WO2022104690A1 - 半导体器件及其制备方法 - Google Patents

半导体器件及其制备方法 Download PDF

Info

Publication number
WO2022104690A1
WO2022104690A1 PCT/CN2020/130406 CN2020130406W WO2022104690A1 WO 2022104690 A1 WO2022104690 A1 WO 2022104690A1 CN 2020130406 W CN2020130406 W CN 2020130406W WO 2022104690 A1 WO2022104690 A1 WO 2022104690A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
layer
light
electrodes
semiconductor device
Prior art date
Application number
PCT/CN2020/130406
Other languages
English (en)
French (fr)
Inventor
张丽旸
Original Assignee
苏州晶湛半导体有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州晶湛半导体有限公司 filed Critical 苏州晶湛半导体有限公司
Priority to PCT/CN2020/130406 priority Critical patent/WO2022104690A1/zh
Priority to CN202080107047.1A priority patent/CN116490985A/zh
Priority to TW110141629A priority patent/TWI778857B/zh
Publication of WO2022104690A1 publication Critical patent/WO2022104690A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/38Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes with a particular shape

Definitions

  • the present application relates to the field of semiconductor technology, and in particular, to a semiconductor device and a preparation method thereof.
  • Micro-LED Micro Light Emitting Diode
  • Micro-LED is transferred to a temporary carrier board.
  • the specific number of transfers varies due to differences in the actual process.
  • the Micro-LED is transferred to the driving circuit board. Multiple transfers can result in yield degradation and increased production costs.
  • the purpose of the present invention is to provide a semiconductor device and a preparation method thereof, which can reduce the number of transfers, improve the yield and reduce the cost.
  • a first aspect of the present invention provides a method for preparing a semiconductor device, comprising:
  • the first conductive layer comprising a heavily doped III-V compound
  • a light-emitting structure is grown using the isolation structure as a mask; the light-emitting structure includes a first semiconductor layer, an active layer and a second semiconductor layer sequentially stacked on the first conductive layer, and the conductive layer of the first semiconductor layer is The type is opposite to the conductivity type of the second semiconductor layer.
  • the preparation method of the semiconductor device further includes:
  • the first electrode is electrically connected to the first conductive layer through a first via hole in the isolation structure
  • the second electrode is located on the second semiconductor layer, and is electrically connected to the second semiconductor layer.
  • forming the first electrode and the second electrode includes:
  • first electrode in the first via hole, one end of the first electrode is electrically connected to the first conductive layer, and the other end of the first electrode exposes the isolation structure;
  • the second electrode is formed on the second semiconductor layer.
  • the preparation method of the semiconductor device further includes:
  • the second via hole penetrates the isolation structure and the first conductive layer
  • a first insulating medium layer is formed in the second via hole, and a second insulating medium layer is formed between the adjacent first electrodes and the second electrodes to obtain an intermediate transition structure.
  • the intermediate transition structure after the intermediate transition structure is obtained, it also includes:
  • the driving circuit board includes a first pad and a second pad, the first electrode corresponds to the first pad, and the second electrode corresponds to on the second pad;
  • the substrate is peeled off to obtain the semiconductor device.
  • the method before forming the first electrode and the second electrode, the method further includes:
  • a reflector is formed on the light-emitting structure, and the material of the reflector is a conductive material.
  • a plurality of adjacent light-emitting structures form a light-emitting unit, and a plurality of the light-emitting structures in the light-emitting unit are connected in series through the first conductive layer; the light-emitting unit further includes a plurality of the first conductive layers.
  • An electrode and a plurality of the second electrodes one of the first electrodes is welded to the first pad, and the rest of the first electrodes are not welded to the first pad
  • a plurality of the second electrodes are welded on the plurality of the second pads in a one-to-one correspondence.
  • a second aspect of the present invention provides a semiconductor device, comprising:
  • a first conductive layer comprising heavily doped III-V compounds
  • a light-emitting structure is located in the isolation structure, and the light-emitting structure includes the first semiconductor layer, the active layer and the second semiconductor layer sequentially stacked on the first conductive layer, and the first semiconductor layer is The conductivity type is opposite to that of the second semiconductor layer.
  • the semiconductor device further includes:
  • a first electrode and a second electrode the first electrode is electrically connected to the first conductive layer through a first via hole in the isolation structure, the second electrode is located on the second semiconductor layer, and is connected to the first conductive layer.
  • the second semiconductor layer is electrically connected.
  • the first via hole is located in the isolation structure and penetrates through the isolation structure, the first electrode is located in the first via hole, and one end of the first electrode is electrically conductive with the first The layers are electrically connected, and the isolation structure is exposed at the other end;
  • the semiconductor device further includes:
  • a first insulating medium layer and a second insulating medium layer the first insulating medium layer is located in the second via hole, and the second insulating medium layer is located adjacent to the first electrode and the second electrode between.
  • the semiconductor device further includes:
  • a reflecting mirror is located between the second electrode and the second semiconductor layer, and the material of the reflecting mirror is a conductive material.
  • the semiconductor device further includes:
  • the driving circuit board includes a first pad and a second pad, the first electrode is welded on the first pad, and the second electrode is welded on the second pad.
  • a plurality of adjacent light-emitting structures form a light-emitting unit, and a plurality of the light-emitting structures in the light-emitting unit are connected in series through the first conductive layer; the light-emitting unit further includes a plurality of the first conductive layers.
  • An electrode and a plurality of the second electrodes one of the first electrodes is welded to the first pad, and the rest of the first electrodes are not welded to the first pad
  • a plurality of the second electrodes are welded on the plurality of the second pads in a one-to-one correspondence.
  • the beneficial effect of the present invention is that, before preparing the light-emitting structure, a first conductive layer is formed on the substrate to prepare the electrode, so the light-emitting structure can no longer be transferred to the temporary carrier.
  • the number of transfers can be reduced, and the risk of contamination caused by transferring back and forth between different chambers can be avoided, the yield can be improved, and the cost can be reduced.
  • the light-emitting structure can be naturally formed without dry-etching the light-emitting structure, thereby alleviating the sidewall defects of the light-emitting structure caused by the dry-etching.
  • FIG. 1 is a flow chart of a method for manufacturing a semiconductor device according to a first embodiment of the present invention
  • FIG. 2 to 9 are schematic diagrams of intermediate structures corresponding to the process in FIG. 1;
