WO2022104869A1 - 基于芯片级加密的以太网和现场总线融合网关及传输方法 - Google Patents

基于芯片级加密的以太网和现场总线融合网关及传输方法 Download PDF

Info

Publication number
WO2022104869A1
WO2022104869A1 PCT/CN2020/131784 CN2020131784W WO2022104869A1 WO 2022104869 A1 WO2022104869 A1 WO 2022104869A1 CN 2020131784 W CN2020131784 W CN 2020131784W WO 2022104869 A1 WO2022104869 A1 WO 2022104869A1
Authority
WO
WIPO (PCT)
Prior art keywords
ethernet
module
message
bus
chip
Prior art date
Application number
PCT/CN2020/131784
Other languages
English (en)
French (fr)
Inventor
蒋华
孙海
Original Assignee
昆高新芯微电子(江苏)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昆高新芯微电子(江苏)有限公司 filed Critical 昆高新芯微电子(江苏)有限公司
Publication of WO2022104869A1 publication Critical patent/WO2022104869A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/40Bus networks
    • H04L12/40006Architecture of a communication node
    • H04L12/40032Details regarding a bus interface enhancer
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/46Interconnection of networks
    • H04L12/4641Virtual LANs, VLANs, e.g. virtual private networks [VPN]
    • H04L12/4645Details on frame tagging
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/66Arrangements for connecting between networks having differing types of switching systems, e.g. gateways
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L63/00Network architectures or network communication protocols for network security
    • H04L63/04Network architectures or network communication protocols for network security for providing a confidential data exchange among entities communicating through data packet networks
    • H04L63/0428Network architectures or network communication protocols for network security for providing a confidential data exchange among entities communicating through data packet networks wherein the data content is protected, e.g. by encrypting or encapsulating the payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L69/00Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass
    • H04L69/08Protocols for interworking; Protocol conversion
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L69/00Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass
    • H04L69/22Parsing or analysis of headers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/40Bus networks
    • H04L2012/40208Bus networks characterized by the use of a particular bus standard
    • H04L2012/40215Controller Area Network CAN
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/02Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]

