WO2022105066A1 - 基于地磁传感器和毫米波雷达的车位检测器 - Google Patents

基于地磁传感器和毫米波雷达的车位检测器 Download PDF

Info

Publication number
WO2022105066A1
WO2022105066A1 PCT/CN2021/075448 CN2021075448W WO2022105066A1 WO 2022105066 A1 WO2022105066 A1 WO 2022105066A1 CN 2021075448 W CN2021075448 W CN 2021075448W WO 2022105066 A1 WO2022105066 A1 WO 2022105066A1
Authority
WO
WIPO (PCT)
Prior art keywords
millimeter
parking space
wave radar
geomagnetic sensor
measurement
Prior art date
Application number
PCT/CN2021/075448
Other languages
English (en)
French (fr)
Inventor
王明明
沙洲
李嘉琪
徐亚军
岳玉涛
Original Assignee
江苏集萃深度感知技术研究所有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏集萃深度感知技术研究所有限公司 filed Critical 江苏集萃深度感知技术研究所有限公司
Publication of WO2022105066A1 publication Critical patent/WO2022105066A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/14Traffic control systems for road vehicles indicating individual free spaces in parking areas
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/86Combinations of radar systems with non-radar systems, e.g. sonar, direction finder
    • GPHYSICS
    • G08SIGNALLING
    • G08CTRANSMISSION SYSTEMS FOR MEASURED VALUES, CONTROL OR SIMILAR SIGNALS
    • G08C17/00Arrangements for transmitting signals characterised by the use of a wireless electrical link
    • G08C17/02Arrangements for transmitting signals characterised by the use of a wireless electrical link using a radio link
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/01Detecting movement of traffic to be counted or controlled
    • G08G1/042Detecting movement of traffic to be counted or controlled using inductive or magnetic detectors
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/14Traffic control systems for road vehicles indicating individual free spaces in parking areas
    • G08G1/145Traffic control systems for road vehicles indicating individual free spaces in parking areas where the indication depends on the parking areas
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/35Parallel operation in networks using both storage and other dc sources, e.g. providing buffering with light sensitive cells
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/04Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
    • H02J9/06Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/04Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
    • H02J9/06Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems
    • H02J9/061Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems for DC powered loads
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/70Hybrid systems, e.g. uninterruptible or back-up power supplies integrating renewable energies

