  • a common air duct wall 156 is provided in the housing 1 , and the common air duct wall 156 is located between the air inlet air duct 15 and the air outlet air duct 16 .
  • the common air duct wall 156 has an air inlet air duct side 1561 and an air outlet air duct side 1562, the air inlet air duct side 1561 forms part of the air inlet air duct 15, and the air outlet air duct side 1562 forms part of the air outlet air duct 16.
  • the upper surface of the common air duct wall 156 is the air outlet air duct side 1562
  • the lower surface is the air inlet air duct side 1561 .
  • An installation through hole 1563 is opened on the common air duct wall 156 , and the installation through hole 1563 is used for installing the semiconductor refrigeration device 2 .
  • the semiconductor refrigeration device 2 is located in the installation through hole 1563 .
  • the hot end of the semiconductor refrigeration device 1563 is used to transfer heat to the air outlet duct 16 , and the cold end of the semiconductor refrigeration device 2 is connected to the condenser 13 .
  • the hot end of the semiconductor refrigeration device 2 is connected to the air outlet duct side 1562, and the shape of the hot end of the semiconductor refrigeration device 2 is adapted to the shape of the air outlet air duct side 1562, so as to ensure the The air outlet is smooth, so as to prevent the semiconductor refrigeration device 2 from adversely affecting the air outlet of the air conditioner.
  • the installation through holes 1563 in this embodiment are adapted to the length of the condenser 13 or slightly smaller than The length of the condenser 13 is elongated, and the installation through holes 1563 are located in the rectangle of the condenser 13 .
  • the cold end of the semiconductor refrigeration device 2 is connected to the end of the condenser 13, so that the cold energy generated by the cold end of the semiconductor refrigeration device 2 is directly neutralized and offset by the condenser 13, so as to minimize the generation of the cold end of the semiconductor refrigeration device 2.
  • the cold energy is brought into the air duct.
  • the air flow generated by the fan 14 may take away part of the cooling capacity generated by the cold end of the semiconductor refrigeration device 2 during the operation, in order to further reduce the influence of the cooling capacity generated by the cold end of the semiconductor refrigeration device 2 on the airflow in the air duct , there is a raised shielding portion 1564 between the condenser 13 and the fan 14 on the air inlet air duct side 1561 of the common air duct wall 156 .
  • the airflow generated by the operation of the fan 14 will not directly suck the cooling capacity generated by the cold end of the semiconductor refrigeration device 2 into the fan 14, and the cooling capacity generated by the cold end of the semiconductor refrigeration device 2 is under the action of the fan 14.
  • the shielding portion 1564 is an arc surface, which is beneficial to the flow of air and minimizes wind resistance and noise.
  • the side 1561 of the air inlet air duct gradually protrudes toward the bottom direction of the housing 1 .
  • the shielding portion 1564 is adapted to the length of the installation through hole 1563 or slightly larger than the length of the installation through hole 1563 .
  • the key to this embodiment is the semiconductor refrigeration device 2 and its assembly with the air duct.
  • the semiconductor refrigeration device 2 will be described below with reference to FIGS. 5 and 6 .
  • the semiconductor refrigeration device 2 is elongated, and the longitudinal direction of the semiconductor refrigeration device 2 is the same as the longitudinal direction of the condenser 13 .
  • the semiconductor refrigeration device 2 includes a mounting seat 21 , a semiconductor refrigeration sheet 22 , a heat conduction cover plate 23 and a heat sink 24 .
  • the mounting seat 21 is used to mount the semiconductor refrigeration chip 22 , the mounting seat 21 is a long strip, and the size of the mounting seat 21 is adapted to the mounting through hole 1563 .
  • the mounting seat 21 is provided with a plurality of mounting holes 211 , the mounting holes 211 are through holes, and the semiconductor refrigeration chips 22 are mounted in the mounting holes 211 .
  • a plurality of semiconductor cooling chips 22 are installed in the mounting holes 221 , and the semiconductor cooling chips 22 have cooling ends and heating ends.
  • the number of the semiconductor cooling chips 22 is the same as the number of the mounting holes 221 , and the semiconductor cooling chips 22 are generally fixed in the mounting holes 221 by thermally conductive adhesive.
  • the cooling ends of all semiconductor refrigeration chips 22 are located on the first side of the mounting seat 21 , and the heating ends of all semiconductor cooling chips 22 are located on the second side of the mounting seat 21 , wherein the first side is opposite to the second side.
  • the heat conducting cover plate 23 is assembled with the mounting seat 21 , the size of the heat conducting cover plate 23 is slightly larger than that of the mounting seat 21 , and the part of the heat conducting cover plate 23 larger than the mounting seat 21 is assembled with the outlet air duct side 1562 of the common air duct wall 156 .
  • thermally conductive cover plate 23 is generally assembled with the mounting seat 21 through thermally conductive glue and/or screws.
  • the thermally conductive cover plate 23 is generally assembled with the air outlet duct side 1562 by thermally conductive glue and/or screws.