Definitions

  • the invention relates to the technical field of industrial Ethernet, in particular to an Ethernet and field bus fusion gateway based on chip-level data encryption, a message transmission method and a transmission network.
  • Industrial Ethernet gateways are used in many fields such as smart factories, intelligent transportation, environmental protection, industrial monitoring, and environmental monitoring.
  • the basic function of the industrial Ethernet gateway is to convert all kinds of information collected by the perception layer on the field bus to form high-speed data and transmit it to the Internet to achieve certain management functions.
  • Controller Area Network CAN, Controller Area Network
  • CAN Controller Area Network
  • Ethernet Ethernet (Ether Net) has the characteristics of strong openness, low real-time performance, low reliability, large bandwidth, large amount of deployment, and easy upgrade.
  • the CAN bus application technology can easily realize the interconnection of various industrial equipment on different CAN buses, and realize the functions of remote control, monitoring and diagnosis, so as to achieve the purpose of improving efficiency and reducing costs for enterprises.
  • the existing Ethernet gateways use software methods to realize the mutual conversion of CAN messages and Ethernet messages at the transport layer or application layer of the TCP/IP protocol stack, which is complicated to implement, with large message forwarding delay and high packet loss rate. Moreover, the transmission security of CAN messages in Ethernet is very low.
  • the present invention proposes a secure industrial Ethernet gateway that realizes the mutual conversion of CAN protocol messages and Ethernet messages on a physical layer PHY chip, and supports MacSec (IEEE802.1ae) hardware encryption data.
  • This scheme adopts low-cost, short-time, seamless technology, uses Ethernet as the transmission carrier of CAN bus, extends the deployment distance of CAN bus, and expands its deployment space. Transparent.
  • a first aspect of the present invention provides an Ethernet and field bus fusion gateway based on chip-level data encryption, including a physical layer PHY chip; the physical layer PHY chip is connected to the Ethernet and the CAN bus, and is used for the Ethernet and the CAN bus.
  • the packets are mutually transmitted between them; the physical layer PHY chip encrypts and decrypts the packets.
  • the physical layer PHY chip includes a media dependent interface MDI module, a front-end analog module, a CAN SerDes module, a CAN controller module, a data cache module, an insertion and deletion timestamp module, a protocol conversion module, an encryption and decryption module, and an encryption and decryption module, which are connected in sequence.
  • the inserting and deleting time stamp module is configured to add a time stamp of the packet received by the data cache module in front of the packet.
  • the protocol conversion module is used to add or delete the Ethernet Layer 2 header, and the data structure of the Layer 2 header is: destination MAC address MAC DA, source MAC address MAC SA, VLAN tag and message type/length.
  • the encryption and decryption module adopts the MacSec mode to realize the encryption of the message; the encryption and decryption module determines and decrypts the MacSec decryption key according to the MAC DA and the MAC SA.
  • a second aspect of the present invention provides a message transmission method based on a chip-level data encryption-based Ethernet and fieldbus fusion gateway, and the transmission method includes the chip-level data encryption-based Ethernet and fieldbus described in the first aspect of the present invention.
  • the field bus fusion gateway, the message transmission method includes the following steps:
  • the step that the physical layer PHY chip transmits the message from the CAN bus to the Ethernet includes:
  • the message is sequentially transmitted to the CAN controller module through the front-end analog module and the CAN SerDes module, and the CAN controller module extracts the digital signal of the message and outputs it to the data buffer module;
  • the encryption and decryption module adopts MacSec to realize the encryption of the message digital signal, and encapsulate the encrypted message digital signal;
  • the step that the physical layer PHY chip transmits the message from the Ethernet to the CAN bus includes:
  • the information in the Ethernet Layer 2 header is extracted to select the corresponding MDI module of the media-dependent interface, then delete the Ethernet Layer 2 header, delete the timestamp, and convert the packet digital
  • the signal is converted into a CAN message and sent to the CAN bus.
  • the data structure of the Ethernet Layer 2 header is: destination MAC address MAC DA, source MAC address MAC SA, VLAN tag and message type/length.
  • determining and decrypting the MacSec decryption key according to the Ethernet Layer 2 header specifically includes:
  • the MAC SA determines the MacSec decryption key and decrypts it.
  • a third aspect of the present invention provides a transmission network based on a chip-level data encryption-based Ethernet and fieldbus fusion gateway, the transmission network comprising the chip-level data encryption-based Ethernet and fieldbus described in the first aspect of the present invention
  • the transmission network includes Ethernet and CAN bus, and the CAN bus is connected to the Ethernet through the industrial Ethernet gateway.
  • the CAN bus includes a single-pipe CAN bus and a multi-pipe CAN bus, and the identification of different pipe paths of the multi-pipe CAN bus is realized by the CAN Payload field.
  • the Ethernet transmission part adopts a time-sensitive network to solve the problem of lack of time-sensitivity in Ethernet and meet the requirements of CAN bus or equipment for high real-time and high reliability specific indicators; And the combined result of destination MAC DA and VLAN tag, identify different CAN bus, CAN device or CAN message.
  • the CAN bus and the Ethernet are interconnected through the Ethernet and the field bus fusion gateway, and the existing CAN bus application technology is upgraded, which can facilitate the interconnection of various industrial equipment on different CAN buses.
  • the invention realizes the mutual conversion of CAN protocol message and Ethernet message on the physical layer PHY chip, and supports the security Ethernet and field bus fusion gateway of MacSec (IEEE802.1ae) hardware encrypted data.
  • the invention adopts the low-cost, short-time, seamless and highly secure technology, uses Ethernet as the transmission carrier of the CAN bus, extends the deployment distance of the CAN bus, and expands its deployment space. Its equipment is transparent.
  • FIG. 1 is a logical block diagram of an Ethernet and fieldbus fusion gateway based on chip-level data encryption provided by an embodiment of the present invention
  • Fig. 2 is an Ethernet single-pipe CAN bus transmission network topology diagram provided by an embodiment of the present invention
  • FIG. 3 is a topology diagram of an Ethernet multi-pipe CAN bus transmission network provided by an embodiment of the present invention.
  • FIG. 1 is a logical block diagram of an Ethernet and fieldbus converged gateway based on chip-level data encryption according to an exemplary embodiment. As shown in FIG. 1 , it includes a physical layer PHY chip; the physical layer PHY chip is connected to the Ethernet and CAN bus, used for message mutual transmission between Ethernet and CAN bus; the physical layer PHY chip encrypts and decrypts the message.
  • the physical layer PHY chip includes a media dependent interface MDI module, a front-end analog module, a CAN SerDes module, a CAN controller module, a data cache module, an insert/delete timestamp module, a protocol conversion module, an encryption/decryption module, and a sequential connection.
  • module and a media independent interface MII module the media dependent interface MDI module is connected to the CAN bus; the media independent interface MII module is connected to the Ethernet.
  • the MDI module is connected to the CAN node group through the power/voltage adjustment device, and data transmission is also realized between the power/voltage adjustment device and the MDI module through the physical connection line of the CAN bus.
  • the role of the power/voltage adjustment device is to drive the CAN bus when needed, which can be built into the physical layer PHY chip.
  • the insert/delete timestamp module is used to add the timestamp of the packet received by the media dependent interface MDI module in front of the packet.
