WO2022105167A1 - 一种玻璃纤维增强生物降解高分子复合材料的制备方法 - Google Patents

一种玻璃纤维增强生物降解高分子复合材料的制备方法 Download PDF

Info

Publication number
WO2022105167A1
WO2022105167A1 PCT/CN2021/095848 CN2021095848W WO2022105167A1 WO 2022105167 A1 WO2022105167 A1 WO 2022105167A1 CN 2021095848 W CN2021095848 W CN 2021095848W WO 2022105167 A1 WO2022105167 A1 WO 2022105167A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass fiber
preparation
composite material
biodegradable polymer
polymer composite
Prior art date
Application number
PCT/CN2021/095848
Other languages
English (en)
French (fr)
Inventor
何斌
白云
Original Assignee
宁波宝亭生物科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁波宝亭生物科技有限公司 filed Critical 宁波宝亭生物科技有限公司
Publication of WO2022105167A1 publication Critical patent/WO2022105167A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/14Glass
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/04Polyesters derived from hydroxycarboxylic acids, e.g. lactones

Definitions

  • the invention relates to the field of biological materials, in particular to a preparation method of a glass fiber reinforced biodegradable polymer composite material.
  • Biodegradable polymer materials usually face two problems when used as bone nails, bone plates and other bone repair medical devices: First, the acidity of the degradation products leads to a long-term inflammatory reaction, and it is difficult for bone cells to grow in. , The bone plate will form a cavity after degrading; the second is that the strength and toughness of the material are not enough, and it is easy to break when used in surgery.
  • the current solution to problem one is to combine hydroxyapatite or calcium phosphate with biodegradable polymers, and use its alkalinity to neutralize the acidity of the degradation products to avoid the generation of voids.
  • both hydroxyapatite and calcium phosphate are directly filled into the biodegradable polymer material in the form of powder. Due to the poor compatibility between the two materials, the strength of the biodegradable polymer material after composite is sharply reduced.
  • the method for enhancing the strength of polymer materials in the prior art is to initiate the polymerization of polylactic acid through the hydroxyl groups on the surface of hydroxyapatite to form a composite, and then mix it with polylactic acid as a filler.
  • the weight percentage of hydroxyapatite in this kind of composite material is usually less than 15%, and the strength will drop sharply if it exceeds this value, which cannot meet the requirements of use.
  • the existing solution to the second problem is the self-reinforcing process of refining the grains of biodegradable polymer materials, which can greatly enhance its toughness, but its strength is still low and cannot be used for bone repair in load-bearing parts. And this method cannot solve the problem of voids caused by the acidity of the degradation products.
  • the present invention provides a preparation method of a glass fiber reinforced biodegradable polymer composite material.
  • the glass fiber reinforced biodegradable polymer material is used to solve the problems of strength, toughness and acidity of degradation products.
  • One of the objects of the present invention is to provide a preparation method of a polymer composite material with enhanced biodegradability, and the specific technical scheme is as follows:
  • a preparation method of a polymer composite material with enhanced biodegradability comprising the following steps:
  • the glass fiber and the biodegradable material monomer are mixed to catalyze the reaction, and the biodegradable material monomer is glycolide (GA), lactide (LA), p-dioxanone (PDO), at least one of ⁇ -caprolactone (CL);
  • step (2) The product obtained in step (1) is dissolved in an organic solvent, purified and dried to obtain modified glass fibers;
  • the modified glass fiber with a biodegradable polymer material, dissolve it in an organic solvent, and pour it to obtain a polymer composite material, and the biodegradable polymer material is polyglycolide, polylactide, polyparadiene At least one of oxyhexanone, polycaprolactone and copolymers thereof.
  • the mass ratio of the glass fiber to the biodegradable material monomer is 1:2-20.
  • the catalyst in the catalytic reaction of step (1) is 50-500ppm of stannous octoate.
  • the temperature of the catalytic reaction in step (1) is 90-170°C.
  • the catalytic reaction needs to be carried out under the protection of vacuum or inert gas for 5-72 hours.
  • step (2) is chloroform, and the purification step is carried out in ethanol.
  • the mass ratio of the modified glass fiber to the biodegradable polymer material in step (3) is 1:1-10.
