WO2022104497A1 - 靶点的权重确定方法、装置及放射治疗系统 - Google Patents

靶点的权重确定方法、装置及放射治疗系统 Download PDF

Info

Publication number
WO2022104497A1
WO2022104497A1 PCT/CN2020/129264 CN2020129264W WO2022104497A1 WO 2022104497 A1 WO2022104497 A1 WO 2022104497A1 CN 2020129264 W CN2020129264 W CN 2020129264W WO 2022104497 A1 WO2022104497 A1 WO 2022104497A1
Authority
WO
WIPO (PCT)
Prior art keywords
target
dose
target area
weight
area
Prior art date
Application number
PCT/CN2020/129264
Other languages
English (en)
French (fr)
Inventor
李金升
Original Assignee
西安大医集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 西安大医集团股份有限公司 filed Critical 西安大医集团股份有限公司
Priority to CN202080107277.8A priority Critical patent/CN116457060A/zh
Priority to PCT/CN2020/129264 priority patent/WO2022104497A1/zh
Publication of WO2022104497A1 publication Critical patent/WO2022104497A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy

Definitions

  • the present disclosure relates to the technical field of radiotherapy, and in particular, to a method, a device and a radiotherapy system for determining the weight of a target.
  • Radiation therapy is an effective means of treating tumors with radiation beams, and making a treatment plan is one of the essential steps in the entire radiation therapy process.
  • a target volume is generally set based on the location of the tumor, and multiple targets are set within the target volume.
  • the treatment plan needs to include: the weight of the target relative to other targets, and the weight affects the beam irradiating the target. length of time.
  • the treating physician flexibly adjusts and sets the weight of each target point according to the total dose of the beam required for the treatment and the position and size of each target point.
  • the weight setting method of the related art is not only less efficient, but also less reliable.
  • the present disclosure provides a method, device and radiotherapy system for determining the weight of a target, which can solve the problems of low efficiency and low reliability of the weight setting method in the related art.
  • the technical solution is as follows:
  • a method for determining the weight of a target comprising:
  • a weight adjustment value for the target area is determined based on the target dose of the beam required to be received by each of the plurality of target points in the target area, and the weight adjustment The value is the sum of the dose values contributed by each of the target points in the target area to the maximum dose point in the target area;
  • Target weight the target weight is used to indicate the irradiation duration of using the beam to irradiate the target point.
  • the multiple target points are located in multiple different target areas; for each of the target areas, the target of the beam to be received by each of the multiple target points is based on Dose, determine the weight adjustment value of the target volume, including:
  • the weight adjustment value of the target volume is determined.
  • determining the dose contribution coefficient of all the target points in the target area to each other target area based on the target dose of the beam that each of the target points in the target area needs to receive include:
  • the dose contribution value of the target area to each other target area is determined, and the dose contribution value refers to the dose contribution value in the target area.
  • the dose of all the target points in the target area to the other target areas is determined based on the weight adjustment value of the target area and the dose contribution value of the target area to the other target areas.
  • Contribution factors including:
  • the ratio of the weight adjustment value of the target area and the dose contribution value of the target area to the other target areas is determined as the dose contribution coefficients of all the target points in the target area to the other target areas.
  • determining the beam that can be received by the maximum dose point in the target area based on the target dose of the beam to be received by each of the target points in the target area of the multiple target points total dose including:
  • the initial dose of the beam contributed by each of the target points in the multiple target areas to the maximum dose point in the target area is accumulated to obtain the maximum dose point in the target area.
  • the total dose that can be received at the point, and the weight adjustment value of the target area is determined, including:
  • the weight adjustment value of the target area is determined based on the weight reference value and the weight candidate value of the target area.
  • the weight reference value D satisfies:
  • Fij is the dose contribution coefficient of each target point in the i-th target area to the j-th target area
  • i, j and n are all positive integers
  • i and j are both less than or equal to n
  • n is the total number of multiple said target regions.
  • the weight candidate value Di of the i-th target area satisfies:
  • Dpi is the total dose of the beam that can be received by the maximum dose point in the i-th target area.
  • determining the weight adjustment value of the target area based on the weight reference value and the weight candidate value of the target area includes: combining the weight candidate value of the target area with the weight reference value The ratio is determined as the weight adjustment value of the target area.
  • determining the initial weight of each of the multiple targets to determine the initial weight of each of the multiple targets includes:
  • a gradient algorithm or a neural network algorithm is used to determine the initial weight of each of the target points in the target volume so that the total dose of the beam irradiated to the target volume is greater than or equal to a dose threshold.
  • an apparatus for determining the weight of a target comprising:
  • a first determination module configured to determine the initial weight of each of the multiple target points, wherein the multiple target points are located in the same target area or located in multiple different target areas;
  • a second determination module configured to determine the target dose of the beam that each of the target points needs to receive
  • the third determination module is configured to, for each of the target areas, determine the weight adjustment value of the target area based on the target dose of the beam that each of the multiple target points needs to receive, where The weight adjustment value is the sum of the dose values contributed by each of the target points in the target area to the maximum dose point in the target area;
  • the adjustment module is used for, for each of the target areas, based on the weight adjustment value of the target area, adjust the initial weight of each of the target points in the target area according to the target ratio, and obtain each of the target areas in the target area.
  • the target weight of the target point, the target weight is used to indicate the irradiation duration for irradiating the target point with the beam.
  • a host comprising: a processor and a memory having instructions stored in the memory, the instructions being loaded and executed by the processor to implement the target as described in the above aspects Weight determination method.
  • a storage medium has instructions stored therein, and when the storage medium runs on the processing component, the processing component causes the processing component to execute the method for determining the weight of the target point as described in the above aspects.
  • a radiotherapy system comprising: a patient support device and a host, the host is connected to the patient support device, and the host is used to adjust the position of the patient support device;
  • the host includes the device according to the above aspect, or the host is the host according to the above aspect.
  • Embodiments of the present disclosure provide a weight determination method, device and radiotherapy system for a target.
  • the device for determining the weight of the target point can determine the corresponding weight adjustment value based on the target dose of the beam to be received by each of the multiple target points, and automatically adjust the weight adjustment value based on the weight adjustment value.
  • the initial weight of each target point in the target area determines the target weight of each target point, so not only the efficiency of determining the target point weight is high, but also the reliability is good.
  • FIG. 1 is a schematic structural diagram of a radiation therapy system provided by an embodiment of the present disclosure
  • FIG. 2 is a flowchart of a method for determining the weight of a target according to an embodiment of the present disclosure
  • FIG. 3 is a flowchart of another method for determining the weight of a target according to an embodiment of the present disclosure
  • FIG. 4 is a flowchart of a method for determining a dose contribution coefficient provided by an embodiment of the present disclosure
  • FIG. 5 is a flowchart of a method for determining the total dose of a beam that can be received by a maximum dose point in a target area provided by an embodiment of the present disclosure
  • FIG. 6 is a flowchart of a method for determining a weight adjustment value of a target area provided by an embodiment of the present disclosure
  • FIG. 7 is a block diagram of an apparatus for determining a target point provided by an embodiment of the present disclosure.
  • FIG. 8 is a block diagram of a third determination module provided by an embodiment of the present disclosure.
  • FIG. 9 is a schematic diagram of an optional structure of a host provided by an embodiment of the present disclosure.
  • FIG. 1 is a schematic structural diagram of a radiation therapy system provided by an embodiment of the present disclosure. As shown in FIG. 1 , the system may include: a patient support device 01 , a host 02 and a radiation source device 03 .
  • the patient support device 01 may be the treatment bed shown in FIG. 1 , and of course, may also be other devices such as a treatment chair for supporting a patient.
  • the host 02 may be a computer device or a server.
  • the radiation source device 03 can emit a beam to a target object (eg, a tumor) to achieve treatment of the target object.
  • a target object eg, a tumor
  • the radiation source of the radiation source device 03 can be cobalt-60.
  • the treatment principle of Gamma Knife treatment is: the gamma rays generated by cobalt-60 are geometrically focused on the lesion (also called the target), and the human tissue in the target is destroyed at one time to achieve the purpose of treating the disease.
  • the host 02 may establish a communication connection with the patient support device 01 and the radiation source device 03 , for example, a wired connection as shown in FIG. 1 , and of course, a wireless connection.
  • the host 02 can flexibly control the position of the patient support device 01 and can control the working state of the radiation source device 03 .
  • the host 02 can first control the patient support device 01 to carry the patient to move the patient into the radiation source device 03, and then control the radiation source device 03 to emit beams to achieve precise treatment of the patient.
  • a treatment plan will be made for the patient before radiotherapy. If it is Gamma Knife treatment, the treatment plan can also be called gamma. Knife treatment plan.
  • a baseline image of the target object is generally acquired for making a treatment plan.
  • the reference image may be a computed tomography (computed tomography, CT) image, or a nuclear magnetic resonance (magnetic resonance, MR) image. Then, the treating physician can reliably formulate a treatment plan based on the size, shape, surrounding tissue, etc. of the target object displayed in the CT image or MR image.
  • the treating physician When formulating a treatment plan, the treating physician generally sets one or more target areas based on the acquired reference images, and sets one or more target points in each target area. During subsequent radiation therapy, the beam can be Irradiate to the set target point, so as to complete the reliable treatment of the target object.
  • the dose of the beam each target needs to receive is generally determined based on the total beam dose required to treat the target, since the length of time the beam is irradiated to a target affects the amount of radiation received by that target. The dose of the beam, and therefore, determines the length of time the beam is irradiated to each target. In order to reflect the irradiation duration, the parameter weight is generally used as a reference.
  • the weight of the target relative to other targets can be proportional to the irradiation duration to the target. In this way, when formulating a treatment plan, it is necessary to flexibly adjust to set the weight of each target relative to other targets, that is, the relative weight of each target.
