WO2021190009A1 - 性能测量方法、装置、设备和存储介质 - Google Patents

性能测量方法、装置、设备和存储介质 Download PDF

Info

Publication number
WO2021190009A1
WO2021190009A1 PCT/CN2020/138877 CN2020138877W WO2021190009A1 WO 2021190009 A1 WO2021190009 A1 WO 2021190009A1 CN 2020138877 W CN2020138877 W CN 2020138877W WO 2021190009 A1 WO2021190009 A1 WO 2021190009A1
Authority
WO
WIPO (PCT)
Prior art keywords
bier
flow
measurement
message
stream
Prior art date
Application number
PCT/CN2020/138877
Other languages
English (en)
French (fr)
Inventor
熊泉
张征
肖敏
郭俊
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to EP20927470.3A priority Critical patent/EP4131854A4/en
Priority to US17/913,275 priority patent/US20230114176A1/en
Publication of WO2021190009A1 publication Critical patent/WO2021190009A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/10Active monitoring, e.g. heartbeat, ping or trace-route
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/08Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters
    • H04L43/0823Errors, e.g. transmission errors
    • H04L43/0829Packet loss
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/06Generation of reports
    • H04L43/067Generation of reports using time frame reporting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/02Capturing of monitoring data
    • H04L43/026Capturing of monitoring data using flow identification
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/08Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters
    • H04L43/0805Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters by checking availability
    • H04L43/0817Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters by checking availability by checking functioning
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/08Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters
    • H04L43/0852Delays
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/10Active monitoring, e.g. heartbeat, ping or trace-route
    • H04L43/106Active monitoring, e.g. heartbeat, ping or trace-route using time related information in packets, e.g. by adding timestamps
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/16Multipoint routing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/10Flow control; Congestion control
    • H04L47/24Traffic characterised by specific attributes, e.g. priority or QoS
    • H04L47/2483Traffic characterised by specific attributes, e.g. priority or QoS involving identification of individual flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/08Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters

Definitions

  • This application relates to communication technology, for example, to a performance measurement method, device, device, and storage medium.
  • Bit Index Explicit Replication (BIER) technology is a new multicast technology architecture. Compared with the traditional forwarding mode that builds distribution trees based on multicast routing protocols, BIER uses Bit Index Forwarding Table (Bit Index Forwarding Table). , BIFT) for forwarding, network intermediate nodes do not need to maintain the state of multicast forwarding information, eliminating complex multicast protocols and multicast forwarding tables, enabling efficient multicast distribution to solve the continuous rapid growth of network scale/user scale Under the circumstances, the traditional multicast technology has major problems in terms of cost and operation and maintenance. BIER technology defines a new network multicast architecture, which has the advantages of simple deployment, rapid convergence, and support for ultra-large-capacity services.
  • Bit Index Forwarding Table Bit Index Forwarding Table
  • BIER technology can be combined with various virtual private network (Virtual Private Network, VPN) technologies such as mobile virtual private network (Movable Virtual Private Network, MVPN), three-layer virtual private network (Layer 3 Virtual Private Network, L3VPN) and Ethernet virtual private network.
  • VPN Virtual Private Network
  • the combination of private network (Ethernet Virtual Private Network, EVPN), etc., realizes perfect VPN multicast.
  • BIER technology provides efficient multicast solutions for various big video services such as Internet live broadcast and interactive network television (Internet Protocol Television, IPTV), thereby improving network efficiency.
  • IPTV Internet Protocol Television
  • the embodiments of the present application provide a performance measurement method, device, equipment, and storage medium, which realize the BIER stream identification and performance measurement functions.
  • the embodiment of the application provides a performance measurement method applied to a first communication node, including: creating a bit index display replication (BIER) flow; encapsulating a BIER flow measurement message according to the performance measurement requirements of the BIER flow, wherein the The BIER flow measurement message carries BIER flow identification information; the BIER flow measurement message is sent to the second communication node.
  • BIER bit index display replication
  • the embodiment of the application provides a performance measurement method, which is applied to a second communication node, and includes: receiving a BIER flow measurement message sent by a first communication node, the BIER flow measurement message carrying BIER flow identification information; The flow measurement message identifies and measures the BIER flow.
  • An embodiment of the present application provides a performance measurement device, which is applied to a first communication node, and includes: a creation module configured to create a bit index display replication (BIER) stream; an encapsulation module configured to encapsulate according to the performance measurement requirements of the BIER stream A BIER flow measurement message, where the BIER flow measurement message carries BIER flow identification information; the transmitter is configured to send the BIER flow measurement message to the second communication node.
  • a creation module configured to create a bit index display replication (BIER) stream
  • an encapsulation module configured to encapsulate according to the performance measurement requirements of the BIER stream
  • a BIER flow measurement message where the BIER flow measurement message carries BIER flow identification information
  • the transmitter is configured to send the BIER flow measurement message to the second communication node.
  • An embodiment of the application provides a performance measurement device applied to a second communication node, and includes: a receiver configured to receive a BIER flow measurement message sent by the first communication node, the BIER flow measurement message carrying BIER flow identification information ; Identification and measurement module, configured to identify and measure the BIER flow according to the BIER flow measurement message.
  • An embodiment of the present application provides a device, including: a communication module, a memory, and one or more processors; the communication module is configured to perform communication interaction between a first communication node and a second communication node; the memory , Configured to store one or more programs; when the one or more programs are executed by the one or more processors, the one or more processors implement the method described in any one of the foregoing embodiments.
  • An embodiment of the present application provides a storage medium that stores a computer program, and when the computer program is executed by a processor, the method described in any of the foregoing embodiments is implemented.
  • FIG. 1 is a schematic diagram of a BIER header packaging format provided by related technologies
  • FIG. 2 is a schematic diagram of a BIER OAM header encapsulation format provided by related technologies
  • FIG. 3 is a schematic diagram of the format of the OAM field in the BIER header provided by an embodiment of the present application
  • FIG. 4 is a flowchart of a performance measurement method provided by an embodiment of the present application.
  • FIG. 5 is a schematic diagram of the format of an extended stream field in a BIER header provided by an embodiment of the present application
  • FIG. 6 is a schematic diagram of the format of an extended stream field in BIER OAM provided by an embodiment of the present application.
  • FIG. 7 is a schematic diagram of the format of a stream field provided by an embodiment of the present application.
  • FIG. 8 is a schematic diagram of another stream field format provided by an embodiment of the present application.
  • FIG. 9 is a schematic diagram of another stream field format provided by an embodiment of the present application.
  • FIG. 10 is a flowchart of another performance measurement method provided by an embodiment of the present application.
  • FIG. 11 is a flowchart of yet another performance measurement method provided by an embodiment of the present application.
  • FIG. 12 is a schematic structural diagram of a BIER network provided by an embodiment of the present application.
  • FIG. 13 is a structural block diagram of a performance measurement device provided by an embodiment of the present application.
  • FIG. 14 is a structural block diagram of another performance measurement device provided by an embodiment of the present application.
  • FIG. 15 is a schematic structural diagram of a device provided by an embodiment of the present application.
  • FIG 1 is a schematic diagram of a BIER header packaging format provided by related technologies.
  • the BIER header encapsulation format is based on the Multi-Protocol Label Switching (MPLS) data plane.
  • MPLS Multi-Protocol Label Switching
  • the BIER message format definition is shown in Figure 1.
  • the operation and maintenance management (Operation Administration and Maintenance, OAM) function is a multi-protocol label switching (MPLS) network that can be managed and managed.
  • MPLS multi-protocol label switching
  • the basic requirements of operation, BIER OAM is based on the MPLS OAM mechanism to expand, and its main function is to effectively improve the management and maintenance capabilities of the BIER network and ensure the stable operation of the network.
  • IETF Internet Engineering Task Force
  • the BIER OAM message immediately follows the BIER header, and the Proto field in the BIER header is used to identify the BIER OAM message.
  • FIG. 2 is a schematic diagram of a BIER OAM header encapsulation format provided by related technologies, and the BIER OAM message format definition is shown in Figure 2.
  • Performance Measurement is the focus of BIER OAM technology.
  • BIER PM measures the delay, jitter, and packet loss rate of messages to achieve performance measurement of the BIER network.
  • Request For Comments (RFC) 7799 defines the classification of measurement methods, and RFC8321 defines passive performance measurement methods.
  • the marking method (Marking Method, MM) can be marked by a specific number or within a specific time interval. The message realizes the measurement of message loss, delay and jitter of real-time traffic.
  • the BIER network can also use the marking method to measure attributes such as the packet loss rate and delay of multicast packets, including single-mark measurement and double-mark measurement.
  • the BIER header encapsulation format specified by IETF RFC8296 is based on the MPLS data plane, which contains a 2-bit OAM field, which is used to indicate the label performance measurement method.
  • FIG. 3 is a schematic diagram of the format of the OAM field in the BIER header provided by an embodiment of the present application. As shown in Figure 3, when the S bit is set to 1, it indicates that it is a single-mark measurement, and when the D bit is set to 1, it indicates that it is a double-mark measurement.
  • the flow-based measurement method is not defined, and how to identify the BIER flow is not defined, and the performance measurement function based on the BIER flow cannot be realized.
  • the BIER network can use a passive marking measurement method.
  • Bit-Forwarding Router (BFR) nodes perform packet loss and delay measurement, and can perform node, link, subnet, or end-to-end measurement at the source or sink node.
  • Users can create different BIER sub-flows in a BFR, and each sub-flow contains marked packets, and can identify and measure the packet loss rate and delay at any BFR monitoring point that the packet flow in the BIER network passes through.
  • Marking points can be set or cleared at the edge nodes of the BIER network to identify a specific BIER sub-flow, so as to measure the packet loss delay and other performance of the BIER sub-flow.
  • the embodiment of the present application proposes a flow-based performance measurement method in a BIER network.
  • the method is based on the BIER packet encapsulation of the flow, expands the flow field, and realizes the identification of the BIER flow and the marking performance measurement function of the BIER flow.
  • the length of the stream field is 32 bits, and the stream field carries BIER stream identification information.
  • FIG. 4 is a flowchart of a performance measurement method provided by an embodiment of the present application. This embodiment is applied to the first communication node.
  • the first communication node may be a head-end BFR node. As shown in Figure 4, this embodiment includes S110-S130.
  • the head-end BFR node creates the BIER flow, encapsulates the BIER flow measurement message according to the performance measurement requirements of the BIER flow, and then sends the BIER flow measurement message to the second communication node, so that the second communication node according to the BIER flow
  • the BIER flow identification information in the flow measurement packet identifies the corresponding BIER flow, and records the packet number or timestamp to calculate the packet loss rate or delay of the BIER flow.