Definitions

  • the invention relates to a parking space detector, in particular to a parking space detector based on a geomagnetic sensor and a millimeter wave radar.
  • the existing geomagnetic method can solve the problem of basic vehicle detection, the detection accuracy is generally not high, and it cannot adapt to the occasions such as underground mines, pipe networks, cables and subways that have a relatively large influence on the magnetic field; while infrared and ultrasonic waves must be used in the shell mold. Therefore, it is necessary to avoid problems such as leaf cover and dust blockage, which cannot meet the actual management needs.
  • the purpose of the present invention is to overcome the deficiencies in the prior art, and to provide a parking space detector based on a geomagnetic sensor and a millimeter wave radar, which can effectively realize the detection and management of parking spaces, improve detection accuracy, and is easy to use, safe and reliable.
  • the parking space detector based on the geomagnetic sensor and the millimeter-wave radar includes the millimeter-wave radar and the geomagnetic sensor corresponding to the required parking space, and both the millimeter-wave radar and the geomagnetic sensor are electrically connected to the measurement controller. connect;
  • the geomagnetic information of the parking space can be obtained through the geomagnetic sensor, and the radar measurement information of the parking space can be obtained through the millimeter-wave radar; the measurement controller collects the geomagnetic information obtained by the geomagnetic sensor and the radar measurement information of the millimeter-wave radar; the measurement controller can be based on the geomagnetic information. And the radar measurement information determines the parking space occupancy information of the corresponding parking space, so as to realize the detection of the parking space.
  • the measurement controller is also connected with the measurement communication module, and the determined parking space occupancy information can be wirelessly transmitted to the parking space management server through the measurement communication module.
  • the measurement communication module includes a 433MHz communication module.
  • the measurement power supply includes a solar power supply as the main power supply and a backup power supply as a backup, and when the solar power supply voltage is lower than the set power supply threshold, the backup power supply provides all the power.
  • the working power supply required for the measurement controller, geomagnetic sensor and millimeter wave radar.
  • the solar power supply includes a solar panel P1, and the positive output end of the solar panel P1 is connected to one end of the capacitor C3, the VIN end of the low dropout voltage regulator U2, and the cathode end of the diode D1.
  • the low dropout voltage stabilizer U2 adopts the type of It is the chip of XC6206P422MR.
  • the anode end of diode D1 is connected to VOUT end of low dropout voltage regulator U2, one end of capacitor C4, and one end of resistor R4.
  • the other end of resistor R4 is connected to the positive end of rechargeable battery Bat1 and the anode end of diode D2.
  • the cathode end of diode D2 is connected to one end of capacitor C6 and one end of capacitor C7, the other end of capacitor C6 and the other end of capacitor C7 are grounded, the cathode end of rechargeable battery Bat1, the negative end of solar panel P1, the other end of capacitor C3 One end, the other end of the capacitor C4 and the VSS end of the low dropout voltage regulator U2 are all grounded.
  • the radar measurement information obtained by the millimeter-wave radar includes the distance r between the millimeter-wave radar and the vehicle body.
  • the measurement controller (1) performs motion compensation for the measurement, and the motion compensation includes the following steps:
  • Step 1 Sampling the echo signals received by the millimeter-wave radar (4) within the time T up and T dn of the effective frequency modulation period, and sort them according to the emission frequency from low to high to obtain:
  • Step 2 Perform FFT operation on the sorted and sampled signals to obtain the peak position of the range image
  • n up and n dn are the peak positions of the target distance in the rising and falling frames after sorting according to the transmission frequency, respectively; N is the number of FFT points,
  • the speed estimate is the speed estimate, the speed estimate is a coarse compensation factor for distance, using the velocity estimate After compensation, the distances y up (n) and y dp (n) after rough motion compensation are obtained after IFFT processing.
  • S up (n), S dn (n) are the values after motion compensation
  • v is the true value of radial velocity, is the velocity estimation value, substitute the above two formulas into the pulse group phase difference operator:
  • phase difference B pd ( ⁇ v) is a global minimum value.
  • the advantages of the invention are that the solar power supply and the backup power supply are used to supply power together, which can greatly increase the working time limit of the entire parking space detector.
  • the geomagnetic information of the geomagnetic sensor and the radar measurement information of the millimeter-wave radar are used to jointly judge the situation of the parking space, which improves the detection rate and detection accuracy. .
  • FIG. 1 is a structural block diagram of the present invention.
  • FIG. 2 is a schematic diagram of the solar power supply of the present invention.
  • FIG. 3 is a schematic diagram of a transmit signal and an echo signal of the millimeter-wave radar of the present invention.
  • 1-measurement controller 2-geomagnetic sensor, 3-measurement communication module, 4-millimeter wave radar, and 5-measurement power supply.
  • the present invention includes a millimeter-wave radar 4 and a geomagnetic sensor 2 corresponding to the required parking space.
  • the measurement controller 1 is electrically connected;
  • the geomagnetic information of the parking space can be obtained through the geomagnetic sensor 2, and the radar measurement information of the parking space can be obtained through the millimeter-wave radar 4; the measurement controller 1 collects the geomagnetic information obtained by the geomagnetic sensor 2 and the radar measurement information of the millimeter-wave radar 4; measurement control The device 1 can determine the parking space occupancy information of the corresponding parking space according to the geomagnetic information and the radar measurement information, so as to realize the detection of the parking space.
  • both the millimeter-wave radar 4 and the geomagnetic sensor 2 can adopt existing common forms.
  • the millimeter-wave radar 4 and the geomagnetic sensor 2 can be installed underground in the parking space, or installed on one side of the parking space, and the specific locations can be based on actual needs. Make a selection, which will not be repeated here.
  • the millimeter-wave radar 4 and the geomagnetic sensor 2 are electrically connected to the measurement controller 1.
  • the measurement controller 1 can use a commonly used microprocessor, and the specific type of the microprocessor can be selected according to actual needs, which will not be repeated here.
  • the geomagnetic information of the parking space can be obtained through the geomagnetic sensor 2.
  • the geomagnetic information obtained by the geomagnetic sensor 2 is different. 2
  • the measured geomagnetic information can preliminarily determine whether there is a vehicle in the parking space.
  • the radar measurement information can be obtained by measuring the millimeter-wave radar 4.
  • the radar measurement information obtained by the millimeter-wave radar 4 includes the distance r between the millimeter-wave radar 4 and the vehicle body.
  • the measurement controller 1 can determine the parking space occupancy information of the corresponding parking space according to the geomagnetic information and the radar measurement information, so as to realize the detection of the parking space. Using geomagnetic information and radar measurement information, it can effectively realize the detection of parking spaces and improve the detection accuracy.
