WO2022105904A1 - 传输处理方法、装置及通信设备 - Google Patents

传输处理方法、装置及通信设备 Download PDF

Info

Publication number
WO2022105904A1
WO2022105904A1 PCT/CN2021/132001 CN2021132001W WO2022105904A1 WO 2022105904 A1 WO2022105904 A1 WO 2022105904A1 CN 2021132001 W CN2021132001 W CN 2021132001W WO 2022105904 A1 WO2022105904 A1 WO 2022105904A1
Authority
WO
WIPO (PCT)
Prior art keywords
node
indication
indication information
multiplexing mode
target
Prior art date
Application number
PCT/CN2021/132001
Other languages
English (en)
French (fr)
Inventor
彭淑燕
王欢
刘进华
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Priority to EP21894051.8A priority Critical patent/EP4250843A4/en
Priority to JP2023531105A priority patent/JP2023551454A/ja
Publication of WO2022105904A1 publication Critical patent/WO2022105904A1/zh
Priority to US18/315,657 priority patent/US20230284209A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • H04W72/232Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal the control data signalling from the physical layer, e.g. DCI signalling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/0012Hopping in multicarrier systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0016Time-frequency-code
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria

Definitions

  • the present application belongs to the field of communication technologies, and in particular relates to a transmission processing method, an apparatus, and a communication device.
  • the Integrated Access Backhaul (IAB) node can report the multiplexing capability, and the donor node (donor node) is half of the distributed unit (DU) of the IAB node according to the reporting capability.
  • Statically allocate resources Because the multiplexing capability of an IAB node is not necessarily static in many cases, there may be dynamic capability changes based on factors such as interference conditions, beam selection characteristics, and power levels. The dynamic capability changes may be due to It may be caused by the change of the wireless environment of the network, or may be caused by the data coordination of the up and down hops by the IAB node. Therefore, the existing semi-static resource allocation situation cannot well adapt to the dynamic capability change of the IAB node, so that the reliability of the multiplexed transmission of the IAB node is low.
  • Embodiments of the present application provide a transmission processing method, apparatus, and communication device, which can solve the problem of low reliability of multiplexed transmission of IAB nodes due to dynamic capability changes of IAB nodes.
  • a transmission processing method executed by a first node, including:
  • the second node is a host node or a parent node of the first node.
  • a transmission processing method executed by a second node, including:
  • the second node is a host node or a parent node of the first node.
  • a transmission processing device including:
  • a first transceiver module configured to receive first indication information sent by the second node or send first indication information to the second node, where the first indication information is used to indicate a target multiplexing mode of the first node;
  • the second node is a host node or a parent node of the first node.
  • a transmission processing device including:
  • the second transceiver module is configured to receive the first indication information sent by the first node or send the first indication information to the first node, where the first indication information is used to indicate the target multiplexing mode of the first node.
  • a communication device comprising a processor, a memory, and a program or instruction stored on the memory and executable on the processor, the program or instruction being executed by the processor When executed, the steps of the method as described in the first aspect are realized, or the steps of the method as described in the second aspect are realized.
  • a readable storage medium on which a program or an instruction is stored, and when the program or instruction is executed by a processor, the steps of the method described in the first aspect are implemented, or the steps as described in the first aspect are implemented.
  • the steps of the method of the second aspect are provided, on which a program or an instruction is stored, and when the program or instruction is executed by a processor, the steps of the method described in the first aspect are implemented, or the steps as described in the first aspect are implemented.
  • an embodiment of the present application provides a chip, where the chip includes a processor and a communication interface, the communication interface is coupled to the processor, and the processor is used to run a network device program or instruction to implement The steps of the method of one aspect, or the steps of implementing the method of the second aspect.
  • a computer program product is provided, the computer program product is stored in a non-transitory storage medium, the computer program product is executed by at least one processor to implement the method according to the first aspect, Or implement the method as described in the second aspect.
  • the first indication information sent by the second node is received or the first indication information is sent to the second node, where the first indication information is used to indicate the target multiplexing mode of the first node;
  • the second node is a host node or a parent node of the first node.
  • FIG. 1 is a structural diagram of a network system to which an embodiment of the present application can be applied;
  • Fig. 2 is the CU-DU structure diagram of the IAB system
  • FIG. 3 is a structural diagram of another network system to which an embodiment of the present application can be applied;
  • FIG. 6 is a flowchart of a transmission processing apparatus provided by an embodiment of the present application.
  • FIG. 7 is a flowchart of a transmission processing apparatus provided by an embodiment of the present application.
  • FIG. 8 is a structural diagram of a communication device provided by an embodiment of the present application.
  • FIG. 9 is a structural diagram of another communication device provided by an embodiment of the present application.
  • first, second and the like in the description and claims of the present application are used to distinguish similar objects, and are not used to describe a specific order or sequence. It is to be understood that the data so used are interchangeable under appropriate circumstances so that the embodiments of the present application can be practiced in sequences other than those illustrated or described herein, and "first”, “second” distinguishes Usually it is a class, and the number of objects is not limited.
  • the first object may be one or multiple.
  • “and/or” in the description and claims indicates at least one of the connected objects, and the character “/" generally indicates that the associated objects are in an "or” relationship.
  • LTE Long Term Evolution
  • LTE-Advanced LTE-Advanced
  • LTE-A Long Term Evolution
  • CDMA Code Division Multiple Access
  • TDMA Time Division Multiple Access
  • FDMA Frequency Division Multiple Access
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single-carrier Frequency-Division Multiple Access
  • system and “network” in the embodiments of the present application are often used interchangeably, and the described technology can be used not only for the above-mentioned systems and radio technologies, but also for other systems and radio technologies.
  • NR New Radio
  • NR terminology is used in most of the following description, although these techniques are also applicable to applications other than NR system applications, such as 6th generation ( 6th Generation, 6G) communication system.
  • FIG. 1 shows a block diagram of a wireless communication system to which the embodiments of the present application can be applied.
  • the wireless communication system includes a terminal 11 and a network device 12, and the network device can be understood as an IAB node (IAB node).
  • the IAB node includes a DU functional part and a mobile terminal (Mobile Termination, MT) functional part. Relying on MT, an access point (ie IAB node) can find an upstream access point (parent IAB node) and establish a wireless connection with the DU of the upstream access point, which is called a backhaul link. ).
  • a self-return loop includes a donor IAB node (also called an IAB Donor), and the donor IAB node has a directly connected wired transmission network.
  • the above-mentioned access point may be referred to as a node, and the above-mentioned upstream access point may be referred to as a parent node.
  • the terminal 11 may also be called a terminal device or UE, and the terminal 11 may be a mobile phone, a tablet computer (Tablet Personal Computer), a laptop computer (Laptop Computer) or a notebook computer, a personal digital assistant (Personal Digital Assistant, PDA) ), handheld computer, netbook, ultra-mobile personal computer (UMPC), mobile Internet Device (MID), wearable device (Wearable Device) or vehicle-mounted device (VUE), pedestrian terminal ( PUE) and other terminal-side devices, wearable devices include: bracelets, headphones, glasses, etc. It should be noted that, the embodiment of the present application does not limit the specific type of the terminal 11 .
  • the network side device 12 may be a base station or a core network, wherein the base station may be referred to as a Node B, an evolved Node B, an access point, a Base Transceiver Station (BTS), a radio base station, a radio transceiver, a basic service Set (Basic Service Set, BSS), Extended Service Set (Extended Service Set, ESS), Node B, Evolved Node B (eNB), Home Node B, Home Evolved Node B, WLAN Access Point, WiFi Node, Send Transmitting Receiving Point (TRP) or some other suitable term in the field, as long as the same technical effect is achieved, the base station is not limited to specific technical terms.
  • the base station in the NR system is taken as an example, but the specific type of the base station is not limited.
  • FIG. 2 is a structural diagram of a central unit (Central unit, CU)-DU of an IAB system.
  • CU central unit
  • all the DUs of the IAB nodes are connected to a CU node, which configures the DUs through the F1-AP protocol.
  • the DU configures the MT through the Radio Resource Control (RRC) protocol.
  • RRC Radio Resource Control
  • Donor IAB nodes do not have the MT functional part.
  • the Duplexing mode between the DU and the MT of the IAB node is divided into a half duplex (Half duplex) and a full duplex (Full duplex) mode.
  • Half duplex DU/MT can send and receive at the same time, that is, one functional module receives information while another functional module sends information. Therefore, under the frequency division multiplexing (Frequency Division Multiplex, FDM) or space division multiplexing (Space Division Multiplexing, SDM) multiplexing mode, the transceiver operation modes of DU and MT are as follows:
  • the DU is sent (DU-TX) and MT-TX. That is, the DU is configured as a downlink (Downlink, DL), and the MT is configured as an uplink (Uplink, UL); or the DU has actual DL transmission, and the MT has actual UL transmission;
  • the DU is configured as UL and the MT is configured as DL; or the DU has actual UL reception and the MT has actual DL reception;
  • DU-TX and MT-RX That is, DU is configured as DL and MT is configured as DL; or DU has actual DL transmission and MT has actual DL reception;
  • the DU is configured as UL and the MT is configured as UL; or the DU has actual UL reception and the MT has actual UL transmission.
  • the three multiplexing methods of SDM, FDM and Multiple Pannel Transmisson Reception (MPTR) all involve coordinated scheduling between hops.
  • SDM means that an IAB node simultaneously receives the Physical Downlink Shared Channel (PDSCH) from its IAB parent node and the Physical Uplink Shared Channel (Physical Uplink Shared Channel) from its child IAB node or UE on the same time-frequency resources.
  • PDSCH Physical Downlink Shared Channel
  • Physical Uplink Shared Channel Physical Uplink Shared Channel
  • Shared Channel, PUSCH or an IAB node simultaneously sends PUSCH to its IAB parent node and sends PDSCH to its child IAB node or UE on the same time-frequency resource.
  • FDM means that an IAB node simultaneously receives PDSCH from its IAB parent node and receives PUSCH from its child IAB node or UE on different frequency resources, or an IAB node simultaneously sends PUSCH and PUSCH to its IAB parent node on different frequency resources Send PDSCH to its child IAB node or UE.
  • Full Duplex means that an IAB node simultaneously receives PDSCH from its IAB parent node and sends PDSCH to its child IAB node or UE, or an IAB node simultaneously sends PUSCH to its IAB parent node and from its child IAB on the same time-frequency resources
  • a node or UE receives PUSCH;
  • MPTR is a technology in which an IAB node uses different antenna modules (panels) to transmit and receive at the same time.
  • an IAB node is equipped with two antenna modules, one of which receives and the other transmits.
  • the transceiver antenna modules of the MPTR can have greater isolation, which can reduce the interference caused by transmission to reception to a certain extent.
  • FIG. 3 it shows the scheduling relationship based on SDM/FDM/MPTR across hops in the IAB network.
  • One hop (Hop) between the first node IABN (IAB node) and the third node UE or child IAB node (Child IAB node, C-IABN) is called Hop1, which is scheduled by the first node;
  • Hop2 which is scheduled by the second node.
  • the second node is the IAB parent node (Parent IAB node, P-IABN) of the first node, and at this time, the following multiplexing methods exist between the DU and the MT in the first node:
  • SDM TX Multiplexing mode 1
  • SDM RX Multiplexing mode 2
  • FDM TX Multiplexing mode 3
  • FDM RX Multiplexing mode 4
  • MPTR UL Multiplexing mode 5
  • MPTR DL Multiplexing mode 6
  • Donor node CU configures DU resources through gNB-DU resource configuration (resource configuration) signaling.
