WO2022102102A1 - 無線端末用カバー - Google Patents

無線端末用カバー Download PDF

Info

Publication number
WO2022102102A1
WO2022102102A1 PCT/JP2020/042518 JP2020042518W WO2022102102A1 WO 2022102102 A1 WO2022102102 A1 WO 2022102102A1 JP 2020042518 W JP2020042518 W JP 2020042518W WO 2022102102 A1 WO2022102102 A1 WO 2022102102A1
Authority
WO
WIPO (PCT)
Prior art keywords
wireless terminal
cover
conductor elements
smartphone
conductor
Prior art date
Application number
PCT/JP2020/042518
Other languages
English (en)
French (fr)
Inventor
洋平 古賀
研 莊司
紀雄 尾崎
Original Assignee
Fcnt株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fcnt株式会社 filed Critical Fcnt株式会社
Priority to JP2021537817A priority Critical patent/JP6940726B1/ja
Priority to PCT/JP2020/042518 priority patent/WO2022102102A1/ja
Priority to JP2021143215A priority patent/JP2022078946A/ja
Priority to US17/560,704 priority patent/US11456770B2/en
Publication of WO2022102102A1 publication Critical patent/WO2022102102A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/3827Portable transceivers
    • H04B1/3888Arrangements for carrying or protecting transceivers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/08Arrays of individually energised antenna units similarly polarised and spaced apart the units being spaced along or adjacent to a rectilinear path
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/22Antenna units of the array energised non-uniformly in amplitude or phase, e.g. tapered array or binomial array
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/28Combinations of substantially independent non-interacting antenna units or systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • H01Q9/0414Substantially flat resonant element parallel to ground plane, e.g. patch antenna in a stacked or folded configuration

Definitions

  • the present invention relates to a cover for a wireless terminal.
  • wireless terminals such as smartphones have been widely used.
  • various techniques for improving antenna performance have been proposed.
  • Patent Document 1 For example, a technique for widening the band of a patch antenna by providing a floating patch on the housing of a smartphone has been proposed (see, for example, Patent Document 1).
  • Patent Document 2 A technique for providing an antenna on a cover of a smartphone has been proposed (see, for example, Patent Document 3).
  • covers are often used to protect and decorate the terminals. If the wireless terminal is housed in the cover, the antenna performance of the wireless terminal may deteriorate.
  • One aspect of the disclosed technique is to provide a cover for a wireless terminal that can suppress a deterioration in antenna performance even if the wireless terminal is accommodated.
  • the cover for this wireless terminal is a cover for a wireless terminal attached to a wireless terminal formed in a plate shape, and is in contact with the back surface so as to cover the back surface of the attached wireless terminal, and has a specific dielectric constant of 1 or more.
  • a plurality of conductor elements arranged side by side are provided, and the conductor element is the longest length of the line segment formed on the conductor element by connecting arbitrary two points on the conductor element. It is formed so that the length of the effective wavelength in the dielectric of the radio wave used by the wireless terminal for wireless communication is within the range of 0.1 to 0.4 times.
  • the cover for this wireless terminal can suppress the deterioration of antenna performance even if the wireless terminal is accommodated.
  • FIG. 1 is a diagram showing an example of a smartphone cover according to an embodiment.
  • FIG. 2 is a diagram showing an example of a front view of a smartphone to be protected by the smartphone cover according to the embodiment.
  • FIG. 3 is a diagram schematically showing the positional relationship between the conductor element of the smartphone cover and the antenna of the smartphone according to the embodiment.
  • FIG. 4 is a diagram showing an example of the first model used in the first simulation.
  • FIG. 5 is a diagram illustrating the simulation result of the first simulation.
  • FIG. 6 is a first diagram showing an example of the model used in the second simulation.
  • FIG. 7 is a second diagram showing an example of the model used in the second simulation.
  • FIG. 8 is a third diagram showing an example of the model used in the second simulation.
  • FIG. 1 is a diagram showing an example of a smartphone cover according to an embodiment.
  • FIG. 2 is a diagram showing an example of a front view of a smartphone to be protected by the smartphone cover according to the embodiment.
  • FIG. 9 is a fourth diagram showing an example of the model used in the second simulation.
  • FIG. 10 is a first diagram illustrating the simulation results verified for beamforming.
  • FIG. 11 is a second diagram illustrating the simulation results verified for beamforming.
  • FIG. 13 is a third diagram illustrating the simulation results verified for beamforming.
  • FIG. 13 is a fourth diagram illustrating the simulation results verified for beamforming.