  • the heat-conducting cover plate 23 is connected to the heating end of the semiconductor refrigeration sheet 22 , and the shape of the outer side of the heat-conducting cover plate 23 is adapted to the shape of the air outlet duct side 1562 of the common air duct wall 156 , so as to reduce the output of the semiconductor refrigeration device 2 .
  • the influence of wind duct is not limited to the shape of wind duct.
  • a groove for accommodating the heat conduction cover plate 23 is provided on the air outlet air duct side 1562, and the heat conduction cover plate 23 is embedded in the groove.
  • Ribs 231 are provided on the heat-conducting cover plate 23. On the one hand, the ribs 231 strengthen the strength of the heat-conducting cover plate 23, and on the other hand, increase the amount of heat dissipation.
  • the thermally conductive cover plate 23 finally forms the hot end of the semiconductor refrigeration device 2 .
  • the heat sink 24 is installed on the mounting seat 21, and the heat sink 24 is connected to the cooling end of the semiconductor refrigeration sheet 22, and is used to quickly dissipate the cooling energy generated by the cooling end of the semiconductor refrigeration sheet 22, so as to ensure the normal operation of the semiconductor refrigeration sheet 22. .
  • the heat sink 24 includes a flat heat-conducting plate and several fins arranged on the heat-conducting plate.
  • the heat-conducting plate is connected to the cooling end of the conductor cooling fin 22. sheets are in contact.
  • the fins of the radiating fins 24 are arranged to intersect with the fins of the condenser.
  • the heat sink 24 is generally mounted on the mounting base 21 by thermally conductive glue and/or screws.
  • the heat sink 24 finally forms the cold end of the semiconductor refrigeration device 2 .
  • the semiconductor refrigeration device 2 When the heat of the air conditioner is insufficient, the semiconductor refrigeration device 2 is activated, and the hot end of the semiconductor refrigeration device 2 generates heat into the air outlet duct 16 and out of the casing 1 through the air outlet 12 to supplement the heat of the air conditioner.
  • the cooling capacity generated by the cold end of the semiconductor refrigeration device 2 is offset by the heat generated by the condenser 13. Since the heat generation of the semiconductor refrigeration device 2 is greater than the cooling capacity, the semiconductor refrigeration device 2 in this embodiment can still supplement the heat of the air conditioner. insufficient.
  • This embodiment also proposes a control method for the air conditioner, the method is as follows:
  • the semiconductor refrigeration device When the indoor temperature Tr ⁇ the set temperature Ts-set value, the semiconductor refrigeration device is turned on, otherwise, the conductor refrigeration device is turned off.
  • the heating capacity of the semiconductor refrigeration device is matched with the heating demand. Specifically, when the indoor temperature Tr ⁇ the set temperature Ts - the set value, the semiconductor refrigeration is controlled according to the relationship between the indoor temperature and the set temperature. The operating power of the device, the difference between the set temperature Ts and the indoor temperature Tr is positively related to the operating power.
  • the entire control process of the air conditioner is as follows:
  • the indoor temperature Tr is detected, and the user-set temperature Ts is obtained.
  • the fan runs at high wind
  • the air conditioner compressor runs at high frequency (55-70 HZ) for heating
  • the semiconductor group module is turned on;
  • the fan runs in mid-air, the air-conditioning compressor turns to intermediate frequency (40 - 50 HZ), and the semiconductor group module is turned off;
  • the second set temperature ⁇ the first set temperature
  • control method includes the following steps:
  • step S3 It is judged that the indoor temperature Tr ⁇ the set temperature Ts-the first set temperature, if yes, go to step S4, otherwise, go to step S5.
  • the fan runs at high wind
  • the air conditioner compressor runs at high frequency (55-70 HZ) for heating
  • the semiconductor group module is turned on.
  • step S5 When it is judged that the indoor temperature Tr ⁇ the set temperature Ts-the second set temperature, if yes, go to step S6, otherwise, go to step S7.
  • the fan runs in mid-air, the air-conditioning compressor is switched to intermediate frequency (40 - 50 HZ), and the semiconductor group module is turned off.
  • This embodiment is also provided with a silent heating mode
  • the indoor temperature Tr is detected, and the user-set temperature Ts is obtained.
  • the fan runs in mid-air, the compressor operates at low frequency for heating (25-38 HZ), and the auxiliary heating of the semiconductor group module is turned on;
  • the fan runs with low wind
  • the compressor runs at low frequency for heating (25-38 HZ)
  • the semiconductor group module continues to assist heat
  • the second set temperature ⁇ the first set temperature
  • control method includes the following steps:
  • step S3 It is judged that the indoor temperature Tr ⁇ the set temperature Ts-the first set temperature, if yes, go to step S4, otherwise, go to step S5.
  • the fan runs in mid-air, the compressor runs at low frequency for heating (25-38 HZ), and the auxiliary heating of the semiconductor group module is turned on.
  • step S5 It is judged that when the indoor temperature Tr ⁇ set temperature Ts-second set temperature, if yes, go to step S6, otherwise, go to step S7.
  • the fan runs at low wind
  • the compressor runs at low frequency for heating (25-38 HZ)
  • the semiconductor group module continues to assist heat.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Air Conditioning Control Device (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

