WO2022105556A1 - 绝缘子的检测装置、检测方法及绝缘子 - Google Patents

绝缘子的检测装置、检测方法及绝缘子 Download PDF

Info

Publication number
WO2022105556A1
WO2022105556A1 PCT/CN2021/126515 CN2021126515W WO2022105556A1 WO 2022105556 A1 WO2022105556 A1 WO 2022105556A1 CN 2021126515 W CN2021126515 W CN 2021126515W WO 2022105556 A1 WO2022105556 A1 WO 2022105556A1
Authority
WO
WIPO (PCT)
Prior art keywords
insulator
insulating member
detection
electromagnetic waves
detection component
Prior art date
Application number
PCT/CN2021/126515
Other languages
English (en)
French (fr)
Inventor
赵�衍
Original Assignee
太景科技(南京)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202022736001.6U external-priority patent/CN214585002U/zh
Priority claimed from CN202011323517.6A external-priority patent/CN112525927A/zh
Application filed by 太景科技(南京)有限公司 filed Critical 太景科技(南京)有限公司
Publication of WO2022105556A1 publication Critical patent/WO2022105556A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N22/00Investigating or analysing materials by the use of microwaves or radio waves, i.e. electromagnetic waves with a wavelength of one millimetre or more
    • G01N22/02Investigating the presence of flaws