  • the direction of symbol transmission in each time slot is configured, and the symbol (symbol) direction includes at least one of the following: DL symbols, UL symbols, and flexible uplink and downlink (flexible) symbols.
  • Configure the availability of symbols of each type of DU including hard (hard), soft (soft), and not available (not available) types of configuration; among them, the availability is based on the symbol type as the configuration unit, specifically including The following situations:
  • the IAB DU can autonomously perform the corresponding first operation on the symbol;
  • the first object can include any one of DL, UL and flexible symbols, for example, the When the first object is a DL symbol, the first operation is sending; if the first object is a UL symbol, the first operation is receiving; if the first object is a flexible symbol, the first operation is sending or receiving.
  • the IAB parent node can indicate the availability of the time slot symbol (soft symbol) of the IAB DU through the Downlink Control Information (Downlink Control Information, DCI) format (format) 2-5;
  • DCI Downlink Control Information
  • the IAB DU is neither sent nor received on this symbol.
  • the resources of the MT are configured by the CU/parent node, and are configured through time division duplex (Time Division Duplex, TDD) configuration and DCI signaling in RRC signaling.
  • TDD Time Division Duplex
  • the resource type of MT is DL/UL/Flexible symbol.
  • FIG. 4 is a flowchart of a transmission processing method provided by an embodiment of the present application. The method is executed by a first node. As shown in FIG. 4, the method includes the following steps:
  • Step 401 receiving the first indication information sent by the second node or sending the first indication information to the second node, the first indication information is used to indicate the target multiplexing mode of the first node;
  • the second node is a host node or a parent node of the first node.
  • the above-mentioned first node may be understood as an IAB node.
  • the target multiplexing mode can be understood as the multiplexing state presented by the final transmission of the DU and the MT in the first node.
  • the target multiplexing mode may include any one of the above multiplexing modes 1 to 6.
  • the multiplexing mode of the first node may be determined by the second node.
  • the behavior of the first node is: receiving the first indication information sent by the second node.
  • the second node may first determine the target multiplexing mode of the first node among the multiple multiplexing modes, and then send the first indication information to the first node based on the selected target multiplexing mode.
  • the current multiplexing mode may be determined by the first node.
  • the behavior of the first node is to send the first indication information to the second node.
  • the first node first determines the target multiplexing mode of the first node among the multiple multiplexing modes, and then, based on the selected target multiplexing mode, sends the first indication information to the second node to notify the second node that the current selection target reuse.
  • the multiplexing mode in the embodiments of the present application can be understood as a scheduling plan, that is, the above-mentioned target multiplexing mode can be understood as a target scheduling plan.
  • the above-mentioned first indication information can also be used to indicate the following At least one item: DU scheduling and MT scheduling.
  • the first indication information may indicate the scheduling of the DU and/or the scheduling of the MT, and determine the multiplexing mode of the first node based on the scheduling of the DU and/or the scheduling of the MT.
  • the first indication information sent by the second node is received or the first indication information is sent to the second node, where the first indication information is used to indicate the target multiplexing mode of the first node;
  • the second node is a host node or a parent node of the first node.
  • the method further includes:
  • Transmission or scheduling is performed according to the target multiplexing manner.
  • the first node performs transmission or scheduling according to the target multiplexing manner, which can be understood as including at least one of the following:
  • the DUs in the first node may be transmitted or scheduled according to the target multiplexing mode; for example, the DUs in the first node may call target resources according to the target multiplexing mode, and the target resources are used for the child IAB nodes of the first node or data transmission between the UE and the first node;
  • the MT in the first node may transmit according to the target multiplexing manner.
  • the MT may perform data transmission with the parent node of the first node according to the target multiplexing manner.
  • the above-mentioned first indication information may be: resource allocation of DU or resource allocation of MT. If it is the resource allocation of the DU, the DU is transmitted according to the first indication information; if it is the resource allocation of the MT, the DU is transmitted without affecting the transmission of the MT.
  • transmission may be understood as sending or receiving.
  • the above-mentioned transmission or scheduling may be periodic or aperiodic.
  • the scheduling according to the target multiplexing method or the Transmission includes at least one of the following:
  • transmission or scheduling is performed according to the target multiplexing manner.
  • periodic transmission or scheduling may also be performed, or only one transmission or scheduling may be performed, which is not further limited herein.
  • the above-mentioned first indication information may carry relevant parameters to indicate the effective time window of the target multiplexing mode. For example, if the effective time is configured periodically, in cycle 1, multiplexing mode 1 can be enabled, and in cycle 2, multiplexing mode 2 can be enabled. Alternatively, the multiplexing mode itself carries a period value, and the period of the multiplexing mode can be changed, that is, indicating the effective time window of the multiplexing mode corresponding to the next multiplexing transmission.
  • the method further includes:
  • transmission or scheduling is performed according to a default multiplexing manner.
  • receiving the indication information sent by the second node is the receiving behavior of the first node.
  • the first node may have the behavior of receiving, but may not actually receive it.
  • the second node The node gives up sending the first indication information due to network conditions. In this case, transmission or scheduling may be performed based on the default multiplexing mode.
  • not receiving can be understood as not receiving the first indication information, or receiving the first indication information and failing to successfully demodulate to obtain the target multiplexing mode.
  • the default multiplexing mode may be a default multiplexing mode determined by at least one of pre-protocol agreement, pre-configuration and configuration. For example, one of the multiplexing methods in the protocol agreement, pre-configuration, and configuration can be directly used as the default multiplexing method, and multiple multiplexing methods can be agreed upon in the protocol, and then one of the multiplexing methods can be pre-configured or configured as the default multiplexing method. use method. Of course, in other embodiments, other manners may also be adopted, which will not be repeated here.
  • the first indication information is carried in a physical downlink control channel (Physical downlink control channel, PDCCH), downlink control information DCI, media access Control unit (Medium Access Control Control Element, MAC CE), Radio Resource Control (Radio Resource control, RRC), terminal assistance information (UE assistance information) or backhaul access protocol (backhaul access protocol, BAP) control (contorl) Protocol data unit (Protocol Data Unit, PDU).
  • PDCCH Physical downlink control channel
  • DCI Downlink control information
  • media access Control unit Medium Access Control Control Element, MAC CE
  • Radio Resource Control Radio Resource control
  • RRC Radio Resource control
  • UE assistance information terminal assistance information
  • backhaul access protocol backhaul access protocol
  • BAP backhaul access protocol
  • the first indication information includes a target parameter associated with the target multiplexing mode
  • the target parameter includes any one of the following: a PDCCH code point, a physical uplink control channel (Physical Uplink Control Channel) Uplink Control Channel (PUCCH) sequence, PUCCH cyclic offset, PUCCH demodulation reference signal (Demodulation Reference Signal, DMRS) sequence, PUCCH demodulation reference signal DMRS cyclic offset and PUCCH demodulation reference signal DMRS frequency hopping .
  • the mapping relationship between the target parameter and the multiplexing mode can be set according to at least one of protocol pre-definition, pre-configuration and configuration, and then the target parameter is carried in the first indication information, so that the target parameter and the multiplexing mode can be matched according to the target parameter.
  • the mapping relationship of the multiplexing mode determines the target multiplexing mode indicated by the first indication information.
  • the pre-configuration and configuration may be performed by the CU of the host node, or may be performed by the parent node of the IAB, which is not further limited here.
  • the code point for the above PDCCH can be understood as the bit value indicated on the carried PDCCH.
  • the code point can be represented by N bits, and the code point is associated with the multiplexing mode.
  • code point 1 is associated with multiplexing mode 1.
  • Code point 2 is associated with multiplexing mode 2.
  • the code point of the PDCCH can also be understood as the identification value of the multiplexing mode.
  • the code point 1 is used to represent the multiplexing mode 1
  • the code point 2 is used to represent the multiplexing mode 2.
  • the resource configuration of the target multiplexing mode may be predefined, preconfigured or configured by the protocol.
  • the resource configuration of the target multiplexing mode includes at least one of the following: time domain location, period indication, Time Domain Resource Indication, Frequency Domain Resource Indication, Spatial Domain Resource Indication, Number of Transmitted Streams Indication, Beam Index, Transmission Configuration Indication, Power Indication, Interference Indication, and Modulation and Coding Scheme (MCS) Indication .
  • MCS Modulation and Coding Scheme
  • the offset value and the like are included, for example, the multiplexing mode is carried in the PDCCH, and the time interval between the PDCCH and the multiplexing mode is predefined as a. If the IAB node receives the scheduling plan carried by the PDCCH at slot n, the IAB node uses the multiplexing method to schedule or transmit at slot(n+a).
  • the specific time granularity of the resource configuration may be a time slot, a symbol, a subframe, or a millisecond, and the above description is given by taking only one time slot as an example.
  • a is a value greater than or equal to 0, and can also be a decimal.
  • the value of a is related to the subcarrier spacing.
  • the above-mentioned spatial resource indication may be a beam index.
  • the above power indication may be used to indicate the power size or the power ratio.
  • the MCS indication can be used to indicate the value of the MCS or the range of the MCS.
  • the above interference indication can be understood as: the indicator information of whether the interference is allowed or not allowed, for example, when the interference condition is not satisfied, the transmission or scheduling can be performed according to the target multiplexing manner.
  • the target multiplexing mode is enabled on the corresponding time domain resources according to the configured period.
  • the period is 0, it will take effect once.
  • the corresponding multiplexing mode is enabled; if the pre-defined/pre-defined/configured multiplexing mode validation conditions are not met, the current the multiplexing method, or use the default multiplexing method.
  • the method further includes:
  • the target multiplexing mode information can also be terminated by the IAB parent node.
  • the multiplexing mode of the first node has been configured, but due to the up and down hops (that is, the first node When the wireless environment of the node and the child IAB node or UE or IAB parent node) changes, causing the original multiplexing method to be inappropriate, the following behaviors are specifically included:
  • the first node can send an instruction to terminate the up-down hop multiplexing scheduling to its IAB parent node; after the IAB parent node receives the termination instruction, it does not use the hard resources of the child IAB-DU;
  • the IAB parent node can send an instruction to terminate the multiplexing scheduling of up-down hops to its child IAB node; after the child IAB node receives the termination instruction, when its DU schedules the child IAB-MT or UE, it does not affect the sending and receiving behavior of its MT.
  • both the first indication information and the second indication information include at least one of the following: a period indication, a time offset, a time domain resource indication, a frequency domain resource indication, a resource configuration type indication, a transmission stream Number indication, beam indication, power indication, interference indication and modulation and coding scheme MCS indication.
  • the contents included in the first indication information and the second indication information may be the same or different, which are not further limited herein.
  • the type of the above resource configuration may specifically include at least one of the following:
  • the first type can be understood as including at least one of UL, DL and Flexbile;
  • the second type, the first type can be understood to include at least one of Hard, Soft and Not available.
  • the method further includes:
  • the above-mentioned third indication information may be carried on PUCCH, uplink control information (Uplink Control Information, UCI) or MAC CE. Since the recommended multiplexing mode is reported to the second node by the first node, it can be ensured that the target multiplexing mode can be well applied to the first node, thereby improving the reliability of multiplexing transmission.
  • uplink control information Uplink Control Information, UCI
  • the third indication information includes at least one of the following: a sequence of a physical uplink control channel PUCCH, a cyclic offset of the PUCCH, a sequence of the PUCCH demodulation reference signal DMRS, a cyclic offset of the PUCCH demodulation reference signal DMRS, The frequency hopping of the PUCCH demodulation reference signal DMRS and the code point of the PUCCH.
  • the target multiplexing mode is the default multiplexing mode.
  • the second node since the first node determines the recommended multiplexing method based on the situation of the up and down hop network, however, the second node may need to serve multiple IAB sub-nodes, and there is a conflict; or, the parent node of the second parent node When scheduling the transmission of the MT of the second node, there is a conflict with the scheduling of the DU of the second node. At this time, the second node cannot support the target multiplexing mode of the first node, and the second node can indicate the default multiplexing mode to the first node. to ensure the reliability of multiplexed transmission.
  • the first node may report the third indication information periodically or through a conditional trigger, that is, in some embodiments, the above-mentioned sending the third indication information to the second node includes at least one of the following:
  • the reporting condition is a predefined, preconfigured or configured trigger condition.
  • the above-mentioned first preset period may be pre-defined, pre-configured or determined by a protocol, which is not further limited herein.
  • the indication granularity associated with the target multiplexing mode includes at least one of the following: M time units and N frequency domain units;
  • the time unit is a subframe, a time slot, a symbol or a period
  • the frequency domain granularity includes a physical resource block (Physical Resource Block, PRB), a subband, and a precoding resource block group. (Precoding Resource block Group, PRG), subcarrier or resource element (Resource element, RE).
  • the indication granularity associated with the above-mentioned recommended multiplexing mode may also include at least one of the following: M1 time units and N1 frequency domain units;
  • M1 and N1 are both positive integers
  • the time unit is subframe, time slot, symbol or period
  • the frequency domain granularity includes physical resource block PRB, subband, precoding resource block group PRG, subcarrier or resource Unit RE.
  • the receiving the first indication information sent by the second node includes receiving the first indication information sent by the second node according to a second preset period.
  • the sending the first indication information to the second node includes sending the first indication information to the second node according to a third preset period.
  • the multiplexing mode by periodically sending or receiving the first indication information, the multiplexing mode can be dynamically adjusted, and the reliability of multiplexing of the MT and the DU in the first node is improved.
  • the terminal may also report the DU scheduling information of the IAB node to the corresponding accessed IAB node, where the DU scheduling information is used to indicate the scheduling of the IAB node. Then, the IAB node can perform transmission or scheduling based on the DU scheduling information reported by the terminal, that is, the DU in the IAB node can perform resource scheduling based on the DU scheduling information to implement transmission with the UE.
  • the above-mentioned first indication information may include any of the following The physical uplink control channel PUCCH sequence, PUCCH cyclic offset, PUCCH demodulation reference signal DMRS sequence, PUCCH demodulation reference signal DMRS cyclic offset, PUCCH demodulation reference signal DMRS frequency hopping and PUCCH code point.
  • sequence 1 may be used to represent multiplexing mode 1
  • sequence 2 may be used to represent multiplexing mode 2.
  • the first node can find the corresponding PUCCH sequence according to the multiplexing mode that can be supported, and report the PUCCH of the corresponding sequence to the IAB parent node, and the IAB parent node determines according to the received PUCCH sequence and the corresponding relationship between the sequence and the multiplexing mode target reuse.
  • the protocol predefines/preconfigures/configures the mapping relationship between each multiplexing mode and code point, and the secondary IAB node can determine the target multiplexing mode indicated by the first node according to the code point of the received PUCCH.
  • the pre-configuration/configuration may be the configuration of the host node CU or the parent node of the IAB.
  • the first node finds the corresponding code point according to the acceptable multiplexing method and the mapping relationship, and sends the corresponding code point to the IAB parent node, and the IAB parent node receives the code point and the mapping relationship between the code point and the multiplexing method according to the received code point. , to get the corresponding reuse mode.
  • the above UCI can be transmitted through the PUCCH or multiplexed on the PUSCH, which is not further limited here.
  • Embodiment 1 specifically includes the following process:
  • the IAB node reports an acceptable multiplexing mode list periodically/event-based according to a predefined/(pre-)configured mode, and the multiplexing mode list includes one or more multiplexing modes.
  • the IAB node carries the multiplexing mode list in the MAC CE/PUCCH. Or report the multiplexing mode list through UE assitance information.
  • the IAB node sends the PUCCH to the IAB parent node/host node according to the list of supported multiplexing modes and the mapping relationship between the multiplexing mode and the code point of the PUCCH bearing information.
  • the IAB parent node/host node obtains the corresponding multiplexing mode list according to the received PUCCH information and the mapping relationship between the multiplexing mode and the code point of the information carried by the PUCCH.
  • the IAB parent node decides the multiplexing mode, and carries the multiplexing mode indication in the PDCCH.
  • the IAB node receives the PDCCH signaling in the time slot n, and obtains the multiplexing mode information and the effective time window of the multiplexing mode.
  • the IAB uses the multiplexing method to transmit resources in time slot n+a.
  • the IAB parent node/host node configures the scheduling plan for periodic reporting, and configures the sending period of the scheduling plan.
  • the IAB node reports the scheduling plan list to the IAB parent node through the MAC CE in the resources of the configured reporting period.
  • the IAB parent node determines the scheduling plan, and carries the scheduling plan in the PDCCH.
  • a schedule includes a time window in which it is effective.
  • the IAB node performs scheduling according to the indicated scheduling plan in the effective window of the scheduling plan according to the scheduling plan indicated in the PDCCH.
  • the IAB node periodically reports the scheduling plan, and the IAB node dynamically indicates the scheduling plan.
  • FIG. 5 is a flowchart of another transmission processing method provided by an embodiment of the present application. The method is applied to the execution of the second node. As shown in FIG. 5, the following steps are included:
  • Step 501 Receive first indication information sent by a first node or send first indication information to a first node, where the first indication information is used to indicate a target multiplexing mode of the first node;
  • the second node is a host node or a parent node of the first node.
  • the first indication information is further used to indicate at least one of the following: scheduling of the distributed unit DU and scheduling of the mobile terminal MT.
  • the first indication information is carried in PDCCH, downlink control information DCI, medium access control unit MAC CE, radio resource control RRC or loopback. On the access protocol control protocol data unit.
  • the first indication information includes a target parameter associated with the target multiplexing mode
  • the target parameter includes any one of the following: code point of PDCCH, sequence of physical uplink control channel PUCCH, cyclic offset of PUCCH shift, the sequence of the PUCCH demodulation reference signal DMRS, the cyclic offset of the PUCCH demodulation reference signal DMRS, and the frequency hopping of the PUCCH demodulation reference signal DMRS.
  • the resource configuration of the target multiplexing mode includes at least one of the following: time domain location, period indication, time domain resource indication, frequency domain resource indication, space domain resource indication, transmitted stream number indication, beam indication, transmission Configuration indication, power indication, interference indication and modulation and coding scheme MCS indication.
  • the method further includes:
  • the second node does not support the target multiplexing mode, send fourth indication information to the first node, where the fourth indication information is used to indicate termination of the target multiplexing mode; wherein the first node
  • the second node is the host node or the parent node of the first node.
  • both the first indication information and the fourth indication information include at least one of the following: a period indication, a time offset, a time domain resource indication, a frequency domain resource indication, a resource configuration type indication, and a transmission stream Number indication, beam indication, power indication, interference indication and modulation and coding scheme MCS indication.
  • the method further includes:
  • Receive third indication information sent by the first node where the third indication information is used to indicate a recommended multiplexing mode, and the recommended multiplexing mode is used to determine the target multiplexing mode.
  • the third indication information includes at least one of the following: a sequence of a physical uplink control channel PUCCH, a cyclic offset of the PUCCH, a sequence of the PUCCH demodulation reference signal DMRS, a cyclic offset of the PUCCH demodulation reference signal DMRS, The frequency hopping of the PUCCH demodulation reference signal DMRS and the code point of the PUCCH.
  • the target multiplexing mode is the default multiplexing mode; wherein, the second node is the host node or the first node. parent node.
  • receiving the third indication information sent by the first node includes at least one of the following:
  • the reporting condition is a predefined, preconfigured or configured trigger condition.
  • the indication granularity associated with the target multiplexing mode includes at least one of the following: M time units and N frequency domain units;
  • M and N are both positive integers
  • the time unit is subframe, time slot, symbol or period
  • the frequency domain granularity includes physical resource block PRB, subband, precoding resource block group PRG, subcarrier or resource Unit RE.
  • this embodiment is an implementation of the second node corresponding to the embodiment shown in FIG. 4 , and the specific implementation can refer to the relevant description of the embodiment shown in FIG. 4 , and achieve the same beneficial effects. In order to To avoid repeating the description, it will not be repeated here.
  • the execution body may be a transmission processing apparatus, or a control module in the transmission processing apparatus for executing the transmission processing method.
  • the transmission processing device provided by the embodiment of the present application is described by taking the transmission processing device executing the transmission processing method as an example.
  • FIG. 6 is a structural diagram of a transmission processing apparatus provided by an embodiment of the present application. As shown in FIG. 6, the transmission processing apparatus 600 includes:
  • the first transceiver module 601 is configured to receive first indication information sent by the second node or send first indication information to the second node, where the first indication information is used to indicate the target multiplexing mode of the first node;
  • the second node is a host node or a parent node of the first node.
  • the first indication information is further used to indicate at least one of the following: scheduling of the distributed unit DU and scheduling of the mobile terminal MT.
  • the first transmission module 601 is further configured to: perform transmission or scheduling according to the target multiplexing manner.
  • the first transmission module 601 is specifically configured to perform at least one of the following:
  • transmission or scheduling is performed according to the target multiplexing manner.
  • the first transmission module 601 is specifically configured to: in the case of not receiving the first indication information, perform transmission or scheduling according to a default multiplexing manner.
  • the first indication information is carried in PDCCH, downlink control information DCI, medium access control unit MAC CE, radio resource control RRC or loopback. On the access protocol control protocol data unit.
  • the first indication information includes a target parameter associated with the target multiplexing mode