本发明提供了一种空调器及其控制方法,空调器包括壳体、位于壳体上的进风口和出风口、位于壳体内的风机,风机与进风口之间形成进风风道,风机与出风口之间形成出风风道;进风风道内安装有冷凝器;还包括共用风道壁和半导体制冷装置,共用风道壁具有进风风道侧和出风风道侧,进风风道侧形成部分进风风道,出风风道侧形成部分出风风道;共用风道壁上开设有安装通孔;半导体制冷装置位于安装通孔内,半导体制冷装置的热端用于向出风风道传递热量,半导体制冷装置的冷端与冷凝器连接。本发明半导体制冷装置嵌装在风道中,不占用风道内空间,无需增加空调体积,不会对风道内的气流流动产生干扰,不会产生风阻。

Description

一种空调器及其控制方法 技术领域
本发明涉及一种空气调节装置技术领域,特别涉及一种空调器及其控制方法。
背景技术
随着经济的发展,空调已经成为人们日常生活中必不可少的家用电器。
空调一般设有四通阀,在制热制冷转换时,通过改变系统中的冷媒走向路径,切换两个换热器的功效,实现制热。
在空调使用时,制热模式下往往存在制热量不足的情形,尤其是开机状态,由于冷凝器制热量无法满足需求,为了避免风机运行出冷风,导致用户舒适度较差,一般开机几分钟内,风机不运行,导致用户体验度较差。
为了解决上述问题,现有的空调上一般配有加热丝进行辅助制热,以弥补空调制热速度较慢、受环境温度影响较大的缺陷。但是,加热丝的表面温度很高,会挥发掉空气中的水分,使吹出的空气很干,影响用户体验。另外,加热丝的危险系数较高。最为重要的是,加热丝需要一定的安装空间,往往需要增加空调的尺寸,而且加热丝一般安装在风道内,不仅占用风道空间,而且在无需使用加热丝的情况会影响风道内风的传输,增加风阻。
本背景技术所公开的上述信息仅仅用于增加对本申请背景技术的理解,因此,其可能包括不构成本领域普通技术人员已知的现有技术。
技术问题
本发明的目的是要提供一种空调器及其控制方法,解决了现有空调器同哦过加热丝解决制热不足存在的舒适性差、危险系数高和占用空间的技术问题。
技术解决方案
本发明提供了一种空调器及其控制方法:
一种空调器,包括壳体、位于所述壳体上的进风口和出风口、位于所述壳体内的风机,所述风机与所述进风口之间形成进风风道,所述风机与所述出风口之间形成出风风道;所述进风风道内安装有冷凝器,还包括:
共用风道壁,其具有进风风道侧和出风风道侧,所述进风风道侧形成部分进风风道,所述出风风道侧形成部分出风风道;
安装通孔,其位于所述共用风道壁上;
半导体制冷装置,其位于所述安装通孔内,所述半导体制冷装置的热端用于向所述出风风道传递热量,所述半导体制冷装置的冷端与所述冷凝器连接。
如上所述的空调器,所述半导体制冷装置的冷端与所述冷凝器的端部连接。
如上所述的空调器,所述共用风道壁的进风风道侧上所述冷凝器与所述风机之间具有凸起的遮挡部。
如上所述的壁挂式空调室内机的送风机构,所述遮挡部为弧面。
如上所述的空调器,所述半导体制冷装置包括:
安装座,其上设置有若干安装孔;
半导体制冷片,其安装于所述安装孔内;
导热盖板,其与所述安装座装配,所述导热盖板与所述半导体制冷片的制热端相接,所述导热盖板外侧的形状与所述共用风道壁的出风风道侧形状相适配
散热片,其安装在所述安装座上,所述散热片与所述半导体制冷片的制冷端相接。
如上所述的空调器,所述导热盖板上设置有凸筋。
如上所述的空调器,所述散热片的翅片与所述冷凝器的翅片相接。
如上所述的空调器,所述半导体制冷装置为长条形,所述半导体制冷装置的长度方向与所述冷凝器的长度方向相同。
一种基于上述的空调器的控制方法,所述方法为:
接收制热信号和设定温度;
检测室内温度;
在所述室内温度≥设定温度-设定值时,开启所述半导体制冷装置,否则,关闭所述半导体制冷装置。
如上所述的空调器的控制方法,在所述室内温度≥设定温度-设定值时,根据室内温度和设定温度的关系控制所述半导体制冷装置的运行功率,所述设定温度和所述室内温度的差值与所述运行功率正相关。
有益效果
与现有技术相比,本发明的优点和积极效果是:本发明空调器包括壳体、位于壳体上的进风口和出风口、位于壳体内的风机,风机与进风口之间形成进风风道,风机与出风口之间形成出风风道;进风风道内安装有冷凝器;空调器还包括共用风道壁和半导体制冷装置,共用风道壁具有进风风道侧和出风风道侧,进风风道侧形成部分进风风道,出风风道侧形成部分出风风道;共用风道壁上开设有安装通孔;半导体制冷装置位于安装通孔内,半导体制冷装置的热端用于向出风风道传递热量,半导体制冷装置的冷端与冷凝器连接。半导体制冷装置工作时制热量高于制冷量,其热效率很高,半导体制冷装置还拥有能量密度高、无噪音、体积小等优点。本发明通过利用半导体制冷装置通电后一面制冷一面制热的特性,将半导体制冷装置嵌入在空调风道中,制热端用于空调制热模式下辅助制热,制冷端与冷凝器相贴合,通过与冷凝器的传热,维持半导体装置的两面温差,使其持续稳定工作。因而,本发明舒适性高,危险性小,由于半导体制冷装置嵌装在风道中,不占用风道内空间,无需增加空调体积,最为重要的是,半导体制冷装置不会对风道内的气流流动产生干扰,不会产生风阻。