  • organic solvent described in step (3) is chloroform or hexafluoroisopropanol.
  • step (3) After pouring in step (3), the solvent needs to be volatilized.
  • Purification in the preparation process can reduce the residual rate of the biodegradable material monomer, improve the strength of the material, and prolong its degradation time.
  • the glass fiber modified by the biodegradable polymer material obtained by purification can increase the interfacial compatibility between it and the subsequent biodegradable polymer material.
  • the tensile strength test proves that the glass fiber without surface modification
  • the tensile strength measured by direct composite with the biodegradable polymer is only 12-16MPa, and the tensile strength of the composite material after surface polymerization and modification initiated by the biodegradable polymer monomer can reach 23-34MPa.
  • the second purpose of the present invention is to provide a polymer composite material with enhanced biodegradability prepared by the preparation method described in the above technical solution.
  • the weight percentage of glass fibers in the polymer material prepared by the above preparation method is 5-70%, which has good strength and toughness, can overcome the problem of acidity of degradation products, and has good biocompatibility.
  • the present invention initiates ring-opening polymerization with the hydroxyl groups on the surface of the glass fiber, firstly mixes, polymerizes and purifies the glass fiber and the biodegradable material monomer to obtain the glass fiber modified by the biodegradable polymer material,
  • the interface compatibility of the composite material with the subsequent biodegradable polymer material is increased, and the purification step can reduce the residual rate of the biodegradable material monomer, improve the material strength, and prolong its degradation time, so that the composite material of the present invention has higher strength and toughness. , and can neutralize the acidity of degradation products.
  • Fig. 1 is the cross-sectional SEM image of the glass fiber reinforced biodegradable polymer composite material of the present invention
  • a preparation method of glass fiber reinforced biodegradable polymer composite material is a preparation method of glass fiber reinforced biodegradable polymer composite material
  • ring-opening polymerization is mainly initiated by hydroxyl groups on the surface of the glass fiber, and the glass fiber modified by the biodegradable polymer material is obtained through purification, and the interface compatibility of the composite with the subsequent biodegradable polymer material is increased.
  • Polylactide is dissolved in chloroform.
  • the obtained solution is casted to form a film, and after the solvent is volatilized, the polylactide polymer material can be obtained.
  • Polycaprolactone was dissolved in chloroform. The obtained solution is casted to form a film, and after the solvent is volatilized, the polycaprolactone polymer material can be obtained.
  • Polydioxanone is dissolved in hexafluoroisopropanol.
  • the obtained solution is casted to form a film, and after the solvent is volatilized, the polydioxanone polymer material can be obtained.
  • Polycaprolactone was dissolved in chloroform. The obtained solution is casted to form a film, and after the solvent is volatilized, the polycaprolactone polymer material can be obtained.
  • Polylactide is dissolved in chloroform.
  • the obtained solution is cast to form a film, and after the solvent is volatilized, the polylactide polymer material can be obtained.
  • the tensile strength of the polymer composite materials prepared according to the preparation method of the embodiment of the present invention is higher than that of the composite materials prepared by the other two groups of comparative examples in the group, indicating that the preparation method of the present invention makes The tensile strength of the obtained polymer composites has been greatly improved.
  • the pH values of the polymer composite materials prepared in Examples 1-5 after being degraded for 30 days are all close to neutral, and most of them are weakly alkaline, and are basically relative to the pH value of the composite materials prepared in the comparative examples in the group. Slightly higher, overcomes the problem of acidity of degradation products and has good biocompatibility.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Biological Depolymerization Polymers (AREA)
  • Materials For Medical Uses (AREA)

Abstract

本发明涉及生物材料领域,具体公开了一种玻璃纤维增强生物降解高分子复合材料的制备方法。本发明提供了一种增强生物降解能力的组合物,通过玻璃纤维增强生物降解高分子材料提高其强度,同时利用玻璃纤维植入人体后溶解产生的弱碱性,中和降解产物的酸性,防止空洞的形成。解决了骨钉、骨板降解后会形成空洞,手术时易被拧断的问题。本发明的复合材料具有较好的强韧性的同时也具备良好的生物相容性。