Definitions

  • the present application relates to the technical field of product detection, and more particularly, to an insulator detection device, a detection method and an insulator.
  • Insulators can achieve electrical insulation and mechanical fixation, so they are often used on power transmission lines or substations. However, after long-term use of the insulator, cracks may occur inside the insulator. When the crack reaches a certain level, it will cause the line to collapse and cause a serious power accident. Therefore, in order to prevent serious power accidents, it is necessary to detect the internal cracks of the insulators.
  • the present application provides an insulator detection device, a detection method and an insulator, which can realize on-line automatic detection of internal cracks in the insulator.
  • an insulator detection device including: an insulator; and a detection component installed inside the insulator for detecting cracks in the insulator by using electromagnetic waves.
  • the location of the detection component and the emission direction of the electromagnetic wave are arranged so that the electromagnetic wave can propagate inside the insulating member after entering the insulating member of the insulator.
  • the insulator is a suspension insulator, and the insulator in the suspension insulator includes a head and an umbrella body; the position of the detection component and the setting of the emission direction of the electromagnetic wave make the After the electromagnetic wave enters the inside of the insulating member from the end face of the head portion, the electromagnetic wave propagates to the umbrella body inside the insulating member.
  • the included angle between the emission direction of the electromagnetic wave and the central axis of the suspended insulator is greater than 0 degrees and less than 90 degrees.
  • the insulator is a suspension insulator
  • the detection component is located on the central axis of the suspension insulator, and is located between the metal cap of the suspension insulator and the insulator or is located in the suspension insulator Between the metal legs of the insulator and the insulator.
  • the insulator is a column insulator
  • the insulating member in the column insulator includes one end portion and a plurality of skirts
  • the detection module is located between the metal cap of the column insulator and the end portion and the electromagnetic wave emitted by the detection module can cover the skirt of the insulating member.
  • the detection module is located on the central axis of the column insulator.
  • the insulator is a post insulator
  • the post insulator comprises an insulator and a metal cap sleeved on the end of the insulator; the surface of the end of the insulator and/or Or the inner side of the metal cap is provided with a groove, and the groove is used for accommodating the detection module.
  • the positions of the detection part and the insulating part in the insulator are arranged so that there is no gap between the detection part and the insulating part.
  • the detection component is attached to the surface of the insulating member in the insulator.
  • the detection component includes a dielectric substrate, and an antenna located on one side of the dielectric substrate, and the other side of the dielectric substrate is attached to a surface of an insulating member in the insulator.
  • the material of the insulating member is the same as the material of the dielectric substrate; or, the material of the insulating member is ceramic, and the material of the dielectric substrate is silicon or aluminum oxide; or, the The material of the insulating member is ceramic, and the dielectric constant of the material of the dielectric substrate is between 7-13.
  • the detection part includes a plurality of transmitting antennas, and the plurality of transmitting antennas are used for transmitting electromagnetic waves in different directions, so as to detect different parts of the insulator in the insulator.
  • the electromagnetic waves are radio frequency waves, microwaves, millimeter waves or terahertz waves.
  • the material of the insulator is ceramic, glass or composite material.
  • a method for detecting an insulator comprising: after the insulator is installed on a power transmission line, controlling a detection component inside the insulator to emit electromagnetic waves to the insulator of the insulator; receiving reflected waves of the electromagnetic waves, In order to detect whether there is a crack inside the insulating part.
  • controlling the detection component inside the insulator to emit electromagnetic waves to the insulating member of the insulator includes: controlling the detection component to emit electromagnetic waves to the insulating member, so that the electromagnetic waves can be transmitted in the insulating member. internal propagation of the item.
  • the insulator is a suspension insulator
  • the insulator in the suspension insulator includes a head and an umbrella body
  • the detection component inside the insulator is controlled to emit to the insulator of the insulator
  • Electromagnetic waves including: controlling the detection component to emit electromagnetic waves to the insulating member, so that after the electromagnetic waves enter the interior of the insulating member from the end face of the head portion of the insulating member, the electromagnetic waves are sent to the insulating member inside the insulating member.
  • Umbrella spread including: controlling the detection component to emit electromagnetic waves to the insulating member, so that after the electromagnetic waves enter the interior of the insulating member from the end face of the head portion of the insulating member, the electromagnetic waves are sent to the insulating member inside the insulating member.
  • the detection component is attached to the surface of the insulating member in the insulator.
  • the detection component includes multiple transmit antennas and multiple receive antennas, and the method further includes:
  • the multiple transmit antennas and the multiple receive antennas form a phased array or a MIMO sparse array, and the equivalent transmit direction and equivalent receive direction of the phased array or the MIMO sparse array are adjusted through an electrical scanning mechanism to Different parts of the insulators in the insulator are tested.
  • an insulator comprising: a metal accessory; an insulating member; an electromagnetic wave sensor, including a transmitting antenna and a receiving antenna for electromagnetic waves, the transmitting antenna is used for transmitting electromagnetic waves to the insulating member, and the receiving antenna is used for receiving For the reflected wave of the electromagnetic wave by the insulating member, the electromagnetic wave sensor is embedded in the insulating member, or is located between the metal attachment and the insulating member, and is closely attached to the insulating member.
  • the present application integrates the detection component inside the insulator, so that the detection component can accompany the entire life cycle of the insulator, and the detection component can automatically detect the cracks inside the insulator, so as to realize the online automatic detection of the cracks inside the insulator.
  • the insulator can be replaced in a targeted manner, thereby avoiding waste caused by replacing the insulator in large quantities.
  • FIG. 1 shows a schematic structural diagram of a column insulator provided by an embodiment of the present application.
  • FIG. 2 shows a schematic structural diagram of a suspension insulator provided by an embodiment of the present application.
  • FIG. 3 shows a schematic diagram of an insulating member in a suspension insulator provided by an embodiment of the present application.
  • FIG. 4 is a schematic diagram showing the principle of detecting internal cracks in an insulating member provided by an embodiment of the present application.
  • FIGS. 5-7 are schematic diagrams showing the arrangement positions of the detection components in the column insulator provided by the embodiments of the present application.
  • FIG. 8 shows a schematic diagram of a crack detection process in a column insulator provided by an embodiment of the present application.
  • FIGS. 9-13 are schematic diagrams showing the arrangement positions of the detection components in the suspension insulator provided by the embodiments of the present application.
  • FIG. 14 is a schematic diagram of the crack detection principle of the suspension insulator provided by the embodiment of the present application.
  • FIG. 15 shows a schematic diagram of the transmit angles of multiple transmit antennas provided by an embodiment of the present application.
  • FIG. 16 shows a schematic diagram of determining the position of a crack in an insulator provided by an embodiment of the present application.
  • FIG. 17 shows a schematic flowchart of a method for detecting an insulator.
  • An insulator is a special insulating control that can play an important role in overhead transmission lines.
  • insulators were mostly used for utility poles. With the development of technology, insulators are more and more used in high-speed transmission lines to increase the creepage distance.
  • Insulators can be divided into ultra-high voltage insulators, ultra-high voltage insulators, and high-voltage insulators according to the voltage used.
  • Insulators can be divided into ceramic insulators, glass insulators, composite insulators, etc. according to the manufacturing materials.
  • Insulators can be divided into suspension insulators, post insulators, pin insulators and the like according to their structure.
  • the suspension insulator can also be called a disc insulator
  • the column insulator can also be called a rod insulator.
  • Suspended insulators and pin insulators are often used in transmission lines, and column insulators are often used in substations.
  • the structure of the insulator will be introduced first with reference to FIGS. 1 to 3 .
  • FIG. 1 shows a schematic structural diagram of a column insulator.
  • the column insulator 100 includes an insulator 110 and a metal cap 120, the metal cap 120 is sleeved with the end face of the insulator 110, the insulator 110 is an insulating part in the column insulator 100, and the insulator 110 is provided on There are a plurality of raised skirts 111 .
  • the metal cap 120 may be a steel cap or an iron cap or the like.
  • an adhesive such as cement or asphalt may be filled between the end face of the insulating member 110 and the metal cap 120 to strengthen the connection between the metal cap 120 and the insulating member 110 .
  • FIG. 2 shows a schematic structural diagram of a suspension insulator
  • FIG. 3 shows a structural schematic diagram of an insulating member in the suspension insulator.
  • the suspension insulator 200 may include an insulating member 210 , a metal cap 220 and a metal foot 230 .
  • the insulating member 210 may include a head 211 and an umbrella body 212, the head 211 may be referred to as an inverted U-shaped structure, and the umbrella body 212 may be referred to as a skirt.
  • the outer end surface of the head 211 can be connected with the metal cap 220, and cement or asphalt or other adhesive 240 can be filled between the head 211 and the metal cap 220 for reinforcement; the inner end surface of the head 211 can be connected with the metal feet 230
  • the head 211 and the metal feet 230 can also be filled with adhesive 240 such as cement or asphalt for reinforcement.
  • the end of the metal cap 220 can also be provided with a split lock 260, and the split lock 260 can be used to connect the metal feet of other insulators, so as to connect a plurality of insulators together in series.
  • the insulators in the embodiments of the present application are not limited to the types described above, and may also be other types of insulators. But no matter what type of insulator, after being stressed for a long time, cracks will occur inside the insulator, and these cracks will continue to expand over time. When the crack reaches a certain level, it will cause the line to collapse, resulting in a serious power accident.
  • the embodiment of the present application provides an insulator detection device, which can detect the internal crack of the insulator, so that the insulator can be replaced in a targeted manner.
  • the detection device may include an insulator and a detection component.
  • the detection part is installed inside the insulator, and can detect cracks inside the insulator using electromagnetic waves.
  • a detection component is integrated inside the insulator to detect cracks inside the insulator.
  • the detection component will accompany the entire life cycle of the insulator, so that the aging process of the insulator on the high-voltage line or in the substation can be monitored for a long time, so as to realize the online monitoring of the insulator. Detection, avoiding a lot of time-consuming and costly manual inspections and manual operations.
  • the solutions of the embodiments of the present application can detect cracks inside the insulators, so that the insulators can be replaced in a targeted manner, thereby avoiding waste caused by replacing the insulators in large quantities.
  • the electromagnetic waves in the embodiments of the present application may be terahertz waves
  • the detection component may be a terahertz detection module.
  • terahertz waves Compared with ultrasonic waves or X-rays, terahertz waves have excellent distance and angle measurement accuracy, so the use of terahertz waves can improve the crack detection accuracy of insulators.
  • the power consumption of the terahertz detection module can be reduced, which is beneficial to saving costs.
  • the embodiment of the present application does not specifically limit the material of the insulator.
  • the material of the insulator may be ceramic, glass, or composite material.
  • the detection component in the embodiment of the present application may be an electromagnetic wave reflection measurement system, which is similar to the detection principle of radar, reflectometer, and the like.
  • a radar may include a transmitter, a receiver, a signal generator, a transmitting antenna, a receiving antenna, an echo signal processing unit, and the like.
  • FMCW frequency modulated continuous wave
  • the frequency sweep signal emitted by the radar is reflected by the target object and then enters the radar transmitter. Due to the time delay, the reflected signal and the originally transmitted frequency sweep signal will generate a frequency.
  • the difference frequency reflects the distance between the target and the radar. The farther the distance is, the higher the difference frequency frequency is.
  • the frequency of the difference frequency can be obtained by the fast Fourier transform (FFT) at the back end of the radar receiver.
  • FFT fast Fourier transform
  • the detection component can transmit electromagnetic waves to the insulator, and receive the reflected wave reflected from the insulator, and the reflected wave can be used to determine whether there is a crack in the insulator.
  • the embodiment of the present application is mainly concerned with the crack situation inside the insulating member in the insulator. Therefore, the following description focuses on the detection of the crack inside the insulating member.
  • Figure 4 shows a schematic diagram of the basic principle of crack detection. Wherein, the left side of FIG. 4 shows a schematic diagram of detection of an insulating member without internal cracks, and the right side of FIG. 4 shows a schematic diagram of detection of an insulating member with internal cracks.