  • FIG. 10 is a schematic cross-sectional structure diagram of the semiconductor device according to the first embodiment of the present invention.
  • FIG. 11 is a schematic cross-sectional structure diagram of a semiconductor device according to a second embodiment of the present invention.
  • the second semiconductor layer 143 The first electrode 15
  • the second electrode 16 The first via hole 17
  • the second via hole 18 The first insulating dielectric layer 19
  • the first pad 311 The second pad 312
  • the first welding part 41 The second welding part 42
  • FIG. 1 is a flowchart of a method for fabricating a semiconductor device according to a first embodiment of the present invention.
  • 2 to 9 are schematic diagrams of intermediate structures corresponding to the process in FIG. 1 .
  • FIG. 10 is a schematic cross-sectional structure diagram of the semiconductor device according to the first embodiment of the present invention.
  • the preparation method of the semiconductor device includes the following steps 101-110:
  • a first conductive layer 12 is formed on the substrate 11, and the first conductive layer 12 includes a heavily doped III-V group compound.
  • the first conductive layer 12 may be formed on the substrate 11 by an epitaxial process.
  • the epitaxy process may be MOCVD (Metal Organic Chemical Vapor Deposition), MBE (Molecular Beam Epitaxy) or ALD (Atomic Layer Deposition), but not limited thereto.
  • the material of the first conductive layer 12 may be GaN, or may be AlN, AlGaN, InGaN or AlInGaN, but is not limited thereto.
  • the doping element in the first conductive layer 12 includes at least one of Si ions, Ge ions, Sn ions, Se ions and Te ions.
  • the doping elements in the first conductive layer 12 include Si
  • the ions alternatively, include Si ions and Sn ions, but are not limited thereto.
  • the material of the substrate 11 is silicon.
  • the material of the substrate 11 can also be SiC, GaN or sapphire.
  • step S102 an isolation structure 13 is formed on the first conductive layer 12 .
  • an epitaxy process may be used to form an isolation structure 13 on the first conductive layer 12 , wherein the material of the isolation structure 13 is an insulating material.
  • the isolation structure 13 is a hollow structure, the accommodating space enclosed by the isolation structure 13 is used to accommodate the light emitting structure 14 , and the isolation structure 13 is used to isolate the adjacent light emitting structures 14 .
  • the projection of the isolation structure 13 on the substrate 11 may be a ring shape, for example, a circular ring or a rectangular ring, but not limited thereto.
  • the average diameter R of the isolation structures 13 is less than or equal to 100 ⁇ m.
  • the average diameter R of the isolation structure 13 is the diameter of the ring formed by the center of the sidewall of the isolation structure 13 .
  • the light emitting structure 14 can be naturally formed independently of each other without dry etching the light emitting structure 14, so the sidewall defect of the light emitting structure 14 caused by the dry etching is alleviated .
  • the light-emitting structure 14 is grown by using the isolation structure 13 as a mask.
  • the light-emitting structure 14 includes a first semiconductor layer 141 , an active layer 142 and a second semiconductor layer 143 sequentially stacked on the first conductive layer 12 .
  • the conductivity type of the semiconductor layer 141 is opposite to that of the second semiconductor layer 143 .
  • the light emitting structure 14 may be grown by using the isolation structure 13 as a mask by an epitaxial process.
  • the light emitting structure 14 includes a first semiconductor layer 141 , an active layer 142 and a second semiconductor layer 143 sequentially stacked on the first conductive layer 12 .
  • the first semiconductor layer 141 is an N-type semiconductor layer.
  • the material of the first semiconductor layer 141 is a group III-V compound, such as GaN, or AlN, AlGaN, InGaN or AlInGaN.
  • the doping element of the first semiconductor layer 141 includes at least one of Si ions, Ge ions, Sn ions, Se ions and Te ions.
  • the doping elements of the first semiconductor layer 141 include Si ions, or include Si ions and Sn ions, but not limited thereto.
  • the active layer 142 includes a multiple quantum well structure.
  • the multiple quantum well structure may be a periodic structure in which GaN and AlGaN are alternately arranged, or a periodic structure in which GaN and AlInGaN are alternately arranged, but not limited thereto.
  • the second semiconductor layer 143 is a P-type semiconductor layer, and the material of the second semiconductor layer 143 is a III-V group compound, for example, GaN, or AlN, AlGaN, InGaN or AlInGaN.
  • the doping element of the second semiconductor layer 143 includes at least one of Mg ions, Zn ions, Ca ions, Sr ions or Ba ions, for example, Mg ions, or Mg ions and Zn ions, but not limited thereto.
  • a reflection mirror 22 is formed on the light emitting structure 14, and the material of the reflection mirror 22 is a conductive material.
  • PVD Physical Vapor Deposition
  • CVD Chemical Vapor Deposition
  • the reflector 22 may include a nickel metal layer and a silver metal layer, wherein the nickel metal layer is located between the light emitting structure 14 and the silver metal layer, and the reflector 22 may also include an indium tin oxide (ITO) layer, a nickel metal layer layer and silver metal layer, wherein the indium tin oxide layer, the nickel metal layer, and the silver metal layer are sequentially stacked on the light emitting structure 14 .
  • ITO indium tin oxide
  • the structure of the mirror 22 is not limited to the structures listed above.
  • a first via hole 17 is formed on the isolation structure 13 , the first via hole 17 penetrates the isolation structure 13 , a second via hole 18 is formed on the isolation structure 13 and the first conductive layer 12 , and the second via hole 18 is formed.
  • the isolation structure 13 and the first conductive layer 12 are penetrated.
  • a first via hole 17 may be formed on the isolation structure 13 by a dry etching process or a wet etching process, and a second via hole 17 may be formed on the isolation structure 13 and the first conductive layer 12
  • the via hole 18, the first via hole 17 penetrates the isolation structure 13 to expose the surface of the first conductive layer 12 away from the substrate 11, the second via hole 18 penetrates the isolation structure 13 and the first conductive layer 12 to cut off the first conductive layer 12.
  • a first electrode 15 is formed in the first via hole 17, and a second electrode 16 is formed on the mirror 22, wherein one end of the first electrode 15 is electrically connected to the first conductive layer 12, and the other end exposes the isolation structure 13.
  • the first via hole 17 is filled with conductive material to form the first electrode 15
  • the mirror 22 is covered with conductive material to form the second electrode 16 .
  • a conductive layer 12 is in direct contact to achieve electrical connection, and the isolation structure 13 is exposed at the other end.
  • the first electrode 15 may be an N-type electrode, or a cathode, and the material of the first electrode 15 may include at least one of gold, silver, aluminum, nickel, platinum, chromium, and titanium, for example, The material of the first electrode 15 may include gold, aluminum, nickel and chromium, but is not limited thereto.
  • the second electrode 16 may be a P-type electrode, or an anode, and the material of the second electrode 16 may include at least one of gold, silver, aluminum, nickel, platinum, chromium, and titanium, for example, The material of the second electrode 16 may include gold, aluminum, nickel and chromium, but is not limited thereto.
  • step S107 the first insulating medium layer 19 is formed in the second via hole 18 , and the second insulating medium layer 21 is formed between the adjacent first electrodes 15 and the second electrodes 16 , so as to obtain the intermediate transition structure 30 .