  • FIG. 14 is a fifth diagram illustrating the simulation results verified for beamforming.
  • FIG. 15 is a sixth diagram illustrating the simulation results verified for beamforming.
  • FIG. 16 is a diagram showing an example of the third model used in the third simulation.
  • FIG. 17 is a diagram illustrating the simulation result of the third simulation.
  • FIG. 18 is a first diagram showing an example of the model used in the fourth simulation.
  • FIG. 10 is a first diagram illustrating the simulation results verified for beamforming.
  • FIG. 11 is a second diagram illustrating the simulation results verified for beamforming.
  • FIG. 13 is a third diagram
  • FIG. 19 is a second diagram showing an example of the model used in the fourth simulation.
  • FIG. 20 is a first diagram illustrating the simulation result of the fourth simulation.
  • FIG. 21 is a second diagram illustrating the simulation result of the fourth simulation.
  • FIG. 22 is a diagram showing an example of the fifth model used in the fifth simulation.
  • FIG. 23 is a diagram illustrating the simulation result of the fifth simulation.
  • FIG. 24 is a diagram showing an example of a smartphone cover according to the first modification.
  • FIG. 25 is a first diagram showing variations in the positional relationship between the conductor element and the patch antenna in the first modification.
  • FIG. 26 is a second diagram showing variations in the positional relationship between the conductor element and the patch antenna in the first modification.
  • FIG. 27 is a third diagram showing variations in the positional relationship between the conductor element and the patch antenna in the first modification.
  • FIG. 28 is a fourth diagram showing variations in the positional relationship between the conductor element and the patch antenna in the first modification.
  • 29 to 32 are the first diagrams illustrating the arrangement of conductor elements adopting a shape other than a rectangle.
  • FIG. 30 is a second diagram illustrating the arrangement of conductor elements adopting a shape other than a rectangle.
  • FIG. 31 is a third diagram illustrating the arrangement of conductor elements adopting a shape other than a rectangle.
  • FIG. 32 is a fourth diagram illustrating the arrangement of conductor elements adopting a shape other than a rectangle.
  • FIG. 33 is a diagram illustrating a configuration in which the distance between the patch antenna and the conductor element is uneven.
  • the configurations of the embodiments shown below are examples, and the disclosed techniques are not limited to the configurations of the embodiments.
  • the cover for a wireless terminal according to the embodiment has, for example, the following configuration.
  • the cover for a wireless terminal according to the present embodiment is a cover for a wireless terminal attached to a wireless terminal formed in a plate shape.
  • the cover for this wireless terminal is in contact with the back surface so as to cover the back surface of the mounted wireless terminal, and has a bottom formed of a dielectric having a relative permittivity in the range of 1 to 10 and a mounted wireless terminal.
  • the conductor element is a dielectric of radio waves whose longest line segment, which is the longest line segment formed on the conductor element by connecting arbitrary two points on the conductor element, is used by the wireless terminal for wireless communication. It is formed so as to be in the range of 0.1 to 0.4 times the length of the effective wavelength in.
  • the conductor element can be operated as a resonator with respect to the antenna of the wireless terminal. Since a plurality of conductor elements are arranged side by side in the cover for this wireless terminal, it is possible to arrange the conductor elements in the vicinity of the antenna even if it is unknown where the antenna is provided in the wireless terminal. Can be enhanced. That is, according to the cover for this wireless terminal, it is possible to increase the possibility of operating the conductor element as a resonator even for a wireless terminal whose antenna arrangement position is unknown, and by extension, the conductor element can be operated as a resonator. It is also possible to improve the operating gain of the antenna of the wireless terminal.
  • FIG. 1 is a diagram showing an example of a smartphone cover according to an embodiment.
  • the smartphone cover 100 is a case that is attached to a smartphone formed in a substantially rectangular parallelepiped shape (plate shape) and protects the smartphone.
  • the smartphone cover 100 includes a bottom portion 101 and wall portions 102 and 103 erected from the edge of the bottom portion 101.
  • the direction from the bottom 101 toward the opening of the accommodation space 110 is upward, and the opposite direction is downward.
  • the bottom portion 101 is a member that covers the bottom surface of the smartphone to be protected by the smartphone cover 100 and is in contact with the bottom surface of the smartphone.
  • the bottom portion 101 is formed in a substantially rectangular plate shape in accordance with the bottom surface of the smartphone to be protected by the smartphone cover 100.
  • the wall portions 102 and 103 are members that surround the side surface of the smartphone to be protected by the smartphone cover 100 and come into contact with the side surface of the smartphone.
