WO2022105533A1 - 干涉仪位移测量系统及方法 - Google Patents

干涉仪位移测量系统及方法 Download PDF

Info

Publication number
WO2022105533A1
WO2022105533A1 PCT/CN2021/125623 CN2021125623W WO2022105533A1 WO 2022105533 A1 WO2022105533 A1 WO 2022105533A1 CN 2021125623 W CN2021125623 W CN 2021125623W WO 2022105533 A1 WO2022105533 A1 WO 2022105533A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
photodetector
measurement
beam splitter
plano
Prior art date
Application number
PCT/CN2021/125623
Other languages
English (en)
French (fr)
Inventor
孙国华
高晓良
徐蕾
Original Assignee
北京华卓精科科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京华卓精科科技股份有限公司 filed Critical 北京华卓精科科技股份有限公司
Priority to US18/037,655 priority Critical patent/US20230417532A1/en
Publication of WO2022105533A1 publication Critical patent/WO2022105533A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/02001Interferometers characterised by controlling or generating intrinsic radiation properties
    • G01B9/02007Two or more frequencies or sources used for interferometric measurement
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/02001Interferometers characterised by controlling or generating intrinsic radiation properties
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/14Measuring arrangements characterised by the use of optical techniques for measuring distance or clearance between spaced objects or spaced apertures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/02015Interferometers characterised by the beam path configuration
    • G01B9/02017Interferometers characterised by the beam path configuration with multiple interactions between the target object and light beams, e.g. beam reflections occurring from different locations
    • G01B9/02019Interferometers characterised by the beam path configuration with multiple interactions between the target object and light beams, e.g. beam reflections occurring from different locations contacting different points on same face of object
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/02055Reduction or prevention of errors; Testing; Calibration
    • G01B9/02075Reduction or prevention of errors; Testing; Calibration of particular errors
    • G01B9/02076Caused by motion
    • G01B9/02077Caused by motion of the object
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B2290/00Aspects of interferometers not specifically covered by any group under G01B9/02
    • G01B2290/70Using polarization in the interferometer

