WO2020143827A1 - 一种控制信息的传输方法及装置 - Google Patents

一种控制信息的传输方法及装置 Download PDF

Info

Publication number
WO2020143827A1
WO2020143827A1 PCT/CN2020/071664 CN2020071664W WO2020143827A1 WO 2020143827 A1 WO2020143827 A1 WO 2020143827A1 CN 2020071664 W CN2020071664 W CN 2020071664W WO 2020143827 A1 WO2020143827 A1 WO 2020143827A1
Authority
WO
WIPO (PCT)
Prior art keywords
downlink reference
information
reference signals
base station
timer
Prior art date
Application number
PCT/CN2020/071664
Other languages
English (en)
French (fr)
Inventor
吴霁
刘建琴
张佳胤
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP20738864.6A priority Critical patent/EP3910988B1/en
Priority to BR112021013695-9A priority patent/BR112021013695A2/pt
Publication of WO2020143827A1 publication Critical patent/WO2020143827A1/zh
Priority to US17/371,957 priority patent/US11902814B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/14Spectrum sharing arrangements between different networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0808Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0096Indication of changes in allocation
    • H04L5/0098Signalling of the activation or deactivation of component carriers, subcarriers or frequency bands
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/30Connection release
    • H04W76/38Connection release triggered by timers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present application relates to the field of communication technology, and in particular, to a method and device for transmitting control information.
  • UE user equipment
  • downlink reference signals configured by the base station
  • channel state information reference signal channel-state information-reference signal
  • CSI-RS channel-state information-reference signal
  • the UE uses the downlink reference signal to estimate the link status between it and the base station.
  • RSRP reference signal received power
  • RSRQ reference signal quality
  • FIG. 1 is a schematic diagram of a wireless link detection process in an LTE system.
  • the process of radio link monitoring (RLM) in the LTE system includes the following process.
  • the UE continuously monitors that the RSRP/RSRQ of the N310 CSI-RSs is lower than the threshold, the timer T310 is started. If there are consecutive N311 CSI-RS signals whose RSRP/RSRQ is higher than the threshold before the timer T310 expires, the wireless link between the UE and the base station is considered to have been restored; otherwise, the wireless link is considered to have failed and the base station You need to reconnect with the UE.
  • N310 and N311 are the counter or the corresponding value of the counter.
  • the value of N310 can be 200 milliseconds (ms), and the value of N311 can be 100 ms.
  • T310 is a timer. In some cases, T310 can also indicate the value corresponding to the timer.
  • the order of T310 can be 1 second.
  • the RLM process in the 5G system is similar to the LTE system. Furthermore, the 5G system supports unlicensed band communication. Devices working in unlicensed bands can detect whether the channel is free without authorization. When the device detects that the channel is idle, it can access the channel to work. In order to ensure coexistence with other devices operating in unlicensed frequency bands, the device uses a channel competition access mechanism that listens before speaking (LBT: Listen-Before-Talk). Due to LBT restrictions, the periodically configured CSI-RS and SS/PBCH blocks cannot be guaranteed to be sent on preset time-frequency resources, and the RLM process may not work properly.
  • LBT Listen-Before-Talk
  • Embodiments of the present application provide a control information transmission method. Through the method described in the embodiments of the present application, the UE can obtain a more accurate RLM result.
  • an embodiment of the present application provides a method for transmitting control information.
  • the method includes: the user equipment UE sends report information to the base station, where the report information includes the detection result of one or more downlink reference signals of the UE or the status of the timer/counter corresponding to the one or more downlink reference signals;
  • the UE receives feedback information from the base station, and the feedback information includes transmission status information of the one or more downlink reference signals.
  • the UE can obtain a more accurate RLM result, avoid unnecessary reconnection, thereby reducing UE energy consumption and saving system resource overhead.
  • the UE when the UE does not detect at least one downlink reference signal or the energy of at least one detected downlink reference signal is lower than a threshold, the UE sends report information to the base station.
  • the reported information may be represented in bitmap form or 1-bit information.
  • the 1-bit information is used to indicate whether the UE has a downlink reference signal that has not been received correctly, or to indicate whether the timer/counter corresponding to the one or more downlink reference signals start up.
  • the transmission state information of the one or more downlink reference signals includes that at least one downlink reference signal of the one or more downlink reference signals is not transmitted due to LBT failure.
  • the method further includes: the UE updating a timer/counter corresponding to the one or more downlink reference signals.
  • the UE can perform more accurate timing/counting and communicate according to the timing/counting results. In other words, the UE can use more accurate RLM results to avoid unnecessary reconnection.
  • the method further includes the UE receiving configuration information from the base station, where the configuration information carries parameters for updating a timer/counter corresponding to one or more downlink reference signals.
  • timer/counter parameters for the UE for different services.
  • the UE can perform timing/counting in different service scenarios more accurately.
  • the reference signals configured by UEs in different groups are affected by LBT to different degrees. Therefore, the RLM parameters of UEs in different groups should also be configured differently to compensate for different levels of different reference signals.
  • inventions of the present application provide a control information transmission method.
  • the method includes: the base station receives report information from user equipment UE, the report information includes the detection result of one or more downlink reference signals of the UE or the status of the timer/counter corresponding to the one or more downlink reference signals;
  • the base station sends feedback information to the UE, where the feedback information includes transmission status information of the one or more downlink reference signals.
  • the UE can obtain a more accurate RLM result, avoid unnecessary reconnection, thereby reducing UE energy consumption and saving system resource overhead.
  • the base station when the UE does not detect at least one downlink reference signal or the energy of at least one detected downlink reference signal is lower than a threshold, the base station receives report information from the UE.
  • the reported information may be represented in bitmap form or 1-bit information.
  • the 1-bit information is used to indicate whether the UE has a downlink reference signal that has not been received correctly, or to indicate whether the timer/counter corresponding to the one or more downlink reference signals start up.
  • the transmission state information of the one or more downlink reference signals includes that at least one downlink reference signal of the one or more downlink reference signals is not transmitted due to LBT failure.
  • the method further includes the base station sending configuration information to the UE, where the configuration information carries parameters for updating a timer/counter corresponding to one or more downlink reference signals.
  • an embodiment of the present application provides a control information transmission device.
  • the device includes: a sending module for sending reporting information to the base station, where the reporting information includes the detection result of one or more downlink reference signals of the UE or the status of the timer/counter corresponding to the one or more downlink reference signals; receiving The module is configured to receive feedback information from the base station, where the feedback information includes transmission status information of the one or more downlink reference signals.
  • the sending module when the UE does not detect at least one downlink reference signal or the energy of at least one detected downlink reference signal is lower than a threshold value, the sending module sends report information to the base station.
  • the reported information may be represented in bitmap form or 1-bit information.
  • the 1-bit information is used to indicate whether the UE has a downlink reference signal that has not been received correctly, or to indicate whether the timer/counter corresponding to the one or more downlink reference signals start up.
  • the transmission state information of the one or more downlink reference signals includes that at least one downlink reference signal of the one or more downlink reference signals is not transmitted due to LBT failure.
  • the device further includes: a processing module, configured to update a timer/counter corresponding to the one or more downlink reference signals.
  • the receiving module is further configured to receive configuration information from the base station, where the configuration information carries parameters for updating timers/counters corresponding to one or more downlink reference signals.
  • an embodiment of the present application provides a control information transmission device.
  • the apparatus includes a receiving module for receiving reporting information from user equipment UE, the reporting information includes a detection result of one or more downlink reference signals of the UE or a timer/counter corresponding to one or more downlink reference signals
  • the sending module is used to send feedback information to the UE, where the feedback information includes sending status information of the one or more downlink reference signals.
  • the receiving module receives the reported information from the UE.
  • the reported information may be represented in bitmap form or 1-bit information.
  • the 1-bit information is used to indicate whether the UE has a downlink reference signal that has not been received correctly, or to indicate whether the timer/counter corresponding to the one or more downlink reference signals start up.
  • the transmission state information of the one or more downlink reference signals includes that at least one downlink reference signal of the one or more downlink reference signals is not transmitted due to LBT failure.
  • the sending module is further configured to send configuration information to the UE, where the configuration information carries parameters for updating a timer/counter corresponding to one or more downlink reference signals.
  • a device for transmitting control information includes a module for performing the method in the first aspect or any possible implementation manner of the first aspect, or for performing the second aspect or the first aspect.
  • the module of the method in any possible implementation manner of the second aspect.
  • a communication device may be a base station or UE in the above method design, or a chip provided in the base station or UE.
  • the communication device includes: a processor, coupled to a memory, and configured to execute instructions in the memory to implement the method performed by the first node in the first aspect and any possible implementation manner thereof.
  • the communication device further includes a memory.
  • the communication device further includes a communication interface, and the processor is coupled to the communication interface.
  • the communication interface may be a transceiver or an input/output interface.
  • the communication interface may be an input/output interface.
  • the transceiver may be a transceiver circuit.
  • the input/output interface may be an input/output circuit.
  • an embodiment of the present application provides a communication system, including: a base station and a UE.
  • the UE is used to perform the method provided by the first aspect or any design of the first aspect.
  • the base station is used to perform the method provided in the second aspect or any design of the second aspect.