本发明空调器的控制方法在设定温度和室内温度的差值大于设定值时,开启半导体制冷装置,通过半导体制冷装置产生的热量补充空调制冷循环系统产生的热量,提高制热舒适性,并且本发明的危险性小,由于半导体制冷装置嵌装在风道中,不占用风道内空间,无需增加空调体积,最为重要的是,半导体制冷装置不会对风道内的气流流动产生干扰,不会产生风阻。
结合附图阅读本发明的具体实施方式后,本发明的其他特点和优点将变得更加清楚。
附图说明
图1是本发明具体实施例窗式空调的示意图。
图2是图1B-B向的示意图。
图3是图2中半导体制冷装置处的放大图。
图4是本发明具体实施例窗式空调室内部分风道的分解图。
图5是本发明实施例半导体制冷装置的示意图。
图6是本发明具体实施例半导体制冷装置的分解图。
图7、8是本发明具体实施例空调器控制方法的流程图。
图中,
1、壳体;
11、进风口;
12、出风口;
13、换热器/冷凝器;
14、风机;
15、进风风道;
16、出风风道;
156、共用风道壁;
1561、进风风道侧;
1562、出风风道侧;
1563、安装通孔;
1564、遮挡部;
2、半导体制冷装置;
21、安装座;
211、安装孔;
22、半导体制冷片;
23、导热盖板;
231、凸筋;
24、散热片。
本发明的最佳实施方式
下面参照附图来描述本发明的优选实施方式。本领域技术人员应当理解的是,这些实施方式仅仅用于解释本发明的技术原理,并非旨在限制本发明的保护范围。
需要说明的是,在本发明的描述中,术语“中心”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“内”、“外”等指示的方向或位置关系的术语是基于附图所示的方向或位置关系,这仅仅是为了便于描述,而不是指示或暗示所述装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一”、“第二”、“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性。
此外,还需要说明的是,在本发明的描述中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域技术人员而言,可根据具体情况理解上述术语在本发明中的具体含义。
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述。
本实施例空调器在现有正常风道的基础上,增加半导体制冷装置,空调器的正常风道包括风机与进风口之间的进风风道和风机与出风口之间的出风风道,进风风道和出风风道之间具有一个共用风道壁,共用风道壁具有进风风道侧和出风风道侧,进风风道侧形成部分进风风道,出风风道侧形成部分出风风道,共用风道壁上开设有安装通孔;半导体制冷装置位于安装通孔内,半导体制冷装置的热端用于向出风风道传递热量,半导体制冷装置的冷端与冷凝器连接。将半导体制冷装置嵌入在空调风道中,制热端用于空调制热模式下辅助制热,制冷端与冷凝器相贴合,通过与冷凝器的传热,维持半导体装置的两面温差,使其持续稳定工作,由于半导体制冷装置工作时制热量高于制冷量,冷端产生的冷量不足以抵消热端产生的热量,而冷端位于冷凝器的端部,其产生的冷量被冷凝器产生的热量所抵消,因而,半导体制冷装置的热效率很高,可以达到制热模式开机即送风的效果。本实施例由于半导体制冷装置嵌装在风道中,不占用风道内空间,无需增加空调体积,最为重要的是,半导体制冷装置不会对风道内的气流流动产生干扰,不会产生风阻。
本实施例以空调器为窗式空调器为例进行说明,当然,空调器的类型并不限定在窗式空调,例如,空调器还可以是立式空调、壁挂式空调等,凡是具有共同风道壁并在共同风道壁上安装半导体制冷装置的方案,均在本发明的保护范围之内。
本实施例窗式空调风道集成了半导体模块,利用窗机空调风道本身作为半导体模块的密封支撑结构,将半导体模块作为风道结构的一部分,简化窗机空调的结构。同时,利用半导体制冷片的特性,在空调制热功能启用时,风机和半导体制冷装置同时工作,半导体制冷装置辅助制热,提升空调制热效率,提升用户体验。在不额外增加空调尺寸的情况下,优化空调制热功能。