  • the target parameter includes any one of the following: code point of PDCCH, sequence of physical uplink control channel PUCCH, cyclic offset of PUCCH shift, the sequence of the PUCCH demodulation reference signal DMRS, the cyclic offset of the PUCCH demodulation reference signal DMRS, and the frequency hopping of the PUCCH demodulation reference signal DMRS.
  • the resource configuration of the target multiplexing mode includes at least one of the following: time domain location, period indication, time domain resource indication, frequency domain resource indication, space domain resource indication, transmitted stream number indication, beam indication, transmission Configuration indication, power indication, interference indication and modulation and coding scheme MCS indication.
  • the effective manner of the resource configuration is periodic effective or event-triggered effective.
  • the method further includes:
  • both the first indication information and the second indication information include at least one of the following: a period indication, a time offset, a time domain resource indication, a frequency domain resource indication, a resource configuration type indication, a transmission stream Number indication, beam indication, power indication, interference indication and modulation and coding scheme MCS indication.
  • the first transmission module 601 is further configured to: send third indication information to the second node, where the third indication information is used to indicate a recommended multiplexing mode, and the recommended multiplexing mode is used to determine The target multiplexing mode.
  • the third indication information includes at least one of the following: a sequence of a physical uplink control channel PUCCH, a cyclic offset of the PUCCH, a sequence of the PUCCH demodulation reference signal DMRS, a cyclic offset of the PUCCH demodulation reference signal DMRS, The frequency hopping of the PUCCH demodulation reference signal DMRS and the code point of the PUCCH.
  • the target multiplexing mode is a default multiplexing mode.
  • the first transmission module 601 is specifically configured to perform at least one of the following:
  • the reporting condition is a predefined, preconfigured or configured trigger condition.
  • the indication granularity associated with the target multiplexing mode includes at least one of the following: M time units and N frequency domain units;
  • M and N are both positive integers
  • the time unit is subframe, time slot, symbol or period
  • the frequency domain granularity includes physical resource block PRB, subband, precoding resource block group PRG, subcarrier or resource Unit RE.
  • the first transmission module 601 is specifically configured to: receive the first indication information sent by the second node according to a second preset period.
  • the first transmission module 601 is specifically configured to: send the first indication information to the second node according to a third preset period.
  • the transmission processing apparatus provided in this embodiment of the present application can implement each process in the method embodiment shown in FIG. 4 , which is not repeated here to avoid repetition.
  • FIG. 7 is a structural diagram of a transmission processing apparatus provided by an embodiment of the present application. As shown in FIG. 7, the transmission processing apparatus 700 includes:
  • the second transceiver module 701 is configured to receive first indication information sent by a first node or send first indication information to the first node, where the first indication information is used to indicate a target multiplexing mode of the first node.
  • the first indication information is further used to indicate at least one of the following: scheduling of the distributed unit DU and scheduling of the mobile terminal MT.
  • the first indication information is carried in PDCCH, downlink control information DCI, medium access control unit MAC CE, radio resource control RRC or loopback. On the access protocol control protocol data unit.
  • the first indication information includes a target parameter associated with the target multiplexing mode
  • the target parameter includes any one of the following: code point of PDCCH, sequence of physical uplink control channel PUCCH, cyclic offset of PUCCH shift, the sequence of the PUCCH demodulation reference signal DMRS, the cyclic offset of the PUCCH demodulation reference signal DMRS, and the frequency hopping of the PUCCH demodulation reference signal DMRS.
  • the resource configuration of the target multiplexing mode includes at least one of the following: time domain location, period indication, time domain resource indication, frequency domain resource indication, space domain resource indication, transmitted stream number indication, beam indication, transmission Configuration indication, power indication, interference indication and modulation and coding scheme MCS indication.
  • the second transceiver module 701 is further configured to: in the case that the second node does not support the target multiplexing mode, send fourth indication information to the first node, and the fourth indication information uses to instruct to terminate the target multiplexing mode; wherein, the second node is a host node or a parent node of the first node.
  • both the first indication information and the fourth indication information include at least one of the following: a period indication, a time offset, a time domain resource indication, a frequency domain resource indication, a resource configuration type indication, and a transmission stream Number indication, beam indication, power indication, interference indication and modulation and coding scheme MCS indication.
  • the second transceiver module 701 is further configured to: receive third indication information sent by the first node, where the third indication information is used to indicate a recommended multiplexing mode, and the recommended multiplexing mode is used for Determine the target multiplexing mode.
  • the third indication information includes at least one of the following: a sequence of a physical uplink control channel PUCCH, a cyclic offset of the PUCCH, a sequence of the PUCCH demodulation reference signal DMRS, a cyclic offset of the PUCCH demodulation reference signal DMRS, The frequency hopping of the PUCCH demodulation reference signal DMRS and the code point of the PUCCH.
  • the target multiplexing mode is the default multiplexing mode; wherein, the second node is the host node or the first node. parent node.
  • the second transceiver module 701 is specifically configured to perform at least one of the following:
  • the reporting condition is a predefined, preconfigured or configured trigger condition.
  • the indication granularity associated with the target multiplexing mode includes at least one of the following: M time units and N frequency domain units;
  • M and N are both positive integers
  • the time unit is subframe, time slot, symbol or period
  • the frequency domain granularity includes physical resource block PRB, subband, precoding resource block group PRG, subcarrier or resource Unit RE.
  • the transmission processing apparatus provided in this embodiment of the present application can implement each process in the method embodiment shown in FIG. 5 , which is not repeated here to avoid repetition.
  • the transmission processing device in this embodiment of the present application may be a device, or may be a component, an integrated circuit, or a chip in a terminal.
  • the device may be a mobile terminal or a non-mobile terminal.
  • the mobile terminal may include, but is not limited to, the types of terminals 11 listed above, and the non-mobile terminal may be a server, a network attached storage (NAS), a personal computer (personal computer, PC), a television ( television, TV), teller machine, or self-service machine, etc., which are not specifically limited in the embodiments of the present application.
  • the transmission processing device in the embodiment of the present application may be a device having an operating system.
  • the operating system may be an Android (Android) operating system, an ios operating system, or other possible operating systems, which are not specifically limited in the embodiments of the present application.
  • the transmission processing apparatus provided in the embodiment of the present application can implement each process implemented by the method embodiments in FIG. 4 to FIG. 5 , and achieve the same technical effect. To avoid repetition, details are not described here.
  • an embodiment of the present application further provides a communication device 800, including a processor 801, a memory 802, a program or instruction stored in the memory 802 and executable on the processor 801,
  • a communication device 800 including a processor 801, a memory 802, a program or instruction stored in the memory 802 and executable on the processor 801,
  • the program or instruction is executed by the processor 801
  • each process of the above-mentioned embodiment of the transmission processing method is implemented, and the same technical effect can be achieved. In order to avoid repetition, details are not repeated here.
  • the network device 900 includes: an antenna 901 , a radio frequency device 902 , and a baseband device 903 .
  • the antenna 901 is connected to the radio frequency device 902 .
  • the radio frequency device 902 receives information through the antenna 901, and sends the received information to the baseband device 903 for processing.
  • the baseband device 903 processes the information to be sent and sends it to the radio frequency device 902, and the radio frequency device 902 processes the received information and sends it out through the antenna 901.
  • the above-mentioned frequency band processing apparatus may be located in the baseband apparatus 903 , and the method performed by the communication device in the above embodiment may be implemented in the baseband apparatus 903 .
  • the baseband apparatus 903 includes a processor 904 and a memory 905 .
  • the baseband device 903 may include, for example, at least one baseband board on which multiple chips are arranged. As shown in FIG. 9 , one of the chips is, for example, the processor 904 and is connected to the memory 905 to call the program in the memory 905 to execute The network devices shown in the above method embodiments operate.
  • the baseband device 903 may further include a network interface 906 for exchanging information with the radio frequency device 902, and the interface is, for example, a common public radio interface (CPRI).
  • CPRI common public radio interface
  • the communication device of the embodiment of the present application further includes: an instruction or program stored in the memory 905 and executable on the processor 904, and the processor 904 invokes the instruction or program in the memory 905 to execute the instructions or programs shown in FIG. 6 or 7.
  • the method implemented by the module achieves the same technical effect. To avoid repetition, it will not be repeated here.
  • Embodiments of the present application further provide a readable storage medium, where a program or an instruction is stored on the readable storage medium.
  • a program or an instruction is stored on the readable storage medium.
  • the processor is the processor in the communication device described in the foregoing embodiment.
  • the readable storage medium includes a computer-readable storage medium, such as a computer read-only memory (Read-Only Memory, ROM), a random access memory (Random Access Memory, RAM), a magnetic disk or an optical disk, and the like.
  • An embodiment of the present application further provides a chip, where the chip includes a processor and a communication interface, the communication interface is coupled to the processor, and the processor is used to run a network device program or instruction to implement the above transmission processing method
  • the chip includes a processor and a communication interface
  • the communication interface is coupled to the processor
  • the processor is used to run a network device program or instruction to implement the above transmission processing method
  • the chip mentioned in the embodiments of the present application may also be referred to as a system-on-chip, a system-on-chip, a system-on-a-chip, or a system-on-a-chip, or the like.
  • the disclosed apparatus and method may be implemented in other manners.
  • the apparatus embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not implemented.
  • the shown or discussed mutual coupling or direct coupling or communication connection may be through some interfaces, indirect coupling or communication connection of devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution in this embodiment.
  • each functional unit in each embodiment of the present disclosure may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit.
  • the functions, if implemented in the form of software functional units and sold or used as independent products, may be stored in a computer-readable storage medium.
  • the computer software products are stored in a storage medium, including Several instructions are used to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in various embodiments of the present disclosure.
  • the aforementioned storage medium includes: a U disk, a removable hard disk, a ROM, a RAM, a magnetic disk, or an optical disk and other mediums that can store program codes.
  • the realization of all or part of the processes in the methods of the above embodiments can be accomplished by controlling the relevant hardware through a computer program, and the program can be stored in a computer-readable storage medium. During execution, the processes of the embodiments of the above-mentioned methods may be included.
  • the storage medium may be a magnetic disk, an optical disk, a ROM or a RAM, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种传输处理方法、装置及通信设备,该方法由第一节点执行,包括:接收第二节点发送的第一指示信息或者向第二节点发送第一指示信息,所述第一指示信息用于指示所述第一节点的目标复用方式;其中,所述第二节点为宿主节点或为所述第一节点的父节点。