  • an embodiment of the present application provides a chip that is connected to a memory and used to read and execute a software program stored in the memory to implement any one of the first aspect to the second aspect or Any design method provided by any aspect.
  • an embodiment of the present application provides a chip, the chip includes a processor and a memory, and the processor is configured to read a software program stored in the memory to implement any of the first aspect to the second aspect A method provided by any one aspect of one aspect or any aspect.
  • an embodiment of the present application further provides a computer-readable storage medium for storing a computer used to perform the functions of any one of the first aspect to the third aspect or any one of the aspects of any design
  • the software instructions include a program designed to execute any one or any design of any one of the first aspect to the second aspect.
  • an embodiment of the present application provides a computer program product containing instructions, which when executed on a computer, causes the computer to execute the first aspect or any one or any of the first aspect to the second aspect Any one of the aspects can design the method.
  • Figure 1 is a schematic diagram of a wireless link detection process in an LTE system
  • Figure 2 is a schematic diagram of a communication system
  • FIG. 3 is a schematic diagram of an RLM method provided by this application.
  • 5 is a schematic diagram of resource allocation for transmitting reported information
  • FIG. 6 is a schematic diagram of a control information transmission device 600 according to an embodiment of the present application.
  • control information transmission device 700 is a schematic diagram of a control information transmission device 700 according to an embodiment of the present application.
  • FIG. 8 is a schematic diagram of a communication device 800 provided by an embodiment of the present application.
  • the embodiments of the present application may be applied to a communication system, such as a wireless communication system.
  • a communication system such as a wireless communication system.
  • the method provided in the embodiments of the present application may be applied.
  • the communication system includes but is not limited to a long term evolution (LTE) system, a long term evolution-advanced (LTE-A) system, a new radio (NR) system, and 5G (5 Communication systems such as th generation) systems may also include systems such as wireless fidelity (WiFi) systems, global interoperability for microwave access (wimax) systems, and the like.
  • LTE long term evolution
  • LTE-A long term evolution-advanced
  • NR new radio
  • 5G 5G
  • Communication systems such as th generation
  • WiFi wireless fidelity
  • wimax global interoperability for microwave access
  • FIG. 2 is a schematic diagram of a communication system.
  • the communication system includes a base station (Base) and terminals 1 to 6.
  • terminal 1 to terminal 6 can send uplink data to the base station.
  • the base station receives the uplink data sent from terminal 1 to terminal 6.
  • the terminals 4 to 6 may also form a sub-communication system.
  • the BS can send downlink data to terminal 1, terminal 2, terminal 5, and so on.
  • Terminal 5 may also send downlink data to terminal 4 and terminal 6.
  • the BS can receive uplink data of terminal 1, terminal 2, terminal 5, and so on.
  • the terminal 5 may also receive the uplink data of the terminal 4 and the terminal 6.
  • the base station can be a base station in a 2G, 3G or LTE system (such as Node B or eNB), a new radio controller (new radio controller, NR controller), a gNode in a 5G system (gNB), a centralized network element ( centralized), new wireless base station, radio frequency remote module, micro base station, distributed network unit (distributed unit), transmission reception point (TRP) or transmission point (transmission point (TP) or any other wireless access Equipment, the embodiments of the present application are not limited to this.
  • a base station in a 2G, 3G or LTE system such as Node B or eNB
  • a new radio controller new radio controller, NR controller
  • gNode in a 5G system gNB
  • gNB gNode in a 5G system
  • gNB gNode in a 5G system
  • gNB gNode in a 5G system
  • gNB gNode in a 5G system
  • gNB
  • the terminal may be a device having a communication function with a base station and a relay node, or may be a device that provides voice and/or data connectivity to users.
  • the terminal may be a handheld device with a wireless connection function, a vehicle-mounted device, or the like.
  • Common terminals include, for example, mobile phones, tablet computers, notebook computers, PDAs, mobile Internet devices (MID), and wearable devices, such as smart watches, smart bracelets, and pedometers.
  • the terminal may also be called user equipment (user equipment, UE).
  • LAA Licensed Assisted Access
  • eLAA enhanced Licensed Assisted Access
  • the sender first monitors whether the unlicensed channel (or unlicensed spectrum) is idle before sending a signal. For example, the sending end judges its busy state by detecting the power of the received signal on the unlicensed spectrum. If the power of the received signal is less than a certain threshold, the unlicensed spectrum is considered to be in an idle state. The sending end can send a signal on the unlicensed spectrum, otherwise no signal is sent. This mechanism of listening before sending is called Listen Before Talk (LBT).
  • LBT Listen Before Talk
  • LBT LBT
  • CAT4LBT also known as type1channel access procedure
  • CAT2LBT also known as type2channel access procedure
  • the device can access the channel after the listening channel is idle for 25us.
  • the device needs to access the channel through random backoff. Specifically, according to the channel access priority (channel access priority), the device selects a corresponding random backoff number to perform backoff, and confirms that the channel is idle before accessing the channel. The device can obtain the corresponding maximum channel occupation time (maximum channel occupation time, MCOT).
  • maximum channel occupation time maximum channel occupation time
  • the base station After the base station seizes the channel, it can occupy the channel for downlink transmission for a period of time, and can also schedule the UE associated with it for uplink transmission.
  • the size of the channel occupation time (COT) of the base station is related to the priority of the base station for LBT. The lower the priority, the longer the time it can occupy after seizing the channel.
  • the maximum channel occupation time can be 10ms.
  • the base station can use downlink identification signals, request/send/clear to send (RTS/CTS) signaling, and group-common physical downlink control channel (group-common physical downlink control channel, group- common PDCCH) and other methods to notify the UE of the start time and/or COT duration of the COT.
  • RTS/CTS request/send/clear to send
  • group-common physical downlink control channel group-common physical downlink control channel, group- common PDCCH
  • the base station may configure the UE with a periodic reference signal for radio link monitoring (the reference signal may be called RLM RS).
  • the reference signal may be CSI-RS, SSB, and discovery reference signal (DRS).
  • DRS discovery reference signal
  • the above-mentioned periodically configured reference signal may fail to be sent due to the failure of the base station LBT. Due to LBT limitation, neither the CSI-RS nor SS/PBCH blocks periodically configured by NR-U can be guaranteed to be transmitted on the preset time-frequency resources.
  • This application provides a RLM for UE when the reference signal transmission is affected by LBT mechanism.
  • the RLM counter/timer (N310/T310) can be updated semi-statically/dynamically through the method provided in this application.
  • the UE can report RLM measurement results.
  • the base station can send RLM RS status information.
  • FIG. 3 is a schematic diagram of an RLM method provided by the present application. As shown in FIG. 3, the method includes the following steps.
  • Step 301 The UE sends reporting information to the base station, where the reporting information includes the RLM status of the UE.
  • the RLM state of the UE includes the detection result of the downlink reference signal or the state of the timer/counter corresponding to the downlink reference signal.
  • the UE may send report information to the base station.
  • the reported information informs the base station of the detection result of the downlink reference signal. For example, the UE uses the reported information to notify the base station of the number of downlink reference signals that have not been correctly detected or which downlink reference signals have not been correctly detected.
  • the UE When the UE does not correctly detect the downlink reference signal, it will start a related timer or counter. Therefore, the UE can manage the reported information to inform the base station of the status of the timer/counter corresponding to the downlink reference signal. In this way, the base station can also learn that the UE fails to correctly detect one or more downlink reference signals.
  • the downlink reference signal may be RLM RS.
  • the downlink reference signal may be CSI-RS, SSB, or DRS.
  • the reported information may be represented in the form of a bitmap or may be 1-bit information.
  • the UE can use the bitmap to inform the base station which several downlink reference signals have not been correctly detected.
  • the UE may use 1-bit information to inform the base station that there is an incorrectly received RLM RS or the base station T310 has been activated.
  • the reported information can also carry the number of RLM RSs that were not received correctly.
  • the base station Before sending the reported information, the base station may configure the uplink resources for the UE.
  • the UE sends the reported information on the configured uplink resource.
  • Step 302 The UE receives feedback information from the base station, and the feedback information includes transmission status information of one or more downlink reference signals.
  • the base station informs the UE which downlink reference signals are not sent due to LBT failure through feedback information.
  • the base station can feed back the transmission status of N310 downlink reference signals. If the base station always feeds back at least the transmission status of the downlink reference signal including the detection window corresponding to N310, the UE may notify the base station that at least one reference signal has not been correctly received with 1 bit.
  • the feedback information can also be represented by a bitmap.
  • the UE can obtain a more accurate RLM result, avoid unnecessary reconnection, thereby reducing UE energy consumption and saving system resource overhead.
  • step 303 the UE updates the RLM status.
  • the UE updates the timer and/or counter corresponding to the downlink reference signal. For example, the UE resets or updates N310, T310, or N311. Optionally, resetting the timer or counter means clearing the timer or counter.
  • the UE can perform more accurate timing/counting and communicate according to the timing/counting results. In other words, the UE can use more accurate RLM results to avoid unnecessary reconnection.
  • step 304 the UE receives configuration information from the base station.
  • the configuration information carries information for updating the RLM timer/counter.
  • the RLM timer/counter may be N310/T310.
  • the configuration information may be a parameter. The UE can adjust the value of the RLM timer/counter using this parameter.
  • step 304 may exist independently of steps 301-303. That is to say, the base station and the UE can perform step 304 separately.
  • step 304 may be executed before or during steps 301-303, which is not limited as compared with this application.
  • Different services have different delay requirements. Therefore, it is possible to configure timer/counter parameters for the UE for different services.
  • the UE can perform timing/counting in different service scenarios more accurately.
  • the reference signals configured by UEs in different groups are affected by LBT to different degrees. Therefore, the RLM parameters of UEs in different groups should also be configured differently to compensate for different levels of different reference signals.
  • the base station configures the UE with periodic reference signals for radio link monitoring.
  • the above-mentioned periodically configured reference signal may fail to be sent due to the failure of the base station LBT.