  • the wall portions 102 and 103 are provided so as to stand upright from the edge of the bottom portion 101.
  • the wall portion 102 is provided so as to stand upright from the short side of the bottom portion 101 formed in a substantially rectangular shape.
  • the wall portion 103 is provided so as to stand upright from the long side of the bottom portion 101 formed in a substantially rectangular shape. That is, the wall portion 102 is formed shorter than the wall portion 103.
  • the bottom portion 101 and the wall portions 102 and 103 are formed of a dielectric material.
  • the relative permittivity of the dielectric forming the bottom portion 101 and the wall portions 102 and 103 is preferably about 1 to 10.
  • Examples of such a dielectric include ABS resin, polycarbonate resin, silicone rubber, thermoplastic polyurethane elastomer and the like.
  • the bottom portion 101 and the wall portions 102 and 103 form a storage space 110 for accommodating the smartphone to be protected.
  • the accommodation space 110 is formed in a shape substantially equal to the outer shape of the smartphone to be accommodated.
  • the smartphone cover 100 protects the smartphone accommodated (fitted) in the accommodation space 110 from external impacts and the like.
  • a plurality of conductor elements 120 are arranged side by side on the bottom portion 101 and the wall portions 102 and 103.
  • the conductor element 120 is an element obtained by processing a conductor such as metal into a plate shape.
  • the conductor element 120 may be provided on the surface (inner surface) of the bottom portion 101 and the wall portions 102, 103 on the accommodation space 110 side.
  • the conductor element 120 may be provided on the surface (outer surface) of the bottom portion 101 and the wall portions 102, 103 opposite to the accommodation space 110. Further, the conductor element 120 may be provided inside the bottom portion 101 and the wall portions 102 and 103.
  • the size of the conductor element 120 is determined according to the wavelength of the radio wave used for wireless communication by the smartphone housed in the smartphone cover 100 and the dielectric constant of the dielectric forming the smartphone cover 100.
  • the conductor element 120 is, for example, a plate-shaped polygon having a diagonal length of 0.1 ⁇ g to 0.4 ⁇ g , where ⁇ g is the effective wavelength of the radio wave of the smartphone in the dielectric forming the smartphone cover 100. Alternatively, it is a disk having a diameter length of 0.1 ⁇ g to 0.4 ⁇ g .
  • the pitch spacing of the adjacent conductor elements 120 is preferably 0.5 ⁇ g .
  • the smartphone to be protected by the smartphone cover 100 performs wireless communication using radio waves in the millimeter wave band (frequency 24 to 300 GHz)
  • the inside of the smartphone cover 100 selected from materials having a relative permittivity of 1 to 10.
  • the effective wavelength ⁇ g in the above can be determined by the following equation (1).
  • the conductor element 120 is a plate-shaped polygon having a diagonal length of 0.032 to 5 mm, or a diameter length of 0.032. It can be a disk of 5 mm from. Further, the pitch spacing of the adjacent conductor elements 120 is preferably in the range of 0.16 to 6.25 mm.
  • FIG. 2 is a diagram showing an example of a front view of a smartphone to be protected by the smartphone cover according to the embodiment.
  • the smartphone 500 to be protected can be said to be a smartphone accommodated in the smartphone cover 100.
  • the position of the antenna mounted on the smartphone 500 is illustrated by a dotted line.
  • the smartphone 500 is formed in the shape of a rectangular plate as a whole.
  • the smartphone 500 includes four millimeter-wave antenna modules 501, 502, 503, 504.
  • the millimeter wave antenna modules 501, 502, 503, 504 are antennas that perform wireless communication using radio waves in the millimeter wave band.
  • Each of the millimeter wave antenna modules 501, 502, 503, 504 is a 4-element patch array antenna having four patch antennas.
  • the millimeter wave antenna modules 501 and 503 are provided so that the direction of transmitting and receiving radio waves faces the side surface 512 forming the short side of the smartphone 500.
  • the millimeter wave antenna module 502 is provided so that the direction of transmission / reception of radio waves faces the side surface 511 forming the long side of the smartphone 500.
  • the millimeter wave antenna module 504 is provided on the bottom surface of the smartphone 500 so that the radio wave transmission / reception direction faces.
  • FIG. 3 is a diagram schematically showing the positional relationship between the conductor element of the smartphone cover and the antenna of the smartphone according to the embodiment.