  • the measurement controller 1 is also connected with the measurement communication module 3, and the determined parking space occupancy information can be wirelessly transmitted to the parking space management server through the measurement communication module 3.
  • the measurement communication module 3 includes a 433MHz communication module.
  • the measurement communication module 3 can also adopt other forms, as long as the parking space occupancy information can be transmitted to the parking space management server, which is specifically in the technical field It is well known to people and will not be described here.
  • the parking space occupancy information specifically includes the start time of the vehicle entering the parking space and the end time of the vehicle leaving the parking space.
  • the measurement power supply 5 includes a solar power supply as the main power supply and a backup power supply as a backup. When the solar power supply voltage is lower than the set power supply threshold, The working power required by the measurement controller 1 , the geomagnetic sensor 2 and the millimeter-wave radar 4 is provided by the backup power supply.
  • the solar energy can be collected by the solar power supply to provide power for the entire parking space detector.
  • the backup power supply can generally be a lithium battery. Only when the solar power supply is lower than the set power supply threshold, the backup power supply is used. The specific size of the power supply threshold can be selected according to actual needs. When the power supply threshold is lower than the power supply threshold, the entire parking space detector cannot work normally.
  • the solar power supply includes a solar panel P1, and the positive output end of the solar panel P1 is connected to one end of the capacitor C3, the VIN end of the low dropout voltage regulator U2, and the cathode end of the diode D1.
  • the voltage regulator U2 adopts the chip model XC6206P422MR.
  • the anode end of the diode D1 is connected to the VOUT end of the low dropout voltage regulator U2, one end of the capacitor C4, and one end of the resistor R4.
  • the other end of the resistor R4 is connected to the positive end of the rechargeable battery Bat1.
  • the cathode end of the diode D2 is connected to one end of the capacitor C6 and one end of the capacitor C7, the other end of the capacitor C6 and the other end of the capacitor C7 are grounded, the cathode end of the rechargeable battery Bat1, the negative end of the solar panel P1
  • the terminal, the other end of the capacitor C3, the other end of the capacitor C4, and the VSS end of the low dropout voltage regulator U2 are all grounded.
  • the detection mode and the sleep mode are used alternately.
  • the detection mode works for 1 second, and then enters the sleep mode for 9 seconds.
  • the specific situation between the detection mode and the sleep mode can be based on the actual situation. It needs to be selected, which is well known to those skilled in the art, and will not be repeated here.
  • the millimeter-wave radar 4 when the millimeter-wave radar 4 is in operation, it transmits triangular waves, and the specific r between the millimeter-wave radar 4 and the vehicle body can be obtained through the beat signal between the echo signal and the transmitted signal.
  • the echo signal and the transmitted signal have the same signal waveform mixing, then the beat signal of the positive frequency band and the beat signal of the negative frequency band are respectively expressed as
  • r is the distance between the vehicle body and the millimeter-wave radar 4
  • T is the rise time or fall time
  • v is the relative radial velocity between the vehicle body and the millimeter-wave radar 4
  • t ⁇ T up and t ⁇ T dn are respectively Positive effective time period, negative effective time period
  • f up (t) is the beat signal of the positive frequency band
  • f dn (t) is the beat signal of the negative frequency band.
  • the measurement controller 1 can calculate the distance r between the vehicle body and the millimeter-wave radar 4 according to the above-mentioned positive tuning frequency band beat signal f up (t) and negative tuning frequency band beat signal f dn (t).
  • the measurement controller 1 performs motion compensation on the measurement process, and the stability and accuracy of the vehicle identification process can be ensured after the motion compensation.
  • the motion compensation includes the following steps:
  • Step 1 Rough measurement of velocity based on distance image:
  • the echo signal received by the millimeter wave radar 4 is sampled within the effective period of frequency modulation T up and T dn , and sorted according to the emission frequency from low to high:
  • n the sampling period
  • r the distance between the millimeter wave radar 4 and the vehicle body
  • k the frequency modulation slope
  • the frequency modulation slope k is determined according to the bandwidth and sampling rate set by the millimeter wave radar, which is well known to those skilled in the art.
  • v is the relative radial velocity between the vehicle body and the millimeter-wave radar 4
  • y up (n) y dp (n) are the offsets that occur relative to the stationary target, respectively
  • exp is the exponential operation
  • Step 2 Perform FFT operation on the sorted and sampled signals to obtain the peak position of the range image
  • n up and n dn are the peak positions of the target distance in the rising and falling frames after sorting according to the transmission frequency, respectively; N is the number of FFT points,
  • the speed estimate is the coarse compensation factor of the distance
  • the compensation factor is the coarse compensation of the primary phase.
  • the distances y up (n) and y dp (n) after rough motion compensation are obtained after IFFT processing.
  • the distance r can be obtained by y up (n) and y dp (n).
  • Step 2 When the speed exceeds a certain value, the influence of the quadratic phase term increases, which makes the accuracy worse.
  • the pulse group phase difference method is further used for estimation, and the pulse group phase difference operator is defined:
  • S up (n), S dn (n) are the values after motion compensation, is the conjugate of S dn (n), and arg is the phase operation;
  • v is the true value of radial velocity, is the estimated value of velocity, such as formula (14), the above two formulas are substituted into the pulse group phase difference operator:
  • phase difference B pd ( ⁇ v) is a global minimum.
  • the phase of the echo signals corresponding to the same transmit frequency in the positive and negative FM effective segments should be the same, and the phase difference between the two should be 0.
  • the error in the measurement of the distance is particularly large, so it is necessary to perform speed compensation on the moving target in order to accurately calculate the distance.
  • the pulse group phase difference method has a global minimum in velocity, which is located at the true value of the target radial velocity v.
  • the measurement controller 1 also calibrates the geomagnetic sensor 2 and the millimeter-wave radar 4. Specifically, a calibration equation is established through the experimentally measured measurement value and standard value, and the calibration equation is:
  • H'x and H'y are measured values, such as the geomagnetic information measured by the geomagnetic sensor 2 and the distance measured by the millimeter-wave radar 4, respectively, and Hx and Hy are calibration values.
  • a 11 , a 12 , a 21 , and a 22 are constant coefficients, and b 1 and b 2 are fixed coefficients.
  • the present invention uses the solar power supply and the backup power supply to supply power together, which can greatly increase the working time limit of the entire parking space detector.
  • the geomagnetic information of the geomagnetic sensor 2 and the radar measurement information of the millimeter-wave radar 4 are used to jointly judge the situation of the parking space, which improves the detection rate and detection accuracy; the measurement communication module 3 wirelessly transmits the parking space occupancy information. difficulty of construction.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