  • 4a-4f are schematic diagrams of an RLM process provided by this application. As shown in FIG. 4a, the base station fails to send the reference signal on resource 1, resource 2, resource 3, and resource 4 due to LBT failure.
  • the preset threshold of N310 configured by the base station for the UE is 4 (of course, the preset threshold may be any positive integer, and the initial value of N310 is 0), and the configured RLM RS transmission period is 20 ms. Therefore, the duration (or detection window) corresponding to N310 is 80 ms.
  • the UE detects RSRP at every 20ms for transmitting RLM RS resources. When RSRP (or its corresponding PDCCH demodulation probability) is lower than the threshold, the timer N310 will be started immediately. When the UE detects that the energy of the reference signal is lower than the threshold at a resource location, the value of N310 will increase by 1. When the UE detects that the energy of the reference signal is lower than the threshold value at four consecutive resource locations, it will start a timer T310. That is, when the value of N310 reaches a preset threshold (for example, 4), T310 is started.
  • a preset threshold for example, 4
  • the UE may report the RLM monitoring result (or the reception of several RLM RSs before) to the base station. For example, if the UE does not receive RLM RS on four consecutive resources, it reports the result to the base station.
  • the UE may report the result in the form of a bitmap. For example, the UE tells the base station in the form of a bitmap of '0000' that none of the four RLM RSs have been received correctly.
  • the UE notifies the base station N310 of the number of RLM RSs that have not been received (or incorrectly received or not detected) within the detection window corresponding to the detection window (such as 80 ms) or within the time that contains the detection window (for example, the reported information carried by the UE in Figure 4a carries The number of RSRPs detected at resources 1-4 that are less than the threshold is 4).
  • the UE may report the RLM monitoring result to the base station at any time after starting N310 or starting T310.
  • the base station After receiving the result reported by the UE, the base station will feed back the RLM RS transmission status to the UE.
  • the base station can also feed back to the UE in the form of a bitmap, and its RLM RS transmission status. For example, ‘0100’ means that only the second of the four RLM RSs was successfully sent, and the remaining three were not sent due to LBT failure. Or send '1' to the UE to indicate that there is only one RLM RS successfully sent.
  • the feedback information in FIG. 4a carries the quantity 0 or ‘0000’.
  • the base station may feed back the UE's transmission status of one or more RLM RSs before sending the feedback information, or the base station may feed back the UE's transmission status of one or more RLM RSs before receiving the UE's reported information.
  • the feedback information in Figure 4a carries '0000' or '00001'.
  • the UE After receiving the information fed back by the base station, the UE learns that the one or more RLM RSs are not correctly received because of poor link quality, but are not sent correctly due to the failure of the base station LBT. At this time, the UE may reset or update the counter and/or timer according to the information.
  • the UE receives the feedback information from the base station (the
  • the base station informs the UE that it has not sent the RLM RS at resource 1, resource 2, resource 3, and resource 4 due to LBT failure. If the UE does not receive the RLM RS because the LBT fails and the RLM RS is not sent, the N310 should not be started or should not be incremented. Therefore, T310 should not start. Therefore, the UE resets T310 and/or N311 when receiving the feedback information from the base station. Further, when the UE detects that the RSRP of the RLM RS is less than the threshold before receiving the feedback information from the base station, N310 is activated; otherwise, N310 is not activated. As shown in FIG.
  • the UE detects that the RSRP of the RLM RS at the resource 5 is greater than or equal to the threshold, then the UE resets T310 and N311, and does not start N310.
  • the UE detects that the RSRP of the RLM RS at the resource 5 is less than the threshold, then the UE resets T310 and N311, and starts N310.
  • the resources for sending the reported information may correspond one-to-one to the time-frequency resources used for RLM RS transmission, or may not correspond to one-to-one.
  • each RLM RS has a corresponding uplink resource for the UE to send the reported information.
  • the uplink resource is earlier in time than the next scheduled sending time of the RLM RS.
  • the UE may not necessarily send the report information when the N310 fails or the T310 starts. The UE continues to perform radio link monitoring according to the RLM mechanism, and sends reporting information through one or more pre-configured uplink resources when starting the N310 and/or N311 and/or T310.
  • the base station may configure uplink resources for the UE in a static (indicated by RMSI/OSI/RRC signaling)/semi-static (indicated by RMSI/OSI/RRC signaling)/dynamic (indicated by DCI) method.
  • the uplink resource may be dedicated to sending reporting information (for example, the uplink resource may be PRACH) or may be used to carry other information than the reporting information (for example, the uplink resource may be PUCCH).
  • every two RLM RS detection positions are configured with an uplink resource for the UE to send reported information.
  • the UE After receiving the feedback information after resource 3, the UE will update N310.
  • the feedback information carries information about the RLM RS transmission status at resources 1-3, the UE learns that the base station has 2 RLM RSs that were not successfully transmitted due to LBT failure.
  • the UE updates the value of N310 to 1.
  • the feedback information carries information about the RLM RS transmission status at resources 1-2
  • the UE learns that the base station has one RLM RS that was not successfully transmitted due to LBT failure.
  • the UE updates the value of N310 to 2.
  • the UE does not detect the RLM RS between sending the reported information and receiving the feedback information. After receiving the feedback information, the UE will reset T310 and update N310.
  • the feedback information carries the information of the RLM RS transmission status at resource 1, resource 3, and resource 4, the UE learns that the base station has 3 RLM RSs that were not successfully transmitted due to LBT failure.
  • the UE updates the value of N310 to 1.
  • the value of N310 of UE at resource 5 is 2.
  • the UE may use only 1 bit of reported information to inform the base station of its RLM status.
  • the base station UE is informed that the current RLM status is that T310 has been started.
  • the base station can inform the UE of the transmission status of several RLM RSs by using downlink control information (downlink control information, DCI) or radio resource control (radio resource control, RRC) signaling.
  • DCI downlink control information
  • RRC radio resource control
  • the number of the several RLM RSs may be specified in the standard, or may be dynamically changed.
  • the base station may notify the corresponding UE of the corresponding number of RLM RS transmission status for different UEs.
  • a UE may use more than 1 bit of information in its reporting information to inform the base station of its RLM result and the number of RLM RS transmission statuses that it requests the base station to feed back.
  • the base station sends the sending status of several RLM RSs to the UE according to the received report information.
  • the number of RLM RS transmission states delivered by the base station is the same as the number of RLM RSs configured by the UE in the detection window corresponding to N310 or N311.
  • the UE can send the reported information to the base station through uplink channels such as physical uplink control channel (physical uplink control channel, PUCCH), scheduling request (SR) or physical random access channel (PRACH); or
  • the reporting information is transmitted through the uplink resources periodically configured by the base station to the UE; the reporting information can also be sent through authorized resources. Multiple UEs can report in an orthogonal manner.
  • FIG. 5 is a schematic diagram of resource allocation for transmitting reported information. As shown in FIG. 5, different UEs may configure different resource element sets (interlace) and/or different symbols in RACH resources to simultaneously send their respective reporting information.
  • the resource unit set can be in units of resource block (resource block, RB) or in sub-RB units.
  • the base station can further increase the orthogonal frequency (eg, preamble, orthogonal code) according to the time-frequency position of the received report information and additional orthogonal codes (Maximum number of UEs that support simultaneous sending of reported information) to determine which UE the received reported information comes from.
  • orthogonal frequency eg, preamble, orthogonal code
  • additional orthogonal codes Maximum number of UEs that support simultaneous sending of reported information
  • the RLM RS transmission status fed back by the base station can be carried in a public message.
  • it may be carried in remaining minimum system information (remaining minimum system information, RMSI) or group-common PDCCH.
  • the UE After the UE sends the reported information to the base station, it can continuously monitor the feedback that the base station may send within a preset time window.
  • the length of the time window can be specified by the standard, or can be configured by the base station, and notify the UE through signaling such as RSI or RRC. If the UE does not receive feedback from the base station within the specified time window, it performs RLM according to the previous process, for example, does not update the N310/T310 timer.
  • the UE when the UE has not received feedback from the base station before the T310 fails or does not detect that consecutive N311 RLM RSs are higher than the threshold, the previous wireless link will be considered invalid.
  • the UE receives the system message (for example, RMSI) of the base station, and initiates random access on the specified uplink resource to retry to establish a connection with the base station.
  • the above method can also be used for the UE to exchange information with the base station when the timer T310 is about to expire. For example, when the UE has not received feedback from the base station before the T310 fails or does not detect that consecutive N311 RLM RSs are higher than the preset threshold, the UE considers that the wireless link with the base station has failed. The UE will receive the system message from the base station and initiate random access on the specified uplink resource to retry to establish a connection with the base station.
  • RMSI system message
  • Embodiment 1 provides an interaction mechanism between a UE and a base station, which reduces the impact of LBT on the RLM mechanism and enables the UE to perform RLM more accurately.
  • the base station can flexibly configure parameters based on data type and other parameters. For example: through RMSI periodic configuration, or through RRC dynamic or semi-static configuration.
  • the base station can decide how to configure the N310. For example, the base station may perform configuration after N RLM RS transmissions are unsuccessful, or may refresh the configuration periodically (for example, 1 s).
  • the RLM RS period can be 10ms and the N310 duration can be 100ms.
  • the RLM RS period can be 10ms and the N310 duration can be 50ms.
  • the base station can configure additional parameters in the RSI/RRC to the UE to indicate its updated N310/T310 parameters.
  • the value of this additional parameter can be implemented by the base station and is not specified in the standard. It should be noted that the base station can configure different parameters for different UEs/different grouped UEs.
  • the frequency bands or BWP are subject to different external interferences, resulting in different probability of successful RLM RS transmissions configured for different UEs.
  • Frequent reconnection attempts require different RLM parameters for different UEs. E.g:
  • the base station can also use the same method to update/modify the T310 or other RLM RS related timers, which will not be repeated here.
  • the base station can be carried in the RMSI, OSI, or group-common PDCCH.