  • the second communication node may be a tail BFR node.
  • the BIER stream identification information is used to identify a unique BIER stream, and to measure and identify the BIER stream.
  • each BIER stream corresponds to unique BIER stream identification information, that is, each BIER stream corresponds to a unique BIER identifier.
  • the BIER identifier is included in the BIER stream identification information.
  • the BIER flow measurement message is a service message encapsulated by the BIER header.
  • the BIER flow measurement message is encapsulated according to the performance measurement requirements of the BIER flow, including: carrying the BIER flow identification information in the BIER header encapsulation format.
  • carrying the BIER flow identification information includes: extending the flow field in the BIER header encapsulation format, and the flow field is used to measure and identify the BIER flow.
  • the stream field can be extended in the BIER header encapsulation format for measuring and identifying the BIER stream.
  • Fig. 5 is a schematic diagram of the format of an extended stream field in a BIER header provided by an embodiment of the present application. As shown in Figure 5, after the BIER header encapsulation format, the flow field is extended, and the flow field is used to measure and identify the BIER flow.
  • the BIER flow measurement message is a service message encapsulated in a BIER OAM header.
  • the BIER flow measurement message is encapsulated according to the performance measurement requirements of the BIER flow, including: carrying the BIER flow identification information in the BIER OAM header encapsulation format.
  • carrying BIER flow identification information includes: extending a new message type in the BIER OAM header encapsulation format, and the new message type is used to indicate that the message type of the BIER flow measurement packet is a BIER flow performance measurement message , Extend the flow field in the data corresponding to the BIER flow performance measurement message, and the flow field is used to measure and identify the BIER flow.
  • the stream field is extended in the BIER OAM header.
  • FIG. 6 is a schematic diagram of the format of an extended stream field in a BIER OAM provided by an embodiment of the present application.
  • the Flow field is used to measure and identify the BIER flow.
  • the BIER OAM message is followed by the service message to carry out the performance measurement of the BIER flow.
  • the measurement service message format is the BIER header followed by the BIER OAM message, and the Proto field in the BIER header is set to 5.
  • the Proto field in the BIER OAM header must be set to non-zero, indicating that the BIER OAM message carries service messages.
  • the flow field is carried in the BIER OAM message and is used for BIER performance measurement and identification of BIER flows.
  • a new message type (Message Type) is added to the BIER OAM header, and the message type is set to 3, indicating that the message type of the BIER flow measurement message is the BIER flow PM message, which is used for flow-based performance measurement.
  • Figure 2 The data (Message Type Dependent Data) corresponding to the message type in is expanded into the stream field shown in FIG. 6.
  • the format of the stream field includes one of the following: a format composed of a stream identifier and reserved bits; a format composed of a stream label; a format composed of a stream identifier, a mark measurement field, and a reserved bit.
  • FIG. 7 is a schematic diagram of the format of a stream field provided by an embodiment of the present application.
  • the format of the flow field is a format composed of flow identification (Flow-Identification, Flow-ID) and reserved bits (RESERVED).
  • Fig. 8 is a schematic diagram of another stream field format provided by an embodiment of the present application.
  • the flow field is a format composed of flow labels (Flow Label).
  • FIG. 9 is a schematic diagram of another stream field format provided by an embodiment of the present application.
  • the flow field is a format composed of a flow identification (Flow-ID), a mark measurement field (S
  • the stream identifier can be defined as 20 bits, 24 bits, or 28 bits according to performance measurement requirements, and is used to uniquely identify a BIER multicast stream.
  • the BIER flow identification information is generated by a network management system (Network Management System, NMS) or controller to identify the BIER flow to be detected. It is applicable to MPLS, non-MPLS, and Internet Protocol version 6 (Internet Protocol). Protocol version 6, IPv6) and other data planes.
  • NMS Network Management System
  • the marker measurement field includes a first bit and a second bit, wherein the first bit is used as the first value, and the second bit is used as the second value to mark the BIER message; the first bit is used as the second value, The first bit is the first value marking the BIER message.
  • first bit when the first bit is the first value, it means single-mark measurement; when the second bit is the first value, it means double-mark measurement.
  • first bit when the first bit is 1, it means single-mark measurement; when the second bit is 1, it means double-mark measurement.
  • FIG. 10 is a flowchart of another performance measurement method provided by an embodiment of the present application. This embodiment is applied to the second communication node.
  • the second communication node may be a tail BFR node. As shown in Figure 10, this embodiment includes S210-S220.
  • the BIER stream identification information is used to identify a unique BIER stream, and to measure and identify the BIER stream.
  • the BIER flow measurement packet is a service packet encapsulated by a BIER header, and the BIER flow identification information is carried in the BIER header encapsulation format.
  • the flow field is extended in the BIER header encapsulation format, and the flow field is used to measure and identify the BIER flow.
  • the BIER flow measurement message is a service message encapsulated by a BIER OAM header, and the BIER flow identification information is carried in the BIER OAM header encapsulation format.
  • a new message type is extended in the BIER OAM header encapsulation format, and the new message type is used to indicate that it is a BIER flow performance measurement message, and the data corresponding to the BIER flow performance measurement message
  • the flow field is extended in the middle, and the flow field is used to measure and identify the BIER flow.
  • the format of the stream field includes one of the following: a format composed of a stream identifier and reserved bits; a format composed of a stream label; a format composed of a stream identifier, a mark measurement field, and a reserved bit.
  • the marker measurement field includes a first bit and a second bit, wherein the first bit is used as the first value, and the second bit is used as the second value to mark the BIER message; the first bit is used as the second value, The first bit is the first value marking the BIER message.
  • the first bit when the first bit is a first value, it represents a single-mark measurement; when the second bit is a first value, it represents a double-mark measurement.
  • the BIER stream identification information is generated by the NMS or the controller to identify the BIER stream to be detected.
  • an embodiment of the present application proposes a flow-based performance measurement method in a BIER network.
  • the method proposes a flow-based BIER message encapsulation, expands the flow field, and realizes the identification of the BIER flow and the marking performance measurement of the BIER flow.
  • Fig. 11 is a flowchart of yet another performance measurement method provided by an embodiment of the present application. This embodiment implements the packet loss and delay measurement between the BFR nodes at both ends of the BIER network, as shown in FIG. 11, including S310-S320.
  • the head-end BFR node creates a BIER flow, encapsulates the BIER flow measurement message according to the performance measurement requirements of the BIER flow, and uses the marking measurement method to mark the BIER flow measurement message.
  • the tail end BFR node receives the BIER flow measurement packet, identifies the BIER flow according to the flow identifier, records the number of packets or the time stamp, and calculates the packet loss or delay of the BIER flow when the mark changes.
  • the marker measurement method may be single-mark measurement or double-mark measurement.
  • the tail BFR node receives the BIER flow measurement packet, it identifies the BIER flow according to the flow identifier in the BIER flow identification information, and records the number of packets or timestamp.
  • the mark changes, it indicates the BIER flow corresponding to the BIER flow.
  • the packet loss or delay of the BIER flow can be calculated.
  • the S bit in the BIER flow measurement message is 1. When the S bit changes from 1 to 0, it indicates that the S bit has changed, and the number of packet losses and the packet loss rate of the BIER flow are calculated.
  • FIG. 12 is a schematic structural diagram of a BIER network provided by an embodiment of the present application.
  • the BIER multicast service is sent from the first node A to the end node D, E, F or G.
  • the hop-by-hop packet loss of the BIER flow from the first node A to the node C is measured, and the single-mark measurement method is taken as an example to describe the identification and performance measurement of the BIER flow.
  • This embodiment includes step one and step two.
  • Step 1 Create a BIER flow with a number of N packets on the first node A, use the single-label measurement method, encapsulate the BIER flow measurement message according to the performance measurement requirements of the BIER flow described in the above embodiment, and carry the flow field in the BIER flow
  • the Flow-ID is generated by the NMS or the controller to identify the BIER flow that needs to be detected.
  • the S bit in the BIER header is set to 1, and the D bit is set to 0.
  • the Flow-ID of the BIER flow and the number of packets corresponding to the BIER flow are reported to the NMS or the controller.
  • Step 2 Receive the BIER flow measurement packet at node C, parse the BIER header, identify the BIER flow, record the number of packets received, when the S flag changes, report the Flow-ID of the BIER flow and the number of packets sent corresponding to the BIER flow to the NMS Or the controller calculates the number of packets lost in the BIER flow and the packet loss rate.
  • this embodiment adopts the BIER network as shown in FIG. 12, that is, the BIER multicast service is sent from the first node A to the end node D, E, F, or G.
  • the end-to-end packet loss of the BIER flow from the first node A to the node G is measured and the double-mark measurement method is taken as an example to describe the identification and performance measurement of the BIER flow.
  • This embodiment includes step one and step two.
  • Step 1 Create a BIER flow with a time interval of T on the first node A, use the double-mark measurement method, encapsulate the message according to the content of this application, and carry the flow field in the BIER OAM header of the BIER message, using the BIER OAM message