Definitions

  • the invention relates to the technical field of precise displacement measurement, and more particularly, to an interferometer displacement measurement system and method.
  • Precision measurement is the basis of precision machining, especially for IC equipment, nanoscale or even sub-nanometer resolution has become the standard and requirement of precision measurement.
  • laser interferometer and grating interferometer are the research objects of precision measurement, and their resolution requirements are getting higher and higher.
  • the main method to solve the problem of poor signal quality is to use optical elements to convert the angled beams into parallel beams, so that the fringes in the interference area will be eliminated, but there is still a case of spot separation. Due to the separation of the light spots, the size of the light spot needs to be increased in the usage scenarios of large stroke measurement. Compared with the small spot, the large spot not only makes the measurement angle range smaller, but also the wavefront quality of the beam is worse due to the environment. Since the quality of the measurement signal directly affects the measurement results, and the wavefront quality of the beam also affects the measurement accuracy, these problems need to be solved urgently in the actual measurement process.
  • patent US6020964A and patent US6980279B2 both use corner cube prisms to return light, and the light entering the corner cube prism is parallel to the outgoing light to ensure that the final returned light is parallel to the incident light, avoiding the angle interference, but this makes the interference
  • the structure of the instrument is large and the spot separation occurs when the measuring stroke is large.
  • the patent US6897962B2 released an eight-fold subdivision interferometer, which can make the two light spots always have an overlapping area in the measurement stroke by using the corner cube prism return light and large spot measurement, but the large spot has problems at the same time. It is more likely to be affected by factors such as air disturbance, resulting in low measurement accuracy and small application range.
  • the purpose of the present invention is to provide an interferometer displacement measurement system and method to solve the problems of large volume, poor detection quality, low accuracy, and small scope of application of the current interferometer.
  • the interferometer displacement measurement system includes: a first laser light source for emitting measurement light, a first polarizing beam splitter prism arranged on one side of the first laser light source in sequence, a first photodetector, a first 1/4 a wave plate, a first beam splitting prism, an optical waveguide assembly and a reflection device, the object to be detected is fixed on the reflection device; and a second laser light source for emitting reference light, and a second polarized light source arranged on one side of the second laser light source in sequence
  • the measurement light passes through the first polarized beam splitter prism, the first 1/4 wave plate , the first beam splitting prism, the optical waveguide assembly and the reflection device are processed and returned to the first photodetector and the second photodetector;
  • the reference light is passed through the second
  • the optical waveguide assembly includes a lens fixing element, a first plano-convex lens and a second plano-convex lens arranged in the lens fixing element, a waveguide fiber located between the first plano-convex lens and the second plano-convex lens, and a reflection The film layer; wherein, the lens fixing element is a glass piece, and the reflective film layer is attached to the right end surface of the lens fixing element on the side close to the reflection device.
  • a preferred technical solution is that the distance between the first plano-convex lens and the left end face of the lens fixing element is the first focal length, and the distance between the second plano-convex lens and the right end face of the lens fixing element is the second focal length; the first focal length and the second The focal lengths are equal.
  • a preferred technical solution is that after the measurement light is sequentially transmitted through the first polarization beam splitter prism and the first 1/4 wave plate, the first beam splitter prism is divided into the first transmitted light and the first reflected light; wherein, the first transmitted light The light is coupled to the waveguide fiber through the first plano-convex lens, and then passes through the second plano-convex lens to reach the reflection device; the light reflected by the reflection device reaches the reflection film layer through the second plano-convex lens, and the reflection film layer reflects the light again to reflect device, the light reflected by the reflection device is coupled to the waveguide fiber through the second plano-convex lens again, and after passing through the first plano-convex lens, the first beam splitting prism, and the first 1/4 wave plate in sequence, it becomes the first s-polarized light; An s-polarized light is reflected to the first photodetector through the first polarization beam splitter prism.
  • a preferred technical solution is that the first reflected light of the first beam splitting prism is reflected by the second beam splitting prism, and the reflected light is transformed into second s-polarized light after passing through the second 1/4 wave plate; the second s-polarized light is The light is reflected to the second photodetector through the second polarizing beam splitter prism.
  • a preferred technical solution is that after the reference light is transmitted through the second polarizing beam splitting prism, it is split by the second 1/4 wave plate and the second beam splitting prism to form the second transmitted light and the second reflected light; wherein, the second transmitted light and the second reflected light are formed.
  • the light returns after the reflector, and becomes the third s-polarized light after passing through the second beam splitting prism and the second 1/4 wave plate; the third s-polarized light is reflected to the second photodetector through the second polarizing beam splitting prism;
  • the second reflected light passes through the first polarization beam splitter prism and then passes through the first 1/4 wave plate to become fourth s-polarized light; the fourth s-polarized light is reflected to the first photodetector through the second polarization beam splitter prism.
  • the first photodetector is involved in photoelectric conversion according to the beam interference of the first s-polarized light and the fourth s-polarized light to form a measurement signal; the second photodetector is based on the second s-polarized light and the third s-polarized light.
  • the beam interference of s-polarized light involves photoelectric conversion to form a reference signal.
  • both the measurement light and the reference light are p-polarized light; the reflection device is a mirror or a grating.
  • ⁇ z represents the displacement information
  • represents the wavelength of the beam in air
  • represents the phase of the measured signal after phase detection
  • is the installation angle of the reflection device relative to the y-axis direction.
  • an interferometer displacement measurement method which utilizes the above-mentioned interferometer displacement measurement system to measure the displacement of the object to be measured; the method includes: emitting measurement light through a first laser light source, and emitting reference light through a second laser light source light; the measurement light is sequentially processed by the first polarization beam splitter prism, the first 1/4 wave plate, the first beam splitter prism, the optical waveguide assembly and the reflection device, and then returns to the first photodetector and the second photodetector; the first A photodetector forms a measurement signal according to the processed measurement light and the reference light; at the same time, the reference light is processed by the second polarization beam splitter, the second 1/4 wave plate, the second beam splitter and the reflector, and then returns to the first A photodetector and a second photodetector; the second photodetector forms a reference signal according to the processed measurement light and the reference light; and the displacement information of the object to be detected is
  • the measurement system can also effectively Compensation for air disturbance error, no need for large-size light spot to adapt to the spot separation caused by the rotation angle, compared with the existing interferometer, it has a smaller spot size measurement capability, and can reduce the influence of air on the measurement.
  • FIG. 1 is a schematic structural diagram of an interferometer displacement measurement system according to an embodiment of the present invention.
  • FIG. 2 is a schematic structural diagram of an optical waveguide assembly according to an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of an optical path of measurement light according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of an optical path of a reference light according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of a grating structure according to an embodiment of the present invention.
  • FIG. 6 is a schematic structural diagram of a homodyne interferometer according to an embodiment of the present invention.
  • FIG. 7 is a flowchart of a method for measuring displacement of an interferometer according to an embodiment of the present invention.
  • the reference numerals include: first laser light source 10, second laser light source 11, first polarizing beam splitting prism 20, second polarizing beam splitting prism 21, first photodetector 30, second photodetector 31, first 1 /4 wave plate 40, second 1/4 wave plate 41, first dichroic prism 50, second dichroic prism 51, optical waveguide assembly 60, first plano-convex lens 60.1, lens fixing element 60.2, waveguide fiber 60.3, reflective film layer 60.4, the second plano-convex lens 60.5, the reflection device 70, the reflection mirror 80, the reflection mirror 81, the grating 90, the photodetector group 100.
  • FIG. 1 shows a schematic structure of an interferometer displacement measurement system according to an embodiment of the present invention.
  • the interferometer displacement measurement system includes a first laser light source 10 for emitting measurement light, a first polarizing beam splitting prism 20 arranged on one side of the first laser light source 10 in sequence, a first The photodetector 30, the first quarter wave plate 40, the first beam splitting prism 50, the optical waveguide assembly 60 and the reflection device 70, the object to be detected is fixed on the reflection device 70; and the second laser for emitting reference light
