WO2022105889A1 - 气体净化装置、系统及方法 - Google Patents

气体净化装置、系统及方法 Download PDF

Info

Publication number
WO2022105889A1
WO2022105889A1 PCT/CN2021/131882 CN2021131882W WO2022105889A1 WO 2022105889 A1 WO2022105889 A1 WO 2022105889A1 CN 2021131882 W CN2021131882 W CN 2021131882W WO 2022105889 A1 WO2022105889 A1 WO 2022105889A1
Authority
WO
WIPO (PCT)
Prior art keywords
electric field
gas
filter
gas purification
field part
Prior art date
Application number
PCT/CN2021/131882
Other languages
English (en)
French (fr)
Inventor
奚勇
王赞
Original Assignee
上海必修福企业管理有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海必修福企业管理有限公司 filed Critical 上海必修福企业管理有限公司
Priority to CN202180072561.0A priority Critical patent/CN116710208A/zh
Publication of WO2022105889A1 publication Critical patent/WO2022105889A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/017Combinations of electrostatic separation with other processes, not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/02Plant or installations having external electricity supply
    • B03C3/04Plant or installations having external electricity supply dry type
    • B03C3/06Plant or installations having external electricity supply dry type characterised by presence of stationary tube electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/34Constructional details or accessories or operation thereof
    • B03C3/40Electrode constructions
    • B03C3/45Collecting-electrodes
    • B03C3/49Collecting-electrodes tubular