一种基于地磁传感器和毫米波雷达的车位检测器。包括与所需车位对应的毫米波雷达(4)以及地磁传感器(2),毫米波雷达(4)以及地磁传感器(2)均与测量控制器(1)电连接;通过地磁传感器(2)能获取所在车位的地磁信息,通过毫米波雷达(4)能得到所在车位的雷达测量信息;测量控制器(1)采集地磁传感器(2)获取的地磁信息以及毫米波雷达(4)的雷达测量信息,根据地磁信息以及雷达测量信息确定相应车位的车位占用信息,以实现对车位的检测,有效实现了对车位检测与管理,提高检测精度,使用方便,安全可靠。

Description

基于地磁传感器和毫米波雷达的车位检测器 技术领域
本发明涉及一种车位检测器,尤其是一种基于地磁传感器和毫米波雷达的车位检测器。
背景技术
无人值守路停车位的检测是智慧城市交通的未来发展趋势,目前车位检测常用红外、超声波或微波探头,装在车位的侧面或车挡顶面。但这三种探头遇到恶意逃费时,如可能会用异物堵住探头位置,车位检测器就探测不到车辆进入,对车位的管理带来不便。
现有的地磁方式虽然可以解决基础车辆检测问题,但普遍存在检测精度不高,无法适应地下矿藏、管网、电缆和地铁等对磁场影响比较大的场合;而红外和超声波则必须在外壳模具上开孔,因此,需要规避树叶覆盖、尘土堵塞等问题,无法满足实际的管理需求。
发明内容
本发明的目的是克服现有技术中存在的不足,提供一种基于地磁传感器和毫米波雷达的车位检测器,其能有效实现对车位检测与管理,提高检测精度,使用方便,安全可靠。
按照本发明提供的技术方案,所述基于地磁传感器和毫米波雷达的车位检测器,包括与所需车位对应的毫米波雷达以及地磁传感器,所述毫米波雷达以及地磁传感器均与测量控制器电连接;
通过地磁传感器能获取所在车位的地磁信息,通过毫米波雷达能得到所在车位的雷达测量信息;测量控制器采集地磁传感器获取的地磁信息以及毫米波雷达的雷达测量信息;测量控制器能根据地磁信息以及雷达测量信息确定相应车位的车位占用信息,以实现对车位的检测。
所述测量控制器还与测量通讯模块连接,通过测量通讯模块能将确定的车位占用信息无线传输至车位管理服务器。
所述测量通讯模块包括433MHz通讯模块。
还包括用于提供工作电源的测量供电电源,所述测量供电电源包括作为主电源的太阳能供电电源以及作为备用的备用电源,在太阳能供电电源电压低于设定供电阈值时,通过备用电源提供所述测量控制器、地磁传感器以及毫米波雷达所需的工作电源。
所述太阳能供电电源包括太阳能板P1,所述太阳能板P1的正极输出端与电容C3的一端、低压差稳压器U2的VIN端以及二极管D1的阴极端连接,低压差稳压器U2采用型号为XC6206P422MR的芯片,二极管D1的阳极端与低压差稳压器U2的VOUT端、电容C4的一端、电阻R4的一端连接,电阻R4的另一端与充电电池Bat1的正极端以及二极管D2的阳极端连接,二极管D2的阴极端与电容C6的一端以及电容C7的一端连接,电容C6的另一端 以及电容C7的另一端接地,充电电池Bat1的阴极端、太阳能板P1的负极端、电容C3的另一端、电容C4的另一端以及低压差稳压器U2的VSS端均接地。
通过毫米波雷达得到的雷达测量信息包括所述毫米波雷达与车体之间的距离r。
利用毫米波雷达(4)测量动态的车辆时,测量控制器(1)对测量进行运动补偿,所述运动补偿包括如下步骤:
步骤1、对毫米波雷达(4)接收的回波信号在调频有效段时间T up和T dn内采样,并按照发射频率由低到高排序得到:
Figure PCTCN2021075448-appb-000001
Figure PCTCN2021075448-appb-000002
其中,pi=π,f 0为频率,c为光速,T s为采样周期,n为采样点数,r为毫米波雷达与车体之间的距离,k为调频斜率,v为车体与所述毫米波雷达的相对径向速度,y up(n)、y dp(n)分别为相对静止目标发生的偏移;exp为指数运算;
步骤2、对排序后采样的信号进行FFT的运算,可以得到距离像的峰值位置,
Figure PCTCN2021075448-appb-000003
Figure PCTCN2021075448-appb-000004
其中,n up和n dn分别为按照发射频率高低排序后,上升和下降帧中目标距离峰值位置;N为FFT的点数,
步骤3、根据公式(13)和公式(12),能得到
Figure PCTCN2021075448-appb-000005
其中,
Figure PCTCN2021075448-appb-000006
为速度估计值,速度估计值
Figure PCTCN2021075448-appb-000007
为距离的粗补偿因子,利用速度估计值
Figure PCTCN2021075448-appb-000008
在补偿后,经IFFT处理后得到运动粗补偿后的距离y up(n)、y dp(n)。
定义脉组相位差分算子:
Figure PCTCN2021075448-appb-000009
其中,S up(n)、S dn(n)为经过运动补偿后的值;
Figure PCTCN2021075448-appb-000010
Figure PCTCN2021075448-appb-000011
其中:
Figure PCTCN2021075448-appb-000012
v为径向速度真值,