  • the method encapsulates the BIER service measurement flow.
  • the Flow-ID is generated by the NMS or the controller to identify the BIER flow that needs to be detected, the S mark is used to create an interval flow, and the D mark is used to mark packets and measure delay. You can increase the frequency at which the D mark changes, and increase the number of delay measurements to measure the delay jitter.
  • the Flow-ID of the BIER flow and the packet sending timestamp corresponding to the BIER flow are reported to the NMS or the controller.
  • Step 2 Receive the message at node G, parse the BIER OAM header, identify the BIER flow, record the timestamp of these messages, when the D tag changes, report the Flow-ID of the BIER flow and the packet sending timestamp corresponding to the BIER flow to the NMS Or the controller, calculate the delay and delay jitter.
  • FIG. 13 is a structural block diagram of a performance measurement device provided by an embodiment of the present application, and this embodiment is applied to the first communication node. As shown in FIG. 13, this embodiment includes: a creation module 410, an encapsulation module 420, and a transmitter 430.
  • the creation module 410 is configured to create a bit index display copy (BIER) stream.
  • BIER bit index display copy
  • the encapsulation module 420 is configured to encapsulate the BIER flow measurement message according to the performance measurement requirements of the BIER flow, where the BIER flow measurement message carries the BIER flow identification information.
  • the transmitter 430 is configured to send the BIER flow measurement message to the second communication node.
  • the performance measurement device provided in this embodiment is configured to implement the performance measurement method of the embodiment shown in FIG. 4, and the implementation principle of the performance measurement device provided in this embodiment is similar, and will not be repeated here.
  • the BIER stream identification information is used to identify a unique BIER stream, and to measure and identify the BIER stream.
  • the BIER flow measurement message is a service message encapsulated by the BIER header.
  • the BIER flow measurement message is encapsulated according to the performance measurement requirements of the BIER flow, including: carrying the BIER flow identification information in the BIER header encapsulation format.
  • carrying the BIER flow identification information includes: extending the flow field in the BIER header encapsulation format, and the flow field is used to measure and identify the BIER flow.
  • the BIER flow measurement message is a business message encapsulated by the BIER operation, maintenance and management OAM header, and the BIER flow measurement message is encapsulated according to the performance measurement requirements of the BIER flow, including: carrying the BIER flow in the BIER OAM header encapsulation format Identification information.
  • carrying BIER flow identification information includes: extending a new message type in the BIER OAM header encapsulation format.
  • the new message type is used to indicate that it is a BIER flow performance measurement message, which corresponds to the BIER flow performance measurement message.
  • the flow field is extended in the data, and the flow field is used to measure and identify the BIER flow.
  • the format of the stream field includes one of the following: a format composed of a stream identifier and reserved bits; a format composed of a stream label; a format composed of a stream identifier, a mark measurement field, and a reserved bit.
  • the flag measurement field includes a first bit and a second bit.
  • the first bit is used as the first value, and the second bit is used to mark the BIER message with the second value; the first bit is used as the second value, and the first bit is used to mark the BIER message with the first value.
  • first bit when the first bit is the first value, it means single-mark measurement; when the second bit is the first value, it means double-mark measurement.
  • the BIER flow identification information is generated by a network management system (NMS) or a controller to identify the BIER flow to be detected.
  • NMS network management system
  • Fig. 14 is a structural block diagram of another performance measurement device provided by an embodiment of the present application. This embodiment is applied to the second communication node.
  • the second communication node may be a tail BFR node.
  • this embodiment includes: a receiver 510 and an identification measurement module 520.
  • the receiver 510 is configured to receive a BIER flow measurement message sent by the first communication node, where the BIER flow measurement message carries BIER flow identification information.
  • the identification and measurement module 520 is configured to identify and measure the BIER flow according to the BIER flow measurement message.
  • the performance measurement device provided in this embodiment is configured to implement the performance measurement method of the embodiment shown in FIG.
  • FIG. 15 is a schematic structural diagram of a device provided by an embodiment of the present application.
  • the device provided by the present application includes: a processor 610, a memory 620, and a communication module 630.
  • the number of processors 610 in the device may be one or more.
  • One processor 610 is taken as an example in FIG. 15.
  • the number of memories 620 in the device may be one or more, and one memory 620 is taken as an example in FIG. 15.
  • the processor 610, the memory 620, and the communication module 630 of the device may be connected through a bus or in other ways. In FIG. 15, the connection through a bus is taken as an example.
  • the device is the first communication node, and the first communication node may be the head-end BFR node.
  • the memory 620 can be configured to store software programs, computer-executable programs, and modules, such as program instructions/modules corresponding to the device of any embodiment of the present application (for example, the creation module 410 in the performance measurement apparatus). , Encapsulation module 420 and transmitter 430).
  • the memory 620 may include a program storage area and a data storage area.
  • the program storage area may store an operating system and an application program required by at least one function; the data storage area may store data created according to the use of the device, and the like.
  • the memory 620 may include a high-speed random access memory, and may also include a non-volatile memory, such as at least one magnetic disk storage device, a flash memory device, or other non-volatile solid-state storage devices.
  • the memory 620 may include a memory remotely provided with respect to the processor 610, and these remote memories may be connected to the device through a network. Examples of the aforementioned networks include, but are not limited to, the Internet, corporate intranets, local area networks, mobile communication networks, and combinations thereof.
  • the communication module 630 is configured to perform communication interaction between the first communication node and the second communication node.
  • the above-provided device can be configured to execute the performance measurement method applied to the first communication node provided by any of the above-mentioned embodiments, and has corresponding functions.
  • the device provided above may also be configured to execute the performance measurement method applied to the second communication node provided by any of the above embodiments, and have corresponding functions.
  • the embodiment of the present application also provides a storage medium containing computer-executable instructions.
  • the computer-executable instructions When executed by a computer processor, they are used to perform a performance measurement method applied to a first communication node, the method including: creating a location The index shows the replication (BIER) flow; the BIER flow measurement message is encapsulated according to the performance measurement requirements of the BIER flow, where the BIER flow measurement message carries the BIER flow identification information; the BIER flow measurement message is sent to the second communication node.
  • BIER replication
  • the embodiment of the present application also provides a storage medium containing computer-executable instructions.
  • the computer-executable instructions When executed by a computer processor, they are used to perform a performance measurement method applied to a second communication node.
  • the method includes: receiving the first communication node.
  • a BIER flow measurement message sent by a communication node, the BIER flow measurement message carries BIER flow identification information; the BIER flow is identified and measured according to the BIER flow measurement message.
  • user equipment encompasses any suitable type of wireless user equipment, such as a mobile phone, a portable data processing device, a portable web browser, or a vehicle-mounted mobile station.
  • the various embodiments of the present application can be implemented in hardware or dedicated circuits, software, logic or any combination thereof.
  • some aspects may be implemented in hardware, while other aspects may be implemented in firmware or software that may be executed by a controller, microprocessor, or other computing device, although the present application is not limited thereto.
  • the embodiments of the present application may be implemented by executing computer program instructions by a data processor of a mobile device, for example, executed by a processor entity, or executed by hardware, or executed by a combination of software and hardware.
  • Computer program instructions can be assembly instructions, Instruction Set Architecture (ISA) instructions, machine instructions, machine-related instructions, microcode, firmware instructions, state setting data, or written in any combination of one or more programming languages Source code or object code.
  • ISA Instruction Set Architecture
  • the block diagram of any logic flow in the drawings of the present application may represent program steps, or may represent interconnected logic circuits, modules, and functions, or may represent a combination of program steps and logic circuits, modules, and functions.
  • the computer program can be stored on the memory.
  • the memory can be of any type suitable for the local technical environment and can be implemented using any suitable data storage technology, such as but not limited to read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), optical Memory devices and systems (Digital Video Disc (DVD) or Compact Disk (CD)), etc.
  • Computer-readable media may include non-transitory storage media.
  • the data processor can be any type suitable for the local technical environment, such as but not limited to general-purpose computers, special-purpose computers, microprocessors, digital signal processors (Digital Signal Processing, DSP), application specific integrated circuits (ASICs) ), programmable logic devices (Field-Programmable Gate Array, FPGA), and processors based on multi-core processor architecture.
  • DSP Digital Signal Processing
  • ASICs application specific integrated circuits
  • FPGA Field-Programmable Gate Array
  • FPGA Field-Programmable Gate Array