  • the insert and delete timestamp module inserts the timestamp when receiving the incoming message of the CAN bus segment, and deletes the timestamp when sending the message to the Ethernet.
  • the protocol conversion module is used to add or delete the Ethernet Layer 2 header
  • the data structure of the Layer 2 header is: destination MAC address MAC DA, source MAC address MAC SA, VLAN tag and message type/ Length, where the destination MAC address MAC DA, the source MAC address MAC SA and the contents of the 3 fields of the VLAN tag are related to the MDI number (CAN port) of the interface receiving the CAN message and the arbitration segment (ie ID) of the CAN message.
  • Content has correspondences that can be manually configured.
  • the encryption and decryption module adopts the mode of MacSec to realize the encryption of the message;
  • the encryption and decryption module determines the MacSec decryption key and decrypts according to the MAC DA or the MAC SA or the VLAN tag.
  • FIG. 2 is a topology diagram of an Ethernet single-pipe CAN bus transmission network according to an exemplary embodiment, as shown in FIG. 2 .
  • the CAN bus is connected to the Ethernet through the industrial Ethernet gateway.
  • the CAN bus adopts a single-pipe CAN bus.
  • A, B, C, D, and E are CAN devices that use the same CAN protocol version and rate (baud rate), and are in the same CAN bus (virtual bus/logic configuration), all reaching the relevant CAN bus requirements of the agreement.
  • a time-sensitive Ethernet network can be used, and each message is transmitted in a real-time, reliable and safe manner in the time-sensitive Ethernet network, and is transmitted to all CAN devices by multicast.
  • the present invention proposes a message transmission method suitable for an Ethernet and field bus fusion gateway based on chip-level data encryption, comprising the following steps:
  • the step that the physical layer PHY chip transmits the message from the CAN bus to the Ethernet includes:
  • the message is sequentially transmitted to the CAN controller module through the front-end analog module and the CAN SerDes module, and the CAN controller module extracts the digital signal of the message and outputs it to the data buffer module.
  • the front-end analog module converts the received CAN message analog signal into a digital signal, which is a high-speed serial signal
  • the CAN SerDes module converts the high-speed serial signal into a multi-channel low-speed parallel signal
  • the CAN controller module Control the transmission and reception of data frames of multiple low-speed parallel signals according to the CAN bus protocol, such as CAN frame format check and CRC check.
  • the time stamp of the message received by the media dependent interface MDI module is added in front of the message by inserting and deleting the time stamp module.
  • the timestamp is 10 bytes long, using 48bit second format and 32bit nanosecond format.
  • the protocol conversion module converts the digital signal of the message into the CAN Payload field, and adds the Ethernet Layer 2 header;
  • the CAN Payload has two configurable modes: one is composed of CAN-Packet, and the other is composed of CAN- Port (CAN port), Length and CAN-Packet are composed of three parts.
  • CAN-Packet is the message digital signal corresponding to the CAN message received on the CAN bus.
  • the Ethernet Layer 2 header includes a 6-byte destination MAC address MAC DA, a 6-byte source MAC address MAC SA, a 4-byte VLAN tag, and a 2-byte Ethernet packet type. or length.
  • the encryption and decryption module adopts MacSec (IEEE802.1ae) to realize the encryption of the message digital signal, and encapsulate the encrypted message digital signal into the Secure Data (CAN Payload) field.
  • MacSec IEEE802.1ae
  • the encryption/decryption module encrypts the digital signal of the message to generate a SecTAG field and save it in the digital signal data format.
  • the encryption and decryption module implements the encryption of the CAN Payload field by means of MacSec, encapsulates the encrypted message into the Secure Date field, and adds the SecTAG field.
  • the encapsulation is jointly completed by the protocol conversion module and the encryption and decryption module.
  • the Media Independent Interface MII module is connected to the Ethernet connection node.
  • the step that the physical layer PHY chip transmits the message from the Ethernet to the CAN bus includes:
  • MAC SA In S21, according to the MAC DA, MAC SA, VLAN ID and Type/Length information in the Ethernet Layer 2 header, select the CAN port to convert the CAN Payload part into a CAN message and send it to the CAN bus.
  • the information of the Ethernet Layer 2 header is extracted and used to select the CAN port to determine the CAN bus pipeline path.
  • FIG. 3 is a topology diagram of an Ethernet multi-pipe CAN bus transmission network according to an exemplary embodiment, as shown in FIG. 3 .
  • the difference between this embodiment and the first embodiment is that the CAN bus adopts a multi-pipe CAN bus.
  • A, B, and C form the CAN-1 bus
  • D and E form the CAN-2 bus.
  • the message of CAN-2 bus can use unicast message; the message of CAN-1 bus is recommended to use multicast message.
  • the message transmission method of the Ethernet and fieldbus fusion gateway is applicable to the transmission steps given in the first embodiment.
  • the SA (optional VLAN tag) field identifies the CAN messages received by the CAN bus interfaces of different pipes.
  • the step of transmitting the message from the CAN bus to the Ethernet by the physical layer PHY chip the correspondence between the Ethernet Layer 2 header and the CAN port is recorded when the message is encapsulated.
  • one physical layer PHY chip can support multiple CAN ports at the same time, and all CAN ports can be individually configured with different attributes, such as CAN bus protocol version, CAN bus speed, and the like.
  • the encapsulation modes of the packets in the Ethernet may include the following four:
  • the first is the basic message encapsulation format.
  • the TYPE part can indicate the actual length of the message and the CAN port number.
  • the 802.1Q-TPID field is an optional field, as shown in Table 1.
  • the second is the encrypted message encapsulation format. Since the message data transmitted on the Ethernet uses the same line as other data, the message data may be monitored or tampered with, which will cause the CAN device to be interfered or hijacked, and device status data leaked. It is proposed to use MacSec (IEEE802.1ae) to realize the encryption and decryption of CAN data, in which the 802.1Q-TPID field is an optional field, as shown in Table 2.
  • MacSec IEEE802.1ae
  • the third is the time detection message encapsulation format. Since the maximum length of the commonly used CAN message is 146 bits, there is at least 27 bytes of free capacity that can be reused with the smallest Ethernet message transmission. It is proposed to use two sections of 10 bytes.
  • the fields represent the incoming direction timestamp (in-face time-stamp) and the outgoing direction timestamp (out-face time-stamp) respectively, and the 802.1Q-TPID field is an optional field, as shown in Table 3.
  • CAN port CAN port
  • Length is the effective length of the CAN-Packet (based on the bit count), as shown in Table 4.
  • Ethernet includes all industrial Ethernet, traditional Ethernet, time-sensitive network (TSN) and the like that support the IEEE802.3/IEEE802.1 standard.
  • TSN time-sensitive network
  • the media independent interface MII includes interface types such as MII/RMII/SMII/GMII/RGMII/SGMII.
  • Ethernet and Fieldbus fusion gateway based on chip-level data encryption and its message transmission method and transmission network provided by the present invention have been described in detail above.
  • the principles and implementations of the present invention are described with specific examples in this paper.
  • the description of the above embodiment is only used to help understand the method of the present invention and its core idea; meanwhile, for those of ordinary skill in the art, according to the idea of the present invention, there will be changes in specific embodiments and application scope. , to sum up, the content of this specification should not be construed as a limitation to the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computer Security & Cryptography (AREA)
  • Small-Scale Networks (AREA)
  • Computer Hardware Design (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)