  • the light source 11, the second polarizing beam splitting prism 21, the second photodetector 31, the second 1/4 wave plate 41, the second beam splitting prism 51, and the second beam splitting prism 51 which are sequentially arranged on one side of the second laser light source 11, and are attached to the second beam splitting prism.
  • Mirror 80 on the 51 side.
  • the measurement light returns to the first photodetector 30 and the second photoelectric detector after being processed by the first polarizing beam splitting prism 20, the first 1/4 wave plate 40, the first beam splitting prism 50, the optical waveguide assembly 60 and the reflection device 70 In the detector 31;
  • the reference light returns to the first photodetector 30 and the second photodetector after being processed by the second polarizing beam splitter prism 21, the second 1/4 wave plate 41, the second beam splitter prism 51 and the reflector 80 In the device 31;
  • the first photodetector 30 forms a measurement signal according to the processed measurement light and the reference light, and the second photodetector 31 forms a reference signal according to the processed measurement light and reference light; finally, according to the measurement signal and the reference signal Determine the displacement information of the object to be detected.
  • FIG. 2 shows a schematic structure of an optical waveguide assembly according to an embodiment of the present invention.
  • the optical waveguide assembly 60 includes a lens fixing element 60.2, a first plano-convex lens 60.1 and a second plano-convex lens 60.5 disposed in the lens fixing element 60.2, and a first plano-convex lens 60.5 located in the first plano-convex lens.
  • the distance between the first plano-convex lens 60.1 and the left end face of the lens fixing element 60.2 is the first focal length f
  • the distance between the second plano-convex lens 60.5 and the right end face of the lens fixing element 60.2 is the second focal length f; the first focal length and the second The focal lengths are equal.
  • the reflecting mirror 70 needs to be installed at a certain angle ⁇ , so as to realize the four-division measurement.
  • the interferometer displacement measurement system can allow the rotation angle of the mirror 70 due to factors such as movement, installation, etc., without the phenomenon of spot separation.
  • the incident light beam of the light entering the waveguide assembly 60 is coupled to the waveguide fiber 60.3 after passing through the first plano-convex lens 60.1, and then collimated into the beam 1.1 through the second plano-convex lens 60.5.
  • the beam 1.1 is reflected by the first reflecting mirror as the beam 1.2.
  • the beam 1.2 and the beam are 1.3 is parallel, so beam 1.4 is parallel to beam 1.1 and converges to the core of waveguide fiber 60.3. Even if the reflection device 70 has a certain rotation angle change, the light beam 1.4 can always converge into the fiber core of the waveguide fiber 60.3, and the fiber waveguide 60.3 has a small core radius, and the light beam passes through the first plano-convex lens 60.1 after transmission. Parallel to the incident light, and the phenomenon of spot separation basically does not appear.
  • FIG. 3 shows an optical path structure of measurement light according to an embodiment of the present invention.
  • the measurement light is p-polarized light, and the measurement light is transmitted through the first polarization beam splitter prism 20 and the first 1/4 wave plate 40 in sequence,
  • the first beam splitting prism 50 is divided into the first transmitted light and the first reflected light; wherein, the first transmitted light is coupled to the waveguide fiber 60.3 through the first plano-convex lens 60.1, and then passes through the second plano-convex lens 60.5 to reach the reflection device 70
  • the light reflected by the reflection device 70 reaches the reflection film layer 60.4 through the second plano-convex lens 60.5, the reflection film layer 60.4 reflects the light to the reflection device 70 again, and the light reflected by the reflection device 70 is coupled to the waveguide through the second plano-convex lens 60.5 again.
  • the first beam splitting prism 50 On the optical fiber 60.3, and after passing through the first plano-convex lens 60.1, the first beam splitting prism 50, and the first 1/4 wave plate 40 in sequence, it becomes the first s-polarized light; the first s-polarized light is reflected by the first polarized beam splitting prism 20 to the first photodetector 30 .
  • the first reflected light of the first dichroic prism 50 is reflected by the second dichroic prism 51, and the reflected light passes through the second 1/4 wave plate 41 to become the second s-polarized light; the second s-polarized light is
  • the second polarizing beam splitter prism 21 reflects to the second photodetector 31 .
  • FIG. 4 shows an optical path structure of reference light according to an embodiment of the present invention.
  • the reference light is p-polarized light.
  • the second beam splitting prism 51 splits light to form the second transmitted light and the second reflected light; wherein, the second transmitted light returns after passing through the reflecting mirror 80, and after passing through the second beam splitting prism 51 and the second 1/4 wave plate 41, It becomes the third s-polarized light; the third s-polarized light is reflected to the second photodetector 31 by the second polarizing beam splitter prism 21 ; , becomes the fourth s-polarized light; the fourth s-polarized light is reflected to the first photodetector 30 by the second polarized beam splitting prism 21 .
  • the first photodetector 30 is involved in photoelectric conversion according to the beam interference of the first s-polarized light and the fourth s-polarized light to form a measurement signal; the second photodetector 31 is based on the second s-polarized light and the third s-polarized light.
  • the beam interference involves photoelectric conversion to form a reference signal.
  • the reflection device 70 moves one-dimensionally with the object to be measured, and the installation of the reflection device 70 maintains a fixed angle ⁇ .
  • a phase shift ⁇ 1 related to the displacement is introduced into the beam 1.4. Due to the disturbance of the first laser light source 10, an error phase shift ⁇ 2 will be introduced, and the second laser The disturbance of the light source 11 or the like introduces an error phase shift ⁇ 3 .
  • the expression formula of the displacement of the final reflection device 70 is:
  • ⁇ z represents the displacement information
  • represents the wavelength of the light beam in the air
  • is the wavelength of the laser in the air
  • is the phase of the measured signal after phase detection
  • is the rotation angle of the reflection device 70 relative to the y-axis.
  • the interferometer displacement measurement system of the present invention can solve the problems of spot separation and fringe contrast attenuation caused by the rotation angle of the object to be measured, and there is no spot separation, so the measurement spot size can be smaller, and the error introduced by air disturbance is also smaller.
  • the measurement system of the present invention requires the installation of the reflection device 70 to maintain a fixed angle ⁇ to ensure that the light beam 1.2 can hit the reflection film layer 60.4.
  • FIG. 5 shows a grating structure according to an embodiment of the present invention.
  • the reflection device as a grating 90 to diffract back light does not affect the measurement results of the system.
  • the grating when the incident light is perpendicular to the plane of the grating 90, the 0th-order diffracted light returns to the original way, and when the incident light enters the grating 90 at the Littrow angle ⁇ , the +1 or -1 diffracted light returns to the original way.
  • the Littrow angle ⁇ arcsin( ⁇ /2p)
  • is the laser wavelength
  • p is the grating pitch of the grating.
  • the grating 90 is rotated by a certain angle ⁇ , after the beam 1.5 is incident on the grating, the 0th-order diffracted beam 1.6 returns.
  • the grating 90 is rotated by a certain angle ⁇ + ⁇ , and after the beam 1.7 is incident on the grating, the +1st or -1st order diffracted beam 1.8 returns. It can be seen that the interferometer displacement measurement system using grating is suitable for grating interferometer.
  • FIG. 6 shows a schematic structure of a homodyne interferometer according to an embodiment of the present invention.
  • the measurement system is a homodyne interferometer measurement system.
  • FIG. 7 shows a flow of a method for measuring displacement of an interferometer according to an embodiment of the present invention.
  • the method for measuring displacement of an interferometer includes the following steps:
  • the measurement light is emitted by the first laser light source, and the reference light is emitted by the second laser light source;
  • the measurement light After the measurement light is processed by the first polarization beam splitter prism, the first 1/4 wave plate, the first beam splitter prism, the optical waveguide assembly and the reflection device in sequence, it returns to the first photodetector and the second photodetector; the first photoelectric detector The detector forms a measurement signal according to the processed measurement light and the reference light;
  • the reference light is returned to the first photodetector and the second photodetector after being processed by the second polarizing beam splitter prism, the second 1/4 wave plate, the second beam splitter prism and the reflector; the second photodetector is processed according to the The latter measurement light and reference light form a reference signal;
  • the displacement information of the object to be detected is determined according to the measurement signal and the reference signal.
  • the interferometer displacement measurement system and method provided by the present invention utilizes a specially processed optical waveguide assembly to eliminate the influence of the spot separation caused by the rotation of the object to be measured on the measurement. It can ensure no beam separation of incoming light and outgoing light. After eliminating the separation of the light spot, the size of the light spot can be reduced, so that it has a wider angle measurement range and displacement measurement stroke in the measurement. At the same time, the small spot is less susceptible to environmental influences than the large spot. It can be seen that the interferometer displacement measurement system without spot separation of the present invention has the advantages of high measurement accuracy, large rotation angle measurement range, large measurement stroke, and small air disturbance error.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Instruments For Measurement Of Length By Optical Means (AREA)