  • a plurality of conductor elements 120 are arranged side by side on the bottom 101, the wall 102, and 103 of the smartphone cover 100. Therefore, when the smartphone 500 is accommodated in the accommodation space 110 of the smartphone cover 100, one of the conductor elements 120 is located near the radio wave emission direction of the millimeter wave antenna modules 501, 502, 503, 504 of the smartphone 500. become.
  • FIG. 3 illustrates a state in which the conductor element 120 is located in the emission direction of the patch antenna 5021 of the millimeter wave antenna module 502.
  • the conductor element 120 Since the conductor element 120 resonates with a radio wave having an effective wavelength of ⁇ g , the conductor element 120 located near the emission direction of the radio wave of the patch antenna 5021 operates as a resonator (so-called stacked patch) as shown in FIG. become.
  • the smartphone cover 100 can improve the operating gain of the millimeter-wave antenna modules 501, 502, 503, 504 of the accommodated smartphone 500.
  • FIG. 4 is a diagram showing an example of the first model used in the first simulation.
  • a substrate 1002 having a relative permittivity of 12 is provided on the ground 1001.
  • four rectangular patch antennas 1003 are arranged side by side in a row.
  • Stacked patches 1004 formed in a rectangular shape are arranged in the emission direction of each of the four patch antennas 1003.
  • FIG. 5 is a diagram illustrating the simulation result of the first simulation.
  • the vertical axis of FIG. 5 exemplifies the operating gain (dBi), and the horizontal axis exemplifies the length of one side of the stacked patch 1004.
  • the length of one side of the stacked patch 1004 has a greater effect on the operating gain than the distance between the patch antenna 1003 and the stacked patch 1004.
  • the length of one side of the stacked patch 1004 is in the range of 0.1 ⁇ g to 0.4 ⁇ g , the effect of improving the operating gain is large.
  • the effective wavelength is 0.32 mm
  • 0.1 ⁇ g is 0.032 mm
  • 0.4 ⁇ g is 0.0128 mm.
  • the effective wavelength is 12.5 mm
  • 0.1 ⁇ g is 1.25 mm and 0.4 ⁇ g is 5 mm.
  • FIG. 6 to 9 are diagrams showing an example of the model used in the second simulation.
  • FIG. 6 illustrates the 2-1 model.
  • the second model is a model in which the stacked patch 1004 is arranged in front of the patch antenna 1003.
  • the patch antenna 1003 and the stacked patch 1004 arranged in front of the patch antenna 1003 have the same center position in the front view.
  • FIG. 7 illustrates the 2-2 model.
  • the position of the stacked patch 1004 is moved to the right by 0.17 ⁇ g (approximately 1.7 mm) from the 2-1 model toward the drawing. Therefore, in the 2-2 model, a part of the left side of the patch antenna 1003 can be seen between the plurality of stacked patches 1004 arranged side by side in the front view.
  • FIG. 8 illustrates the 2-3 model.
  • the position of the stacked patch 1004 is moved to the right by 0.256 ⁇ g (approximately 2.85 mm) from the 2-1 model toward the drawing. Therefore, in the 2-3 model, the patch antenna 1003 can be seen between the plurality of stacked patches 1004 arranged side by side in the front view.
  • FIG. 9 illustrates the 2-4 model.
  • the position of the stacked patch 1004 is moved to the right by 0.34 ⁇ g (approximately 3.8 mm) from the 2-1 model toward the drawing. Therefore, in the 2nd-4th model, a part of the right side of the patch antenna 1003 can be seen between the plurality of stacked patches 1004 arranged side by side in the front view.
  • FIG. 10 to 15 are diagrams illustrating simulation results verified for beamforming.
  • FIG. 10 illustrates the result of simulating beamforming without the stacked patch 1004, that is, with the smartphone 500 not housed in the smartphone cover 100.
  • FIG. 11 illustrates the result of simulating the beamforming of the first model.
  • FIG. 12 illustrates the result of simulating the beamforming of the 2-1 model.
  • FIG. 13 illustrates the result of simulating the beamforming of the 2-2 model.
  • FIG. 14 illustrates the result of simulating the beamforming of the 2-3 model.
  • FIG. 15 exemplifies the result of simulating the beamforming of the 2nd-4th model.
  • the operation gain can be expected to be improved by about 2 dB by providing the first model, that is, four stacked patches 1004. Further, with reference to FIG. 11, it can be understood that beamforming is possible even if four stacked patches 1004 are provided. With reference to FIGS. 12 to 15, it can be understood that beamforming is possible even if more than four stacked patches 1004 are provided. Further, referring to FIGS. 12 to 15, it can be understood that even if the patch antenna 1003 and the stacked patch 1004 are laterally displaced, the influence of the displacement on the operating gain is small. From these facts, it is considered that arranging a large number of conductor elements 120 on the smartphone cover 100 contributes to the improvement of the operating gain of the smartphone 500.