Abstract

本发明提供了一种基于芯片级数据加密的以太网和现场总线融合网关及其报文传输方法,包括物理层PHY芯片;所述物理层PHY芯片连接以太网和CAN总线,用于在以太网和CAN总线之间进行报文互传;所述物理层PHY芯片对所述报文进行加解密。本发明在物理层PHY芯片上实现CAN协议报文和以太网报文的互转,并且支持MacSec(IEEE802.1ae)硬件加密数据的安全工业以太网网关。本方案采用低成本、短时间、无缝隙的技术,把以太网作为CAN总线的传输载体,延长CAN总线的部署距离,扩展其部署空间,并且本方案的部署和使用,对CAN总线及其设备透明。

Description

基于芯片级加密的以太网和现场总线融合网关及传输方法 技术领域
本发明涉及工业以太网技术领域,具体涉及一种基于芯片级数据加密的以太网和现场总线融合网关及其报文传输方法、传输网络。
背景技术
工业以太网网关的应用遍及智能工厂、智能交通、环境保护、工业监测、环境监测等多个领域。工业以太网网关基本功能是把现场总线上感知层采集到的各类信息通过相关协议转换形成高速数据传递到互联网,实现一定管理功能。控制器局域网总线(CAN,Controller Area Network)是一种主流的现有工业现场总线、车载网、轨道交通等领域采用的通讯协议总线,具有:封闭性强、实时性高、可靠性高、带宽小、部署量巨大、升级困难等特点。以太网(Ether Net)具有:开放性强、实时性低、可靠性低、带宽大、部署量很大、升级容易等特点,通过工业以太网网关把CAN总线与以太网互联,升级现有的CAN总线应用技术,可方便实现对不同CAN总线上各种工业设备互联,实现远程控制、监测和诊断等功能,以达到企业提高效率和降低成本的目的。
目前现有的以太网网关使用软件方法在TCP/IP协议栈的传输层或者应用层实现CAN报文和以太网报文的互转,实现复杂,报文转发延时大,丢包率高,而且CAN报文在以太网中传输安全性很低。
因此,如何提供一种传输快、高安全性能的基于芯片级数据加密的以太网和现场总线融合网关及其报文传输方法是本领域技术人员亟需解决的问题。
发明内容
有鉴于此,本发明提出了一种在物理层PHY芯片上实现CAN协议报文和以太网报文的互转,并且支持MacSec(IEEE802.1ae)硬件加密数据的安全工业以太网网关。本方案采用低成本、短时间、无缝隙的技术,把以太网作为CAN总线的传输载体,延长CAN总线的部署距离,扩展其部署空间,并且本方案的部署 和使用,对CAN总线及其设备透明。
为了实现上述目的,本发明采用如下技术方案:
本发明第一方面提出了一种基于芯片级数据加密的以太网和现场总线融合网关,包括物理层PHY芯片;所述物理层PHY芯片连接以太网和CAN总线,用于在以太网和CAN总线之间进行报文互传;所述物理层PHY芯片对所述报文进行加解密。
优选的,所述物理层PHY芯片包括依次连接的媒体依赖接口MDI模块、前端模拟模块、CAN SerDes模块、CAN控制器模块、数据缓存模块、插入删除时间戳模块、协议转换模块、加解密模块以及媒体无关接口MII模块;所述媒体依赖接口MDI模块连接至CAN总线;所述媒体无关接口MII模块连接至以太网。
优选的,所述插入删除时间戳模块用于在报文前面添加数据缓存模块接收到报文的时间戳。
优选的,所述协议转换模块用于添加或删除以太网二层头,所述二层头的数据结构为:目的MAC地址MAC DA、源MAC地址MAC SA、VLAN标签和报文类型/长度。
优选的,所述加解密模块采用MacSec的方式实现报文的加密;所述加解密模块根据所述MAC DA和所述MAC SA确定MacSec解密密钥并解密。
本发明第二方面提供了一种基于芯片级数据加密的以太网和现场总线融合网关的报文传输方法,该传输方法包括本发明第一方面中所述的基于芯片级数据加密的以太网和现场总线融合网关,报文传输方法包括以下步骤:
所述物理层PHY芯片将报文由CAN总线向以太网传输的步骤包括:
通过媒体依赖接口MDI模块接收CAN总线传输的报文;
所述报文依次经过前端模拟模块、CAN SerDes模块传输至CAN控制器模块,所述CAN控制器模块提取出报文数字信号输出至数据缓存模块;
通过插入删除时间戳模块在报文前面添加媒体依赖接口MDI模块接收到报文的时间戳;
然后通过协议转换模块给报文数字信号添加以太网二层头;
通过加解密模块采用MacSec的方式实现报文数字信号的加密,将加密后的报文数字信号进行封装;
最后,把封装后的报文输出到媒体无关接口MII模块;
所述物理层PHY芯片将报文由以太网向CAN总线传输的步骤包括:
针对加密报文,根据以太网二层头确定MacSec解密密钥并解密;
针对非加密报文和解密后的报文,根据提取以太网二层头中的信息,用于选择对应的媒体依赖接口MDI模块,再删除以太网二层头,删除时间戳,把报文数字信号转化为CAN报文发送到CAN总线上。
优选的,所述以太网二层头的数据结构为:目的MAC地址MAC DA,源MAC地址MAC SA,VLAN标签和报文类型/长度。
优选的,根据以太网二层头确定MacSec解密密钥并解密具体包括:
根据所述MAC DA,MAC SA确定MacSec解密密钥并解密。
本发明第三方面提供了一种基于芯片级数据加密的以太网和现场总线融合网关的传输网络,该传输网络包括本发明第一方面中所述的基于芯片级数据加密的以太网和现场总线融合网关,传输网络包括以太网、CAN总线,所述CAN总线通过所述工业以太网网关连接至所述以太网。