  • the relative weights of the target points are generally adjusted and set manually. This method is not only time-consuming and labor-intensive, but also inefficient, and because each target point has a dose contribution to each target area, it is suitable for the situation of multiple target areas. , adjusting the weight of the target in one target area may affect the dose of the beam that other target areas can receive, which will affect the weight of the target in other target areas, which in turn will affect the The weight of the target, and so on.
  • the embodiments of the present disclosure provide a method for automatically determining the weight of a target point, which can solve the technical problems existing in the weight setting method in the related art, and correspondingly, can improve the efficiency and quality of treatment plan formulation.
  • FIG. 2 is a flowchart of a method for determining the weight of a target according to an embodiment of the present disclosure, which can be applied to the host 02 shown in FIG. 1 .
  • the method may include:
  • Step 201 Determine the initial weight of each target point in the multiple target points.
  • the multiple targets may be located in the same target area or may be located in multiple different target areas.
  • the host may first determine the initial weight of each target, and the initial weight of each target may refer to the initial relative weight of the target relative to other targets in the multiple targets.
  • Step 202 Determine the target dose of the beam that each target point needs to receive.
  • the host After determining the initial weight of each target point, the host can reliably determine the target dose of the beam to be received by each target point based on the total dose of the beam to be received by the multiple target points through dose calculation.
  • Step 203 For each target area, determine the weight adjustment value of the target area based on the target dose of the beam to be received by each of the multiple target points.
  • the weight adjustment value may be the sum of the dose values contributed by each target point in the target area to the maximum dose point in the target area.
  • the host can further calculate the weight adjustment value corresponding to the target area based on the determined target dose.
  • the weight adjustment value can be used as a reference for subsequent determination of the weight of the target.
  • Step 204 for each target area, based on the weight adjustment value of the target area, adjust the initial weight of each target point in the target area according to the target ratio, and obtain the target weight of each target point in the target area.
  • the target weight can be used to indicate the irradiation duration of using the beam to irradiate the target point.
  • the target weight for that target spot is proportional to the length of time the beam irradiates the target spot. That is, the larger the target weight of the target point is, the longer the beam irradiates the target point, and accordingly, the larger the dose of the beam that the target point can receive. Conversely, the smaller the target weight of the target point, the shorter the duration of the beam irradiating the target point, and correspondingly, the smaller the beam dose that the target point can receive.
  • the target weight of each target point may also refer to the target weight of the target point relative to other target points in the plurality of target points.
  • the host can adjust the initial weight of each target point in the target area according to the target ratio, and then obtain each target area in the target area.
  • the target weight of the point is the initial weight of each target point in the target area according to the target ratio.
  • the embodiments of the present disclosure provide a method for determining the weight of a target.
  • the corresponding weight adjustment value can be determined based on the target dose of the beam to be received by each target point among the multiple target points, and each target point in the target area is automatically adjusted based on the weight adjustment value.
  • the initial weight of determines the target weight of each target point, so not only the efficiency of determining the target point weight is high, but also the reliability is good.
  • Fig. 3 is a flowchart of a method for determining the weight of a target according to an embodiment of the present disclosure, which can be applied to the host 02 shown in Fig. 1 .
  • the method may include:
  • Step 301 Determine the initial weight of each target point in the multiple target points.
  • the initial weight of the target may refer to the relative initial weight of the target relative to other targets. In this way, it can also be determined that for a scenario where the entire treatment plan includes only one target, there is no concept of weight for this target.
  • the treating physician may first set one or more target volumes based on the acquired baseline images of the patient (eg, CT images or MR images), and then proceed to the treating physician or a device dedicated to setting targets.
  • One or more targets are appropriately placed (also referred to as placement) within each target zone. That is, the above multiple targets may refer to multiple targets located in the same target area, or may also refer to multiple targets located in different target areas. In the following embodiments, the multiple target points are located in different multiple target regions as examples for description.
  • the host can set each target point in the target area (including the mth target point and Each target that has been placed before the mth target) performs a weight adjustment, and after all the targets are placed in the target area, the initial weight of each target can be determined.
  • m can be an integer greater than 1.
  • the host can use an optimization algorithm such as a gradient algorithm or a neural network algorithm to determine the initial weight of each target point in the target area, so that the total dose of the beam irradiated to the target area is greater than or equal to the dose threshold. That is, for each target area, starting from the placement of the mth target point, each time a target point is placed, the host can use the target area surrounded by the prescription metering line to be greater than the range threshold for the purpose, that is, to make the target area For the purpose of maximizing the range of radiation dose received by the zone, the above optimization algorithm is used to automatically adjust to determine the initial weight of each target that has been placed.
  • an optimization algorithm such as a gradient algorithm or a neural network algorithm
  • the range of the target area surrounded by the prescription dose line may refer to the volume of the target area surrounded by the prescription dose line. If the target area is a two-dimensional plane area, the range of the target area surrounded by the prescription dose line may refer to the area of the target area surrounded by the prescription dose line.
  • Step 302 Determine the target dose of the beam that each target point needs to receive.
  • the host may further complete dose calculation for each target point.
  • the total dose of the beam required for treatment may be pre-stored in the host.
  • the host may calculate each target based on the total dose and the initial weight of each target.
  • Step 303 For each target area, based on the target dose of the beam that each target point in the target area needs to receive, determine the dose contribution coefficients of all the target points in the target area to each other target area.
  • each target point contributes to the final beam dose received by each target area, after determining the target dose of the beam that each target point needs to receive, the host can further calculate and determine each target area.
  • Each target in that is, the dose contribution coefficient of all targets to each other target area, that is, the dose contribution coefficient of each target area to each other target area.
  • determining the dose contribution coefficients of all the target points in the target area to each other target area may refer to: determining the pairs of each target point in the target area The dose contribution coefficient of the second target area, and the dose contribution coefficient of each target point in the target area to the third target area is determined.
  • FIG. 4 is a flowchart of a method for determining a dose contribution coefficient provided by an embodiment of the present disclosure. As shown in Figure 4, the method may include:
  • Step 3031 For each target area, determine the dose contribution value of the target area to each other target area based on the target dose of the beam that each target point in the target area needs to receive.
  • the target area in addition to the target point, the target area generally includes multiple other points (represented by pixel points), and among the multiple other points, there is a maximum dose of the finally received beam. point, the maximum dose point.
  • the dose contribution value of the target area to each other target area may refer to the sum of the dose values contributed by each target point in the target area to the maximum dose point in each other target area.
  • the host can first determine the maximum dose of each target point in the target area to another target area based on the target dose of the beam that each target point in the target area needs to receive. The dose value contributed by the point. Then, the host can accumulate the dose values contributed by each target point in the target area to the maximum dose point in another target area, so as to obtain the dose contribution value of the target area to the other target area.
  • Step 3032 For each other target area, determine the dose contribution coefficients of all the targets in the target area to other target areas based on the weight adjustment value of the target area and the dose contribution value of the target area to other target areas.
  • the host may determine the ratio of the weight adjustment value of the one target area to the dose contribution value of the one target area to the other target area as the one target area.
  • the weight adjustment value of each target area may refer to the sum of the dose values contributed by each target point in the target area to the maximum dose point in the target area. Therefore, for one target area and another target area, the host can use the sum of the dose values contributed by each target point in the one target area to its own maximum dose point, divided by the maximum dose in the other target area. The sum of the dose values contributed by the dose point to obtain the dose contribution coefficient of the one target area to the other target area.
  • Step 304 For each target area, based on the target dose of the beam to be received by each of the multiple target points, determine the total dose of the beam that can be received by the maximum dose point in the target area.
  • the total dose of beams that can be received by the maximum dose point in the target area may refer to: among multiple target points set in multiple target areas, each target point has the The sum of the dose values contributed by the point of maximum dose in the target volume.
  • the method shown in FIG. 5 can be used to determine the total dose of the beam that can be received by the maximum dose point in each target area. As shown in Figure 5, the method may include:
  • Step 3041 For each target area, based on the target dose of the beam that each target point in the multiple target points needs to receive, determine the radiation contributed by each target point in the multiple target areas to the maximum dose point in the target area. The initial dose of the beam.
  • the host may first determine the target area for each target point based on the target dose of the beam that each target point needs to receive among all the set target points.
  • Step 3042 For each target area, accumulate the initial dose of the beam contributed by each target point in the target area to the maximum dose point in the target area to obtain the beam that can be received by the maximum dose point in the target area total dose.
  • the host can accumulate the initial dose of the beam contributed by the maximum dose point in the target area for each target point, so as to obtain the total dose of the beam that can be received by the maximum dose point in the target area.
  • Step 305 For each target area, based on the dose contribution coefficient of each target area in the multiple target areas to each other target area, and the total dose that can be received at the maximum dose point in each target area in the multiple target areas, Determine the weight adjustment value for this target area.
  • the dose contribution coefficient of the target area to other target areas may refer to: the dose contribution coefficients of all targets in the target area to other target areas.