Abstract

一种干涉仪位移测量系统及方法,其中,测量光经第一偏振分光棱镜(20)、第一1/4波片(40)、第一分光棱镜(50)、光波导组件(60)以及反射装置(70)的处理后,返回第一光电探测器(30)和第二光电探测器(31)中;参考光经第二偏振分光棱镜(21)、第二1/4波片(41)、第二分光棱镜(51)以及反射镜(80)的处理后,返回至第一光电探测器(30)和第二光电探测器(31)中;第一光电探测器(30)根据处理后的测量光和参考光形成测量信号,第二光电探测器(31)根据处理后的测量光和参考光形成参考信号;根据测量信号和参考信号确定待检测物体的位移信息。能够减小位移测量误差、提高测量精度和测量范围。

Description

干涉仪位移测量系统及方法 技术领域
本发明涉及精密位移测量技术领域,更为具体地,涉及一种干涉仪位移测量系统及方法。
背景技术
精密测量是精密加工的基础,尤其对于IC装备,纳米级甚至亚纳米级的分辨率成为精密测量的标准和要求,目前是激光干涉仪和光栅干涉仪作为精密测量的研究对象,对其分辨率的要求也越来越高。
但在实际位移测量过程中,由于物体运动等因素会引起光栅或者反射镜产生微小转角,由于在干涉光斑范围内出现了条纹,直接用光电探测器探测干涉的光斑,信号质量会比较差。目前,解决信号质量不好的问题的方法主要是利用光学元件将有夹角的光束变为平行光束,这样在干涉区域的条纹会被消除,但还是存在光斑分离的情况。由于光斑分离,在大行程测量的使用场景中,光斑的尺寸需要增大。相较于小光斑,大光斑不仅使得测量转角范围小,而且光束的波前质量因环境更差。由于测量信号的质量直接影响测量结果,同时光束的波前质量也影响着测量精度,这些问题在实际测量过程中亟需解决。
针对上述问题,专利US6020964A、专利US6980279B2均采用角锥棱镜回光,进入角锥棱镜的光与出射的光平行,保证最后返回的光与入射的光平行,避免了夹角干涉,但是这样使得干涉仪的结构大且当测量行程一定大的时候产生光斑分离。此外,专利US6897962B2发布了一种八倍细分的干涉仪,利用角锥棱镜回光和大光斑测量可以使得两光斑始终在测量行程中始终有重叠区域,但大光斑同时存在问题,光斑的波前更容易受空气扰动等因素的影响,导致测量精度低、适用范围小。
发明内容
鉴于上述问题,本发明的目的是提供一种干涉仪位移测量系统及方法,以解决目前的干涉仪所存在的体积大、检测质量差、准确度低、适用范围小等问题。
本发明提供的干涉仪位移测量系统,包括:用于发射测量光的第一激光光源、依次设置在第一激光光源一侧的第一偏振分光棱镜、第一光电探测器、第一1/4波片、第一分光棱镜、光波导组件以及反射装置,待检测物体固定在反射装置上;以及,用于发射参考光的第二激光光源、依次设置在第二激光光源一侧的第二偏振分光棱镜、第二光电探测器、第二1/4波片、第二分光棱镜以及贴设在第二分光棱镜侧的反射镜;测量光经第一偏振分光棱镜、第一1/4波片、第一分光棱镜、光波导组件以及反射装置的处理后,返回第一光电探测器和第二光电探测器中;参考光经第二偏振分光棱镜、第二1/4波片、第二分光棱镜以及反射镜的处理后,返回至第一光电探测器和第二光电探测器中;第一光电探测器根据处理后的测量光和参考光形成测量信号,第二光电探测器根据处理后的测量光和参考光形成参考信号;根据测量信号和参考信号确定待检测物体的位移信息。
此外,优选的技术方案是,光波导组件包括透镜固定元件、设置在透镜固定元件内的第一平凸透镜和第二平凸透镜、位于第一平凸透镜和第二平凸透镜之间的波导光纤和反射膜层;其中,透镜固定元件为玻璃件,反射膜层贴设在透镜固定元件的靠近反射装置一侧的右端面上。
此外,优选的技术方案是,第一平凸透镜距离透镜固定元件的左端面的距离为第一焦距,第二平凸透镜距离透镜固定元件的右端面的距离为第二焦距;第一焦距和第二焦距相等。
此外,优选的技术方案是,测量光依次经第一偏振分光棱镜透射和第一1/4波片后,由第一分光棱镜分为第一透射光和第一反射光;其中,第一透射光经第一平凸透镜后耦合至波导光纤上,再经过第二平凸透镜,到达反射装置;经反射装置反射回的光经第二平凸透镜到达反射膜层,反射膜层将光再次反射至反射装置,反射装置反射的光再次经过第二平凸透镜耦合至波导光纤上,并依次经过第一平凸透镜、第一分光棱镜、第一1/4波片后,变为第一s偏振光;第一s偏振光经第一偏振分光棱镜反射至第一光电探测器。
此外,优选的技术方案是,第一分光棱镜的第一反射光经第二分光棱镜 反射,反射后的光经第二1/4波片后,变为第二s偏振光;第二s偏振光经第二偏振分光棱镜反射至第二光电探测器。
此外,优选的技术方案是,参考光经第二偏振分光棱镜透射后,经第二1/4波片和第二分光棱镜分光,形成第二透射光和第二反射光;其中,第二透射光经反射镜后返回,并经第二分光棱镜和第二1/4波片后,变为第三s偏振光;第三s偏振光经第二偏振分光棱镜反射至第二光电探测器;第二反射光经第一偏振分光棱镜后经第一1/4波片,变为第四s偏振光;第四s偏振光经第二偏振分光棱镜反射至第一光电探测器。
此外,优选的技术方案是,第一光电探测器根据第一s偏振光和第四s偏振光的光束干涉及光电转换,形成测量信号;第二光电探测器根据第二s偏振光和第三s偏振光的光束干涉及光电转换,形成参考信号。
此外,优选的技术方案是,测量光和参考光均为p偏振光;反射装置为反射镜或者光栅。
此外,优选的技术方案是,反射装置的位移信息的表示公式如下:
Figure PCTCN2021125623-appb-000001
其中,Δz表示位移信息,λ表示光束在空气中的波长,
Figure PCTCN2021125623-appb-000002
表示测量信号鉴相后的相位,
Figure PCTCN2021125623-appb-000003
表示参考信号鉴相后的相位,θ为反射装置相对y轴方向的安装角。
根据本发明的另一方面,提供一种干涉仪位移测量方法,利用上述干涉仪位移测量系统对待测物体进行位移测量;方法包括:通过第一激光光源发射测量光,通过第二激光光源发射参考光;测量光依次经过第一偏振分光棱镜、第一1/4波片、第一分光棱镜、光波导组件以及反射装置的处理后,返回第一光电探测器和第二光电探测器中;第一光电探测器根据处理后的测量光和参考光形成测量信号;同时,参考光经第二偏振分光棱镜、第二1/4波片、第二分光棱镜以及反射镜的处理后,返回至第一光电探测器和第二光电探测器中;第二光电探测器根据处理后的测量光和参考光形成参考信号;根据测量信号和参考信号确定待检测物体的位移信息。
利用上述干涉仪位移测量系统及方法,能够实现纳米级的分辨率,且能有效消除待测转角对条纹对比度的影响,能适应存在大转角安装的实际使用 情况;此外,该测量系统还能有效补偿空气扰动误差,不需要大尺寸光斑来适应转角引起的光斑分离,相比已有的干涉仪具有更小的光斑尺寸测量能力,能够减小空气对测量的影响。
为了实现上述以及相关目的,本发明的一个或多个方面包括后面将详细说明的特征。下面的说明以及附图详细说明了本发明的某些示例性方面。然而,这些方面指示的仅仅是可使用本发明的原理的各种方式中的一些方式。此外,本发明旨在包括所有这些方面以及它们的等同物。
附图说明
通过参考以下结合附图的说明,并且随着对本发明的更全面理解,本发明的其它目的及结果将更加明白及易于理解。在附图中:
图1为根据本发明实施例的干涉仪位移测量系统的结构示意图;
图2为根据本发明实施例的光波导组件结构示意图;
图3为根据本发明实施例的测量光的光路示意图;
图4为根据本发明实施例的参考光的光路示意图;
图5为根据本发明实施例的光栅结构示意图;
图6为根据本发明实施例的零差干涉仪结构示意图;
图7为根据本发明实施例的干涉仪位移测量方法的流程图。
其中的附图标记包括:第一激光光源10、第二激光光源11、第一偏振分光棱镜20、第二偏振分光棱镜21、第一光电探测器30、第二光电探测器31、第一1/4波片40、第二1/4波片41、第一分光棱镜50、第二分光棱镜51、光波导组件60、第一平凸透镜60.1、透镜固定元件60.2、波导光纤60.3、反射膜层60.4、第二平凸透镜60.5、反射装置70、反射镜80、反射镜81、光栅90、光电探测器组100。
在所有附图中相同的标号指示相似或相应的特征或功能。
具体实施方式
在下面的描述中,出于说明的目的,为了提供对一个或多个实施例的全面理解,阐述了许多具体细节。然而,很明显,也可以在没有这些具体细节 的情况下实现这些实施例。在其它例子中,为了便于描述一个或多个实施例,公知的结构和设备以方框图的形式示出。
为详细描述本发明的干涉仪位移测量系统及方法,以下将结合附图对本发明的具体实施例进行详细描述。
图1示出了根据本发明实施例的干涉仪位移测量系统的示意结构。