  • FIG. 16 is a diagram showing an example of the third model used in the third simulation.
  • the bitch of the patch antenna 1003 is 5.7 mm.
  • the pitch of the stacked patch 1004 is 5.7 mm.
  • the vertical shift amount H is the vertical difference between the center of the patch antenna 1003 and the center of the stacked patch 1004.
  • the lateral shift amount W is the difference between the center of the patch antenna 1003 and the center of the stacked patch 1004 on the left and right.
  • the stacked patch 1004 when the stacked patch 1004 is to the right of the patch antenna 1003, the value is positive, and when the stacked patch 1004 is to the left of the patch antenna 1003, the value is negative.
  • FIG. 17 is a diagram illustrating the simulation result of the third simulation.
  • the vertical and horizontal shift amounts (mm) and the operating gain (dBi) are illustrated in association with each other.
  • the vertical shift amount of 0 mm and the horizontal shift amount of 0 mm exemplify that the center of the patch antenna 1003 and the center of the stacked patch 1004 coincide with each other in the front view.
  • the operating gain of the patch antenna 1003 in the absence of the stacked patch 1004 is 8.8 dBi.
  • the operating gain is set to 10 dBi in the horizontal shift amount in the range of -3.8 mm to +3.8 mm. Can be done. Further, referring to FIG. 17, the operating gain of the patch antenna 1003 when the stacked patch 1004 is adopted is in the state without the stacked patch 1004 regardless of the vertical and horizontal shift amounts within the range verified by the simulation. The operating gain of the patch antenna 1003 can be higher than 8.8 dBi.
  • FIG. 18 and 19 are diagrams showing an example of the model used in the fourth simulation.
  • FIG. 18 illustrates a 4-1 model in which the center positions of the stacked patches 1004 in the upper and lower rows are not shifted in the left-right direction.
  • FIG. 19 illustrates a 4-2 model in which the center position of the stacked patches 1004 in the upper and lower rows is desired to be shifted in the left-right direction.
  • the 4-2nd model is also referred to as a staggered arrangement.
  • the pitch interval of the stacked patches 1004 in the upper and lower rows is 0.55 mm (0.05 ⁇ g ).
  • FIG. 20 and 21 are diagrams illustrating the simulation results of the fourth simulation.
  • FIG. 20 illustrates the simulation results for the 4-1 model.
  • FIG. 21 illustrates the simulation results for the 4-2 model.
  • the operating gain of the patch antenna 1003 was 9.991 dBi.
  • the operating gain of the patch antenna 1003 was 10.03 dBi.
  • Both the 4-1 model and the 4-2 model have a lower operating gain than each model verified in the second simulation.
  • the placement position of the millimeter wave antenna module in the smartphone differs depending on the manufacturer and the product. Therefore, even if the operating gain is slightly reduced, the position of the conductor elements 120 and the patch antenna of the smartphone can be displaced by arranging the conductor elements 120 in two rows in the vertical direction on the wall portions 102, 103, etc. of the smartphone cover 100. It is considered effective to suppress it.
  • FIG. 22 is a diagram showing an example of the fifth model used in the fifth simulation.
  • the stacked patch 1004 is further arranged at a position separated by a distance L in the normal direction of the patch antenna 1003 from the first model.
  • the simulation was performed by variously changing the distance L between the stacked patches 1004 stacked in two rows.
  • FIG. 23 is a diagram illustrating the simulation result of the fifth simulation.
  • the simulation was performed assuming that the radio wave radiated by the patch antenna 1003 is 27 GHz.
  • the operating gain is maximized when the distance L between the stacked patches 1004 is 0.4 mm.
  • the distance L is 1.5 mm or more, the improvement in the operating gain by stacking the stacked patches 1004 is achieved. I understand that I can't expect it.
  • the distance of 1.5 mm is 0.135 times the wavelength of the radio wave having a frequency of 27 GHz. That is, 0.135 times the wavelength of the radio wave is considered to be the upper limit of the distance L.
  • the maximum value of the effective wavelength ⁇ g in the millimeter wave band is 12.5 mm as described above.
  • ⁇ g is 12.5 mm, it is considered that improvement in operating gain can be expected by setting the distance L to 1.7 mm or less, which is 0.135 times that of 12.5 mm.