  • an insulating material is filled in the second via hole 18 to form a first insulating dielectric layer 19
  • an insulating material is filled between the adjacent first electrodes 15 and the second electrodes 16 to form a first insulating medium layer 19 .
  • a second insulating dielectric layer 21 is formed.
  • the side of the first insulating medium layer 19 close to the second electrode 16 also covers the end of the second electrode 16 close to the second via hole 18 .
  • the first insulating medium layer 19 is used to prevent the adjacent first conductive layers ( 12 ) from conducting electricity
  • the second insulating medium layer 21 is used to prevent the first electrodes 15 and the second electrodes 16 from conducting electricity.
  • the intermediate transition structure 30 is obtained.
  • step S108 the intermediate transition structure 30 is transferred to the driving circuit board 31, the driving circuit board 31 includes a first pad 311 and a second pad 312, the first electrode 15 corresponds to the first pad 311, the second The electrode 16 corresponds to the second pad 312 .
  • the intermediate transition structure 30 is transferred to the driving circuit board 31 , wherein the first electrodes 15 on the intermediate transition structure 30 correspond to the first pads 311 on the driving circuit board 31 .
  • the second electrode 16 on the intermediate transition structure 30 corresponds to the second pad 312 on the driving circuit board 31 .
  • the driving circuit board 31 includes a driving circuit for driving the light emitting structure 14 to emit light, the first pad 311 and the second pad 312 are respectively electrically connected to the driving circuit, and the first pad 311 and the second pad are respectively 312 are all conductive.
  • step S109 the first electrode 15 is welded on the first pad 311 , and the second electrode 16 is welded on the second pad 312 .
  • the first electrode 15 can be welded on the first pad 311 and the second electrode 16 can be welded on the second pad 312 by using a welding process.
  • the first electrode 15 and the first pad 311 are welded together by the first welding part 41
  • the second electrode 16 and the second pad 312 are welded together by the second welding part 42 .
  • the electrical connection between the light emitting structure 14 and the driving circuit is achieved.
  • the material of the first soldering portion 41 and the second soldering portion 42 may be a conductive material, for example, solder paste or conductive glue.
  • step S110 the substrate 11 is peeled off to obtain a semiconductor device.
  • the substrate 11 is peeled off by a peeling process to obtain a semiconductor device.
  • the substrate 11 can be peeled off by means of wet etching, dry etching, or thinning the substrate 11 by mechanical grinding.
  • a laser lift-off (LLO) process is used to lift off the substrate 11 .
  • the light emitting structure 14 can no longer be transferred to the temporary carrier for Peeling off the substrate 11 and then preparing the first electrode 15 can reduce the number of transfers, avoid the risk of contamination caused by transferring back and forth between different chambers, improve yield, and reduce costs.
  • FIG. 10 is a schematic cross-sectional structure diagram of the semiconductor device according to the first embodiment of the present invention.
  • the semiconductor device includes: a first conductive layer 12 , an isolation structure 13 , a light emitting structure 14 , a mirror 22 , a first via hole 17 , a second via hole 18 , a first electrode 15 , and a second electrode 16 , the first insulating medium layer 19 , the second insulating medium layer 21 and the driving circuit board 31 .
  • the first conductive layer 12 includes a heavily doped III-V group compound.
  • the isolation structure 13 is located on the first conductive layer 12 .
  • the light emitting structure 14 is located in the isolation structure 13 .
  • the light emitting structure 14 includes a first semiconductor layer 141 , an active layer 142 and a second semiconductor layer 143 sequentially stacked on the first conductive layer 12 .
  • the conductivity type of the first semiconductor layer 141 is opposite to that of the second semiconductor layer 143 .
  • the mirror 22 is located between the second electrode 16 and the second semiconductor layer 143 , and the material of the mirror 22 is a conductive material.
  • the first electrode 15 is electrically connected to the first conductive layer 12 through the first via hole 17 in the isolation structure 13
  • the second electrode 16 is located on the second semiconductor layer 143 and is connected to the first conductive layer 12 .
  • the second semiconductor layer 143 is electrically connected.
  • the first via hole 17 is located in the isolation structure 13 and penetrates through the isolation structure 13
  • the first electrode 15 is located in the first via hole 17
  • one end of the first electrode 15 is electrically connected to the first conductive layer 12
  • the other end is exposed to the isolation structure 13.
  • the second via hole 18 penetrates the isolation structure 13 and the first conductive layer 12 .
  • the first insulating medium layer 19 is located in the second via hole 18
  • the second insulating medium layer 21 is located between the adjacent first electrodes 15 and the second electrodes 16 .
  • the driving circuit board 31 includes a first pad 311 and a second pad 312 , the first electrode 15 is welded on the first pad 311 , and the second electrode 16 is welded on the second pad 311 . on pad 312 .
  • the first electrode 15 is welded on the first pad 311 through the first welding part 41
  • the second electrode 16 is welded on the second pad 312 through the second welding part 42 .
  • FIG. 11 is a schematic cross-sectional structure diagram of a semiconductor device according to a second embodiment of the present invention.
  • the semiconductor device 10 in this embodiment can be fabricated by using the fabrication method of the semiconductor device described in the first embodiment.
  • a plurality of adjacent light-emitting structures 14 form a light-emitting unit.
  • multiple means that the number of the light emitting structures 14 is greater than one.
  • two or three adjacent light emitting structures 14 form a light emitting unit. Only two light emitting structures 14 in the light emitting unit are shown in FIG. 11 .
  • the light-emitting unit further includes a plurality of first electrodes 15 and a plurality of second electrodes 16, one of the first electrodes 15 of the plurality of first electrodes 15 is welded on the first pad 311, and the remaining first electrodes 15 are not welded to the first electrode 15.
  • the plurality of second electrodes 16 are welded to the plurality of second pads 312 in a one-to-one correspondence.
  • the three light-emitting structures 14 in the light-emitting unit are connected in series through the first conductive layer 12 .
  • the light-emitting unit includes three first electrodes 15 and three second electrodes 16, one of the three first electrodes 15 is welded on the first pad 311, and the remaining two first electrodes 15 are not welded on the first electrode 15.
  • the three second electrodes 16 are welded to the three second pads 312 in one-to-one correspondence.
  • the light-emitting colors of the three light-emitting structures 14 in the light-emitting unit are the first primary color, the second primary color, and the third primary color, for example, red, green, and blue, respectively.
  • the first conductive layer 12 includes a plurality of annular isolation structures 13
  • the sidewalls of the adjacent isolation structures 13 are in contact with each other, or in other words, the adjacent isolation structures 13 share the sidewalls.
  • Each isolation structure 13 is in the form of a mesh.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Led Devices (AREA)
  • Design And Manufacture Of Integrated Circuits (AREA)
  • Bipolar Transistors (AREA)