  • the detection component in the embodiment of the present application may include a transmitting antenna and a receiving antenna for electromagnetic waves, the transmitting antenna is used for transmitting electromagnetic waves to the insulating member, and the receiving antenna is used for receiving the reflected waves of the electromagnetic waves by the insulating member.
  • the detection member 310 transmits the electromagnetic wave 312 to the insulating member 320, part of the electromagnetic wave 312 will be reflected on the two surfaces of the insulating member 320, forming the reflected wave 314 and the reflected wave 316, respectively, and the reflected wave 314
  • the sum reflected wave 316 may be received by the detection component 310 .
  • the electromagnetic wave will be reflected at the interface where the dielectric constant changes abruptly, when there is a crack inside the insulating member 320 , after the detection component 310 transmits the electromagnetic wave 312 to the insulating member 320 , the electromagnetic wave 312 will not only appear on the two surfaces of the insulating member 320 In addition to the reflected wave 314 and the reflected wave 316, reflection occurs at the position of the crack 330 to form the reflected wave 318, so that the detection component 310 can receive the reflected wave 314, the reflected wave 316 and the reflected wave 318.
  • the detection device in the embodiment of the present application can determine whether there is a crack inside the insulator according to whether the reflected wave has changed.
  • the embodiment of the present application hopes that more electromagnetic waves can be coupled with the insulating member and enter the interior of the insulating member instead of entering the insulating member. reflected before. Therefore, in order to enhance the coupling between the electromagnetic wave and the insulator and reduce the reflection of the electromagnetic wave before entering the insulator, the embodiments of the present application can set the positions of the detection component and the insulator so that there is no gap between the detection component and the insulator.
  • the reflection of the electromagnetic wave 312 on the first surface of the insulating member 320 can be reduced, that is, the reflected wave 314 will be reduced, thereby reducing the insulating member. 320 surface reflection loss. In this way, most of the electromagnetic waves can enter the interior of the insulating member 320 , thereby improving the detection performance of the detection component 310 .
  • the embodiments of the present application do not specifically limit the position setting manner of the detection component and the insulating member.
  • the absence of a gap between the detection component and the insulator may mean that the detection component is directly attached to the insulator, or may also mean that a dielectric layer is filled between the detection component and the insulator, so that there is no gap between the detection component and the insulator.
  • other medium may also be filled between the detection component and the insulating component, so that there is no gap between the detection component and the insulating component. Since the electromagnetic wave is easily reflected at the interface where the dielectric constant changes abruptly, in this case, in order to enhance the coupling between the electromagnetic wave and the insulating member, the dielectric constant of the filled medium is the same or close to that of the insulating member .
  • the detection component may be closely attached to the insulating component, so that the detection component and the insulating component are seamlessly connected.
  • the antenna in the detection component can be seamlessly attached to the insulating member; for another example, for an antenna with a dielectric substrate, the dielectric substrate can be seamlessly attached to the insulating member.
  • the detection component may include a dielectric substrate, and an antenna located on one side of the dielectric substrate, and the other side of the dielectric substrate is attached to the surface of the insulating member, so that no connection between the detection component and the insulating member can be achieved. Sew snugly.
  • the dielectric constant of the selected dielectric substrate is the same or similar to that of the insulating member.
  • the material of the dielectric substrate can be the same as that of the insulating member, which is also ceramic; or the material of the dielectric substrate can be dielectric Materials with similar constants, such as silicon, aluminum oxide, or materials with a dielectric constant between 7 and 13.
  • the material of the dielectric substrate and the material of the insulating member can be set to be the same, so as to maximize the coupling between the electromagnetic wave and the insulating member.
  • the corresponding dielectric substrate material can also be selected in the above manner.
  • the detection component 130 in this embodiment of the present application may include a planar antenna 131 , and the planar antenna 131 may be disposed on the top metal surface of a printed circuit board with a ceramic substrate 132 .
  • the location area of the planar antenna 131 corresponds to The other layers (including the bottom surface) of the circuit board do not have any metal layer, so as to ensure that the electromagnetic wave signal emitted by the planar antenna 131 will not be reflected by the metal layer.
  • the surface of the ceramic substrate 132 and the insulator 110 There is no obvious electromagnetic wave reflection between them, so that electromagnetic waves can be effectively radiated into the interior of the insulating member 110 . For the same reason, the reflected waves are also effectively returned to the planar antenna 132 to be received by the detection components.
  • the antenna in this embodiment of the present application may also be an antenna with other non-planar structures, such as a waveguide antenna, a horn antenna, and the like.
  • the embodiment of the present application does not specifically limit the installation position of the detection component and the emission direction of the electromagnetic wave.
  • the location of the detection component and the emission direction of the electromagnetic wave are arranged so that the electromagnetic wave can cover the entire insulating member.
  • the position of the detection part and the emission direction of the electromagnetic wave are arranged so that the electromagnetic wave can cover all the skirts of the insulator.
  • the insulator in the suspension insulator may include a head and an umbrella body, and the positions of the detection components and the emission direction of electromagnetic waves are arranged so that the electromagnetic waves can cover the head and the umbrella body of the insulator. If the electromagnetic wave emitted by the detection part can cover the entire insulator, a single detection part can be used to detect the crack of the whole insulator.
  • the location of the detection component and the emission direction of the electromagnetic wave are arranged so that the electromagnetic wave can propagate inside the insulating part of the insulator.
  • the position of the detection component and the emission direction of electromagnetic waves are arranged so that the electromagnetic waves can enter the insulator from one end face of the insulator, and then propagate from the inside of the insulator to the other end face.
  • the insulator in the suspension insulator may include a head and an umbrella body. The location of the detection component and the emission direction of the electromagnetic wave are arranged so that the electromagnetic wave can enter the interior of the insulator from the end face of the head. , spread to the umbrella body inside the insulation.
  • the column insulator and the suspension insulator are described below in combination with specific situations.
  • the detection part may be located between the metal cap and the end of the post insulator.
  • the detection components may be arranged on the central axis of the insulator.
  • the detection component 130 may be disposed on the central axis of the column insulator 100 and located between the metal cap 120 of the column insulator 100 and the insulating member 110 .
  • the transmitting antenna in the detection part can emit electromagnetic waves within a certain angle range. If the detection part is arranged on the central axis of the insulator, the detection part can detect cracks in more areas of the insulator than other positions. Taking Figure 6 as an example, if the emission angle of the transmitting antenna is ⁇ , and the electromagnetic wave within the range of this angle ⁇ can cover the skirt on the insulating part closest to the detection part, then only one transmitting antenna can be used to detect the interior of the entire insulating part. of cracks.
  • the transmission angle of the transmission antenna depends on the 3 dB beam width of the transmission antenna.
  • the installation position of the detection component is not limited to this, and may also be installed at other positions.
  • the detection component 130 may be disposed between the metal cap 120 and the dish surface of the insulating member 110 , and a better detection effect can also be achieved by placing the detection component 130 at this position.
  • the detection component in the embodiment of the present application may be disposed on the end face of the insulating member of the column insulator. Wherein, the detection component may be arranged on one end face of the insulating member, or may be arranged on both end faces of the insulating member.
  • the detection component 130 is disposed on the left side of the insulating member 110 . Compared with the crack 142 in the right half of the insulating member 110 , the detection component 130 has better detection accuracy for the crack 141 in the left half of the insulating member 110 . high. Therefore, in order to have a higher detection signal-to-noise ratio for cracks at all positions of the insulating member, detection components can be provided on both end faces of the insulating member.
  • the detection component may be directly disposed on the end face of the insulating member. In this case, a certain distance needs to be maintained between the metal cap and the end face of the insulating member to accommodate the detection component.
  • the gap between the metal cap and the end face of the insulating member can also be filled with cement or asphalt, so as to enhance the connection strength between the metal cap and the insulating member.
  • a groove may be provided on the surface of the end portion of the insulating member and/or the inner side of the metal cap, and the groove may be used for accommodating the detection component.
  • the depth of the groove can be greater than or equal to the thickness of the detection part, so that the inner side of the metal cap can be in close contact with the surface of the end of the insulating member, thereby improving the connection strength.
  • grooves can be provided only on the surface of the end of the insulating member; grooves can be provided only on the inner side of the metal cap; It is arranged in the accommodating space jointly formed by the two grooves.
  • the metal cap and the end of the insulating part can be reinforced by filling cement or asphalt and other adhesives, and placing the detection part in the groove will not affect the filling of cement or asphalt and other adhesives.
  • Figure 5 shows a specific implementation.
  • the end face of the insulating member 110 is provided with a groove 115 , and the depth of the groove 115 is not less than the thickness of the detection member 130 , so as to ensure that the metal cap 120 and the end of the insulating member 110 are in seamless contact.
  • the antenna 131 in the detection part 130 is a planar antenna.
  • the planar antenna 131 may be an antenna array, and FIG. 5 shows two antennas in the antenna array.
  • the planar antenna 131 can be arranged on a printed circuit board with a ceramic substrate 132, and a wave absorbing material 134 is also arranged on the other side of the planar antenna 131.
  • the wave absorbing material 134 is used for absorbing the electromagnetic wave leaking to the position, so as to avoid the electromagnetic wave from affecting the detection result.
  • a metal casing 133 is also provided outside the planar antenna 131 and the wave absorbing material 134 . It can be understood that the structure of the detection component shown in FIG. 5 is also applicable to the suspension insulator.
  • the transmitting antenna can be changed into an array form, such as a phased array, a multiple input multiple output (MIMO) sparse array, etc.
  • MIMO multiple input multiple output
  • the location of cracks in insulation can be detected.
  • the antennas of phased array and MIMO sparse array can change the equivalent transmitting direction and equivalent receiving direction of the antenna array through the electrical scanning mechanism, so as to realize the detection of cracks in insulating parts.
  • the detection components can be arranged on the central axis of the insulator.
  • the detection component may be disposed on the central axis of the suspension insulator, between the metal cap of the suspension insulator and the insulating member, or between the metal leg of the suspension insulator and the insulating member. Compared with other positions, the detection component is arranged on the central axis of the suspended insulator, and the detection component can detect cracks in more areas of the insulator.
  • FIG. 9 and FIG. 10 are schematic views showing that the detection part 270 is disposed between the metal cap 220 and the insulating member 210 .
  • 9 shows the case where the detection member 270 is provided on the inner surface of the metal cap 220
  • FIG. 10 shows the case where the detection member 270 is provided on the upper end surface of the head of the insulator 210 .
  • FIG. 11 and FIG. 12 are schematic views showing that the detection component 270 is disposed between the metal leg 230 and the insulating member 220 .
  • 11 shows the case where the detection member 270 is provided on the lower end surface of the head of the insulator 210
  • FIG. 12 shows the case where the detection member 270 is provided on the upper end surface of the metal leg 230 .
  • FIGS. 9-12 show the case where the detection components 270 are all located on the central axis of the suspension insulator 200. In some cases, the detection components 270 are arranged at positions deviating from the central axis of the suspension insulator 200, which can also achieve better detection effect.
  • the installation position of the detection component is not limited to this, and may also be installed at other positions.
  • it can be placed anywhere near the head of the insulator.
  • the detection part 270 may be provided at a lateral position of the head of the insulating member 210 .
  • the emission direction of the electromagnetic wave can be set so that the electromagnetic wave can propagate inside the insulator after entering the insulator.
  • the position of the detection component and the emission direction of the electromagnetic wave can be set so that the electromagnetic wave propagates to the umbrella body inside the insulator after entering the insulator from the end face of the head of the insulator.