Figure PCTCN2021075448-appb-000013
为速度估计值,将以上两式代入脉组相位差分算子:
Figure PCTCN2021075448-appb-000014
Ψ=[(8*π*Δv)/c](f 0T+k*T*n*T s-f 0*n*T s-k*n 2*T s 2),
当Δv=0时,相位差分B pd(Δv)为全局最小值。
本发明的优点:采用太阳能供电电源和备用电源共同供电,能够使得整个车位检测器的工作时间时限大大增加。采用地磁传感器的地磁信息和毫米波雷达的雷达测量信息共同判断车位的情况,提高了检测率与检测精度;通过测量通讯模块无线传输车位占用信息,无需拉线,即装即用,降低施工的难度。
附图说明
图1为本发明的结构框图。
图2为本发明太阳能供电电源的原理图。
图3为本发明毫米波雷达的发射信号与回波信号的示意图。
附图标记说明:1-测量控制器、2-地磁传感器、3-测量通讯模块、4-毫米波雷达以及5-测量供电电源。
具体实施方式
下面结合具体附图和实施例对本发明作进一步说明。
如图1所示:为了能有效实现对车位检测与管理,提高检测精度,本发明包括与所需车位对应的毫米波雷达4以及地磁传感器2,所述毫米波雷达4以及地磁传感器2均与测量控制器1电连接;
通过地磁传感器2能获取所在车位的地磁信息,通过毫米波雷达4能得到所在车位的雷达测量信息;测量控制器1采集地磁传感器2获取的地磁信息以及毫米波雷达4的雷达测量信息;测量控制器1能根据地磁信息以及雷达测量信息确定相应车位的车位占用信息,以实现对车位的检测。
具体地,毫米波雷达4以及地磁传感器2均可以采用现有常用的形式,毫米波雷达4以及地磁传感器2可以安装于车位的的地下,或者安装于车位的一侧,具体位置可以根据实际需要进行选择,此处不再赘述。毫米波雷达4以及地磁传感器2与测量控制器1电连接,测量控制器1可以采用现有常用的微处理器,微处理器的具体类型可以根据实际需要选择,此处不再赘述。
本发明实施例中,通过地磁传感器2可以获取所在车位的地磁信息,一般地,当车位上存在车辆时与车位上不存在车辆时,地磁传感器2所获取的地磁信息不同,从而能根据地磁传感器2所测量的地磁信息能初步判断车位上是否存在车辆。通过毫米波雷达4能测量得到雷达测量信息,具体地,通 过毫米波雷达4得到的雷达测量信息包括所述毫米波雷达4与车体之间的距离r。具体实施时,测量控制器1能根据地磁信息以及雷达测量信息确定相应车位的车位占用信息,以实现对车位的检测。利用地磁信息以及雷达测量信息,能有效实现对车位的检测,提高检测精度。
进一步地,所述测量控制器1还与测量通讯模块3连接,通过测量通讯模块3能将确定的车位占用信息无线传输至车位管理服务器。
本发明实施例中,所述测量通讯模块3包括433MHz通讯模块,当然,测量通讯模块3还可以采用其他的形式,只要能实现将车位占用信息传输至车位管理服务器均可,具体为本技术领域人员所熟知,此处不再所述。具体实施时,车位占用信息,具体包括车辆进入车位的起始时间,以及车辆离开车位的结束时间,根据车位占用时间能方便车位管理服务器进行计时等管理。
进一步地,还包括用于提供工作电源的测量供电电源5,所述测量供电电源5包括作为主电源的太阳能供电电源以及作为备用的备用电源,在太阳能供电电源电压低于设定供电阈值时,通过备用电源提供所述测量控制器1、地磁传感器2以及毫米波雷达4所需的工作电源。
本发明实施例中,通过太阳能供电电源能采集太阳能,并为整个车位检测器提供电源,备用电源一般可以采用锂电池,只有当太阳能供电电源低于设定供电阈值时,才通过备用电源供电。所述供电阈值具体的大小可以根据实际需要进行选择,低于所述供电阈值时,则整个车位检测器无法正常工作。
如图2所示,所述太阳能供电电源包括太阳能板P1,所述太阳能板P1的正极输出端与电容C3的一端、低压差稳压器U2的VIN端以及二极管D1的阴极端连接,低压差稳压器U2采用型号为XC6206P422MR的芯片,二极管D1的阳极端与低压差稳压器U2的VOUT端、电容C4的一端、电阻R4的一端连接,电阻R4的另一端与充电电池Bat1的正极端以及二极管D2的阳极端连接,二极管D2的阴极端与电容C6的一端以及电容C7的一端连接,电容C6的另一端以及电容C7的另一端接地,充电电池Bat1的阴极端、太阳能板P1的负极端、电容C3的另一端、电容C4的另一端以及低压差稳压器U2的VSS端均接地。
本发明实施例中,太阳能供电电源与备用电源间配合实现供电的方式与现有相一致,具体方式为本技术领域人员所熟知,此处不再赘述。
此外,在具体车位检测时,采用检测模式与休眠模式交替工作工作方式,如检测模式时工作1秒钟,然后进入休眠模式9秒钟,当然,检测模式与休眠模式间的具体情况可以根据实际需要选择,具体为本技术领域人员所熟知,此处不再赘述。
如图3所示,毫米波雷达4在工作时,发射三角波,通过回波信号与发射信号的差拍信号,能得到毫米波雷达4与车体之间的具体r。具体地,回波信号与发射信号具有相同的信号波形混频,则正调频段差拍信号、负调频段 差拍信号分别表示为
Figure PCTCN2021075448-appb-000015
Figure PCTCN2021075448-appb-000016
t∈T dn