下面结合附图1-6对空调器进行具体说明:
一种空调器,包括壳体1、位于壳体1上的进风口11和出风口12、位于壳体1内的风机14、换热器13和半导体制冷装置2。由于本实施例的半导体制冷装置2主要用于空调器制热模式时使用,空调器制热模式时,换热器13为冷凝器13,因而,本实施例的换热器13以冷凝器13进行说明。
本实施例的进风口11和出风口12均位于壳体1的前面板上,进风口11位于出风口12的下方,当然,进风口11和出风口12的位置可根据需求进行调整,本发明不做限定。
其中,在风机14与进风口11之间形成进风风道15,风机14与出风口12之间形成出风风道16;进风风道15内安装有冷凝器13。在风机14启动时,壳体1外的空气从进风口11进入进风风道15与冷凝器13进行热交换后,经过风机14、经过出风风道16后,从出风口13排出壳体1。
具体的,在本实施例中,进风风道15位于出风风道16的下方,风机14位于冷凝器13的后方。
在壳体1内设置共用风道壁156,共用风道壁156位于进风风道15和出风风道16之间。共用风道壁156具有进风风道侧1561和出风风道侧1562,进风风道侧1561形成部分进风风道15,出风风道侧1562形成部分出风风道16。
具体的,在本实施例中,共用风道壁156的上表面为出风风道侧1562,下表面为进风风道侧1561。
在共用风道壁156上开设有安装通孔1563,安装通孔1563用于安装半导体制冷装置2。
半导体制冷装置2位于安装通孔1563内,半导体制冷装置1563的热端用于向出风风道16传递热量,半导体制冷装置2的冷端与冷凝器13连接。一般的,半导体制冷装置2的热端与出风风道侧1562相接,且半导体制冷装置2的热端的形状与出风风道侧1562的形状相适配,以保证出风风道16的出风顺畅,避免半导体制冷装置2对空调出风产生不利影响。
为了尽量多的安装半导体制冷片,以提高制热量,并且能够最大程度的保证半导体制冷装置2的冷端的散热,本实施例的安装通孔1563为与冷凝器13的长度相适配或略小于冷凝器13的长度的长条形,安装通孔1563位于冷凝器13的长方。
半导体制冷装置2的冷端与冷凝器13的端部连接,以使得半导体制冷装置2的冷端产生的冷量直接被冷凝器13所中和抵消,尽量减小半导体制冷装置2的冷端产生的冷量被带入风道。
由于风机14在运行的过程中,产生的气流有可能带走部分半导体制冷装置2的冷端产生的冷量,为了进一步减小半导体制冷装置2的冷端产生的冷量对风道气流的影响,在共用风道壁156的进风风道侧1561上冷凝器13与风机14之间具有凸起的遮挡部1564。
由于该遮挡部1564的存在,风机14运行产生的气流不会直接将半导体制冷装置2的冷端产生的冷量吸入风机14,半导体制冷装置2的冷端产生的冷量在风机14的作用下,首先需要经过冷凝器13的端部,由于冷凝器13产生热量,因而,半导体制冷装置2的冷端产生的冷量在经过冷凝器13的端部的时候被冷凝器13产生热量所中和抵消,因而,本实施例半导体制冷装置2的冷端产生的冷量不会进入出风风道16,也即不会从出风口12送出,保证空调制热的舒适性。
优选的,遮挡部1564为弧面,有利于空气的流动,尽量减小风阻和噪音。在本实施例中,在进风风道15的进风方向上,进风风道侧1561逐渐向壳体1的底部方向凸出。
其中,遮挡部1564与安装通孔1563的长度相适配或者略大于安装通孔1563的长度。
本实施例的关键在于半导体制冷装置2及其与风道的装配,下面结合图5、6说明半导体制冷装置2。
半导体制冷装置2为长条形,半导体制冷装置2的长度方向与冷凝器13的长度方向相同。
半导体制冷装置2包括安装座21、半导体制冷片22、导热盖板23和散热片24。
安装座21用于安装半导体制冷片22,安装座21为长条状,安装座21的大小与安装通孔1563相适配。
在安装座21上设置有若干安装孔211,安装孔211为通孔,安装孔211内安装有半导体制冷片22。
若干半导体制冷片22安装于安装孔221内,半导体制冷片22具有制冷端和制热端。
半导体制冷片22的数量与安装孔221的数量相同,半导体制冷片22一般通过导热胶固定在安装孔221内。
所有半导体制冷片22的制冷端位于安装座21的第一侧面上,所有半导体制冷片22的制热端位于安装座21的第二侧面上,其中,第一侧面与第二侧面相对。
导热盖板23与安装座21装配,导热盖板23的大小略大于安装座21,导热盖板23大于安装座21的部分与共用风道壁156的出风风道侧1562装配。
其中,导热盖板23一般通过导热胶和/或螺钉与安装座21装配。
导热盖板23一般通过导热胶和/或螺钉与出风风道侧1562装配。