  • the base station can configure each group/each UE individually through RRC signaling, or by scheduling the DCI indication corresponding to each/each group of UEs, or in the group-common PDCCH Instructions.
  • the group-common PDCCH may contain multiple information elements, and each information element contains a UE/UE group identification (eg, UE C-RNTI, UE group RNTI) and corresponding additional parameters.
  • the above additional parameter may also be an offset based on the original timer.
  • Embodiment 2 provides a method for the base station to update the RLM-related timer/counter on the UE side through additional parameters, so that the timer/counter of the UE is more flexible and more adaptable to changes in the environment.
  • the RLM counter (N310/N311) can be updated semi-statically or dynamically. Considering the impact of LBT on RLM RS transmission, the RLM-RS measurement window setting is more reasonable. Further, the UE performs RLM measurement result feedback and the base station sends RLM RS status indication, so that RLM RS measurement is more accurate.
  • the method for the UE to judge the radio link status by RLM RS may also be used for the UE to perform radio resource management (RRM) measurement.
  • the base station configures the RRM-RS for RRM measurement through the method described in the embodiment, and the UE reports according to the configuration of the base station and its measurement results.
  • FIG. 6 shows a schematic block diagram of a control information transmission device 600 according to an embodiment of the present application.
  • the apparatus 600 is used to execute the method performed by the base station in the foregoing method embodiments.
  • the specific form of the device 600 may be a base station or a chip in the base station. This embodiment of the present application does not limit this.
  • the device 600 includes the following modules.
  • the receiving module 610 is configured to receive report information from the user equipment UE, where the report information includes the detection result of one or more downlink reference signals of the UE or the status of the timer/counter corresponding to the one or more downlink reference signals;
  • the sending module 620 is configured to send feedback information to the UE, where the feedback information includes transmission status information of the one or more downlink reference signals.
  • the receiving module 610 receives the reported information from the UE.
  • the reported information may be represented in bitmap form or 1-bit information.
  • the 1-bit information is used to indicate whether the UE has a downlink reference signal that has not been received correctly, or to indicate whether the timer/counter corresponding to the one or more downlink reference signals start up.
  • the transmission state information of the one or more downlink reference signals includes that at least one downlink reference signal of the one or more downlink reference signals is not transmitted due to LBT failure.
  • the sending module 620 is further configured to send configuration information to the UE, where the configuration information carries parameters for updating a timer/counter corresponding to one or more downlink reference signals.
  • the device 600 may further include a processing module.
  • the processing module is used to process the received data and to process the data to be sent.
  • FIG. 7 shows a schematic block diagram of a control information transmission device 700 according to an embodiment of the present application.
  • the apparatus 700 is used to execute the method executed by the second device in the foregoing method embodiment.
  • the specific form of the device 700 may be a UE or a chip in the UE. This embodiment of the present application does not limit this.
  • the device 700 includes the following modules.
  • the sending module 710 is configured to send reporting information to the base station, where the reporting information includes the detection result of one or more downlink reference signals of the UE or the status of the timer/counter corresponding to the one or more downlink reference signals;
  • the receiving module 720 is configured to receive feedback information from the base station, where the feedback information includes transmission status information of the one or more downlink reference signals.
  • the sending module 710 when the UE does not detect at least one downlink reference signal or the energy of at least one detected downlink reference signal is lower than a threshold, the sending module 710 sends the reported information to the base station.
  • the reported information may be represented in bitmap form or 1-bit information.
  • the 1-bit information is used to indicate whether the UE has a downlink reference signal that has not been received correctly, or to indicate whether the timer/counter corresponding to the one or more downlink reference signals start up.
  • the transmission state information of the one or more downlink reference signals includes that at least one downlink reference signal of the one or more downlink reference signals is not transmitted due to LBT failure.
  • the apparatus 700 further includes: a processing module 730, configured to update a timer/counter corresponding to the one or more downlink reference signals.
  • the receiving module 720 is further configured to receive configuration information from the base station, where the configuration information carries parameters for updating timers/counters corresponding to one or more downlink reference signals.
  • processing module 730 is also used to process the received data and the data to be sent, and the sending module is used to send the data.
  • an embodiment of the present application further provides a communication device 800.
  • the device 800 may include: a transceiver 801.
  • the transceiver 801 may further include a receiver and a transmitter.
  • the transceiver 801 is used to send or receive reported information.
  • the transceiver 801 can also be used to receive or send feedback information.
  • the report information includes the detection result of one or more downlink reference signals of the UE or the status of the timer/counter corresponding to the one or more downlink reference signals; the feedback information includes the one or more downlink reference signals Sending status information.
  • the transceiver 801 may be integrated by a transmitter and a receiver. In other embodiments, the transmitter and receiver may also be independent of each other.
  • the device 800 may further include a processor 802, a memory 803, and a communication unit 804.
  • the transceiver 801, the processor 802, the memory 803, and the communication unit 804 are connected through a bus.
  • the data to be sent (for example, PDSCH) or signaling (for example, PDCCH) is adjusted by the transceiver 801 to output samples and generate a downlink signal, and the downlink signal is transmitted to the above embodiment via the antenna Terminal.
  • the antenna receives the uplink signal transmitted by the terminal in the above embodiment, and the transceiver 801 adjusts the signal received from the antenna and provides input samples.
  • service data and signaling messages are processed, for example, data to be transmitted is modulated, and SC-FDMA symbol generation is performed. These units are processed according to the wireless access technology adopted by the wireless access network (for example, the access technology of LTE, 5G and other evolved systems).
  • the processor 802 is also used to control and manage the device 800 to perform the processing performed by the base station or the UE in the foregoing method embodiment. Specifically, the processor 802 is used to process the received information and to process the information to be sent. As an example, the processor 802 is used to support the device 800 to execute the processing procedure of the device 800 involved in FIGS. 2 to 5. In an unauthorized scenario, the processor 802 also needs the control device 800 to perform channel interception for data or signaling transmission. Exemplarily, the processor 802 performs channel interception on the signal received from the transceiver device or the antenna through the transceiver 801, and controls the signal to be transmitted via the antenna to preempt the channel. In different embodiments, the processor 802 may include one or more processors, for example, including one or more central processing units (Central Processing Unit, CPU), the processor 802 may be integrated into the chip, or may be the chip itself .
  • CPU Central Processing Unit
  • the memory 803 is used to store relevant instructions and data, and program codes and data of the device 800.
  • the memory 603 includes but is not limited to random access memory (Random Access Memory, RAM), read-only memory (Read-Only Memory, ROM), and erasable programmable read-only memory (Erasable Programmable Read Only Memory (EPROM), or Portable Read-Only Memory (CD-ROM).
  • the memory 803 is independent of the processor 802. In other embodiments, the memory 803 may also be integrated in the processor 802.
  • the apparatus 800 shown in FIG. 8 may be used to perform the method performed by the base station or the UE in the above method embodiments.
  • the apparatus 800 shown in FIG. 8 may be used to perform the method performed by the base station or the UE in the above method embodiments.
  • implementation methods and technical effects that are not described in detail in the apparatus 800 shown in FIG. 8, refer to the above Relevant description of method embodiments.
  • FIG. 8 only shows a simplified design of the base station or the UE.
  • a base station or UE may include any number of transmitters, receivers, processors, memories, etc., and all base stations or UEs that can implement this application are within the scope of protection of this application.
  • the communication system includes a base station or UE.
  • the base station may be the communication device shown in FIG. 6 or the device shown in FIG. 8.
  • the UE may be the communication device shown in FIG. 7 or the device shown in FIG. 8.
  • embodiments of the present application also provide a computer program product, the computer program product includes: computer program code, when the computer program code runs on a computer, causes the computer to perform the implementation shown in FIGS. 2 to 5 Example method.
  • embodiments of the present application also provide a computer-readable medium, the computer-readable interpretation stores program code, and when the program code runs on a computer, the computer is caused to perform the implementation shown in FIGS. 2 to 5 Example method.
  • an embodiment of the present application further provides a chip.
  • the chip may be a processor for implementing the method in the above method embodiments. Further, the chip is connected to a memory, and is used to read and execute the software program stored in the memory to implement the method in the embodiments shown in FIGS. 2 to 5.
  • an embodiment of the present application provides a chip including a processor and a memory, and the processor is used to read a software program stored in the memory to implement the implementation shown in FIGS. 2 to 5 Example method.
  • These computer program instructions may also be stored in a computer readable memory that can guide a computer or other programmable data processing device to work in a specific manner, so that the instructions stored in the computer readable memory produce an article of manufacture including an instruction device, the instructions The device implements the functions specified in one block or multiple blocks of the flowchart one flow or multiple flows and/or block diagrams.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device so that a series of operating steps are performed on the computer or other programmable device to produce computer-implemented processing.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a dedicated computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be from a website site, computer, server or data center Transmission to another website, computer, server or data center via wired (such as coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.).
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device including one or more available medium integrated servers, data centers, and the like.
  • the usable medium may be a magnetic medium (eg, floppy disk, hard disk, magnetic tape), optical medium (eg, DVD), or semiconductor medium (eg, solid state disk (SSD)), or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供了一种控制信息的传输方法。该方法包括:用户设备UE向基站发送上报信息,所述上报信息包括所述UE的一个或多个下行参考信号的检测结果或一个或多个下行参考信号对应的计时器/计数器的状态;所述UE从所述基站接收反馈信息,所述反馈信息包括所述一个或多个下行参考信号的发送状态信息。通过本申请实施例提供的方法,UE可以获知更精确的RLM结果,避免不必要的重连,从而降低UE能耗和节省系统资源开销。