  • cracks are first generated at the corners of the head of the insulator. After the electromagnetic wave enters the insulator from the head of the insulator, it will propagate to the periphery along the head, so that the electromagnetic wave will preferentially propagate to the corner, so that the detection can be prioritized. Cracks at corners.
  • the included angle between the emission direction of the electromagnetic wave and the central axis of the insulator is greater than 0 degrees and less than 90 degrees.
  • Fig. 14 shows the case where the detection part is arranged on the lower end face of the head of the insulator.
  • the detection part does not emit electromagnetic waves directly facing the head of the insulator, but emits electromagnetic waves 271 obliquely upward. .
  • the purpose of this is to allow the electromagnetic wave 271 to propagate to the distal end through multiple reflections inside the insulating member 210 .
  • the dielectric constant of the insulating member 210 (such as ceramics) is generally higher, and the electromagnetic wave 271 will propagate along the interior of the high dielectric constant material.
  • electromagnetic waves can be transmitted inside a high dielectric constant material by total reflection.
  • Electromagnetic waves will be reflected if they encounter the boundary between a material with a high dielectric constant and a material with a low dielectric constant.
  • the principle is similar to that of an optical fiber, when the fiber is bent, the inner fiber continues to propagate along the fiber. Therefore, at the corners of the insulating member 210 , the electromagnetic wave 271 will still propagate along the insulating member 210 to the distal end. Based on the above principles, the reflection of electromagnetic waves can be used to detect cracks at any position inside the insulating member.
  • the electromagnetic wave 271 When there is a crack 280 inside the insulating member, the electromagnetic wave 271 will be reflected when encountering the crack 280 to form a reflected wave 272 , and the reflected wave 272 can be transmitted back to the detection component 270 .
  • the detection part 270 can determine whether there is a crack inside the insulating member according to whether the reflected wave has changed.
  • the embodiment of the present application does not limit the specific angle of the included angle between the emission direction of the electromagnetic wave and the central axis of the suspended insulator, for example, it may be 45 degrees.
  • the emitting direction of the 45-degree angle is only an example, and the specific angle to be used can be selected according to the actual situation of the insulator, as long as it can ensure that the electromagnetic wave can propagate inside the insulator, and the electromagnetic wave is transmitted during the propagation process. The less loss the better.
  • the head of the insulating member 210 is circular.
  • the detection part 270 can be arranged at the center of the circle.
  • the detection unit 270 may include one transmitting antenna, or may include multiple transmitting antennas.
  • the antenna may be an omnidirectional antenna or a directional antenna.
  • an omnidirectional antenna if the transmit power of the omnidirectional antenna is sufficient, a single antenna can be used to detect cracks inside the entire suspended insulator.
  • multiple antennas can be provided to cover the entire insulator.
  • the multiple antennas can transmit or receive electromagnetic waves in different directions to detect different parts of the insulating member.
  • the present application does not specifically limit the types of the plurality of antennas.
  • the plurality of antennas can respectively transmit or receive electromagnetic waves in different directions to detect different parts of the insulating member.
  • the multiple antennas may form a phased array or a MIMO array, and the equivalent transmit or receive directions of the multiple antennas are adjusted by means of electrical scanning, so as to detect different parts of the insulating member.
  • the present application does not specifically limit the transmitting manner of the multiple transmitting antennas.
  • the multiple transmitting antennas may transmit electromagnetic waves in different directions in sequence, or the multiple transmitting antennas may simultaneously transmit electromagnetic waves in different directions.
  • the multiple receiving antennas can receive electromagnetic waves in different directions in sequence, or can simultaneously receive electromagnetic waves in different directions.
  • multiple transmitting antennas can transmit electromagnetic waves in different directions in sequence
  • multiple receiving antennas can also receive electromagnetic waves in different directions in sequence, so as to detect different parts of the insulator in the insulator.
  • multiple transmitting antennas may transmit electromagnetic waves in different directions in sequence, and multiple receiving antennas may simultaneously receive electromagnetic waves in different directions, so as to detect different parts of the insulator in the insulator.
  • multiple transmitting antennas may simultaneously transmit electromagnetic waves in different directions, and multiple receiving antennas may receive electromagnetic waves in different directions in sequence, so as to detect different parts of the insulator in the insulator.
  • multiple transmitting antennas may simultaneously transmit electromagnetic waves in different directions
  • multiple receiving antennas may simultaneously receive electromagnetic waves in different directions, so as to detect different parts of the insulator in the insulator.
  • multiple transmit antennas and multiple receive antennas may form a phased array or MIMO sparse array, and the equivalent transmit direction and equivalent receive direction of the phased array or MIMO sparse array can be adjusted through an electrical scanning mechanism , to test different parts of the insulator in the insulator.
  • FIG. 15 shows the case where the detection part 270 includes four antennas 275, and the four antennas 275 can detect different parts of the insulating member.
  • Fig. 15 shows the case where the working antenna transmits electromagnetic waves, wherein the working antenna is the unshaded antenna in Fig. 15 .
  • the four antennas 275 may simultaneously transmit electromagnetic waves, or may transmit electromagnetic waves in sequence, which is not specifically limited in this embodiment of the present application.
  • Each pair of transmit antennas and receive antennas in this embodiment of the present application may be two independent antennas, forming an antenna pair; or each pair of receive antennas and transmit antennas may be combined into one antenna, that is, the one antenna can transmit signals, Signals can also be received.
  • the four antennas 275 can also be used to receive electromagnetic waves; the four antennas 275 can receive electromagnetic waves at the same time, or they can receive electromagnetic waves in different directions in sequence.
  • the detection component may further include four receiving antennas, wherein one transmitting antenna and its corresponding receiving antenna form an antenna pair; the four receiving antennas can receive electromagnetic waves at the same time, and also Electromagnetic waves can be received in different directions in sequence.
  • multiple transmit antennas in the embodiments of the present application may be understood as multiple transmit channels, and the multiple receive antennas may be understood as multiple receive channels.
  • Multiple transmit channels can be independent of each other, or can also form a phased array or MIMO sparse array; multiple receive channels can be independent of each other, or can also form a phased array or MIMO sparse array.
  • the detection unit may further include a transmitting circuit corresponding to the transmitting antenna, and a receiving circuit corresponding to the receiving antenna.
  • the emission direction of electromagnetic waves can also be set so that electromagnetic waves are emitted toward the corners of the insulating member to detect cracks at the corners.
  • electromagnetic waves described above may include radio frequency waves, microwaves, millimeter waves, terahertz waves, and the like. According to different frequency division standards, electromagnetic waves can include different types of waves.
  • Radio frequency waves, millimeter waves and terahertz waves are sometimes referred to as microwaves.
  • the radio frequency band is the frequency band from 500MHz (5x10 8 Hz) to 30GHz (3x10 10 Hz), but sometimes waves with frequencies close to 30 GHz, such as 28 GHz, are also considered millimeter waves (now known as 5G by the public). mmWave includes 28GHz).
  • the millimeter wave frequency band is from 30GHz to 300GHz (3x10 11 Hz), and some people think it is from 30GHz to 100GHz (1x10 11 Hz).
  • the THz frequency range is from 100GHz (1x10 11 Hz) or 300GHz (3x10 11 Hz) to 10THz (1x10 13 Hz).
  • the electromagnetic wave in this embodiment of the present application may be a millimeter wave, a radio frequency wave, or a terahertz wave.
  • the frequency of terahertz waves is higher. Because the higher the frequency, the shorter the wavelength, the wider the bandwidth that can be achieved, and the better the detection of cracks with narrower widths. Therefore, terahertz waves The detection accuracy of wave to crack is higher.
  • the detection component in the embodiment of the present application may be a detection module, and the detection module may include a detection chip, an antenna, and peripheral auxiliary components.
  • the detection chip includes an electromagnetic wave sensor, or the detection component may be an electromagnetic wave sensor.
  • the detection chip can be based on a silicon process, such as a complementary metal oxide semiconductor (CMOS) process, and can integrate the main functional modules, such as a transmitter, a receiver, a signal generator, an echo signal processing unit, and a power management unit. etc. are integrated on one chip, so that peripheral devices can be reduced and the cost of the entire detection component can be reduced.
  • CMOS complementary metal oxide semiconductor
  • the detection module may be a terahertz detection module.
  • the detection device in the embodiment of the present application can further determine the position of the crack in the insulating member, and the determination method is similar to the principle of measuring the distance of the target by radar.
  • Common ranging radars can include pulsed radars and continuous wave radars.
  • Pulse radar emits a pulse wave.
  • the radar detects a returned pulse wave.
  • the distance between the target and the radar can be judged because the electromagnetic wave
  • the speed of propagation in air or some medium is known.
  • Continuous wave FM radar emits a modulated wave whose frequency changes continuously, such as a modulated wave whose frequency varies linearly with time.
  • the radar detects a returned frequency modulated wave.
  • a frequency difference is obtained, and the distance between the target and the radar can be judged.
  • the detection component transmits electromagnetic waves to the interior of the insulator 110 along the axis of the insulator column, and receives the reflected signals. If there is no crack inside the insulating member 110 , the electromagnetic wave will be reflected by the other end face of the insulating member 110 and the skirt structure portion, so as to be received by the detection component 130 , as shown in FIG. 16 .
  • the detection component 130 will determine the distance between the different reflecting surfaces of a normal insulator and the detection component 130 according to the radar algorithm, and use this set of data as a reference.
  • the detection component 130 judges the distance to the reflective surface through the received reflected wave, and compares the new distance measurement information with the aforementioned reference to determine whether the crack exists and the position along the axis.
  • the position detection accuracy of the internal crack of the insulating member 110 in the direction of the cylinder axis mainly depends on the bandwidth of the electromagnetic wave. For example, if FMCW radar is used, the frequency sweep bandwidth will determine the position detection accuracy of the insulator axis where the crack is located.
  • the insulator manufacturer can determine the position where the crack is likely to occur in the insulator by counting the crack position, and improve the manufacturing process of the insulator based on this.
  • FIG. 17 shows a schematic flowchart of a method for detecting an insulator, and the method 800 includes steps S810-S820.
  • controlling the detection component inside the insulator to emit electromagnetic waves to the insulator of the insulator includes: controlling the detection component to emit electromagnetic waves to the insulator, so that the electromagnetic waves can pass through the insulator. Internal transmission.
  • the insulator is a suspension insulator
  • the insulator in the suspension insulator includes a head and an umbrella body
  • the detection component inside the insulator is controlled to emit electromagnetic waves to the insulator of the insulator
  • the method includes: controlling the detection component to emit electromagnetic waves to the insulator, so that after the electromagnetic waves enter the inside of the insulator from the end face of the head of the insulator, the inside of the insulator is directed to the umbrella of the insulator. body transmission.
  • controlling the detection component to emit electromagnetic waves to the insulator includes: controlling the detection component to be in a direction in which an angle between the detection component and the central axis of the insulator is greater than 0 degrees and less than 90 degrees.
  • the insulating member emits electromagnetic waves.
  • the detection component is attached to the surface of the insulating member in the insulator.
  • the detection component includes multiple transmit and multiple receive antennas, and the method further includes:
  • the multiple transmit antennas and the multiple receive antennas form a phased array or a MIMO sparse array, and the equivalent transmit direction and equivalent receive direction of the phased array or MIMO sparse array are adjusted through an electrical scanning mechanism, so that the Different parts of the insulator in the insulator are tested.
  • the detection device for an insulator in the embodiments of the present application can also be understood as an insulator including a detection component.
  • the embodiment of the present application provides an insulator, and the insulator may include a metal accessory, an insulating member, and an electromagnetic wave sensor.
  • the electromagnetic wave sensor includes a transmitting antenna and a receiving antenna for electromagnetic waves.
  • the transmitting antenna can be used to transmit electromagnetic waves to the insulating member, and the receiving antenna can be used to receive the reflected waves of the electromagnetic waves by the insulating member.
  • the electromagnetic wave sensor can be embedded in the insulating member or located between the metal attachment and the insulating member, and is closely attached to the insulating member.
  • the metal accessories can be metal caps; for suspension insulators, the metal accessories can be metal feet or metal caps.
  • the insulator may be an insulator in a column insulator or an insulator in a suspension insulator.
  • the electromagnetic wave sensor may be the detection component or detection chip described above.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Geophysics And Detection Of Objects (AREA)