Abstract

一种半导体器件(10)及其制备方法。该半导体器件(10)的制备方法,包括:先在衬底(11)上形成第一导电层(12),其中,第一导电层(12)包括重掺杂的III-V族化合物,然后,在第一导电层(12)上形成隔离结构(13),然后,以隔离结构(13)为掩模生长发光结构(14),其中,发光结构(14)包括依次层叠于第一导电层(12)上的第一半导体层(141)、有源层(142)与第二半导体层(143),第一半导体层(141)的导电类型与第二半导体层(142)的导电类型相反。

Description

半导体器件及其制备方法 技术领域
本申请涉及半导体技术领域,尤其涉及一种半导体器件及其制备方法。
背景技术
相关技术中,Micro-LED(微发光二极管)是一种新型的显示技术,具备亮度高、发光效率高等优点。
然而,在制备Micro-LED的过程中,一般需要转移到临时载板,可能存在多次转移,具体转移的次数因实际制程的差异而不同,最后将Micro-LED转到驱动电路板。多次转移可能会导致良率下降,提高了生产成本。
有鉴于此,实有必要提供一种新的半导体器件及其制备方法,以满足上述需求。
发明内容
本发明的发明目的是提供一种半导体器件及其制备方法,可以减少转移次数,提高良率,降低成本。
为实现上述目的,本发明的第一方面提供一种半导体器件的制备方法,包括:
在衬底上形成第一导电层,所述第一导电层包括重掺杂的III-V族化合物;
在所述第一导电层上形成隔离结构;
以所述隔离结构为掩模生长发光结构;所述发光结构包括依次层叠于 所述第一导电层上的第一半导体层、有源层与第二半导体层,所述第一半导体层的导电类型与所述第二半导体层的导电类型相反。
可选地,所述的半导体器件的制备方法,还包括:
形成第一电极与第二电极,所述第一电极通过所述隔离结构内的第一过孔与所述第一导电层电连接,所述第二电极位于所述第二半导体层上,且与所述第二半导体层电连接。
可选地,所述形成第一电极与第二电极,包括:
在所述隔离结构内形成所述第一过孔,所述第一过孔贯穿所述隔离结构;
在所述第一过孔中形成所述第一电极,所述第一电极一端与所述第一导电层电连接,另一端露出所述隔离结构;
在所述第二半导体层上形成所述第二电极。
可选地,所述的半导体器件的制备方法,还包括:
在所述隔离结构与所述第一导电层上形成第二过孔,所述第二过孔贯穿所述隔离结构与所述第一导电层;
在所述第二过孔中形成第一绝缘介质层,以及在相邻的所述第一电极与所述第二电极之间形成第二绝缘介质层,得到中间过渡结构。
可选地,所述得到中间过渡结构之后,还包括:
将所述中间过渡结构转移到驱动电路板上,所述驱动电路板包括第一焊盘与第二焊盘,所述第一电极对应于所述第一焊盘上,所述第二电极对应于所述第二焊盘上;
将所述第一电极焊接在所述第一焊盘上,将所述第二电极焊接在所述第二焊盘上;
剥离所述衬底,得到所述半导体器件。
可选地,所述形成第一电极与第二电极之前,还包括:
在所述发光结构上形成反射镜,所述反射镜的材料为导电材料。
可选地,相邻的多个所述发光结构组成一个发光单元,所述发光单元中的多个所述发光结构通过所述第一导电层串联;所述发光单元还包括多个所述第一电极与多个所述第二电极,多个所述第一电极中的一个所述第一电极焊接在所述第一焊盘上,其余所述第一电极未焊接在所述第一焊盘上,多个所述第二电极一一对应地焊接在多个所述第二焊盘上。
本发明的第二方面提供一种半导体器件,包括:
第一导电层,包括重掺杂的III-V族化合物;
位于所述第一导电层上的隔离结构;
发光结构,位于所述隔离结构中,所述发光结构包括依次层叠于所述第一导电层上的所述的第一半导体层、有源层与第二半导体层,所述第一半导体层的导电类型与所述第二半导体层的导电类型相反。
可选地,所述的半导体器件,还包括:
第一电极与第二电极,所述第一电极通过所述隔离结构内的第一过孔与所述第一导电层电连接,所述第二电极位于所述第二半导体层上,且与所述第二半导体层电连接。
可选地,所述第一过孔位于所述隔离结构内,且贯穿所述隔离结构,所述第一电极位于所述第一过孔中,所述第一电极一端与所述第一导电层电连接,另一端露出所述隔离结构;
所述半导体器件,还包括:
第二过孔,贯穿所述隔离结构与所述第一导电层;
第一绝缘介质层与第二绝缘介质层,所述第一绝缘介质层位于所述第二过孔中,所述第二绝缘介质层位于相邻的所述第一电极与所述第二电极之 间。
可选地,所述的半导体器件,还包括:
反射镜,位于所述第二电极与所述第二半导体层之间,所述反射镜的材料为导电材料。
可选地,所述的半导体器件,还包括:
驱动电路板,所述驱动电路板包括第一焊盘与第二焊盘,所述第一电极焊接在所述第一焊盘上,所述第二电极焊接在所述第二焊盘上。
可选地,相邻的多个所述发光结构组成一个发光单元,所述发光单元中的多个所述发光结构通过所述第一导电层串联;所述发光单元还包括多个所述第一电极与多个所述第二电极,多个所述第一电极中的一个所述第一电极焊接在所述第一焊盘上,其余所述第一电极未焊接在所述第一焊盘上,多个所述第二电极一一对应地焊接在多个所述第二焊盘上。
与现有技术相比,本发明的有益效果在于:由于在制备发光结构之前,先在衬底上形成了第一导电层,以制备电极,因此,可以不再将发光结构转移至临时载板以剥离衬底然后制备电极,可以减少转移次数,也可避免在不同腔室间来回转移带来的污染风险,提高良率,降低成本。
而且,由于隔离结构的存在,不用对发光结构进行干法刻蚀,可以自然形成相互独立的发光结构,故缓解了通过干法刻蚀导致的发光结构侧壁缺陷。
附图说明
图1是本发明第一实施例的半导体器件的制备方法的流程图;
图2至图9是图1中的流程对应的中间结构示意图;
图10是本发明第一实施例的半导体器件的截面结构示意图;
图11是本发明第二实施例的半导体器件的截面结构示意图。
为方便理解本发明,以下列出本发明中出现的所有附图标记:
衬底11                               第一导电层12
隔离结构13                           发光结构14