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Environmental & Geological Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Cardiology (AREA)
  • General Health & Medical Sciences (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

本申请提出一种性能测量方法、装置、设备和存储介质。该方法包括:创建位索引显示复制(BIER)流;根据所述BIER流的性能测量需求封装BIER流测量报文,其中,所述BIER流测量报文携带BIER流识别信息;将所述BIER流测量报文发送至第二通信节点。

Description

性能测量方法、装置、设备和存储介质
本申请要求在2020年03月24日提交中国专利局、申请号为202010213323.4的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术,例如涉及一种性能测量方法、装置、设备和存储介质。
背景技术
位索引显示复制(Bit Index Explicit Replication,BIER)技术是一种新的组播技术架构,相对比传统基于组播路由协议构建分发树的转发模式,BIER采用位索引转发路由表(Bit Index Forwarding Table,BIFT)进行转发,网络中间节点无需维护组播转发信息状态,消除了复杂的组播协议、组播转发表,可实现高效的组播分发,以解决在网络规模/用户规模持续高速增长情况下,传统组播技术在成本和运维等方面的重大难题。BIER技术对网络新型组播架构进行定义,具有部署简单,收敛迅速,支持超大容量业务的优点。同时,BIER技术可与各种虚拟专用网络(Virtual Private Network,VPN)技术如移动虚拟专用网络(Movable Virtual Private Network,MVPN),三层虚拟专用网络(Layer 3Virtual Private Network,L3VPN)和以太网虚拟专用网络(Ethernet Virtual Private Network,EVPN)等结合,实现完善的VPN组播。BIER技术在新的网络架构下,为各类大视频业务如互联网直播、交互式网络电视(Internet Protocol Television,IPTV)等提供高效的组播解决方案,从而提升网络效率。但如何识别出BIER流,并实现基于BIER流的性能测量功能,是一个亟待解决的问题。
发明内容
本申请实施例提供一种性能测量方法、装置、设备和存储介质,实现了BIER流的识别以及性能测量功能。
本申请实施例提供一种性能测量方法,应用于第一通信节点,包括:创建位索引显示复制(BIER)流;根据所述BIER流的性能测量需求封装BIER流测量报文,其中,所述BIER流测量报文携带BIER流识别信息;将所述BIER流测量报文发送至第二通信节点。
本申请实施例提供一种性能测量方法,应用于第二通信节点,包括:接收第一通信节点发送的BIER流测量报文,所述BIER流测量报文携带BIER流识 别信息;根据所述BIER流测量报文识别并测量BIER流。
本申请实施例提供一种性能测量装置,应用于第一通信节点,包括:创建模块,配置为创建位索引显示复制(BIER)流;封装模块,配置为根据所述BIER流的性能测量需求封装BIER流测量报文,其中,所述BIER流测量报文携带BIER流识别信息;发送器,配置为将所述BIER流测量报文发送至第二通信节点。
本申请实施例提供一种性能测量装置,应用于第二通信节点,包括:接收器,配置为接收第一通信节点发送的BIER流测量报文,所述BIER流测量报文携带BIER流识别信息;识别测量模块,配置为根据所述BIER流测量报文识别并测量BIER流。
本申请实施例提供一种设备,包括:通信模块,存储器,以及一个或多个处理器;所述通信模块,配置为在第一通信节点和第二通信节点之间进行通信交互;所述存储器,配置为存储一个或多个程序;当所述一个或多个程序被所述一个或多个处理器执行时,所述一个或多个处理器实现上述任一实施例所述的方法。
本申请实施例提供了一种存储介质,所述存储介质存储有计算机程序,所述计算机程序被处理器执行时实现上述任一实施例所述的方法。
附图说明
图1是相关技术提供的一种BIER头封装格式的示意图;
图2是相关技术提供的一种BIER OAM头封装格式的示意图;
图3是本申请实施例提供的一种BIER头中OAM字段格式的示意图;
图4是本申请实施例提供的一种性能测量方法的流程图;
图5是本申请实施例提供的一种BIER头中扩展流字段的格式示意图;
图6是本申请实施例提供的一种BIER OAM中扩展流字段的格式示意图;
图7是本申请实施例提供的一种流字段的格式示意图;
图8是本申请实施例提供的另一种流字段的格式示意图;
图9是本申请实施例提供的又一种流字段的格式示意图;
图10是本申请实施例提供的另一种性能测量方法的流程图;
图11是本申请实施例提供的又一种性能测量方法的流程图;
图12是本申请实施例提供的一种BIER网络的结构示意图;
图13是本申请实施例提供的一种性能测量装置的结构框图;
图14是本申请实施例提供的另一种性能测量装置的结构框图;
图15是本申请实施例提供的一种设备的结构示意图。
具体实施方式
下文中将结合附图对本申请的实施例进行说明。
BIER技术在新的网络架构下,为各类大视频业务提供了高效的组播解决方案,提升了网络效率。图1是相关技术提供的一种BIER头封装格式的示意图。该BIER头封装格式基于多协议标签交换(Multi-Protocol Label Switching,MPLS)数据面,BIER消息格式定义如图1所示。
随着BIER技术在组播业务的广泛应用及网络规模的扩大,为了保障BIER报文的有效传输,操作维护管理(Operation Administration and Maintenance,OAM)功能是多协议标签交换(MPLS)网络可管理可运营的基本要求,BIER OAM基于MPLS OAM的机制进行扩展,它的主要功能是有效提升BIER网络的管理和维护能力,保障网络的稳定运行。根据国际互联网工程任务组(Internet Engineering Task Force,IETF)标准中的定义,BIER OAM报文紧随BIER头后,使用BIER头中的原型(Proto)字段识别BIER OAM报文,如果Proto字段设置为5,则表明紧随BIER头的报文为BIER OAM报文。在BIER OAM头中的Proto字段为非0的情况下,后续报文携带为业务报文。图2是相关技术提供的一种BIER OAM头封装格式的示意图,BIER OAM消息格式定义如图2所示。
性能测量(Performance Measurement,PM)是BIER OAM技术需关注的重点,BIER PM通过测量报文的延时、抖动和丢包率,实现BIER网络的性能测量。在标准定义中,请求评论(Request For Comments,RFC)7799定义了测量方法的分类,RFC8321定义了被动性能测量方法,其中,标记方法(Marking Method,MM)可以通过标记特定数目或特定时间间隔内的报文实现测量实时流量的报文丢失、时延和抖动等。BIER网络也可以使用标记方法测量组播报文丢包率、时延等属性,包括单标记测量和双标记测量。如图1所示,IETF RFC8296规定的BIER头封装格式基于MPLS数据面,其中包含2bit的OAM字段,用来指示标记性能测量方法。图3是本申请实施例提供的一种BIER头中OAM字段格式的示意图。如图3所示,S比特置1时,表明是单标记测量,当D比特置1时,表明是双标记测量。但在标准中,未定义基于流的测量方法,未定义如何识别BIER流,无法实现基于BIER流的性能测量功能。
根据IETF标准的定义,BIER网络可以使用被动的标记测量方法。比特转 发路由器(Bit-Forwarding Router,BFR)节点进行丢包和时延测量,可以在源或宿节点执行节点、链路、子网或端到端测量。用户可以在一个BFR创建不同的BIER子流,每个子流包含了标记报文,可以在BIER网络内的报文流经过的任意BFR监控点识别并测量丢包率和时延。标记点可以在BIER网络的边缘节点设置或清除,以识别特定BIER子流,从而测量该BIER子流的丢包时延等性能。本申请实施例提出一种BIER网络中基于流的性能测量方法,该方法基于流的BIER报文封装,扩展流(Flow)字段,实现BIER流的识别及BIER流的标记性能测量功能。在实施例中,流字段的长度32比特,流字段携带BIER流识别信息。
在一实施例中,图4是本申请实施例提供的一种性能测量方法的流程图。本实施例应用于第一通信节点。示例性地,第一通信节点可以为首端BFR节点。如图4所示,本实施例包括S110-S130。
S110、创建BIER流。
S120、根据BIER流的性能测量需求封装BIER流测量报文,其中,BIER流测量报文携带BIER流识别信息。
S130、将BIER流测量报文发送至第二通信节点。
在实施例中,首端BFR节点创建BIER流,并根据BIER流的性能测量需求封装BIER流测量报文,然后将BIER流测量报文发送至第二通信节点,以使第二通信节点根据BIER流测量报文中的BIER流识别信息识别出对应的BIER流,并记录报文数或时间戳,以计算出BIER流的丢包率或时延。示例性地,第二通信节点可以为尾端BFR节点。
在一实施例中,BIER流识别信息用于识别唯一一条BIER流,并用于测量及识别BIER流。在实施例中,每条BIER流对应唯一一个BIER流识别信息,即每条BIER流对应唯一的BIER标识。BIER标识包含于BIER流识别信息中。
在一实施例中,BIER流测量报文为BIER头封装的业务报文,根据BIER流的性能测量需求封装BIER流测量报文,包括:在BIER头封装格式中携带BIER流识别信息。
在一实施例中,携带BIER流识别信息,包括:在BIER头封装格式中扩展流字段,流字段用于测量及识别BIER流。
在实施例中,可在BIER头封装格式中扩展流字段,用于测量及识别BIER流。图5是本申请实施例提供的一种BIER头中扩展流字段的格式示意图。如图5所示,在BIER头封装格式之后,扩展流字段,并采用流字段测量及识别BIER流。
在一实施例中,BIER流测量报文为BIER OAM头封装的业务报文,根据BIER流的性能测量需求封装BIER流测量报文,包括:在BIER OAM头封装格式中携带BIER流识别信息。
在一实施例中,携带BIER流识别信息,包括:在BIER OAM头封装格式中扩展一种新的消息类型,新的消息类型用于表明BIER流测量报文的消息类型为BIER流性能测量消息,在BIER流性能测量消息对应的数据中扩展流字段,流字段用于测量及识别BIER流。
在实施例中,在BIER OAM头中扩展流字段。图6是本申请实施例提供的一种BIER OAM中扩展流字段的格式示意图。如图6所示,流(Flow)字段用于测量及识别BIER流。本实施例中使用BIER OAM报文后携带业务报文的方式进行BIER流的性能测量,此时测量业务报文格式为BIER头后紧接BIER OAM报文,BIER头中Proto字段设置成5,BIER OAM头中的Proto字段必须置为非0,表明BIER OAM报文后携带业务报文。流字段携带于BIER OAM报文中,用于BIER性能测量及识别BIER流。BIER OAM头中新增一种消息类型(Message Type),并将消息类型设置为3,表明为BIER流测量报文的消息类型为BIER流PM消息,用于基于流的性能测量,将图2中的消息类型对应的数据(Message Type Dependent Data)扩展为图6所示的流字段。
在一实施例中,流字段的格式包括下述之一:流标识和保留比特位组成的格式;流标签组成的格式;流标识,标记测量字段和保留比特位组成的格式。
在实施例中,流字段的格式有三种方式可选。图7是本申请实施例提供的一种流字段的格式示意图。如图7所示,流字段的格式为流标识(Flow-Identification,Flow-ID)和保留比特位(RESERVED)组成的格式。图8是本申请实施例提供的另一种流字段的格式示意图。如图8所示,流字段为流标签(Flow Label)组成的格式。图9是本申请实施例提供的又一种流字段的格式示意图。如图9所示,流字段为流标识(Flow-ID)、标记测量字段(S|D)和保留比特位(RESERVED)组成的格式。在实施例中,流标识可根据性能测量需求,定义为20比特、24比特或28比特,用于唯一识别一个BIER组播流。