其中:r为车体与毫米波雷达4之间的距离,T为上升时间或者下降时间;v为车体与毫米波雷达4的相对径向速度;t∈T up、t∈T dn分别为正有效时间段、负有效时间段,f up(t)为正调频段差拍信号,f dn(t)为负调频段差拍信号。测量控制器1根据上述正调频段差拍信号f up(t),负调频段差拍信号f dn(t)能计算出车体与毫米波雷达4之间的距离r。
进一步地,利用毫米波雷达4测量动态的车辆时,测量控制器1对测量过程进行运动补偿,进行运动补偿后能保证车辆识别过程的稳定性与精确性。所述运动补偿包括如下步骤:
步骤1、基于距离像的速度粗测:对毫米波雷达4接收的回波信号在调频有效段时间T up和T dn内采样,并按照发射频率由低到高排序得到:
Figure PCTCN2021075448-appb-000017
Figure PCTCN2021075448-appb-000018
其中,pi=π,f 0为频率,f 0一般可以设置为24.125GHz,c为光速,T s为采样周期,采样周期T s可以根据需要设置,如根据成本等方面综合考虑,n为采样点数,r为毫米波雷达4与车体之间的距离,k为调频斜率,调频斜率k根据毫米波雷达设置的带宽以及采样率决定,具体为本技术领域人员所熟知。v为车体与所述毫米波雷达4的相对径向速度,y up(n)、y dp(n)分别为相对静止目标发生的偏移;exp为指数运算;
步骤2、对排序后采样的信号进行FFT的运算,可以得到距离像的峰值位置,
Figure PCTCN2021075448-appb-000019
Figure PCTCN2021075448-appb-000020
其中,n up和n dn分别为按照发射频率高低排序后,上升和下降帧中目标距离峰值位置;N为FFT的点数,
步骤3、公式(13)和公式(12)两式相减,能得到
Figure PCTCN2021075448-appb-000021
其中,
Figure PCTCN2021075448-appb-000022
为速度估计值,速度估计值
Figure PCTCN2021075448-appb-000023
为距离的粗补偿因子,所述补偿因子为一次相位的粗补偿。在补偿后,经IFFT处理后得到运动粗补偿后的距离y up(n)、y dp(n)。通过y up(n)、y dp(n)能得到距离r。
步骤2、由于速度超过一定值时,二次相位项的影响加大,使得精度变得差,为了精确的得到距离值,进一步地用脉组相位差分法估算,定义脉组相位差分算子:
Figure PCTCN2021075448-appb-000024
其中,S up(n)、S dn(n)为经过运动补偿后的值,
Figure PCTCN2021075448-appb-000025
为S dn(n)的共轭,arg为取相位运算;
Figure PCTCN2021075448-appb-000026
Figure PCTCN2021075448-appb-000027
其中:
Figure PCTCN2021075448-appb-000028
v为径向速度真值,
Figure PCTCN2021075448-appb-000029
为速度估计值,如公式(14),将以上两式代入脉组相位差分算子:
Figure PCTCN2021075448-appb-000030
Ψ=[(8*π*Δv)/c](f 0T+k*T*n*T s-f 0*n*T s-k*n 2*T s 2),
精确运动补偿时,相位差分B pd(Δv)为全局最小值。
本发明实施例中,根据速度粗测精度,通常选取Δv=3σ v
Figure PCTCN2021075448-appb-000031
σ v为距离像峰值偏移半个距离分辨率的值,确定脉组相位差分法搜索范围。当速度因子被完全补偿时,正、负调频有效段相同发射频率对应的回波信号相位应该相同,两者的相位差为0。具体地,目标运动过程中,对距离的测算影响误差特别大,所以必须对运动的目标进行速度补偿,才能精确计算出距离。脉组相位差分法在速度上具有全局最小值,该最小值位于目标径向速度v的真值处。速度估计值
Figure PCTCN2021075448-appb-000032
转化成基于最小脉组误差准则的最优参数搜索问题,通过相位差分法找到最小值所在位置,即可实现速度的最优估计,经过IFFT从而得到精确的距离;其中,具体得到精确距离的过程为本技术领域人员所熟知,此处不再赘述。
此外,测量控制器1还对地磁传感器2以及毫米波雷达4进行标定,具体地,通过实验地测得的测量值和标准值,建立标定方程,标定方程为:
Figure PCTCN2021075448-appb-000033
其中,H' x、H' y为测量值,如可以分别为地磁传感器2测量得到的地磁信息,以及毫米波雷达4测量得到的距离,H x、H y为标定值。a 11、a 12、a 21,a 22为常系数,b 1、b 2为固定系数,具体数值可以根据实验标定得到,具体为本技术
Figure PCTCN2021075448-appb-000034
领域所熟知,此处不再赘述。
综上,本发明采用太阳能供电电源和备用电源共同供电,能够使得整个车位检测器的工作时间时限大大增加。采用地磁传感器2的地磁信息和毫米波雷达4的雷达测量信息共同判断车位的情况,提高了检测率与检测精度;通过测量通讯模块3无线传输车位占用信息,无需拉线,即装即用,降低施工的难度。