Description

一种控制信息的传输方法及装置 技术领域
本申请涉及通信技术领域,尤其涉及一种控制信息的传输方法及装置。
背景技术
在LTE系统中,用户设备(user equipment,UE)会持续监测基站给它配置的下行参考信号,例如,信道状态信息参考信号(channel state information-reference signal,CSI-RS)。UE利用下行参考信号来估计其与基站间的链路状态。当UE接收到的下行参考信号的参考信号接收功率(reference signal received power,RSRP)和/或参考信号质量(reference signal received quality,RSRQ)低于门限值时,则认为基站和UE之间的链路失效。UE后续需要重新进行随机接入流程来与基站建立连接。
图1为LTE系统中无线链路检测流程示意图。LTE系统中的无线链路检测(radio link monitoring,RLM)流程包括如下流程。当UE连续监测到N310个CSI-RS的RSRP/RSRQ低于门限值时,则启动计时器T310。如果在计时器T310失效前有连续N311个CSI-RS信号的RSRP/RSRQ高于门限值时,则认为UE和基站间的无线链路已恢复;否则,则认为无线链路已失效,基站和UE间需要重新进行连接。其中,N310和N311为计数器或计数器所对应的值。N310取值可以为200毫秒(ms),N311取值可以为100ms。T310为计时器。在某些情况下T310也可以指示计时器所对应的值。T310的数量级可以为1秒。
5G系统中的RLM流程和LTE系统类似。进一步的,5G系统支持非授权频段(unlicensed band)通信。工作在非授权频段的设备不需授权即可自行检测信道是否空闲。当该设备检测到信道空闲时,可以接入信道进行工作。为了保证和其他在非授权频段工作的设备共存,该设备采用先听后说(LBT:Listen-Before-Talk)的信道竞争接入机制。由于LBT限制,周期性配置的CSI-RS和SS/PBCH block均无法保证能在预设的时频资源进行发送,则RLM流程可能无法正常工作。
发明内容
本申请实施例提供一种控制信息的传输方法。通过本申请实施例中所描述的方法,UE可以获知更精确的RLM结果。
第一方面,本申请实施例提供了一种控制信息的传输方法。该方法包括:用户设备UE向基站发送上报信息,所述上报信息包括所述UE的一个或多个下行参考信号的检测结果或一个或多个下行参考信号对应的计时器/计数器的状态;所述UE从所述基站接收反馈信息,所述反馈信息包括所述一个或多个下行参考信号的发送状态信息。
通过本申请实施例提供的方法,UE可以获知更精确的RLM结果,避免不必要的重连,从而降低UE能耗和节省系统资源开销。
在一种可能的设计中,当所述UE未检测至少一个下行参考信号或至少一个检测到的下行参考信号的能量低于门限值时,UE向基站发送上报信息。
在一种可能的设计中,所述上报信息可以用位图形式表征或是1比特信息。
在一种可能的设计中,所述1比特信息用于指示所述UE是否存在未正确接收的下行参考信号,或,用于指示所述一个或多个下行参考信号对应的计时器/计数器是否启动。
在一种可能的设计中,所述一个或多个下行参考信号的发送状态信息包括所述一个或多个下行参考信号中至少一个下行参考信号是由于LBT失败而没有被发送的。
在一种可能的设计中,该方法还包括:所述UE更新所述一个或多个下行参考信号对应的计时器/计数器。
UE可以更精确的计时/计数,并根据计时/计数结果进行通信。也就是说UE可以将更精确的RLM结果利用起来,以避免不必要重连。
在一种可能的设计中,所述方法还包括:所述UE从所述基站接收配置信息,所述配置信息携带用于更新一个或多个下行参考信号对应的计时器/计数器的参数。
不同业务对时延的要求不同。因此,可以针对不同业务为UE配置的计时器/计数器参数。UE可以更精确的在不同业务场景下进行计时/计数。
另外,不同分组的UE配置的参考信号受LBT的影响程度不同,因此不同分组的UE的RLM参数也应当进行不同的配置,以对不同参考信号进行不同程度的补偿。
第二方面,本申请实施例提供了一种控制信息的传输方法。该方法包括:基站从用户设备UE接收上报信息,所述上报信息包括所述UE的一个或多个下行参考信号的检测结果或一个或多个下行参考信号对应的计时器/计数器的状态;所述基站向所述UE发送反馈信息,所述反馈信息包括所述一个或多个下行参考信号的发送状态信息。
通过本申请实施例提供的方法,UE可以获知更精确的RLM结果,避免不必要的重连,从而降低UE能耗和节省系统资源开销。
在一种可能的设计中,当所述UE未检测至少一个下行参考信号或至少一个检测到的下行参考信号的能量低于门限值时,所述基站从所述UE接收上报信息。
在一种可能的设计中,所述上报信息可以用位图形式表征或是1比特信息。
在一种可能的设计中,所述1比特信息用于指示所述UE是否存在未正确接收的下行参考信号,或,用于指示所述一个或多个下行参考信号对应的计时器/计数器是否启动。
在一种可能的设计中,所述一个或多个下行参考信号的发送状态信息包括所述一个或多个下行参考信号中至少一个下行参考信号是由于LBT失败而没有被发送的。
在一种可能的设计中,所述方法还包括:所述基站向所述UE发送配置信息,所述配置信息携带用于更新一个或多个下行参考信号对应的计时器/计数器的参数。
第三方面,本申请实施例提供了一种控制信息的传输装置。该装置包括:发送模块,用于向基站发送上报信息,所述上报信息包括UE的一个或多个下行参考信号的检测结果或一个或多个下行参考信号对应的计时器/计数器的状态;接收模块,用于从所述基站接收反馈信息,所述反馈信息包括所述一个或多个下行参考信号的发送状态信息。
在一种可能的设计中,当所述UE未检测至少一个下行参考信号或至少一个检测到的下行参考信号的能量低于门限值时,所述发送模块向所述基站发送上报信息。
在一种可能的设计中,所述上报信息可以用位图形式表征或是1比特信息。
在一种可能的设计中,所述1比特信息用于指示所述UE是否存在未正确接收的下行参考信号,或,用于指示所述一个或多个下行参考信号对应的计时器/计数器是否启动。
在一种可能的设计中,所述一个或多个下行参考信号的发送状态信息包括所述一个或多个下行参考信号中至少一个下行参考信号是由于LBT失败而没有被发送的。
在一种可能的设计中,所述装置还包括:处理模块,用于更新所述一个或多个下行参考信号对应的计时器/计数器。
在一种可能的设计中,所述接收模块还用于从所述基站接收配置信息,所述配置信息携带用于更新一个或多个下行参考信号对应的计时器/计数器的参数。
第四方面,本申请实施例提供了一种控制信息的传输装置。该装置包括:接收模块,用于从用户设备UE接收上报信息,所述上报信息包括所述UE的一个或多个下行参考信号的检测结果或一个或多个下行参考信号对应的计时器/计数器的状态;发送模块,用于向所述UE发送反馈信息,所述反馈信息包括所述一个或多个下行参考信号的发送状态信息。
在一种可能的设计中,当所述UE未检测至少一个下行参考信号或至少一个检测到的下行参考信号的能量低于门限值时,所述接收模块从所述UE接收上报信息。
在一种可能的设计中,所述上报信息可以用位图形式表征或是1比特信息。
在一种可能的设计中,所述1比特信息用于指示所述UE是否存在未正确接收的下行参考信号,或,用于指示所述一个或多个下行参考信号对应的计时器/计数器是否启动。
在一种可能的设计中,所述一个或多个下行参考信号的发送状态信息包括所述一个或多个下行参考信号中至少一个下行参考信号是由于LBT失败而没有被发送的。
在一种可能的设计中,所述发送模块还用于向所述UE发送配置信息,所述配置信息携带用于更新一个或多个下行参考信号对应的计时器/计数器的参数。
第五方面,提供了一种控制信息的传输装置,该装置包括用于执行上述第一方面或第一方面的任意可能的实现方式中的方法的模块,或者用于执行上述第二方面或第二方面的任意可能的实现方式中的方法的模块。
第六方面,提供一种通信装置,该通信装置可以为上述方法设计中的基站或UE,或者,为设置在基站或UE中的芯片。该通信装置包括:处理器,与存储器耦合,可用于执行存储器中的指令,以实现上述第一方面及其任意一种可能的实现方式中第一节点所执行的方法。可选地,该通信装置还包括存储器。可选地,该通信装置还包括通信接口,处理器与通信接口耦合。
当该通信装置为基站或UE时,该通信接口可以是收发器,或,输入/输出接口。
当该通信装置为设置于基站或UE中的芯片时,该通信接口可以是输入/输出接口。
可选地,该收发器可以为收发电路。可选地,该输入/输出接口可以为输入/输出电路。
第七方面,本申请实施例提供了一种通信系统,包括:基站和UE。该UE用于执行第一方面或第一方面的任一设计提供的方法。该基站用于执行第二方面或第二方面的任一设计提供的方法。
第八方面,本申请实施例提供了一种芯片,所述芯片与存储器相连,用于读取并执行所述存储器中存储的软件程序,以实现第一方面至第二方面中任一方面或任一方面的任意一种设计提供的方法。
第九方面,本申请实施例提供了一种芯片,所述芯片包含处理器和存储器,所述处理器用于读取所述存储器中存储的软件程序,以实现第一方面至第二方面中任一方面或任一方面的任意一种设计提供的方法。
第十方面,本申请实施例还提供了一种计算机可读存储介质,用于存储为执行上述第一方面至第三方面中任一方面或任一方面的任意一种设计的功能所用的计算机软件指令,其包含用于执行上述第一方面至第二方面中任一方面或任一方面的任意一种设计所设计的程序。
第十一方面,本申请实施例提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述第一方面或上述第一方面至第二方面中任一方面或任一方面的任意一种设计所述的方法。
附图说明
图1为LTE系统中无线链路检测流程示意图;
图2为一种通信系统示意图;
图3为本申请提供的一种RLM方法示意图;
图4a-4f为本申请提供的一种RLM流程示意图;
图5为一种用于传输上报信息的资源分配示意图;
图6为根据本申请实施例的控制信息的传输装置600的示意图;
图7为根据本申请实施例的控制信息的传输装置700的示意图;
图8为本申请实施例提供的一种通信装置800的示意图。
具体实施方式
本申请实施例可以应用于通信系统,例如无线通信系统。只要该通信系统中存在实体需要进行信道占用时间(channel occupancy time,COT)格式的指示或发送,都可以应用本申请实施例提供的方法。具体地,该通信系统包括但不限于长期演进(long term evolution,LTE)系统,长期演进高级(long term evolution-advanced,LTE-A)系统,新无线(new radio,NR)系统、5G(5 thgeneration)系统等通信系统,也可以包括如无线保真(wireless fidelity,WiFi)系统、全球微波互联接入(worldwide interoperability for microwave access,wimax)系统等系统。
图2为一种通信系统示意图。如图2所示,该通信系统包括基站(Base station,BS)和终端1~终端6。在该通信系统中,终端1~终端6可以发送上行数据给基站。基站接收终端1~终端6发送的上行数据。此外,终端4~终端6也可以组成一个子通信系统。在该通信系统中,BS可以发送下行数据给终端1、终端2、终端5等。终端5也可以发送下行数据给终端4、终端6。BS可以接收终端1、终端2、终端5等的上行数据。终端5也可以接收终端4、终端6的上行数据。
其中,基站可以是2G、3G或LTE系统中的基站(如Node B或eNB)、新无线控制器(new radio controller,NR controller)、5G系统中的gNode B(gNB)、集中式网元(centralized unit)、新无线基站、射频拉远模块、微基站、分布式网元(distributed unit)、传输接收点(transmission reception point,TRP)或传输点(transmission point,TP)或者 任何其它无线接入设备,本申请实施例不限于此。
终端可以是具有与基站和中继节点通信功能的设备,也可以是一种向用户提供语音和/或数据连通性的设备。例如,终端可以是具有无线连接功能的手持式设备、车载设备等。常见的终端例如包括:手机、平板电脑、笔记本电脑、掌上电脑、移动互联网设备(mobile internet device,MID)、可穿戴设备,例如智能手表、智能手环、计步器等。终端也可以称为用户设备(user equipment,UE)。
无线通信技术的飞速发展,导致频谱资源日益紧缺,促进了对于非授权频段的探索。3GPP引入了授权辅助接入(License Assisted Access,LAA)和增强的授权辅助接入(enhanced LAA,eLAA)技术。即在非授权频谱上非独立(Non-standalone)的部署LTE/LTE-A系统,通过授权频谱的辅助来最大化利用非授权频谱资源。