导热盖板23与半导体制冷片22的制热端相接,导热盖板23外侧的形状与共用风道壁156的出风风道侧1562形状相适配,以减小半导体制冷装置2对出风风道的影响。
为了使导热盖板23与出风风道侧1562完美适配,在出风风道侧1562上设置有容纳导热盖板23的凹槽,导热盖板23嵌装在凹槽内。
在导热盖板23上设置有凸筋231,凸筋231一方面加强了导热盖板23的强度,另一方面,增加了散热量。
导热盖板23最终形成了半导体制冷装置2的热端。
散热片24安装在安装座21上,散热片24与半导体制冷片22的制冷端相接,用于快速散出将半导体制冷片22的制冷端产生的冷量,保证半导体制冷片22的正常工作。
散热片24包括一个平板状的导热板和设置在导热板上的若干翅片,导热板与导体制冷片22的制冷端相接,导热板安装在安装座21上,翅片与冷凝器的翅片相接触。
优选的,散热片24的翅片与冷凝器的翅片交叉设置。
散热片24一般通过导热胶和/或螺钉安装在安装座21上。
散热片24最终形成了半导体制冷装置2的冷端。
在空调器热量不足时,启动半导体制冷装置2,半导体制冷装置2的热端产生热量进入出风风道16并通过出风口12排出壳体1,以补充空调器的热量。半导体制冷装置2的冷端产生的冷量被冷凝器13产生的热量所抵消,由于半导体半导体制冷装置2的产热量大于冷量,因而,本实施例的半导体制冷装置2仍然能够补充空调器热量不足。
本实施例还提出了一种空调器的控制方法,方法为:
接收制热信号和设定温度Ts;
检测室内温度Tr;
在室内温度Tr≥设定温度Ts-设定值时,开启半导体制冷装置,否则,关闭导体制冷装置。
为了进一步提高舒适性,将半导体制冷装置的制热量与制热需求相匹配,具体的,在室内温度Tr≥设定温度Ts-设定值时,根据室内温度和设定温度的关系控制半导体制冷装置的运行功率,设定温度Ts和室内温度Tr的差值与运行功率正相关。
具体的,对空调的整个控制过程如下:
正常制热模式时,检测室内温度Tr, 获取用户设定温度Ts。
当室内温度Tr≥设定温度Ts-第一设定温度,风机高风运行,空调压机高频(55 -70 HZ)运行制热,开启半导体组模块;
当室内温度Tr≥设定温度Ts-第二设定温度时,风机中风运行,空调压机转为中频(40 - 50 HZ),关闭半导体组模块;
当室内温度Tr<设定温度Ts-第二设定温度时,风机低风运行,压机停机。
其中,第二设定温度<第一设定温度。
如图7所示,控制方法包括如下步骤:
S1、接收制热模式信号。
S2、检测室内温度Tr, 获取用户设定温度Ts。
S3、判断室内温度Tr≥设定温度Ts-第一设定温度,若是,进入步骤S4、否则,进入步骤S5。
S4、风机高风运行,空调压机高频(55 -70 HZ)运行制热,开启半导体组模块。
S5、判断室内温度Tr≥设定温度Ts-第二设定温度时,若是,进入步骤S6,否则,进入步骤S7。
S6、风机中风运行,空调压机转为中频(40 - 50 HZ),关闭半导体组模块。
S7、室内温度Tr<设定温度Ts-第二设定温度时,风机低风运行,压机停机。
本实施例还设置有静音制热模式,
静音制热模式时,检测室内温度Tr, 获取用户设定温度Ts。
当室内温度Tr≥设定温度Ts-第一设定温度,风机中风运行,压机低频运行制热(25 -38 HZ ),开启半导体组模块辅热;
当室内温度Tr≥设定温度Ts-第二设定温度时,风机低风运行,压机低频运行制热(25 -38 HZ),半导体组模块继续辅热;
当室内温度Tr<设定温度Ts-第二设定温度时,风机低风运行,压机停机,半导体辅热模块停止工作。
其中,第二设定温度<第一设定温度。
如图8所示,控制方法包括如下步骤:
S1、接收静音制热模式信号。
S2、检测室内温度Tr, 获取用户设定温度Ts。
S3、判断室内温度Tr≥设定温度Ts-第一设定温度,若是,进入步骤S4、否则,进入步骤S5。
S4、风机中风运行,压机低频运行制热(25 -38 HZ ),开启半导体组模块辅热。
S5、判断当室内温度Tr≥设定温度Ts-第二设定温度时,若是,进入步骤S6,否则,进入步骤S7。
S6、风机低风运行,压机低频运行制热(25 -38 HZ),半导体组模块继续辅热。
S7、室内温度Tr<设定温度Ts-第二设定温度时,风机低风运行,压机停机,半导体辅热模块停止工作。
以上所述,仅是本发明的较佳实施例而已,并非是对本发明作其它形式的限制,任何熟悉本专业的技术人员可能利用上述揭示的技术内容加以变更或改型为等同变化的等效实施例。但是凡是未脱离本发明技术方案内容,依据本发明的技术实质对以上实施例所作的任何简单修改、等同变化与改型,仍属于本发明技术方案的保护范围。