  • the host can further calculate the target based on the determined parameters above.
  • the weight adjustment value for the zone may be the sum of the dose values contributed by each target point in the target area to the maximum dose point in the target area.
  • the dose contribution coefficient of each target point in each target area to each other target area, the total dose that can be received by the maximum dose point in each target area, and the weight adjustment value of each target area can satisfy The following formula:
  • Fij is the dose contribution coefficient of each target in the i-th target area to the j-th target area
  • i, j and n are all positive integers, i and j are both less than or equal to n, and n is the multiple target areas. total.
  • F12 refers to the dose contribution coefficient of each target in the first target area to the second target area, and the same is true for others.
  • Dpi is the total dose of the beam that can be received by the maximum dose point in the i-th target zone, that is, the i-th target zone includes the beam received by the maximum dose point contributed by all target points among the multiple target points. dose.
  • Dp1 refers to the total dose of the beam that can be received by the maximum dose point in the first target area, and the same is true for others.
  • Dmaxi is the weight adjustment value of the ith target area, that is, the sum of the dose values of the beams contributed by each target point in the ith target area to the maximum dose point in the ith target area.
  • Dmax1 refers to the weight adjustment value of the first target area, and the same is true for others.
  • the host can determine the weight adjustment value of each target area through the weight adjustment value determination method shown in FIG. 6 .
  • the method may include:
  • Step 3051 Determine a weight reference value based on the dose contribution coefficient of each target area in the multiple target areas to each other target area.
  • weight reference value D can satisfy:
  • the host may substitute the determined dose contribution coefficient of each target area to each other target area into the above formula (2) to calculate the weight reference value D.
  • the weight reference value D can satisfy:
  • Step 3052 For each target area, based on the dose contribution coefficient of each target area in the multiple target areas to each other target area, and the total dose that can be received at the maximum dose point in each target area in the multiple target areas, Determine the weight candidate value for the target area.
  • the weight candidate value Di of the i-th target area can satisfy:
  • the host may be based on the dose contribution coefficient Fij of each target area in the multiple target areas to each other target area, and the maximum dose point that can be received in each target area in the multiple target areas.
  • the total dose Dpi of the beam is substituted into the above formula (3), and the weight candidate value Di of the i-th target area is calculated.
  • the weight candidate value D1 of the first target area to the reference value D5 of the fifth target area can satisfy the following formula:
  • Step 3053 For each target area, determine the weight adjustment value of the target area based on the weight reference value and the weight candidate value of the target area.
  • the host may determine the ratio of the weight candidate value of the target area to the weight reference value as the weight adjustment value of the target area.
  • D1 to D5 and D can all be calculated based on the above corresponding formulas.
  • Step 306 for each target area, based on the weight adjustment value of the target area, adjust the initial weight of each target point in the target area according to the target ratio, and obtain the target weight of each target point in the target area.
  • the target weight of each target point can be used to indicate the irradiation duration of using the beam to irradiate the target point.
  • the target weight for that target is proportional to the length of time the beam irradiates the target. That is, the larger the target weight of the target point is, the longer the beam irradiates the target point, and accordingly, the larger the dose of the beam that the target point can receive. Conversely, the smaller the target weight of the target point, the shorter the duration of the beam irradiating the target point, and correspondingly, the smaller the beam dose that the target point can receive.
  • the target weight of each target point may also refer to the target weight of the target point relative to other target points in the plurality of target points.
  • the host may further adjust the step based on the weight adjustment value according to the target ratio (ie, the uniform ratio).
  • the target ratio ie, the uniform ratio.
  • the target ratio may be input into the host computer in real time by the treating physician, or may also be a proportion parameter pre-stored in the host computer.
  • the host can increase or decrease the initial weight of each target point in the target area according to a uniform proportion, so that the adjusted dose of each target point contributes to the maximum dose point in the target area
  • the sum of the values reaches the weight adjustment value for that target. That is, for each target area, the irradiation duration of each target point is controlled based on the final adjustment of the target weight of each target point in the target area, so that the dose contributed by each target point to the maximum dose point in the target area can be achieved.
  • the sum of the values reaches the weight adjustment value for that target.
  • step 304 can be performed before step 303.
  • the embodiments of the present disclosure provide a method for determining the weight of a target.
  • the corresponding weight adjustment value can be determined based on the target dose of the beam to be received by each target point among the multiple target points, and each target point in the target area is automatically adjusted based on the weight adjustment value.
  • the initial weight of determines the target weight of each target point, so not only the efficiency of determining the target point weight is high, but also the reliability is good.
  • FIG. 7 is a block diagram of an apparatus for determining the weight of a target according to an embodiment of the present disclosure.
  • the device can be applied to the host 02 shown in FIG. 1 .
  • the apparatus may include:
  • the first determination module 701 is configured to determine the initial weight of each target point in the plurality of target points.
  • the multiple targets may be located in the same target area or located in multiple different target areas.
  • the second determination module 702 is configured to determine the target dose of the beam that each target point needs to receive.
  • the third determination module 703 is configured to, for each target area, determine the weight adjustment value of the target area based on the target dose of the beam that needs to be received by each of the multiple target points.
  • the weight adjustment value of the target area may be the sum of the dose values contributed by each target point in the target area to the maximum dose point in the target area.
  • the adjustment module 704 is configured to, for each target area, adjust the initial weight of each target point in the target area according to the target proportion based on the weight adjustment value of the target area, so as to obtain the target weight of each target point in the target area.
  • the target weight of the target point is used to indicate the irradiation duration of using the beam to irradiate the target point.
  • the third determining module 703 may include:
  • the first determination sub-module 7031 is configured to determine the dose contribution coefficients of all the target points in the target area to each other target area based on the target dose of the beam that each target point in the target area needs to receive.
  • the second determination sub-module 7032 is configured to determine the total dose of the beam that can be received by the maximum dose point in the target area based on the target dose of the beam to be received by each of the multiple target points.
  • the third determination sub-module 7033 is configured to be based on the dose contribution coefficient of each target area in the multiple target areas to each other target area, and the total dose that can be received by the maximum dose point in each of the target areas in the multiple target areas , determine the weight adjustment value of the target area.
  • the first determination submodule 7031 can be used to:
  • the dose contribution of the target volume to each of the other target volumes is determined based on the target dose of the beam required to be received by each target point in the target volume.
  • the dose contribution value may refer to the sum of the dose values contributed by each target point in the target area to the maximum dose point in each other target area.
  • For each other target area based on the weight adjustment value of the target area and the dose contribution value of the target area to other target areas, determine the dose contribution coefficients of all target points in the target area to other target areas.
  • the first determination sub-module 7031 may determine the ratio of the weight adjustment value of the target area to the dose contribution value of the target area to other target areas as the dose contribution coefficients of all targets in the target area to other target areas.
  • the second determination submodule 7032 can be used to:
  • each target zone based on the target dose of the beam that each of the multiple target spots needs to receive, determine the initial value of the beam contributed by each target spot in the multiple target zone to the maximum dose point in the target zone dose.
  • the initial dose of the beam contributed by each target point in the multiple target areas to the maximum dose point in the target area is accumulated to obtain the total dose of the beam that can be received by the maximum dose point in the target area.
  • the third determination submodule 7033 can be used to:
  • the weight reference value is determined based on the dose contribution coefficient of each target area in the plurality of target areas to each other target area.
  • the target volume is determined based on the dose contribution coefficient of each target volume among the multiple target volumes to each other target volume, and the total dose that can be received at the maximum dose point in each target volume among the multiple target volumes Area weight alternatives.
  • the weight adjustment value of the target area is determined. For example, for each target area, the third determination sub-module 7033 may determine the ratio of the weight candidate value of the target area to the weight reference value as the weight adjustment value of the target area.
  • the weight reference value D can satisfy:
  • Fij is the dose contribution coefficient of each target in the i-th target area to the j-th target area
  • i, j and n are all positive integers
  • i and j are both less than or equal to n
  • n is the multiple target areas. total.
  • the weight candidate value Di of the ith target area can satisfy:
  • Dpi can be the total dose of the beam that can be received by the maximum dose point in the ith target area.
  • the first determining module 701 can be used to:
  • the gradient algorithm or neural network algorithm is used to determine the initial weight of each target point in the target area, so that the total dose of the beam irradiated to the target area is greater than or equal to the dose threshold.
  • the embodiments of the present disclosure provide an apparatus for determining the weight of a target point.
  • the device can determine the corresponding weight adjustment value based on the target dose of the beam to be received by each target point among the multiple target points, and automatically adjust each target area based on the weight adjustment value.
  • the initial weight of the target points determines the target weight of each target point, so not only the efficiency of determining the target point weight is high, but also the reliability is good.
  • the host 02 in the radiation therapy system shown in FIG. 1 may include: a processor and a memory.
  • the memory may store an instruction, and the instruction may be loaded and executed by the processor to implement the method for determining the weight of the target as shown in FIG. 2 or FIG. 3 .
  • an embodiment of the present disclosure further provides a storage medium, where instructions may be stored in the storage medium, and when the storage medium runs on the processing component, the processing component may be caused to execute the target shown in FIG. 2 or FIG. 3 .
  • Point weight determination method may be used to determine the target shown in FIG. 2 or FIG. 3 .