Claims (8)

  1. 一种基于地磁传感器和毫米波雷达的车位检测器,其特征是:包括与所需车位对应的毫米波雷达(4)以及地磁传感器(2),所述毫米波雷达(4)以及地磁传感器(2)均与测量控制器(1)电连接;
    通过地磁传感器(2)能获取所在车位的地磁信息,通过毫米波雷达(4)能得到所在车位的雷达测量信息;测量控制器(1)采集地磁传感器(2)获取的地磁信息以及毫米波雷达(4)的雷达测量信息;测量控制器(1)能根据地磁信息以及雷达测量信息确定相应车位的车位占用信息,以实现对车位的检测。
  2. 根据权利要求1所述的基于地磁传感器和毫米波雷达的车位检测器,其特征是:所述测量控制器(1)还与测量通讯模块(3)连接,通过测量通讯模块(3)能将确定的车位占用信息无线传输至车位管理服务器。
  3. 根据权利要求2所述的基于地磁传感器和毫米波雷达的车位检测器,其特征是:所述测量通讯模块(3)包括433MHz通讯模块。
  4. 根据权利要求1所述的基于地磁传感器和毫米波雷达的车位检测器,其特征是:还包括用于提供工作电源的测量供电电源(5),所述测量供电电源(5)包括作为主电源的太阳能供电电源以及作为备用的备用电源,在太阳能供电电源电压低于设定供电阈值时,通过备用电源提供所述测量控制器(1)、地磁传感器(2)以及毫米波雷达(4)所需的工作电源。
  5. 根据权利要求4所述的基于地磁传感器和毫米波雷达的车位检测器,其特征是:所述太阳能供电电源包括太阳能板P1,所述太阳能板P1的正极输出端与电容C3的一端、低压差稳压器U2的VIN端以及二极管D1的阴极端连接,低压差稳压器U2采用型号为XC6206P422MR的芯片,二极管D1的阳极端与低压差稳压器U2的VOUT端、电容C4的一端、电阻R4的一端连接,电阻R4的另一端与充电电池Bat1的正极端以及二极管D2的阳极端连接,二极管D2的阴极端与电容C6的一端以及电容C7的一端连接,电容C6的另一端以及电容C7的另一端接地,充电电池Bat1的阴极端、太阳能板P1的负极端、电容C3的另一端、电容C4的另一端以及低压差稳压器U2的VSS端均接地。
  6. 根据权利要求1所述的基于地磁传感器和毫米波雷达的车位检测器,其特征是:通过毫米波雷达(4)得到的雷达测量信息包括所述毫米波雷达(4)与车体之间的距离r。
  7. 根据权利要求6所述的基于地磁传感器和毫米波雷达的车位检测器,其特征是,利用毫米波雷达(4)测量动态的车辆时,测量控制器(1)对测量进行运动补偿,所述运动补偿包括如下步骤:
    步骤1、对毫米波雷达(4)接收的回波信号在调频有效段时间T up和T dn内采样,并按照发射频率由低到高排序得到:
    Figure PCTCN2021075448-appb-100001
    Figure PCTCN2021075448-appb-100002
    其中,pi=π,f 0为频率,c为光速,T s为采样周期,n为采样点数,r为毫米波雷达(4)与车体之间的距离,k为调频斜率,v为车体与所述毫米波雷达(4)的相对径向速度,y up(n)、y dp(n)分别为相对静止目标发生的偏移;exp为指数运算;
    步骤2、对排序后采样的信号进行FFT的运算,可以得到距离像的峰值位置,
    Figure PCTCN2021075448-appb-100003
    Figure PCTCN2021075448-appb-100004
    其中,n up和n dn分别为按照发射频率高低排序后,上升和下降帧中目标距离峰值位置;N为FFT的点数,
    步骤3、根据公式(13)和公式(12),能得到
    Figure PCTCN2021075448-appb-100005
    其中,
    Figure PCTCN2021075448-appb-100006
    为速度估计值,速度估计值
    Figure PCTCN2021075448-appb-100007
    为距离的粗补偿因子,利用速度估计值
    Figure PCTCN2021075448-appb-100008
    在补偿后,经IFFT处理后得到运动粗补偿后的距离y up(n)、y dp(n)。
  8. 根据权利要求7所述的基于地磁传感器和毫米波雷达的车位检测器,其特征是,定义脉组相位差分算子:
    Figure PCTCN2021075448-appb-100009
    其中,S up(n)、S dn(n)为经过运动补偿后的值;
    Figure PCTCN2021075448-appb-100010
    Figure PCTCN2021075448-appb-100011
    其中:
    Figure PCTCN2021075448-appb-100012
    v为径向速度真值,
    Figure PCTCN2021075448-appb-100013
    为速度估计值,将以上两式代入脉组相位差分算子:
    Figure PCTCN2021075448-appb-100014
    Ψ=[(8*π*Δv)/c](f 0T+k*T*n*T s-f 0*n*T s-k*n 2*T s 2),
    当Δv=0时,相位差分B pd(Δv)为全局最小值。
PCT/CN2021/075448 2020-11-17 2021-02-05 基于地磁传感器和毫米波雷达的车位检测器 WO2022105066A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011283125.1 2020-11-17
CN202011283125.1A CN112530198B (zh) 2020-11-17 2020-11-17 基于地磁传感器和毫米波雷达的车位检测器

Publications (1)

Publication Number Publication Date
WO2022105066A1 true WO2022105066A1 (zh) 2022-05-27

Family

ID=74981831

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/075448 WO2022105066A1 (zh) 2020-11-17 2021-02-05 基于地磁传感器和毫米波雷达的车位检测器

Country Status (2)