Claims (10)

  1. 一种空调器,包括壳体、位于所述壳体上的进风口和出风口、位于所述壳体内的风机,所述风机与所述进风口之间形成进风风道,所述风机与所述出风口之间形成出风风道;所述进风风道内安装有冷凝器,其特征在于,还包括:
    共用风道壁,其具有进风风道侧和出风风道侧,所述进风风道侧形成部分进风风道,所述出风风道侧形成部分出风风道;
    安装通孔,其位于所述共用风道壁上;
    半导体制冷装置,其位于所述安装通孔内,所述半导体制冷装置的热端用于向所述出风风道传递热量,所述半导体制冷装置的冷端与所述冷凝器连接。
  2. 根据权利要求1所述的空调器,其特征在于,所述半导体制冷装置的冷端与所述冷凝器的端部连接。
  3. 根据权利要求1所述的空调器,其特征在于,所述共用风道壁的进风风道侧上所述冷凝器与所述风机之间具有凸起的遮挡部。
  4. 根据权利要求3所述的壁挂式空调室内机的送风机构,其特征在于,所述遮挡部为弧面。
  5. 根据权利要求1-4任意一项所述的空调器,其特征在于,所述半导体制冷装置包括:
    安装座,其上设置有若干安装孔;
    半导体制冷片,其安装于所述安装孔内;
    导热盖板,其与所述安装座装配,所述导热盖板与所述半导体制冷片的制热端相接,所述导热盖板外侧的形状与所述共用风道壁的出风风道侧形状相适配
    散热片,其安装在所述安装座上,所述散热片与所述半导体制冷片的制冷端相接。
  6. 根据权利要求5所述的空调器,其特征在于,所述导热盖板上设置有凸筋。
  7. 根据权利要求5所述的空调器,其特征在于,所述散热片的翅片与所述冷凝器的翅片相接。
  8. 根据权利要求5所述的空调器,其特征在于,所述半导体制冷装置为长条形,所述半导体制冷装置的长度方向与所述冷凝器的长度方向相同。
  9. 一种基于权利要求1-8任意一项所述的空调器的控制方法,其特征在于,所述方法为:
    接收制热信号和设定温度;
    检测室内温度;
    在所述室内温度≥设定温度-设定值时,开启所述半导体制冷装置,否则,关闭所述半导体制冷装置。
  10. 根据权利要求9所述的空调器的控制方法,其特征在于,在所述室内温度≥设定温度-设定值时,根据室内温度和设定温度的关系控制所述半导体制冷装置的运行功率,所述设定温度和所述室内温度的差值与所述运行功率正相关。
PCT/CN2022/071267 2021-05-31 2022-01-11 一种空调器及其控制方法 WO2022105941A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110603214.8 2021-05-31
CN202110603214.8A CN113266884B (zh) 2021-05-31 2021-05-31 一种空调器及其控制方法

Publications (1)

Publication Number Publication Date
WO2022105941A1 true WO2022105941A1 (zh) 2022-05-27

Family

ID=77233682

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/071267 WO2022105941A1 (zh) 2021-05-31 2022-01-11 一种空调器及其控制方法

Country Status (2)

Country Link
CN (1) CN113266884B (zh)
WO (1) WO2022105941A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115076813A (zh) * 2022-06-23 2022-09-20 珠海格力电器股份有限公司 一种换热系统、空调器和控制方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113266884B (zh) * 2021-05-31 2022-11-18 青岛海尔空调器有限总公司 一种空调器及其控制方法
CN113819612B (zh) * 2021-08-25 2023-01-13 青岛海尔空调器有限总公司 用于控制空调器送风的方法、装置及空调室内机