在非授权频谱上部署的通信系统通常采用竞争的方式来使用或共享无线资源。一般地,发送端在发送信号之前首先会监听非授权信道(或非授权频谱)是否空闲。例如,发送端通过在非授权频谱上检测接收信号的功率来判断其忙闲状态。如果接收信号的功率小于一定门限,则认为非授权频谱处于空闲状态。发送端可以在该非授权频谱上发送信号,否则不发送信号。这种先监听后发送的机制被称作先听后发(Listen Before Talk,LBT)。
目前LBT方式主要有两类,即CAT4LBT(也被称为type1channel access procedure)和CAT2LBT(也可称为type2channel access procedure)。对于CAT2LBT而言,设备在侦听信道有25us空闲后可以接入信道。而对于CAT4LBT而言,设备需要通过随机退避的方式接入信道。具体地,设备根据信道接入优先级(channel access priority)选择相应的随机退避数进行退避,确认信道空闲后接入信道。设备可以获得相应的最大信道占用时间(maximum channel occupancy time,MCOT)。
基站抢占到信道后可在一段时间内占用信道进行下行传输,也可以调度与它关联的UE进行上行传输。基站的信道占用时间(channel occupancy time,COT)的大小与基站进行LBT的优先级相关。优先级越低,抢占到信道后可以占用的时间越长。最大的信道占用时间可以为10ms。基站可以通过下行标识信号(downlink identification signal)、请求发送/允许发送(request to send/clear to send,RTS/CTS)信令、组公共物理下行控制信道(group-common physical downlink control channel,group-common PDCCH)等方式通知UE该COT的起始时刻和/或COT持续时间。
基站可以给UE配置周期性的用于无线链路监测的参考信号(该参考信号可以称为RLM RS)。该参考信号可以是CSI-RS,也可以是SSB,以及发现参考信号(discovery reference signal,DRS)。在5G系统中,上述周期性配置的参考信号可能会由于基站LBT失败而无法发送。由于LBT限制,NR-U周期性配置的CSI-RS和SS/PBCH block均无法保证能在预设的时频资源进行发送,本申请提供了一种UE在参考信号发送受LBT影响时的RLM机制。通过本申请提供的方法可以半静态/动态更新RLM计数器/计时器(N310/T310)。UE可以进行RLM测量结果上报。基站可以发送RLM RS状态信息。
图3为本申请提供的一种RLM方法示意图。如图3所示,该方法包括如下几个步骤。
步骤301:UE向基站发送上报信息,所述上报信息包括UE的RLM状态。
其中,UE的RLM状态包括下行参考信号的检测结果或下行参考信号对应的计时器/计数器的状态。
当UE未检测下行参考信号或检测到的参考信号的能量低于门限值时,UE可以向基站发送上报信息。该上报信息通知基站下行参考信号的检测结果。例如UE利用上报信息通知基站未正确检测到的下行参考信号的数量或哪些下行参考信号未被正确检测到。
UE在未正确检测到下行参考信号时会启动相关计时器或计数器。因此,UE可以理他上报信息通知基站下行参考信号对应的计时器/计数器的状态。这样,基站同样也可获知UE未能正确检测到一个或多个下行参考信号。
下行参考信号可以为RLM RS。例如,下行参考信号可以是CSI-RS,SSB,或DRS。
其中,上报信息可以用位图形式表征或可以是1bit信息。其中,UE可以利用位图告知基站哪几个下行参考信号没有被正确检测到。或者,UE可以利用1bit信息告知基站存在未正确接收的RLM RS或告知基站T310已被启动。
上报信息中还可以携带未正确接收的RLM RS的数量。
在发送上报信息之前,基站可以给UE配置上行资源。UE在配置的上行资源上发送上报信息。
步骤302:UE从基站接收反馈信息,所示反馈信息包括一个或多个下行参考信号的发送状态信息。
基站通过反馈信息告知UE哪些下行参考信号是由于LBT失败而没有被发送的。基站可以反馈N310个下行参考信号的发送状态。如果基站总是反馈至少包括N310对应的检测窗口内的下行参考信号的发送状态,则UE可以用1bit通知基站至少有一个参考信号没有被正确接收。
反馈信息也可以以位图表征。
通过本申请实施例提供的方法,UE可以获知更精确的RLM结果,避免不必要的重连,从而降低UE能耗和节省系统资源开销。
可选地,步骤303:UE更新RLM状态。
具体地,UE更新下行参考信号对应的计时器和/或计数器。例如,UE重置或更新N310、T310或N311。可选地,重置计时器或计数器表示将计时器或计数器清零。
UE可以更精确的计时/计数,并根据计时/计数结果进行通信。也就是说UE可以将更精确的RLM结果利用起来,以避免不必要重连。
可选地,步骤304:UE从基站接收配置信息。该配置信息携带用于更新RLM计时器/计数器信息。RLM计时器/计数器可以为N310/T310。该配置信息可以是一个参数。UE利用该参数可以调整RLM计时器/计数器的值。
应理解,步骤304可以独立于步骤301-303而存在。也就是说基站和UE可以单独执行步骤304。另外,步骤304可以在步骤301-303之前或之中被执行,对比本申请不做限定。不同业务对时延的要求不同。因此,可以针对不同业务为UE配置的计时器/计数器参数。UE可以更精确的在不同业务场景下进行计时/计数。另外,不同分组的UE配置的参考信号受LBT的影响程度不同,因此不同分组的UE的RLM参数也应当进行不同的配置,以对不同参考信号进行不同程度的补偿。
实施例一
基站给UE配置了周期性的用于无线链路监测的参考信号。在5G系统中,上述周期性配置的参考信号可能会由于基站LBT失败而无法发送。图4a-4f为本申请提供的一种RLM流程示意图。如图4a所示,基站在资源1、资源2、资源3和资源4上因为LBT失败而没能发送参考信号。
设基站给UE配置的N310的预设阈值为4(当然,该预设阈值可以为任意正整数,N310的初始值为0),配置的RLM RS的发送周期为20ms。因此,N310对应的持续时间(或检测窗口)为80ms。UE在每隔20ms的用于传输RLM RS的资源处检测RSRP。当RSRP(或其对应的PDCCH解调概率)低于门限值时,则会立刻启动计时器N310。当UE在一个资源位置监测到参考信号的能量低于门限值时,N310的值会加1。当UE在连续4个资源位置监测到参考信号的能量低于门限值时,则会启动计时器T310。也就是说,当N310的值达到预设阈值(例如4)时,启动T310。
UE可以向基站上报RLM监测结果(或之前若干个RLM RS的接收情况)。例如,UE在连续4个资源上未接收到RLM RS,则将该结果上报给基站。可选地,UE可以以位图(bitmap)的形式上报该结果。例如,UE以‘0000’的bitmap形式告诉基站4个RLM RS均未被正确接收。或者UE通知基站N310对应的检测窗口(如80ms)内或包含该检测窗口的时间内未收到(或未正确接收或未检测到)的RLM RS数量(例如,图4a中UE的上报信息携带其在资源1-4处检测到的RSRP小于门限值的数量为4)。UE可以在启动N310之后或启动T310之后的任何时刻向基站上报RLM监测结果。
在接收到UE上报的结果后,基站会向UE反馈其RLM RS的发送状态。基站也可以用位图的形式向UE反馈,其RLM RS的发送状态。举例来说,‘0100’表示4个RLM RS中只有第2个成功发送,其余3个由于LBT失败而未发送。或者发送‘1’给UE以指示只有1个RLM RS成功发送。例如图4a中的反馈信息携带数量0或携带‘0000’。
可选地,基站可以向UE反馈其发送反馈信息之前的一个或多个RLM RS的发送状态,或基站可以向UE反馈其接收到UE的上报信息之前的一个或多个RLM RS的发送状态。例如图4a中的反馈信息携带‘0000’或‘00001’。
UE在收到基站反馈的信息后获知该一个或多个RLM RS并非是因为链路质量不好没有正确接收,而是由于基站LBT失败而没有正确发送。此时UE可以根据该信息重置或更新计数器和/或计时器。
举例来说,UE在监测到第一个RLM RS的RSRP低于门限值时,会启动计数器N310(此时计数器N310=1)。如图4a的资源1处,UE的N310=1。当后续连续3个RLM RS的RSRP均低于门限值时,计数器N310=4达到其预设阈值。此时UE会启动计时器T310和计数器N311,并在基站为UE配置的上行资源处发送上报信息。在收到基站反馈之前,UE会继续RLM流程。也就是说,T310/N311不暂停。例如图4a中资源5处N311=1。当UE收到基站的反馈信息(基站反馈的RLM RS的发送状态),UE会重置或更新N310和/或N311和/或T310。
如图4a所示,基站通知UE其在资源1、资源2、资源3和资源4处由于LBT失败未发送RLM RS。若UE没有接收到RLM RS是由于LBT失败未发送RLM RS,则N310不应当启动或不应当递加。因而,T310也不应当启动。因此,UE在接收到基站的反馈信息 时,重置T310和/或N311。进一步的,当UE在接收到基站的反馈信息之前检测到RLM RS的RSRP小于门限值时,启动N310;反之,则不启动N310。如图4a中UE在资源5处检测到RLM RS的RSRP大于等于门限值,则UE会重置T310和N311,不启动N310。图4b中UE在资源5处检测到RLM RS的RSRP小于门限值,则UE会重置T310和N311,启动N310。
如图4c所示,基站通过反馈信息通知UE其在资源1、资源3和资源4处由于LBT失败未发送RLM RS。由于UE在资源5处成功监测到了RLM RS,则UE在资源5处的N311=1。UE在接收到反馈信息后重置T310、N311以及N310。此时,可以认为UE与基站之间链路正常。
如图4d所示,基站通过反馈信息通知UE其在资源1、资源3和资源4处由于LBT失败未发送RLM RS。由于UE在资源5处未能成功监测到了RLM RS,则UE在接收到反馈信息后重置T310和N311。并且更新N310=2。此时,可以认为UE的N310从2开始重新计数。UE后续可以重复上述步骤,在此不再赘述。
进一步地,发送上报信息的资源可以与用于RLM RS传输的时频资源一一对应,也可以不一一对应。当二者一一对应时,每个RLM RS都有1个对应的用于UE发送上报信息的上行资源。该上行资源在时间上早于下一个RLM RS预设的发送时刻。当二者不是一一对应时,UE不一定能在N310失效或T310启动时发送上报信息。UE按照RLM机制继续进行无线链路监测,并在启动N310和/或N311和/或T310时通过预先配置的一个或多个上行资源发送上报信息。基站可以预先以静态(通过RMSI/OSI/RRC信令指示)/半静态(通过RMSI/OSI/RRC信令指示)/动态(通过DCI)的方式为UE配置上行资源。该上行资源可以专用于发送上报信息(例如,该上行资源可以是PRACH)或者也可以用于携带除上报信息之外的其他信息(例如,该上行资源可以是PUCCH)。
如图4e所示,每2个RLM RS的检测位置后配置一个用于UE发送上报信息的上行资源。在资源3后接收到反馈信息,UE会更新N310。当反馈信息中携带资源1-3处的RLM RS发送状态的信息时,UE获知基站有2个由于LBT失败而未成功发送的RLM RS。UE将N310的值更新为1。当反馈信息中携带资源1-2处的RLM RS发送状态的信息时,UE获知基站有1个由于LBT失败而未成功发送的RLM RS。UE将N310的值更新为2。
如图4f所示,UE在发送上报信息和接收到反馈信息之间没有检测RLM RS。在接收到反馈信息后,UE会重置T310,更新N310。当反馈信息中携带资源1、资源3和资源4处的RLM RS发送状态的信息时,UE获知基站有3个由于LBT失败而未成功发送的RLM RS。UE将N310的值更新为1。UE在资源5处的N310的值为2。
可选地,UE可以只使用1bit的上报信息告知基站其RLM状态。例如,告知基站UE当前的RLM状态为已经启动T310。基站可以通过下行控制信息(downlink control information,DCI)或者无线资源控制(radio resource control,RRC)信令告知UE之前若干RLM RS的发送状态。此时,该若干RLM RS的数量可以是标准规定的,也可以是动态变化的。当不同UE配置的RLM RS检测数量和/或周期不同时,基站可以针对不同UE通知相应数量的RLM RS发送状态。
进一步的,一个UE可以在其上报信息中使用大于1比特信息告知基站其RLM的结果和请求基站反馈的RLM RS发送状态的数目。基站根据接收到的上报信息发送之前若干个RLM RS的发送状态给UE。
可选的,基站下发RLM RS发送状态数量与UE配置在N310或N311对应的检测窗口内的RLM RS数目一致。