如图1所示,本发明实施例的干涉仪位移测量系统,包括用于发射测量光的第一激光光源10、依次设置在第一激光光源10一侧的第一偏振分光棱镜20、第一光电探测器30、第一1/4波片40、第一分光棱镜50、光波导组件60以及反射装置70,待检测物体固定在反射装置70上;以及,用于发射参考光的第二激光光源11、依次设置在第二激光光源11一侧的第二偏振分光棱镜21、第二光电探测器31、第二1/4波片41、第二分光棱镜51以及贴设在第二分光棱镜51侧的反射镜80。
其中,测量光经第一偏振分光棱镜20、第一1/4波片40、第一分光棱镜50、光波导组件60以及反射装置70的处理后,返回第一光电探测器30和第二光电探测器31中;参考光经第二偏振分光棱镜21、第二1/4波片41、第二分光棱镜51以及反射镜80的处理后,返回至第一光电探测器30和第二光电探测器31中;第一光电探测器30根据处理后的测量光和参考光形成测量信号,第二光电探测器31根据处理后的测量光和参考光形成参考信号;最后,根据测量信号和参考信号确定待检测物体的位移信息。
图2示出了根据本发明实施例的光波导组件的示意结构。
如图1和图2共同所示,本发明实施例的光波导组件60包括透镜固定元件60.2、设置在透镜固定元件60.2内的第一平凸透镜60.1和第二平凸透镜60.5、位于第一平凸透镜60.1和第二平凸透镜60.5之间的波导光纤60.3和反射膜层60.4;其中,沿A方向,光波导组件呈圆形结构,透镜固定元件60.2为玻璃件,反射膜层60.4贴设在透镜固定元件60.2的靠近反射装置70一侧的右端面上。
其中,第一平凸透镜60.1距离透镜固定元件60.2的左端面的距离为第一焦距f,第二平凸透镜60.5距离透镜固定元件60.2的右端面的距离为第二焦距f;第一焦距和第二焦距相等。
在本发明提供的干涉仪位移测量系统中,反射镜70需倾斜一定角度θ安 装,进而实现四细分测量。通过设置光波导组件60,能够使得该干涉仪位移测量系统允许反射镜70由于运动、安装等因素产生的转角,且不会出现光斑分离的现象。其中,进光波导组件60的入射光束经过第一平凸透镜60.1后耦合至波导光纤60.3,再经由第二平凸透镜60.5准直为光束1.1,光束1.1经反第一射镜反射为光束1.2,光束1.2再经由第二平凸透镜60.5至焦平面上一点,即反射膜层60.4上一点,然后反射后的光束再经由第二平凸透镜60.5形成为光束1.3,由于平凸透镜具有的特性,光束1.2与光束1.3平行,所以光束1.4与光束1.1平行,从而汇聚至波导光纤60.3的纤芯。即使反射装置70存在一定的转角变化,光束1.4始终能汇聚到波导光纤60.3的光纤纤芯中,而光纤波导60.3具有很小的纤芯半径,光束经过其传输后再经过第一平凸透镜60.1后与入射的光平行,且光斑分离的现象基本不会出现。
具体地,图3示出了根据本发明实施例的测量光的光路结构。
如图1至图3所示,在本发明实施例的干涉仪位移测量系统中,测量光p偏振光,测量光依次经第一偏振分光棱镜20透射和第一1/4波片40后,由第一分光棱镜50分为第一透射光和第一反射光;其中,第一透射光经第一平凸透镜60.1后耦合至波导光纤60.3上,再经过第二平凸透镜60.5,到达反射装置70;经反射装置70反射回的光经第二平凸透镜60.5到达反射膜层60.4,反射膜层60.4将光再次反射至反射装置70,反射装置70反射的光再次经过第二平凸透镜60.5耦合至波导光纤60.3上,并依次经过第一平凸透镜60.1、第一分光棱镜50、第一1/4波片40后,变为第一s偏振光;第一s偏振光经第一偏振分光棱镜20反射至第一光电探测器30。
进一步地,第一分光棱镜50的第一反射光经第二分光棱镜51反射,反射后的光经第二1/4波片41后,变为第二s偏振光;第二s偏振光经第二偏振分光棱镜21反射至第二光电探测器31。
图4示出了根据本发明实施例的参考光的光路结构。
如图1至图4所示,在本发明实施例的干涉仪位移测量系统中,参考光为p偏振光,参考光经第二偏振分光棱镜21透射后,经第二1/4波片41和第二分光棱镜51分光,形成第二透射光和第二反射光;其中,第二透射光经反射镜80后返回,并经第二分光棱镜51和第二1/4波片41后,变为第三s偏振光;第三s偏振光经第二偏振分光棱镜21反射至第二光电探测器31;第二 反射光经第一偏振分光棱镜20后经第一1/4波片40,变为第四s偏振光;第四s偏振光经第二偏振分光棱镜21反射至第一光电探测器30。
进一步地,第一光电探测器30根据第一s偏振光和第四s偏振光的光束干涉及光电转换,形成测量信号;第二光电探测器31根据第二s偏振光和第三s偏振光的光束干涉及光电转换,形成参考信号。
如图1至图4共同所示,在本发明实施例的干涉仪位移测量系统中,反射装置70随待测物体做一维运动,且反射装置70的安装保持一个固定的角度θ。当待测物体运动带动反射装置70运动时,根据多普勒效应,光束1.4中引入与位移相关的相移α 1,由于第一激光光源10扰动等会引入误差相移α 2,第二激光光源11扰动等引入误差相移α 3
可知,进入第一光电探测器30的测量光和参考光发生干涉,通过光电转换形成测量信号,进入第二光电探测器31的测量光和参考光发生干涉,通过光电转换形成参考信号。测量信号鉴相的结果为
Figure PCTCN2021125623-appb-000004
参考信号鉴相的结果为
Figure PCTCN2021125623-appb-000005
由此,最后反射装置70的位移的表示公式为:
Figure PCTCN2021125623-appb-000006
其中,Δz表示位移信息,λ表示光束在空气中的波长,在该发明中λ为激光在空气中的波长,
Figure PCTCN2021125623-appb-000007
是测量信号鉴相后的相位,
Figure PCTCN2021125623-appb-000008
是参考信号鉴相后的相位,θ为反射装置70相对y轴的转角。
可知,本发明的干涉仪位移测量系统能够解决待测物体转角引入的光斑分离和条纹对比度衰减的问题,也不存在光斑分离的情况,从而测量光斑尺寸可以更小,空气扰动引入的误差也就更小。
需要说明的是,本发明的测量系统需要反射装置70的安装保持一个固定的角度θ,以保证光束1.2能打在反射膜层60.4上。
需要说明的是,上述反射装置70可采用反射镜或者光栅;具体地,图5示出了根据本发明实施例的光栅结构。
如图5所示,将反射装置设置成光栅90来衍射回光,不影响系统的测量结果。对光栅而言,当入射光垂直光栅90平面时,0级衍射光原路返回,当入射光以利特罗角β入射光栅90,+1或者-1衍射光会原路返回。其中的利特罗角β=arcsin(λ/2p),λ是激光波长,p是光栅的栅距。第一种形式,将光栅90 转一定角度θ,光束1.5入射到光栅后,0级衍射光束1.6返回。第二种形式,将光栅90转一定角度θ+β,光束1.7入射到光栅后,+1级或者-1级衍射光束1.8返回。可知,采用光栅的干涉仪位移测量系统适用于光栅干涉仪。
与上述干涉仪位移测量相似,本发明还提供一种零差干涉仪。具体地,图6示出了根据本发明实施例的零差干涉仪的示意结构。
如图6所示,去除现有参考光的结构部分,并增加一块反射镜81,同时将第一光电探测器替换为光电探测器组100,即可用于实现零差干涉信号鉴相,此时该测量系统即为零差干涉仪测量系统。
与上述干涉仪位移测量系统相对应,本发明还提供一种干涉仪位移测量方法。具体地,图7示出了根据本发明实施例的干涉仪位移测量方法的流程。
如图7所示,本发明实施例的干涉仪位移测量方法,包括以下步骤:
通过第一激光光源发射测量光,通过第二激光光源发射参考光;
测量光依次经过第一偏振分光棱镜、第一1/4波片、第一分光棱镜、光波导组件以及反射装置的处理后,返回第一光电探测器和第二光电探测器中;第一光电探测器根据处理后的测量光和参考光形成测量信号;
参考光经第二偏振分光棱镜、第二1/4波片、第二分光棱镜以及反射镜的处理后,返回至第一光电探测器和第二光电探测器中;第二光电探测器根据处理后的测量光和参考光形成参考信号;
根据测量信号和参考信号确定待检测物体的位移信息。
需要说明的是,本发明的干涉仪位移测量方法的实施例可参考干涉仪位移测量系统实施例中的描述,此处不再一一赘述。
本发明提供的干涉仪位移测量系统及方法,利用特殊加工的光波导组件,消除待测物体转动引起的光斑分离对测量的影响,光波导组件利用平凸透镜的聚光特性以及特殊加工的光纤传光,能够保证入光和出光的无光束分离,消除光斑分离后可以减小光斑的尺寸,从而在测量中具有更广的转角测量范围和位移测量行程。同时,小光斑相较于大光斑更不易受环境影响,可知本发明的无光斑分离的干涉仪位移测量系统具有测量精度高、转角测量范围大,测量行程大,空气扰动误差小等优点。
如上参照附图以示例的方式描述根据本发明的干涉仪位移测量系统及方 法。但是,本领域技术人员应当理解,对于上述本发明所提出的干涉仪位移测量系统及方法,还可以在不脱离本发明内容的基础上做出各种改进。因此,本发明的保护范围应当由所附的权利要求书的内容确定。