Definitions

  • the present invention relates to a gas purification device, system and method
  • clean room is a commonly used manufacturing workshop environment in the semiconductor manufacturing process.
  • the purpose is to avoid the contamination of semiconductor materials by particles, humidity, temperature, etc., which in turn affects the yield of semiconductors. and reliability.
  • the airflow entering the clean room needs to be purified, which mainly includes three-stage purification, namely primary purification, intermediate purification and high efficiency purification. Depending on the purification effect, different air filters are used.
  • the initial effect purification usually uses the initial effect air filter, which is mainly composed of non-woven fabric, nylon mesh, activated carbon filter cotton, metal mesh, etc. It is mainly used to filter suspended particles above 5 ⁇ m.
  • Medium-efficiency purification usually uses medium-efficiency air filters, which are mainly composed of special non-woven fabrics, glass fibers, etc., and are mainly used to filter suspended particles of 1-5 ⁇ m.
  • High-efficiency purification usually uses high-efficiency air filters, which are mainly composed of ultra-fine glass fiber paper, mainly used to filter suspended particles above 0.5 ⁇ m, and even high-efficiency filters made of borosilicate microfibers such as HEPA filtration
  • the filter can filter suspended particles above 0.3 ⁇ m; the filter material of ultra-efficient air filter U15 is ultra-fine glass fiber paper, which can capture suspended particles above 0.12 ⁇ m.
  • the above air purification process for the intake air of the clean room is usually completed outside the clean room.
  • the tertiary filter device is set up independently from the clean room, which occupies a large space and has a high construction cost.
  • the filter element material of the filters at all levels will be polluted after a period of use, the service life is short, and it needs to be replaced regularly, thereby increasing the cost of the filter equipment.
  • the filter resistance of the filter element is large, which increases the power consumption of the air supply equipment.
  • the purpose of the present invention is to provide a gas purification device, system and application to solve the problems of air purification efficiency and air resistance existing in the prior art.
  • a first aspect of the present invention provides a gas purification device for filtering and purifying gas, comprising:
  • At least one electric field device and at least one filter unit arranged in sequence along the gas flow direction
  • the filter unit has a filter medium formed of electret material
  • the filter medium can be electret by the electric field portion.
  • the electric field part has a gas flow channel through which the gas passes, the gas flow channel has a gas inlet for gas entry and a gas outlet for gas discharge, and the electric field part is in the gas flow path.
  • An electric field is formed in the channel for filtering the gas.
  • the arrangement position of the filter unit relative to the electric field portion is defined as follows: the vertical distance between all the gas outlets to the surface of the filter medium receiving the gas discharged from the gas outlet The minimum value that allows the filter medium to be subjected to the electret.
  • the minimum value is less than or equal to 200mm.
  • the filtering unit can filter more than 99% of the particles of 500 nm or more in the gas.
  • the electric field portion is a first electric field portion
  • the first electric field portion includes a first discharge electrode and a first adsorption electrode for forming the electric field
  • the first adsorption electrode is composed of a plurality of hollow electrodes.
  • the tube bundle is composed of a honeycomb structure
  • the first discharge electrode is at least partially arranged in the hollow tube bundle of the first adsorption electrode
  • the gas flow is formed between the first discharge electrode and the first adsorption electrode road.
  • the electric field portion is a second electric field portion
  • the second electric field portion includes a second discharge electrode and a second adsorption electrode that form the electric field
  • the second adsorption electrode includes at least one electric field unit
  • the electric field unit has a side wall extending in the axial direction, the side wall forms a passage channel around the side wall, and the side wall is provided with a second gas inlet for gas entering the channel and a first gas inlet for gas exiting the channel. Second air outlet.
  • the second electric field portion includes a plurality of electric field adsorption units, two adjacent electric field adsorption units share a side wall, and the plurality of electric field adsorption units are connected to form an integral structure.
  • the electric field unit has an electric field unit, and the electric field strength of the electric field unit is less than 0.5kv/mm.
  • the electric field part includes a first electric field part and a second electric field part, the first electric field part and the second electric field part are arranged in sequence along the gas flow direction, and the first electric field part is the above-mentioned first electric field part , the second electric field portion is the above-mentioned second electric field portion.
  • the electric field device includes a second electric field part and a first electric field part, the second electric field part and the first electric field part are arranged in sequence along the gas flow direction, and the first electric field part is the above-mentioned first electric field part , the second electric field device is the above-mentioned second electric field part.
  • an application of a gas purification device is provided, the gas purification device is used to purify the gas entering the semiconductor clean room, and the gas purification device is the above-mentioned gas purification device.
  • a third aspect of the present invention provides a semiconductor clean room gas purification system, comprising: a gas purification device, wherein the gas purification device is the above-mentioned gas purification device.
  • a third aspect of the present invention provides a gas purification method, comprising:
  • the filter unit performs the filtration through a filter medium formed of an electret material
  • the electret material can be electret by the electric field portion.
  • the arrangement position of the filter unit relative to the electric field portion is defined as follows: the vertical distance between all the gas outlets to the surface of the filter medium receiving the gas discharged from the gas outlet The minimum value that allows the filter medium to be subjected to the electret.
  • the minimum value is less than or equal to 200mm.
  • the filter unit can filter more than 99% of particles of 500 nm or more in the gas.
  • a gas purification device for filtering and purifying gas, comprising: at least one electric field part, a first filtering unit and a second filtering unit arranged in sequence along the gas flow direction, wherein the The first filter unit and the second filter unit respectively have a first filter medium and a second filter medium formed of electret materials; both the first filter medium and the second filter medium can be electret by the electric field unit, so The filtration pore size of the second filter medium is larger than the filtration pore size of the first filter medium.
  • the filtration level of the first filter medium is any one of coarse-efficiency filtration, medium-efficiency filtration, or medium-efficiency filtration.
  • the second filter medium is PP cotton.
  • a gas purification system comprising: at least two gas purification devices arranged in sequence along the gas flow direction, and the gas purification devices are the above-mentioned gas purification devices.
  • an application of a gas purification system for purifying gas entering a semiconductor clean room, and the gas purification system is the above-mentioned gas purification system.
  • a gas purification method characterized in that:
  • At least one electric field part and at least one filter unit are arranged in sequence along the gas flow direction; an electric field is formed in the gas flow channel of the electric field part; the gas is allowed to enter the gas flow channel to be filtered to obtain purified gas; The treated gas, wherein the filter unit performs the filtration through a filter medium formed of an electret material, and the electret material can be electret by the electric field portion.
  • Fig. 1 is the explosion schematic diagram of the gas purification device of the first embodiment of the present invention
  • FIG. 2 is a schematic perspective view of the first electric field part in the first embodiment of the present invention.
  • FIG. 3 is a schematic perspective view of the second electric field portion of the first embodiment of the present invention.
  • FIG. 4 is a schematic front view of a second electric field portion including a sealing plate
  • Fig. 5 is the schematic diagram of the gas purification device in the second embodiment of the present invention.
  • FIG. 6 is a schematic diagram of the vertical distance from the gas outlet to the surface of the filter medium in the second embodiment
  • FIG. 7 is an exploded schematic diagram of the gas purification device of the fourth embodiment.
  • a gas purification system has at least one electric field device and at least one filter unit arranged in sequence along the airflow direction, the electric field device and the filter unit are both arranged in the gas flow channel, and the filter unit in the electric field generated by the electric field device.
  • the electric field device includes at least a first electric field device and/or a second electric field device.
  • the gas purification device 100 includes a housing 50 and an electric field unit, a filter unit 20 and an ozone removing unit 10 that are sequentially arranged in the housing 50 along the air flow direction C and the airflow direction.
  • the electric field portion includes a first electric field portion 40 and a second electric field portion 30, and a gas flow channel is formed in the casing 50 from top to bottom.
  • the first electric field part 40 , the second electric field part 30 , the first filter unit 20 , and the ozone removing unit 10 are detachably arranged in the casing 50 .
  • the first electric field part 40 includes an outer frame and an electric field part arranged in the outer frame.
  • the electric field part includes a dust removal electric field cathode 42 (first discharge electrode) and a dust removal electric field anode (first adsorption electrode) 41.
  • the dust removal electric field anode is used to generate the ionization dust removal electric field
  • the dust removal electric field anode is a honeycomb structure composed of a plurality of hollow tube bundles
  • the dust removal electric field cathode penetrates into the dust removal electric field anode.
  • a dust removal electric field flow channel is formed between the dust removal electric field anode and the dust removal electric field cathode.
  • the interior of the dust removal electric field anode 41 is composed of a honeycomb-shaped and hollow anode tube bundle.
  • the hollow cross section of the dust removal electric field anode tube bundle is a circle or a polygon, and the polygon is a hexagon or a triangle.
  • the cross-sectional shape of the anode tube bundle is a hexagon.
  • the dust-removing electric field cathode 42 includes a plurality of electrode rods, which pass through each anode tube bundle in the anode tube bundle group in a one-to-one correspondence, wherein the shape of the electrode rods is needle-like, polygonal, burr-like, and threaded rod-like or columnar.
  • the ratio of the dust accumulation area of the anode of the dust removal electric field to the discharge area of the cathode of the dust removal electric field is 1.667:1-1680:1.
  • the cathode 42 of the dedusting electric field is installed on the support plate 43, and the supporting plate 43 is connected with the anode 41 of the dedusting electric field through an insulating mechanism.
  • the insulation mechanism is used to achieve insulation between the support plate 43 and the dust removal electric field anode 41 .
  • the dedusting electric field anode 41 includes a first anode portion 412 and a second anode portion 411 , that is, the first anode portion 412 is close to the inlet of the dedusting electric field device, and the second anode portion 411 is close to the outlet of the dedusting electric field device.
  • the support plate and the insulating mechanism are between the first anode part 412 and the second anode part 411, that is, the insulating mechanism is installed in the middle of the dust removal electric field or the middle of the dust removal electric field cathode 42, which can play a good supporting role on the dust removal electric field cathode 42, and
  • the cathode 42 of the dedusting electric field is fixed relative to the anode 41 of the dedusting electric field, so that a set distance is maintained between the cathode 42 of the dedusting electric field and the anode 41 of the dedusting electric field.
  • the second anode part 411 includes a plurality of anode tube bundles 411a.
  • the anode tube bundles 411a and the dust-removing electric field cathode 42 are respectively electrically connected to two electrodes of a power supply.
  • the power supply is a DC power supply.
  • the anode tube bundles 411a Having a positive potential
  • the dust removal field cathode 42 has a negative potential.
  • the DC power supply may be a DC high-voltage power supply.
  • a discharge dust removal field is formed between the anode tube bundle 411a and the dust removal field cathode 42, and the discharge dust removal field is a kind of electrostatic dust removal field.
  • the voltage between the anode and the cathode is 6kv.
  • the anode tube bundle 411a is in the shape of a hollow regular hexagonal tube
  • the dust removal electric field cathode 42 is in the shape of a rod
  • the dust removal electric field cathode 42 is penetrated in the anode tube bundle 411a.
  • the external dimension of the first electric field portion 40 is 204*570*1170 mm.
  • the dust removal electric field anode 41 may also have only one anode portion.
  • the second electric field part 30 includes a frame and a second discharge electrode and a second adsorption electrode disposed in the frame.
  • the second adsorption electrode includes eight electric field adsorption units, which are a first electric field adsorption unit 810 , a second electric field adsorption unit 820 , a third electric field adsorption unit 830 , a fourth electric field adsorption unit 840 , and a fifth electric field adsorption unit 850 , the sixth electric field adsorption unit 860 , the seventh electric field adsorption unit 870 and the eighth electric field adsorption unit 880 , the eight electric field adsorption units are arranged adjacent to the left and right, and the adjacent electric field adsorption units share one side wall, and each electric field adsorption unit The channel of the unit is surrounded by the side wall and the cross section perpendicular to the axial direction is an equilateral triangle.
  • the number of the electric field adsorption units is not limited to this, and the number of the electric field adsorption units can be adjusted according to the actual need to purify the air volume. Adjust, and the arrangement of the plurality of electric field adsorption units may be adjacent and/or non-adjacent in any direction of up, down, left, right, front, and back.
  • the structures and shapes of the eight electric field adsorption units are the same. However, in other embodiments, according to the storage conditions of the device space or other factors, the structures, structures, The sizes can also be different or partially the same.
  • the cross-section perpendicular to the axial direction formed by the channel of the electric field adsorption unit surrounded by the side wall is a polygon, and the polygon can be any one of a quadrilateral, a pentagon or a hexagon.
  • the shape of the air inlet hole and/or the air outlet hole is a circle, an ellipse, and a polygon.
  • the polygon includes any one or more of a triangle, a quadrilateral, a pentagon, and a hexagon. .
  • the second discharge electrode 809 includes a discharge electrode 819, a discharge electrode 829, a discharge electrode 839, a discharge electrode 849, a discharge electrode 859, a discharge electrode 869, a discharge electrode 879, and a discharge electrode 889, and each discharge electrode is provided with
  • the second discharge electrode 809 is preferably arranged parallel to the side wall of the channel and passes through the channel corresponding to it. The center of the circle inscribed in the section of the electric field unit, where the discharge efficiency is the highest.
  • the discharge electrode 819 is disposed in the channel of the first electric field unit 810, preferably parallel to the side wall of the channel and passing through the center of the inscribed circle of the cross section of the first electric field unit 810, and so on, the relationship between other discharge electrodes and the electric field unit is deduced .