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Pathology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Radiation-Therapy Devices (AREA)

Abstract

一种靶点的权重确定方法、装置及放射治疗系统,属于放疗技术领域。由于对于每个靶区而言,靶点的权重确定装置均可以基于多个靶点中各个靶点所需接收的射束的目标剂量确定对应的权重调整值,并基于权重调整值自动调整该靶区中各个靶点的初始权重以确定各个靶点的目标权重,因此不仅确定靶点权重的效率较高,且可靠性较好。

Description

靶点的权重确定方法、装置及放射治疗系统 技术领域
本公开涉及放疗技术领域,特别涉及一种靶点的权重确定方法、装置及放射治疗系统。
背景技术
放射治疗是采用放射线发出的射束治疗肿瘤的一种有效手段,制定治疗计划是整个放射治疗过程必不可少的步骤之一。在制定治疗计划时,一般会基于肿瘤的位置设置靶区,并在靶区内设置多个靶点。相应的,为确保后续放射治疗的安全性和可靠性,对于每个靶点而言,治疗计划中需要包括:该靶点相对于其他靶点的权重,该权重影响了射束照射该靶点的时长。
相关技术中,一般均是由治疗医师根据治疗所需的射束的总剂量,以及各个靶点的位置和大小,灵活调整设定每个靶点的权重。
但是,采用相关技术的权重设定方法,不仅效率较低,且可靠性较差。
发明内容
本公开提供了一种靶点的权重确定方法、装置及放射治疗系统,可以解决相关技术中权重设定方法效率较低,且可靠性较差的问题。所述技术方案如下:
一方面,提供了一种靶点的权重确定方法,所述方法包括:
确定多个靶点中每个所述靶点的初始权重,其中,所述多个靶点位于同一靶区或者位于多个不同的靶区;
确定每个所述靶点所需接收的射束的目标剂量;
对于每个所述靶区,基于所述靶区所述多个靶点中每个所述靶点所需接收的射束的目标剂量,确定所述靶区的权重调整值,所述权重调整值为所述靶区中各个所述靶点对所述靶区中最大剂量点所贡献的剂量值的总和;
对于每个所述靶区,基于所述靶区的权重调整值,按照目标比例调整所述靶区中每个所述靶点的初始权重,得到所述靶区中每个所述靶点的目标权重,所述目标权重用于指示采用射束照射所述靶点的照射时长。
可选的,所述多个靶点位于多个不同的靶区;所述对于每个所述靶区,基于所述多个靶点中每个所述靶点所需接收的射束的目标剂量,确定所述靶区的权重调整值,包括:
基于所述靶区中每个所述靶点所需接收的射束的目标剂量,确定所述靶区中所有所述靶点对每个其他靶区的剂量贡献系数;
基于所述多个靶点中每个所述靶点所需接收的射束的目标剂量,确定所述靶区中最大剂量点所能接收到的射束的总剂量;
基于所述多个靶区中各个所述靶区对每个所述其他靶区的所述剂量贡献系数,以及所述多个靶区中各个所述靶区中最大剂量点所能接收到的总剂量,确定所述靶区的权重调整值。
可选的,所述基于所述靶区中每个所述靶点所需接收的射束的目标剂量,确定所述靶区中所有所述靶点对每个其他靶区的剂量贡献系数,包括:
基于所述靶区中每个所述靶点所需接收的射束的目标剂量,确定所述靶区对每个其他靶区的剂量贡献值,所述剂量贡献值是指所述靶区中各个靶点对每个其他靶区中最大剂量点所贡献的剂量值的总和;
对于每个所述其他靶区,基于所述靶区的权重调整值和所述靶区对所述其他靶区的剂量贡献值,确定所述靶区中所有所述靶点对所述其他靶区的剂量贡献系数。
可选的,所述基于所述靶区的权重调整值和所述靶区对所述其他靶区的剂量贡献值,确定所述靶区中所有所述靶点对所述其他靶区的剂量贡献系数,包括:
将所述靶区的权重调整值和所述靶区对所述其他靶区的剂量贡献值的比值,确定为所述靶区中所有所述靶点对所述其他靶区的剂量贡献系数。
可选的,所述基于所述多个靶点所述靶区中每个所述靶点所需接收的射束的目标剂量,确定所述靶区中最大剂量点所能接收到的射束的总剂量,包括:
基于所述多个靶点每个所述靶区中的各个每个所述靶点所需接收的射束的目标剂量,确定所述多个靶区中各个所述靶点对所述靶区中最大剂量点所贡献的射束的初始剂量;
对于每个所述靶区,累加所述多个靶区中各个所述靶点对所述靶区中最大剂量点所贡献的射束的初始剂量,得到所述靶区中最大剂量点所能接收到的射束的总剂量。
可选的,所述基于所述多个靶区中各个所述靶区对每个所述其他靶区的所述剂量贡献系数,以及所述多个靶区中各个所述靶区中最大剂量点所能接收到的总剂量,确定所述靶区的权重调整值,包括:
基于所述多个靶区中各个所述靶区对每个所述其他靶区的所述剂量贡献系数,确定权重参考值;
基于所述多个靶区中各个所述靶区对每个所述其他靶区的所述剂量贡献系数,以及所述多个靶区中各个所述靶区中最大剂量点所能接收到的总剂量,确定所述靶区的权重备选值;
基于所述权重参考值和所述靶区的权重备选值,确定所述靶区的权重调整值。
可选的,所述权重参考值D满足:
Figure PCTCN2020129264-appb-000001
其中,Fij为第i个所述靶区中各个所述靶点对第j个所述靶区的剂量贡献系数,i、j和n均为正整数,i和j均小于或等于n,n为多个所述靶区的总数。
可选的,第i个所述靶区的权重备选值Di满足:
Figure PCTCN2020129264-appb-000002
其中,Dpi为第i个所述靶区中最大剂量点所能接收到的射束的总剂量。
可选的所述基于所述权重参考值和所述靶区的权重备选值,确定所述靶区的权重调整值,包括:将所述靶区的权重备选值与所述权重参考值的比值确定为所述靶区的权重调整值。
可选的,所述确定多个靶点中每个所述靶点的初始权重确定多个靶点中每个所述靶点的初始权重,包括:
对于每个所述靶区,采用梯度算法或神经网络算法确定所述靶区中每个所 述靶点的初始权重,使得照射至所述靶区的射束的总剂量大于或等于剂量阈值。
另一方面,提供了一种靶点的权重确定装置,所述装置包括:
第一确定模块,用于确定多个靶点中每个所述靶点的初始权重,其中,所述多个靶点位于同一靶区或者位于多个不同的靶区;
第二确定模块,用于确定每个所述靶点所需接收的射束的目标剂量;
第三确定模块,用于对于每个所述靶区,基于所述多个靶点中每个所述靶点所需接收的射束的目标剂量,确定所述靶区的权重调整值,所述权重调整值为所述靶区中各个所述靶点对所述靶区中最大剂量点所贡献的剂量值的总和;
调整模块,用于对于每个所述靶区,基于所述靶区的权重调整值,按照目标比例调整所述靶区中每个所述靶点的初始权重,得到所述靶区中每个所述靶点的目标权重,所述目标权重用于指示采用射束照射所述靶点的照射时长。
又一方面,提供了一种主机,所述主机包括:处理器和存储器,所述存储器中存储有指令,所述指令由所述处理器加载并执行以实现如上述方面所述的靶点的权重确定方法。
再一方面,提供了一种存储介质,所述存储介质中存储有指令,当所述存储介质在处理组件上运行时,使得处理组件执行如上述方面所述的靶点的权重确定方法。
再一方面,提供了一种放射治疗系统,所述放射治疗系统包括:患者支撑装置和主机,所述主机与所述患者支撑装置连接,所述主机用于调整所述患者支撑装置的位置;
其中,所述主机包括如上述方面所述的装置,或者,所述主机为如上述方面所述的主机。
本公开实施例提供的技术方案至少具有如下有益效果:
本公开实施例提供了一种靶点的权重确定方法、装置及放射治疗系统。由于对于每个靶区而言,靶点的权重确定装置均可以基于多个靶点中各个靶点所需接收的射束的目标剂量确定对应的权重调整值,并基于权重调整值自动调整该靶区中各个靶点的初始权重以确定各个靶点的目标权重,因此不仅确定靶点权重的效率较高,且可靠性较好。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本公开。
附图说明
为了更清楚地说明本公开实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本公开实施例提供的一种放射治疗系统的结构示意图;
图2是本公开实施例提供的一种靶点的权重确定方法流程图;
图3是本公开实施例提供的另一种靶点的权重确定方法流程图;
图4是本公开实施例提供的一种剂量贡献系数的确定方法流程图;
图5是本公开实施例提供的一种靶区中最大剂量点所能接收到的射束的总剂量的确定方法流程图;
图6是本公开实施例提供的一种靶区的权重调整值的确定方法流程图;
图7是本公开实施例提供的一种靶点的确定装置的框图;
图8是本公开实施例提供的一种第三确定模块的框图;
图9是本公开实施例提供的一种主机的可选结构示意图。
通过上述附图,已示出本公开明确的实施例,后文中将有更详细的描述。这些附图和文字描述并不是为了通过任何方式限制本公开构思的范围,而是通过参考特定实施例为本领域技术人员说明本公开的概念。
具体实施方式
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合附图对本公开实施方式作进一步地详细描述。
图1是本公开实施例提供的一种放射治疗系统的结构示意图。如图1所示,该系统可以包括:患者支撑装置01、主机02以及射源装置03。
可选的,患者支撑装置01可以为图1所示的治疗床,当然,也可以为治疗椅等用于支撑患者的其他装置。主机02可以为一计算机设备或服务器。射源装置03可以发出射束至目标对象(如,肿瘤),以实现对目标对象的治疗。若该系统为伽玛刀治疗系统,则射源装置03的放射源即可以为钴-60。其中,伽玛刀治疗的治疗原理是:采用钴-60产生的伽玛射线几何聚焦于病灶(也可以称为靶点),一次性的摧毁靶点内的人体组织达到治疗疾病的目的。
其中,主机02可以与患者支撑装置01与射源装置03建立有通信连接,例如,为图1所示的有线连接,当然,也可以为无线连接。主机02可以灵活控制患者支撑装置01的位置,且可以控制射源装置03的工作状态。如,在放射治疗时,主机02可以先控制患者支撑装置01携带患者移动至射源装置03内,然后再控制射源装置03发出射束,达到对患者的精准治疗。