Abstract

一种绝缘子(320)的检测装置、检测方法及绝缘子(320),能够实现对绝缘子(320)内部裂纹的在线自动检测。该检测装置包括:一绝缘子(320);一检测部件(310),安装在绝缘子(320)内部,用于利用电磁波检测绝缘子(320)内部的裂纹。

Description

绝缘子的检测装置、检测方法及绝缘子
本申请要求于2020年11月23日提交中国专利局、申请号为202011323517.6、申请名称为“悬式绝缘子的检测装置及检测方法”,以及于2020年11月23日提交中国专利局、申请号为202022736001.6、申请名称为“绝缘子的检测装置和绝缘子”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及产品检测技术领域,并且更为具体地,涉及一种绝缘子的检测装置、检测方法及绝缘子。
背景技术
绝缘子能够实现电气绝缘和机械固定,因此常用于输电线上或变电站上。但是,绝缘子在长期使用之后,其内部会产生裂纹。当裂纹达到一定程度后,会导致线路坍塌,造成严重的电力事故。因此,为了防止造成严重的电力事故,需要对绝缘子的内部裂纹进行检测。
目前电网公司主要是采用人工巡检的方式检测裂纹,通过目测或其他手段进行外观检查,然而对于内部裂纹,尚无可靠办法进行排查。因此,电网公司会以几年为周期对绝缘子进行大批量更换,为了保障安全,更换周期远低于正常绝缘子的使用寿命,这会造成大量的浪费。
发明内容
本申请提供一种绝缘子的检测装置、检测方法及绝缘子,能够实现对绝缘子内部裂纹的在线自动检测。
第一方面,提供了一种绝缘子的检测装置,包括:一绝缘子;一检测部件,安装在所述绝缘子内部,用于利用电磁波检测所述绝缘子内部的裂纹。
在一个实施例中,所述检测部件的位置和所述电磁波的发射方向的设置使得所述电磁波在进入所述绝缘子的绝缘件后,能够在所述绝缘件内部传播。
在一个实施例中,所述绝缘子为悬式绝缘子,所述悬式绝缘子中的绝缘件包括一头部和一伞体;所述检测部件的位置和所述电磁波的发射方向的设置使得所述电磁波从所述头部的端面进入所述绝缘件内部之后,在所述绝缘件内部向所述伞体传播。
在一个实施例中,所述电磁波的发射方向与所述悬式绝缘子的中心轴线之间的夹角大于0度,且小于90度。
在一个实施例中,所述绝缘子为悬式绝缘子,所述检测部件位于所述悬式绝缘子的中心轴线上,且位于所述悬式绝缘子的金属帽和绝缘件之间或者位于所述悬式绝缘子的金属脚和绝缘件之间。
在一个实施例中,所述绝缘子为柱式绝缘子,所述柱式绝缘子中的绝缘件包括一端部和多个裙体,所述检测模块位于所述柱式绝缘子的金属帽与所述端部之间,且所述检测模块发射的所述电磁波能够覆盖所述绝缘件的裙体。
在一个实施例中,所述检测模块位于所述柱式绝缘子的中心轴线上。
在一个实施例中,所述绝缘子为柱式绝缘子,所述柱式绝缘子包括一绝缘件和套接在所述绝缘件的端部的一金属帽;所述绝缘件的端部的表面和/或所述金属帽的内侧设置有凹槽,所述凹槽用于容纳所述检测模块。
在一个实施例中,所述检测部件与所述绝缘子中的绝缘件的位置的设置使得所述检测部件与所述绝缘件之间不存在空隙。
在一个实施例中,所述检测部件与所述绝缘子中的绝缘件的表面贴合。
在一个实施例中,所述检测部件包括介质衬底,以及位于所述介质衬底一侧的天线,所述介质衬底的另一侧贴合在所述绝缘子中的绝缘件的表面。
在一个实施例中,所述绝缘件的材质与所述介质衬底的材质相同;或者,所述绝缘件的材质为陶瓷,所述介质衬底的材质为硅、氧化铝;或者,所述绝缘件的材质为陶瓷,所述介质衬底的材质的介电常数在7-13之间。
在一个实施例中,所述检测部件包括多个发射天线,所述多个发射天线用于朝向不同的方向发射电磁波,以对所述绝缘子中的绝缘件的不同部分进行检测。
在一个实施例中,所述电磁波为射频波、微波、毫米波或太赫兹波。
在一个实施例中,所述绝缘子的材质为陶瓷、玻璃或复合材料。
第二方面,提供了一种绝缘子的检测方法,包括:在绝缘子被安装到输电线路之后,控制所述绝缘子内部的检测部件向所述绝缘子的绝缘件发射电磁波;接收所述电磁波的反射波,以检测所述绝缘件内部是否出现裂纹。
在一个实施例中,所述控制所述绝缘子内部的检测部件向所述绝缘子的绝缘件发射电磁波,包括:控制所述检测部件向所述绝缘件发射电磁波,使得所述电磁波能够在所述绝缘件的内部传播。
在一个实施例中,所述绝缘子为悬式绝缘子,所述悬式绝缘子中的绝缘件包括一头部和一伞体,所述控制所述绝缘子内部的检测部件向所述绝缘子的绝缘件发射电磁波,包括:控制所述检测部件向所述绝缘件发射电磁波,使得所述电磁波从所述绝缘件的头部的端面进入所述绝缘件内部之后,在所述绝缘件内部向所述绝缘件的伞体传播。
在一个实施例中,所述检测部件与所述绝缘子中的绝缘件的表面贴合。
在一个实施例中,所述检测部件包括多个发射天线和多个接收天线,所述方法还包括:
控制所述多个发射天线按顺序依次朝向不同方向发射电磁波、以及所述多个接收天线按顺序依次朝向不同方向接收电磁波,以对所述绝缘子中的绝缘件的不同部分进行检测;或者,
控制所述多个发射天线同时朝向不同方向发射电磁波、以及所述多个接收天线同时朝向不同方向接收电磁波,以对所述绝缘子中的绝缘件的不同部分进行检测;或者,
控制所述多个发射天线按顺序依次朝向不同方向发射电磁波、以及所述多个接收天线同时朝向不同方向接收电磁波,以对所述绝缘子中的绝缘件的不同部分进行检测;或者,
控制所述多个发射天线同时朝向不同方向发射电磁波、以及所述多个接收天线按顺序依次朝向不同方向接收电磁波,以对所述绝缘子中的绝缘件的不同部分进行检测;或者,
所述多个发射天线和所述多个接收天线组成相控阵或MIMO稀疏阵列,通过电扫描机制调整所述相控阵或所述MIMO稀疏阵列的等效发射方向和等效接收方向,以对所述绝缘子中的绝缘件的不同部分进行检测。
第三方面,提供一种绝缘子,包括:金属附件;绝缘件;电磁波传感器,包括电磁波的发射天线和接收天线,所述发射天线用于向所述绝缘件发射电磁波,所述接收天线用于接收所述绝缘件对所述电磁波的反射波,所述电磁波传感器嵌在所述绝缘件内部,或位于所述金属附件和所述绝缘件之间,且与所述绝缘件紧密贴合在一起。
基于上述技术方案,本申请将检测部件集成在绝缘子内部,使得检测部件可以伴随绝缘子的整个生命周期,并且该检测部件可以自动检测绝缘子内部的裂纹情况,从而实现对绝缘子内部裂纹的在线自动检测。另外,通过对绝缘子内部的裂纹进行在线自动检测,可以有针对性地对绝缘子进行更换,从而能够避免大批量更换绝缘子造成的浪费。
附图说明
图1示出的是本申请实施例提供的一种柱式绝缘子的结构示意图。
图2示出的是本申请实施例提供的一种悬式绝缘子的结构示意图。
图3示出的是本申请实施例提供的一种悬式绝缘子中的绝缘件的示意图。
图4示出的是本申请实施例提供的检测绝缘件内部裂纹的原理的示意图。
图5-图7示出的是本申请实施例提供的柱式绝缘子中检测部件的设置位置的示意图。
图8示出的是本申请实施例提供的柱式绝缘子中裂纹的检测过程的示意图。
图9-图13示出的是本申请实施例提供的悬式绝缘子中检测部件的设置位置的示意图。
图14示出的是本申请实施例提供的悬式绝缘子的裂纹检测原理的示意图。
图15示出的是本申请实施例提供的多个发射天线的发射角度的示意图。
图16示出的是本申请实施例提供的确定裂纹在绝缘子中的位置的示意图。
图17示出了一种绝缘子的检测方法的流程示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本申请一部分实施例,而不是全部的实施例。
绝缘子是一种特殊的绝缘控件,能够在架空输电线路中起到重要作用。早年间绝缘子多用于电线杆,随着技术的发展,绝缘子越来越多地被应用在高线输电线上,其作用是为了增加爬电距离。
绝缘子按照使用电压可以分为特高压绝缘子、超高压绝缘子、高压绝缘子等。
绝缘子按照制造材料可以分为陶瓷绝缘子、玻璃绝缘子、复合绝缘子等。
绝缘子按照结构可以分为悬式绝缘子、柱式绝缘子、针式绝缘子等。其中,悬式绝缘子也可以称为盘形绝缘子,柱式绝缘子也可以称为棒形绝缘子。悬式绝缘子和针形绝缘子常用于输电线上,柱式绝缘子常用于变电站上。
为了方便描述,下面先结合图1-图3对绝缘子的结构进行介绍。
图1示出的是一种柱式绝缘子的结构示意图。该柱式绝缘子100包括绝缘件110和金属帽120,该金属帽120与该绝缘件110的端面相套接,该绝缘件110为柱式绝缘子100中起绝缘作用的部件,绝缘件110上设置有多个凸起的裙体111。其中,该金属帽120可以为钢帽,也可以为铁帽等。
在柱式绝缘子110的制造工艺中,还可以在绝缘件110的端面与金属帽120之间填充水泥或沥青等胶合剂,以加固金属帽120与绝缘件110之间的连接。
图2示出的是一种悬式绝缘子的结构示意图,图3示出的是悬式绝缘子中绝缘件的结构示意图。该悬式绝缘子200可以包括绝缘件210、金属帽220和金属脚230。绝缘件210可以包括一头部211和一伞体212,该头部211可以称为倒U形结构,伞体212可以称为裙部。该头部211的外端面可以与金属帽220相连接,且该头部211与金属帽220之间可以填充水泥或沥青等胶合剂240进行加固;该头部211的内端面可以与金属脚230相连接,且该头部211与金属脚230之间也可以填充水泥或沥青等胶合剂240进行加固。
另外,该金属帽220的端部还可以设置开口锁260,该开口锁260可用于连接其他绝缘子的金属脚,以将多个绝缘子串接在一起。
本申请实施例中的绝缘子不限于上文描述的类型,还可以是其他类型的绝缘子。但无论是哪种类型的绝缘子,在长期受到应力作用之后,绝缘子内部都会产生裂纹,并且这些裂纹随着时间的推移会不断扩大。当裂纹达到一定程度后,就会导致线路坍塌,造成严重的电力事故。
目前电网公司主要是采用人工巡检的方式检测裂纹,通过目测或其他手段进行外观检查。但是,对于悬式绝缘子而言,由于悬式绝缘子主要用于悬挂架空输电线,安装位置比较高,因此,悬式绝缘子在投入使用之后,很难在高空中通过人工巡检的方式对绝缘子的裂纹进行检测。有些技术可以通过无人机巡检的方式对悬式绝缘子的裂纹进行检测,但是, 由于悬式绝缘子的绝缘件的头部被金属帽遮挡,通过无人机巡检的方式也很难对绝缘件中被遮挡部分的裂纹进行检测。
上述不论是人工巡检还是无人机巡检的方式,都只能对绝缘子的外部裂纹进行检测,然而对于内部裂纹,尚无可靠办法进行检测。基于上述考虑,电网公司会以几年为周期对绝缘子进行大批量更换,为了保障安全,更换周期远低于正常绝缘子的使用寿命,这会造成大量的浪费。
另外,随着电网规模的不断扩大,高压输电线和变电站的数量越来越大,使用的绝缘子的数量也越来越多,这给人工巡视检查绝缘子裂纹也带来越来越大的挑战。
基于此,本申请实施例提供一种绝缘子的检测装置,能够对绝缘子的内部裂纹进行检测,从而可以有针对性地对绝缘子进行更换。
该检测装置可以包括一绝缘子和一检测部件。该检测部件安装在该绝缘子内部,并且可以利用电磁波检测绝缘子内部的裂纹。
本申请实施例将检测部件集成在绝缘子内部来检测绝缘子内部的裂纹,该检测部件会伴随绝缘子的整个生命周期,这样可以长期监测高压线上或变电站里的绝缘子的老化过程,从而实现对绝缘子的在线检测,避免大量耗时耗资的人工巡检和人工操作。
本申请实施例的方案能够检测绝缘子内部的裂纹,这样可以有针对性地对绝缘子进行更换,从而能够避免大批量更换绝缘子造成的浪费。
另外,本申请实施例中的电磁波可以为太赫兹波,该检测部件可以为太赫兹检测模块。相比于超声波或X射线,太赫兹波具有出色的距离和角度测量精度,因此,使用太赫兹波可以提高绝缘子的裂纹检测精度。另外,相比于超声波或X射线传感器,太赫兹检测模块的功耗可以做低,这样有利于节约成本。
本申请实施例对绝缘子的材质不做具体限定,例如,该绝缘子的材质可以为陶瓷、玻璃或复合材料等。
本申请实施例的检测部件可以是一个电磁波反射测量系统,这与雷达、反射计等的检测原理类似。