Description

传输处理方法、装置及通信设备
相关申请的交叉引用
本申请主张在2020年11月23日在中国提交的中国专利申请No.202011323544.3的优先权,其全部内容通过引用包含于此。
技术领域
本申请属于通信技术领域,具体涉及一种传输处理方法、装置及通信设备。
背景技术
在通信系统中,集成接入与回传(Integrated Access Backhaul,IAB)节点可以进行复用能力上报,宿主节点(donor node)根据上报的能力,为IAB节点的分布单元(Distributed Unit,DU)半静态的分配资源。由于,IAB节点的复用能力在很多情况下,不一定是静态不变的,可能根据干扰情况、波束的选择特性以及功率的大小等因素,存在动态能力变化,所述动态能力变化可能是由于网络的无线环境变化造成的,也可能是由于IAB节点对上下跳的数据协调所导致的。因此,现有的半静态的资源分配情况不能很好的适应IAB节点的动态的能力变化,使得IAB节点复用传输的可靠性较低。
发明内容
本申请实施例提供一种传输处理方法、装置及通信设备,能够解决由于IAB节点的动态的能力变化,使得IAB节点复用传输的可靠性较低的问题。
第一方面,提供了一种传输处理方法,由第一节点执行,包括:
接收第二节点发送的第一指示信息或者向第二节点发送第一指示信息,所述第一指示信息用于指示所述第一节点的目标复用方式;
其中,所述第二节点为宿主节点或为所述第一节点的父节点。
第二方面,提供了一种传输处理方法,由第二节点执行,包括:
接收第一节点发送的第一指示信息或者向第一节点发送第一指示信息, 所述第一指示信息用于指示所述第一节点的目标复用方式;
其中,所述第二节点为宿主节点或为所述第一节点的父节点。
第三方面,提供了一种传输处理装置,包括:
第一收发模块,用于接收第二节点发送的第一指示信息或者向第二节点发送第一指示信息,所述第一指示信息用于指示第一节点的目标复用方式;
其中,所述第二节点为宿主节点或为所述第一节点的父节点。
第四方面,提供了一种传输处理装置,包括:
第二收发模块,用于接收第一节点发送的第一指示信息或者向第一节点发送第一指示信息,所述第一指示信息用于指示所述第一节点的目标复用方式。
第五方面,提供了一种通信设备,该通信设备包括处理器、存储器及存储在所述存储器上并可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如第一方面所述的方法的步骤,或者实现如第二方面所述的方法的步骤。
第六方面,提供了一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如第一方面所述的方法的步骤,或者实现如第二方面所述的方法的步骤。
第七方面,本申请实施例提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行网络设备程序或指令,实现如第一方面所述的方法的步骤,或者实现如第二方面所述的方法的步骤。
第八方面,提供了一种计算机程序产品,所述计算机程序产品被存储在非瞬态的存储介质中,所述计算机程序产品被至少一个处理器执行以实现如第一方面所述的方法,或实现如第二方面所述的方法。
本申请实施例中通过接收第二节点发送的第一指示信息或者向第二节点发送第一指示信息,所述第一指示信息用于指示所述第一节点的目标复用方式;其中,所述第二节点为宿主节点或为所述第一节点的父节点。这样,由于第一节点或者第二节点可以决定第一节点的目标复用方式,并通过第一指示信息指示第一节点的目标复用方式,从而可以通过第一指示信息动态的调 整第一节点的复用方式,提高了复用传输的可靠性,与此同时提升了系统传输的效率,降低传输时延。
附图说明
图1是本申请实施例可应用的一种网络系统的结构图;
图2是IAB系统的CU-DU结构图;
图3是本申请实施例可应用的另一种网络系统的结构图;
图4是本申请实施例提供的一种传输处理方法的流程图;
图5是本申请实施例提供的另一种传输处理方法的流程图;
图6是本申请实施例提供的一种传输处理装置的流程图;
图7是本申请实施例提供的一种传输处理装置的流程图;
图8是本申请实施例提供的一种通信设备的结构图;
图9是本申请实施例提供的另一种通信设备的结构图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施,且“第一”、“第二”所区别的对象通常为一类,并不限定对象的个数,例如第一对象可以是一个,也可以是多个。此外,说明书以及权利要求中“和/或”表示所连接对象的至少其中之一,字符“/”一般表示前后关联对象是一种“或”的关系。
值得指出的是,本申请实施例所描述的技术不限于长期演进型(Long Term Evolution,LTE)/LTE的演进(LTE-Advanced,LTE-A)系统,还可用于其他无线通信系统,诸如码分多址(Code Division Multiple Access,CDMA)、 时分多址(Time Division Multiple Access,TDMA)、频分多址(Frequency Division Multiple Access,FDMA)、正交频分多址(Orthogonal Frequency Division Multiple Access,OFDMA)、单载波频分多址(Single-carrier Frequency-Division Multiple Access,SC-FDMA)和其他系统。本申请实施例中的术语“系统”和“网络”常被可互换地使用,所描述的技术既可用于以上提及的系统和无线电技术,也可用于其他系统和无线电技术。然而,以下描述出于示例目的描述了新空口(New Radio,NR)系统,并且在以下大部分描述中使用NR术语,尽管这些技术也可应用于NR系统应用以外的应用,如第6代(6th Generation,6G)通信系统。
图1示出本申请实施例可应用的一种无线通信系统的框图。无线通信系统包括终端11和网络设备12,网络设备可以理解为IAB节点(IAB node)。IAB节点包括DU功能部分和移动终端(Mobile Termination,MT)功能部分。依靠MT,一个接入点(即IAB node)可以找到一个上游接入点(parent IAB node),并跟上游接入点的DU建立无线连接,该无线连接被称为回传链路(backhaul link)。在一个IAB节点建立完整的回传链路后,该IAB节点打开其DU功能,DU会提供小区服务,即DU可以为终端(User Equipment,UE)11提供接入服务。也可以为下一跳IAB节点的MT提供服务。一个自回传回路包含一个宿主(donor)IAB节点(也可以称之为IAB Donor),donor IAB节点有直接相连的有线传输网。应理解,上述接入点可以称之为节点,上述上游接入点可以称之为父节点。
其中,终端11也可以称作终端设备或者UE,终端11可以是手机、平板电脑(Tablet Personal Computer)、膝上型电脑(Laptop Computer)或称为笔记本电脑、个人数字助理(Personal Digital Assistant,PDA)、掌上电脑、上网本、超级移动个人计算机(ultra-mobile personal computer,UMPC)、移动上网装置(Mobile Internet Device,MID)、可穿戴式设备(Wearable Device)或车载设备(VUE)、行人终端(PUE)等终端侧设备,可穿戴式设备包括:手环、耳机、眼镜等。需要说明的是,在本申请实施例并不限定终端11的具体类型。网络侧设备12可以是基站或核心网,其中,基站可被称为节点B、演进节点B、接入点、基收发机站(Base Transceiver Station,BTS)、无线电 基站、无线电收发机、基本服务集(Basic Service Set,BSS)、扩展服务集(Extended Service Set,ESS)、B节点、演进型B节点(eNB)、家用B节点、家用演进型B节点、WLAN接入点、WiFi节点、发送接收点(Transmitting Receiving Point,TRP)或所述领域中其他某个合适的术语,只要达到相同的技术效果,所述基站不限于特定技术词汇,需要说明的是,在本申请实施例中仅以NR系统中的基站为例,但是并不限定基站的具体类型。
参照图2,图2为一个IAB系统的中心单元(Central unit,CU)-DU结构图。在一个自回传回路中,所有的IAB节点的DU都连接到一个CU节点,由这一个节点通过F1-AP协议对DU进行配置。DU通过无线资源控制(Radio Resource Control,RRC)协议,对MT进行配置。Donor IAB节点没有MT功能部分。
为了方便理解,以下对本申请实施例涉及的一些内容进行说明:
一、DU和MT的双工(duplexing)方式。
IAB节点的DU和MT之间Duplexing方式分为半双工(Half duplex)和全双工(Full duplex)的方式。在Full duplex的情况下,DU/MT可以同时收发,也就是一个功能模块接收信息,同时另一个功能模块发送信息。因此,其在频分复用(Frequency Division Multiplex,FDM)或者空分复用(Space Division Multiplexing,SDM)的复用方式下,DU和MT的收发操作方式有以下几种:
DU发送(DU-TX)且MT-TX。即,DU配置为下行(Downlink,DL),MT配置为上行(Uplink,UL);或DU存在实际的DL发送,MT存在实际的UL发送;
DU接收(DU-RX)且MT-RX。即,DU配置为UL,MT配置为DL;或DU存在实际的UL接收,MT存在实际的DL接收;
DU-TX且MT-RX。即,DU配置为DL,MT配置为DL;或DU存在实际的DL发送,MT存在实际的DL接收;
DU-RX且MT-TX。即,DU配置为UL,MT配置为UL;或DU存在实际的UL接收,MT存在实际的UL发送。
二、复用方式。
SDM、FDM和对面板发送接收(Multiple Pannel Transmisson Reception,MPTR)三种复用方式均涉及跨跳之间的协调调度。
其中,SDM是指一个IAB节点在同样的时频资源上同时从其IAB父节点接收物理下行共享信道(Physical downlink shared channel,PDSCH)和从其子IAB节点或UE接收物理上行共享信道(Physical Uplink Shared Channel,PUSCH)、或者一个IAB节点在同样的时频资源上同时向其IAB父节点发送PUSCH和向其子IAB节点或UE发送PDSCH。
FDM是指一个IAB节点在不同的频率资源上同时从其IAB父节点接收PDSCH和从其子IAB节点或UE接收PUSCH、或者一个IAB节点在不同的频率资源上同时向其IAB父节点发送PUSCH和向其子IAB节点或UE发送PDSCH。
Full Duplex是指一个IAB节点同时从其IAB父节点接收PDSCH和向其子IAB节点或UE发送PDSCH、或者一个IAB节点在同样的时频资源上同时向其IAB父节点发送PUSCH和从其子IAB节点或UE接收PUSCH;MPTR是IAB节点使用不同的天线模块(panel)来同时分别进行收发的技术,例如一个IAB节点装备两个天线模块,其中一个模块接收时,另一个模块发送。MPTR的收发天线模块之间可以有较大的隔离度,可以一定程度上减少发送对接收造成的干扰。
如图3所示,显示了IAB网络中跨跳基于SDM/FDM/MPTR的调度关系。其中第一节点IABN(IAB node)与第三节点UE或子IAB节点(Child IAB node,C-IABN)之间的一跳(Hop)称为Hop1,由第一节点调度;第三IAB节点与第二节点之间的一跳成为Hop2,由第二节点调度。该第二节点为第一节点的IAB父节点(Parent IAB node,P-IABN),此时上述第一节点中DU和MT的之间具有以下复用方式:
复用方式1(SDM TX):MT TX,DU TX;
复用方式2(SDM RX):MT RX,DU RX;
复用方式3(FDM TX):MT TX,DU TX;
复用方式4(FDM RX):MT RX,DU RX;
复用方式5(MPTR UL):MT TX,DU RX;
复用方式6(MPTR DL):MT RX,DU TX。
三、DU的资源配置。
Donor node CU通过gNB-DU资源配置(resource configuration)信令来配置DU的资源。其中,配置每个时隙中符号的传输的方向,符号(symbol)方向包括以下至少一项:DL符号、UL符号和灵活上下行(flexible)符号。配置DU的每个类型的符号的可用情况,包括硬(hard)、软(soft)和不可用(not available)类型的配置;其中,可用情况,是以符号类型为配置单位的,具体的包括以下情况:
若第一对象被配置为hard,则IAB DU可以自主在该符号上执行对应的第一操作;该第一对象可以包括DL、UL和柔性符号(flexible symbol)中的任一项,例如,该第一对象为DL symbol时,则第一操作为发送,若第一对象为UL symbol时,第一操作为接收,若第一对象为flexible symbol时,则第一操作为发送或者接收。
若DL/UL/flexible symbol被配置为soft,若IAB DU的第一操作不影响MT的发送或接收时,IAB DU可以在该符号上执行第一操作;否则,在该符号上不执行第一操作。进一步地,IAB父节点可以通过下行控制信息(Downlink Control Information,DCI)格式(format)2-5指示IAB DU的时隙符号(soft symbol)的可用情况;
若DL/UL/flexible symbol被配置为not available,则IAB DU在该符号上不发送也不接收。
四、MT的资源配置。
MT的资源是由CU/父节点配置,通过RRC信令中的时分复用(Time Division Duplex,TDD)配置(configuration)、DCI信令等配置下来的。MT的资源类型为DL/UL/Flexible symbol。
下面结合附图,通过具体的实施例及其应用场景对本申请实施例提供的传输处理方法、装置及通信设备进行详细地说明。
请参见图4,图4是本申请实施例提供的一种传输处理方法的流程图,该方法由第一节点执行,如图4所示,包括以下步骤:
步骤401,接收第二节点发送的第一指示信息或者向第二节点发送第一 指示信息,所述第一指示信息用于指示所述第一节点的目标复用方式;
其中,所述第二节点为宿主节点或为所述第一节点的父节点。
本申请实施例中,上述第一节点可以理解为IAB节点。该目标复用方式可以理解为,第一节点中DU和MT最终传输呈现的复用状态,具体地,该目标复用方式可以包括以上复用方式1至6中的任一项。
可选地,在一些实施例中,可以由第二节点决定第一节点的复用方式,此时,第一节点的行为为:接收第二节点发送的第一指示信息。例如,第二节点可以首先在多个复用方式中确定第一节点的目标复用方式,然后基于选择的目标复用方式,向第一节点发送第一指示信息。