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010005990A1 (en) * 1999-12-23 2001-07-05 Kim Cheol Min Air conditioner for individual cooling/heating
JP2010075854A (ja) * 2008-09-26 2010-04-08 Ohm Denki Kk 電子除湿器
CN105157105A (zh) * 2015-07-22 2015-12-16 珠海格力电器股份有限公司 室内机及具有该室内机的空调器
CN206595551U (zh) * 2017-02-21 2017-10-27 龙岩学院 一种半导体除湿装置
CN208253807U (zh) * 2018-05-14 2018-12-18 中山市英为拓电器有限公司 一种高效能电子除湿机
CN210772617U (zh) * 2019-11-19 2020-06-16 广东工业大学 一种半导体冷热系统
CN111442444A (zh) * 2020-04-20 2020-07-24 珠海格力电器股份有限公司 半导体空调器
CN113266884A (zh) * 2021-05-31 2021-08-17 青岛海尔空调器有限总公司 一种空调器及其控制方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102338434A (zh) * 2010-07-28 2012-02-01 珠海格力电器股份有限公司 能够独立控制温度、湿度的空调
CN110662924B (zh) * 2017-12-14 2021-10-08 周兆泰 半导体制冷制暖空调机
CN108870534A (zh) * 2018-03-06 2018-11-23 青岛海信日立空调系统有限公司 一种空调器及其控制方法和控制装置
CN108758821A (zh) * 2018-07-26 2018-11-06 珠海格力电器股份有限公司 风道系统和空调
CN111174310B (zh) * 2018-10-24 2022-07-05 重庆海尔空调器有限公司 一种可移动的空调及其节能控制方法
CN210568864U (zh) * 2019-07-16 2020-05-19 珠海格力电器股份有限公司 一种空调室内机

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010005990A1 (en) * 1999-12-23 2001-07-05 Kim Cheol Min Air conditioner for individual cooling/heating
JP2010075854A (ja) * 2008-09-26 2010-04-08 Ohm Denki Kk 電子除湿器
CN105157105A (zh) * 2015-07-22 2015-12-16 珠海格力电器股份有限公司 室内机及具有该室内机的空调器
CN206595551U (zh) * 2017-02-21 2017-10-27 龙岩学院 一种半导体除湿装置
CN208253807U (zh) * 2018-05-14 2018-12-18 中山市英为拓电器有限公司 一种高效能电子除湿机
CN210772617U (zh) * 2019-11-19 2020-06-16 广东工业大学 一种半导体冷热系统
CN111442444A (zh) * 2020-04-20 2020-07-24 珠海格力电器股份有限公司 半导体空调器
CN113266884A (zh) * 2021-05-31 2021-08-17 青岛海尔空调器有限总公司 一种空调器及其控制方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115076813A (zh) * 2022-06-23 2022-09-20 珠海格力电器股份有限公司 一种换热系统、空调器和控制方法

Also Published As

Publication number Publication date
CN113266884B (zh) 2022-11-18
CN113266884A (zh) 2021-08-17

Similar Documents

Publication Publication Date Title
WO2022105941A1 (zh) 一种空调器及其控制方法
JP5098346B2 (ja) 換気空調装置
JP2000234767A (ja) 冷却装置及び空気調和機の冷却装置
CN105890066B (zh) 一种变频空调室外机电路板散热装置及电控盒
WO2023029596A1 (zh) 空调及其控制方法
CN205678790U (zh) 一种变频空调室外机电路板散热装置及电控盒
CN109185975A (zh) 一种温度调节组件及其温度调节装置
CN211953039U (zh) 空调室外机
CN111678199A (zh) 具有防凝露功能的室内机、空调及室内机的控制方法
CN110645640A (zh) 散热效率高的电器盒及室外机
CN211146959U (zh) 一种气温调节装置及空调
CN212108744U (zh) 空调室外机
CN111981608A (zh) 一种吊顶嵌入式集成热交换的厨卫温度调节装置
CN212108752U (zh) 空调室外机
JPH0233096Y2 (zh)
CN209084929U (zh) 散热结构、空调器
CN209386416U (zh) 一种温度调节组件及其温度调节装置
CN212508721U (zh) 一种空调压缩机热保护装置
CN212319977U (zh) 一种吊顶嵌入式集成热交换的厨卫温度调节装置
CN219868080U (zh) 换热装置及具有其的智能床罩
CN219415009U (zh) 一种中央空调外机用散热装置
CN109268950A (zh) 散热结构、空调器
CN213019956U (zh) 一种卫生间用空调器
CN214586675U (zh) 一种背置散热的主动制冷式笔记本电脑散热器
CN218679648U (zh) 一种电器盒和空调器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22724389

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22724389

Country of ref document: EP

Kind code of ref document: A1