以雷达为例,其可以包括发射机、接收机、信号发生器、发射天线、接收天线、回波信号处理单元等。以连续波调频(frequency modulated continuous wave,FMCW)雷达为例,雷达发射出的扫频信号被目标物体反射后进入雷达发射机,由于时间延迟,反射信号与原本发射的扫频信号会产生一个频差,这个差频频率就反映出了目标与雷达之间的距离,距离越远差频频率越高。差频的频率可以通过雷达接收机后端的快速傅里叶变换(fast Fourier transform,FFT)来得到。
上述原理可以应用在绝缘子的裂纹检测过程中,具体地,检测部件可以向绝缘子发射电磁波,并接收绝缘子内部反射回来的反射波,该反射波可用于确定绝缘子内部是否有裂纹。
本申请实施例主要关心的是绝缘子中的绝缘件内部的裂纹情况,因此,下文重点描述对绝缘件内部的裂纹的检测。
图4示出的是裂纹检测基本原理的示意图。其中,图4左侧示出的是内部无裂纹的绝缘件的检测示意图,图4右侧示出的是内部有裂纹的绝缘件的检测示意图。
本申请实施例中的检测部件中可以包括电磁波的发射天线和接收天线,发射天线用于向绝缘件发射电磁波,接收天线用于接收绝缘件对电磁波的反射波。
当绝缘件320内部没有裂纹时,检测部件310向绝缘件320发射电磁波312之后,部分电磁波312会在绝缘件320的两个表面上发生反射,分别形成反射波314和反射波316,反射波314和反射波316可以被检测部件310接收。
由于电磁波会在介电常数发生突变的界面处发生反射,因此,当绝缘件320内部有裂纹时,检测部件310向绝缘件320发射电磁波312之后,电磁波312除了会在绝缘件320 的两个表面上发生反射,形成反射波314和反射波316之外,还会在裂纹330位置处发生反射,形成反射波318,从而检测部件310可以接收到反射波314、反射波316和反射波318。
基于上述原理,本申请实施例的检测装置可以根据反射波是否发生了变化来判断绝缘子内部是否有裂纹。
由图4可知,电磁波会在绝缘件的表面发生反射,为了得到更好地检测效果,本申请实施例希望有更多的电磁波能够与绝缘件耦合,进入绝缘件内部,而不是在进入绝缘件之前就被反射。因此,为了增强电磁波与绝缘件之间的耦合,减少电磁波在进入绝缘件之前的反射,本申请实施例可以通过设置检测部件和绝缘件的位置,使得检测部件与绝缘件之间不存在空隙。
仍以图4为例,当检测部件310与绝缘件320之间不存在空隙时,能够减少电磁波312在绝缘件320的第一个表面上的反射,即反射波314会减少,从而减少绝缘件320表面带来的反射损耗。这样大部分的电磁波都能够进入绝缘件320内部,从而提高检测部件310的检测性能。
本申请实施例对检测部件和绝缘件的位置设置方式不做具体限定。检测部件与绝缘件之间不存在空隙可以指检测部件直接贴合在绝缘件上,或者还可以指检测部件与绝缘件之间填充有介质层,使得检测部件与绝缘件之间不存在空隙。
作为一种实现方式,检测部件与绝缘件之间还可以填充其他介质,使得检测部件与绝缘件之间不存在空隙。由于电磁波容易在介电常数发生突变的界面处发生反射,因此,在该情况下,为了增强电磁波与绝缘件之间的耦合,填充的介质的介电常数与绝缘件的介电常数相同或接近。
作为另一种实现方式,检测部件可以与绝缘件紧密贴合,使得检测部件与绝缘件之间无缝连接。例如,可以将检测部件中的天线与绝缘件无缝贴紧;又如,对于有介质衬底的天线,可以将该介质衬底与绝缘件无缝贴紧。
具体地,检测部件可以包括介质衬底,以及位于介质衬底一侧的天线,该介质衬底的另一侧贴合在绝缘件的表面,这样就可以实现检测部件与绝缘件之间的无缝紧贴。为了增强电磁波与绝缘件之间的耦合,所选用的介质衬底的介电常数与绝缘件的介电常数相同或相近。
举例说明,对于材质为陶瓷的绝缘件,其介电常数约为9,则介质衬底的材质可以与绝缘件的材质相同,也为陶瓷;或者介质衬底的材质可以为与陶瓷的介电常数相近的材质,如硅、氧化铝、或介电常数在7~13之间的材质。
优选地,可以将介质衬底的材质与绝缘件的材质设置为相同,这样能够最大程度地增强电磁波与绝缘件之间的耦合。
当然,对于其他材质的绝缘件,如玻璃、复合材料等,也可以按照上述方式选择对应的介质衬底材质。
以绝缘件的材质与介质衬底的材质相同为例,若绝缘件的材质为陶瓷,则介质衬底的材质也为陶瓷。如图5所示,本申请实施例中的检测部件130可以包括平面天线131,该平面天线131可以设置在带有陶瓷衬底132的印刷电路板的顶层金属面,平面天线131位置区域对应的电路板其它层(包括底面)无任何铺地金属层,以确保平面天线131发射的电磁波信号不会被金属层反射。如果将该陶瓷衬底132的另一面紧贴在绝缘件110的表面,由于陶瓷衬底132和绝缘件110的陶瓷材料的介电常数接近,因此,在陶瓷衬底132和绝缘件110的表面之间不会存在明显的电磁波反射,从而能够有效地让电磁波辐射进绝缘件110内部。基于相同原因,反射波也会有效地回传到平面天线132上,从而被检测部件接收。
除了平面天线之外,本申请实施例中的天线还可以为其他非平面结构的天线,例如波 导天线、喇叭天线等。
本申请实施例对检测部件的设置位置和电磁波的发射方向不做具体限定。在一些实施例中,检测部件的位置和电磁波的发射方向的设置使得电磁波能够覆盖整个绝缘件。例如,对于柱式绝缘子,检测部件的位置和电磁波的发射方向的设置使得电磁波可以覆盖绝缘件的所有裙体。又例如,对于悬式绝缘子,悬式绝缘子中的绝缘件可以包括一头部和一伞体,检测部件的位置和电磁波的发射方向的设置使得电磁波可以覆盖绝缘件的头部和伞体。如果检测部件发射的电磁波能够覆盖整个绝缘件,则可以使用一个检测部件即可检测整个绝缘子的裂纹。
在另一些实施例中,检测部件的位置和电磁波的发射方向的设置使得电磁波能够在绝缘子的绝缘件内部传播。例如,对于柱式绝缘子,检测部件的位置和电磁波的发射方向的设置使得电磁波可以从绝缘件的一个端面进入绝缘件之后,在绝缘件的内部向另一个端面传播。又例如,对于悬式绝缘子,悬式绝缘子中的绝缘件可以包括一头部和一伞体,检测部件的位置和电磁波的发射方向的设置使得电磁波可以从头部的端面进入绝缘件的内部之后,在绝缘件内部向伞体传播。
下面结合具体情况,分别对柱式绝缘子和悬式绝缘子进行描述。
对于柱式绝缘子,检测部件可以位于柱式绝缘子的金属帽和端部之间。为了进一步减少使用的检测部件的数量,可以将检测部件设置在绝缘子的中心轴线上。
以图6所示的柱式绝缘子为例,检测部件130可以设置在柱式绝缘子100的中心轴线上,且位于柱式绝缘子100的金属帽120与绝缘件110之间。
检测部件中的发射天线可以在一定角度范围内发射电磁波,如果将检测部件设置在绝缘子的中心轴线上,则相比于其他位置,该检测部件可以检测绝缘件的更多区域的裂纹。以图6为例,如果发射天线的发射角度为α,且该角度α范围内的电磁波能够覆盖绝缘件上离检测部件最近的裙体,则可以仅使用一个发射天线即可检测整个绝缘件内部的裂纹。
需要说明的是,本申请实施例中发射天线的发射角度取决于发射天线的3dB波束宽度。
当然,检测部件的设置位置也不限于此,还可以设置在其他位置。如图7所示,检测部件130可以设置在金属帽120与绝缘件110的碟面之间,将检测部件130放置在该位置,也能达到较好的检测效果。
本申请实施例中的检测部件可以设置在柱式绝缘子的绝缘件的端面上。其中,检测部件可以设置在绝缘件的一个端面上,也可以设置在绝缘件的两个端面上。
由于电磁波在陶瓷介质中的衰减,离检测部件越近的裂纹,回波信号越强,因此,离检测部件距离较近的裂纹的检测信噪比较高。以图8为例,检测部件130设置在绝缘件110的左侧,则相较于绝缘件110右半部分的裂纹142,该检测部件130对于绝缘件110左半部分的裂纹141的检测精度更高。因此,为了对绝缘件所有位置处的裂纹都有一个较高的检测信噪比,可以在绝缘件的两个端面上均设置检测部件。
本申请实施例可以直接将检测部件设置在绝缘件的端面上,在该情况下,金属帽与绝缘件的端面需要保持一定的间距以容纳检测部件。金属帽与绝缘件的端面之间的间隙还可以使用水泥或沥青等胶合剂来填充,以增强金属帽与绝缘件之间的连接强度。
此外,本申请实施例还可以在绝缘件的端部的表面和/或金属帽的内侧设置凹槽,该凹槽可用于容纳检测部件。将检测部件设置在凹槽内,可以缩短金属帽的内侧表面与绝缘件的端部表面之间的距离,有利于提高金属帽与绝缘件之间的连接强度。
可选地,凹槽的深度可以大于或等于检测部件的厚度,这样金属帽的内侧可以与绝缘件的端部的表面紧密接触,从而提高连接强度。
例如,可以仅在绝缘件的端部的表面设置凹槽;也可以仅在金属帽的内侧设置凹槽;或者在绝缘件的端部的表面和金属帽的内侧表面同时设置凹槽,检测部件设置在由这两个凹槽共同形成的容纳空间中。
另外,金属帽和绝缘件的端部之间可以通过填充水泥或沥青等胶合剂进行加固,将检测部件放置在凹槽内,也不会影响水泥或沥青等胶合剂的填充。
图5示出了一种具体的实现方式。绝缘件110的端面处设置有凹槽115,该凹槽115的深度不小于检测部件130的厚度,这样能够保证金属帽120与绝缘件110的端部无缝贴紧。
检测部件130中的天线131为平面天线。该平面天线131可以为天线阵列,图5示出了天线阵列中的两个天线。假设绝缘件的材质和介质衬底的材质均为陶瓷,该平面天线131可以设置在带陶瓷衬底132的印刷电路板上,在平面天线131的另一侧还设置有吸波材料134,该吸波材料134用于吸收漏到该位置处的电磁波,以避免该电磁波对检测结果产生影响。在平面天线131和吸波材料134的外部还设置有金属外壳133。可以理解的是,图5所示的检测部件的结构也同样适用于悬式绝缘子。
另外,为了提高角度检测精度或提高检测的灵敏度,可以将发射天线改成阵列形式,比如相控阵列、多输入多输出(multiple input multiple output,MIMO)稀疏阵列等形式,通过阵列形式的发射天线可以检测裂纹在绝缘件中的位置。相控阵列、MIMO稀疏阵列的天线可以通过电扫描机制改变天线阵列的等效发射方向和等效接收方向,从而实现对绝缘件中裂纹的检测。
对于悬式绝缘子,为了使用较少的检测部件来检测整个绝缘子内部的裂纹,可以将检测部件设置在绝缘子的中心轴线上。
具体地,检测部件可以设置在悬式绝缘子的中心轴线上,且位于悬式绝缘子的金属帽与绝缘件之间、或者位于悬式绝缘子的金属脚与绝缘件之间。相比于其他位置,将检测部件设置在悬式绝缘子的中心轴线上,检测部件可以检测绝缘子的更多区域的裂纹。
图9和图10示出的是检测部件270设置在金属帽220与绝缘件210之间的示意图。其中,图9示出的是检测部件270设置在金属帽220内侧表面的情况,图10示出的是检测部件270设置在绝缘件210的头部的上端面的情况。
图11和图12示出的是检测部件270设置在金属脚230与绝缘件220之间的示意图。其中,图11示出的是检测部件270设置在绝缘件210的头部的下端面的情况,图12示出的是检测部件270设置在金属脚230的上端面的情况。
图9-图12示出了检测部件270都是位于悬式绝缘子200的中心轴线上的情况,在一些情况下,检测部件270设置在偏离悬式绝缘子200的中心轴线的位置处,也能达到较好的检测效果。
当然,检测部件的设置位置也不限于此,还可以设置在其他位置。例如,可以设置在绝缘件的头部附近的任意位置。如图13所示,检测部件270可以设置在绝缘件210的头部的侧面位置。
由于悬式绝缘子形状的特殊性,为了更好地实现对悬式绝缘子内部裂纹的检测,可以对电磁波的发射方向进行设置,使得电磁波进入绝缘件之后,可以在绝缘件内部进行传播。
优选地,本申请实施例可以对检测部件的位置和电磁波的发射方向进行设置,使得电磁波从绝缘件的头部的端面进入绝缘件内部之后,在绝缘件内部向伞体传播。
通常,绝缘件头部的转角处会最先产生裂纹,电磁波从绝缘件的头部进入绝缘件之后,会沿着头部向外围传播,这样电磁波会优先传播到转角处,从而能够优先检测到转角处的裂纹。