在一些实施例中,可以由第一节点自行决定当前的复用方式,此时,第一节点的行为为:向第二节点发送第一指示信息。例如,第一节点首先在多个复用方式中确定第一节点的目标复用方式,然后基于选择的目标复用方式,向第二节点发送第一指示信息,以通知第二节点,当前选择的目标复用方式。
本申请实施例中的复用方式可以理解为调度计划,也就是说,上述目标复用方式可以理解为目标调度计划,例如,在一些实施例中,上述第一指示信息还可以用于指示以下至少一项:DU的调度和MT的调度。换句话说,在本申请实施例中,第一指示信息可以通过指示DU的调度和/或MT的调度,基于DU的调度和/或MT的调度确定第一节点的复用方式。
本申请实施例中通过接收第二节点发送的第一指示信息或者向第二节点发送第一指示信息,所述第一指示信息用于指示所述第一节点的目标复用方式;其中,所述第二节点为宿主节点或为所述第一节点的父节点。这样,由于第一节点或者第二节点可以决定第一节点的目标复用方式,并通过第一指示信息指示第一节点的目标复用方式,从而可以通过第一指示信息动态的调整第一节点的复用方式,提高了复用传输的可靠性,与此同时提升了系统传输的效率,降低传输时延。
可选地,在一些实施例中,所述方法还包括:
按照所述目标复用方式进行传输或者调度。
可选地,第一节点按照所述目标复用方式进行传输或调度,可以理解为包括以下至少一项:
第一节点中的DU可以按照所述目标复用方式进行传输或者调度;例如,第一节点中的DU可以按照目标复用方式调用目标资源,该目标资源用于第一节点的子IAB节点或UE与第一节点之间的数据传输;
第一节点中的MT可以按照所述目标复用方式进行传输。例如,MT可以按照该目标复用方式与第一节点的父节点进行数据传输。
需要说明的是,上述第一指示信息可以是:DU的资源分配,或者MT的资源分配。如果为DU的资源分配,DU根据第一指示信息进行传输;如果是MT的资源分配,DU在不影响MT传输的情况下进行传输。
应理解,在本申请实施例中,传输可以理解为发送或接收。
需要说明的是,在本申请实施例中,上述传输或者调度可以为周期性的,也可以为非周期性的,例如,在一些实施例中,所述按照所述目标复用方式进行调度或者传输包括以下至少一项:
按照所述目标复用方式进行周期性传输或者调度;
在预设时间段内,按照所述目标复用方式进行传输或者调度。
本申请实施例中,在预设时间段内,也可以进行周期性传输或调度,也可以仅进行一次传输或调度在此不做进一步的限定。
在一些实施例中,上述第一指示信息中可以携带相关参数,以指示目标复用方式的生效时间窗。例如:如果生效时间为周期配置的,在周期1中,可以使能复用方式1,在周期2中可以使能复用方式2。或者是,复用方式自身携带周期值,可以改变复用方式的周期,也就是指示下一次复用传输对应的复用方式的生效时间窗。
可选地,在一些实施例中,上述接收第二节点发送的第一指示信息的步骤之后,所述方法还包括:
在未接收到所述第一指示信息的情况下,按照默认的复用方式进行传输或者调度。
应理解,在本申请实施例中,接收第二节点发送的指示信息为第一节点的接收行为,具体地,第一节点可以具有接收的行为动作,但是实际可能无法接收到,例如,第二节点由于网络情况放弃发送第一指示信息等,此时,可以基于默认的复用方式进行传输或者调度。
可选地,未接收到可以理解为没有接收到第一指示信息,或者接收到第一指示信息没有成功解调获得目标复用方式。
其中,默认的复用方式可以通过预先协议约定、预配置和配置中的至少一项确定的默认复用方式。例如,可以直接协议约定、预配置、配置中的一种复用方式为默认的复用方式,可以协议约定多种复用方式,然后通过预配置或配置其中的某一种方式为默认的复用方式。当然在其他实施例中,还可以采用其他的方式,在此不再一一赘述。
可选地,在所述第一节点接收所述第一指示信息的情况下,所述第一指示信息承载于物理下行控制信道(Physical downlink control channel,PDCCH)、下行控制信息DCI、媒体接入控制单元(Medium Access Control Control Element,MAC CE)、无线资源控制(Radio Resource control,RRC)、终端辅助信息(UE assistance information)中或者回传接入协议(backhaul access protocal,BAP)控制(contorl)协议数据单元(Protocol Data Unit,PDU)上。
可选地,在一些实施例中,所述第一指示信息包括与所述目标复用方式关联的目标参数,所述目标参数包括以下任一项:PDCCH的码点、物理上行控制信道(Physical Uplink Control Channel,PUCCH)的序列、PUCCH的循环偏移、PUCCH解调参考信号(Demodulation Reference Signal,DMRS)的序列、PUCCH解调参考信号DMRS的循环偏移和PUCCH解调参考信号DMRS的跳频。
本申请实施例中,可以按照协议预定义、预配置和配置中至少一种方式设置目标参数与复用方式的映射关系,然后通过在第一指示信息中携带目标参数,从而可以根据目标参数与复用方式的映射关系确定第一指示信息所指示目标复用方式。其中,预配置和配置可以由宿主节点的CU执行,也可以由IAB父节点执行,在此不做进一步的限定。
针对上述PDCCH的码点可以理解为携带的PDCCH上显示指示的比特值,例如可以通过N比特表示该码点,该码点与复用方式关联,例如,码点1与复用方式1关联,码点2与复用方式2关联。换句话说,该PDCCH的码点也可以理解为复用方式的标识值,例如,采用码点1表示复用方式1,码点2表示复用方式2。
应理解是,上述可以协议预定义、预配置或配置目标复用方式的资源配置,在一些实施例中,所述目标复用方式的资源配置包括以下至少一项:时域位置、周期指示、时域资源指示、频域资源指示、空域资源指示、传输的流数指示、波束指示(beam index)、传输配置指示、功率指示、干扰指示以及调制和编码方案(Modulation and coding scheme,MCS)指示。
针对上述时域位置包括偏移值等,例如:PDCCH中携带复用方式,预定义PDCCH与复用方式之间的时间间隔为a。若IAB节点在slot n收到PDCCH携带的调度计划,则IAB节点在slot(n+a)采用所述复用方式进行调度或传输。应理解,资源配置具体的时间粒度可以为时隙、符号、子帧或毫秒等,以上仅一时隙为例进行说明。其中,a为大于等于0的值,也可以为小数。可选地,a的值与子载波间隔相关。
针对上述空域资源指示可以为波束索引(beam index)。
针对上述功率指示具体可以用于指示功率大小或者功率占比等。
针对上述MCS指示具体可以用于指示MCS的值或MCS的范围。
针对上述干扰指示可以理解为:允许或者不允许干扰的指标信息,例如,当在不满足干扰条件时,可以按照目标复用方式进行传输或调度。
需要说明的,上述所述资源配置的生效方式可以为周期生效或者事件触发生效。
例如,在一些实施例中,若为周期性触发,则根据配置的周期在对应的时域资源上使能目标复用方式。可选地,若周期为0,则生效一次。
若为事件触发,当满足预定义/预配置/配置的生效条件时,则使能对应的复用方式;若不满足预定义/预定义/配置的复用方式的生效条件,则不改变当前的复用方式,或者,采用默认的复用方式。
可选地,在一些实施例中,所述接收第二节点发送的第一指示信息的步骤之后,所述方法还包括:
在所述第一节点不支持所述目标复用方式的情况下,向所述第二节点发送第二指示信息,所述第二指示信息用于指示终止所述目标复用方式。
当然在其他实施例中,还可以由IAB父节点对目标复用方式信息终止,例如,在一些实施例中,假设如已经配置了第一节点的复用方式,但是由于 上下跳(即第一节点与子IAB节点或UE或者IAB父节点)的无线环境变化,导致原有的复用方式不合适时,具体包括以下行为:
第一节点可以向其IAB父节点发送终止上下跳复用调度的指示;IAB父节点收到终止指示后,不使用子IAB-DU的hard资源;
IAB父节点可以向其子IAB节点发送终止上下跳复用调度的指示;子IAB节点收到终止指示后,其DU调度子IAB-MT或UE时,不影响其MT的收发行为。
可选地,所述第一指示信息和所述第二指示信息均包括以下至少一项:周期指示、时间偏移、时域资源指示、频域资源指示、资源配置的类型指示、传输的流数指示、波束指示、功率指示、干扰指示以及调制和编码方案MCS指示。
本申请实施例中,第一指示信息和第二指示信息包括的内容可以相同也可以不同,在此不做进一步的限定。上述资源配置的类型具体可以为包括以下至少一项:
第一类型,该第一类型可以理解为包括UL、DL和Flexbile其中至少之一;
第二类型,该第一类型可以理解为包括Hard、Soft和Not available其中至少之一。
可选地,在一些实施例中,所述方法还包括:
向所述第二节点发送第三指示信息,所述第三指示信息用于指示推荐复用方式,所述推荐复用方式用于确定所述目标复用方式。
本申请实施例中,上述第三指示信息可以承载在PUCCH、上行控制信息(Uplink Control Information,UCI)或MAC CE上。由于通过第一节点向第二节点上报推荐复用方式,从而可以保证目标复用方式可以很好的适用于第一节点,进而提高复用传输的可靠性。
可选地,所述第三指示信息包括以下至少一项:物理上行控制信道PUCCH的序列、PUCCH的循环偏移、PUCCH解调参考信号DMRS的序列、PUCCH解调参考信号DMRS的循环偏移、PUCCH解调参考信号DMRS的跳频和PUCCH的码点。
应理解,在上述第二节点不支持所述推荐复用方式的情况下,所述目标复用方式为默认的复用方式。
本申请实施例中,由于第一节点基于上下跳网络的情况确定推荐的复用方式,然而,第二节点可能节点需要服务多个IAB子节点,存在冲突;或者,第二父节点的父节点在调度第二节点的MT的传输,与第二节点的DU的调度存在冲突,此时则第二节点无法支持第一节点的目标复用方式,第二节点可以向第一节点指示默认的复用方式,从而保证复用传输的可靠性。
应理解,第一节点可以周期性或者通过条件触发上报第三指示信息,也就是说,在一些实施例中,上述向所述第二节点发送第三指示信息包括以下至少一项:
按照第一预设周期向所述第二节点周期发送第三指示信息;
在满足预设的上报条件的情况下,向所述第二节点发送第三指示信息;
其中,所述上报条件为预定义、预配置或配置的触发条件。
上述第一预设周期可以由协议预定义、预配置或配置确定,在此不做进一步的限定。
需要说明的是,所述目标复用方式关联的指示粒度包括以下至少一项:M个时间单元和N个频域单元;
其中,M和N均为正整数,所述时间单元为子帧、时隙、符号或周期,所述频域粒度包括物理资源块(Physical Resource Block,PRB)、子带、预编码资源块组(Precoding Resource block Group,PRG)、子载波或资源单元(Resource element,RE)。
与此同时,上述推荐复用方式关联的指示粒度也可以包括以下至少一项:M1个时间单元和N1个频域单元;
其中,M1和N1均为正整数,所述时间单元为子帧、时隙、符号或周期,所述频域粒度包括物理资源块PRB、子带、预编码资源块组PRG、子载波或资源单元RE。
可选地,在一些实施例中,所述接收第二节点发送的第一指示信息包括按照第二预设周期接收所述第二节点发送的所述第一指示信息。
可选地,在一些实施例中,所述向第二节点发送第一指示信息包括按照 第三预设周期向所述第二节点发送所述第一指示信息。
本申请实施例中,通过周期性的发送或者接收第一指示信息,从而可以动态调整复用方式,提高第一节点中MT和DU复用的可靠性。
需要说明的是,在一些实施例中,还可以由终端向对应接入的IAB节点上报IAB节点的DU调度信息,该DU调度信息用于指示IAB节点的调度。然后该IAB节点,可以基于终端上报的DU调度信息进行传输或者调度,即IAB节点中的DU可以基于该DU调度信息进行资源调度实现与UE之间的传输。
进一步地,在本申请实施例中,当由第一节点发送第一指示信息到第二节点,以通知第二节点该第一节点的复用方式时,上述第一指示信息可以包括以下任一项物理上行控制信道PUCCH的序列、PUCCH的循环偏移、PUCCH解调参考信号DMRS的序列、PUCCH解调参考信号DMRS的循环偏移、PUCCH解调参考信号DMRS的跳频和PUCCH的码点。
针对上述PUCCH的序列,可以采用序列1表示复用方式1,序列2表示复用方式2。例如,第一节点可以根据可以支持的复用方式找到对应的PUCCH的序列,将对应序列的PUCCH上报给IAB父节点,IAB父节点根据接收到PUCCH序列,以及序列和复用方式的对应关系确定目标复用方式。
针对上述PUCCH的码点可以理解为PUCCH中显示携带N bit信息指示复用方式。协议预定义/预配置/配置各复用方式与码点的映射关系,副IAB节点可以根据接收到PUCCH的码点确定第一节点指示的目标复用方式。其中,预配置/配置可以为宿主节点CU或者IAB父节点配置。例如,第一节点根据可接受的复用方式及映射关系找到对应的码点,将对应码点发送给IAB父节点,IAB父节点根据接收的码点,以及码点和复用方式的映射关系,得到对应的复用方式。
上述UCI可以通过PUCCH传输,也可以复用在PUSCH上,在此不做进一步的限定。
为了更好的理解本申请的实现,以下通过一些实例对本申请的实现过程进行详细说明。
实施例一,具体包括以下流程:
1、预定义复用方式与PUCCH承载的信息的码点的映射关系,
2、IAB节点根据预定义/(预)配置的方式,周期/基于事件触发上报可接受的复用方式列表,该复用方式列表包括一个或者多个复用方式。其中,IAB节点在MAC CE/PUCCH中携带所述复用方式列表。或者通过UE assitance information上报所述复用方式列表。
3、IAB节点根据支持的复用方式列表,以及复用方式与PUCCH承载信息的码点的映射关系,发送PUCCH给IAB父节点/宿主节点。
4、IAB父节点/宿主节点根据接收的PUCCH的信息,以及复用方式与PUCCH承载的信息的码点的映射关系,获取对应的复用方式列表。IAB父节点决定复用方式,在PDCCH中携带复用方式指示。
5、IAB节点在时隙n接收PDCCH信令,获取复用方式信息,以及复用方式的生效时间窗口。IAB在时隙n+a采用所述复用方式传输资源。
实施例二,具体包括以下流程:
1、IAB父节点/宿主节点配置调度计划为周期上报,并配置调度计划的发送周期。
2、IAB节点在配置的上报周期的资源中,通过MAC CE上报调度计划列表给IAB父节点。
3、IAB父节点确定调度计划,在PDCCH中携带调度计划。调度计划包括其生效的时间窗口。
4、IAB节点根据PDCCH中指示的调度计划,在调度计划的生效窗口中根据指示的调度计划进行调度。
应理解,在本实施例中,IAB节点周期上报调度计划,IAB节点动态指示调度计划。
请参见图5,图5是本申请实施例提供的另一种传输处理方法的流程图,该方法应用于第二节点执行,如图5所示,包括以下步骤:
步骤501,接收第一节点发送的第一指示信息或者向第一节点发送第一指示信息,所述第一指示信息用于指示所述第一节点的目标复用方式;
其中,所述第二节点为宿主节点或为所述第一节点的父节点。