  • the conductor element 120 by arranging the conductor element 120 on the smartphone cover 100 and operating the conductor element 120 as a stacked patch, it is possible to suppress a decrease in the operating gain of the smartphone even if the smartphone cover is housed in the smartphone.
  • the shape of the conductor element 120 is optimized for radio waves in the millimeter wave band. That is, by setting one side of the conductor element 120 formed in a rectangular shape from 0.1 ⁇ g to 0.4 ⁇ g (0.032 to 5 mm), the conductor element 120 can be used as a suitable resonator for radio waves in the millimeter wave band. Can be operated. As a result, according to the present embodiment, it can be expected that the operating gain of the smartphone housed in the smartphone cover 100 is improved.
  • the distance between a plurality of conductor elements 120 arranged side by side is optimized for radio waves in the millimeter wave band. That is, by setting the pitch interval of the conductor element 120 to 0.5 ⁇ g (0.16 to 6.25 mm), the patch antenna provided in the conductor element 120 and the millimeter wave antenna modules 501, 502, 503, 504 of the smartphone 500. Even if the position shift occurs between the two, the conductor element 120 can be operated as a suitable resonator for radio waves in the millimeter wave band.
  • the conductor elements 120 may be arranged in the thickness direction of the wall portions 102, 103 and the bottom portion 101.
  • the distance between the conductor elements 120 in the thickness direction may be set to 0.135 (1.7 mm) or less, further improvement in the operating gain of the smartphone can be expected.
  • a plurality of conductor elements 120 are arranged on the entire wall portions 102 and 103 and the bottom portion 101.
  • the conductor element 120 By arranging the conductor element 120 in this way, even if the position of the millimeter wave antenna module in the smartphone is unknown, one of the conductor elements 120 will be located near the patch antenna of the millimeter wave antenna module. .. Therefore, according to the present embodiment, even if the position of the millimeter-wave antenna module in the smartphone is unknown, it can be expected that the operating gain of the smartphone will be improved.
  • FIG. 24 is a diagram showing an example of a smartphone cover according to the first modification.
  • the pitch spacing of the conductor elements 120 is 0.5 ⁇ g (0.16 to 6.25 mm), but the pitch spacing of the conductor elements 120 is not limited to equal spacing.
  • the conductor elements 120 may be provided unevenly within the above spacing (0.16 to 6.25 mm).
  • the set of the conductor elements 120 arranged at the first pitch interval is an example of the "set of conductor elements arranged at the first pitch interval”.
  • the set of the conductor elements 120 arranged at the second pitch interval is an example of the "set of the conductor elements arranged at the second pitch interval".
  • the first pitch interval and the second pitch interval are preferably selected from the range of 0.5 ⁇ g (0.16 to 6.25 mm).
  • the conductor elements 120 may be arranged at a plurality of positions where the millimeter wave antenna module is likely to exist in the smartphone to be protected, even if they are not arranged on the entire smartphone cover 100A. That is, as illustrated in FIG. 24, a plurality of conductor elements 120 may be arranged in a part of the smartphone cover 100A.
  • 25 to 28 are diagrams showing variations in the positional relationship between the conductor element and the patch antenna in the first modification.
  • a plurality of conductor elements 120 are arranged at positions where there is a high probability that the millimeter wave antenna module exists. Therefore, it is highly probable that any of the plurality of conductor elements 120 arranged will be arranged in front of or in the vicinity of the patch antenna provided in the millimeter wave antenna module. Therefore, it can be expected that the operating gain of the smartphone will be improved even by the first modification. Further, the number of conductor elements 120 and the number of patch antennas 1003 may be the same or different.
  • the shape of the conductor element 120 is rectangular, but the shape of the conductor element 120 is not limited to a rectangle.
  • the conductor element 120 may be a polygon other than a circle or a rectangle.
  • 29 to 32 are views illustrating the arrangement of conductor elements adopting a shape other than a rectangle.
  • the conductor element 120 formed in an elliptical shape is exemplified.
  • its major axis may be 0.1 ⁇ g to 0.4 ⁇ g (0.032 to 5 mm).
  • the conductor element 120 has a perfect circle, its diameter may be 0.1 ⁇ g to 0.4 ⁇ g (0.032 to 5 mm).
  • FIG. 30 illustrates a conductor element 120 formed in a pentagonal shape
  • FIG. 31 illustrates a conductor element 120 formed in a rectangular shape
  • the conductor element 120 is a polygon including a rectangle
  • the longest line segment on one side or diagonal line thereof may be 0.1 ⁇ g to 0.4 ⁇ g (0.032 to 5 mm). That is, the conductor element 120 is formed in a plate shape, and its shape in front view can be variously formed.