作为一种实现方式,电磁波的发射方向与绝缘子的中心轴线之间的夹角大于0度,且小于90度。
以图14为例,图14示出的是检测部件设置在绝缘件的头部的下端面的情况,检测部件并不是正对着绝缘件的头部发射电磁波,而是向斜上方发射电磁波271。这样做的目的是让电磁波271在绝缘件210的内部通过多次反射向远端传播。相比于绝缘件210周围的 水泥或沥青等胶合剂240,绝缘件210(如陶瓷)的介电常数通常比较高,而电磁波271会沿着高介电常数材料内部传播。例如,电磁波可以以全反射的方式在高介电常数材料内部传输。如果遇到高介电常数材料与低介电常数材料的边界,电磁波会被反射。该原理类似于光纤,当光纤弯曲时,内部光纤还会继续沿着光纤传播。因此,在绝缘件210的转角处,电磁波271仍会沿着绝缘件210向远端传播。基于上述原理,可以利用电磁波的反射来检测绝缘件内部任何位置的裂纹。
当绝缘件内部有裂纹280时,电磁波271在遇到裂纹280时,会发生反射,形成反射波272,该反射波272可以回传至检测部件270。检测部件270可以根据反射波是否发生了变化来确定绝缘件内部是否有裂纹。
本申请实施例对电磁波的发射方向与悬式绝缘子的中心轴线之间的夹角的具体角度不做限定,例如可以为45度。
可以理解的是,45度角的发射方向仅是一个示例,具体采用哪个角度可以根据绝缘件的实际情况进行选择,只要能够保证电磁波可以在绝缘件内部传播即可,并且电磁波在传播过程中的损耗越少越好。
以俯视角度来看,绝缘件210的头部是圆形,如图15所示,检测部件270可以设置在圆心位置。检测部件270可以包括一个发射天线,也可以包括多个发射天线。
可选地,该天线可以为全向天线,也可以为定向天线。对于全向天线,如果全向天线的发射功率足够,则可以使用一个天线即可检测整个悬式绝缘子内部的裂纹。
如果发射天线的发射或接收角度有限,则可以通过设置多个天线来覆盖整个绝缘件。该多个天线可以朝向不同的方向发射或接收电磁波,以对绝缘件的不同部分进行检测。
本申请对该多个天线的类型不做具体限定。例如,该多个天线可以分别朝向不同的方向发射或接收电磁波,以对绝缘件的不同部分进行检测。又例如,该多个天线可以构成相控阵或MIMO阵列,通过电扫描的方式调整多个天线的等效发射或接收方向,以对绝缘件的不同部分进行检测。
对于检测部件包括多个发射天线情况,本申请对该多个发射天线的发射方式不做具体限定。该多个发射天线可以按顺序依次朝向不同的方向发射电磁波,或者该多个发射天线可以同时朝向不同的方向发射电磁波。同理,对于检测部件包括多个接收天线情况,该多个接收天线可以按顺序依次朝向不同的方向接收电磁波,也可以同时朝向不同的方向接收电磁波。
作为一种示例,多个发射天线可以按顺序依次朝向不同的方向发射电磁波,多个接收天线也可以按顺序依次朝向不同的方向接收电磁波,以对绝缘子中的绝缘件的不同部分进行检测。
作为又一种示例,多个发射天线可以按顺序依次朝向不同的方向发射电磁波,多个接收天线可以同时朝向不同的方向接收电磁波,以对绝缘子中的绝缘件的不同部分进行检测。
作为又一种示例,多个发射天线可以同时朝向不同的方向发射电磁波,多个接收天线可以按顺序依次朝向不同的方向接收电磁波,以对绝缘子中的绝缘件的不同部分进行检测。
作为又一种示例,多个发射天线可以同时朝向不同的方向发射电磁波,多个接收天线也可以同时朝向不同的方向接收电磁波,以对绝缘子中的绝缘件的不同部分进行检测。
作为再一种示例,多个发射天线和多个接收天线可以组成相控阵或MIMO稀疏阵列,该相控阵或MIMO稀疏阵列的等效发射方向和等效接收方向可以通过电扫描机制进行调整,以对绝缘子中的绝缘件的不同部分进行检测。
例如,如果发射天线的半功率波束宽度为90度,则可以使用4个天线来覆盖整个绝缘件。图15示出的是检测部件270包括4个天线275的情况,该4个天线275可以对绝缘件的不同部分进行检测。
图15示出了工作的天线发射电磁波的情况,其中,工作的天线为图15中不带阴影的 天线。该4个天线275可以同时发射电磁波,也可以按顺序依次发射电磁波,本申请实施例对此不做具体限定。
本申请实施例的每一对发射天线和接收天线可以为两个独立的天线,形成一个天线对;或者每一对接收天线和发射天线可以合并成一个天线,即该一个天线既可以发射信号,也可以接收信号。
以图15为例,如果发射天线和接收天线合并为一个天线,则该4个天线275还可用于接收电磁波;该4个天线275可以同时接收电磁波,也可以按顺序依次朝向不同的方向接收电磁波。或者,如果发射天线和接收天线为独立的天线,则检测部件还可以包括4个接收天线,其中,一个发射天线与其对应的接收天线组成一个天线对;该4个接收天线可以同时接收电磁波,也可以按顺序依次朝向不同的方向接收电磁波。
可以理解的是,本申请实施例中的多个发射天线可以理解为多个发射通道,多个接收天线可以理解为多个接收通道。多个发射通道可以是相互独立的,或者也可以组成相控阵或MIMO稀疏阵列;多个接收通道可以是相互独立的,或者也可以组成相控阵或MIMO稀疏阵列。
另外,检测部件还可以包括与发射天线对应的发射电路、以及与接收天线对应的接收电路。
除了上文描述的方式之外,为了优先检测绝缘件的转角处的裂纹,也可以设置电磁波的发射方向,使得电磁波朝向绝缘件的转角处发射电磁波,以检测转角处的裂纹。
上文描述的电磁波可以包括射频波、微波、毫米波和太赫兹波等。按照不同的频率划分标准,电磁破可以包括不同类型的波。
射频波、毫米波和太赫兹波有时都被成为微波。射频频段是从500MHz(5x10 8Hz)到30GHz(3x10 10Hz)之间的频段,但有时接近30GHz的频率的波,比如28GHz频率的波也被认为是毫米波(现在被大众所熟知的5G毫米波就包括28GHz)。毫米波频段是从30GHz到300GHz(3x10 11Hz)之间,也有人认为是从30GHz到100GHz(1x10 11Hz)之间。太赫兹频段是从100GHz(1x10 11Hz)或300GHz(3x10 11Hz)到10THz(1x10 13Hz)之间。
可选地,本申请实施例中的电磁波可以为毫米波、射频波或太赫兹波。但是,相较于毫米波和射频波,太赫兹波的频率较高,由于频率越高,波长越短,可以实现的带宽更宽,就越能够检测到宽度更窄的裂纹,因此,太赫兹波对裂纹的检测精度更高。
本申请实施例中的检测部件可以为检测模块,该检测模块可以包括检测芯片、天线和外围辅助元器件。该检测芯片中包括电磁波传感器,或者该检测部件可以为电磁波传感器。该检测芯片可以基于硅工艺,如互补金属氧化物半导体(complementary metal oxide semiconductor,CMOS)工艺,可以将主要功能模块,如发射机、接收机、信号发生器、回波信号处理单元、电源管理单元等集成于一个芯片上,从而能够减少外围器件、降低整个检测部件的成本。
可选地,该检测模块可以为太赫兹检测模块。
本申请实施例中的检测装置还可以进一步确定裂纹在绝缘件中的位置,确定方式与雷达测目标距离的原理类似。
常见的测距雷达可以包括脉冲式雷达和连续波雷达。
脉冲式雷达发射出一个脉冲波,当脉冲波被目标反射回来后,雷达探测到一个返回的脉冲波,通过对比两个脉冲波的时间差,就可以判断出目标与雷达之间的距离,因为电磁波在空气或某种介质中的传播速度是已知的。
连续波调频式雷达发射出一个频率连续变化的调制波,比如频率随时间线性变化的调制波。当发射波被目标反射回来后,雷达探测到一个返回的频率调制波,通过对比发射和返回的波,得出一个频率差,就可以判断出目标与雷达的距离。
以柱式绝缘子为例,检测部件沿着绝缘子柱体轴线向绝缘件110内部发射电磁波,并接收反射回而来的信号。如果绝缘件110内部没有裂纹,电磁波会被绝缘件110另一端面和裙边结构部分的反射回来,从而被检测部件130接收,如图16所示。检测部件130会根据雷达算法判断出一个正常绝缘子的不同反射面与检测部件130之间的距离,并把该组数据作为参照基准。
如果绝缘件110内部产生一个垂直于轴线方向上的裂纹,在该裂纹处,原本完整的材料会有介电常数的突变,并会对电磁波产生反射效应。如图16所示,检测部件130通过接收到的反射波判断与反射面的距离,并把这个新的距离测量信息与前述的参照基准对比,就可以判定裂纹是否存在以及沿轴线方向的位置。绝缘件110内部裂纹的在圆柱体轴线方向上的位置检测精度主要取决于电磁波的带宽。比如采用FMCW雷达,那么扫频带宽会决定裂纹所处绝缘子轴线方向上的位置检测精度。
本申请实施例利用上述原理确定裂纹在绝缘件中的位置后,绝缘子制造厂商可以通过统计裂纹位置确定绝缘子中容易出现裂纹的位置,并基于此对绝缘子的制造工艺进行改进。
上述实施例如果与低功耗无线通信模块结合,将检测结果回传到电网控制中心,便可以实现无人巡检的绝缘子可靠性监测系统,最大程度降低由于绝缘子老化造成的电力事故。
图17示出了一种绝缘子的检测方法的流程示意图,该方法800包括步骤S810-S820。
S810、在绝缘子被安装到输电线路之后,控制所述绝缘子内部的检测部件向所述绝缘子的绝缘件发射电磁波。
S820、接收所述电磁波的反射波,以检测所述绝缘件内部是否出现裂纹。
可选地,所述控制所述绝缘子内部的检测部件向所述绝缘子的绝缘件发射电磁波,包括:控制所述检测部件向所述绝缘件发射电磁波,使得所述电磁波能够在所述绝缘件的内部传播。
可选地,所述绝缘子为悬式绝缘子,所述悬式绝缘子中的绝缘件包括一头部和一伞体,所述控制所述绝缘子内部的检测部件向所述绝缘子的绝缘件发射电磁波,包括:控制所述检测部件向所述绝缘件发射电磁波,使得所述电磁波从所述绝缘件的头部的端面进入所述绝缘件内部之后,在所述绝缘件内部向所述绝缘件的伞体传播。
可选地,所述控制所述检测部件向所述绝缘件发射电磁波,包括:控制所述检测部件以与所述绝缘子的中心轴线之间的夹角为大于0度且小于90度的方向所述绝缘件发射电磁波。
可选地,所述检测部件与所述绝缘子中的绝缘件的表面贴合。
可选地,所述检测部件包括多个发射和多个接收天线,所述方法还包括:
控制所述多个发射天线按顺序依次朝向不同方向发射电磁波、以及所述多个接收天线按顺序依次朝向不同方向接收电磁波,以对所述绝缘子中的绝缘件的不同部分进行检测;或者,
控制所述多个发射天线同时朝向不同方向发射电磁波、以及所述多个接收天线同时朝向不同方向接收电磁波,以对所述绝缘子中的绝缘件的不同部分进行检测;或者,
控制所述多个发射天线按顺序依次朝向不同方向发射电磁波、以及所述多个接收天线同时朝向不同方向接收电磁波,以对所述绝缘子中的绝缘件的不同部分进行检测;或者,
控制所述多个发射天线同时朝向不同方向发射电磁波、以及所述多个接收天线按顺序依次朝向不同方向接收电磁波,以对所述绝缘子中的绝缘件的不同部分进行检测;或者,
所述多个发射天线和所述多个接收天线组成相控阵或MIMO稀疏阵列,通过电扫描机制调整所述相控阵或MIMO稀疏阵列的等效发射方向和等效接收方向,以对所述绝缘子中的绝缘件的不同部分进行检测。
本申请实施例中的绝缘子的检测装置也可以理解为一种包括检测部件的绝缘子。作为一种示例,本申请实施例提供一种绝缘子,该绝缘子可以包括金属附件、绝缘件和电磁波 传感器。电磁波传感器包括电磁波的发射天线和接收天线,发射天线可用于向绝缘件发射电磁波,接收天线可用于接收绝缘件对电磁波的反射波。
该电磁波传感器可以嵌在绝缘件内部或者位于金属附件和绝缘件之间,且与该绝缘件紧密贴合在一起。对于柱式绝缘子,该金属附件可以为金属帽;对于悬式绝缘子,该金属附件可以为金属脚或金属帽。该绝缘件可以是柱式绝缘子中的绝缘件、也可以是悬式绝缘子中的绝缘件。该电磁波传感器可以是上文描述的检测部件或检测芯片。
以上所述仅为本申请的较佳实施例而已,并不用以限制本申请,凡在本申请的精神和原则之内,所作的任何修改、等同替换等,均应包含在本申请的保护范围之内。