Description

一种玻璃纤维增强生物降解高分子复合材料的制备方法 技术领域
本发明涉及生物材料领域,具体涉及一种玻璃纤维增强生物降解高分子复合材料的制备方法。
背景技术
生物降解高分子材料在用作骨钉、骨板等骨修复医疗器械的时候通常面临两个问题:一是降解产物的酸性导致长期的炎症反应,骨细胞很难长入,在可吸收骨钉、骨板降解后会形成空洞;二是材料的强度和韧性不够,在手术使用的时候容易拧断。目前解决问题一的方案是通过羟基磷灰石或磷酸钙与生物降解高分子复合,利用其碱性中和降解产物的酸性,以避免空洞的产生。然而羟基磷灰石或磷酸钙均以粉末的形式直接填充到生物降解高分子材料中,由于两种材料之间的相容性差,使得复合后生物降解高分子材料的强度急剧降低。
现有技术增强高分子材料强度的方法是通过羟基磷灰石表面的羟基引发聚乳酸的聚合先形成复合物,再将其作为填料与聚乳酸混合。然而这类复合材料中羟基磷灰石的重量百分比通常小于15%,超过此数值强度也会急剧下降,无法满足使用要求。问题二的现有解决方案为通过将生物降解高分子材料晶粒细化的自增强工艺,可以大大增强其韧性,然而其强度还是偏低,不能用于承重部位的骨修复。并且此方法无法解决因降解产物的酸性导致的空洞问题。
因此亟需一种能增强生物降解性能的高分子复合材料,解决上述 问题。
发明内容
本发明为了解决上述问题,提供了一种玻璃纤维增强生物降解高分子复合材料的制备方法,用玻璃纤维增强生物降解高分子材料解决其强度韧性和降解产物酸性的问题。
本发明目的之一在于提供一种增强生物降解能力的高分子复合材料的制备方法,具体技术方案如下:
一种增强生物降解能力的高分子复合材料的制备方法,包括如下步骤:
(1)玻璃纤维和可生物降解材料单体混合,催化反应,所述可生物降解材料单体为乙交酯(GA)、丙交酯(LA)、对二氧环己酮(PDO)、ε-已内酯(CL)中的至少一种;
(2)步骤(1)所得产物经有机溶剂溶解,纯化和干燥得到改性玻璃纤维;
(3)将改性玻璃纤维与可生物降解高分子材料混合,经有机溶剂溶解,浇筑得到高分子复合材料,所述可生物降解高分子材料为聚乙交酯、聚丙交酯、聚对二氧环己酮、聚已内酯及其共聚物中的至少一种。
进一步地,所述玻璃纤维和可生物降解材料单体的质量比为1:2~20。
进一步地,步骤(1)催化反应中的催化剂为50-500ppm辛酸亚锡。
进一步地,步骤(1)催化反应的温度为90~170℃。
优选的,所述催化反应需在真空或惰性气体的保护下反应5~72小时。
进一步地,步骤(2)中的有机溶剂为氯仿,纯化步骤在乙醇中进行。
进一步地,步骤(3)中所述改性玻璃纤维与可生物降解高分子材料的质量比为1:1~10。
进一步地,步骤(3)中所述有机溶剂为氯仿或六氟异丙醇。
进一步地,步骤(3)中浇筑后还需待溶剂挥发。
制备过程中纯化能降低可生物降解材料单体残留率,提高材料强度,延长其降解时间。另外,通过纯化得到的生物降解高分子材料改性的玻璃纤维,能增加其与后续生物降解高分子材料复合的界面相容性,通过拉伸强度测试证明,未经过表面改性的将玻璃纤维和生物降解高分子直接复合测得的拉伸强度只有12~16MPa,经生物降解高分子单体引发表面聚合改性后的复合材料的拉伸强度可达到23~34MPa。
本发明目的之二在于提供一种由上述技术方案中所述制备方法制备得到的增强生物降解能力的高分子复合材料。
由上述制备方法制得的高分子材料中玻璃纤维的重量百分比为5-70%,其强韧性较好,并能克服降解产物酸性的问题,具有很好的生物相容性。