  • the conductor element 120 formed in various shapes is the longest line segment (also referred to as the longest line segment) among the line segments formed on the conductor element 120 by connecting arbitrary two points of the conductor element 120.
  • the length may be from 0.1 ⁇ g to 0.4 ⁇ g (0.032 to 5 mm).
  • FIG. 32 is a diagram illustrating a state in which conductor elements having various shapes are arranged.
  • the circular or elliptical conductor element 120 and the polygonal conductor element 120 may be provided in a mixed manner. That is, the smartphone cover 100 may be provided with a plurality of conductor elements 120 having different shapes.
  • FIG. 33 is a diagram illustrating a configuration in which the distance between the patch antenna and the conductor element is uneven.
  • the distances between the stacked patches 1004 are different from the distance L1, the distance L2, the distance L3, and the distance L4, respectively.
  • the distance L1, the distance L2, the distance L3, and the distance L4 are all 1.7 mm or less. Even if the distance between the stacked patches 1004 is different for each group of stacked patches, if the distance between the stacked patches 1004 is 1.7 mm or less, the operating gain of the smartphone can be expected to improve. ..
  • the conductor element 120 may be provided on the surface of the wall portions 102, 103 and the bottom portion 101 on the accommodation space 110 side.
  • the conductor element 120 may be provided on the smartphone cover 100 by vacuum deposition, printing, fitting, or the like.
  • the conductor element 120 may be embedded inside the dielectric forming the wall portions 102 and 103 and the bottom portion 101.
  • the conductor element 120 is provided in this way, the effective wavelength of the radio wave incident on the conductor element 120 can be shortened, so that the conductor element 120 can be miniaturized.
  • each of the millimeter wave antenna modules 501, 502, 503, 504 is a 4-element patch array antenna having four patch antennas, but the smartphone cover 100 protects the millimeter wave antenna of the smartphone.
  • the millimeter wave antenna module may have, for example, an antenna other than a patch antenna (for example, a dipole array antenna).
  • Smartphone cover 1001 Ground 1002: Board 1003: Patch antenna 1004: Stacked patch 101: Bottom 102, 103: Wall 110: Containment space 120: Conductor element 500: Smartphone 501, 502, 503, 504: Millimeter wave antenna Module 5021: Patch antenna 511 and 512: Side view

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Waveguide Aerials (AREA)
  • Support Of Aerials (AREA)
  • Aerials With Secondary Devices (AREA)
  • Telephone Set Structure (AREA)

Abstract