UE可以通过物理上行控制信道(physical uplink control channel,PUCCH)、调度请求(scheduling request,SR)或物理随机接入信道(physical random access channel,PRACH)等上行信道将上报信息发送给基站;也可以通过基站给UE周期性配置的上行资源传输上报信息;也可以通过授权资源发送上报信息。多个UE可以通过正交方式进行上报。图5为一种用于传输上报信息的资源分配示意图。如图5所示,不同UE可配置在RACH资源中不同的资源单元集合(interlace)和/或不同的符号同时发送各自的上报信息。资源单元集合可以以资源快(resource block,RB)为单位,也可以子RB为单位基站可以根据收到上报信息的时频位置及额外的正交码(例如前导,正交码以进一步的提高支持同时发送上报信息的最大UE数目),来判断收到的上报信息来自哪个UE。
基站反馈的RLM RS发送状态可以承载在公共消息中。例如,可以在剩余最小系统信息(remaining minimum system information,RMSI)或group-common PDCCH中携带。
UE发送上报信息给基站后,可在预设的时间窗内持续监测基站可能发送的反馈。时间窗长度可以由标准规定,也可以由基站进行配置,并通过RMSI或RRC等信令通知UE。UE在指定时间窗内没有收到基站反馈则按照之前的流程进行RLM,例如不进行N310/T310计时器更新。
进一步的,当UE在T310失效前仍未收到基站反馈或未检测到连续N311个RLM RS高于门限值,则会认为之前的无线链路失效。此时,UE会接收基站的系统消息(例如,RMSI),并在指定的上行资源发起随机接入重新尝试与基站建立连接。上述方法也可以用于UE在计时器T310即将过期要进行基站重连时与基站进行信息交互。例如,当UE在T310失效前仍未收到基站反馈或未检测到连续N311个RLM RS高于预设门限值,则UE认为与基站间的无线链路失效。UE会接收基站的系统消息,并在指定的上行资源发起随机接入重新尝试与基站建立连接。
实施例一给出了一种UE与基站的交互机制,降低LBT对RLM机制的影响,使UE更加准确的进行RLM。
实施例二
5G系统中N310可以由基站基于数据类型等参数来灵活的进行参数配置。例如:通过RMSI周期配置,或通过RRC动态或者半静态配置。基站可以决定如何配置N310。例如,基站可以在N个RLM RS发送不成功后即进行配置,也可以周期性(如1s)地刷新配置。
对于eMBB业务,RLM RS周期可以是10ms,N310持续时间可以是100ms。
对于语音业务,RLM RS周期可以是10ms,N310持续时间可以是50ms。
在非授权通信的场景下,RLM RS的发送受到LBT影响,而LBT取决于周围环境干扰,会随着时间改变而改变。因此基站可在RMSI/RRC中配置额外参数给UE来指示其更 新后的N310/T310参数。该额外参数的取值可以由基站实现,不在标准中规定。需要说明的是基站可以给不同UE/不同分组UE配置不同的参数。
针对不同UE工作于不同的频段或不同的部分带宽(bandwidth part,BWP)的场景,频段或BWP受到的外界干扰不同,导致配置给不同UE的RLM RS发送成功概率不同,为了避免UE RLM失败从而频繁的尝试重连,需要对不同UE配置不同的RLM参数。例如:
基站给UE指示额外的参数为0.8,则对于eMBB业务而言,UE的N310计数器时长变为100/0.8=125ms。基站也可以指示N310计时器的额外时长为25ms,则N310计时器更新后的时长为100+25=125ms。
同理,基站也可以采用相同的方法对T310或其他RLM RS相关计时器进行更新/修改,在此不再赘述。
当给每个UE配置的额外参数相同时,基站可以在RMSI,OSI或group-common PDCCH中携带。当每个UE配置的额外参数不同时,基站可以通过RRC信令为每组/每个UE单独配置,也可以通过调度每个/每组UE对应的DCI指示,也可以在group-common PDCCH中指示。group-common PDCCH可以包含多个信息元,每个信息元包含UE/UE分组标识(如UE的C-RNTI,UE分组的RNTI)以及对应的额外参数。上述额外参数也可以是基于原计时器的一个偏移量。
实施例二给出了基站通过额外参数来更新UE侧RLM相关计时器/计数器的方法,使得UE的计时器/计数器更加灵活,更适应环境的改变。
通过本申请实施例提供的方法,可以半静态/动态更新RLM计数器(N310/N311)。考虑LBT对RLM RS的发送影响,使RLM-RS测量窗设置更加合理。进一步地,UE进行RLM测量结果反馈和基站发送RLM RS状态指示,使RLM RS测量更加准确。
本申请实施例中UE通过RLM RS来判断无线链路状态的方法也可以用于UE进行无线资源管理(radio resource management,RRM)测量。基站通过实施例所述方法来配置用于RRM测量的RRM-RS,UE根据基站配置和自身测量结果进行上报。
上文结合图1至图5详细描述了根据本申请实施例的传输方法。基于同一发明构思,下面将结合图6至图8描述根据本申请实施例的传输装置。应理解,方法实施例所描述的技术特征同样适用于以下装置实施例。
图6示出了根据本申请实施例的控制信息的传输装置600的示意性框图。所述装置600用于执行前文方法实施例中基站执行的方法。可选地,所述装置600的具体形态可以是基站或基站中的芯片。本申请实施例对此不作限定。所述装置600包括以下几个模块。
接收模块610,用于从用户设备UE接收上报信息,所述上报信息包括所述UE的一个或多个下行参考信号的检测结果或一个或多个下行参考信号对应的计时器/计数器的状态;
发送模块620,用于向所述UE发送反馈信息,所述反馈信息包括所述一个或多个下行参考信号的发送状态信息。
在一种可能的设计中,当所述UE未检测至少一个下行参考信号或至少一个检测到的下行参考信号的能量低于门限值时,接收模块610从所述UE接收上报信息。
在一种可能的设计中,所述上报信息可以用位图形式表征或是1比特信息。
在一种可能的设计中,所述1比特信息用于指示所述UE是否存在未正确接收的下行参考信号,或,用于指示所述一个或多个下行参考信号对应的计时器/计数器是否启动。
在一种可能的设计中,所述一个或多个下行参考信号的发送状态信息包括所述一个或多个下行参考信号中至少一个下行参考信号是由于LBT失败而没有被发送的。
在一种可能的设计中,发送模块620还用于向所述UE发送配置信息,所述配置信息携带用于更新一个或多个下行参考信号对应的计时器/计数器的参数。
进一步地,装置600还可能包括处理模块。所述处理模块用于处理接收到的数据以及用于处理要发送的数据。
图7示出了根据本申请实施例的控制信息的传输装置700的示意性框图。所述装置700用于执行前文方法实施例中第二设备执行的方法。可选地,所述装置700的具体形态可以是UE或UE中的芯片。本申请实施例对此不作限定。所述装置700包括以下几个模块。
发送模块710,用于向基站发送上报信息,所述上报信息包括UE的一个或多个下行参考信号的检测结果或一个或多个下行参考信号对应的计时器/计数器的状态;
接收模块720,用于从所述基站接收反馈信息,所述反馈信息包括所述一个或多个下行参考信号的发送状态信息。
在一种可能的设计中,当所述UE未检测至少一个下行参考信号或至少一个检测到的下行参考信号的能量低于门限值时,发送模块710向所述基站发送上报信息。
在一种可能的设计中,所述上报信息可以用位图形式表征或是1比特信息。
在一种可能的设计中,所述1比特信息用于指示所述UE是否存在未正确接收的下行参考信号,或,用于指示所述一个或多个下行参考信号对应的计时器/计数器是否启动。
在一种可能的设计中,所述一个或多个下行参考信号的发送状态信息包括所述一个或多个下行参考信号中至少一个下行参考信号是由于LBT失败而没有被发送的。
在一种可能的设计中,所述装置700还包括:处理模块730,用于更新所述一个或多个下行参考信号对应的计时器/计数器。
在一种可能的设计中,接收模块720还用于从所述基站接收配置信息,所述配置信息携带用于更新一个或多个下行参考信号对应的计时器/计数器的参数。
进一步地,处理模块730还用于处理接收到的数据以及用于处理要发送的数据,所述发送模块用于发送数据。
基于同一发明构思,本申请实施例还提供一种通信装置800。请参照图8,其示出了上述方法实施例中所涉及的基站或UE的一种可能的结构示意图。该装置800可以包括:收发器801。收发器801可以进一步包括接收器和发射器。
其中,收发器801用于发送或接收上报信息。收发器801还可以用于接收或发送反馈信息。所述上报信息包括所述UE的一个或多个下行参考信号的检测结果或一个或多个下行参考信号对应的计时器/计数器的状态;所述反馈信息包括所述一个或多个下行参考信号的发送状态信息。
应理解,在一些的实施例中,收发器801可以由发射器和接收器集成。在其他的实施例中,发射器和接收器也可以相互独立。
进一步地,装置800还可以包括处理器802、存储器803和通信单元804。其中,收发器801、处理器802、存储器803和通信单元804通过总线连接。
在下行链路上,待发送的数据(例如,PDSCH)或者信令(例如,PDCCH)经过收发器801调节输出采样并生成下行链路信号,该下行链路信号经由天线发射给上述实施例中的终端。在上行链路上,天线接收上述实施例中终端发射的上行链路信号,收发器801调节从天线接收的信号并提供输入采样。在处理器802中,对业务数据和信令消息进行处理,例如对待发送的数据进行调制、SC-FDMA符号生成等。这些单元根据无线接入网采用的无线接入技术(例如,LTE、5G及其他演进系统的接入技术)来进行处理。
处理器802还用于对装置800进行控制管理,以执行上述方法实施例中由基站或UE进行的处理。具体地,处理器802用于处理接收到的信息以及用于处理要发送的信息。作为示例,处理器802用于支持装置800执行图2至图5所涉及装置800的处理过程。应用于非授权场景下,处理器802还需要控制装置800进行信道侦听,以进行数据或者信令的传输。示例性地,处理器802通过收发器801从收发装置或者天线接收到的信号来进行信道侦听,并控制信号经由天线发射以抢占信道。在不同的实施例中,处理器802可以包括一个或多个处理器,例如包括一个或多个中央处理器(Central Processing Unit,CPU),处理器802可以集成于芯片中,或者可以为芯片本身。
存储器803用于存储相关指令及数据,以及装置800的程序代码和数据。在不同的实施例中,存储器603包括但不限于是随机存储记忆体(Random Access Memory,RAM)、只读存储器(Read-Only Memory,ROM)、可擦除可编程只读存储器(Erasable Programmable Read Only Memory,EPROM)、或便携式只读存储器(Compact Disc Read-Only Memory,CD-ROM)。在本实施例中,存储器803独立于处理器802。在其它的实施例中,存储器803还可以集成于处理器802中。
需要说明的是,图8所示的装置800可用于执行上述方法实施例中基站或UE所执行的方法,关于图8所示的装置800中未详尽描述的实现方式及其技术效果可参见上述方法实施例的相关描述。
可以理解的是,图8仅仅示出了基站或UE的简化设计。在不同的实施例中,基站或UE可以包含任意数量的发射器,接收器,处理器,存储器等,而所有可以实现本申请的基站或UE都在本申请的保护范围之内。
本申请的一个实施例提供了一种通信系统。该通信系统包括基站或UE。其中,基站可以是图6所示的通信装置或图8所示的装置。UE可以是图7所示的通信装置或图8所示的装置。
基于同一发明构思,本申请实施例还提供一种计算机程序产品,该计算机程序产品包括:计算机程序代码,当该计算机程序代码在计算机上运行时,使得该计算机执行图2至图5所示实施例中的方法。
基于同一发明构思,本申请实施例还提供一种计算机可读介质,该计算机可读解释存储有程序代码,当该程序代码在计算机上运行时,使得该计算机执行图2至图5所示实施例中的方法。
基于同一发明构思,本申请实施例还提供了一种芯片。该芯片可以是一种处理器,用于实现上述方法实施例中的方法。进一步地,所述芯片与存储器相连,用于读取并执行所 述存储器中存储的软件程序,以实现图2至图5所示实施例中的方法。
基于同一发明构思,本申请实施例提供了一种芯片,所述芯片包含处理器和存储器,所述处理器用于读取所述存储器中存储的软件程序,以实现图2至图5所示实施例中的方法。
本申请是参照根据本申请的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本发明实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘solid state disk(SSD))等。