可选地,所述第一指示信息还用于指示以下至少一项:分布式单元DU 的调度和移动终端MT的调度。
可选地,在所述第一节点接收所述第一指示信息的情况下,所述第一指示信息承载于PDCCH、下行控制信息DCI、媒体接入控制单元MAC CE、无线资源控制RRC或回传接入协议控制协议数据单元上。
可选地,所述第一指示信息包括与所述目标复用方式关联的目标参数,所述目标参数包括以下任一项:PDCCH的码点、物理上行控制信道PUCCH的序列、PUCCH的循环偏移、PUCCH解调参考信号DMRS的序列、PUCCH解调参考信号DMRS的循环偏移和PUCCH解调参考信号DMRS的跳频。
可选地,所述目标复用方式的资源配置包括以下至少一项:时域位置、周期指示、时域资源指示、频域资源指示、空域资源指示、传输的流数指示、波束指示、传输配置指示、功率指示、干扰指示以及调制和编码方案MCS指示。
可选地,所述接收第一节点发送的第一指示信息的步骤之后,所述方法还包括:
在第二节点不支持所述目标复用方式的情况下,向所述第一节点发送第四指示信息,所述第四指示信息用于指示终止所述目标复用方式;其中,所述第二节点为宿主节点或所述第一节点的父节点。
可选地,所述第一指示信息和所述第四指示信息均包括以下至少一项:周期指示、时间偏移、时域资源指示、频域资源指示、资源配置的类型指示、传输的流数指示、波束指示、功率指示、干扰指示以及调制和编码方案MCS指示。
可选地,所述方法还包括:
接收所述第一节点发送的第三指示信息,所述第三指示信息用于指示推荐复用方式,所述推荐复用方式用于确定所述目标复用方式。
可选地,所述第三指示信息包括以下至少一项:物理上行控制信道PUCCH的序列、PUCCH的循环偏移、PUCCH解调参考信号DMRS的序列、PUCCH解调参考信号DMRS的循环偏移、PUCCH解调参考信号DMRS的跳频和PUCCH的码点。
可选地,在第二节点不支持所述推荐复用方式的情况下,所述目标复用 方式为默认的复用方式;其中,所述第二节点为宿主节点或所述第一节点的父节点。
可选地,接收所述第一节点发送的第三指示信息包括以下至少一项:
按照第一预设周期接收所述第一节点发送的第三指示信息;
在满足预设的上报条件的情况下,接收所述第一节点发送的第三指示信息;
其中,所述上报条件为预定义、预配置或配置的触发条件。
可选地,所述目标复用方式关联的指示粒度包括以下至少一项:M个时间单元和N个频域单元;
其中,M和N均为正整数,所述时间单元为子帧、时隙、符号或周期,所述频域粒度包括物理资源块PRB、子带、预编码资源块组PRG、子载波或资源单元RE。
需要说明的是,本实施例作为图4所示的实施例对应的第二节点的实施方式,其具体的实施方式可以参见图4所示的实施例相关说明,以及达到相同的有益效果,为了避免重复说明,此处不再赘述。
需要说明的是,本申请实施例提供的传输处理方法,执行主体可以为传输处理装置,或者,该传输处理装置中的用于执行传输处理方法的控制模块。本申请实施例中以传输处理装置执行传输处理方法为例,说明本申请实施例提供的传输处理装置。
请参见图6,图6是本申请实施例提供的一种传输处理装置的结构图,如图6所示,传输处理装置600包括:
第一收发模块601,用于接收第二节点发送的第一指示信息或者向第二节点发送第一指示信息,所述第一指示信息用于指示第一节点的目标复用方式;
其中,所述第二节点为宿主节点或为所述第一节点的父节点。
可选地,所述第一指示信息还用于指示以下至少一项:分布式单元DU的调度和移动终端MT的调度。
可选地,第一传输模块601还用于:按照所述目标复用方式进行传输或者调度。
可选地,所述第一传输模块601具体用于执行以下至少一项:
按照所述目标复用方式进行周期性传输或者调度;
在预设时间段内,按照所述目标复用方式进行传输或者调度。
可选地,所述第一传输模块601具体用于:在未接收到所述第一指示信息的情况下,按照默认的复用方式进行传输或者调度。
可选地,在所述第一节点接收所述第一指示信息的情况下,所述第一指示信息承载于PDCCH、下行控制信息DCI、媒体接入控制单元MAC CE、无线资源控制RRC或回传接入协议控制协议数据单元上。
可选地,所述第一指示信息包括与所述目标复用方式关联的目标参数,所述目标参数包括以下任一项:PDCCH的码点、物理上行控制信道PUCCH的序列、PUCCH的循环偏移、PUCCH解调参考信号DMRS的序列、PUCCH解调参考信号DMRS的循环偏移和PUCCH解调参考信号DMRS的跳频。
可选地,所述目标复用方式的资源配置包括以下至少一项:时域位置、周期指示、时域资源指示、频域资源指示、空域资源指示、传输的流数指示、波束指示、传输配置指示、功率指示、干扰指示以及调制和编码方案MCS指示。
可选地,所述资源配置的生效方式为周期生效或者事件触发生效。
可选地,所述接收第二节点发送的第一指示信息的步骤之后,所述方法还包括:
在所述第一节点不支持所述目标复用方式的情况下,向所述第二节点发送第二指示信息,所述第二指示信息用于指示终止所述目标复用方式。
可选地,所述第一指示信息和所述第二指示信息均包括以下至少一项:周期指示、时间偏移、时域资源指示、频域资源指示、资源配置的类型指示、传输的流数指示、波束指示、功率指示、干扰指示以及调制和编码方案MCS指示。
可选地,所述第一传输模块601还用于:向所述第二节点发送第三指示信息,所述第三指示信息用于指示推荐复用方式,所述推荐复用方式用于确定所述目标复用方式。
可选地,所述第三指示信息包括以下至少一项:物理上行控制信道 PUCCH的序列、PUCCH的循环偏移、PUCCH解调参考信号DMRS的序列、PUCCH解调参考信号DMRS的循环偏移、PUCCH解调参考信号DMRS的跳频和PUCCH的码点。
可选地,所述第二节点不支持所述推荐复用方式的情况下,所述目标复用方式为默认的复用方式。
可选地,所述第一传输模块601具体用于执行以下至少一项:
按照第一预设周期向所述第二节点周期发送第三指示信息;
在满足预设的上报条件的情况下,向所述第二节点发送第三指示信息;
其中,所述上报条件为预定义、预配置或配置的触发条件。
可选地,所述目标复用方式关联的指示粒度包括以下至少一项:M个时间单元和N个频域单元;
其中,M和N均为正整数,所述时间单元为子帧、时隙、符号或周期,所述频域粒度包括物理资源块PRB、子带、预编码资源块组PRG、子载波或资源单元RE。
可选地,所述第一传输模块601具体用于:按照第二预设周期接收所述第二节点发送的所述第一指示信息。
可选地,所述第一传输模块601具体用于:按照第三预设周期向所述第二节点发送所述第一指示信息。
本申请实施例提供的传输处理装置能够实现图4的方法实施例中各个过程,为避免重复,这里不再赘述。
请参见图7,图7是本申请实施例提供的一种传输处理装置的结构图,如图7所示,传输处理装置700包括:
第二收发模块701,用于接收第一节点发送的第一指示信息或者向第一节点发送第一指示信息,所述第一指示信息用于指示所述第一节点的目标复用方式。
可选地,所述第一指示信息还用于指示以下至少一项:分布式单元DU的调度和移动终端MT的调度。
可选地,在所述第一节点接收所述第一指示信息的情况下,所述第一指示信息承载于PDCCH、下行控制信息DCI、媒体接入控制单元MAC CE、无 线资源控制RRC或回传接入协议控制协议数据单元上。
可选地,所述第一指示信息包括与所述目标复用方式关联的目标参数,所述目标参数包括以下任一项:PDCCH的码点、物理上行控制信道PUCCH的序列、PUCCH的循环偏移、PUCCH解调参考信号DMRS的序列、PUCCH解调参考信号DMRS的循环偏移和PUCCH解调参考信号DMRS的跳频。
可选地,所述目标复用方式的资源配置包括以下至少一项:时域位置、周期指示、时域资源指示、频域资源指示、空域资源指示、传输的流数指示、波束指示、传输配置指示、功率指示、干扰指示以及调制和编码方案MCS指示。
可选地,所述第二收发模块701还用于:在第二节点不支持所述目标复用方式的情况下,向所述第一节点发送第四指示信息,所述第四指示信息用于指示终止所述目标复用方式;其中,所述第二节点为宿主节点或所述第一节点的父节点。
可选地,所述第一指示信息和所述第四指示信息均包括以下至少一项:周期指示、时间偏移、时域资源指示、频域资源指示、资源配置的类型指示、传输的流数指示、波束指示、功率指示、干扰指示以及调制和编码方案MCS指示。
可选地,所述第二收发模块701还用于:接收所述第一节点发送的第三指示信息,所述第三指示信息用于指示推荐复用方式,所述推荐复用方式用于确定所述目标复用方式。
可选地,所述第三指示信息包括以下至少一项:物理上行控制信道PUCCH的序列、PUCCH的循环偏移、PUCCH解调参考信号DMRS的序列、PUCCH解调参考信号DMRS的循环偏移、PUCCH解调参考信号DMRS的跳频和PUCCH的码点。
可选地,在第二节点不支持所述推荐复用方式的情况下,所述目标复用方式为默认的复用方式;其中,所述第二节点为宿主节点或所述第一节点的父节点。
可选地,所述第二收发模块701具体用于执行以下至少一项:
按照第一预设周期接收所述第一节点发送的第三指示信息;
在满足预设的上报条件的情况下,接收所述第一节点发送的第三指示信息;
其中,所述上报条件为预定义、预配置或配置的触发条件。
可选地,所述目标复用方式关联的指示粒度包括以下至少一项:M个时间单元和N个频域单元;
其中,M和N均为正整数,所述时间单元为子帧、时隙、符号或周期,所述频域粒度包括物理资源块PRB、子带、预编码资源块组PRG、子载波或资源单元RE。
本申请实施例提供的传输处理装置能够实现图5的方法实施例中各个过程,为避免重复,这里不再赘述。
本申请实施例中的传输处理装置可以是装置,也可以是终端中的部件、集成电路、或芯片。该装置可以是移动终端,也可以为非移动终端。示例性的,移动终端可以包括但不限于上述所列举的终端11的类型,非移动终端可以为服务器、网络附属存储器(Network Attached Storage,NAS)、个人计算机(personal computer,PC)、电视机(television,TV)、柜员机或者自助机等,本申请实施例不作具体限定。
本申请实施例中的传输处理装置可以为具有操作系统的装置。该操作系统可以为安卓(Android)操作系统,可以为ios操作系统,还可以为其他可能的操作系统,本申请实施例不作具体限定。
本申请实施例提供的传输处理装置能够实现图4至图5的方法实施例实现的各个过程,并达到相同的技术效果,为避免重复,这里不再赘述。
可选的,如图8所示,本申请实施例还提供一种通信设备800,包括处理器801,存储器802,存储在存储器802上并可在所述处理器801上运行的程序或指令,该程序或指令被处理器801执行时实现上述传输处理方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
具体地,本申请实施例还提供了一种通信设备。如图9所示,该网络设备900包括:天线901、射频装置902、基带装置903。天线901与射频装置902连接。在上行方向上,射频装置902通过天线901接收信息,将接收的信息发送给基带装置903进行处理。在下行方向上,基带装置903对要发送 的信息进行处理,并发送给射频装置902,射频装置902对收到的信息进行处理后经过天线901发送出去。
上述频带处理装置可以位于基带装置903中,以上实施例中通信设备执行的方法可以在基带装置903中实现,该基带装置903包括处理器904和存储器905。
基带装置903例如可以包括至少一个基带板,该基带板上设置有多个芯片,如图9所示,其中一个芯片例如为处理器904,与存储器905连接,以调用存储器905中的程序,执行以上方法实施例中所示的网络设备操作。
该基带装置903还可以包括网络接口906,用于与射频装置902交互信息,该接口例如为通用公共无线接口(common public radio interface,CPRI)。
具体地,本申请实施例的通信设备还包括:存储在存储器905上并可在处理器904上运行的指令或程序,处理器904调用存储器905中的指令或程序执行图6或7所示各模块执行的方法,并达到相同的技术效果,为避免重复,故不在此赘述。
本申请实施例还提供一种可读存储介质,所述可读存储介质上存储有程序或指令,该程序或指令被处理器执行时实现上述传输处理方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
其中,所述处理器为上述实施例中所述的通信设备中的处理器。所述可读存储介质,包括计算机可读存储介质,如计算机只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等。
本申请实施例另提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行网络设备程序或指令,实现上述传输处理方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片、系统芯片、芯片系统或片上系统芯片等。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者 装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。此外,需要指出的是,本申请实施方式中的方法和装置的范围不限按示出或讨论的顺序来执行功能,还可包括根据所涉及的功能按基本同时的方式或按相反的顺序来执行功能,例如,可以按不同于所描述的次序来执行所描述的方法,并且还可以添加、省去、或组合各种步骤。另外,参照某些示例所描述的特征可在其他示例中被组合。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器,空调器,或者基站等)执行本申请各个实施例所述的方法。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本公开的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接, 可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本公开各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本公开的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本公开各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,是可以通过计算机程序来控制相关的硬件来完成,所述的程序可存储于一计算机可读取存储介质中,该程序在执行时,可包括如上述各方法的实施例的流程。其中,所述的存储介质可为磁碟、光盘、ROM或RAM等。
上面结合附图对本申请的实施例进行了描述,但是本申请并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本申请的启示下,在不脱离本申请宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本申请的保护之内。