在一实施例中,BIER流识别信息由网络管理系统(Network Management System,NMS)或控制器生成,用于识别待检测的BIER流,可适用于MPLS,非MPLS以及互联网协议第6版(Internet Protocol version 6,IPv6)等多种数据面。
在一实施例中,标记测量字段包括第一比特和第二比特,其中,采用第一比特为第一数值,第二比特为第二数值标记BIER报文;采用第一比特为第二数值,第一比特为第一数值标记BIER报文。
在一实施例中,在第一比特为第一数值的情况下,表示单标记测量;在第二比特为第一数值的情况下,表示双标记测量。示例性地,在第一比特为1时,表示单标记测量;在第二比特为1时,表示双标记测量。
在一实施例中,图10是本申请实施例提供的另一种性能测量方法的流程图。本实施例应用于第二通信节点。示例性地,第二通信节点可以为尾端BFR节点。如图10所示,本实施例包括S210-S220。
S210、接收第一通信节点发送的BIER流测量报文,BIER流测量报文携带BIER流识别信息。
S220、根据BIER流测量报文识别并测量BIER流。
在一实施例中,BIER流识别信息用于识别唯一一条BIER流,并用于测量及识别BIER流。
在一实施例中,BIER流测量报文为BIER头封装的业务报文,在BIER头封装格式中携带BIER流识别信息。
在一实施例中,在所述BIER头封装格式中扩展流字段,所述流字段用于测量及识别BIER流。
在一实施例中,BIER流测量报文为BIER OAM头封装的业务报文,在BIER OAM头封装格式中携带BIER流识别信息。
在一实施例中,在所述BIER OAM头封装格式中扩展一种新的消息类型,所述新的消息类型用于表明为BIER流性能测量消息,在所述BIER流性能测量消息对应的数据中扩展流字段,所述流字段用于测量及识别BIER流。
在一实施例中,流字段的格式包括下述之一:流标识和保留比特位组成的格式;流标签组成的格式;流标识,标记测量字段和保留比特位组成的格式。
在一实施例中,标记测量字段包括第一比特和第二比特,其中,采用第一比特为第一数值,第二比特为第二数值标记BIER报文;采用第一比特为第二数值,第一比特为第一数值标记BIER报文。
在一实施例中,在所述第一比特为第一数值的情况下,表示单标记测量;在所述第二比特为第一数值的情况下,表示双标记测量。
在一实施例中,BIER流识别信息由NMS或控制器生成,用于识别待检测的BIER流。
在一实现方式中,本申请实施例提出一种BIER网络中基于流的性能测量方法,该方法提出基于流的BIER报文封装,扩展流字段,实现BIER流的识别及BIER流的标记性能测量功能。图11是本申请实施例提供的又一种性能测量方 法的流程图。本实施例实现了BIER网络中两端BFR节点之间的丢包及时延测量,如图11所示,包括S310-S320。
S310、首端BFR节点创建BIER流,并按照BIER流的性能测量需求封装BIER流测量报文,以及利用标记测量方法标记BIER流测量报文。
S320、尾端BFR节点接收BIER流测量报文,根据流标识识别BIER流,记录报文数或时间戳,当标记变化时,计算BIER流的丢包或时延。
在实施例中,标记测量方法可以为单标记测量,也可为双标记测量。在尾端BFR节点接收到BIER流测量报文时,根据BIER流识别信息中的流标识识别BIER流,并记录报文数或时间戳,在标记发生变化时,表明该BIER流对应的BIER流测量报文完成发送,则可计算BIER流的丢包或时延。示例性地,BIER流测量报文中的S比特为1,在S比特由1变为0时,表明S比特发生变化,则计算BIER流的报文丢失数以及丢包率。
在一实现方式中,图12是本申请实施例提供的一种BIER网络的结构示意图。如图12所示,BIER组播业务从首节点A发送到尾结点D、E、F或G。本实施例以测量BIER流从首节点A到节点C之间的逐跳报文丢包,并以单标记测量方法为例,对BIER流的识别以及性能测量进行说明。本实施例包括步骤一和步骤二。
步骤一:在首节点A创建报文数目为N的BIER流,使用单标记测量方法,按照上述实施例中描述的BIER流的性能测量需求封装BIER流测量报文,将流字段携带于BIER流测量报文的BIER头封装格式中,Flow-ID由NMS或控制器生成,用于标识需要检测的BIER流,BIER头中的S比特设置为1,D比特设置为0。报文发送完成后,上报BIER流的Flow-ID及BIER流对应的发包数目到NMS或控制器。
步骤二:在节点C接收到BIER流测量报文,解析BIER头,识别BIER流,记录报文接收数目,当S标记变化时,上报BIER流的Flow-ID及BIER流对应的发包数目到NMS或控制器,计算该BIER流报文丢失数目及丢包率。
在一实现方式中,本实施例采用如图12所示的BIER网络,即BIER组播业务从首节点A发送到尾结点D、E、F或G。本实施例以测量BIER流从首节点A到节点G之间的端到端报文丢包并以双标记测量方法为例,对BIER流的识别以及性能测量进行说明。本实施例包括步骤一和步骤二。
步骤一:在首节点A创建时间间隔为T的BIER流,使用双标记测量方法,按照本申请内容封装报文,将流字段携带于BIER报文的BIER OAM头中,采用BIER OAM报文的方式封装BIER业务测量流,Flow-ID由NMS或控制器生 成,用于标识需要检测的BIER流,S标记用来创建间隔流,D标记用来标记报文,测量时延。可以增加D标记改变的频率,增加时延测量的次数,以此来测量出时延抖动。报文发送完成后,上报BIER流的Flow-ID及BIER流对应的发包时间戳到NMS或控制器。
步骤二:在节点G接收报文,解析BIER OAM头,识别BIER流,记录这些报文的时间戳,当D标记变化时,上报BIER流的Flow-ID及BIER流对应的发包时间戳到NMS或控制器,计算时延及时延抖动。
在一实施例中,图13是本申请实施例提供的一种性能测量装置的结构框图,本实施例应用于第一通信节点。如图13所示,本实施例包括:创建模块410、封装模块420和发送器430。
创建模块410,配置为创建位索引显示复制(BIER)流。
封装模块420,配置为根据BIER流的性能测量需求封装BIER流测量报文,其中,BIER流测量报文携带BIER流识别信息。
发送器430,配置为将BIER流测量报文发送至第二通信节点。
本实施例提供的性能测量装置设置为实现图4所示实施例的性能测量方法,本实施例提供的性能测量装置实现原理类似,此处不再赘述。
在一实施例中,BIER流识别信息用于识别唯一一条BIER流,并用于测量及识别BIER流。
在一实施例中,BIER流测量报文为BIER头封装的业务报文,根据BIER流的性能测量需求封装BIER流测量报文,包括:在BIER头封装格式中携带BIER流识别信息。
在一实施例中,携带BIER流识别信息,包括:在BIER头封装格式中扩展流字段,流字段用于测量及识别BIER流。
在一实施例中,BIER流测量报文为BIER操作维护管理OAM头封装的业务报文,根据BIER流的性能测量需求封装BIER流测量报文,包括:在BIER OAM头封装格式中携带BIER流识别信息。
在一实施例中,携带BIER流识别信息,包括:在BIER OAM头封装格式中扩展一种新的消息类型,新的消息类型用于表明为BIER流性能测量消息,在BIER流性能测量消息对应的数据中扩展流字段,流字段用于测量及识别BIER流。
在一实施例中,流字段的格式包括下述之一:流标识和保留比特位组成的格式;流标签组成的格式;流标识,标记测量字段和保留比特位组成的格式。
在一实施例中,标记测量字段包括第一比特和第二比特。采用第一比特为第一数值,第二比特为第二数值标记BIER报文;采用第一比特为第二数值,第一比特为第一数值标记BIER报文。
在一实施例中,在第一比特为第一数值的情况下,表示单标记测量;在第二比特为第一数值的情况下,表示双标记测量。
在一实施例中,BIER流识别信息由网络管理系统(NMS)或控制器生成,用于识别待检测的BIER流。
图14是本申请实施例提供的另一种性能测量装置的结构框图。本实施例应用于第二通信节点。示例性地,第二通信节点可以为尾端BFR节点。如图14所示,本实施例包括:接收器510和识别测量模块520。
接收器510,配置为接收第一通信节点发送的BIER流测量报文,BIER流测量报文携带BIER流识别信息。
识别测量模块520,配置为根据BIER流测量报文识别并测量BIER流。
本实施例提供的性能测量装置设置为实现图10所示实施例的性能测量方法,本实施例提供的性能测量装置实现原理类似,此处不再赘述。
图15是本申请实施例提供的一种设备的结构示意图。如图15所示,本申请提供的设备,包括:处理器610、存储器620和通信模块630。该设备中处理器610的数量可以是一个或者多个,图15中以一个处理器610为例。该设备中存储器620的数量可以是一个或者多个,图15中以一个存储器620为例。该设备的处理器610、存储器620和通信模块630可以通过总线或者其他方式连接,图15中以通过总线连接为例。在该实施例中,该设备为第一通信节点,第一通信节点可以为首端BFR节点。
存储器620作为一种计算机可读存储介质,可设置为存储软件程序、计算机可执行程序以及模块,如本申请任意实施例的设备对应的程序指令/模块(例如,性能测量装置中的创建模块410、封装模块420和发送器430)。存储器620可包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序;存储数据区可存储根据设备的使用所创建的数据等。存储器620可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他非易失性固态存储器件。在一些实例中,存储器620可包括相对于处理器610远程设置的存储器,这些远程存储器可以通过网络连接至设备。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
通信模块630,配置为在第一通信节点和第二通信节点之间进行通信交互。
上述提供的设备可设置为执行上述任意实施例提供的应用于第一通信节点的性能测量方法,具备相应的功能。
在一实施例中,上述提供的设备还可设置为执行上述任意实施例提供的应用于第二通信节点的性能测量方法,具备相应的功能。
本申请实施例还提供一种包含计算机可执行指令的存储介质,计算机可执行指令在由计算机处理器执行时用于执行应用于第一通信节点的一种性能测量方法,该方法包括:创建位索引显示复制(BIER)流;根据BIER流的性能测量需求封装BIER流测量报文,其中,BIER流测量报文携带BIER流识别信息;将BIER流测量报文发送至第二通信节点。
本申请实施例还提供一种包含计算机可执行指令的存储介质,计算机可执行指令在由计算机处理器执行时用于执行应用于第二通信节点的一种性能测量方法,该方法包括:接收第一通信节点发送的BIER流测量报文,BIER流测量报文携带BIER流识别信息;根据BIER流测量报文识别并测量BIER流。
本领域内的技术人员应明白,术语“用户设备”涵盖任何适合类型的无线用户设备,例如移动电话、便携数据处理装置、便携网络浏览器或车载移动台。
一般来说,本申请的多种实施例可以在硬件或专用电路、软件、逻辑或其任何组合中实现。例如,一些方面可以被实现在硬件中,而其它方面可以被实现在可以被控制器、微处理器或其它计算装置执行的固件或软件中,尽管本申请不限于此。
本申请的实施例可以通过移动装置的数据处理器执行计算机程序指令来实现,例如通过处理器实体执行,或者通过硬件执行,或者通过软件和硬件的组合执行。计算机程序指令可以是汇编指令、指令集架构(Instruction Set Architecture,ISA)指令、机器指令、机器相关指令、微代码、固件指令、状态设置数据、或者以一种或多种编程语言的任意组合编写的源代码或目标代码。
本申请附图中的任何逻辑流程的框图可以表示程序步骤,或者可以表示相互连接的逻辑电路、模块和功能,或者可以表示程序步骤与逻辑电路、模块和功能的组合。计算机程序可以存储在存储器上。存储器可以具有任何适合于本地技术环境的类型并且可以使用任何适合的数据存储技术实现,例如但不限于只读存储器(Read-Only Memory,ROM)、随机访问存储器(Random Access Memory,RAM)、光存储器装置和系统(数码多功能光碟(Digital Video Disc,DVD)或光盘(Compact Disk,CD))等。计算机可读介质可以包括非瞬时性存储介质。数据处理器可以是任何适合于本地技术环境的类型,例如但不限于通用计算机、专用计算机、微处理器、数字信号处理器(Digital Signal Processing, DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、可编程逻辑器件(Field-Programmable Gate Array,FPGA)以及基于多核处理器架构的处理器。