优选的,所述CAN总线包括单管道CAN总线和多管道CAN总线,多管道CAN总线的不同管道通路识别通过CAN Payload字段实现。
优选的,以太网传输部分采用时间敏感网络,以解决以太网缺乏时间敏感性问题,满足CAN总线或设备对高实时、高可靠的具体指标的要求;并通过以太网二层头的源MAC SA和目的MAC DA及VLAN标签的组合结果,确认不同的CAN总线、CAN设备或CAN报文。
经由上述的技术方案可知,与现有技术相比,本发明的有益效果包括:
通过以太网和现场总线融合网关把CAN总线与以太网互联,升级现有的CAN总线应用技术,可方便实现对不同CAN总线上各种工业设备的互联。本发明在物理层PHY芯片上实现CAN协议报文和以太网报文的互转,并且支持MacSec(IEEE802.1ae)硬件加密数据的安全以太网和现场总线融合网关。本发明采用低成本、短时间、无缝隙、高度安全的技术,把以太网作为CAN总线的传输载体,延长CAN总线的部署距离,扩展其部署空间,本发明的部署和使用,对CAN总线及其设备透明。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施 例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据提供的附图获得其他的附图;
图1为本发明实施例提供的基于芯片级数据加密的以太网和现场总线融合网关逻辑框图;
图2为本发明实施例提供的以太网单管道CAN总线传输网络拓扑图;
图3为本发明实施例提供的以太网多管道CAN总线传输网络拓扑图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
图1是根据一示例性实施例示出的一种基于芯片级数据加密的以太网和现场总线融合网关逻辑框图,如图1所示,包括物理层PHY芯片;所述物理层PHY芯片连接以太网和CAN总线,用于在以太网和CAN总线之间进行报文互传;所述物理层PHY芯片对所述报文进行加解密。
本实施例中,所述物理层PHY芯片包括依次连接的媒体依赖接口MDI模块、前端模拟模块、CAN SerDes模块、CAN控制器模块、数据缓存模块、插入删除时间戳模块、协议转换模块、加解密模块以及媒体无关接口MII模块;所述媒体依赖接口MDI模块连接至CAN总线;所述媒体无关接口MII模块连接至以太网。
其中,MDI模块通过功率/电压调整装置连接至CAN节点组,功率/电压调整装置与MDI模块之间同样通过CAN总线的物理连接线实现数据的传输。功率/电压调整装置的作用是在需要的时候驱动CAN总线,其可以内置于物理层PHY芯片中。
本实施例中,插入删除时间戳模块用于在报文前面添加媒体依赖接口MDI模块接收到报文的时间戳。
其中,插入删除时间戳模块在接收CAN总线段传入报文时插入时间戳,在发送报文至以太网时删除时间戳。
本实施例中,所述协议转换模块用于添加或删除以太网二层头,所述二层头的数据结构为:目的MAC地址MAC DA、源MAC地址MAC SA、VLAN标签和报文类型/长度,其中的目的MAC地址MAC DA,源MAC地址MAC SA和VLAN标签3个字段的内容,与接收CAN报文的接口MDI的编号(CAN端口)和CAN报文的仲裁段(即ID)的内容具有可以人工配置的对应关系。
本实施例中,所述加解密模块采用MacSec的方式实现报文的加密;所述加解密模块根据所述MAC DA或所述MAC SA或所述VLAN标签确定MacSec解密密钥并解密。
实施例一
图2是根据一示例性实施例示出的以太网单管道CAN总线传输网络拓扑图,如图2所示。包括以太网、CAN总线、以及基于芯片级数据加密的以太网和现场总线融合网关,所述CAN总线通过所述工业以太网网关连接至所述以太网。
本实施例中,CAN总线采用单管道CAN总线。图2中A、B、C、D、E为采用相同CAN协议版本和速率(波特率)的CAN设备,并且处于相同的CAN总线内(虚拟总线/逻辑配置),均达到相关的CAN总线协议的要求。
其中,可以采用时间敏感以太网网络,每个报文在时间敏感以太网网络中实时、可靠、安全的传输,使用组播方式传输给所有的CAN设备。
本发明提出了适用于基于芯片级数据加密的以太网和现场总线融合网关的报文传输方法,包括以下步骤:
所述物理层PHY芯片将报文由CAN总线向以太网传输的步骤包括:
S11、通过媒体依赖接口MDI模块接收CAN总线传输的报文。
S12、所述报文依次经过前端模拟模块、CAN SerDes模块传输至CAN控制器模块,所述CAN控制器模块提取出报文数字信号输出至数据缓存模块。
在S12中,前端模拟模块把接收到的CAN报文模拟信号转换成数字信号,该数字信号为高速串行信号,CAN SerDes模块把高速串行信号转换成多路低速并行信号,CAN控制器模块根据CAN总线协议控制多路低速并行信号的数据帧的发送和接收,例如CAN帧格式检查和CRC校验。
S13、通过插入删除时间戳模块在报文前面添加媒体依赖接口MDI模块接收到报文的时间戳。
在S13中,时间戳为10个字节长度,采用48bit的秒格式和32bit的纳秒格 式。
S14、然后通过协议转换模块给报文数字信号添加以太网二层头。
在S14中,协议转换模块将报文数字信号转化成CAN Payload字段,并添加以太网二层头;其中CAN Payload有两种可配置的模式:其一由CAN-Packet构成,其二由CAN-Port(CAN端口)、Length和CAN-Packet三部分构成,如表4所示,CAN-Packet为CAN总线上接收的CAN报文对应的报文数字信号。