本发明的有益之处在于:本发明以玻璃纤维表面羟基引发开环聚合并,先将玻璃纤维与可生物降解材料单体混合、聚合、纯化,得到 生物降解高分子材料改性的玻璃纤维,增加其与后续生物降解高分子材料复合的界面相容性,其纯化步骤能降低可生物降解材料单体残留率,提高材料强度,延长其降解时间,使得本发明的复合材料强韧度较高,并能中和降解产物的酸性。
附图说明
图1为本发明的玻璃纤维增强生物降解高分子复合材料的断面SEM图
具体实施方式
下面通过实施例和附图,对本发明进行进一步详细说明,应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明,本领域技术人员应该理解的是,在不偏离本发明的结构思路、使用范围下可以对本发明技术方案的细节和形式进行修改或替换,但这些修改和替换均落入本发明的保护范围内。
具体实施例
一种玻璃纤维增强生物降解高分子复合材料的制备方法:
(1)将玻璃纤维与乙交酯(GA)、丙交酯(LA)、对二氧环己酮(PDO)、ε-已内酯(CL)中的至少一种混合,玻璃纤维与上述可生物降解材料单体的质量比为1:2~20,加入50-500ppm辛酸亚锡为催化剂,在90-170℃真空或惰性气体,例如氮气或氩气等惰性气体的保护下反应5-72小时。用氯仿溶解产物后,分离出玻璃纤维,在乙醇中沉淀纯化,纯化能降低可生物降解材料单体残留率,提高材料强度,延长其降解时间。真空干燥后,得到经生物降解高分子材料表面 改性的玻璃纤维。
(2)将上述改性玻璃纤维与聚乙交酯、聚丙交酯、聚对二氧环己酮、聚已内酯及其共聚物中的至少一种混合,改性玻璃纤维与上述可生物降解高分子材料的质量比为1:1~10。然后通过有机溶剂例如氯仿或六氟异丙醇溶解,玻璃纤维的重量百分比为5-70%。将得到的溶液浇筑成膜,待溶剂挥发后,即可得到玻璃纤维增强生物降解高分子复合材料。
本方法主要以玻璃纤维表面羟基引发开环聚合并通过纯化,得到生物降解高分子材料改性的玻璃纤维,增加其与后续生物降解高分子材料复合的界面相容性。
实施例1
(1)将玻璃纤维与丙交酯(LA)单体(玻璃纤维与单体的质量比为1:2混合,加入50ppm辛酸亚锡为催化剂,在130℃真空条件下反应72小时。用氯仿溶解产物后,分离出玻璃纤维,在乙醇中沉淀纯化,真空干燥后,得到聚丙交酯表面改性的玻璃纤维。
(2)将上述改性玻璃纤维与聚丙交酯按质量比为1:5混合,溶于氯仿。将得到的溶液浇筑成膜,待溶剂挥发后,即可得到玻璃纤维增强聚丙交酯高分子复合材料,如图1所示,玻璃纤维已和聚丙交酯充分结合。图中玻璃纤维在聚丙交酯的基材中分散均匀,呈层状排列,玻璃纤维与聚丙交酯的界面相容性良好。
实施例2
(1)将玻璃纤维与ε-已内酯(CL)单体(玻璃纤维与单体的质 量比为1:10混合,加入500ppm辛酸亚锡为催化剂,在170℃惰性气体保护条件下反应5小时。用氯仿溶解产物后,分离出玻璃纤维,在乙醇中沉淀纯化,真空干燥后,得到聚己内酯表面改性的玻璃纤维。
(2)将上述改性玻璃纤维与聚己内酯按质量比为1:10混合,溶于氯仿。将得到的溶液浇筑成膜,待溶剂挥发后,即可得到玻璃纤维增强聚己内酯高分子复合材料。
实施例3
(1)将玻璃纤维与对二氧环己酮单体,玻璃纤维与单体的质量比为1:20混合,加入200ppm辛酸亚锡为催化剂,在90℃惰性气体保护条件下反应60小时。用六氟异丙醇溶解产物后,分离出玻璃纤维,在乙醇中沉淀纯化,真空干燥后,得到聚对二氧环己酮表面改性的玻璃纤维。