  • the first electric field adsorption unit 810 includes a side wall 812 extending along the axial direction, the side wall 812 includes a first side wall 8121, a second side wall 8122, a third side wall 8123, a first side wall 8121, a second side wall 8122 , the third side wall 8123 surrounds the first channel 811, and the side wall 812 is provided with a first inlet hole 813 (gas inlet) for gas entering the channel 811 and a first outlet hole 814 (gas inlet) for supplying gas to discharge the first channel 811.
  • a first inlet hole 813 gas inlet
  • a first outlet hole 814 gas inlet
  • the number of the first air inlet holes 813 and the first air outlet holes 814 is multiple, and the plurality of first air inlet holes 813 are evenly arranged in two rows on the first side wall 8121 in the axial direction.
  • the air outlet holes 814 are evenly arranged in two rows on the second side wall 8122 in the axial direction.
  • There are no air inlet holes or air outlet holes are distributed on the third side wall 8123.
  • the hole centers are arranged on different planes perpendicular to the axial direction.
  • the first electric field unit 810 and the second electric field unit 810 share the second side wall 8122, and two surfaces of the second side wall 8122 face the first channel 811 of the first electric field unit 810 and the second channel of the second electric field unit 820, respectively.
  • the first air outlet 814 on the second side wall 8122 of the first electric field unit 810 is used as the second air inlet hole of the second side wall 8122 of the second electric field unit 820, so as to ensure the gas from the first
  • the electric field unit 810 directly enters the second electric field unit 820
  • the fourth side wall 8222 of the second electric field unit 820 has a plurality of second air outlets 824 uniformly arranged in two rows along the axial direction
  • the fifth side of the second electric field unit 820 The wall 8223 has no air inlet and/or air outlet.
  • the shape of the air inlet hole and/or the air outlet hole is a circle, an ellipse, and a polygon.
  • the polygon includes any one or more of a triangle, a quadrilateral, a pentagon, and a hexagon. .
  • the shape of the air inlet hole and/or the air outlet hole is circular, and the side wall is made of a material containing stainless steel and/or aluminum.
  • all electric field adsorption units are electrically connected to the same pole of the power supply, and all discharge electrodes are electrically connected to the other pole of the power supply, for example, the first electric field adsorption unit 810 and the second electric field adsorption unit are used.
  • the first electric field adsorption unit 810 is electrically connected to the anode of the power supply
  • the discharge electrode 819 is electrically connected to the cathode of the power supply
  • the second adsorption electric field unit 820 is electrically connected to the anode of the power supply
  • the discharge electrode 829 is electrically connected to the cathode of the power supply Electrical connection.
  • the first electric field adsorption unit 810 and the discharge electrode 819 form a first electric field
  • the second electric field adsorption unit 820 and the discharge electrode 829 form a second electric field.
  • the plurality of electric field adsorption units are divided into two groups, the two groups of electric field adsorption units are arranged in more than two rows and combined together, the electric field adsorption units of each row are in the same group, and the electric field adsorption units of the first group are in the same group.
  • the adsorption unit is electrically connected to the anode of the power supply, and the first group of discharge electrodes corresponding to it is electrically connected to the cathode of the power supply; the second group of electric field adsorption units is electrically connected to the cathode of the power supply, and the corresponding second group of discharge electrodes is electrically connected It is electrically connected to the anode of the power supply.
  • the particles in the gas will acquire negative and positive charges respectively, so that The negatively charged particles in the gas are deposited on the first group of electric field units, and the particles that are easily and positively charged in the gas are deposited on the second group of electric field units, thereby improving the dust removal efficiency.
  • the gas does not flow in the axial direction of the channel, it can be understood that the gas does not flow from one end of the channel to the other end of the channel along the axial direction of the channel; the gas enters the channel through the air inlet, and then passes through the channel. Air outlet vent channel.
  • the above-mentioned electric field adsorption unit can be used as the adsorption electrode of the electric field device.
  • the discharge electrode of the electric field device is discharged and ionized. After the particles in the gas are combined with the charged ions, the particles in the gas are charged, and the charged particles move to the adsorption electrode. , and deposited on the adsorption electrode.
  • the gas is fed in a direction that is not parallel to the side wall of the electric field unit, that is to say, the gas entering direction is not perpendicular to the ion flow direction in the electric field, compared with the gas entering direction perpendicular to the ion flow direction.
  • the invention increases the residence time of the gas in the electric field, which can improve the charging efficiency of the particles, and more particles are deposited on the adsorption electrode, thereby improving the dust removal efficiency.
  • the gas flow in the channel can be disordered, which further increases the residence time of the gas in the electric field. Increase the frequency of close contact with the discharge electrode, improve the charging efficiency and charging amount of particulate matter; and when the gas forms a cyclone flow direction, it is conducive to the separation of large particles. Combining the above two points, it can effectively improve the dust removal efficiency.
  • the particulate matter includes, but is not limited to, solid particles, droplets, solid particles with liquid attached, aerosols, plasma solid particles or droplets, etc., and may also be microorganisms such as bacteria and fungi.
  • the gas directions of the first electric field adsorption unit 810 and the second electric field adsorption unit 820 are deduced by analogy.
  • the gas enters the first electric field through the first air inlet hole 813 , then enters the second electric field through the first air outlet hole 814 , and finally is discharged through the second air outlet hole 824 .
  • the hole center of the second gas outlet hole 824 is arranged on a different plane perpendicular to the axial direction, and the gas flow direction of the gas passing through the first electric field and the second electric field is disordered, which further increases the residence time of the gas in the two electric fields, and increases nearly
  • an air inlet hole is provided on the fifth side wall 8223 of the second electric field adsorption unit 820, then the air flow of the second electric field adsorption unit 820 and the third electric field adsorption unit 830 are communicated, and the gas can be drawn from the third electric field adsorption unit 830 flows to the second electric field adsorption unit 820 .
  • the side wall of each electric field unit may be provided with air inlet holes or air outlet holes, so that the gas of each electric field unit may originate from a plurality of adjacent electric field units, or may flow to a plurality of adjacent electric field units. In the electric field unit, the gas flow direction is highly turbulent, and the air flow near the discharge electrode increases, which increases the charging efficiency and charging amount of the particles in the gas, and improves the dust removal efficiency.
  • the discharge electrode 819 in the second discharge electrode 809 is taken as an example for description.
  • the discharge electrode 819 is an elongated needle-shaped conductor. Threaded rod or cylindrical conductors.
  • the diameter of the discharge electrode 819 is 0.1-10 mm, preferably, the diameter of the discharge electrode 819 is 0.2-5 mm.
  • the discharge electrode 819 is elongated and made of any one of 304 stainless steel, titanium, tungsten, and iridium.
  • the frame includes a first sealing plate 81 and a second sealing plate 82.
  • the second electric field device 30 includes a first sealing plate 81, a second sealing plate 82 and an electric field adsorption device 800.
  • the sealing plate 81 and the second sealing plate 82 are respectively connected to the two ends of the electric field adsorption device 800, that is to say, respectively connected to the two ends of each electric field unit in the electric field adsorption device 800, and the two ends are sealed to ensure that the gas only flows from the electric field adsorption device 800.
  • the inlet or outlet of each electric field unit enters and exits.
  • the discharge electrode 819 is made of iridium, and the external dimension of the second electric field device 30 is 88.5*570*1170mm.
  • the dust removal electric field flow channel (gas flow channel) in the first electric field device 40 is perpendicular to the channel formed around the side wall of the electric field unit of the second electric field device 30 .
  • the filter unit 20 adopts an ultra-high-efficiency air filter, which can achieve 99% filtration for particles greater than or equal to 500 nm in the gas, and preferentially, can filter particles greater than or equal to 300 nm.
  • This filter unit is, for example, high-efficiency air.
  • Particle filter HEPA, high efficiency particulate air
  • ULPA ultra-efficient air filter
  • the filter unit 20 has an electret material.
  • the filter unit 20 adopts a U15 filter, and the external dimension is 96*570*1170mm.
  • the distance between the first electric field device 40 and the second electric field device 30 is 3-15 mm, and the distance between the second electric field device 30 and the filter unit 20 is 2-25 mm.
  • the electric field device continuously electrets the filter unit 20, so that the filter unit always maintains a high adsorption performance.
  • the filter unit can maintain a high electret state for a long time, even if the filter pore size is increased, the adsorption effect will not be affected. On the other hand, the increase of the filter pore size reduces the ventilation resistance. can be greatly reduced.
  • the gas purification device 200 is used to purify the gas, and includes: at least one electric field part 210 and at least one filter unit 220 arranged in sequence along the gas flow direction.
  • the electric field part 210 has a gas flow channel 211 through which the gas passes, and the gas flow channel has a gas inlet for the gas to enter and a gas outlet for the gas to be discharged.
  • the gas inlet may be one or a hole, and the gas outlet may also be one or more. As shown in FIG. 5 , there are multiple electric field gas inlets and multiple electric field gas outlets.
  • the electric field part 210 forms an electric field in the gas flow channel 211, and through this electric field, the gas passing through the gas flow channel 211 is purified, and the electric field purifies the gas, which is well known in the art:
  • the electrode ionizes the passing gas, and the particles in the gas are charged, so that the charged particles can be adsorbed by the other electrode. For example, if one electrode is negatively charged and the other is positively charged, the negatively charged one electrode will ionize the gas and make the particles in the gas negatively charged, so that they can be adsorbed and removed by the other positively charged electrode.
  • the filter unit 220 filters the gas filtered by the electric field part 210 through a filter medium formed of an electret material, specifically, filters the gas discharged from the gas outlet of the electric field, and the filter medium can be filtered by the electric field part 210
  • the electret that is, the setting position of the filter unit 220, enables the filter medium to be charged by the electric field device 210, or in other words, the filter medium can obtain the charged ions generated by the ionized gas of the electric field device 210, thereby being electret.
  • the filter medium may be a mesh, a layer, a filter element, or the like.
  • the purification method of the filter unit 220 is as follows: filtration through aperture blocking, staggered routes, and rapid gas velocity impact.
  • gas purification system in this embodiment is used. Since the electric field can electret the filter unit, the filter unit is In addition to the above-mentioned purification methods, the electret increases the purification effect, and combined with the electric field part, compared with the prior art, the removal effect of particles above 10 nm is better, so it is more suitable for use in high-demanding environments;
  • the electric field part 210 can electret the filter medium, during operation, the electric field part 210 can continue to electret the filter medium, so that the filter medium cannot be continuously electret In this way, compared with the prior art, the energy consumption and cost of use can be reduced, and the electric field part 210 can be used for first purification, which can prolong the service life of the filter medium and reduce the number of replacements. , thereby reducing the cost of use, and also reducing the secondary pollution to the environment after replacement.
  • the setting position of the filter unit 220 relative to the electric field part 210 can be defined as follows: the minimum value of the vertical distances from all the electric field gas outlets to the surface of the filter medium receiving the gas discharged from the electric field gas outlets, The filter medium can be subjected to the electret.
  • the arrows in the figure refer to the flow direction of the gas.
  • the filter medium receives the gas from the surface A for filtering, and then discharges it from the surface B, and all the gas outlets 13 go to the surface A.
  • the minimum value L in the vertical distance of can make the filter medium electret, that is, the filter medium can obtain the above-mentioned charged ions and be electret.
  • the gas outlet 13 is not on a plane, and the vertical distances from all the gas outlets to the surface A are long or short, and the shortest vertical distance is the above-mentioned minimum value.
  • the specific value of the minimum value can be set according to the above rules after synthesizing compact structure, power consumption, and usage mode in practice.
  • the minimum value is less than or equal to 200 mm.
  • the specific structure of the electric field device is the same as the example of each electric field part involved in the first embodiment.
  • the filter unit 220 can filter 99% of the particles larger than or equal to 500 nm in the gas, preferably, it can filter the particles larger than or equal to 300 nm.
  • This filter unit is, for example, high-efficiency air particles Filter (HEPA, high efficiency particulate air), ultra-efficient air filter (ULPA, ultra-low penetration air).
  • HEPA high-efficiency air particles Filter
  • ULPA ultra-efficient air filter
  • the gas purification device 200 of the present embodiment when used in a semiconductor clean room, can reduce the energy consumption, prolong the service life of the filter unit 220, reduce the use cost, and also reduce the second impact on the environment after the filter unit 220 is replaced. Less pollution, and the efficiency of filtering 10nm particles can exceed 99%.
  • This embodiment also provides an air purification system for a semiconductor clean room, including the above-mentioned air purification device 200.
  • the input of primary and intermediate filtration in the current semiconductor clean room purification can be reduced, the purification requirements can be met, and the floor space occupied is further reduced. and input costs.
  • the present embodiment also provides a gas purification method, characterized in that it includes:
  • At least one electric field part and at least one filter unit are arranged in sequence along the gas flow direction;
  • the filter unit performs the electret filtration through the electret material
  • the electret material can be electret by the electric field portion.
  • the electric field parts included in the gas purification device are combined in the following manner: the first electric field part and the second electric field part are sequentially formed along the airflow direction.
  • the first electric field part and the second electric field part are sequentially formed along the airflow direction.
  • the electric field part can be one first electric field part, or a plurality of first electric field parts arranged in the airflow direction;
  • the electric field part can also be one second electric field part, or a plurality of second electric field parts arranged in the direction of the airflow;
  • the electric field portion may also be a second electric field portion and a first electric field portion arranged in sequence along the airflow direction.
  • the gas purification system includes a filter unit, the filter unit adopts a high-efficiency filter (model: U15), and the thickness of the single-layer filter element: 96mm.
  • the ventilation fan has a voltage of 220V and a current of 1.006A.