以太网二层头包括6个字节长度的目的MAC地址MAC DA,6个字节长度的源MAC地址MAC SA,4个字节长度的VLAN标签,2个字节长度的以太网报文类型或者长度。
S15、通过加解密模块采用MacSec(IEEE802.1ae)的方式实现报文数字信号的加密,将加密后的报文数字信号封装至Secure Data(CAN Payload)字段。
在S15中,加解密模块对报文数字信号加密后生成SecTAG字段并保存在数字信号数据格式内。具体的,加解密模块采用MacSec的方式实现CAN Payload字段的加密,将加密后的报文封装至Secure Date字段,并添加SecTAG字段。
S16、最后,把封装后的报文输出到媒体无关接口MII模块。
在S16中,通过协议转换模块和加解密模块共同完成封装。媒体无关接口MII模块连接至以太网连接节点。
所述物理层PHY芯片将报文由以太网向CAN总线传输的步骤包括:
S21、针对加密报文,根据以太网二层头确定MacSec解密密钥并解密。
在S21中,根据以太网二层头中的MAC DA,MAC SA,VLAN ID和Type/Length信息,选择CAN端口把CAN Payload部分转化为CAN报文发送到CAN总线上。
S22、针对非加密报文和解密后的报文,根据提取以太网二层头中的信息,用于选择对应的媒体依赖接口MDI模块,接口MDI的编号与CAN端口的对应关系可以配置,再删除以太网二层头,删除时间戳,把CAN Payload部分转化为CAN报文发送到CAN总线上。
在S22中,通过解析报文是否携带加密字段SecTAG(EtherType为0x88E5)判断是否为加密报文,若携带则是加密报文,否则是非加密或者是解密后的报文。
在S22中,在删除以太网二层头之前提取出以太网二层头的信息用于选择CAN端口,以判断CAN总线管道通路。
实施例二
图3是根据一示例性实施例示出的以太网多管道CAN总线传输网络拓扑图,如图3所示。本实施例与实施例一的不同点在于,CAN总线采用多管道CAN总线。图3中A、B、C组成CAN-1总线,D、E组成CAN-2总线。CAN-2总线的报文可以采用单播报文;CAN-1总线的报文建议采用组播报文。
本实施例中,以太网和现场总线融合网关的报文传输方法适用于实施例一中给出的传输步骤,在该传输步骤的基础上,通过以太网二层头的目的MAC DA、源MAC SA(可选VLAN标签)字段标识不同管道CAN总线接口收到的CAN报文。在物理层PHY芯片将报文由CAN总线向以太网传输步骤中,进行报文封装时记录以太网二层头和CAN端口的对应关系。
本实施例中,一个物理层PHY芯片可以同时支持多个CAN端口,所有CAN端口可以单独配置不同属性,比如:CAN总线协议版本、CAN总线速率等。
在实施例一和实施例二的报文传输过程中,根据不同应用配置报文在以太网中的封装方式可以有以下四种:
第一种,基本报文封装格式,TYPE部分可以表示报文的实际长度和CAN端口号,其中的802.1Q-TPID字段是可选字段,如表1所示。
表1 基本报文封装格式
Figure PCTCN2020131784-appb-000001
第二种,加密报文封装格式,由于在以太网上传输的报文数据与其它数据使用相同的线路,报文数据可能被监听或篡改,会导致CAN设备被干扰或劫持,设备状态数据泄露。提出采用MacSec(IEEE802.1ae)的方式实现CAN数据的加解密,其中的802.1Q-TPID字段是可选字段,如表2所示。
表2 加密报文封装格式
Figure PCTCN2020131784-appb-000002
第三种,时间检测报文封装格式,由于常用的CAN报文最大长度为146bit,采用最小的以太网报文传输也至少有27字节的空闲容量可以再使用,提出用两段10字节字段分别表示进入方向时间戳(in-face time-stamp)和送出 方向时间戳(out-face time-stamp),其中的802.1Q-TPID字段是可选字段,如表3所示。
表3 时间检测报文封装格式
Figure PCTCN2020131784-appb-000003
第四种,多个报文封装格式,由于同一个接入以太网的接口上,会出现同一时间点接收到多个报文,且这些报文可以或需要被以太网发送到的目标设备在同一接口上,则这些报文可以被封装在一个报文中,其中的CAN-Payload包含的CAN port(CAN端口)对应PHY中的MDI编号或CAN端口,CAN-Packet是从CAN总线上收到的信息,Length是CAN-Packet的有效长度(基于bit位计数),如表4所示。
表4 多个报文封装格式
Figure PCTCN2020131784-appb-000004
在示例性实施例中,本领域技术人员可以理解的是,以太网包含所有支持IEEE802.3/IEEE802.1标准的工业以太网、传统以太网及时间敏感网络(TSN)等。
在示例性实施例中,媒体无关接口MII包括MII/RMII/SMII/GMII/RGMII/SGMII等接口类型。
以上对本发明所提供的基于芯片级数据加密的以太网和现场总线融合网关及其报文传输方法、传输网络进行了详细介绍,本文中应用了具体个例对本发 明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处,综上,本说明书内容不应理解为对本发明的限制。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (10)