Country Link
CN (1) CN112530198B (zh)
WO (1) WO2022105066A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117523849A (zh) * 2024-01-05 2024-02-06 中建科工集团智慧停车科技有限公司 基于地磁和雷达的车位检测方法、装置、设备及存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2905764A1 (en) * 2014-02-10 2015-08-12 Park 24 Hybrid magnetic-radar detector for space management
CN106340188A (zh) * 2016-09-29 2017-01-18 深圳普智联科机器人技术有限公司 一种路边车位检测装置及其检测方法
CN106504581A (zh) * 2017-01-03 2017-03-15 安徽嘉盛位联网络科技有限公司 一种车辆泊位车检器及检测方法
KR20180104222A (ko) * 2017-03-09 2018-09-20 주식회사 아이유플러스 레이더를 이용하여 차량의 주차를 감지하는 방법 및 장치
CN109061589A (zh) * 2018-07-06 2018-12-21 西安电子科技大学 随机跳频雷达的目标运动参数估计方法
CN110782698A (zh) * 2019-10-17 2020-02-11 深圳市方格尔科技有限公司 车位检测装置和车位检测方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130201316A1 (en) * 2012-01-09 2013-08-08 May Patents Ltd. System and method for server based control
CN103236190B (zh) * 2013-05-13 2016-01-20 安徽工程大学 露天停车场停车定位监测系统
CN106781671A (zh) * 2017-01-06 2017-05-31 武汉键停科技有限公司 一种基于两种传感器交叉验证的车位状态检测方法
CN109472980A (zh) * 2018-10-18 2019-03-15 成都亚讯星科科技股份有限公司 基于NB-IoT技术的地磁车辆检测器及其检测方法
CN109407071B (zh) * 2018-12-13 2021-07-20 广州极飞科技股份有限公司 雷达测距方法、雷达测距装置、无人机和存储介质

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2905764A1 (en) * 2014-02-10 2015-08-12 Park 24 Hybrid magnetic-radar detector for space management
CN106340188A (zh) * 2016-09-29 2017-01-18 深圳普智联科机器人技术有限公司 一种路边车位检测装置及其检测方法
CN106504581A (zh) * 2017-01-03 2017-03-15 安徽嘉盛位联网络科技有限公司 一种车辆泊位车检器及检测方法
KR20180104222A (ko) * 2017-03-09 2018-09-20 주식회사 아이유플러스 레이더를 이용하여 차량의 주차를 감지하는 방법 및 장치
CN109061589A (zh) * 2018-07-06 2018-12-21 西安电子科技大学 随机跳频雷达的目标运动参数估计方法
CN110782698A (zh) * 2019-10-17 2020-02-11 深圳市方格尔科技有限公司 车位检测装置和车位检测方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117523849A (zh) * 2024-01-05 2024-02-06 中建科工集团智慧停车科技有限公司 基于地磁和雷达的车位检测方法、装置、设备及存储介质
CN117523849B (zh) * 2024-01-05 2024-04-05 中建科工集团智慧停车科技有限公司 基于地磁和雷达的车位检测方法、装置、设备及存储介质

Also Published As

Publication number Publication date
CN112530198B (zh) 2022-03-22
CN112530198A (zh) 2021-03-19

Similar Documents

Publication Publication Date Title
CN101738601B (zh) 基于雷达近场回波功率谱特征的机车速度测量系统及方法
CN109615880B (zh) 一种基于雷达图像处理的车流量测量方法
WO2022105066A1 (zh) 基于地磁传感器和毫米波雷达的车位检测器
CN105738898A (zh) 基于测距测角测速相结合的多车道雷达测速方法及装置
CN106569207A (zh) 检测停车位是否存在车辆的方法和系统
US20040041727A1 (en) Crossover detection method, radar apparatus and crossover detection program
CN107783123B (zh) 无人驾驶汽车复杂环境防撞毫米波雷达信号处理系统及方法
US20220413005A1 (en) Method for vehicle speed estimation using multiple geomagnetic sensors
CN105807183A (zh) 一种基于非接触式传感器的输电线路故障定位方法
CN113721253B (zh) 基于fmcw激光雷达的运动物体速度检测方法
CN111055877B (zh) 一种宽温范围智能铁鞋及其防溜状态判断方法
CN112485790A (zh) 基于k波段雷达的轨道非接触式变形高精度测量方法
CN115278513A (zh) 车辆定位系统、方法及路侧装置
WO2022017537A1 (zh) 一种利用激光雷达组对闸壁固定目标物进行识别的系统及方法
US20060033642A1 (en) Self-powered vehicle speed sensor
CN105911541A (zh) 基于增益控制的雷达测速装置及系统
CN207367369U (zh) 基于微波的车辆排队长度检测系统
CN109946483B (zh) 一种现场测速标准装置
CN110361735B (zh) 一种基于测速雷达的车辆测速方法及装置
CN106093458A (zh) 单发射波束三天线微波车速和车型检测雷达及检测方法
CN104267205A (zh) 一种道路车辆行驶速度垂向测速仪及方法
CN205787118U (zh) 基于增益控制的雷达测速装置
CN111648206B (zh) 一种沥青路面实时摊铺辅助监测系统
CN113534142A (zh) 基于雷达系统的铁路接触网测量方法及轨道车
JP3388540B2 (ja) ビットエラーレート測定方法及びその測定装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21893226

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21893226

Country of ref document: EP

Kind code of ref document: A1