  • the filter unit 20 adopts a high-efficiency filter (model: U15), and the thickness of the single-layer filter element: 96mm.
  • the ventilation fan power is 150W.
  • test example adopts low wind speed, compared with the high wind speed of the comparative example, it can achieve nearly the same filtering effect, but the power consumption of the finishing use of the test example is larger than that of the comparative example.
  • various combined electric fields and filter units of the present invention can be arranged in sequence along the direction of the processing gas, which can achieve the same effect as the comparative example at lower wind speeds, so that the use cost after use is low, and the number of filter units is reduced. The number of replacements will further reduce the cost of use.
  • the gas purification system includes a casing 50 and a second electric field part 30 , a first electric field part 40 , and a filter unit 20 which are sequentially arranged in the casing 50 along the air flow direction C.
  • the gas purification system includes a housing 50 , a first electric field part 40 and a filter unit 20 which are sequentially arranged in the housing 50 along the air flow direction C.
  • the gas purification device of the above-mentioned embodiment adopts the electric field part and the filter unit to cooperate, which can not only reduce the energy consumption, but also reduce the flow of large particles in the gas through the filter unit due to the pretreatment of the gas by the electric field part. , extending the service life of the filter unit, thereby reducing the cost of use.
  • Another aspect of the present invention provides an air purification method, comprising the following steps:
  • At least one electric field part and at least one filter unit are arranged in sequence along the air flow direction, and the filter unit can be electret by the electric field part.
  • the first electric field part includes a dust removal electric field cathode and a dust removal electric field anode, and the dust removal electric field cathode and the dust removal electric field anode are used to generate an ionization and dust removal electric field, and the dust removal electric field anode is A honeycomb structure composed of multiple hollow tube bundles.
  • the second electric field part includes a discharge electrode and an adsorption electrode
  • the adsorption electrode is an integral structure formed by connecting a plurality of electric field units, and the discharge electrode is penetrated through the channel of the electric field unit Inside, an electric field is formed between the discharge electrode and the electric field unit.
  • the electric field part includes a first electric field part and a second electric field part, and the first electric field part and the second electric field part are arranged in sequence along the air flow direction.
  • the filter unit includes a filter unit 20 using an ultra-high efficiency air filter.
  • the dust removal electric field flow channel in the first electric field part 40 is set to be perpendicular to the channel formed by the surrounding sidewall of the electric field unit in the second electric field part 30 .
  • the distance between the first electric field part 40 and the second electric field part 30 is set to be 3-15 mm, and the distance between the second electric field part 30 and the filter unit 20 is set to be 2-25 mm.
  • the gas purification device of this embodiment includes three electric field parts and a filter unit arranged in sequence along the gas flow direction.
  • the three electric field parts all use the first electric field part 40 in the first embodiment.
  • the first electric field The part includes a dust removal electric field cathode 42 (first discharge electrode) and a dust removal electric field anode (first adsorption electrode) 41
  • the dust removal electric field anode 41 includes a first anode part 412 and a second anode part 411
  • the structure and size of the parts 411 are the same.
  • the second anode part 411 includes a plurality of anode tube bundles 411a.
  • the length of the anode tube bundles 411a is 60mm
  • the cross section is honeycomb shape
  • the diameter is 1mm.
  • an anode tube bundle 411a and a dust removal electric field cathode located in the anode tube bundle 411a constitute an electric field unit
  • the first electric field part in this embodiment uses a DC power supply
  • the electric field strength of the electric field unit E voltage/0.5R.
  • the filtration unit adopts an air filter with a high and medium efficiency filtration F6 level, with a thickness of 70mm.
  • the distance between the surface of the F6 level air filter and the outlet of the electric field is 20mm.
  • Table 1 shows the following experimental data obtained by testing the gas purification device under the conditions of different wind speeds and different voltages.
  • E represents the electric field intensity of the electric field unit.
  • the dust removal efficiency of simply using the filter unit is much higher than when the wind speed is 0.3m/s, indicating that the wind speed is large, the dust removal effect is good, but the energy consumption is high.
  • the electric field strength of the electric field unit is between 0.4-0.5.
  • the gas purification device includes a casing, an electric field portion, a first filter unit and a second filter unit that are sequentially arranged in the casing 710 along the airflow direction D.
  • the casing The gas flow channel is formed from top to bottom.
  • the electric field portion may be a first electric field portion and a second electric field portion in sequence along the airflow direction, or
  • the electric field portion may also be a second electric field portion and a first electric field portion arranged in sequence along the airflow direction, or
  • the electric field part can be one first electric field part, or a plurality of first electric field parts arranged in the airflow direction;
  • the electric field part can also be a second electric field part, or a plurality of second electric field parts arranged in the direction of airflow; wherein, the first electric field part and the second electric field part are the first electric field part and the second electric field part in the first embodiment department.
  • the electric field part 740 is the first electric field part shown in FIG. 2 in the first embodiment, and the electric field part 740 , the first filter unit 720 and the second filter unit 730 are detachably arranged in the casing 710 .
  • the electric field part 740 may also be one or more second electric field parts.
  • an anode tube bundle 411a in the first electric field part and a dust removal electric field cathode located in the anode tube bundle 411a constitute an electric field unit, and the electric field strength of the electric field unit is less than 0.5kv/mm.
  • an electric field adsorption unit in the second electric field part and a discharge electrode located in the electric field adsorption unit form an electric field unit, and the electric field strength of the electric field unit is less than 0.5kv/mm.
  • the gas purification device further includes a fan, and the fan is disposed before the electric field part 740 along the airflow direction D for accelerating the flow of the gas.
  • the first filter unit 720 includes a first filter medium formed of an electret material; the first filter medium can be electret by the electric field part 740 .
  • the filtration grade of the first filter medium is any one of coarse-efficiency filtration (G1-G3), medium-efficiency filtration (G4, F5), or medium-efficiency filtration (F6-F9).
  • the filtration grade of the first filter medium adopts the F6 grade of high-efficiency filtration.
  • the second filter unit 730 includes a second filter medium formed of an electret material; the second filter medium can be electret by the electric field portion 740, and the filter pore size of the second filter medium is larger than that of the first filter medium.
  • the second filter medium is made of PP cotton.
  • PP cotton is commonly known as doll cotton, hollow cotton, also known as filling cotton, and the material is polypropylene fiber and artificial chemical fiber.
  • PP cotton has electret characteristics.
  • the gas first enters the electric field part 740, and through this electric field, the gas passing through the gas flow channel is purified. It is well known in the art to purify the gas by the electric field.
  • the particles in the gas are charged, so that the charged particles can be adsorbed by the other pole. For example, if one electrode is negatively charged and the other is positively charged, the negatively charged one electrode ionizes the gas and then makes the particles in the gas negatively charged, so that they can be adsorbed and removed by the other positively charged electrode, and pass through the electric field part 740
  • the purification of large and medium particles in the gas is removed.
  • the electric field part 740 ionizes the gas passing through the gas flow channel to generate positive and negative particles to electret the first filter medium and the second filter medium. , so that the first filter unit 720 and the second filter unit 730 always maintain high adsorption performance, so as to further remove small and medium-sized particles in the gas.
  • the gas is purified by the electric field part 740 and filtered by the first filter unit 720 and the second filter unit 730, and finally fresh air comes out.
  • the first filter medium of high and medium efficiency filtration F6 level is used in combination with PP cotton, and experiments show that the filtration effect can reach the effect of filtration level H14, so the filtration effect of 1+1 after matching is greater than 2.
  • the effect of the filter grade H14 can be achieved at the highest, and the filter grade F9 can even be used in conjunction with the PP cotton grade.
  • the effect of the filter grade U15 can be achieved.
  • the gas first passes through the first filter unit 720 and then passes through the second filter unit 730 . Due to the large filter pore size of PP cotton, it will not increase the resistance of gas flow and affect the flow of gas. In addition, after passing through the first filter unit 20, the flow rate of the gas becomes slow, and when passing through the second filter unit 730, the small and medium particles are easily absorbed by the PP cotton.
  • This embodiment better solves the problems of air purification efficiency and air resistance, and the combination of F6 filter medium + PP cotton filter medium plays a key role.
  • this embodiment not only makes up for the problem of large wind resistance and high energy consumption of the original H14 filter medium, but also makes up for the problem of short service life of the original purification module using filter medium H14.
  • the combined use of the filters of the first filter unit 720 and the second filter unit 730 can achieve 99% filtration of particles greater than or equal to 500 nm in the gas, and preferentially, can filter particles greater than or equal to 300 nm.
  • the purification methods are as follows: filtration through aperture blocking, staggered routes, and rapid gas velocity impact. For example, in an environment with high requirements for gas purification and filtration, such as in semiconductors, it is difficult to improve the removal effect of particles above 10 nm, and the gas purification system in this embodiment is used.
  • the filter unit Since the electric field device can electret the filter unit, the filter unit is In addition to the above purification methods, the electret also increases the purification effect, and combined with the electric field device, compared with the prior art, it can remove particles above 10nm and has a better effect, so it is more suitable for use in high-demand environments;
  • the filter medium can be electreted, so during operation, the electric field part 740 can continue to electret the filter medium, so that the filter medium can continue to be electret compared to the condition that the filter medium cannot be continuously electreted.
  • a more effective filtering effect is exerted, thus, compared with the prior art, the energy consumption and cost of use are reduced, and the electric field unit 740 is used for first purification, which can prolong the service life of the filter medium and reduce the number of replacements, thereby reducing the use of Cost, but also reduce the secondary pollution to the environment after replacement.
  • the filter unit can maintain a high electret state for a long time, even if the filter aperture is increased, the adsorption effect will not be affected. On the other hand, increasing the filter aperture reduces the ventilation resistance. can be greatly reduced.
  • the arrangement positions of the first filter unit 720 and the second filter unit 730 relative to the electric field part 740 can be defined as follows: all the gas outlets to the filter medium receive the gas discharged from the gas outlets. The minimum value in the vertical distance to the surface of the gas that enables the filter medium to be subjected to the electret.
  • the arrows in the figure indicate the flow direction of the gas.
  • the filter medium receives this gas from the surface A for filtration, and then discharges from the surface B, and all the gas outlets 13 go to the surface A.
  • the minimum value L in the vertical distance of can make the filter medium electret, that is, the filter medium can obtain the above-mentioned charged ions and be electret.
  • the gas outlet 13 is not on a plane, and the vertical distances from all the gas outlets to the surface A are long or short, and the shortest vertical distance is the above-mentioned minimum value.
  • the specific value of the minimum value can be set according to the above rules after synthesizing compact structure, power consumption, and usage mode in practice.
  • the minimum value is less than or equal to 200 mm.
  • the first filter unit 20 and the second filter unit 30 can be used together to achieve 99% filtration of particles greater than or equal to 500 nm in the gas, and preferentially, it can filter particles greater than or equal to 300 nm.
  • the combination of the filter unit and the electric field unit can filter the 10nm particles with a efficiency of over 99%.
  • the gas purification system of this embodiment used in a semiconductor clean room, can reduce the energy consumption, prolong the service life of the filter unit, reduce the use cost, and also reduce the secondary pollution to the environment after the filter unit is replaced. And the efficiency of filtering particles of 10nm can exceed 99%.
  • This embodiment provides a gas purification system, including: at least two gas purification devices arranged in sequence along the gas flow direction, and the gas purification devices are the above-mentioned gas purification devices.
  • This embodiment provides an application of a gas purification system for purifying the gas entering the clean room, and the gas purification system is the above-mentioned gas purification system.
  • the gas purification device of this embodiment includes three electric field parts and two filter units arranged in sequence along the gas flow direction.
  • the three electric field parts all use the first electric field part 40 in the first embodiment.
  • the first electric field part 40 An electric field part includes a dust removal electric field cathode 42 (first discharge electrode) and a dust removal electric field anode (first adsorption electrode) 41
  • the dust removal electric field anode 41 includes a first anode part 412 and a second anode part 411
  • the two anode parts 411 have the same structure and size.
  • the second anode part 411 includes a plurality of anode tube bundles 411a.
  • the length of the anode tube bundles 411a is 60mm
  • the cross section is honeycomb shape
  • an anode tube bundle 411a and a dust removal electric field cathode located in the anode tube bundle 411a constitute an electric field unit
  • the first electric field part in this embodiment uses a DC power supply
  • the electric field strength of the electric field unit E voltage/0.5R.
  • the two filtering units respectively adopt the first filtering unit 720 and the second filtering unit 730 in the fourth embodiment.
  • the first filter unit 720 adopts an air filter with a filter grade of high and medium efficiency filtration F6, and the filter medium of the second filter unit 730 is PP cotton.
  • the distance between the surface of the first filter unit 720 and the outlet of the electric field part is 20mm
  • the distance between the surface of the second filter unit 730 and the outlet of the electric field part is 100mm
  • the distance between the surface of the second filter unit 730 and the outlet of the first filter unit 720 is 10mm.
  • the thickness of the first filter unit 720 is 70 mm.
  • Table 2 shows the following experimental data obtained by testing the gas purification device under the conditions of different wind speeds and different voltages.
  • E represents the electric field intensity of the electric field unit.
  • the dust removal efficiency of using the electric field and the filter unit can reach 100%.
  • the number of 0.3 ⁇ m particles detected is 0, which is especially suitable for places with extremely high environmental requirements such as Laboratories, electronic component factories, etc.
  • the electric field strength of the electric field unit is between 0.3-0.5.