  1. 一种基于芯片级数据加密的以太网和现场总线融合网关,其特征在于,包括物理层PHY芯片;所述物理层PHY芯片连接以太网和CAN总线,用于在以太网和CAN总线之间进行报文互传;所述物理层PHY芯片对所述报文进行加解密。
  2. 根据权利要求1所述的基于芯片级数据加密的以太网和现场总线融合网关,其特征在于,所述物理层PHY芯片包括依次连接的媒体依赖接口MDI模块、前端模拟模块、CAN SerDes模块、CAN控制器模块、数据缓存模块、插入删除时间戳模块、协议转换模块、加解密模块以及媒体无关接口MII模块;所述媒体依赖接口MDI模块连接至CAN总线;所述媒体无关接口MII模块连接至以太网。
  3. 根据权利要求1所述的基于芯片级数据加密的以太网和现场总线融合网关,其特征在于,所述插入删除时间戳模块用于在报文前面添加数据缓存模块接收到报文的时间戳。
  4. 根据权利要求1所述的基于芯片级数据加密的以太网和现场总线融合网关,其特征在于,所述协议转换模块用于添加或删除以太网二层头,所述二层头的数据结构为:目的MAC地址MAC DA、源MAC地址MAC SA、VLAN标签和报文类型/长度。
  5. 根据权利要求4所述的基于芯片级数据加密的以太网和现场总线融合网关,其特征在于,所述加解密模块采用MacSec的方式实现报文的加密;所述加解密模块根据所述MAC DA和所述MAC SA确定MacSec解密密钥并解密。
  6. 一种根据权利要求1-5中任一项所述的基于芯片级数据加密的以太网和现场总线融合网关的报文传输方法,其特征在于,包括以下步骤:
    所述物理层PHY芯片将报文由CAN总线向以太网传输的步骤包括:
    通过媒体依赖接口MDI模块接收CAN总线传输的报文;
    所述报文依次经过前端模拟模块、CAN SerDes模块传输至CAN控制器模块,所述CAN控制器模块提取出报文数字信号输出至数据缓存模块;
    通过插入删除时间戳模块在报文前面添加媒体依赖接口MDI模块接收到报文的时间戳;
    然后通过协议转换模块给报文数字信号添加以太网二层头;
    通过加解密模块采用MacSec的方式实现报文数字信号的加密,将加密后 的报文进行封装;
    最后,把封装后的报文输出到媒体无关接口MII模块;
    所述物理层PHY芯片将报文由以太网向CAN总线传输的步骤包括:
    针对加密报文,根据以太网二层头确定MacSec解密密钥并解密;
    针对非加密报文和解密后的报文,根据提取以太网二层头中的信息,用于选择对应的媒体依赖接口MDI模块,再删除以太网二层头,删除时间戳,把报文数字信号转化成CAN报文发送到CAN总线上。
  7. 根据权利要求6所述的基于芯片级数据加密的以太网和现场总线融合网关及其报文传输方法,其特征在于,所述以太网二层头的数据结构为:目的MAC地址MAC DA,源MAC地址MAC SA,VLAN标签和报文类型/长度。
  8. 根据权利要求7所述的基于芯片级数据加密的以太网和现场总线融合网关及其报文传输方法,其特征在于,根据以太网二层头确定MacSec解密密钥并解密具体包括:
    根据所述MAC DA,MAC SA确定MacSec解密密钥并解密。
  9. 一种基于芯片级数据加密的以太网和现场总线融合网关的传输网络,其特征在于,包括以太网、CAN总线、以及如权利要求1-5中任一项所述的基于芯片级数据加密的以太网和现场总线融合网关,所述CAN总线通过所述工业以太网网关连接至所述以太网。
  10. 根据权利要求9所述的基于芯片级数据加密的以太网和现场总线融合网关的传输网络,其特征在于,所述CAN总线包括单管道CAN总线和多管道CAN总线。
PCT/CN2020/131784 2020-11-20 2020-11-26 基于芯片级加密的以太网和现场总线融合网关及传输方法 WO2022104869A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011311007.7A CN112422389B (zh) 2020-11-20 2020-11-20 基于芯片级加密的以太网和现场总线融合网关及传输方法
CN202011311007.7 2020-11-20