并且,为了确保放射治疗时的安全性和可靠性,以得到满意的治疗效果,在放射治疗前,会先针对患者制定治疗计划,若为伽玛刀治疗,则治疗计划也可以称为伽玛刀治疗计划。在制定治疗计划前,一般会先获取目标对象的基准图像以供制定治疗计划。可选的,该基准图像可以为电子计算机断层扫描(computed tomography,CT)图像,或者,核磁共振(magnetic resonance,MR)图像。然后,治疗医师即可以基于该CT图像或者MR图像中所显示的目标对象的大小、形状以及周围组织等,可靠制定治疗计划。
在制定治疗计划时,治疗医师一般会基于获取到的基准图像设定一个或多个靶区,并在每个靶区内设定一个或多个靶点,后续在放射治疗时,射束可以照射至设定的靶点,从而完成对目标对象的可靠治疗。此外,一般还会基于治疗该目标对象所需的总射束剂量,确定每个靶点所需接收的射束的剂量,因射束照射至一个靶点的时长影响了该靶点所接收的射束的剂量,故也即是,确定射束照射至每个靶点的照射时长。为体现该照射时长,一般会通过权重这一参数作为参考,如对于每个靶点而言,该靶点相对于其他靶点的权重与照射至该靶点的照射时长可以成正比。如此,在制定治疗计划时,需要灵活调整以设定每个靶点相对于其他靶点的权重,即每个靶点的相对权重。
相关技术中,靶点的相对权重一般均是人为调整设定,该方式不仅费时费力,效率较低,且因每个靶点对各个靶区均存在剂量贡献,故针对多个靶区的情况,调节一个靶区中靶点的权重,则可能会影响其他靶区所能接收到的射束的剂量,如此,即会影响到其他靶区中靶点的权重,反过来,又会影响该靶点的权重,如此反复。本公开实施例提供了一种自动确定靶点的权重的方法,该方法可以解决相关技术的权重设定方法所存在的技术问题,相应的,可以提高治疗计划的制定效率和质量。
图2是本公开实施例提供的一种靶点的权重确定方法流程图,可以应用于图1所示的主机02中。如图2所示,该方法可以包括:
步骤201、确定多个靶点中每个靶点的初始权重。
其中,该多个靶点可以位于同一靶区或者可以位于多个不同的靶区。
可选的,主机可以先确定每个靶点的初始权重,每个靶点的初始权重可以是指该靶点相对于该多个靶点中其他靶点的初始相对权重。
步骤202、确定每个靶点所需接收的射束的目标剂量。
主机在确定出每个靶点的初始权重后,可以通过剂量计算,基于该多个靶点所需接收的射束的总剂量可靠确定每个靶点所需接收的射束的目标剂量。
步骤203、对于每个靶区,基于多个靶点中每个靶点所需接收的射束的目标剂量,确定该靶区的权重调整值。
其中,该权重调整值可以为靶区中各个靶点对靶区中最大剂量点所贡献的剂量值的总和。
可选的,对于每个靶区而言,主机在确定出每个靶区中每个靶点所需接收的目标剂量后,可以进一步基于确定的目标剂量计算得到该靶区对应的权重调整值,该权重调整值可以作为后续确定靶点的权重的参考。
步骤204、对于每个靶区,基于该靶区的权重调整值,按照目标比例调整该靶区中每个靶点的初始权重,得到该靶区中每个靶点的目标权重。
其中,该目标权重可以用于指示采用射束照射靶点的照射时长。例如,对于每个靶点而言,该靶点的目标权重与射束照射该靶点的照射时长成正比。即,靶点的目标权重越大,射束照射该靶点时长越长,相应的,该靶点所能接收到的射束的剂量则会越大。反之,靶点的目标权重越小,射束照射该靶点时长越短,相应的,该靶点所能接收到的射束的剂量则会越小。并且,每个靶点的目标权重也可以是指该靶点相对于该多个靶点中的其他靶点的目标权重。
可选的,对于每个靶区而言,主机在确定出该靶区的权重调整值后,即可以按照目标比例调整该靶区中各个靶点的初始权重,进而得到该靶区中各个靶点的目标权重。
综上所述,本公开实施例提供了一种靶点的权重确定方法。由于对于每个靶区而言,均可以基于多个靶点中各个靶点所需接收的射束的目标剂量确定对应的权重调整值,并基于权重调整值自动调整该靶区中各个靶点的初始权重以确定各个靶点的目标权重,因此不仅确定靶点权重的效率较高,且可靠性较好。
图3是本公开实施例提供的一种靶点的权重确定方法流程图,可以应用于 图1所示的主机02中。如图3所示,该方法可以包括:
步骤301、确定多个靶点中每个靶点的初始权重。
其中,对于每个靶点而言,该靶点的初始权重可以是指该靶点相对于其他靶点的相对初始权重。如此也可以确定,对于整个治疗计划仅包括一个靶点的场景,该靶点不存在权重的概念。
在制定治疗计划时,治疗医师可以先基于获取到的患者的基准图像(如,CT图像或MR图像)设置一个或多个靶区,然后可以继续由治疗医师或者专门用于设置靶点的设备在每个靶区内合理的设置(也可以称为放置)一个或多个靶点。也即是,以上的多个靶点可以是指位于同一靶区的多个靶点,或者,也可以是指位于不同的靶区的多个靶点。以下实施例均以该多个靶点位于不同的多个靶区为例进行说明。
对于每个靶区而言,从在该靶区内放置第m个靶点开始,每放置一个靶点,主机均可以对该靶区中已设置的各个靶点(包括第m个靶点以及在第m个靶点之前已放置的各个靶点)进行一次权重调整,在该靶区内放置完所有的靶点后,即可以确定出每个靶点的初始权重。其中,m可以为大于1的整数。
可选的,对于每个靶区而言,主机可以采用梯度算法或神经网络算法等优化算法确定该靶区中每个靶点的初始权重,使得照射至该靶区的射束的总剂量大于或等于剂量阈值。即,对于每个靶区而言,从放置第m个靶点开始,每放置一个靶点,主机均可以以该靶区被处方计量线所围绕的范围大于范围阈值为目的,即使得该靶区所接收到的照射剂量的范围能够最大化为目的,采用上述优化算法自动调整以确定出已放置的各个靶点的初始权重。
其中,若靶区为三维区域,则靶区被处方计量线所围绕的范围可以是指靶区被处方剂量线所围绕的体积。若靶区为二维平面区域,则靶区被处方计量线所围绕的范围可以是指靶区被处方剂量线所围绕的面积。
步骤302、确定每个靶点所需接收的射束的目标剂量。
在本公开实施例中,主机在确定出多个靶点中每个靶点的初始权重后,可以进一步针对每个靶点完成剂量计算。
可选的,主机中可以预先存储有治疗所需的射束的总剂量,在确定出每个靶点的初始权重后,主机可以基于该总剂量和每个靶点的初始权重,计算得到每个靶点所需接收的射束的目标剂量。
步骤303、对于每个靶区,基于该靶区中每个靶点所需接收的射束的目标 剂量,确定该靶区中所有靶点对每个其他靶区的剂量贡献系数。
由于每个靶点对各个靶区最终接收到的射束的剂量均有贡献,因此在确定出每个靶点所需接收的射束的目标剂量后,主机可以先进一步计算确定每个靶区中的各个靶点,即所有靶点对每个其他靶区的剂量贡献系数,即每个靶区对每个其他靶区的剂量贡献系数。
例如,若包括三个靶区,则对于第一个靶区而言,确定该靶区中所有靶点对每个其他靶区的剂量贡献系数可以是指:确定该靶区中各个靶点对第二个靶区的剂量贡献系数,以及确定该靶区中各个靶点对第三个靶区的剂量贡献系数。
示例的,图4是本公开实施例提供的一种确定剂量贡献系数的方法流程图。如图4所示,该方法可以包括:
步骤3031、对于每个靶区,基于该靶区中每个靶点所需接收的射束的目标剂量,确定该靶区对每个其他靶区的剂量贡献值。
其中,对于每个靶区而言,该靶区中除靶点外一般还包括多个其他点(可用像素点表示),且该多个其他点中存在一个最终接收的射束的剂量最大的点,即最大剂量点。该靶区对每个其他靶区的剂量贡献值可以是指该靶区中各个靶点对每个其他靶区中最大剂量点所贡献的剂量值的总和。
可选的,对于每个靶区,主机均可以先基于该靶区中每个靶点所需接收的射束的目标剂量,确定出该靶区中各个靶点对另一靶区中最大剂量点所贡献的剂量值。然后,主机可以将该靶区中各个靶点对另一靶区中最大剂量点所贡献的剂量值累加,从而得到该靶区对另一靶区的剂量贡献值。
步骤3032、对于每个其他靶区,基于该靶区的权重调整值和该靶区对其他靶区的剂量贡献值,确定该靶区中所有靶点对其他靶区的剂量贡献系数。
可选的,对于一个靶区和另一个其他靶区,主机可以将该一个靶区的权重调整值和该一个靶区对该另一个其他靶区的剂量贡献值的比值,确定为该一个靶区中各个靶点对该另一个其他靶区的剂量贡献系数。
其中,每个靶区的权重调整值可以是指该靶区中各个靶点对该靶区中最大剂量点所贡献的剂量值的总和。故也即是,对于一个靶区和另一个其他靶区,主机可以采用该一个靶区中各个靶点对自身最大剂量点所贡献的剂量值的总和,除以对另一个其他靶区中最大剂量点所贡献的剂量值的总和,以得到该一个靶区对该另一个其他靶区的剂量贡献系数。
步骤304、对于每个靶区,基于多个靶点中每个靶点所需接收的射束的目 标剂量,确定该靶区中最大剂量点所能接收到的射束的总剂量。
其中,对于每个靶区而言,该靶区中最大剂量点所能接收到的射束的总剂量可以是指:于多个靶区设置的多个靶点中,每个靶点对该靶区中的最大剂量点所贡献的剂量值的总和。相应的,可以采用图5所示的方法确定每个靶区中最大剂量点所能接收到的射束的总剂量。如图5所示,该方法可以包括:
步骤3041、对于每个靶区,基于多个靶点中每个靶点所需接收的射束的目标剂量,确定多个靶区中各个靶点对该靶区中最大剂量点所贡献的射束的初始剂量。
可选的,在本公开实施例中,对于每个靶区,主机可以先基于设置的所有靶点中各个靶点所需接收的射束的目标剂量,确定出每个靶点对该靶区中最大剂量点所贡献的射束的初始剂量。
步骤3042、对于每个靶区,累加多个靶区中各个靶点对该靶区中最大剂量点所贡献的射束的初始剂量,得到该靶区中最大剂量点所能接收到的射束的总剂量。
然后,主机可以将每个靶点对该靶区中最大剂量点所贡献的射束的初始剂量进行累加,从而得到该靶区中最大剂量点所能接收到的射束的总剂量。
步骤305、对于每个靶区,基于多个靶区中各个靶区对每个其他靶区的剂量贡献系数,以及多个靶区中各个靶区中最大剂量点所能接收到的总剂量,确定该靶区的权重调整值。
对于每个靶区而言,该靶区对其他靶区的剂量贡献系数可以是指:该靶区中所有靶点对其他靶区的剂量贡献系数。在确定出每个靶区对每个其他靶区的剂量贡献系数,以及每个靶区中最大剂量点所能接收到的总剂量后,主机可以基于确定的以上各项参数进一步计算得到该靶区的权重调整值。该权重调整值可以为该靶区中各个靶点对该靶区中最大剂量点所贡献的剂量值的总和。
可选的,每个靶区中各个靶点对每个其他靶区的剂量贡献系数,每个靶区中最大剂量点所能接收到的总剂量,以及每个靶区的权重调整值可以满足以下公式:
Figure PCTCN2020129264-appb-000003
其中,Fij为第i个靶区中各个靶点对第j个靶区的剂量贡献系数,i、j和n均为正整数,i和j均小于或等于n,n为多个靶区的总数。如,F12是指第1个靶区中各个靶点对第2个靶区的剂量贡献系数,其他同理。Dpi为第i个靶区中最大剂量点所能接收到的射束的总剂量,即第i个靶区包含了多个靶点中所有靶点贡献的最大剂量点所接收到的射束的剂量。如,Dp1是指第1个靶区中最大剂量点所能接收到的射束的总剂量,其他同理。Dmaxi为第i个靶区的权重调整值,即第i个靶区中各个靶点对该第i个靶区中最大剂量点所贡献的射束的剂量值的总和。如,Dmax1是指第1个靶区的权重调整值,其他同理。
基于上述公式(1),可以确定主机可以通过图6所示的权重调整值确定方法确定每个靶区的权重调整值。如图6所示,该方法可以包括:
步骤3051、基于多个靶区中各个靶区对每个其他靶区的剂量贡献系数,确定权重参考值。
可选的,结合上述公式(1)可以确定,权重参考值D可以满足:
Figure PCTCN2020129264-appb-000004
即,在本公开实施例中,主机可以将确定出的每个靶区对每个其他靶区的剂量贡献系数代入上述公式(2),计算得到权重参考值D。
例如,假设n为5,即共包括5个靶区,则权重参考值D可以满足:
Figure PCTCN2020129264-appb-000005
步骤3052、对于每个靶区,基于多个靶区中各个靶区对每个其他靶区的剂 量贡献系数,以及多个靶区中各个靶区中最大剂量点所能接收到的总剂量,确定该靶区的权重备选值。
可选的,结合上述公式(1)和公式(2)可以确定,第i个靶区的权重备选值Di可以满足:
Figure PCTCN2020129264-appb-000006
即在本公开实施例中,主机可以基于多个靶区中各个靶区对每个其他靶区的剂量贡献系数Fij,以及多个靶区中每个靶区中最大剂量点所能接收到的射束的总剂量Dpi代入上述公式(3),计算得到第i个靶区的权重备选值Di。
例如,假设n为5,即共包括5个靶区,则第一个靶区权重备选值D1至第五个靶区的参考值D5可以满足以下公式:
Figure PCTCN2020129264-appb-000007
Figure PCTCN2020129264-appb-000008
Figure PCTCN2020129264-appb-000009
Figure PCTCN2020129264-appb-000010
Figure PCTCN2020129264-appb-000011
步骤3053、对于每个靶区,基于权重参考值和靶区的权重备选值,确定该靶区的权重调整值。
可选的,对于每个靶区,主机可以将该靶区的权重备选值与权重参考值的比值确定为该靶区的权重调整值。
例如,假设共包括5个靶区,则对于第一个靶区,该靶区的权重调整值Dmax1可以满足:Dmax1=D1/D。对于第二个靶区,该靶区的权重调整值Dmax2可以满足:Dmax2=D2/D。对于第三个靶区,该靶区的权重调整值Dmax3可以满足:Dmax3=D3/D。对于第四个靶区,该靶区的权重调整值Dmax4可以满足:Dmax4=D4/D。对于第五个靶区,该靶区的权重调整值Dmax5可以满足:Dmax5=D5/D。D1至D5以及D均可以基于以上对应公式计算得到。
步骤306、对于每个靶区,基于该靶区的权重调整值,按照目标比例调整该靶区中每个靶点的初始权重,得到该靶区中每个靶点的目标权重。
其中,每个靶点的目标权重可以用于指示采用射束照射靶点的照射时长。如对于每个靶点而言,该靶点的目标权重与射束照射该靶点的照射时长成正比。即,靶点的目标权重越大,射束照射该靶点时长越长,相应的,该靶点所能接收到的射束的剂量则会越大。反之,靶点的目标权重越小,射束照射该靶点时长越短,相应的,该靶点所能接收到的射束的剂量则会越小。并且,每个靶点的目标权重也可以是指该靶点相对于该多个靶点中的其他靶点的目标权重。
可选的,在本公开实施例中,对于每个靶区,在确定出该靶区的权重调整值后,主机即可以进一步基于该权重调整值,按照目标比例(即,统一比例)调整步骤301确定的该靶区中每个靶点的初始权重,得到该靶区中每个靶点的目标权重。其中,该目标比例可以由治疗医师实时输入至主机中,或者,也可以为主机中预先存储的比例参数。
例如,对于每个靶区,主机可以按照统一比例调高或调低该靶区中每个靶点的初始权重,以使得调整后的各个靶点对该靶区中最大剂量点所贡献的剂量值的总和达到该靶区的权重调整值。即,对于每个靶区,基于最终调整得到的该靶区每个靶点的目标权重控制照射每个靶点的照射时长,可以使得各个靶点 对该靶区中最大剂量点所贡献的剂量值的总和达到该靶区的权重调整值。
需要说明的是,本公开实施例提供的靶点的权重确定方法步骤的先后顺序可以进行适当调整,例如,步骤304可以在步骤303之前执行,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,可轻易想到变化的方法,都应涵盖在本公开的保护范围之内,因此不再赘述。
综上所述,本公开实施例提供了一种靶点的权重确定方法。由于对于每个靶区而言,均可以基于多个靶点中各个靶点所需接收的射束的目标剂量确定对应的权重调整值,并基于权重调整值自动调整该靶区中各个靶点的初始权重以确定各个靶点的目标权重,因此不仅确定靶点权重的效率较高,且可靠性较好。
图7是本公开实施例提供的一种靶点的权重确定装置的框图。该装置可以应用于图1所示的主机02中。如图7所示,该装置可以包括:
第一确定模块701,用于确定多个靶点中每个靶点的初始权重。
其中,该多个靶点可以位于同一靶区或者位于多个不同的靶区。
第二确定模块702,用于确定每个靶点所需接收的射束的目标剂量。
第三确定模块703,用于对于每个靶区,基于多个靶点中每个靶点所需接收的射束的目标剂量,确定靶区的权重调整值。
其中,对于每个靶区而言,该靶区的权重调整值可以为该靶区中各个靶点对该靶区中最大剂量点所贡献的剂量值的总和。
调整模块704,用于对于每个靶区,基于该靶区的权重调整值,按照目标比例调整该靶区中每个靶点的初始权重,得到该靶区中每个靶点的目标权重。
其中,对于每个靶点而言,该靶点的目标权重用于指示采用射束照射该靶点的照射时长。
可选的,若多个靶点位于多个不同的靶区。则如图8所示,第三确定模块703可以包括:
第一确定子模块7031,用于基于该靶区中每个靶点所需接收的射束的目标剂量,确定该靶区中所有靶点对每个其他靶区的剂量贡献系数。
第二确定子模块7032,用于基于多个靶点中每个靶点所需接收的射束的目标剂量,确定该靶区中最大剂量点所能接收到的射束的总剂量。
第三确定子模块7033,用于基于多个靶区中各个靶区对每个其他靶区的剂量贡献系数,以及多个靶区中各个述靶区中最大剂量点所能接收到的总剂量, 确定该靶区的权重调整值。
可选的,第一确定子模块7031,可以用于:
对于每个靶区,基于靶区中每个靶点所需接收的射束的目标剂量,确定该靶区对每个其他靶区的剂量贡献值。
其中,该剂量贡献值可以是指该靶区中各个靶点对每个其他靶区中最大剂量点所贡献的剂量值的总和。
对于每个其他靶区,基于靶区的权重调整值和该靶区对其他靶区的剂量贡献值,确定该靶区中所有靶点对其他靶区的剂量贡献系数。
例如,第一确定子模块7031可以将靶区的权重调整值和该靶区对其他靶区的剂量贡献值的比值,确定为该靶区中所有靶点对其他靶区的剂量贡献系数。
可选的,第二确定子模块7032,可以用于:
对于每个靶区,基于多个靶点中每个靶点所需接收的射束的目标剂量,确定多个靶区中各个靶点对该靶区中最大剂量点所贡献的射束的初始剂量。
累加多个靶区中各个靶点对该靶区中最大剂量点所贡献的射束的初始剂量,得到该靶区中最大剂量点所能接收到的射束的总剂量。
可选的,第三确定子模块7033,可以用于:
基于多个靶区中各个靶区对每个其他靶区的剂量贡献系数,确定权重参考值。
对于每个靶区,基于多个靶区中各个靶区对每个其他靶区的剂量贡献系数,以及多个靶区中各个靶区中最大剂量点所能接收到的总剂量,确定该靶区的权重备选值。
基于权重参考值和靶区的权重备选值,确定该靶区的权重调整值。例如,对于每个靶区,第三确定子模块7033可以将该靶区的权重备选值与权重参考值的比值确定为该靶区的权重调整值。
可选的,权重参考值D可以满足:
Figure PCTCN2020129264-appb-000012
其中,Fij为第i个靶区中各个靶点对第j个靶区的剂量贡献系数,i、j和 n均为正整数,i和j均小于或等于n,n为多个靶区的总数。
可选的,第i个靶区的权重备选值Di可以满足:
Figure PCTCN2020129264-appb-000013
其中,Dpi可以为第i个靶区中最大剂量点所能接收到的射束的总剂量。
可选的,第一确定模块701,可以用于:
对于每个靶区,采用梯度算法或神经网络算法确定靶区中每个靶点的初始权重,使得照射至靶区的射束的总剂量大于或等于剂量阈值。
综上所述,本公开实施例提供了一种靶点的权重确定装置。由于对于每个靶区而言,该装置均可以基于多个靶点中各个靶点所需接收的射束的目标剂量确定对应的权重调整值,并基于权重调整值自动调整该靶区中各个靶点的初始权重以确定各个靶点的目标权重,因此不仅确定靶点权重的效率较高,且可靠性较好。
关于上述实施例中的靶点的权重确定装置,其中各个模块执行操作的具体方式已经在有关该方法的实施例中进行了详细描述,此处将不做详细阐述说明。
可选的,参考图9,在本公开实施例中,图1所示的放射治疗系统中的主机02可以包括:处理器和存储器。其中,该存储器中可以存储有指令,该指令由处理器加载并执行可以实现如图2或图3所示的靶点的权重确定方法。
可选的,本公开实施例还提供了一种存储介质,该存储介质中可以存储有指令,当存储介质在处理组件上运行时,可以使得处理组件执行如图2或图3所示的靶点的权重确定方法。
以上所述仅为本公开的可选实施例,并不用以限制本公开,凡在本公开实施例的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本公开实施例的保护范围之内。