Landscapes

  • Electrostatic Separation (AREA)

Abstract

一种气体净化装置(200)、气体净化系统以及气体净化方法,气体净化装置(200)包括沿气体流向依次设置的至少一个电场部(210)以及至少一个过滤单元(220),其中,过滤单元(220)具有含有驻极材料的过滤介质;过滤介质能被电场部(210)驻极。

Description

气体净化装置、系统及方法 技术领域
本发明涉及一种气体净化装置、系统以及方法
背景技术
目前,在一些环境中,对洁净要求较高,例如,洁净室是半导体制造过程中常用的制造车间环境,目的是为了避免颗粒、湿度、温度等对半导体材料造成污染,进而影响半导体的成品率及可靠性。一般来说,对进入洁净室的气流需要进行净化,主要包含三级净化,即初效净化、中效净化和高效净化。根据净化效果的不同,分别使用不同的空气过滤器。
初效净化通常使用初效空气过滤器,这种过滤器主要由无纺布、尼龙网、活性炭过滤棉、金属孔网等组成,主要用于过滤5μm以上的悬浮微粒。
中效净化通常使用中效空气过滤器,这种过滤器主要由特殊无纺布、玻璃纤维等组成,主要用于过滤1-5μm的悬浮微粒。
高效净化通常使用高效空气过滤器,这种过滤器主要由超细玻璃纤维纸组成,主要用于过滤0.5μm以上的悬浮微粒,甚至,还有硼硅微纤维制成的高效过滤器例如HEPA过滤器可以过滤0.3μm以上的悬浮微粒;超高效空气过滤器U15的滤材为超细玻璃纤维纸可捕集0.12μm以上的悬浮微粒。
以上对洁净室进气的空气净化过程通常在洁净室外完成,三级过滤装置与洁净室独立设置,占用空间大且建筑造价高。且各级过滤器的滤芯材料在使用一段时间后会受到污染,使用寿命短,需要定期更换,从而使过滤设备的成本增加。同时,滤芯过滤阻力大,使得送风设备耗电量增加。
发明内容
本发明的目的是提供一种气体净化装置、系统以及应用,以解决现有技术中存在的空气净化效率和空气阻力的问题。
本发明第一方面,提供一种气体净化装置,用于对气体进行过滤净化,包括:
沿气体流向依次设置的至少一个电场装置以及至少一个过滤单元,
其中,所述过滤单元具有驻极材料形成的过滤介质;
所述过滤介质能被所述电场部驻极。
在一实施例中,所述电场部具有让所述气体通过的气体流道,所述气体流道具有供气体进入的气体进口和供气体排出的气体出口,所述电场部在所述气体流道中形成用于对所述气体进行过滤的电场。
在一实施例中,所述过滤单元相对所述电场部的设置位置依下进行限定:所有所述气体出口到所述过滤介质接受从所述气体出口排出的气体的表面上的垂直距离中的最小值,能让所述过滤介质被进行所述驻极。
在一实施例中,所述最小值小于等于200mm。
在一实施例中,所述过滤单元能对所述气体中大于等于500nm的微粒实现99%以上过滤。
在一实施例中,所述电场部为第一电场部,所述第一电场部包括形成所述电场的第一放电极和第一吸附极,极所述第一吸附极为由多个中空的管束组成的呈蜂窝状的结构,所述第一放电极至少部分设于所述第一吸附极中空的管束内,所述第一放电极和所述第一吸附极之间形成所述气体流道。
在一实施例中,所述电场部为第二电场部,所述第二电场部包括形成所述电场的第二放电极和第二吸附极,所述第二吸附极包括至少一个电场单元,所述电场单元具有沿轴向延伸的侧壁,所述侧壁环绕形成通道通道,,所述侧壁设有供气体进入所述通道的第二进气口和供气体排出所述通道的第二出气口。
在一实施例中,所述第二电场部包括多个电场吸附单元,相邻两个电场吸附单元共用一个侧壁,多个电场吸附单元连接构成整体结构。
在一实施例中,所述电场部具有电场单元,所述电场单元的电场强度小于0.5kv/mm。
在一实施例中,所述电场部包括第一电场部和第二电场部,第一电场部和所述第二电场部沿气体流向依次设置,所述第一电场部为上述第一电场部,所述第二电场部为上述第二电场部。
在一实施例中,所述电场装置包括第二电场部和第一电场部,所述第二电场部和所述第一电场部沿气体流向依次设置,第一电场部为上述第一电场部,所述第二电场装置为上述第二电场部。
本发明的第二方面,提供一种气体净化装置的应用,所述气体净化装置用于对进入半导体洁净室的气体进行净化,所述气体净化装置为上述气体净化装置。
本发明的第三方面,提供一种半导体洁净室气体净化系统,包括:气体净化装置,其中,所述气体净化装置上述的气体净化装置。
本发明的第三方面,提供一种气体净化方法,包括:
在电场部的气体流道中形成电场;
让气体进入所述气体流道进行过滤得到净化气体;
让所述净化气体进入过滤单元进行过滤得到处理后气体,
其中,所述过滤单元通过驻极材料形成的过滤介质进行所述过滤,
所述驻极材料能被所述电场部驻极。
在一实施例中,所述过滤单元相对所述电场部的设置位置依下进行限定:所有所述气体出口到所述过滤介质接受从所述气体出口排出的气体的表面上的垂直距离中的最小值,能让所述过滤介质被进行所述驻极。
在一实施例中,所述最小值小于等于200mm。
在一实施例中,其中,所述过滤单元能对所述气体中大于等于500nm的微粒实现99%以上过滤。
根据本发明的一个方面,提供了一种气体净化装置,用于对气体进行过滤净化,包括:沿气体流向依次设置的至少一个电场部、第一过滤单元以及第二过 滤单元,其中,所述第一过滤单元和所述第二过滤单元分别具有驻极材料形成的第一过滤介质和第二过滤介质;所述第一过滤介质和第二过滤介质均能被所述电场单元驻极,所述第二过滤介质的过滤孔径大于所述第一过滤介质的过滤孔径。
在一实施例中,所述第一过滤介质的过滤等级为粗效过滤、中效过滤或高中效过滤中的任意一种。
在一实施例中,所述第二过滤介质为PP棉。
根据本发明的一个方面,提供了一种气体净化系统,包括:至少两个沿气体流向依次设置的气体净化装置,所述气体净化装置为上述的气体净化装置。
根据本发明的一个方面,提供了一种气体净化系统的应用,用于对进入半导体洁净室的气体进行净化,所述气体净化系统为上述的气体净化系统。
根据本发明的一个方面,提供了一种气体净化方法,其特征在于:
沿气体流向依次设置至少一个电场部以及至少一个过滤单元;在电场部的气体流道中形成电场;让气体进入所述气体流道进行过滤得到净化气体;让所述净化气体进入过滤单元进行过滤得到处理后气体,其中,所述过滤单元通过驻极材料形成的过滤介质进行所述过滤,所述驻极材料能被所述电场部驻极。
附图说明
图1是本发明的实施例一的气体净化装置的爆炸示意图;
图2是本发明的实施例一中第一电场部的立体示意图;
图3是本发明的实施例一的第二电场部的立体示意图;
图4是包括封板的第二电场部的主视示意图;
图5是本发明的实施例二中气体净化装置的示意图;
图6是实施例二中气体出口到过滤介质表面垂直距离示意图;
图7是实施例四的气体净化装置的爆炸示意图。
具体实施方式
以下将结合附图对本发明的较佳实施例进行详细说明,以便更清楚理解本发明的目的、特点和优点。应理解的是,附图所示的实施例并不是对本发明范围的限制,而只是为了说明本发明技术方案的实质精神。
在下文的描述中,出于说明各种公开的实施例的目的阐述了某些具体细节以提供对各种公开实施例的透彻理解。但是,相关领域技术人员将认识到可在无这些具体细节中的一个或多个细节的情况下来实践实施例。在其它情形下,与本申请相关联的熟知的装置、结构和技术可能并未详细地示出或描述从而避免不必要地混淆实施例的描述。
在整个说明书中对“一个实施例”或“一实施例”的提及表示结合实施例所描述的特定特点、结构或特征包括于至少一个实施例中。因此,在整个说明书的各个位置“在一个实施例中”或“在一实施例”中的出现无需全都指相同实施例。另外,特定特点、结构或特征可在一个或多个实施例中以任何方式组合。
在以下描述中,为了清楚展示本发明的结构及工作方式,将借助诸多方向性词语进行描述,但是应当将“前”、“后”、“左”、“右”、“外”、“内”、“向外”、“向内”、“上”、“下”等词语理解为方便用语,而不应当理解为限定性词语。
根据本发明的一个方面,提供一种气体净化系统,该气体净化系统具有沿气流流向依次设置的至少一个电场装置以及至少一个过滤单元,电场装置和过滤单元均设置在气体流道中,且过滤单元位于所述电场装置产生的电场中。
电场装置包括至少一个第一电场装置和/或第二电场装置。
实施例一
图1是本发明一个实施例的气体净化系统的立体示意图,气体净化装置100包括壳体50以及沿空气流向C气流流向依次设置在壳体50中的电场部、过滤单元20和除臭氧单元10,本实施例中,电场部包括第一电场部40和第二电场部30,壳体50中从上到下形成气体流道。
实施例中,第一电场部40、第二电场部30、第一过滤单元20、除臭氧单元10可拆卸地设置在壳体50中。
第一电场部40包括外框和设置在外框中的电场部,电场部包括除尘电场阴极42(第一放电极)和除尘电场阳极(第一吸附极)41,所述除尘电场阴极和所述除尘电场阳极用于产生电离除尘电场,所述除尘电场阳极为由多个中空的管束组成的呈蜂窝状的结构,所述除尘电场阴极穿射于所述除尘电场阳极内。所述除尘电场阳极和所述除尘电场阴极之间形成除尘电场流道。
如图2所示,除尘电场阳极41的内部由呈蜂窝状、且中空的阳极管束组成,除尘电场阳极管束的中空的截面采用圆形或多边形,所述多边形为六边形或三边形。实施例中,阳极管束的剖面形状为六边形。除尘电场阴极42包括若干根电极棒,其一一对应地穿设所述阳极管束组中的每一阳极管束,其中,所述电极棒的形状呈针状、多角状、毛刺状、螺纹杆状或柱状。
在一个实施例中,除尘电场阳极的积尘面积与所述除尘电场阴极的放电面积的比为1.667:1-1680:1。
实施例中,除尘电场阴极42安装在支撑板43上,支撑板43与除尘电场阳极41通过绝缘机构相连接。所述绝缘机构用于实现支撑板43和除尘电场阳极41之间的绝缘。于本发明一实施例中,除尘电场阳极41包括第一阳极部412和第二阳极部411,即所述第一阳极部412靠近除尘电场装置入口,第二阳极部411靠近除尘电场装置出口。支撑板和绝缘机构在第一阳极部412和第二阳极部411之间,即绝缘机构安装在除尘电场中间、或除尘电场阴极42中间,可以对除尘电场阴极42起到良好的支撑作用,并对除尘电场阴极42起到相对于除尘电场阳极41的固定作用,使除尘电场阴极42和除尘电场阳极41之间保持设定的距离。
如图2所示,第二阳极部411包括多个阳极管束411a,阳极管束411a和除尘电场阴极42分别与电源的两个电极电性连接,电源为直流电源,本实施例中,阳极管束411a具有正电势,除尘电场阴极42具有负电势。
直流电源具体可为直流高压电源。上述阳极管束411a和除尘电场阴极42之间形成放电除尘电场,该放电除尘电场是一种静除尘电场。本实施例中,阳极与阴极之间的电压为6kv。
本实施例中阳极管束411a呈中空的正六边形管状,除尘电场阴极42呈棒状,除尘电场阴极42穿设在阳极管束411a中。
本实施例中,第一电场部40外形尺寸为204*570*1170mm。
在一个实施例中,除尘电场阳极41也可以只有一个阳极部。
第二电场部30包括框架和设置在框架中的第二放电极和第二吸附极。
参照图3,第二吸附极包括八个电场吸附单元,分别是第一电场吸附单元810、第二电场吸附单元820、第三电场吸附单元830、第四电场吸附单元840、第五电场吸附单元850、第六电场吸附单元860、第七电场吸附单元870和第八电场吸附单元880,八个电场吸附单元以左右相邻排布,相邻的电场吸附单元共用一个侧壁,每个电场吸附单元的通道被侧壁环绕成的与轴向方向垂直的截面为正三角形,在其他实施例中,电场吸附单元的数量不限于此,可以根据实际的需要净化的气体风量对电场吸附单元的数量进行调整,而且,多个电场吸附单元的排布方式可以是上、下、左、右、前、后任意方向进行相邻设置和/或不相邻设置。在本实施例中,为了便于生产加工,八个电场吸附单元的结构和形状均相同,然而,在其他实施例中,根据装置空间存放条件或其他因素,多个电场吸附单元的结构、结构、大小也可以不相同、也可以部分相同。
在其他实施例中,电场吸附单元的通道被侧壁环绕成的与轴向方向垂直的截面为多边形,所述多边形可以为四边形、五边形或六边形中的任意一种。
所述进气孔和/或出气孔的形状为圆形、椭圆形、多边形,较佳地,所述多边形包括三边形、四边形、五边形和六边形中的任意一种或多种。
参照图3,第二放电极809包括放电极819、放电极829、放电极839、放电极849、放电极859、放电极869、放电极879、放电极889,每个放电极设置于与之对应的电场单元的通道内,由于每个电场单元的通道被侧壁环绕成的与轴向方向垂直的截面为正三角形,第二放电极809优选平行于通道的侧壁设置并经过与之对应的电场单元截面内切圆的圆心,此处的放电效率最高。例如,放电极819设置于第一电场单元810的通道内,且优选平行于通道的侧壁设置并经过第一电场单元810截面内切圆的圆心,以此类推其他放电极与电场单元的关系。