Claims (10)

  1. 一种干涉仪位移测量系统,其特征在于,包括:用于发射测量光的第一激光光源、依次设置在所述第一激光光源一侧的第一偏振分光棱镜、第一光电探测器、第一1/4波片、第一分光棱镜、光波导组件以及反射装置,待检测物体固定在所述反射装置上;以及,用于发射参考光的第二激光光源、依次设置在所述第二激光光源一侧的第二偏振分光棱镜、第二光电探测器、第二1/4波片、第二分光棱镜以及贴设在所述第二分光棱镜侧的反射镜;
    所述测量光经所述第一偏振分光棱镜、所述第一1/4波片、所述第一分光棱镜、所述光波导组件以及所述反射装置的处理后,返回所述第一光电探测器和所述第二光电探测器中;
    所述参考光经所述第二偏振分光棱镜、所述第二1/4波片、所述第二分光棱镜以及所述反射镜的处理后,返回至所述第一光电探测器和所述第二光电探测器中;
    所述第一光电探测器根据处理后的测量光和参考光形成测量信号,所述第二光电探测器根据处理后的测量光和参考光形成参考信号;
    根据所述测量信号和所述参考信号确定所述待检测物体的位移信息。
  2. 如权利要求1所述的干涉仪位移测量系统,其特征在于,
    所述光波导组件包括透镜固定元件、设置在所述透镜固定元件内的第一平凸透镜和第二平凸透镜、位于所述第一平凸透镜和所述第二平凸透镜之间的波导光纤和反射膜层;其中,
    所述透镜固定元件为玻璃件,所述反射膜层贴设在所述透镜固定元件的靠近所述反射装置一侧的右端面上。
  3. 如权利要求2所述的干涉仪位移测量系统,其特征在于,
    所述第一平凸透镜距离所述透镜固定元件的左端面的距离为第一焦距,所述第二平凸透镜距离所述透镜固定元件的右端面的距离为第二焦距;
    所述第一焦距和所述第二焦距相等。
  4. 如权利要求2所述的干涉仪位移测量系统,其特征在于,
    所述测量光依次经所述第一偏振分光棱镜透射和所述第一1/4波片后,由所述第一分光棱镜分为第一透射光和第一反射光;其中,所述第一透射光经所述第一平凸透镜后耦合至所述波导光纤上,再经过所述第二平凸透镜,到达所述反射装置;
    经所述反射装置反射回的光经所述第二平凸透镜到达所述反射膜层,所述反射膜层将光再次反射至所述反射装置,所述反射装置反射的光再次经过所述第二平凸透镜耦合至所述波导光纤上,并依次经过所述第一平凸透镜、所述第一分光棱镜、所述第一1/4波片后,变为第一s偏振光;
    所述第一s偏振光经所述第一偏振分光棱镜反射至所述第一光电探测器。
  5. 如权利要求4所述的干涉仪位移测量系统,其特征在于,
    所述第一分光棱镜的第一反射光经所述第二分光棱镜反射,反射后的光经所述第二1/4波片后,变为第二s偏振光;
    所述第二s偏振光经所述第二偏振分光棱镜反射至所述第二光电探测器。
  6. 如权利要求5所述的干涉仪位移测量系统,其特征在于,
    所述参考光经所述第二偏振分光棱镜透射后,经所述第二1/4波片和所述第二分光棱镜分光,形成第二透射光和第二反射光;其中,所述第二透射光经所述反射镜后返回,并经所述第二分光棱镜和所述第二1/4波片后,变为第三s偏振光;
    所述第三s偏振光经所述第二偏振分光棱镜反射至所述第二光电探测器;
    所述第二反射光经所述第一偏振分光棱镜后经所述第一1/4波片,变为第四s偏振光;
    所述第四s偏振光经所述第二偏振分光棱镜反射至所述第一光电探测器。
  7. 如权利要求6所述的干涉仪位移测量系统,其特征在于,
    所述第一光电探测器根据所述第一s偏振光和所述第四s偏振光的光束干涉及光电转换,形成所述测量信号;
    所述第二光电探测器根据所述第二s偏振光和所述第三s偏振光的光束干 涉及光电转换,形成所述参考信号。
  8. 如权利要求1或7所述的干涉仪位移测量系统,其特征在于,
    所述测量光和所述参考光均为p偏振光;
    所述反射装置为反射镜或者光栅。
  9. 如权利要求1所述的干涉仪位移测量系统,其特征在于,
    所述反射装置的位移信息的表示公式如下:
    Figure PCTCN2021125623-appb-100001
    其中,Δz表示所述位移信息,λ表示光束在空气中的波长,
    Figure PCTCN2021125623-appb-100002
    表示所述测量信号鉴相后的相位,
    Figure PCTCN2021125623-appb-100003
    表示所述参考信号鉴相后的相位,θ为所述反射装置相对y轴方向的安装角。
  10. 一种干涉仪位移测量方法,其特征在于,利用如权利要求1至9任一项所述的干涉仪位移测量系统对待测物体进行位移测量;所述方法包括:
    通过第一激光光源发射测量光,通过第二激光光源发射参考光;
    所述测量光依次经过第一偏振分光棱镜、第一1/4波片、第一分光棱镜、光波导组件以及反射装置的处理后,返回第一光电探测器和第二光电探测器中,所述第一光电探测器根据处理后的测量光和参考光形成测量信号;
    同时,所述参考光经第二偏振分光棱镜、第二1/4波片、第二分光棱镜以及反射镜的处理后,返回至所述第一光电探测器和所述第二光电探测器中,第二光电探测器根据处理后的测量光和参考光形成参考信号;
    根据所述测量信号和所述参考信号确定所述待检测物体的位移信息。
PCT/CN2021/125623 2020-11-18 2021-10-22 干涉仪位移测量系统及方法 WO2022105533A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/037,655 US20230417532A1 (en) 2020-11-18 2021-10-22 Interferometer displacement measurement system and method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011293860.0 2020-11-18
CN202011293860.0A CN112484647B (zh) 2020-11-18 2020-11-18 干涉仪位移测量系统及方法