Claims (15)

  1. 一种性能测量方法,应用于第一通信节点,包括:
    创建位索引显示复制BIER流;
    根据所述BIER流的性能测量需求封装BIER流测量报文,其中,所述BIER流测量报文携带BIER流识别信息;
    将所述BIER流测量报文发送至第二通信节点。
  2. 根据权利要求1所述的方法,其中,所述BIER流识别信息用于识别唯一一条BIER流,并用于测量BIER流。
  3. 根据权利要求1所述的方法,其中,所述BIER流测量报文为BIER头封装的业务报文;
    所述根据所述BIER流的性能测量需求封装BIER流测量报文,包括:
    在BIER头封装格式中携带BIER流识别信息。
  4. 根据权利要求3所述的方法,其中,所述在BIER头封装格式中携带BIER流识别信息,包括:
    在所述BIER头封装格式中扩展流字段,其中,所述流字段用于测量及识别BIER流。
  5. 根据权利要求1所述的方法,其中,所述BIER流测量报文为BIER操作维护管理OAM头封装的业务报文;
    所述根据所述BIER流的性能测量需求封装BIER流测量报文,包括:
    在BIER OAM头封装格式中携带BIER流识别信息。
  6. 根据权利要求5所述的方法,其中,所述在BIER OAM头封装格式中携带BIER流识别信息,包括:
    在所述BIER OAM头封装格式中扩展一种新的消息类型,其中,所述新的消息类型用于表明所述BIER流测量报文的消息类型为BIER流性能测量消息;在所述BIER流性能测量消息对应的数据中扩展流字段,其中,所述流字段用于测量及识别BIER流。
  7. 根据权利要求4或6所述的方法,其中,所述流字段的格式包括下述之一:流标识和保留比特位组成的格式;流标签组成的格式;流标识,标记测量字段和保留比特位组成的格式。
  8. 根据权利要求7所述的方法,其中,所述标记测量字段包括第一比特和第二比特,其中:
    采用第一比特为第一数值,第二比特为第二数值标记BIER流测量报文;
    采用第一比特为第二数值,第一比特为第一数值标记BIER流测量报文。
  9. 根据权利要求8所述的方法,其中,在所述第一比特为第一数值的情况下,所述标记测量字段表示所述性能测量方法采用单标记测量;在所述第二比特为第一数值的情况下,所述标记测量字段表示所述性能测量方法采用双标记测量。
  10. 根据权利要求1所述的方法,其中,所述BIER流识别信息由网络管理系统NMS或控制器生成,用于识别待检测的BIER流。
  11. 一种性能测量方法,应用于第二通信节点,包括:
    接收第一通信节点发送的位索引显示复制BIER流测量报文,其中,所述BIER流测量报文携带BIER流识别信息;
    根据所述BIER流测量报文识别并测量BIER流。
  12. 一种性能测量装置,应用于第一通信节点,包括:
    创建模块,配置为创建位索引显示复制BIER流;
    封装模块,配置为根据所述BIER流的性能测量需求封装BIER流测量报文,其中,所述BIER流测量报文携带BIER流识别信息;
    发送器,配置为将所述BIER流测量报文发送至第二通信节点。
  13. 一种性能测量装置,应用于第二通信节点,包括:
    接收器,配置为接收第一通信节点发送的位索引显示复制BIER流测量报文,其中,所述BIER流测量报文携带BIER流识别信息;
    识别测量模块,配置为根据所述BIER流测量报文识别并测量BIER流。
  14. 一种设备,包括:通信模块,存储器,以及至少一个处理器;
    所述通信模块,配置为在第一通信节点和第二通信节点之间进行通信交互;
    所述存储器,配置为存储至少一个程序;
    当所述至少一个程序被所述至少一个处理器执行时,所述至少一个处理器实现如权利要求1-11中任一项所述的方法。
  15. 一种存储介质,所述存储介质存储有计算机程序,所述计算机程序被处理器执行时实现权利要求1-11任一项所述的方法。
PCT/CN2020/138877 2020-03-24 2020-12-24 性能测量方法、装置、设备和存储介质 WO2021190009A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20927470.3A EP4131854A4 (en) 2020-03-24 2020-12-24 PERFORMANCE MEASUREMENT METHOD AND APPARATUS, DEVICE, AND STORAGE MEDIUM
US17/913,275 US20230114176A1 (en) 2020-03-24 2020-12-24 Performance measurement method and apparatus, device, and storage medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010213323.4A CN112511365A (zh) 2020-03-24 2020-03-24 一种性能测量方法、装置、设备和存储介质
CN202010213323.4 2020-03-24