参照图3,以第一电场吸附单元810和第二电场吸附单元820的结构为例进行说明,其他电场吸附单元的结构以此类推。第一电场吸附单元810包括具有沿轴向延伸的侧壁812,侧壁812包括第一侧壁8121、第二侧壁8122、第三侧壁8123,第一侧壁8121、第二侧壁8122、第三侧壁8123环绕形成第一通道811,侧壁812上设有供气体进入通道811的第一进气孔813(气体进口)和供气体排出第一通道811的第一出气孔814(气体出口),第一进气孔813和第一出气孔814的数量为多个,多个第一进气孔813沿轴向均匀布置成两列于第一侧壁8121上,多个第一出气孔814沿轴向均匀布置成两列于第二侧壁8122上,没有进气 孔或出气孔分布于第三侧壁8123上,第一进气孔813的孔心与第一出气孔814的孔心布置在与轴向垂直的不同平面上。第一电场单元810和第二电场单元810共用第二侧壁8122,第二侧壁8122的两个表面分别面对第一电场单元810的第一通道811和第二电场单元820的第二通道821,也就是说,以第一电场单元810的第二侧壁8122上的第一出气孔814作为第二电场单元820的第二侧壁8122的第二进气孔,以保证气体从第一电场单元810直接进入第二电场单元820,第二电场单元820的第四侧壁8222上开设多个沿轴向均匀布置成两列的第二出气孔824,第二电场单元820的第五侧壁8223上没有开设进气孔和/或出气孔。
所述进气孔和/或出气孔的形状为圆形、椭圆形、多边形,较佳地,所述多边形包括三边形、四边形、五边形和六边形中的任意一种或多种。
实施例中,所述进气孔和/或出气孔的形状为圆形,侧壁采用含有不锈钢和/或铝的材料制成。
参照图3,本实施例中,所有电场吸附单元与电源的同一极进行电连接,所有放电极与电源的另一极进行电连接,比如,以第一电场吸附单元810和第二电场吸附单元820为例,第一电场吸附单元810与电源的阳极电性连接、放电极819与电源的阴极电性连接;第二吸附电场单元820与电源的阳极电性连接、放电极829与电源的阴极电性连接。第一电场吸附单元810与放电极819形成第一电场,第二电场吸附单元820与放电极829形成第二电场。然而,在其他实施例中,多个电场吸附单元分为两组,两组电场吸附单元排成两排以上的形式组合在一起,每一排的电场吸附单元在同一组中,第一组电场吸附单元与电源的阳极电性连接、与之对应的第一组放电极与电源的阴极电性连接;第二组电场吸附单元与电源的阴极电性连接、与之对应的第二组放电极与电源的阳极电性连接。当气流先后经过第一组电场吸附单元和第一组放电极形成的电场和第二组电场吸附单元和第二组放电极形成的电场时,分别使气体中的颗粒物获得负电荷和正电荷,使气体中带负电荷的颗粒物被沉积于第一组电场单元上,气体中易与正电荷的颗粒物被沉积于第二组电场单元上,提高了除尘效率。
需要说明的是,气体不沿着通道的轴向方向流动,可以理解为,气体不沿着通道的轴向方向从通道的一端流向通道的另一端;气体是通过进气孔进入通道,再通过出气孔排出通道。
需要注意的是,上述电场吸附单元可以作为电场装置的吸附极,电场装置的放电极放电电离,气体中颗粒物与带电离子结合后,使气体中的颗粒物获得电荷,带电荷的颗粒物向吸附极移动,并沉积在吸附极,当气体以不平行于电场单元的侧壁的方向进气时,也就是说气体进入方向与电场内离子流方向不垂直,相比较气体进入方向与离子流方向垂直的电场,本发明增加了气体在电场中的停留时间,可以提高颗粒物的带电效率,更多的颗粒物沉积在吸附极,从而提高了除尘效率。
还需要注意的是,当进气孔的孔心与出气孔的孔心布置在与轴向垂直的不同平面上,可以使通道中的气体流向紊乱,进一步增加了气体在电场中的停留时间, 增加近距离与放电极接触的频次,提高颗粒物带电效率和带电量;而且当气体形成旋风式流向时,有利于大颗粒的分离,综合以上两点,能够有效提高除尘效率。另外需要注意的是,多个侧壁中的至少一个侧壁沿通道方向延伸的中线上不设置进气孔或所述出气孔,可以使得中线位置上的面积不缺损,颗粒物带电后,直接吸附到吸附极中线附近位置,增加了颗粒物在吸附极上的吸附量,从而提高除尘效率。其中,所述颗粒物包括但不限于固体颗粒、液滴、附着有液体的固体颗粒、气溶胶、等离子态的固体颗粒或液滴等,也可以为细菌、真菌等微生物。
参照图3,以第一电场吸附单元810和第二电场吸附单元820的气体走向为例,其他电场吸附单元的气体走向以此类推。气体通过第一进气孔813进入第一电场,而后通过第一出气孔814进入第二电场,最后通过第二出气孔824排出。由于第一进气孔813与第一出气孔814的孔心布置在与轴向垂直的不同平面上且第二进气孔(在本实施例中第二进气孔为第一出气孔814)与第二出气孔824的孔心布置在与轴向垂直的不同平面上,气体先后经过第一电场和第二电场的气体流向紊乱,进一步增加了气体在两个电场中的停留时间,增加近距离与放电极819和放电极829接触的频次,距离放电极809越近的地方,气体电离效率越高,提高颗粒物带电效率和带电量;而且当气体形成旋风式流向时,有利于大颗粒的分离,综合以上两点,有效提高了除尘效率。在其他实施例中,第二电场吸附单元820的第五侧壁8223上开设进气孔,那么第二电场吸附单元820和第三电场吸附单元830的气流相通,气体可以从第三电场吸附单元830流向第二电场吸附单元820。然而,在其他实施例中,每个电场单元的侧壁都可以开设进气孔或出气孔,导致每个电场单元的气体可以来源于多个相邻的电场单元,也可以流向多个相邻的电场单元,气体流向高度紊乱,经过放电极附近的气流变多,增加了气体中的颗粒物带电效率和带电量,提高了除尘效率。
本实施例中,以第二放电极809中的放电极819为例进行说明,放电极819为细长状针状导体,在其他实施例中,放电极819也可以为多角状、毛刺状、螺纹杆状或柱状导体。本实施例中,放电极819的直径为0.1-10mm,较佳地,放电极819的直径为0.2-5mm。
在一个实施例中,放电极819呈细长条状并采用304不锈钢、钛、钨、铱金中的任意一种制成。
图4是第二电场装置的主视示意图,框架包括第一封板81和第二封板82,第二电场装置30包括第一封板81、第二封板82以及电场吸附装置800,第一封板81和第二封板82分别连接电场吸附装置800的两端,也就是说分别连接电场吸附装置800中每一个电场单元的两端,并对两端进行密封,以保证气体只从每一个电场单元的进气孔或出气孔进出。
本实施例中,例如放电极819,采用铱金制成,第二电场装置30外形尺寸为88.5*570*1170mm。
实施例中,第一电场装置40中的除尘电场流道(气体流道)与第二电场装置30电场单元中侧壁环绕形成的的通道垂直。
过滤单元20采用超高效空气过滤器,该过滤器能对气体中大于等于500nm的微粒实现99%过滤,优先地,是能对大于等于300nm的微粒进行过滤,这种过滤单元例如为高效能空气粒子过滤器(HEPA,high efficiency particulate air)、超高效空气过滤器(ULPA,ultra-low penetration air)。
过滤单元20具有驻极材料。
本实施例中,过滤单元20采用U15过滤器,外形尺寸为96*570*1170mm。
在一个实施例中,第一电场装置40与第二电场装置30之间的距离为3-15mm,第二电场装置30与过滤单元20之间的距离为2-25mm。
运行期间,电场装置对过滤单元20不间断进行驻极,使得过滤单元一直保持较高的吸附性能。
一方面,由于过滤单元能长时间保持较高驻极状态,即使增大过滤孔径也不影响吸附效果,另一方面,增大过滤孔径使得通风阻力降低,在同等风速条件下,风机的能耗可以大大降低。
实施例2
如图5所示,本实施例提供的气体净化装置200用于对气体进行净化,包括:沿气体流向依次设置的至少一个电场部210以及至少一个过滤单元220。
所述电场部210具有让所述气体通过的气体流道211,所述气体流道具有让气体进入的气体进口和让气体排出的气体出口。气体进口可以为一个或孔,气体出口也可以是一个或多个,如图5中,电场气体进口为多个,电场气体出口也为多个。
所述电场部210在所述气体流道211中形成电场,通过这个电场,让从气体流道211中通过的气体被净化,电场净化气体,是本领域已经公知地:通过让形成电场的一极,对通过的气体进行电离,而使得气体中的颗粒物带电,从而能让这种带电的颗粒物被另一极吸附。例如,一极接负电,另一极接正电,则接负电的一极电离气体后回使得气体中的颗粒物带负电,从而能被带正电的另一极吸附而去除。
所述过滤单元220通过驻极材料形成的过滤介质对电场部210过滤处理后的气体进行过滤,具体地,就是对从电场气体出口排出的气体进行过滤,该过滤介质能被所述电场部210驻极,也就是:过滤单元220的设置位置,能让过滤介质被电场装置210进行充电,或者说是,上述过滤介质能获得电场装置210电离气体产生的带电离子,从而被驻极。本实施例中,过滤介质可以是网状、层状或滤芯等。
现有技术中,若只采用过滤单元220进行净化,过滤单元220的净化方式是:通过孔径阻挡、路线交错、还有气体速度快速冲击,从而实现过滤。如对气体净化过滤要求高的环境中,例如半导体中,对10nm以上的微粒去除效果很难再提高而采用本实施例中的气体净化系统,由于电场部能给过滤单元驻极,使得过滤单元除了上述净化方式,还由于驻极增加了净化效果,再配合上电场部,相比现 有技术,能对10nm以上的颗粒物去除效果更好,所以更适宜要求高的环境使用;
而在对风速要求不高的场景,由于过滤单元风速越快,气体速度快速冲击使得过滤效果越好,所以还必须保持较高的能耗运行,相比而言,本发明的可以在低能耗下实现同样的过滤效果,所以能减低运行成本。
可见,由于电场部210的存在,而且该电场部210能对过滤介质进行驻极,所以在运行中,电场部210能对过滤介质持续进行驻极,从而使得过滤介质相比不能被持续驻极的状况,能持续发挥更有效的过滤效果,这样,相比现有技术,降低使用能耗,降低使用成本,而且通过电场部210先进行一次净化,能延长过滤介质的使用寿命,减少更换次数,从而减少使用成本,同时也减少更换后对环境的二次污染。
为了实现该驻极,所述过滤单元220相对电场部210的设置位置可以依下进行限定:所有电场气体出口到过滤介质接受从电场气体出口排出的气体的表面上的垂直距离中的最小值,能让所述过滤介质被进行所述驻极。
具体地,如图6中所述,图中的箭头指气体流向,气体从气体出口13出来后,过滤介质从表面A接受这个气体进行过滤后,从表面B排出,所有气体出口13到表面A的垂直距离中的最小值L,能让过滤介质被驻极,也即能让过滤介质获得上述的带电离子而被驻极。在一些实施例中,气体出口13不在一个平面上,所有气体出口到表面A的垂直距离有长有短,则最短的这个垂直距离,即为上述的最小值。
该最小值的具体值,可以根据实际中,从结构紧凑型、功耗和使用方式等综合后,根据上述规则进行设定,本实施例中,该最小值小于等于200mm。
本实施例中,电场装置的具体结构,与实施例1中涉及的各个电场部的示例一样。
本实施例中,所述过滤单元220能对所述气体中大于等于500nm的微粒实现99%过滤,优先地,是能对大于等于300nm的微粒进行过滤,这种过滤单元例如为高效能空气粒子过滤器(HEPA,high efficiency particulate air)、超高效空气过滤器(ULPA,ultra-low penetration air)。通过这种过滤单元220与电场部210进行组合,对10nm的微粒进行过滤的效率能超过99%。
由此,本实施例的气体净化装置200,用于半导体洁净室中,能降低使用能耗,、延长过滤单元220的使用寿命,减少使用成本,同时也减少过滤单元220更换后对环境的二次污染,而且能对10nm的微粒进行过滤的效率能超过99%。
本实施例还提供一种半导体洁净室空气净化系统,包括上述的空气净化装置200,这样,可以减少目前半导体洁净室净化中初级和中级过滤的投入,就能满足净化要求,进一步减少了占地和投入成本。
本实施例还提供一种气体净化方法,其特征在于,包括:
沿气体流向依次设置至少一个电场部以及至少一个过滤单元;
在电场装置的气体流道中形成电场;
让气体进入所述气体流道进行静电过滤得到初级过滤气体;
让所述初级过滤气体进入过滤单元进行驻极过滤得到处理后气体,
其中,所述过滤单元通过驻极材料进行所述驻极过滤,
所述驻极材料能被所述电场部驻极。
在实施例1和实施例2中,气体净化装置包括的电场部,组合方式为:沿气流方向依次为第一电场部和第二电场部,实际中:
电场部可以为一个第一电场部,或多个以气流方向排布的第一电场部;
电场部也可以为一个第二电场部,或多个以气流方向排布的第二电场部;
电场部还可以为沿气流方向依次排布的第二电场部和第一电场部。
对比例1
实验条件:气体净化系统包括过滤单元,过滤单元采用高效过滤器(型号:U15),单层滤芯厚度:96mm。通风风机电压220V,电流1.006A。
试验例
实验条件:根据上述不同的电场组合+过滤单元,进行气体过滤实验,过滤单元20采用高效过滤器(型号:U15),单层滤芯厚度:96mm。通风风机功率为150W。
对比例和试验例均采用检测:采用美国TSI粉尘检测仪测量气体处理前后的10-100nm粒子数平均值。通过该数值判断过滤效果。
结果发现如下:
(1)在相同风速下,试验例的过滤效果比对比例的好,所以本发明上述各种组合电场和过滤单元沿处理气体方向依次设置,在半导体等生产需要洁净度很高的环境,相比对比例更适宜;