Publications (1)

Publication Number Publication Date
WO2022105533A1 true WO2022105533A1 (zh) 2022-05-27

Family

ID=74931551

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/125623 WO2022105533A1 (zh) 2020-11-18 2021-10-22 干涉仪位移测量系统及方法

Country Status (3)

Country Link
US (1) US20230417532A1 (zh)
CN (1) CN112484647B (zh)
WO (1) WO2022105533A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117553675A (zh) * 2023-11-17 2024-02-13 哈尔滨工业大学 基于一体式双偏振分光组件的外差激光干涉仪及测量方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112484647B (zh) * 2020-11-18 2022-06-10 北京华卓精科科技股份有限公司 干涉仪位移测量系统及方法
CN114295227B (zh) * 2021-12-27 2023-05-02 华南师范大学 一种测量轨道角动量光束拓扑荷值的系统及方法
CN114353671B (zh) * 2022-01-14 2022-11-01 西安交通大学 实现位移和角度同步测量的双波长衍射干涉系统及方法

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000241110A (ja) * 1999-02-19 2000-09-08 Nec Corp アレイ導波路格子の光路長測定装置、方法及びプログラムを記憶した記憶媒体
US20050052749A1 (en) * 1997-03-13 2005-03-10 T Squared G, Inc. Scanning head lens assembly
CN101629810A (zh) * 2009-08-14 2010-01-20 中国计量科学研究院 一种特殊几何点位移的光学倍频激光干涉测量系统及方法
CN102226690A (zh) * 2011-03-29 2011-10-26 浙江大学 高精度小角度测量的方法和装置
CN105004273A (zh) * 2015-06-29 2015-10-28 华中科技大学 一种激光干涉位移测量系统
CN106225667A (zh) * 2016-08-05 2016-12-14 合肥工业大学 一种单频激光干涉仪非线性误差补偿装置
CN108592800A (zh) * 2018-05-02 2018-09-28 中国计量科学研究院 一种基于平面镜反射的激光外差干涉测量装置和方法
CN109579777A (zh) * 2019-01-11 2019-04-05 哈尔滨工业大学 双光源高精度抗干扰大工作距自准直装置与方法
CN109855743A (zh) * 2019-01-04 2019-06-07 北方工业大学 双频激光外差干涉相位测量大尺寸光学平面的装置及方法
CN110360931A (zh) * 2019-05-31 2019-10-22 中国人民解放军战略支援部队航天工程大学 一种对称式紧凑型外差干涉光栅位移测量系统
CN110411335A (zh) * 2019-07-26 2019-11-05 浙江理工大学 差动式正弦相位调制激光干涉纳米位移测量装置及方法
CN110441032A (zh) * 2019-08-12 2019-11-12 中国电子科技集团公司第四十一研究所 一种干涉仪及测量保偏光纤及偏振器件偏振耦合的方法
CN209894118U (zh) * 2019-03-27 2020-01-03 中国计量大学 一种基于反射式单全息光栅的位移测量系统
CN111896222A (zh) * 2020-07-31 2020-11-06 中国电子科技集团公司第四十一研究所 一种保偏光纤拍长测量装置及测量方法
CN112484647A (zh) * 2020-11-18 2021-03-12 北京华卓精科科技股份有限公司 干涉仪位移测量系统及方法