第一半导体层141                      有源层142
第二半导体层143                      第一电极15
第二电极16                           第一过孔17
第二过孔18                           第一绝缘介质层19
第二绝缘介质层21                     反射镜22
中间过渡结构30                       驱动电路板31
第一焊盘311                          第二焊盘312
第一焊接部41                         第二焊接部42
半导体器件10
具体实施方式
为使本发明的上述目的、特征和优点能够更为明显易懂,下面结合附图对本发明的具体实施例做详细的说明。
图1是本发明第一实施例的半导体器件的制备方法的流程图。图2至图9是图1中的流程对应的中间结构示意图。图10是本发明第一实施例的半导体器件的截面结构示意图。如图1所示,该半导体器件的制备方法包括以下步骤101~110:
在步骤S101中,在衬底11上形成第一导电层12,第一导电层12包括重掺杂的III-V族化合物。
在本步骤中,如图2所示,可以采用外延工艺在衬底11上形成第一导电层12。其中,外延工艺可以为MOCVD(金属有机化学气相沉积)、MBE(分子束外延)或ALD(原子层沉积法),但不限于此。
在本实施例中,第一导电层12的材料可以为GaN,也可以为AlN、AlGaN、InGaN或AlInGaN,但不限于此。
在本实施例中,第一导电层12中的掺杂元素包括Si离子、Ge离子、Sn离子、Se离子与Te离子中的至少一种,例如,第一导电层12的掺杂元素包括Si离子,或者,包括Si离子与Sn离子,但不限于此。
在本实施例中,衬底11的材料为硅。当然,衬底11的材料也可以是SiC、GaN或蓝宝石。
在步骤S102中,在第一导电层12上形成隔离结构13。
在本步骤中,如图3所示,可以采用外延工艺在第一导电层12上形成隔离结构13,其中,隔离结构13的材料为绝缘材料。隔离结构13为中空结构,隔离结构13合围成的容纳空间用于容纳发光结构14,隔离结构13用于隔离相邻的发光结构14。隔离结构13在衬底11上的投影可以为环形,例如,为圆环、矩形环,但不限于此。
在本实施例中,如图3所示,隔离结构13的平均口径R小于或等于100微米。隔离结构13的平均口径R为隔离结构13的侧壁中心构成的圆环的口径。
在本实施例中,由于隔离结构13的存在,不用对发光结构14进行干法刻蚀,可以自然形成相互独立的发光结构14,故缓解了通过干法刻蚀导致的发光结构14侧壁缺陷。
在步骤S103中,以隔离结构13为掩模生长发光结构14,发光结构14包括依次层叠于第一导电层12上的第一半导体层141、有源层142与第二半导体层143,第一半导体层141的导电类型与第二半导体层143的导电类型相 反。
在本步骤中,如图4所示,可以采用外延工艺以隔离结构13为掩模生长发光结构14。其中,发光结构14包括依次层叠于第一导电层12上的第一半导体层141、有源层142与第二半导体层143。
在本实施例中,第一半导体层141为N型半导体层。第一半导体层141的材料为III-V族化合物,例如为GaN,也可为AlN、AlGaN、InGaN或AlInGaN。第一半导体层141的掺杂元素包括Si离子、Ge离子、Sn离子、Se离子与Te离子中的至少一种,例如,第一半导体层141的掺杂元素包括Si离子,或者,包括Si离子与Sn离子,但不限于此。
在本实施例中,有源层142包括多量子阱结构。其中,多量子阱结构可为GaN与AlGaN交替排布的周期性结构,也可为GaN与AlInGaN交替排布的周期性结构,但不限于此。
在本实施例中,第二半导体层143为P型半导体层,第二半导体层143的材料为III-V族化合物,例如,可以为GaN,也可以为AlN、AlGaN、InGaN或AlInGaN。第二半导体层143掺杂元素包括Mg离子、Zn离子、Ca离子、Sr离子或Ba离子中的至少一种,例如,包括Mg离子,或者包括Mg离子与Zn离子,但不限于此。
在步骤S104中,在发光结构14上形成反射镜22,反射镜22的材料为导电材料。
在本实施例中,如图5所示,可以采用PVD(物理气相沉积)或CVD(化学气相沉积)在发光结构14上形成反射镜22。反射镜22用于将发光结构14发射的光反射回去。
在本实施例中,反射镜22可以包括镍金属层与银金属层,其中镍金属层位于发光结构14与银金属层之间,反射镜22也可以包括氧化铟锡(ITO)层、镍金属层与银金属层,其中氧化铟锡层、镍金属层、银金属层依次层叠 于发光结构14上。当然,反射镜22的结构不限于上述列举的结构。
在步骤S105中,在隔离结构13上形成第一过孔17,第一过孔17贯穿隔离结构13,在隔离结构13与第一导电层12上形成第二过孔18,第二过孔18贯穿隔离结构13与第一导电层12。
在本步骤中,如图6所示,可以采用干法刻蚀工艺或湿法刻蚀工艺在隔离结构13上形成第一过孔17,在隔离结构13与第一导电层12上形成第二过孔18,第一过孔17贯穿隔离结构13,以暴露第一导电层12远离衬底11的表面,第二过孔18贯穿隔离结构13与第一导电层12,以切断第一导电层12。
在步骤S106中,在第一过孔17中形成第一电极15,在反射镜22上形成第二电极16,其中,第一电极15一端与第一导电层12电连接,另一端露出隔离结构13。
在本步骤中,如图7所示,在第一过孔17中填充导电材料以形成第一电极15,在反射镜22上覆盖导电材料以形成第二电极16,第一电极15一端与第一导电层12直接接触以实现电连接,另一端露出隔离结构13。
在本实施例中,第一电极15可以是N型电极,或者说是阴极,第一电极15的材料可以包括金、银、铝、镍、铂、铬与钛中的至少一种,例如,第一电极15的材料可以包括金、铝、镍与铬,但不限于此。
在本实施例中,第二电极16可以是P型电极,或者说是阳极,第二电极16的材料可以包括金、银、铝、镍、铂、铬与钛中的至少一种,例如,第二电极16的材料可以包括金、铝、镍与铬,但不限于此。