(2)当试验例采用低风速时,相比对比例的高风速,能达到接近相同的过滤效果,但试验例的整理使用功耗比对比例的大,这样,当对处理气体速度要求不高的场景下,可以采用本发明上述各种组合电场和过滤单元沿处理气体方向依次设置,能在较低风速也到达对比例同样的效果,使得使用后的使用成本低,而且减少了过滤单元的更换次数,进一步降低使用成本。
在一个实施例中,气体净化系统包括壳体50以及沿空气流向C气流流向依次设置在壳体50中的第二电场部30、第一电场部40、过滤单元20。
在一个实施例中,根据空间条件或其他因素,气体净化系统包括壳体50以及沿空气流向C气流流向依次设置在壳体50中的第一电场部40、过滤单元20。
从对比实验数据中发现,上述实施例的气体净化装置采用电场部与过滤单元配合使用,不仅能降低使用能耗,还由于电场部对气体的预先处理,减少了气体中大颗粒流经过滤单元,延长了过滤单元的使用寿命,从而减少了使用成本。
本发明的另一个方面,提供了一种空气净化方法,包括以下步骤:
沿空气流向依次设置至少一个电场部以及至少一个过滤单元且所述过滤单元能被所述电场部驻极。
当电场部采用第一电场部时,所述第一电场部包括除尘电场阴极和除尘电场阳极,所述除尘电场阴极和所述除尘电场阳极用于产生电离除尘电场,所述除尘电场阳极为由多个中空的管束组成的呈蜂窝状的结构。
所述电场部采用第二电场部时,第二电场部包括放电极和吸附极,所述吸附极为由多个电场单元连接构成的整体结构,所述放电极穿设于所述电场单元的通道内,所述放电极和电场单元之间形成电场。
所述电场部包括第一电场部和第二电场部,所述第一电场部和所述第二电场部沿空气流向依次设置。
所述过滤单元包括过滤单元20采用超高效空气过滤器。
设置第一电场部40中的除尘电场流道与第二电场部30电场单元中侧壁环绕形成的的通道垂直。
设置第一电场部40与第二电场部30之间的距离为3-15mm,第二电场部30与过滤单元20之间的距离为2-25mm。
实施例三
本实施例的气体净化装置,包括沿气体流向依次设置的三个电场部以及一个过滤单元,三个电场部均采用实施例一中的第一电场部40,如图2所示,第一电场部包括除尘电场阴极42(第一放电极)和除尘电场阳极(第一吸附极)41,除尘电场阳极41包括第一阳极部412和第二阳极部411,第一阳极部412和第二阳极部411结构大小相同,图2中,第二阳极部411包括多个阳极管束411a,阳极管束411a的长度为60mm,其剖面为蜂窝形,内切圆直径为R=23mm,除尘电场阴极42的直径为1mm。
其中,一个阳极管束411a和位于阳极管束411a中的一个除尘电场阴极构成一个电场单元,本实施例中的第一电场部使用直流电源,电场单元的电场强度E=电压/0.5R。
过滤单元采用过滤等级为高中效过滤F6级的空气过滤器,厚度为70mm,其中,F6级的空气过滤器表面距离电场部出口的距离为20mm。
实验证明在本实施例的表1的电压电流条件下,本实施例的电场部处理过的气体的质量是优质的,在该环境下对人类长时间地工作和生活没有不良影响。
表1是在不同风速以及不同电压的条件下,对气体净化装置进行试验得到如下实验数据。
表1
Figure PCTCN2021131882-appb-000001
表1中:E表示电场单元的电场强度。
从表1中可以看出:
在风速为0.5m/s和0.7m/s时,单纯使用过滤单元的除尘效率比风速为0.3m/s时高很多,说明风速大,除尘效果好,但能耗高。
在风速为0.3m/s时,使用电场和过滤单元叠加的除尘效率比不使用电场时除尘效率要提高很多。
在风速为0.5m/s和0.7m/s时,检测0.3μm粒子数,电场和过滤单元叠加使用除尘效率相比原始环境的数据均达到98%以上。
电场单元的电场强度在0.4-0.5之间。
实施例四
图7是本发明一个实施例的气体净化装置的立体示意图,气体净化装置包括壳体以及沿气流流向D依次设置在壳体710中的电场部、第一过滤单元和第二过滤单元,壳体中从上到下形成气体流道。
电场部可以为沿气流方向依次为第一电场部和第二电场部,或
电场部还可以为沿气流方向依次排布的第二电场部和第一电场部,或
电场部可以为一个第一电场部,或多个以气流方向排布的第一电场部;
电场部也可以为一个第二电场部,或多个以气流方向排布的第二电场部;其中,第一电场部和第二电场部为实施例一中的第一电场部和第二电场部。
实施例中,电场部740为实施例一中如图2所示的第一电场部,电场部740、第一过滤单元720和第二过滤单元730可拆卸地设置在壳体710中。
在一个实施例中,电场部740也可以为一个或多个第二电场部。
在一个实施例中,第一电场部中的一个阳极管束411a和位于阳极管束411a中的一个除尘电场阴极构成一个电场单元,电场单元的电场强度小于0.5kv/mm。
在一个实施例中,第二电场部中的一个电场吸附单元与一个位于该电场吸附单元中的放电极构成一个电场单元,电场单元的电场强度小于0.5kv/mm。
在一个实施例中,气体净化装置还包括风扇,风扇沿气流流向D设置在电场部740之前,用于加速气体的流动。
第一过滤单元720包括驻极材料形成的第一过滤介质;所述第一过滤介质能被电场部740驻极。
在一个实施例中,所述第一过滤介质的过滤等级为粗效过滤(G1-G3)、中效 过滤(G4、F5)或高中效过滤(F6-F9)中的任意一种。
本实施例中,第一过滤介质的过滤等级采用高中效过滤F6级。实施例中使用的空气过滤器:F6/A714(过滤的滤芯是驻极材料)
第二过滤单元730包括驻极材料形成的第二过滤介质;第二过滤介质能被电场部740驻极,第二过滤介质的过滤孔径大于第一过滤介质的过滤孔径。
本实施例中,第二过滤介质采用PP棉,PP棉俗称公仔棉、中空棉,也称填充棉,材质为聚丙烯纤维进行人造化学纤维。PP棉有驻极特性。
实施例中,气体先进入电场部740,通过这个电场,让从气体流道中通过的气体被净化,电场净化气体是本领域已经公知:通过让形成电场的一极,对通过的气体进行电离,而使得气体中的颗粒物带电,从而能让这种带电的颗粒物被另一极吸附。例如,一极接负电,另一极接正电,则接负电的一极电离气体后回使得气体中的颗粒物带负电,从而能被带正电的另一极吸附而去除,通过电场部740的净化,气体中的大中颗粒物被去除。
运行期间,电场部740对气体流道中通过的气体进行电离产生正负粒子致使第一过滤介质和第二过滤介质驻极,由于对第一过滤单元720和第二过滤单元730不间断进行驻极,使得第一过滤单元720和第二过滤单元730一直保持较高的吸附性能,从而会进一步去除气体中的中小微颗粒物。
气体通过电场部740的净化和第一过滤单元720、第二过滤单元730的过滤,最后出来的是新鲜的空气。
实施例中,采用高中效过滤F6级的第一过滤介质和PP棉搭配,通过实验表明,其过滤效果可达到过滤等级H14的效果,这样1+1的配合后过滤效果大于2。
在其他实施例中,如果采用过滤等级G或F级别的与PP棉配合使用,最高也可以达到过滤等级H14的效果,过滤等级F9和PP棉配合使用,甚至可以达到过滤等级U15的效果。
进一步地,本实施例这样的设置,即气体先经过第一过滤单元720,再经过第二过滤单元730。由于PP棉的过滤孔径大,不会增加气体流动的阻力,影响气体的流动。另外,经过第一过滤单元20后气体的流速变慢,再经过第二过滤单元730时,中小颗粒物就容易被PP棉吸附。
本实施例较好地解决了空气净化效率和空气阻力的问题,F6过滤介质+PP棉过滤介质组合起到关键作用。
与采用过滤等级H14过滤介质的相比较,本实施例不仅弥补原有H14过滤介质风阻大能耗高的问题,还弥补原有采用过滤介质H14的净化模块使用寿命短的问题。
第一过滤单元720和第二过滤单元730过滤器结合使用能对气体中大于等于500nm的微粒实现99%过滤,优先地,是能对大于等于300nm的微粒进行过滤。现有技术中,若只采用第一过滤单元720和第二过滤单元730进行物理净化,其净化方式是:通过孔径阻挡、路线交错、还有气体速度快速冲击,从而实现过滤。如对气体净化过滤要求高的环境中,例如半导体中,对10nm以上的微粒去除效 果很难再提高而采用本实施例中的气体净化系统,由于电场装置能给过滤单元驻极,使得过滤单元除了上述净化方式,还由于驻极增加了净化效果,再配合上电场装置,相比现有技术,能对10nm以上的颗粒物去除效果更好,所以更适宜要求高的环境使用;
由于过滤单元风速越快,气体速度快速冲击使得过滤效果越好,所以风速越快需要消耗较高的能耗,相比而言,本实施例可以在低能耗下实现同样的过滤效果,所以能减低运行成本。
可见,由于电场部740的存在,能对过滤介质进行驻极,所以在运行中,电场部740能对过滤介质持续进行驻极,从而使得过滤介质相比不能被持续驻极的状况,能持续发挥更有效的过滤效果,这样,相比现有技术,降低使用能耗,降低使用成本,而且通过电场部740先进行一次净化,还能延长过滤介质的使用寿命,减少更换次数,从而减少使用成本,同时也减少更换后对环境的二次污染。
进一步地,由于过滤单元能长时间保持较高驻极状态,即使增大过滤孔径也不影响吸附效果,另一方面,增大过滤孔径使得通风阻力降低,在同等风速条件下,风机的能耗可以大大降低。
为了实现过滤介质的驻极,第一过滤单元720和第二过滤单元730相对电场部740的设置位置可以依下进行限定:所有所述气体出口到所述过滤介质接受从所述气体出口排出的气体的表面的垂直距离中的最小值,能让所述过滤介质被进行所述驻极。
具体地,如图6中所示,图中的箭头指气体流向,气体从气体出口13出来后,过滤介质从表面A接受这个气体进行过滤后,从表面B排出,所有气体出口13到表面A的垂直距离中的最小值L,能让过滤介质被驻极,也即能让过滤介质获得上述的带电离子而被驻极。在一些实施例中,气体出口13不在一个平面上,所有气体出口到表面A的垂直距离有长有短,则最短的这个垂直距离,即为上述的最小值。
该最小值的具体值,可以根据实际中,从结构紧凑型、功耗和使用方式等综合后,根据上述规则进行设定,本实施例中,该最小值小于等于200mm。
本实施例中,第一过滤单元20和第二过滤单元30配合使用能对所述气体中大于等于500nm的微粒实现99%过滤,优先地,是能对大于等于300nm的微粒进行过滤,通过这种过滤单元与电场单元进行组合,对10nm的微粒进行过滤的效率能超过99%。通过多次实验,本实施例在实际使用中,净化效果较好,风阻低,能耗低,使用成本也随之降低。
由此,本实施例的气体净化系统,用于半导体洁净室中,能降低使用能耗,、延长过滤单元的使用寿命,减少使用成本,同时也减少过滤单元更换后对环境的二次污染,而且能对10nm的微粒进行过滤的效率能超过99%。
本实施例提供了一种气体净化系统,包括:至少两个沿气体流向依次设置的气体净化装置,所述气体净化装置为上述的气体净化装置。
本实施例提供了一种气体净化系统的应用,用于对进入洁净室的气体进行净 化,所述气体净化系统为上述的气体净化系统。
这样,可以减少目前洁净室净化中初级和中级过滤的投入,就能满足净化要求,进一步减少了占地和投入成本。
实施例五
本实施例的气体净化装置,包括沿气体流向依次设置的三个电场部以及两个个过滤单元,三个电场部均采用实施例一中的第一电场部40,如图2所示,第一电场部包括除尘电场阴极42(第一放电极)和除尘电场阳极(第一吸附极)41,除尘电场阳极41包括第一阳极部412和第二阳极部411,第一阳极部412和第二阳极部411结构大小相同,图2中,第二阳极部411包括多个阳极管束411a,阳极管束411a的长度为60mm,其剖面为蜂窝形,内切圆直径为R=23mm,除尘电场阴极42的直径为1mm。
其中,一个阳极管束411a和位于阳极管束411a中的一个除尘电场阴极构成一个电场单元,本实施例中的第一电场部使用直流电源,电场单元的电场强度E=电压/0.5R。
两个过滤单元分别采用实施例四中的第一过滤单元720和第二过滤单元730。
第一过滤单元720采用过滤等级为高中效过滤F6级的空气过滤器,第二过滤单元730的过滤介质为PP棉。
第一过滤单元720表面距离电场部出口的距离为20mm,第二过滤单元730表面距离电场部出口的距离为100mm,第二过滤单元730表面距离第一过滤单元720出口10mm。
其中,第一过滤单元720厚度为70mm。
实验证明在本实施例的表2的电压电流条件下,本实施例的电场部处理过的气体的质量是优质的,在该环境下对人类长时间地工作和生活没有不良影响。
表2是在不同风速以及不同电压的条件下,对气体净化装置进行试验得到如下实验数据。
表2
Figure PCTCN2021131882-appb-000002
表2中:E表示电场单元的电场强度。
从表2中可以看出:
在风速为0.3m/s和0.5m/s时,使用电场和过滤单元叠加的除尘效率可以达到100%,其中,0.3μm粒子检出数量为0,特别适用与对环境要求极高的地方如实验室、电子元件厂等地点。
电场单元的电场强度在0.3-0.5之间。
上述各个实施例仅例示性说明本发明的原理及其功效,而非用于限制本发明。任何熟悉此技术的人士皆可在不违背本发明的精神及范畴下,对上述实施例进行修饰或改变。因此,举凡所属技术领域中具有通常知识者在未脱离本发明所揭示的精神与技术思想下所完成的一切等效修饰或改变,仍应由本发明的权利要求所涵盖。