Publications (1)

Publication Number Publication Date
WO2022104869A1 true WO2022104869A1 (zh) 2022-05-27

Family

ID=74778145

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/131784 WO2022104869A1 (zh) 2020-11-20 2020-11-26 基于芯片级加密的以太网和现场总线融合网关及传输方法

Country Status (2)

Country Link
CN (1) CN112422389B (zh)
WO (1) WO2022104869A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115550110A (zh) * 2022-09-21 2022-12-30 深圳市酷比信息科技有限公司 一种基于大数据的数据融合网关api设备
CN116489113A (zh) * 2023-04-23 2023-07-25 南京金阵微电子技术有限公司 交换机芯片的端口拓展方法和系统、交换机
CN116781448A (zh) * 2023-08-17 2023-09-19 北京芯驰半导体科技有限公司 一种can报文防丢失方法、装置、系统、芯片及介质

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113079133B (zh) * 2021-03-16 2021-12-07 深圳市盛博科技嵌入式计算机有限公司 一种网关的数据传输方法和网关设备
CN113794612B (zh) * 2021-09-09 2023-02-17 恒安嘉新(北京)科技股份公司 Can网络的控制监听装置及系统
CN113612801B (zh) * 2021-09-30 2022-01-04 浙江国利信安科技有限公司 Epa网关设备和epa跨网通信的方法
CN115277287A (zh) * 2022-06-17 2022-11-01 重庆长安汽车股份有限公司 一种基于以太网的可配置的can报文采集方法及系统
CN115834287B (zh) * 2022-11-28 2023-11-14 北京神经元网络技术有限公司 宽带现场总线的多域数据交换设备、网络系统及交换方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102231718A (zh) * 2011-07-20 2011-11-02 国电南京自动化股份有限公司 一种EtherCAT与CAN通信的网关及其通信方法
US20140133350A1 (en) * 2012-09-05 2014-05-15 Burkhard Triess Gateway module for a communications system, communications system, and method for transmitting data between users of a communications system
CN105871894A (zh) * 2016-05-17 2016-08-17 华南理工大学 一种具有加密解密功能的iec61850通信规约转换soc芯片及实现方法
CN108881302A (zh) * 2018-08-02 2018-11-23 浙江中控研究院有限公司 工业以太网与blvds总线互联通讯装置及工业控制系统
CN109040124A (zh) * 2018-09-17 2018-12-18 盛科网络(苏州)有限公司 用于交换机的处理报文的方法和装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101442563A (zh) * 2008-12-17 2009-05-27 杭州华三通信技术有限公司 一种数据通信方法和一种以太网设备
CN102255800B (zh) * 2011-06-24 2014-04-02 中国人民解放军国防科学技术大学 Can总线上ip数据包和can消息之间数据格式相互转换的方法
CN103825883A (zh) * 2014-01-16 2014-05-28 燕山大学 基于无线ZigBee、CAN总线和MODBUS/TCP的多协议转换设备及其实现方法
CN203851161U (zh) * 2014-05-23 2014-09-24 科大智能(合肥)科技有限公司 一种基于fpga的具有汇聚功能的协议转换器
CN206878869U (zh) * 2017-05-15 2018-01-12 沈阳广成科技有限公司 一种工业以太网‑can转换器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102231718A (zh) * 2011-07-20 2011-11-02 国电南京自动化股份有限公司 一种EtherCAT与CAN通信的网关及其通信方法
US20140133350A1 (en) * 2012-09-05 2014-05-15 Burkhard Triess Gateway module for a communications system, communications system, and method for transmitting data between users of a communications system
CN105871894A (zh) * 2016-05-17 2016-08-17 华南理工大学 一种具有加密解密功能的iec61850通信规约转换soc芯片及实现方法
CN108881302A (zh) * 2018-08-02 2018-11-23 浙江中控研究院有限公司 工业以太网与blvds总线互联通讯装置及工业控制系统
CN109040124A (zh) * 2018-09-17 2018-12-18 盛科网络(苏州)有限公司 用于交换机的处理报文的方法和装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115550110A (zh) * 2022-09-21 2022-12-30 深圳市酷比信息科技有限公司 一种基于大数据的数据融合网关api设备
CN116489113A (zh) * 2023-04-23 2023-07-25 南京金阵微电子技术有限公司 交换机芯片的端口拓展方法和系统、交换机
CN116489113B (zh) * 2023-04-23 2024-03-12 南京金阵微电子技术有限公司 交换机芯片的端口拓展方法和系统、交换机
CN116781448A (zh) * 2023-08-17 2023-09-19 北京芯驰半导体科技有限公司 一种can报文防丢失方法、装置、系统、芯片及介质
CN116781448B (zh) * 2023-08-17 2023-11-07 北京芯驰半导体科技有限公司 一种can报文防丢失方法、装置、系统、芯片及介质

Also Published As

Publication number Publication date
CN112422389B (zh) 2022-03-08
CN112422389A (zh) 2021-02-26

Similar Documents

Publication Publication Date Title
WO2022104869A1 (zh) 基于芯片级加密的以太网和现场总线融合网关及传输方法
US7853691B2 (en) Method and system for securing a network utilizing IPsec and MACsec protocols
US8908704B2 (en) Switch with dual-function management port
US9414136B2 (en) Methods and apparatus to route fibre channel frames using reduced forwarding state on an FCoE-to-FC gateway
EP2100406B1 (en) Method and apparatus for implementing multicast routing
CN100370788C (zh) 在网络环境仿真中采用虚拟网卡实现数据通信的方法
CN101309273B (zh) 一种生成安全联盟的方法和装置
CN107682370B (zh) 创建用于嵌入的第二层数据包协议标头的方法和系统
US11089140B2 (en) Intelligent controller and sensor network bus, system and method including generic encapsulation mode
JP2005533445A (ja) 仮想階層ローカルエリアネットワークのための装置及び方法
US20100238804A1 (en) Flow control for multi-hop networks
WO2013127078A1 (zh) 一种智能电网跨广域网goose报文传输系统及方法
WO2007071153A1 (fr) Procede, systeme de reseau de donnees et noeud de reseau pour transmission de paquets de donnees
WO2017193732A1 (zh) 一种伪线数据报文的封装、解封装方法和相关装置
WO2021190009A1 (zh) 性能测量方法、装置、设备和存储介质
CN104184646A (zh) Vpn网络数据交互方法和系统及其网络数据交互设备
CN106789437B (zh) 报文的处理方法、转发方法、相关装置及丢包率测量方法
WO2015131739A1 (zh) 数据交互方法、基带处理单元、射频拉远单元及中继单元
WO2008003218A1 (fr) Procédé, dispositif et système de transmission d'informations entre des appareils dans éthernet
WO2019095778A1 (zh) 实现ilk接口业务和以太网接口业务互通的系统及方法
US20050111448A1 (en) Generating packets
CN113765721B (zh) 一种基于fpga的以太网远程配置装置
CN111431768B (zh) 一种端口自环检测和保护的方法
JP2023530347A (ja) Bier oam検出方法、デバイス及びシステム
WO2022179454A1 (zh) 一种数据处理方法、装置及芯片

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20962160

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20962160

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20962160

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 21.11.23)