在步骤S107中,在第二过孔18中形成第一绝缘介质层19,以及在相邻的第一电极15与第二电极16之间形成第二绝缘介质层21,得到中间过渡结构30。
在本步骤中,如图8所示,在第二过孔18中填充绝缘材料以形成第一 绝缘介质层19,并在相邻的第一电极15与第二电极16之间填充绝缘材料以形成第二绝缘介质层21。其中,第一绝缘介质层19的靠近第二电极16的一侧还覆盖第二电极16靠近第二过孔18的一端。第一绝缘介质层19用于避免相邻的第一导电层(12)导电,第二绝缘介质层21用于避免第一电极15与第二电极16导电。
在本实施例中,在形成第一绝缘介质层19与第二绝缘介质层21后,得到中间过渡结构30。
在步骤S108中,将中间过渡结构30转移到驱动电路板31上,驱动电路板31包括第一焊盘311与第二焊盘312,第一电极15对应于第一焊盘311上,第二电极16对应于第二焊盘312上。
在本步骤中,如图9所示,将中间过渡结构30转移到驱动电路板31上,其中,中间过渡结构30上的第一电极15对应于驱动电路板31上的第一焊盘311上,中间过渡结构30上的第二电极16对应于驱动电路板31上的第二焊盘312上。
在本实施例中,驱动电路板31包括用于驱动发光结构14发光的驱动电路,第一焊盘311和第二焊盘312分别与驱动电路电连接,第一焊盘311与第二焊盘312均导电。
在步骤S109中,将第一电极15焊接在第一焊盘311上,将第二电极16焊接在第二焊盘312上。
在本步骤中,如图9所示,可以采用焊接工艺将第一电极15焊接在第一焊盘311上,将第二电极16焊接在第二焊盘312上。其中,第一电极15与第一焊盘311通过第一焊接部41焊接在一起,第二电极16与第二焊盘312通过第二焊接部42焊接在一起。在将第一电极15焊接在第一焊盘311上以及将第二电极16焊接在第二焊盘312上后,实现了发光结构14与驱动电路的电连接。
在本实施例中,第一焊接部41与第二焊接部42的材料可以为导电材料,例如,为锡膏或导电胶。
在步骤S110中,剥离衬底11,得到半导体器件。
在本步骤中,如图10所示,采用剥离工艺将衬底11剥离,得到半导体器件。其中,当衬底11的材料为硅时,可以采用湿法刻蚀、干法刻蚀或者通过机械研磨减薄衬底11等方式剥离衬底11。当衬底11的材料为蓝宝石时,采用激光剥离(LLO)工艺来剥离衬底11。
在本实施例中,由于在制备发光结构14之前,先在衬底11上形成了第一导电层12,以制备第一电极15,因此,可以不再将发光结构14转移至临时载板以剥离衬底11然后制备第一电极15,可以减少转移次数,也可避免在不同腔室间来回转移带来的污染风险,提高良率,降低成本。
图10是本发明第一实施例的半导体器件的截面结构示意图。如图10所示,该半导体器件包括:第一导电层12、隔离结构13、发光结构14、反射镜22、第一过孔17、第二过孔18、第一电极15、第二电极16、第一绝缘介质层19与第二绝缘介质层21以及驱动电路板31。
在本实施例中,第一导电层12包括重掺杂的III-V族化合物。
在本实施例中,如图10所示,隔离结构13位于第一导电层12上。发光结构14位于隔离结构13中。发光结构14包括依次层叠于第一导电层12上的第一半导体层141、有源层142与第二半导体层143。其中,第一半导体层141的导电类型与第二半导体层143的导电类型相反。
在本实施例中,如图10所示,反射镜22位于第二电极16与第二半导体层143之间,反射镜22的材料为导电材料。
在本实施例中,如图10所示,第一电极15通过隔离结构13内的第一过孔17与第一导电层12电连接,第二电极16位于第二半导体层143上,且与第二半导体层143电连接。其中,第一过孔17位于隔离结构13内,且贯 穿隔离结构13,第一电极15位于第一过孔17中,第一电极15一端与第一导电层12电连接,另一端露出隔离结构13。
在本实施例中,第二过孔18贯穿隔离结构13与第一导电层12。如图10所示,第一绝缘介质层19位于第二过孔18中,第二绝缘介质层21位于相邻的第一电极15与第二电极16之间。
在本实施例中,如图10所示,驱动电路板31包括第一焊盘311与第二焊盘312,第一电极15焊接在第一焊盘311上,第二电极16焊接在第二焊盘312上。其中,第一电极15通过第一焊接部41焊接在第一焊盘311上,第二电极16通过第二焊接部42焊接在第二焊盘312上。
图11是本发明第二实施例的半导体器件的截面结构示意图。本实施例中的半导体器件10可以采用第一实施例所述的半导体器件的制备方法制备。在本实施例中,相邻的多个发光结构14组成一个发光单元。其中,多个是指发光结构14的数目大于1个。例如,相邻的两个或三个发光结构14组成一个发光单元。图11中仅示出了发光单元中的两个发光结构14。
如图11所示,发光单元中的多个发光结构14通过第一导电层12串联。发光单元还包括多个第一电极15与多个第二电极16,多个第一电极15中的一个第一电极15焊接在第一焊盘311上,其余第一电极15未焊接在第一焊盘311上,多个第二电极16一一对应地焊接在多个第二焊盘312上。
例如,当相邻的三个发光结构14组成一个发光单元时,发光单元中的三个发光结构14通过第一导电层12串联。发光单元包括三个第一电极15与三个第二电极16,三个第一电极15中的一个第一电极15焊接在第一焊盘311上,其余两个第一电极15未焊接在第一焊盘311上,三个第二电极16一一对应地焊接在三个第二焊盘312上。发光单元中的三个发光结构14的发光颜色分别为第一基色、第二基色与第三基色,例如,分别为红色、绿色与蓝色。
在本实施例中,当第一导电层12上包括多个环状的隔离结构13时, 相邻的隔离结构13的侧壁相接触,或者说,相邻的隔离结构13共用侧壁,多个隔离结构13呈网状。
虽然本发明披露如上,但本发明并非限定于此。任何本领域技术人员,在不脱离本发明的精神和范围内,均可作各种更动与修改,因此本发明的保护范围应当以权利要求所限定的范围为准。