Claims (14)

  1. 一种靶点的权重确定方法,其特征在于,所述方法包括:
    确定多个靶点中每个所述靶点的初始权重,其中,所述多个靶点位于同一靶区或者位于多个不同的靶区;
    确定每个所述靶点所需接收的射束的目标剂量;
    对于每个所述靶区,基于所述多个靶点中每个所述靶点所需接收的射束的目标剂量,确定所述靶区的权重调整值,所述权重调整值为所述靶区中各个所述靶点对所述靶区中最大剂量点所贡献的剂量值的总和;
    对于每个所述靶区,基于所述靶区的权重调整值,按照目标比例调整所述靶区中每个所述靶点的初始权重,得到所述靶区中每个所述靶点的目标权重,所述目标权重用于指示采用射束照射所述靶点的照射时长。
  2. 根据权利要求1所述的方法,其特征在于,所述多个靶点位于多个不同的靶区;所述对于每个所述靶区,基于所述多个靶点中每个所述靶点所需接收的射束的目标剂量,确定所述靶区的权重调整值,包括:
    基于所述靶区中每个所述靶点所需接收的射束的目标剂量,确定所述靶区中所有所述靶点对每个其他靶区的剂量贡献系数;
    基于所述多个靶点中每个所述靶点所需接收的射束的目标剂量,确定所述靶区中最大剂量点所能接收到的射束的总剂量;
    基于所述多个靶区中各个所述靶区对每个所述其他靶区的所述剂量贡献系数,以及所述多个靶区中各个所述靶区中最大剂量点所能接收到的总剂量,确定所述靶区的权重调整值。
  3. 根据权利要求2所述的方法,其特征在于,所述基于所述靶区中每个所述靶点所需接收的射束的目标剂量,确定所述靶区中所有所述靶点对每个其他靶区的剂量贡献系数,包括:
    基于所述靶区中每个所述靶点所需接收的射束的目标剂量,确定所述靶区对每个其他靶区的剂量贡献值,所述剂量贡献值是指所述靶区中各个靶点对每个其他靶区中最大剂量点所贡献的剂量值的总和;
    对于每个所述其他靶区,基于所述靶区的权重调整值和所述靶区对所述其 他靶区的剂量贡献值,确定所述靶区中所有所述靶点对所述其他靶区的剂量贡献系数。
  4. 根据权利要求3所述的方法,其特征在于,所述基于所述靶区的权重调整值和所述靶区对所述其他靶区的剂量贡献值,确定所述靶区中所有所述靶点对所述其他靶区的剂量贡献系数,包括:
    将所述靶区的权重调整值和所述靶区对所述其他靶区的剂量贡献值的比值,确定为所述靶区对所述其他靶区的剂量贡献系数。
  5. 根据权利要求2所述的方法,其特征在于,所述基于所述多个靶点中每个所述靶点所需接收的射束的目标剂量,确定所述靶区中最大剂量点所能接收到的射束的总剂量,包括:
    基于所述多个靶点中每个所述靶点所需接收的射束的目标剂量,确定所述多个靶区中各个所述靶点对所述靶区中最大剂量点所贡献的射束的初始剂量;
    累加所述多个靶区中各个所述靶点对所述靶区中最大剂量点所贡献的射束的初始剂量,得到所述靶区中最大剂量点所能接收到的射束的总剂量。
  6. 根据权利要求2所述的方法,其特征在于,所述基于所述多个靶区中各个所述靶区对每个所述其他靶区的所述剂量贡献系数,以及所述多个靶区中各个所述靶区中最大剂量点所能接收到的总剂量,确定所述靶区的权重调整值,包括:
    基于所述多个靶区中各个所述靶区对每个所述其他靶区的所述剂量贡献系数,确定权重参考值;
    基于所述多个靶区中各个所述靶区对每个所述其他靶区的所述剂量贡献系数,以及所述多个靶区中各个所述靶区中最大剂量点所能接收到的总剂量,确定所述靶区的权重备选值;
    基于所述权重参考值和所述靶区的权重备选值,确定所述靶区的权重调整值。
  7. 根据权利要求6所述的方法,其特征在于,所述权重参考值D满足:
    Figure PCTCN2020129264-appb-100001
    其中,Fij为第i个所述靶区中各个所述靶点对第j个所述靶区的剂量贡献系数,i、j和n均为正整数,i和j均小于或等于n,n为多个所述靶区的总数。
  8. 根据权利要求7所述的方法,其特征在于,第i个所述靶区的权重备选值Di满足:
    Figure PCTCN2020129264-appb-100002
    其中,Dpi为第i个所述靶区中最大剂量点所能接收到的射束的总剂量。
  9. 根据权利要求6所述的方法,其特征在于,所述基于所述权重参考值和所述靶区的权重备选值,确定所述靶区的权重调整值,包括:
    将所述靶区的权重备选值与所述权重参考值的比值确定为所述靶区的权重调整值。
  10. 根据权利要求1至8任一所述的方法,其特征在于,所述确定多个靶点中每个所述靶点的初始权重,包括:
    对于每个所述靶区,采用梯度算法或神经网络算法确定所述靶区中每个所述靶点的初始权重,使得照射至所述靶区的射束的总剂量大于或等于剂量阈值。
  11. 一种靶点的权重确定装置,其特征在于,所述装置包括:
    第一确定模块,用于确定多个靶点中每个所述靶点的初始权重,其中,所述多个靶点位于同一靶区或者位于多个不同的靶区;
    第二确定模块,用于确定每个所述靶点所需接收的射束的目标剂量;
    第三确定模块,用于对于每个所述靶区,基于所述多个靶点中每个所述靶点所需接收的射束的目标剂量,确定所述靶区的权重调整值,所述权重调整值为所述靶区中各个所述靶点对所述靶区中最大剂量点所贡献的剂量值的总和;
    调整模块,用于对于每个所述靶区,基于所述靶区的权重调整值,按照目标比例调整所述靶区中每个所述靶点的初始权重,得到所述靶区中每个所述靶点的目标权重,所述目标权重用于指示采用射束照射所述靶点的照射时长。
  12. 一种主机,其特征在于,所述主机包括:处理器和存储器,所述存储器中存储有指令,所述指令由所述处理器加载并执行以实现如权利要求1至10任一所述的靶点的权重确定方法。
  13. 一种存储介质,其特征在于,所述存储介质中存储有指令,当所述存储介质在处理组件上运行时,使得处理组件执行如权利要求1至10任一所述的靶点的权重确定方法。
  14. 一种放射治疗系统,其特征在于,所述放射治疗系统包括:患者支撑装置和主机,所述主机与所述患者支撑装置连接,所述主机用于调整所述患者支撑装置的位置;
    其中,所述主机包括如权利要求11所述的装置,或者,所述主机为如权利要求12所述的主机。
PCT/CN2020/129264 2020-11-17 2020-11-17 靶点的权重确定方法、装置及放射治疗系统 WO2022104497A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202080107277.8A CN116457060A (zh) 2020-11-17 2020-11-17 靶点的权重确定方法、装置及放射治疗系统
PCT/CN2020/129264 WO2022104497A1 (zh) 2020-11-17 2020-11-17 靶点的权重确定方法、装置及放射治疗系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/129264 WO2022104497A1 (zh) 2020-11-17 2020-11-17 靶点的权重确定方法、装置及放射治疗系统