(2)将上述改性玻璃纤维与聚对二氧环己酮按质量比为1:5混合,溶于六氟异丙醇。将得到的溶液浇筑成膜,待溶剂挥发后,即可得到玻璃纤维增强聚对二氧环己酮高分子复合材料。
实施例4
(1)将玻璃纤维与乙交酯和丙交酯混合单体(摩尔比为1:1),玻璃纤维与单体的质量比为1:10混合,加入100ppm辛酸亚锡为催化剂,在160℃惰性气体保护条件下反应12小时。用氯仿溶解产物后,分离出玻璃纤维,在乙醇中沉淀纯化,真空干燥后,得到聚(乙交酯-r-丙交酯)表面改性的玻璃纤维。
(2)将上述改性玻璃纤维与聚己内酯按质量比为1:10混合,溶 于氯仿。将得到的溶液浇筑成膜,待溶剂挥发后,即可得到玻璃纤维增强聚已内酯高分子复合材料。
实施例5
(1)将玻璃纤维与乙交酯单体(玻璃纤维与单体的质量比为1:10混合,加入500ppm辛酸亚锡为催化剂,在130℃惰性气体保护条件下反应7小时。用六氟异丙醇溶解产物后,分离出玻璃纤维,在乙醇中沉淀纯化,真空干燥后,得到聚乙交酯表面改性的玻璃纤维。
(2)将上述改性玻璃纤维与聚丙交酯按质量比为1:1混合,溶于氯仿。将得到的溶液浇筑成膜,待溶剂挥发后,即可得到玻璃纤维增强聚丙交酯高分子复合材料。
对比实施例1
直接将玻璃纤维与聚丙交酯按质量比为1:5混合,溶于氯仿。将得到的溶液浇筑成膜,待溶剂挥发后,即可得到玻璃纤维增强聚丙交酯高分子复合材料。
对比实施例2
聚丙交酯溶于氯仿。将得到的溶液浇筑成膜,待溶剂挥发后,即可得到聚丙交酯高分子材料。
对比实施例3
直接将玻璃纤维与聚己内酯按质量比为1:10混合,溶于氯仿。将得到的溶液浇筑成膜,待溶剂挥发后,即可得到玻璃纤维增强聚己内酯高分子复合材料。
对比实施例4
聚已内酯溶于氯仿。将得到的溶液浇筑成膜,待溶剂挥发后,即可得到聚己内酯高分子材料。
对比实施例5
直接将玻璃纤维与聚对二氧环己酮按质量比为1:5混合,溶于六氟异丙醇。将得到的溶液浇筑成膜,待溶剂挥发后,即可得到玻璃纤维增强聚二氧环己酮高分子复合材料。
对比实施例6
聚二氧环己酮溶于六氟异丙醇。将得到的溶液浇筑成膜,待溶剂挥发后,即可得到聚二氧环己酮高分子材料。
对比实施例7
直接将玻璃纤维与聚己内酯按质量比为1:10混合,溶于氯仿。将得到的溶液浇筑成膜,待溶剂挥发后,即可得到玻璃纤维增强聚己内酯高分子复合材料。
对比实施例8
聚已内酯溶于氯仿。将得到的溶液浇筑成膜,待溶剂挥发后,即可得到聚己内酯高分子材料。
对比实施例9
直接将玻璃纤维与聚丙交酯按质量比为1:10混合,溶于氯仿。将得到的溶液浇筑成膜,待溶剂挥发后,即可得到玻璃纤维增强聚丙交酯高分子复合材料。
对比实施例10
聚丙交酯溶于氯仿。将得到的溶液浇筑成膜,待溶剂挥发后,即 可得到聚丙交酯高分子材料。
具体实施例和对比实施例的性能分析:
Figure PCTCN2021095848-appb-000001
根据1-5组实验数据可知,按照本发明实施例制备方法制备的高分子复合材料的拉伸强度都高于组内的另外两组对比实施例制得的复合材料,说明本发明制备方法制得的高分子复合材料的拉伸强度得到了大幅度的提升。另外实施例1-5制得的高分子复合材料降解30天后的pH值皆接近于中性,大部分呈现弱碱性,并且基本上相对于组内对比实施例制得的复合材料的PH值略高,克服了降解产物酸性的问题,具有很好的生物相容性。
以上所述仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等均应 包含在本发明的保护范围之内。