Claims (13)

  1. 一种半导体器件的制备方法,其特征在于,包括:
    在衬底(11)上形成第一导电层(12),所述第一导电层(12)包括重掺杂的III-V族化合物;
    在所述第一导电层(12)上形成隔离结构(13);
    以所述隔离结构(13)为掩模生长发光结构(14);所述发光结构(14)包括依次层叠于所述第一导电层(12)上的第一半导体层(141)、有源层(142)与第二半导体层(143),所述第一半导体层(141)的导电类型与所述第二半导体层(143)的导电类型相反。
  2. 根据权利要求1所述的半导体器件的制备方法,其特征在于,还包括:
    形成第一电极(15)与第二电极(16),所述第一电极(15)通过所述隔离结构(13)内的第一过孔(17)与所述第一导电层(12)电连接,所述第二电极(16)位于所述第二半导体层(143)上,且与所述第二半导体层(143)电连接。
  3. 根据权利要求2所述的半导体器件的制备方法,其特征在于,所述形成第一电极(15)与第二电极(16),包括:
    在所述隔离结构(13)内形成所述第一过孔(17),所述第一过孔(17)贯穿所述隔离结构(13);
    在所述第一过孔(17)中形成所述第一电极(15),所述第一电极(15)一端与所述第一导电层(12)电连接,另一端露出所述隔离结构(13);
    在所述第二半导体层(143)上形成所述第二电极(16)。
  4. 根据权利要求3所述的半导体器件的制备方法,其特征在于,还包括:
    在所述隔离结构(13)与所述第一导电层(12)上形成第二过孔(18),所述第二过孔(18)贯穿所述隔离结构(13)与所述第一导电层(12);
    在所述第二过孔(18)中形成第一绝缘介质层(19),以及在相邻的所述第一电极(15)与所述第二电极(16)之间形成第二绝缘介质层(21),得到 中间过渡结构(30)。
  5. 根据权利要求4所述的半导体器件的制备方法,其特征在于,所述得到中间过渡结构(30)之后,还包括:
    将所述中间过渡结构(30)转移到驱动电路板(31)上,所述驱动电路板(31)包括第一焊盘(311)与第二焊盘(312),所述第一电极(15)对应于所述第一焊盘(311)上,所述第二电极(16)对应于所述第二焊盘(312)上;
    将所述第一电极(15)焊接在所述第一焊盘(311)上,将所述第二电极(16)焊接在所述第二焊盘(312)上;
    剥离所述衬底(11),得到所述半导体器件(10)。
  6. 根据权利要求2所述的半导体器件的制备方法,其特征在于,所述形成第一电极(15)与第二电极(16)之前,还包括:
    在所述发光结构(14)上形成反射镜(22),所述反射镜(22)的材料为导电材料。
  7. 根据权利要求1所述的半导体器件的制备方法,其特征在于,相邻的多个所述发光结构(14)组成一个发光单元,所述发光单元中的多个所述发光结构(14)通过所述第一导电层(12)串联;所述发光单元还包括多个所述第一电极(15)与多个所述第二电极(16),多个所述第一电极(15)中的一个所述第一电极(15)焊接在所述第一焊盘(311)上,其余所述第一电极(15)未焊接在所述第一焊盘(311)上,多个所述第二电极(16)一一对应地焊接在多个所述第二焊盘(312)上。
  8. 一种半导体器件,其特征在于,包括:
    第一导电层(12),包括重掺杂的III-V族化合物;
    位于所述第一导电层(12)上的隔离结构(13);
    发光结构(14),位于所述隔离结构(13)中,所述发光结构(14)包括依次层叠于所述第一导电层(12)上的第一半导体层(141)、有源层(142)与第二半导体层(143),所述第一半导体层(141)的导电类型与所述第二半 导体层(143)的导电类型相反。
  9. 根据权利要求8所述的半导体器件,其特征在于,还包括:
    第一电极(15)与第二电极(16),所述第一电极(15)通过所述隔离结构(13)内的第一过孔(17)与所述第一导电层(12)电连接,所述第二电极(16)位于所述第二半导体层(143)上,且与所述第二半导体层(143)电连接。
  10. 根据权利要求9所述的半导体器件,其特征在于,所述第一过孔(17)位于所述隔离结构(13)内,且贯穿所述隔离结构(13),所述第一电极(15)位于所述第一过孔(17)中,所述第一电极(15)一端与所述第一导电层(12)电连接,另一端露出所述隔离结构(13);
    所述半导体器件,还包括:
    第二过孔(18),贯穿所述隔离结构(13)与所述第一导电层(12);
    第一绝缘介质层(19)与第二绝缘介质层(21),所述第一绝缘介质层(19)位于所述第二过孔(18)中,所述第二绝缘介质层(21)位于相邻的所述第一电极(15)与所述第二电极(16)之间。
  11. 根据权利要求9所述的半导体器件,其特征在于,还包括:
    反射镜(22),位于所述第二电极(16)与所述第二半导体层(143)之间,所述反射镜(22)的材料为导电材料。
  12. 根据权利要求9所述的半导体器件,其特征在于,还包括:
    驱动电路板(31),所述驱动电路板(31)包括第一焊盘(311)与第二焊盘(312),所述第一电极(15)焊接在所述第一焊盘(311)上,所述第二电极(16)焊接在所述第二焊盘(312)上。
  13. 根据权利要求8所述的半导体器件,其特征在于,相邻的多个所述发光结构(14)组成一个发光单元,所述发光单元中的多个所述发光结构(14)通过所述第一导电层(12)串联;所述发光单元还包括多个所述第一电极(15)与多个所述第二电极(16),多个所述第一电极(15)中的一个所述第一电极(15)焊接在所述第一焊盘(311)上,其余所述第一电极(15)未焊接在所 述第一焊盘(311)上,多个所述第二电极(16)一一对应地焊接在多个所述第二焊盘(312)上。
PCT/CN2020/130406 2020-11-20 2020-11-20 半导体器件及其制备方法 WO2022104690A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/CN2020/130406 WO2022104690A1 (zh) 2020-11-20 2020-11-20 半导体器件及其制备方法
CN202080107047.1A CN116490985A (zh) 2020-11-20 2020-11-20 半导体器件及其制备方法
TW110141629A TWI778857B (zh) 2020-11-20 2021-11-09 半導體器件及其製備方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/130406 WO2022104690A1 (zh) 2020-11-20 2020-11-20 半导体器件及其制备方法