Publications (1)

Publication Number Publication Date
WO2022104497A1 true WO2022104497A1 (zh) 2022-05-27

Family

ID=81707932

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/129264 WO2022104497A1 (zh) 2020-11-17 2020-11-17 靶点的权重确定方法、装置及放射治疗系统

Country Status (2)

Country Link
CN (1) CN116457060A (zh)
WO (1) WO2022104497A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104645500A (zh) * 2015-02-12 2015-05-27 上海联影医疗科技有限公司 调强放疗优化方法及系统
CN105246549A (zh) * 2013-05-29 2016-01-13 皇家飞利浦有限公司 用于确定针对imrt的照射分布的设备
CN105413068A (zh) * 2015-12-31 2016-03-23 上海联影医疗科技有限公司 求解通量图的优化方法和放射治疗设备
CN105930636A (zh) * 2016-03-29 2016-09-07 中北大学 一种自动确定目标函数权重的放射治疗方案优化系统
CN106714905A (zh) * 2016-08-01 2017-05-24 深圳市奥沃医学新技术发展有限公司 一种放射治疗设备以及射束成像方法
EP3721940A1 (en) * 2019-04-12 2020-10-14 RaySearch Laboratories AB Generating a plurality of treatment plans for radiation therapy

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6735277B2 (en) * 2002-05-23 2004-05-11 Koninklijke Philips Electronics N.V. Inverse planning for intensity-modulated radiotherapy
GB2442498A (en) * 2006-10-03 2008-04-09 Elekta Ab Treatment planning systems
JP2015229018A (ja) * 2014-06-05 2015-12-21 国立研究開発法人国立がん研究センター 粒子線照射法における線量分布の最適化プログラム、及び装置
WO2016070938A1 (en) * 2014-11-07 2016-05-12 Raysearch Laboratories Ab Robust radiotherapy treatment plan generation
CN106730411B (zh) * 2016-12-21 2019-11-19 上海联影医疗科技有限公司 放射治疗计划优化方法及系统
JP7159289B2 (ja) * 2017-07-31 2022-10-24 コーニンクレッカ フィリップス エヌ ヴェ 最適化中のoar及び標的目標に対する調整メカニズム
CN110548231B (zh) * 2019-09-12 2021-11-05 上海联影医疗科技股份有限公司 放疗计划生成系统、装置及存储介质

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105246549A (zh) * 2013-05-29 2016-01-13 皇家飞利浦有限公司 用于确定针对imrt的照射分布的设备
CN104645500A (zh) * 2015-02-12 2015-05-27 上海联影医疗科技有限公司 调强放疗优化方法及系统
CN105413068A (zh) * 2015-12-31 2016-03-23 上海联影医疗科技有限公司 求解通量图的优化方法和放射治疗设备
CN105930636A (zh) * 2016-03-29 2016-09-07 中北大学 一种自动确定目标函数权重的放射治疗方案优化系统
CN106714905A (zh) * 2016-08-01 2017-05-24 深圳市奥沃医学新技术发展有限公司 一种放射治疗设备以及射束成像方法
EP3721940A1 (en) * 2019-04-12 2020-10-14 RaySearch Laboratories AB Generating a plurality of treatment plans for radiation therapy

Also Published As

Publication number Publication date
CN116457060A (zh) 2023-07-18

Similar Documents

Publication Publication Date Title
JP6896164B2 (ja) 放射線治療計画最適化ワークフロー
JP6377762B2 (ja) 画像誘導放射線治療
RU2603606C2 (ru) Изучение дозиметрического воздействия движения на формирование адаптивных границ для конкретного пациента при планировании наружной дистанционной лучевой терапии
CN104812442B (zh) 用于放射疗法的质量保证的系统、设备和方法
US7529339B2 (en) Method and system for optimizing dose delivery of radiation
JP5330992B2 (ja) 生物学に導かれた適応的な治療計画
CN103933672B (zh) 放射线治疗计划装置和治疗计划方法
US20080008291A1 (en) Spatially-variant normal tissue objective for radiotherapy
JP6821858B2 (ja) 適応放射線治療システム
JP2001507954A (ja) 放射照射線量決定の立案法およびその装置
JP6672491B2 (ja) オーバーラップする輪郭への放射線量の最適化
WO2005057463A1 (en) Method and system for optimizing dose delivery of radiation
TW201818996A (zh) 用於決定放射劑量之放射治療方法及放射治療計劃系統
Michalec et al. Proton radiotherapy facility for ocular tumors at the IFJ PAN in Kraków Poland
Gill et al. Determination of optimal PTV margin for patients receiving CBCT‐guided prostate IMRT: comparative analysis based on CBCT dose calculation with four different margins
CN115862812B (zh) 放疗计划的处理装置、存储介质及电子设备
JP2022093434A (ja) 放射療法処置のための処置計画生成
JP2018515274A (ja) ビームジオメトリを選択する方法
WO2022104497A1 (zh) 靶点的权重确定方法、装置及放射治疗系统
Agnew et al. Optimisation of varian truebeam head, thorax and pelvis CBCT based on patient size
Bauman et al. Simplified intensity-modulated arc therapy for dose escalated prostate cancer radiotherapy
Redpath Planning of beam intensity modulation using an advanced 3D dose calculation algorithm and a simulated annealing method
Saw et al. Clinical implementation of intensity-modulated radiation therapy
JP2016063876A (ja) 画像処理装置
Calvo-Ortega et al. Clinical Experience in Prostate Ultrahypofractionated Radiation Therapy With an Online Adaptive Method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20961789

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202080107277.8

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20961789

Country of ref document: EP

Kind code of ref document: A1