Claims (10)

  1. 一种增强生物降解能力的高分子复合材料的制备方法,其特征在于,包括如下步骤:
    (1)玻璃纤维和可生物降解材料单体混合,催化反应,所述可生物降解材料单体为乙交酯(GA)、丙交酯(LA)、对二氧环己酮(PDO)、ε-已内酯(CL)中的至少一种;
    (2)步骤(1)所得产物经有机溶剂溶解,纯化和干燥得到改性玻璃纤维;
    (3)将改性玻璃纤维与可生物降解高分子材料混合,经有机溶剂溶解,浇筑得到高分子复合材料,所述可生物降解高分子材料为聚乙交酯、聚丙交酯、聚对二氧环己酮、聚已内酯及其共聚物中的至少一种。
  2. 根据权利要求1所述的制备方法,其特征在于,所述玻璃纤维和可生物降解材料单体的质量比为1:2~20。
  3. 根据权利要求1所述的制备方法,其特征在于,步骤(1)催化反应中的催化剂为50-500ppm辛酸亚锡。
  4. 根据权利要求1所述的制备方法,其特征在于,步骤(1)催化反应的温度为90~170℃。
  5. 根据权利要求4所述的制备方法,其特征在于,所述催化反应需在真空或惰性气体的保护下反应5~72小时。
  6. 根据权利要求1所述的制备方法,其特征在于,步骤(2)中的有机溶剂为氯仿,纯化步骤在乙醇中进行。
  7. 根据权利要求1所述的制备方法,其特征在于,步骤(3)中所 述改性玻璃纤维与可生物降解高分子材料的质量比为1:1~10。
  8. 根据权利要求1所述的制备方法,其特征在于,步骤(3)中所述有机溶剂为氯仿或六氟异丙醇。
  9. 根据权利要求1所述的制备方法,其特征在于,步骤(3)中浇筑后需使溶剂挥发。
  10. 一种由权利要求1-9任一所述制备方法制备的增强生物降解能力的高分子复合材料。
PCT/CN2021/095848 2020-11-19 2021-05-25 一种玻璃纤维增强生物降解高分子复合材料的制备方法 WO2022105167A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011304000.2A CN112679760B (zh) 2020-11-19 2020-11-19 一种玻璃纤维增强生物降解高分子复合材料的制备方法
CN202011304000.2 2020-11-19

Publications (1)

Publication Number Publication Date
WO2022105167A1 true WO2022105167A1 (zh) 2022-05-27

Family

ID=75447407

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/095848 WO2022105167A1 (zh) 2020-11-19 2021-05-25 一种玻璃纤维增强生物降解高分子复合材料的制备方法

Country Status (2)

Country Link
CN (1) CN112679760B (zh)
WO (1) WO2022105167A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112679760B (zh) * 2020-11-19 2021-12-21 宁波宝亭生物科技有限公司 一种玻璃纤维增强生物降解高分子复合材料的制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5951579B2 (ja) * 1979-08-31 1984-12-14 花王株式会社 硝子繊維強化不飽和ポリエステル樹脂の接合用前処理剤
CN101489518A (zh) * 2006-06-30 2009-07-22 斯蒂克技术公司 纤维增强的复合材料及其制备方法
CN101812221A (zh) * 2010-04-01 2010-08-25 江苏工业学院 一种改性玻璃纤维增强聚乳酸复合材料及其制备方法
CN102274552A (zh) * 2006-11-30 2011-12-14 史密夫和内修有限公司 纤维增强的复合材料
KR20170069713A (ko) * 2015-12-11 2017-06-21 주식회사 엑시아머티리얼스 유리 섬유와 탄소 섬유를 포함하는 열가소성 복합재료 및 이의 제조방법
CN112679760A (zh) * 2020-11-19 2021-04-20 宁波宝亭生物科技有限公司 一种玻璃纤维增强生物降解高分子复合材料的制备方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100125112A1 (en) * 2008-11-17 2010-05-20 Cheil Industries Inc. Natural Fiber-Reinforced Polylactic Acid Resin Composition and Molded Product Made Using the Same
CN103881340B (zh) * 2014-03-17 2016-05-11 陕西科技大学 一种生物质纤维-脂肪族聚酯复合材料的制备方法
CN103937184B (zh) * 2014-05-07 2016-03-30 江苏科技大学 一种高强度和高韧性全降解的聚乳酸组合物及其反应挤出制备方法
CN111454556A (zh) * 2020-05-26 2020-07-28 扬州大学 一种聚己内酯纳米纤维复合材料的制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5951579B2 (ja) * 1979-08-31 1984-12-14 花王株式会社 硝子繊維強化不飽和ポリエステル樹脂の接合用前処理剤
CN101489518A (zh) * 2006-06-30 2009-07-22 斯蒂克技术公司 纤维增强的复合材料及其制备方法
CN102274552A (zh) * 2006-11-30 2011-12-14 史密夫和内修有限公司 纤维增强的复合材料
CN101812221A (zh) * 2010-04-01 2010-08-25 江苏工业学院 一种改性玻璃纤维增强聚乳酸复合材料及其制备方法
KR20170069713A (ko) * 2015-12-11 2017-06-21 주식회사 엑시아머티리얼스 유리 섬유와 탄소 섬유를 포함하는 열가소성 복합재료 및 이의 제조방법
CN112679760A (zh) * 2020-11-19 2021-04-20 宁波宝亭生物科技有限公司 一种玻璃纤维增强生物降解高分子复合材料的制备方法