Publications (1)

Publication Number Publication Date
WO2022104690A1 true WO2022104690A1 (zh) 2022-05-27

Family

ID=81708252

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/130406 WO2022104690A1 (zh) 2020-11-20 2020-11-20 半导体器件及其制备方法

Country Status (3)

Country Link
CN (1) CN116490985A (zh)
TW (1) TWI778857B (zh)
WO (1) WO2022104690A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130214247A1 (en) * 2012-02-22 2013-08-22 Jianhua Hu Ac led device and its manufacturing process for general lighting applications
CN107994047A (zh) * 2017-11-29 2018-05-04 北京工业大学 一种全彩色平面排列的Micro-LED阵列制备方法
CN110010542A (zh) * 2019-04-18 2019-07-12 广东省半导体产业技术研究院 微型led器件、微型led阵列及制造方法
CN110246953A (zh) * 2019-07-26 2019-09-17 厦门乾照半导体科技有限公司 一种Micro-LED芯片、显示设备及Micro-LED芯片的制作方法
WO2020136846A1 (ja) * 2018-12-27 2020-07-02 堺ディスプレイプロダクト株式会社 マイクロledデバイスおよびその製造方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10957818B2 (en) * 2016-09-30 2021-03-23 Intel Corporation High performance light emitting diode and monolithic multi-color pixel
JPWO2020136848A1 (ja) * 2018-12-27 2021-11-04 堺ディスプレイプロダクト株式会社 マイクロledデバイスおよびその製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130214247A1 (en) * 2012-02-22 2013-08-22 Jianhua Hu Ac led device and its manufacturing process for general lighting applications
CN107994047A (zh) * 2017-11-29 2018-05-04 北京工业大学 一种全彩色平面排列的Micro-LED阵列制备方法
WO2020136846A1 (ja) * 2018-12-27 2020-07-02 堺ディスプレイプロダクト株式会社 マイクロledデバイスおよびその製造方法
CN110010542A (zh) * 2019-04-18 2019-07-12 广东省半导体产业技术研究院 微型led器件、微型led阵列及制造方法
CN110246953A (zh) * 2019-07-26 2019-09-17 厦门乾照半导体科技有限公司 一种Micro-LED芯片、显示设备及Micro-LED芯片的制作方法

Also Published As

Publication number Publication date
TW202221887A (zh) 2022-06-01
CN116490985A (zh) 2023-07-25
TWI778857B (zh) 2022-09-21

Similar Documents

Publication Publication Date Title
WO2021017497A1 (zh) 显示面板、显示装置和显示面板的制作方法
CN110416249B (zh) 一种半导体发光器件及其制作方法
TWI422065B (zh) 發光二極體晶片、包含其之封裝結構以及其製造方法
JP2012019217A (ja) 半導体発光素子、半導体発光素子の製造方法、照明装置及びバックライト
JP2009530808A (ja) アルミニウムガリウムナイトライドバッファ層を有する発光ダイオード及びその製造方法
KR20100035846A (ko) 발광 소자 및 그 제조방법
CN111509097B (zh) 一种大功率半导体发光器件及其制备方法
US20200373472A1 (en) Light-emitting diode and manufacturing method thereof
JP2013201455A (ja) 発光素子
KR101286210B1 (ko) 발광 소자 및 그 제조 방법
KR20130097363A (ko) 반도체 발광소자 및 그 제조방법
KR20110085726A (ko) 반도체 발광소자 및 이를 제조하는 방법
KR101659738B1 (ko) 발광 소자 제조방법
CN112510130A (zh) 一种倒装结构蓝光Mico-LED芯片设计制造方法
KR20110132160A (ko) 반도체 발광 소자 및 그 제조방법
CN116885076A (zh) 发光二极管器件及其制备方法、显示装置
US20220367563A1 (en) Light-emitting device and manufacturing method thereof
WO2022104690A1 (zh) 半导体器件及其制备方法
KR100670929B1 (ko) 플립칩 구조의 발광 소자 및 이의 제조 방법
CN115295699A (zh) 发光二极管及其制备方法
US12002842B2 (en) Light emitting device and manufacturing method thereof
KR101494331B1 (ko) 플립 칩 구조의 질화물 반도체 발광소자
JP2012114179A (ja) 発光素子
CN219553670U (zh) 一种微型发光元件
CN114695618B (zh) 显示面板及其制作方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20961981

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202080107047.1

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20961981

Country of ref document: EP

Kind code of ref document: A1