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6020964A (en) * 1997-12-02 2000-02-01 Asm Lithography B.V. Interferometer system and lithograph apparatus including an interferometer system
ATE285081T1 (de) * 1999-08-02 2005-01-15 Zetetic Inst Interferometrische konfokale nahfeld- abtastmikroskopie
US6897962B2 (en) * 2002-04-18 2005-05-24 Agilent Technologies, Inc. Interferometer using beam re-tracing to eliminate beam walk-off
DE10235562A1 (de) * 2002-08-03 2004-02-19 Robert Bosch Gmbh Verfahren und Vorrichtung zur optischen Distanzmessung
US6980279B2 (en) * 2004-01-22 2005-12-27 Nikon Corporation Interferometer system for measuring a height of wafer stage
CN103175478B (zh) * 2013-03-08 2016-01-20 华中科技大学 一种基于红外成像的薄膜测厚仪
CN103630077B (zh) * 2013-12-12 2016-05-11 哈尔滨工业大学 一种使用双频激光的两轴光栅位移测量系统
CN103644848B (zh) * 2013-12-12 2016-02-03 哈尔滨工业大学 一种使用双频激光的三维光栅位移测量系统
CN103759654B (zh) * 2014-01-23 2016-09-28 清华大学 一种二自由度零差光栅干涉仪位移测量系统
CN104634254A (zh) * 2015-03-06 2015-05-20 中国科学院光电技术研究所 一种基于外差干涉和二次衍射效应的光栅位移测量系统
CN105588515B (zh) * 2015-12-16 2018-12-14 华中科技大学 一种基于纳米位移计量传感器的纳米微位移检测仪
CN105823422B (zh) * 2016-03-01 2018-08-28 清华大学 一种二自由度外差光栅干涉仪位移测量系统及方法
CN106091940A (zh) * 2016-06-20 2016-11-09 哈尔滨工业大学 一种外差式四自由度光栅运动测量系统
CN205879112U (zh) * 2016-09-06 2017-01-11 深圳市中图仪器科技有限公司 一种用于激光测量信号修正的装置
AT520302B1 (de) * 2017-09-19 2019-03-15 Ing Guenther Neunteufel Verfahren zur Ermittlung der örtlichen Verschiebung eines Objektes
CN108955857B (zh) * 2018-06-29 2024-03-26 余姚舜宇智能光学技术有限公司 一种基于光纤的外差干涉光路结构和激光测振仪
CN109238148B (zh) * 2018-09-13 2020-10-27 清华大学 一种五自由度外差光栅干涉测量系统
CN109579694B (zh) * 2018-12-26 2021-03-16 哈尔滨工业大学 一种高容差的二自由度外差光栅干涉测量方法及系统
CN110487173B (zh) * 2019-08-22 2021-04-30 上海理工大学 反射式相位正交单频激光干涉测量装置及测量方法
CN110837213B (zh) * 2019-10-31 2020-12-04 清华大学 用于激光干涉光刻系统的相位测量装置及其使用方法
CN111578832A (zh) * 2020-04-30 2020-08-25 南京理工大学 基于短相干光源干涉仪的大行程光程匹配装置及实验方法

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050052749A1 (en) * 1997-03-13 2005-03-10 T Squared G, Inc. Scanning head lens assembly
JP2000241110A (ja) * 1999-02-19 2000-09-08 Nec Corp アレイ導波路格子の光路長測定装置、方法及びプログラムを記憶した記憶媒体
CN101629810A (zh) * 2009-08-14 2010-01-20 中国计量科学研究院 一种特殊几何点位移的光学倍频激光干涉测量系统及方法
CN102226690A (zh) * 2011-03-29 2011-10-26 浙江大学 高精度小角度测量的方法和装置
CN105004273A (zh) * 2015-06-29 2015-10-28 华中科技大学 一种激光干涉位移测量系统
CN106225667A (zh) * 2016-08-05 2016-12-14 合肥工业大学 一种单频激光干涉仪非线性误差补偿装置
CN108592800A (zh) * 2018-05-02 2018-09-28 中国计量科学研究院 一种基于平面镜反射的激光外差干涉测量装置和方法
CN109855743A (zh) * 2019-01-04 2019-06-07 北方工业大学 双频激光外差干涉相位测量大尺寸光学平面的装置及方法
CN109579777A (zh) * 2019-01-11 2019-04-05 哈尔滨工业大学 双光源高精度抗干扰大工作距自准直装置与方法
CN209894118U (zh) * 2019-03-27 2020-01-03 中国计量大学 一种基于反射式单全息光栅的位移测量系统
CN110360931A (zh) * 2019-05-31 2019-10-22 中国人民解放军战略支援部队航天工程大学 一种对称式紧凑型外差干涉光栅位移测量系统
CN110411335A (zh) * 2019-07-26 2019-11-05 浙江理工大学 差动式正弦相位调制激光干涉纳米位移测量装置及方法
CN110441032A (zh) * 2019-08-12 2019-11-12 中国电子科技集团公司第四十一研究所 一种干涉仪及测量保偏光纤及偏振器件偏振耦合的方法
CN111896222A (zh) * 2020-07-31 2020-11-06 中国电子科技集团公司第四十一研究所 一种保偏光纤拍长测量装置及测量方法
CN112484647A (zh) * 2020-11-18 2021-03-12 北京华卓精科科技股份有限公司 干涉仪位移测量系统及方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117553675A (zh) * 2023-11-17 2024-02-13 哈尔滨工业大学 基于一体式双偏振分光组件的外差激光干涉仪及测量方法
CN117553675B (zh) * 2023-11-17 2024-05-07 哈尔滨工业大学 基于一体式双偏振分光组件的外差激光干涉仪及测量方法

Also Published As

Publication number Publication date
CN112484647A (zh) 2021-03-12
US20230417532A1 (en) 2023-12-28
CN112484647B (zh) 2022-06-10

Similar Documents

Publication Publication Date Title
WO2022105533A1 (zh) 干涉仪位移测量系统及方法
WO2022105532A1 (zh) 外差光纤干涉仪位移测量系统及方法
US5187543A (en) Differential displacement measuring interferometer
US7394550B2 (en) Displacement detector
JP2586120B2 (ja) エンコーダー
JPH073344B2 (ja) エンコ−ダ−
JPH0712535A (ja) 干渉計
JPH02259508A (ja) 一体型干渉測定装置
JPH0319482B2 (zh)
EP0490956A1 (en) OPTICAL MEASURING INSTRUMENTS.
US5164791A (en) Minute displacement detector using optical interferometry
CN113819846B (zh) 锥面衍射式光栅位移测量装置及测量方法
TWI452262B (zh) 同時量測位移及傾角之干涉儀系統
EP2284479B1 (en) Grazing incidence interferometer
JPH06300520A (ja) 光学式変位測定装置
CN112229332B (zh) 基于二次衍射的外差光栅干涉测量系统
JPH01284715A (ja) エンコーダー
CN106643478A (zh) 一种位移测量光学系统
US20050036152A1 (en) Vibration-resistant interferometer apparatus
EP2336714B1 (en) Interferometer
JPH095018A (ja) 移動量測長装置
JPH06194125A (ja) 対物レンズの焦点から物体のずれ又は位置変化を検出する方法及び装置
JP3003964B2 (ja) 測長用干渉計
JP2018197659A (ja) 変位検出装置
JP2629606B2 (ja) エンコーダー

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21893681

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18037655

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 22/092023

122 Ep: pct application non-entry in european phase

Ref document number: 21893681

Country of ref document: EP

Kind code of ref document: A1