Claims (21)

  1. 一种绝缘子的检测装置,其特征在于,包括:
    一绝缘子;
    一检测部件,安装在所述绝缘子内部,用于利用电磁波检测所述绝缘子内部的裂纹。
  2. 根据权利要求1所述的检测装置,其特征在于,所述检测部件的位置和所述电磁波的发射方向的设置使得所述电磁波在进入所述绝缘子的绝缘件后,能够在所述绝缘件内部传播。
  3. 根据权利要求1或2所述的检测装置,其特征在于,所述绝缘子为悬式绝缘子,所述悬式绝缘子中的绝缘件包括一头部和一伞体;
    所述检测部件的位置和所述电磁波的发射方向的设置使得所述电磁波从所述头部的端面进入所述绝缘件内部之后,在所述绝缘件内部向所述伞体传播。
  4. 根据权利要求2或3所述的检测装置,其特征在于,所述电磁波的发射方向与所述绝缘子的中心轴线之间的夹角大于0度,且小于90度。
  5. 根据权利要求1-4中任一项所述的检测装置,其特征在于,所述绝缘子为悬式绝缘子,所述检测部件位于所述悬式绝缘子的中心轴线上,且位于所述悬式绝缘子的金属帽和绝缘件之间或者位于所述悬式绝缘子的金属脚和绝缘件之间。
  6. 根据权利要求1所述的检测装置,其特征在于,所述绝缘子为柱式绝缘子,所述柱式绝缘子中的绝缘件包括一端部和多个裙体,所述检测模块位于所述柱式绝缘子的金属帽与所述端部之间,且所述检测模块发射的所述电磁波能够覆盖所述绝缘件的裙体。
  7. 根据权利要求1,2,6中任一项所述的检测装置,其特征在于,所述绝缘子为柱式绝缘子,所述检测模块位于所述柱式绝缘子的中心轴线上。
  8. 根据权利要求1,2,6,7中任一项所述的检测装置,其特征在于,所述绝缘子为柱式绝缘子,所述柱式绝缘子包括一绝缘件和套接在所述绝缘件的端部的一金属帽;
    所述绝缘件的端部的表面和/或所述金属帽的内侧设置有凹槽,所述凹槽用于容纳所述检测模块。
  9. 根据权利要求1-8中任一项所述的检测装置,其特征在于,所述检测部件与所述绝缘子中的绝缘件的位置的设置使得所述检测部件与所述绝缘件之间不存在空隙。
  10. 根据权利要求1-9中任一项所述的检测装置,其特征在于,所述检测部件与所述绝缘子中的绝缘件的表面贴合。
  11. 根据权利要求1-10中任一项所述的检测装置,其特征在于,所述检测部件包括介质衬底,以及位于所述介质衬底一侧的天线,所述介质衬底的另一侧贴合在所述绝缘子中的绝缘件的表面。
  12. 根据权利要求11所述的检测装置,其特征在于,所述绝缘件的材质与所述介质衬底的材质相同;或者,
    所述绝缘件的材质为陶瓷,所述介质衬底的材质为硅、氧化铝;或者,
    所述绝缘件的材质为陶瓷,所述介质衬底的材质的介电常数在7-13之间。
  13. 根据权利要求1-12中任一项所述的检测装置,其特征在于,所述检测部件包括多个发射天线,所述多个发射天线用于朝向不同的方向发射电磁波,以对所述绝缘子中的绝缘件的不同部分进行检测。
  14. 根据权利要求1-13中任一项所述的检测装置,其特征在于,所述电磁波为射频波、微波、毫米波或太赫兹波。
  15. 根据权利要求1-14中任一项所述的检测装置,其特征在于,所述绝缘子的材质为陶瓷、玻璃或复合材料。
  16. 一种绝缘子的检测方法,其特征在于,包括:
    在绝缘子被安装到输电线路之后,控制所述绝缘子内部的检测部件向所述绝缘子的绝 缘件发射电磁波;
    接收所述电磁波的反射波,以检测所述绝缘件内部是否出现裂纹。
  17. 根据权利要求16所述的检测方法,其特征在于,所述控制所述绝缘子内部的检测部件向所述绝缘子的绝缘件发射电磁波,包括:
    控制所述检测部件向所述绝缘件发射电磁波,使得所述电磁波进入所述绝缘件后,能够在所述绝缘件的内部传播。
  18. 根据权利要求16或17所述的检测方法,其特征在于,所述绝缘子为悬式绝缘子,所述悬式绝缘子中的绝缘件包括一头部和一伞体,所述控制所述绝缘子内部的检测部件向所述绝缘子的绝缘件发射电磁波,包括:
    控制所述检测部件向所述绝缘件发射电磁波,使得所述电磁波从所述绝缘件的头部的端面进入所述绝缘件内部之后,在所述绝缘件内部向所述绝缘件的伞体传播。
  19. 根据权利要求16-18中任一项所述的检测方法,其特征在于,所述检测部件与所述绝缘子中的绝缘件的表面贴合。
  20. 根据权利要求16-19中任一项所述的检测方法,其特征在于,所述检测部件包括多个发射天线和多个接收天线,
    所述方法还包括:
    控制所述多个发射天线按顺序依次朝向不同方向发射电磁波、以及所述多个接收天线按顺序依次朝向不同方向接收电磁波,以对所述绝缘子中的绝缘件的不同部分进行检测;或者,
    控制所述多个发射天线同时朝向不同方向发射电磁波、以及所述多个接收天线同时朝向不同方向接收电磁波,以对所述绝缘子中的绝缘件的不同部分进行检测;或者,
    控制所述多个发射天线按顺序依次朝向不同方向发射电磁波、以及所述多个接收天线同时朝向不同方向接收电磁波,以对所述绝缘子中的绝缘件的不同部分进行检测;或者,
    控制所述多个发射天线同时朝向不同方向发射电磁波、以及所述多个接收天线按顺序依次朝向不同方向接收电磁波,以对所述绝缘子中的绝缘件的不同部分进行检测;或者,
    所述多个发射天线和所述多个接收天线组成相控阵或多输入多输出MIMO稀疏阵列,通过电扫描机制调整所述相控阵或所述MIMO稀疏阵列的等效发射方向和等效接收方向,以对所述绝缘子中的绝缘件的不同部分进行检测。
  21. 一种绝缘子,其特征在于,包括:
    金属附件;
    绝缘件;
    电磁波传感器,包括电磁波的发射天线和接收天线,所述发射天线用于向所述绝缘件发射电磁波,所述接收天线用于接收所述绝缘件对所述电磁波的反射波,所述电磁波传感器嵌在所述绝缘件内部,或位于所述金属附件和所述绝缘件之间,且与所述绝缘件紧密贴合在一起。
PCT/CN2021/126515 2020-11-23 2021-10-26 绝缘子的检测装置、检测方法及绝缘子 WO2022105556A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202011323517.6 2020-11-23
CN202022736001.6U CN214585002U (zh) 2020-11-23 2020-11-23 绝缘子的检测装置和绝缘子
CN202011323517.6A CN112525927A (zh) 2020-11-23 2020-11-23 悬式绝缘子的检测装置及检测方法
CN202022736001.6 2020-11-23

Publications (1)

Publication Number Publication Date
WO2022105556A1 true WO2022105556A1 (zh) 2022-05-27

Family

ID=81708336

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/126515 WO2022105556A1 (zh) 2020-11-23 2021-10-26 绝缘子的检测装置、检测方法及绝缘子

Country Status (1)

Country Link
WO (1) WO2022105556A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114935317A (zh) * 2022-05-31 2022-08-23 国网安徽省电力有限公司电力科学研究院 一种盘形悬式瓷绝缘子偏斜程度的检测方法
CN115870256A (zh) * 2022-12-02 2023-03-31 广西电网有限责任公司电力科学研究院 一种复合绝缘子清扫及探伤装置
CN117109905A (zh) * 2023-10-18 2023-11-24 山西三新铸造有限公司 一种绝缘子钢帽试规自动检测设备及其检测方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005337890A (ja) * 2004-05-27 2005-12-08 Hitachi Ltd 磁器絶縁物の検査方法および診断装置
JP2006196382A (ja) * 2005-01-17 2006-07-27 Ngk Insulators Ltd 不良碍子検出器
CN103344704A (zh) * 2013-06-20 2013-10-09 四川省电力公司技术技能培训中心 支柱绝缘子缺陷检测方法
CN106596722A (zh) * 2017-01-03 2017-04-26 国网浙江省电力公司宁波供电公司 一种带电检测绝缘子的方法、装置及检测仪
CN110779935A (zh) * 2019-11-21 2020-02-11 国网湖南省电力有限公司 一种瓷绝缘子本体嵌入式在线监测系统及方法
CN211980299U (zh) * 2020-06-19 2020-11-20 萍乡正源绝缘子有限公司 一种高压交流盘型悬式绝缘子
CN112525927A (zh) * 2020-11-23 2021-03-19 赵�衍 悬式绝缘子的检测装置及检测方法
CN214585002U (zh) * 2020-11-23 2021-11-02 太景科技(南京)有限公司 绝缘子的检测装置和绝缘子

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005337890A (ja) * 2004-05-27 2005-12-08 Hitachi Ltd 磁器絶縁物の検査方法および診断装置
JP2006196382A (ja) * 2005-01-17 2006-07-27 Ngk Insulators Ltd 不良碍子検出器
CN103344704A (zh) * 2013-06-20 2013-10-09 四川省电力公司技术技能培训中心 支柱绝缘子缺陷检测方法
CN106596722A (zh) * 2017-01-03 2017-04-26 国网浙江省电力公司宁波供电公司 一种带电检测绝缘子的方法、装置及检测仪
CN110779935A (zh) * 2019-11-21 2020-02-11 国网湖南省电力有限公司 一种瓷绝缘子本体嵌入式在线监测系统及方法
CN211980299U (zh) * 2020-06-19 2020-11-20 萍乡正源绝缘子有限公司 一种高压交流盘型悬式绝缘子
CN112525927A (zh) * 2020-11-23 2021-03-19 赵�衍 悬式绝缘子的检测装置及检测方法
CN214585002U (zh) * 2020-11-23 2021-11-02 太景科技(南京)有限公司 绝缘子的检测装置和绝缘子

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114935317A (zh) * 2022-05-31 2022-08-23 国网安徽省电力有限公司电力科学研究院 一种盘形悬式瓷绝缘子偏斜程度的检测方法
CN114935317B (zh) * 2022-05-31 2024-06-04 国网安徽省电力有限公司电力科学研究院 一种盘形悬式瓷绝缘子偏斜程度的检测方法
CN115870256A (zh) * 2022-12-02 2023-03-31 广西电网有限责任公司电力科学研究院 一种复合绝缘子清扫及探伤装置
CN117109905A (zh) * 2023-10-18 2023-11-24 山西三新铸造有限公司 一种绝缘子钢帽试规自动检测设备及其检测方法
CN117109905B (zh) * 2023-10-18 2024-01-05 山西三新铸造有限公司 一种绝缘子钢帽试规自动检测设备及其检测方法

Similar Documents

Publication Publication Date Title
WO2022105556A1 (zh) 绝缘子的检测装置、检测方法及绝缘子
CN112525927A (zh) 悬式绝缘子的检测装置及检测方法
Kohmura et al. Optical fiber connected millimeter-wave radar for FOD detection on runway
US7367226B2 (en) Interface detection apparatus and method for detecting hidden interface using microwave
US8915133B2 (en) Arrangement and method for testing a level gauge system
US20120021698A1 (en) Monitoring system for a doppler transceiver
CN214585002U (zh) 绝缘子的检测装置和绝缘子
CN111446547A (zh) 一种天线罩和毫米波雷达装置
US10495747B2 (en) Snow quality measuring apparatus and snow quality measuring method
KR20140093034A (ko) 외장형 부분방전 검출센서
CN106249206B (zh) 用于接收电磁波的天线设备和用于运行用于接收电磁波的天线设备的方法
WO2021012299A1 (zh) 用于移动传感器的双极化微带天线及其信号收发方法
Urahashi et al. Complex permittivity evaluation of building materials at 200-500 GHz using THz-TDS
US6172510B1 (en) System for detection of flaws by use of microwave radiation
JPH04140905A (ja) 平面アンテナ
Weston Comparison of techniques for prediction and measurement of antenna to antenna coupling on an aircraft
KR102576796B1 (ko) 전자파 차폐성능 측정시스템
CN102955092A (zh) 屏蔽腔体隔腔环境中的低频屏蔽效能测试的天线布置方法
KR102064103B1 (ko) 전자파장해 시험용 전자파반무반향챔버
JP2021153234A (ja) 近接センサ
CN105223556A (zh) L型收发阵列天线前端及其信号处理方法
JPH1174680A (ja) シールドボックス
GB2559326A (en) System for testing wireless communication equipment employing antennas
JPH1039012A (ja) 面移動体探知装置
WO2023199920A1 (ja) 近傍界エアープローブ及び検査装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21893704

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21893704

Country of ref document: EP

Kind code of ref document: A1