Claims (38)

  1. 一种传输处理方法,由第一节点执行,其中,所述方法包括:
    接收第二节点发送的第一指示信息或者向第二节点发送第一指示信息,所述第一指示信息用于指示所述第一节点的目标复用方式;
    其中,所述第二节点为宿主节点或为所述第一节点的父节点。
  2. 根据权利要求1所述的方法,其中,所述第一指示信息还用于指示以下至少一项:分布式单元DU的调度和移动终端MT的调度。
  3. 根据权利要求1所述的方法,其中,所述方法还包括:
    按照所述目标复用方式进行传输或者调度。
  4. 根据权利要求3所述的方法,其中,所述按照所述目标复用方式进行调度或者传输包括以下至少一项:
    按照所述目标复用方式进行周期性传输或者调度;
    在预设时间段内,按照所述目标复用方式进行传输或者调度。
  5. 根据权利要求1所述的方法,其中,所述接收第二节点发送的第一指示信息的步骤之后,所述方法还包括:
    在未接收到所述第一指示信息的情况下,按照默认的复用方式进行传输或者调度。
  6. 根据权利要求1所述的方法,其中,在所述第一节点接收所述第一指示信息的情况下,所述第一指示信息承载于物理下行控制信道PDCCH、下行控制信息DCI、媒体接入控制单元MAC CE、无线资源控制RRC或回传接入协议控制协议数据单元上。
  7. 根据权利要求6所述的方法,其中,所述第一指示信息包括与所述目标复用方式关联的目标参数,所述目标参数包括以下任一项:PDCCH的码点、物理上行控制信道PUCCH的序列、PUCCH的循环偏移、PUCCH解调参考信号DMRS的序列、PUCCH解调参考信号DMRS的循环偏移和PUCCH解调参考信号DMRS的跳频。
  8. 根据权利要求7所述的方法,其中,所述目标复用方式的资源配置包括以下至少一项:时域位置、周期指示、时域资源指示、频域资源指示、空 域资源指示、传输的流数指示、波束指示、传输配置指示、功率指示、干扰指示以及调制和编码方案MCS指示。
  9. 根据权利要求8所述的方法,其中,所述资源配置的生效方式为周期生效或者事件触发生效。
  10. 根据权利要求1所述的方法,其中,所述接收第二节点发送的第一指示信息的步骤之后,所述方法还包括:
    在所述第一节点不支持所述目标复用方式的情况下,向所述第二节点发送第二指示信息,所述第二指示信息用于指示终止所述目标复用方式。
  11. 根据权利要求10所述的方法,其中,所述第一指示信息和所述第二指示信息均包括以下至少一项:周期指示、时间偏移、时域资源指示、频域资源指示、资源配置的类型指示、传输的流数指示、波束指示、功率指示、干扰指示以及调制和编码方案MCS指示。
  12. 根据权利要求1所述的方法,其中,所述方法还包括:
    向所述第二节点发送第三指示信息,所述第三指示信息用于指示推荐复用方式,所述推荐复用方式用于确定所述目标复用方式。
  13. 根据权利要求12所述的方法,其中,所述第三指示信息包括以下至少一项:物理上行控制信道PUCCH的序列、PUCCH的循环偏移、PUCCH解调参考信号DMRS的序列、PUCCH解调参考信号DMRS的循环偏移、PUCCH解调参考信号DMRS的跳频和PUCCH的码点。
  14. 根据权利要求12所述的方法,其中,在所述第二节点不支持所述推荐复用方式的情况下,所述目标复用方式为默认的复用方式。
  15. 根据权利要求12所述的方法,其中,向所述第二节点发送第三指示信息包括以下至少一项:
    按照第一预设周期向所述第二节点周期发送第三指示信息;
    在满足预设的上报条件的情况下,向所述第二节点发送第三指示信息;
    其中,所述上报条件为预定义、预配置或配置的触发条件。
  16. 根据权利要求1所述的方法,其中,所述目标复用方式关联的指示粒度包括以下至少一项:M个时间单元和N个频域单元;
    其中,M和N均为正整数,所述时间单元为子帧、时隙、符号或周期, 所述频域粒度包括物理资源块PRB、子带、预编码资源块组PRG、子载波或资源单元RE。
  17. 根据权利要求1所述的方法,其中,所述接收第二节点发送的第一指示信息包括按照第二预设周期接收所述第二节点发送的所述第一指示信息。
  18. 根据权利要求1所述的方法,其中,所述向第二节点发送第一指示信息包括按照第三预设周期向所述第二节点发送所述第一指示信息。
  19. 一种传输处理方法,由第二节点执行,其中,所述方法包括:
    接收第一节点发送的第一指示信息或者向第一节点发送第一指示信息,所述第一指示信息用于指示所述第一节点的目标复用方式;
    其中,所述第二节点为宿主节点或为所述第一节点的父节点。
  20. 根据权利要求19所述的方法,其中,所述第一指示信息还用于指示以下至少一项:分布式单元DU的调度和移动终端MT的调度。
  21. 根据权利要求19所述的方法,其中,在向所述第一节点发送所述第一指示信息的情况下,所述第一指示信息承载于PDCCH、下行控制信息DCI或媒体接入控制单元MAC CE、无线资源控制RRC或回传接入协议控制协议数据单元上。
  22. 根据权利要求21所述的方法,其中,所述第一指示信息包括与所述目标复用方式关联的目标参数,所述目标参数包括以下任一项:PDCCH的码点、物理上行控制信道PUCCH的序列、PUCCH的循环偏移、PUCCH解调参考信号DMRS的序列、PUCCH解调参考信号DMRS的循环偏移和PUCCH解调参考信号DMRS的跳频。
  23. 根据权利要求22所述的方法,其中,所述目标复用方式的资源配置包括以下至少一项:时域位置、周期指示、时域资源指示、频域资源指示、空域资源指示、传输的流数指示、波束指示、传输配置指示、功率指示、干扰指示以及调制和编码方案MCS指示。
  24. 根据权利要求19所述的方法,其中,所述接收第一节点发送的第一指示信息的步骤之后,所述方法还包括:
    在第二节点不支持所述目标复用方式的情况下,向所述第一节点发送第四指示信息,所述第四指示信息用于指示终止所述目标复用方式;其中,所 述第二节点为宿主节点或所述第一节点的父节点。
  25. 根据权利要求24所述的方法,其中,所述第一指示信息和所述第四指示信息均包括以下至少一项:周期指示、时间偏移、时域资源指示、频域资源指示、资源配置的类型指示、传输的流数指示、波束指示、功率指示、干扰指示以及调制和编码方案MCS指示。
  26. 根据权利要求19所述的方法,其中,所述方法还包括:
    接收所述第一节点发送的第三指示信息,所述第三指示信息用于指示推荐复用方式,所述推荐复用方式用于确定所述目标复用方式。
  27. 根据权利要求26所述的方法,其中,所述第三指示信息包括以下至少一项:物理上行控制信道PUCCH的序列、PUCCH的循环偏移、PUCCH解调参考信号DMRS的序列、PUCCH解调参考信号DMRS的循环偏移、PUCCH解调参考信号DMRS的跳频和PUCCH的码点。
  28. 根据权利要求26所述的方法,其中,在第二节点不支持所述推荐复用方式的情况下,所述目标复用方式为默认的复用方式;其中,所述第二节点为宿主节点或所述第一节点的父节点。
  29. 根据权利要求26所述的方法,其中,接收所述第一节点发送的第三指示信息包括以下至少一项:
    按照第一预设周期接收所述第一节点发送的第三指示信息;
    在满足预设的上报条件的情况下,向接收所述第一节点发送的第三指示信息;
    其中,所述上报条件为预定义、预配置或配置的触发条件。
  30. 根据权利要求19所述的方法,其中,所述目标复用方式关联的指示粒度包括以下至少一项:M个时间单元和N个频域单元;
    其中,M和N均为正整数,所述时间单元为子帧、时隙、符号或周期,所述频域粒度包括物理资源块PRB、子带、预编码资源块组PRG、子载波或资源单元RE。
  31. 一种传输处理装置,包括:
    第一收发模块,用于接收第二节点发送的第一指示信息或者向第二节点发送第一指示信息,所述第一指示信息用于指示第一节点的目标复用方式;
    其中,所述第二节点为宿主节点或为所述第一节点的父节点。
  32. 根据权利要求31所述的装置,其中,所述第一指示信息还用于指示以下至少一项:分布式单元DU的调度和分布式单元MT的调度。
  33. 一种传输处理装置,包括:
    第二收发模块,用于接收第一节点发送的第一指示信息或者向第一节点发送第一指示信息,所述第一指示信息用于指示所述第一节点的目标复用方式。
  34. 根据权利要求33所述的装置,其中,所述第一指示信息还用于指示以下至少一项:分布式单元DU的调度和移动终端MT的调度。
  35. 一种通信设备,包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的程序,其中,所述程序被所述处理器执行时,实现如权利要求1至18中任一项所述的传输处理方法中的步骤,或者实现如权利要求19至30中任一项所述的传输处理方法中的步骤。
  36. 一种可读存储介质,其中,所述可读存储介质上存储程序或指令,所述程序或指被处理器执行时实现如权利要求1至18中任一项所述的传输处理方法中的步骤,或者实现如权利要求19至30中任一项所述的传输处理方法的步骤。
  37. 一种芯片,包括处理器和通信接口,其中,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现如权利要求1至18中任一项所述的传输处理方法的步骤,或者实现如权利要求19至30中任一项所述的传输处理方法的步骤。
  38. 一种计算机程序产品,其中,所述计算机程序产品被存储在非瞬态的存储介质中,所述计算机程序产品被至少一个处理器执行以实现如权利要求1至18中任一项所述的传输处理方法的步骤,或者实现如权利要求19至30中任一项所述的传输处理方法的步骤。
PCT/CN2021/132001 2020-11-23 2021-11-22 传输处理方法、装置及通信设备 WO2022105904A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP21894051.8A EP4250843A4 (en) 2020-11-23 2021-11-22 TRANSMISSION PROCESSING METHOD AND APPARATUS, AND COMMUNICATION DEVICE
JP2023531105A JP2023551454A (ja) 2020-11-23 2021-11-22 伝送処理方法、装置及び通信機器
US18/315,657 US20230284209A1 (en) 2020-11-23 2023-05-11 Transmission processing method and apparatus, and communication device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011323544.3A CN114531697A (zh) 2020-11-23 2020-11-23 传输处理方法、装置及通信设备
CN202011323544.3 2020-11-23

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/315,657 Continuation US20230284209A1 (en) 2020-11-23 2023-05-11 Transmission processing method and apparatus, and communication device

Publications (1)

Publication Number Publication Date
WO2022105904A1 true WO2022105904A1 (zh) 2022-05-27

Family

ID=81618748

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/132001 WO2022105904A1 (zh) 2020-11-23 2021-11-22 传输处理方法、装置及通信设备

Country Status (5)

Country Link
US (1) US20230284209A1 (zh)
EP (1) EP4250843A4 (zh)
JP (1) JP2023551454A (zh)
CN (1) CN114531697A (zh)
WO (1) WO2022105904A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111096027A (zh) * 2018-08-07 2020-05-01 Lg电子株式会社 在无线通信系统中操作节点的方法和使用该方法的装置
WO2020143828A1 (zh) * 2019-01-11 2020-07-16 华为技术有限公司 资源配置的方法和装置
CN111465110A (zh) * 2017-08-10 2020-07-28 Oppo广东移动通信有限公司 传输数据的方法和终端设备
US20200336890A1 (en) * 2019-04-19 2020-10-22 Qualcomm Incorporated Supporting spatial division multiplexing operation in integrated access and backhaul networks
CN111901871A (zh) * 2020-04-09 2020-11-06 中兴通讯股份有限公司 一种资源配置方法、装置、通信节点及存储介质

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115379544A (zh) * 2018-08-03 2022-11-22 中兴通讯股份有限公司 功率确定方法、网络设备和存储介质
CN110831187B (zh) * 2018-08-10 2022-04-22 成都华为技术有限公司 一种资源配置的方法及装置
CN115664612A (zh) * 2019-10-15 2023-01-31 中兴通讯股份有限公司 传输方法、装置、第一通信节点、第二通信节点及介质
CN111817834B (zh) * 2020-05-14 2023-06-09 北京中电飞华通信有限公司 无线通信系统及其时域、频域资源复用方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111465110A (zh) * 2017-08-10 2020-07-28 Oppo广东移动通信有限公司 传输数据的方法和终端设备
CN111096027A (zh) * 2018-08-07 2020-05-01 Lg电子株式会社 在无线通信系统中操作节点的方法和使用该方法的装置
WO2020143828A1 (zh) * 2019-01-11 2020-07-16 华为技术有限公司 资源配置的方法和装置
CN111436145A (zh) * 2019-01-11 2020-07-21 华为技术有限公司 资源配置的方法和装置
US20200336890A1 (en) * 2019-04-19 2020-10-22 Qualcomm Incorporated Supporting spatial division multiplexing operation in integrated access and backhaul networks
CN111901871A (zh) * 2020-04-09 2020-11-06 中兴通讯股份有限公司 一种资源配置方法、装置、通信节点及存储介质

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4250843A4 *

Also Published As

Publication number Publication date
JP2023551454A (ja) 2023-12-08
EP4250843A1 (en) 2023-09-27
CN114531697A (zh) 2022-05-24
EP4250843A4 (en) 2024-04-17
US20230284209A1 (en) 2023-09-07

Similar Documents

Publication Publication Date Title
US10856292B2 (en) Communication method and base station
US10313073B2 (en) Transmission of reference signals
JP7063982B2 (ja) スロットごとに複数のスイッチングポイントを伴うスロットフォーマットを構成するためのシステム及び方法
WO2018210243A1 (zh) 一种通信方法和装置
CN113330788B (zh) 用于在功率节省模式下控制信道接收的系统和方法
CN110546910B (zh) 参考信号发送方法、信道测量方法、无线基站及用户终端
WO2020088088A1 (zh) 一种数据传输方法及终端设备
JP2020523902A (ja) 通信方法、ネットワークデバイス、およびユーザ機器
WO2022028543A1 (zh) 资源复用指示方法、装置和中继节点
WO2022042689A1 (zh) 传输方法、装置、通信设备及终端
US11115174B2 (en) Base station, user terminal, radio communication system, and communication control method
US12120648B2 (en) Method and device for processing sidelink operation
JP2017528999A (ja) Comp jt通信方法および基地局
WO2020143827A1 (zh) 一种控制信息的传输方法及装置
WO2022105904A1 (zh) 传输处理方法、装置及通信设备
JP2015037296A (ja) 無線端末装置、無線基地局装置、無線通信システムおよび無線通信方法
US20200022220A1 (en) Information transmission method, processing method, and apparatus
CN114503721A (zh) 一种混合自动重传请求反馈方法及装置
JP2018517349A (ja) データ伝送方法及び装置
EP4391679A1 (en) Transmission method for physical downlink control channel, and terminal and network-side device
WO2023193233A1 (en) Method and apparatus for subband utilization in full duplex system
WO2024169310A1 (zh) 一种通信方法和装置
US20230199593A1 (en) Device and Method for Bandwidth Part Switch at Terminal Devices
EP4040860A1 (en) Energy saving information transmission method, and terminal and network side device
JP2016086439A (ja) 基準信号の送信

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21894051

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023531105

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 202317041997

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021894051

Country of ref document: EP

Effective date: 20230623