Publications (1)

Publication Number Publication Date
WO2021190009A1 true WO2021190009A1 (zh) 2021-09-30

Family

ID=74953247

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/138877 WO2021190009A1 (zh) 2020-03-24 2020-12-24 性能测量方法、装置、设备和存储介质

Country Status (4)

Country Link
US (1) US20230114176A1 (zh)
EP (1) EP4131854A4 (zh)
CN (1) CN112511365A (zh)
WO (1) WO2021190009A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113992497A (zh) * 2021-11-03 2022-01-28 烽火通信科技股份有限公司 Ioam测量计算方法、装置、设备及存储介质
WO2023206165A1 (zh) * 2022-04-27 2023-11-02 华为技术有限公司 组播数据报文发送的方法、装置、设备和存储介质

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113765809A (zh) * 2020-06-05 2021-12-07 华为技术有限公司 Bier组播流量的统计方法、设备以及系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105828218A (zh) * 2016-04-19 2016-08-03 华为技术有限公司 一种检测组播流传输质量的方法、装置及系统
CN107294861A (zh) * 2016-03-30 2017-10-24 中兴通讯股份有限公司 组播流量的控制方法及装置
WO2020041453A1 (en) * 2018-08-21 2020-02-27 Cisco Technology, Inc. Service traffic replication and dynamic policy enforcement in a multi-cloud service mesh

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10033641B2 (en) * 2014-11-06 2018-07-24 Juniper Networks, Inc. Deterministic and optimized bit index explicit replication (BIER) forwarding
CN106603406B (zh) * 2015-10-16 2020-05-26 中兴通讯股份有限公司 一种bier网络中流量工程信息通告的方法和装置
US10164794B2 (en) * 2017-04-28 2018-12-25 Cisco Technology, Inc. Bridging of non-capable subnetworks in bit indexed explicit replication
CN109246018B (zh) * 2017-07-11 2021-11-30 中兴通讯股份有限公司 基于bier-te的报文转发方法、节点装置及存储介质
US10601961B2 (en) * 2017-07-12 2020-03-24 Cisco Technology, Inc. Service function chain dynamic classification
US10574589B2 (en) * 2017-09-28 2020-02-25 Nokia Technologies Oy Multicast based on bit indexed explicit replication
CN109756425B (zh) * 2017-11-07 2022-01-18 中国电信股份有限公司 组播转发方法、装置以及bfr
CN111147383B (zh) * 2018-11-02 2021-06-29 华为技术有限公司 报文转发的方法、发送报文的装置和接收报文的装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107294861A (zh) * 2016-03-30 2017-10-24 中兴通讯股份有限公司 组播流量的控制方法及装置
CN105828218A (zh) * 2016-04-19 2016-08-03 华为技术有限公司 一种检测组播流传输质量的方法、装置及系统
WO2020041453A1 (en) * 2018-08-21 2020-02-27 Cisco Technology, Inc. Service traffic replication and dynamic policy enforcement in a multi-cloud service mesh

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
G. MIRSKY ZTE CORP. L. ZHENG M. CHEN HUAWEI TECHNOLOGIES G. FIOCCOLA TELECOM ITALIA: "Performance Measurement (PM) with Marking Method in Bit Index Explicit Replication (BIER) Layer; draft-ietf-bier-pmmm-oam-05.txt", PERFORMANCE MEASUREMENT (PM) WITH MARKING METHOD IN BIT INDEX EXPLICIT REPLICATION (BIER) LAYER; DRAFT-IETF-BIER-PMMM-OAM-05.TXT; INTERNET-DRAFT: BIER WORKING GROUP, INTERNET ENGINEERING TASK FORCE, IETF; STANDARDWORKINGDRAFT, INTERNET SOCIETY (ISOC), no. 05, 11 December 2018 (2018-12-11), Internet Society (ISOC) 4, rue des Falaises CH- 1205 Geneva, Switzerland, pages 1 - 7, XP015130222 *
See also references of EP4131854A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113992497A (zh) * 2021-11-03 2022-01-28 烽火通信科技股份有限公司 Ioam测量计算方法、装置、设备及存储介质
CN113992497B (zh) * 2021-11-03 2023-05-26 烽火通信科技股份有限公司 Ioam测量计算方法、装置、设备及存储介质
WO2023206165A1 (zh) * 2022-04-27 2023-11-02 华为技术有限公司 组播数据报文发送的方法、装置、设备和存储介质

Also Published As

Publication number Publication date
US20230114176A1 (en) 2023-04-13
EP4131854A1 (en) 2023-02-08
EP4131854A4 (en) 2024-03-27
CN112511365A (zh) 2021-03-16

Similar Documents

Publication Publication Date Title
WO2021190009A1 (zh) 性能测量方法、装置、设备和存储介质
US11979322B2 (en) Method and apparatus for providing service for traffic flow
WO2021170092A1 (zh) 报文处理方法、装置、网络设备及存储介质
WO2015165212A1 (zh) 一种报文处理方法、装置及计算机存储介质
WO2018188464A1 (zh) 一种实现ioam的方法、装置及存储介质
WO2018210213A1 (zh) 一种实现ioam封装的方法及装置、存储介质
WO2016198013A1 (zh) 一种报文传输方法及装置
US20230006906A1 (en) In-situ flow detection method and apparatus
WO2018210225A1 (zh) 一种自动实现ioam封装的方法及装置、存储介质
US20180091410A1 (en) Techniques to Use a Network Service Header to Monitor Quality of Service
CN107181663A (zh) 一种报文处理方法、相关设备及计算机可读存储介质
WO2022078293A1 (zh) 组播业务流的检测方法及相关装置
CN101552711B (zh) 建立伪线映射的方法及装置
WO2019170083A1 (zh) 报文处理方法、控制器以及转发设备
US20140293798A1 (en) Mpls-tp network and link trace method thereof
WO2017193732A1 (zh) 一种伪线数据报文的封装、解封装方法和相关装置
KR20220160639A (ko) 메시지 인터랙션 방법, 장치, 설비 및 저장 매체
WO2022166773A1 (zh) 一种组播报文传输方法、位转发路由器及存储介质
CN113328901B (zh) 报文乱序检测方法、装置及系统
WO2020182085A1 (zh) 报文的传输方法和设备
CN113992497A (zh) Ioam测量计算方法、装置、设备及存储介质
US20230327983A1 (en) Performance measurement in a segment routing network
KR20230005369A (ko) Ioam 방법 및 전자 기기
WO2020114083A1 (zh) 一种ioam信息的处理方法和装置
US20130259057A1 (en) Pseudowire groups in a packet switched network

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20927470

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020927470

Country of ref document: EP

Effective date: 20221024