Also Published As

Publication number Publication date
CN112679760B (zh) 2021-12-21
CN112679760A (zh) 2021-04-20

Similar Documents

Publication Publication Date Title
Ghalia et al. Biodegradable poly (lactic acid)-based scaffolds: synthesis and biomedical applications
US3912692A (en) Process for polymerizing a substantially pure glycolide composition
US4118470A (en) Normally-solid, bioabsorbable, hydrolyzable, polymeric reaction product
US4095600A (en) Normally-solid, bioabsorbable, hydrolyzable, polymeric reaction product
US4122129A (en) Normally-solid, bioabsorbable, hydrolyzable, polymeric reaction product
Haque et al. Interfacial properties of phosphate glass fibres/PLA composites: Effect of the end functionalities of oligomeric PLA coupling agents
JP3054451B2 (ja) 加水分解性樹脂組成物
MX2007016263A (es) Polieteresteres reabsorbibles y su utilizacion para la preparacion de implantes medicinales.
NO771902L (no) Vanligvis fast, bioabsorberbart, hydrolysebart, polymert reaksjonsprodukt, samt fremgangsm}te for fremstilling av et slikt
CN109701081B (zh) 可吸收的生物医用复合材料及其制备方法
WO2022105167A1 (zh) 一种玻璃纤维增强生物降解高分子复合材料的制备方法
Liu et al. Tuning the mechanical properties and degradation properties of polydioxanoneisothermal annealing
Mulchandani et al. Effect of block length and stereocomplexation on the thermally processable poly (ε-caprolactone) and poly (lactic acid) block copolymers for biomedical applications
Geven et al. Preparation and mechanical properties of photo-crosslinked poly (trimethylene carbonate) and nano-hydroxyapatite composites
KR102249223B1 (ko) 고강도 인체흡수성 폴리글리콜산계 블록공중합체 수지 및 이의 제조 방법
US9062159B2 (en) Poly(lactic-co-glycolic acid) synthesized via copolycondensation catalyzed by biomass creatinine
KR20200083106A (ko) 폴리글리콜리드-폴리락티드 다중블록공중합체 수지 및 그 제조방법
KR20200008225A (ko) 표면이 개질된 염기성 세라믹 입자 및 생분해성 고분자를 포함하는 생체 이식물 및 이의 제조방법
EP3097134B1 (en) Biodegradable hydrogel with controlled lifetime and method of preparation thereof
Li et al. The influence of coexisted monomer on thermal, mechanical, and hydrolytic properties of poly (p‐dioxanone)
EP3656406B1 (en) Absorbable biomedical composite material and preparation method therefor
CA2853213C (en) Artificial bone implants, or bone grafts, of polymeric composites with bone forming properties
Yusoff et al. The effect of hydroxyapatite filler on biodegradable poly (sorbitol sebacate malate) composites
JP2003105073A (ja) 脂肪族ポリエステルの製造方法
KR100817905B1 (ko) 생체적합성이 우수한 생분해성 지방족 폴리에스테르 수지 조성물 및 그 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21893322

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21893322

Country of ref document: EP

Kind code of ref document: A1