Claims (27)

  1. 一种控制信息的传输方法,其特征在于,所述方法包括:
    用户设备UE向基站发送上报信息,所述上报信息包括所述UE的一个或多个下行参考信号的检测结果或一个或多个下行参考信号对应的计时器/计数器的状态;
    所述UE从所述基站接收反馈信息,所述反馈信息包括所述一个或多个下行参考信号的发送状态信息。
  2. 根据权利要求1所述的方法,其特征在于,当所述UE未检测至少一个下行参考信号或至少一个检测到的下行参考信号的能量低于门限值时,所述UE向所述基站发送上报信息。
  3. 根据权利要求1或2所述的方法,其特征在于,所述上报信息可以用位图形式表征或是1比特信息。
  4. 根据权利要求3所述的方法,其特征在于,所述1比特信息用于指示所述UE是否存在未正确接收的下行参考信号,或,用于指示所述一个或多个下行参考信号对应的计时器/计数器是否启动。
  5. 根据权利要求1至4任一项所述的方法,其特征在于,所述一个或多个下行参考信号的发送状态信息包括所述一个或多个下行参考信号中至少一个下行参考信号是由于LBT失败而没有被发送的。
  6. 根据权利要求1至5任一项所述的方法,其特征在于,所述方法还包括:
    所述UE更新所述一个或多个下行参考信号对应的计时器/计数器。
  7. 根据权利要求1至6任一项所述的方法,其特征在于,所述方法还包括:
    所述UE从所述基站接收配置信息,所述配置信息携带用于更新一个或多个下行参考信号对应的计时器/计数器的参数。
  8. 一种控制信息的传输方法,其特征在于,所述方法包括:
    基站从用户设备UE接收上报信息,所述上报信息包括所述UE的一个或多个下行参考信号的检测结果或一个或多个下行参考信号对应的计时器/计数器的状态;
    所述基站向所述UE发送反馈信息,所述反馈信息包括所述一个或多个下行参考信号的发送状态信息。
  9. 根据权利要求8所述的方法,其特征在于,当所述UE未检测至少一个下行参考信号或至少一个检测到的下行参考信号的能量低于门限值时,所述基站从所述UE接收上报信息。
  10. 根据权利要求8或9所述的方法,其特征在于,所述上报信息可以用位图形式表征或是1比特信息。
  11. 根据权利要求10所述的方法,其特征在于,所述1比特信息用于指示所述UE是否存在未正确接收的下行参考信号,或,用于指示所述一个或多个下行参考信号对应的计时器/计数器是否启动。
  12. 根据权利要求8至11任一项所述的方法,其特征在于,所述一个或多个下行参考信号的发送状态信息包括所述一个或多个下行参考信号中至少一个下行参考信号是由于LBT失败而没有被发送的。
  13. 根据权利要求8至12任一项所述的方法,其特征在于,所述方法还包括:
    所述基站向所述UE发送配置信息,所述配置信息携带用于更新一个或多个下行参考信号对应的计时器/计数器的参数。
  14. 一种控制信息的传输装置,其特征在于,所述装置包括:
    发送模块,用于向基站发送上报信息,所述上报信息包括UE的一个或多个下行参考信号的检测结果或一个或多个下行参考信号对应的计时器/计数器的状态;
    接收模块,用于从所述基站接收反馈信息,所述反馈信息包括所述一个或多个下行参考信号的发送状态信息。
  15. 根据权利要求14所述的装置,其特征在于,当所述UE未检测至少一个下行参考信号或至少一个检测到的下行参考信号的能量低于门限值时,所述发送模块向所述基站发送上报信息。
  16. 根据权利要求14或15所述的装置,其特征在于,所述上报信息可以用位图形式表征或是1比特信息。
  17. 根据权利要求16所述的装置,其特征在于,所述1比特信息用于指示所述UE是否存在未正确接收的下行参考信号,或,用于指示所述一个或多个下行参考信号对应的计时器/计数器是否启动。
  18. 根据权利要求14至17任一项所述的装置,其特征在于,所述一个或多个下行参考信号的发送状态信息包括所述一个或多个下行参考信号中至少一个下行参考信号是由于LBT失败而没有被发送的。
  19. 根据权利要求14至18任一项所述的装置,其特征在于,所述装置还包括:
    处理模块,用于更新所述一个或多个下行参考信号对应的计时器/计数器。
  20. 根据权利要求14至19任一项所述的装置,其特征在于,
    所述接收模块还用于从所述基站接收配置信息,所述配置信息携带用于更新一个或多 个下行参考信号对应的计时器/计数器的参数。
  21. 一种控制信息的传输装置,其特征在于,所述装置包括:
    接收模块,用于从用户设备UE接收上报信息,所述上报信息包括所述UE的一个或多个下行参考信号的检测结果或一个或多个下行参考信号对应的计时器/计数器的状态;
    发送模块,用于向所述UE发送反馈信息,所述反馈信息包括所述一个或多个下行参考信号的发送状态信息。
  22. 根据权利要求21所述的装置,其特征在于,当所述UE未检测至少一个下行参考信号或至少一个检测到的下行参考信号的能量低于门限值时,所述接收模块从所述UE接收上报信息。
  23. 根据权利要求21或22所述的装置,其特征在于,所述上报信息可以用位图形式表征或是1比特信息。
  24. 根据权利要求23所述的装置,其特征在于,所述1比特信息用于指示所述UE是否存在未正确接收的下行参考信号,或,用于指示所述一个或多个下行参考信号对应的计时器/计数器是否启动。
  25. 根据权利要求21至24任一项所述的装置,其特征在于,所述一个或多个下行参考信号的发送状态信息包括所述一个或多个下行参考信号中至少一个下行参考信号是由于LBT失败而没有被发送的。
  26. 根据权利要求21至25任一项所述的装置,其特征在于,
    所述发送模块还用于向所述UE发送配置信息,所述配置信息携带用于更新一个或多个下行参考信号对应的计时器/计数器的参数。
  27. 一种通信装置,其特征在于,包括:
    处理器,用于与存储器耦合,执行所述存储器中的指令,以实现如权利要求1至13中任一项所述的方法。
PCT/CN2020/071664 2019-01-11 2020-01-13 一种控制信息的传输方法及装置 WO2020143827A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP20738864.6A EP3910988B1 (en) 2019-01-11 2020-01-13 Method and apparatus for transmitting control information
BR112021013695-9A BR112021013695A2 (pt) 2019-01-11 2020-01-13 Método e aparelho de transmissão de informação de controle
US17/371,957 US11902814B2 (en) 2019-01-11 2021-07-09 Control information transmission method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910028189.8A CN111436054B (zh) 2019-01-11 2019-01-11 一种控制信息的传输方法及装置
CN201910028189.8 2019-01-11

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/371,957 Continuation US11902814B2 (en) 2019-01-11 2021-07-09 Control information transmission method and apparatus

Publications (1)

Publication Number Publication Date
WO2020143827A1 true WO2020143827A1 (zh) 2020-07-16

Family

ID=71520262

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/071664 WO2020143827A1 (zh) 2019-01-11 2020-01-13 一种控制信息的传输方法及装置

Country Status (5)

Country Link
US (1) US11902814B2 (zh)
EP (1) EP3910988B1 (zh)
CN (1) CN111436054B (zh)
BR (1) BR112021013695A2 (zh)
WO (1) WO2020143827A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7260005B2 (ja) * 2019-07-10 2023-04-18 富士通株式会社 サイドリンクの無線リンクの監視方法、装置及びシステム
US11659422B2 (en) * 2021-06-02 2023-05-23 Apple Inc. Mechanisms for radio link failure (RLF) reporting to network

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101631322A (zh) * 2008-07-14 2010-01-20 大唐移动通信设备有限公司 一种失步检测的方法和装置
CN107864517A (zh) * 2012-05-04 2018-03-30 华为技术有限公司 无线链路管理的方法、用户设备和基站
WO2018156435A1 (en) * 2017-02-24 2018-08-30 Qualcomm Incorporated Uplink beam, downlink beam, and radio link monitoring

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8712401B2 (en) * 2010-04-16 2014-04-29 Qualcomm Incorporated Radio link monitoring (RLM) and reference signal received power (RSRP) measurement for heterogeneous networks
CN102448078A (zh) * 2010-10-09 2012-05-09 电信科学技术研究院 一种辅载波上的无线链路监测处理方法及用户设备
CN104284349B (zh) * 2013-07-03 2018-01-23 上海无线通信研究中心 一种分层网休眠小基站激活的方法
US20160249350A1 (en) * 2014-10-03 2016-08-25 Telefonaktiebolaget Lm Ericsson (Publ) Measurement Procedures for Operation in Unlicensed Spectrum
CN104486792B (zh) 2014-12-19 2018-02-13 宇龙计算机通信科技(深圳)有限公司 Rrm测量方法及测量系统、终端和基站
CN108631993B (zh) * 2017-03-24 2021-02-23 华为技术有限公司 一种数据传输方法及装置
US10819413B2 (en) * 2018-11-13 2020-10-27 Nxp Usa, Inc. Beam tracking in wireless communication

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101631322A (zh) * 2008-07-14 2010-01-20 大唐移动通信设备有限公司 一种失步检测的方法和装置
CN107864517A (zh) * 2012-05-04 2018-03-30 华为技术有限公司 无线链路管理的方法、用户设备和基站
WO2018156435A1 (en) * 2017-02-24 2018-08-30 Qualcomm Incorporated Uplink beam, downlink beam, and radio link monitoring

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HUAWEI ET AL.: "Initial access in NR unlicensed, R1-1812195", 3GPP TSG RAN WG1 MEETING #95, 16 November 2018 (2018-11-16), XP051554067, DOI: 20200319171846X *
See also references of EP3910988A4 *

Also Published As

Publication number Publication date
BR112021013695A2 (pt) 2021-09-21
EP3910988B1 (en) 2024-06-12
EP3910988A4 (en) 2022-03-23
EP3910988A1 (en) 2021-11-17
US20210337416A1 (en) 2021-10-28
CN111436054A (zh) 2020-07-21
CN111436054B (zh) 2022-05-24
US11902814B2 (en) 2024-02-13

Similar Documents

Publication Publication Date Title
US11626952B2 (en) Signal configuration method and related device
AU2018407973B2 (en) System and method for periodic beam failure measurements
EP2827662B1 (en) Method and device for resource allocation
JP6537495B2 (ja) 時分割複信ワイヤレス通信システム
EP3100545B1 (en) Inter-group control of semi-persistent channel occupation for device-to-device (d2d) wireless communications
US10728724B2 (en) Communication device and wireless communication method
CN111034304A (zh) 用于nr专用载波和lte/nr共享载波之间的prach发送的上行链路载波选择
JP2017520149A (ja) ライセンスド周波数帯タイミングを有するアンライセンスド周波数帯
US20210176017A1 (en) HARQ Feedback Method And Apparatus
WO2020063630A1 (zh) 一种指示信息的传输方法和装置
US20220225425A1 (en) Random Access Method And Apparatus
US11902814B2 (en) Control information transmission method and apparatus
WO2018028675A1 (zh) 随机接入信号配置方法、装置、设备、系统和存储介质
CN113497698B (zh) 通信装置
US20200359365A1 (en) Flexible transmission grid
EP4039045A1 (en) Adapting maximum allowed cca failures based on single occasion periodicity
WO2018171568A1 (zh) 一种信息传输方法、处理方法及装置
JP5766338B2 (ja) 無線端末および無線通信方法
JP5583512B2 (ja) 無線基地局および無線通信方法
WO2022105904A1 (zh) 传输处理方法、装置及通信设备
CN117716783A (zh) 网络节点、系统、方法、电路和计算机程序产品

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20738864

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112021013695

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2020738864

Country of ref document: EP

Effective date: 20210811

ENP Entry into the national phase

Ref document number: 112021013695

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20210712