Claims (20)

  1. 一种气体净化装置,用于对气体进行过滤净化,其特征在于,包括:
    沿气体流向依次设置的至少一个电场部以及至少一个过滤单元,
    其中,所述过滤单元具有含有驻极材料的过滤介质;
    所述过滤介质能被所述电场部驻极。
  2. 根据权利要求1所述的气体净化装置,其特征在于:
    其中,所述电场部具有让所述气体通过的气体流道,
    所述气体流道具有供气体进入的气体进口和供气体排出的气体出口,
    所述电场部具有在所述气体流道中形成用于对所述气体进行电离除尘的电场。
  3. 根据权利要求2所述的气体净化装置,其特征在于:
    其中,所述过滤单元相对所述电场部的设置位置依下进行限定:所有所述气体出口到所述过滤介质接受从所述气体出口排出的气体的表面上的垂直距离中的最小值,能让所述过滤介质被进行所述驻极。
  4. 根据权利要求3所述的气体净化装置,其特征在于:
    其中,所述最小值小于等于200mm。
  5. 根据权利要求1-4所述的气体净化装置,其特征在于:
    其中,所述电场部为第一电场部,所述第一电场部包括形成所述电场的第一放电极和第一吸附极,所述第一吸附极为由多个中空的管束组成的呈蜂窝状的结构,所述第一放电极至少部分设于所述第一吸附极中空的管束内,所述第一放电极和所述第一吸附极之间形成所述气体流道。
  6. 根据权利要求5所述的气体净化装置,其特征在于:
    所述电场部为第二电场部,所述第二电场部包括形成所述电场的第二放电极和第二吸附极,所述第二吸附极包括多个电场吸附单元,所述电场吸附单元具有沿轴向延伸的侧壁,所述侧壁环绕形成通道,所述侧壁设有供气体进入所述通道的第二进气口和供气体排出所述通道的第二出气口,相邻两个所述电场吸附单元共用一个侧壁,多个所述电场吸附单元连接构成整体结构。
  7. 根据权利要求1-6任意一项所述的气体净化装置,其特征在于:
    所述电场部具有电场单元,所述电场单元的电场强度小于0.5kv/mm。
  8. 根据权利要求6所述的气体净化装置,其特征在于:
    所述电场部包括第一电场部和第二电场部,
    所述第一电场部和所述第二电场部沿气体流向依次设置,
    所述第一电场部为权利要求5所述的气体净化装置中的第一电场部,所述第二电场部为权利要求6所述的气体净化装置中的第二电场部。
  9. 根据权利要求6所述的气体净化装置,其特征在于:
    所述电场部包括第二电场部和第一电场部,所述第二电场部和所述第一电场部沿气体流向依次设置,所述第一电场部为权利要求5所述的气体净化装置中的第一电场部,所述第二电场部为权利要求6所述的气体净化装置中的第二电场部。
  10. 根据权利要求5-9中任意一项所述的气体净化装置,其特征在于,包括:
    沿气体流向依次设置的第一过滤单元以及第二过滤单元,
    其中,所述第一过滤单元和所述第二过滤单元分别具有驻极材料形成的第一过滤介质和第二过滤介质;所述第一过滤介质和第二过滤介质均能被所述电场部驻极,所述第二过滤介质的过滤孔径大于所述第一过滤介质的过滤孔径。
  11. 根据权利要求10所述的气体净化装置,其特征在于:
    所述第一过滤介质的过滤等级为粗效过滤、中效过滤或高中效过滤中的任意一种。
  12. 根据权利要求10所述的气体净化装置,其特征在于:
    所述第二过滤介质为PP棉。
  13. 根据权利要求1所述的气体净化装置,其特征在于:
    所述过滤单元能对所述气体中大于等于500nm的微粒实现99%以上过滤。
  14. 一种气体净化系统,其特征在于,包括:权利要求1-13中任意一项所述的气体净化装置。
  15. 根据权利要求14所述的气体净化系统,其特征在于,包括:
    至少两个沿气体流向依次设置的气体净化装置,
  16. 一种气体净化系统的应用,其特征在于:
    用于对进入半导体洁净室的气体进行净化,所述气体净化系统为权利要求14或15中所述的气体净化系统。
  17. 一种气体净化方法,其特征在于:
    沿气体流向依次设置至少一个电场部以及至少一个过滤单元;
    在电场部的气体流道中形成电场;
    让气体进入所述气体流道进行过滤得到净化气体;
    让所述净化气体进入过滤单元进行过滤得到处理后气体,
    其中,所述过滤单元通过驻极材料形成的过滤介质进行所述过滤,
    所述驻极材料能被所述电场部驻极。
  18. 根据权利要求17所述的气体净化方法,其特征在于:
    所述过滤单元相对所述电场部的设置位置依下进行限定:所有所述气体出口到所述过滤介质接受从所述气体出口排出的气体的表面上的垂直距离中的最小值,能让所述过滤介质被进行所述驻极。
  19. 根据权利要求18所述的气体净化方法,其特征在于:
    所述最小值小于等于200mm。
  20. 根据权利要求17-19中任意一项所述的气体净化方法,其特征在于:
    所述过滤单元能对所述气体中大于等于500nm的微粒实现99%以上过滤。
PCT/CN2021/131882 2020-11-19 2021-11-19 气体净化装置、系统及方法 WO2022105889A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202180072561.0A CN116710208A (zh) 2020-11-19 2021-11-19 气体净化装置、系统及方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202011304314.2 2020-11-19
CN202011304314 2020-11-19
CN202111034626.0 2021-09-03
CN202111034626 2021-09-03

Publications (1)

Publication Number Publication Date
WO2022105889A1 true WO2022105889A1 (zh) 2022-05-27

Family

ID=81668501

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/131882 WO2022105889A1 (zh) 2020-11-19 2021-11-19 气体净化装置、系统及方法

Country Status (2)

Country Link
CN (3) CN116710208A (zh)
WO (1) WO2022105889A1 (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61138550A (ja) * 1984-12-12 1986-06-26 Matsushita Electric Ind Co Ltd エアフイルタ
CN104226477A (zh) * 2013-06-18 2014-12-24 珠海格力电器股份有限公司 空气净化器及其净化方法
CN204583486U (zh) * 2015-01-21 2015-08-26 杭州明旺环保科技有限公司 静电式厨房净化器的蜂窝电场除尘结构
CN105983486A (zh) * 2015-01-28 2016-10-05 上海思奈环保科技有限公司 一种空气净化高压离子驻极体净化装置及空气净化装置
CN106524253A (zh) * 2016-11-08 2017-03-22 广东美的厨房电器制造有限公司 吸油烟机及其高压静电模块
CN107051735A (zh) * 2017-05-09 2017-08-18 中国科学院过程工程研究所 一种高效除尘模块制备方法
CN107377225A (zh) * 2017-09-06 2017-11-24 维睿空气系统产品(深圳)有限公司 微静电净化装置
CN107860066A (zh) * 2017-11-24 2018-03-30 复旦大学 全自动卷对卷空气净化装置及驻极方法
CN211385413U (zh) * 2019-12-17 2020-09-01 上海永健仪器设备有限公司 一种回风箱式驻极静电空气净化装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61138550A (ja) * 1984-12-12 1986-06-26 Matsushita Electric Ind Co Ltd エアフイルタ
CN104226477A (zh) * 2013-06-18 2014-12-24 珠海格力电器股份有限公司 空气净化器及其净化方法
CN204583486U (zh) * 2015-01-21 2015-08-26 杭州明旺环保科技有限公司 静电式厨房净化器的蜂窝电场除尘结构
CN105983486A (zh) * 2015-01-28 2016-10-05 上海思奈环保科技有限公司 一种空气净化高压离子驻极体净化装置及空气净化装置
CN106524253A (zh) * 2016-11-08 2017-03-22 广东美的厨房电器制造有限公司 吸油烟机及其高压静电模块
CN107051735A (zh) * 2017-05-09 2017-08-18 中国科学院过程工程研究所 一种高效除尘模块制备方法
CN107377225A (zh) * 2017-09-06 2017-11-24 维睿空气系统产品(深圳)有限公司 微静电净化装置
CN107860066A (zh) * 2017-11-24 2018-03-30 复旦大学 全自动卷对卷空气净化装置及驻极方法
CN211385413U (zh) * 2019-12-17 2020-09-01 上海永健仪器设备有限公司 一种回风箱式驻极静电空气净化装置

Also Published As

Publication number Publication date
CN114534917A (zh) 2022-05-27
CN116710208A (zh) 2023-09-05
CN217550066U (zh) 2022-10-11

Similar Documents

Publication Publication Date Title
US5474600A (en) Apparatus for biological purification and filtration of air
FI127767B (en) Air cleaner and method for purifying room air
CN104971823B (zh) 一种便于清洗的空气集尘设备及具有该设备的空气净化器
BR112021007619A2 (pt) sistema de despoeiramento de exaustão
JP2022509338A (ja) 空気除塵システム及び方法
RU179145U1 (ru) Электростатический фильтр для очистки воздуха
CN101886828A (zh) 静电油烟净化装置
KR20190134362A (ko) 집진 필터
KR101993644B1 (ko) 공기 청정 모듈
US20230140445A1 (en) Electrostatic separator
WO2022105889A1 (zh) 气体净化装置、系统及方法
CN212309283U (zh) 空气净化机
CN210861478U (zh) 一种微离子新风净化一体机
CN114377856A (zh) 电场单元及电场吸附装置以及电场装置
JP2023107942A (ja) ガス流から材料を分離するための空気清浄デバイス、構成、および方法
KR20190028611A (ko) 소형 공기정화기용 전기집진유닛과 이를 이용한 소형 공기정화기
KR101645847B1 (ko) 이중채널 전기집진장치
RU2731700C1 (ru) Блок фильтрации и элемент фильтрации, входящий в его состав
JPH08112551A (ja) 空気清浄装置の集塵部
CN105716171B (zh) 高效静电式光催化空气净化装置
CN220559502U (zh) 一种褶皱式集尘模组净化装置
CN109692759A (zh) 空气净化设备
RU2762132C1 (ru) Устройство электростатической фильтрации и блок электростатической зарядки
RU198658U1 (ru) Устройство фильтрации воздуха
JP2023097751A (ja) 空気清浄機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21894036

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180072561.0

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21894036

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 21894036

Country of ref document: EP

Kind code of ref document: A1