無線端末を収容してもアンテナ性能の低下を抑制可能な無線端末用カバーを提供する。本無線端末用カバーは、板状に形成された無線端末に装着される無線端末用カバーであって、装着された無線端末の背面を覆うように背面と接触し、比誘電率が1から10の範囲内である誘電体で形成される底部と、装着された無線端末の側面を囲むように側面と接触し、誘電体で形成される壁部と、底部及び壁部の少なくとも一方に並んで配置される複数の導体素子と、を備え、導体素子は、前記導体素子上の任意の二点間を結んで前記導体素子上に形成される線分のうち最も長い最長線分の長さが無線端末が無線通信に使用する電波の誘電体内における実効波長の長さの0.1倍から0.4倍の範囲内となるように形成される。

Description

無線端末用カバー
 本発明は、無線端末用カバーに関する。
 近年、スマートフォン等の無線端末が広く利用されている。このような無線端末では、アンテナ性能の向上を図る様々な技術が提案されている。
 例えば、スマートフォンのハウジングに浮動パッチを設けることで、パッチアンテナを広帯域化する技術が提案されている(例えば、特許文献1参照)。電子装置のハウジングの一部に非導電性物質を含むベース上に金属物質を含むアイランドを互いに隔離して配置することで電子装置のハウジングを金属材料で製造してもアンテナ性能が確保可能な技術が提案されている(例えば、特許文献2参照)。スマートフォンのカバーにアンテナを設ける技術が提案されている(例えば、特許文献3参照)。
特表2019-536377号公報 特開2014-179614号公報 特開2020-065245号公報
 スマートフォン等の無線端末では、端末の保護や装飾等のために、カバーが使用されることが多い。無線端末がカバーに収容されると、無線端末のアンテナ性能が低下する虞がある。
 開示の技術の1つの側面は、無線端末を収容してもアンテナ性能の低下を抑制可能な無線端末用カバーを提供することを目的とする。
 開示の技術の1つの側面は、次のような無線端末用カバーによって例示される。本無線端末用カバーは、板状に形成された無線端末に装着される無線端末用カバーであって、装着された無線端末の背面を覆うように前記背面と接触し、比誘電率が1から10の範囲内である誘電体で形成される底部と、装着された無線端末の側面を囲むように前記側面と接触し、誘電体で形成される壁部と、底部及び壁部の少なくとも一方に並んで配置される複数の導体素子と、を備え、導体素子は、前記導体素子上の任意の二点間を結んで前記導体素子上に形成される線分のうち最も長い最長線分の長さが無線端末が無線通信に使用する電波の誘電体内における実効波長の長さの0.1倍から0.4倍の範囲内となるように形成される。
 本無線端末用カバーは、無線端末を収容してもアンテナ性能の低下を抑制することができる。
図1は、実施形態に係るスマートフォンカバーの一例を示す図である。 図2は、実施形態に係るスマートフォンカバーが保護対象とするスマートフォンの正面視の一例を示す図である。 図3は、実施形態に係るスマートフォンカバーの導体素子とスマートフォンのアンテナの位置関係を模式的に示す図である。 図4は、第1シミュレーションで使用した第1モデルの一例を示す図である。 図5は、第1シミュレーションのシミュレーション結果を例示する図である。 図6は、第2シミュレーションで使用したモデルの一例を示す第1の図である。 図7は、第2シミュレーションで使用したモデルの一例を示す第2の図である。 図8は、第2シミュレーションで使用したモデルの一例を示す第3の図である。 図9は、第2シミュレーションで使用したモデルの一例を示す第4の図である。 図10は、ビームフォーミングについて検証したシミュレーション結果を例示する第1の図である。 図11は、ビームフォーミングについて検証したシミュレーション結果を例示する第2の図である。 図13は、ビームフォーミングについて検証したシミュレーション結果を例示する第3の図である。 図13は、ビームフォーミングについて検証したシミュレーション結果を例示する第4の図である。 図14は、ビームフォーミングについて検証したシミュレーション結果を例示する第5の図である。 図15は、ビームフォーミングについて検証したシミュレーション結果を例示する第6の図である。 図16は、第3シミュレーションで使用した第3モデルの一例を示す図である。 図17は、第3シミュレーションのシミュレーション結果を例示する図である。 図18は、第4シミュレーションで使用したモデルの一例を示す第1の図である。 図19は、第4シミュレーションで使用したモデルの一例を示す第2の図である。 図20は、第4シミュレーションのシミュレーション結果を例示する第1の図である。 図21は、第4シミュレーションのシミュレーション結果を例示する第2の図である。 図22は、第5シミュレーションで使用した第5モデルの一例を示す図である。 図23は、第5シミュレーションのシミュレーション結果を例示する図である。 図24は、第1変形例に係るスマートフォンカバーの一例を示す図である。 図25は、第1変形例における導体素子とパッチアンテナとの位置関係のバリエーションを示す第1の図である。 図26は、第1変形例における導体素子とパッチアンテナとの位置関係のバリエーションを示す第2の図である。 図27は、第1変形例における導体素子とパッチアンテナとの位置関係のバリエーションを示す第3の図である。 図28は、第1変形例における導体素子とパッチアンテナとの位置関係のバリエーションを示す第4の図である。 図29から図32は、矩形以外の形状を採用した導体素子の配置を例示する第1の図である。 図30は、矩形以外の形状を採用した導体素子の配置を例示する第2の図である。 図31は、矩形以外の形状を採用した導体素子の配置を例示する第3の図である。 図32は、矩形以外の形状を採用した導体素子の配置を例示する第4の図である。 図33は、パッチアンテナと導体素子間の距離を不均等とした構成を例示する図である。
 <実施形態>
 以下に示す実施形態の構成は例示であり、開示の技術は実施形態の構成に限定されない。実施形態に係る無線端末用カバーは、例えば、以下の構成を備える。本実施形態に係る無線端末用カバーは、板状に形成された無線端末に装着される無線端末用カバーである。本無線端末用カバーは、装着された無線端末の背面を覆うように背面と接触し、比誘電率が1から10の範囲内である誘電体で形成される底部と、装着された無線端末の側面を囲むように側面と接触し、上記誘電体で形成される壁部と、底部及び壁部の少なくとも一方に並んで配置される複数の導体素子と、を備える。そして、導体素子は、導体素子上の任意の二点間を結んで導体素子上に形成される線分のうち最も長い最長線分の長さが無線端末が無線通信に使用する電波の誘電体内における実効波長の長さの0.1倍から0.4倍の範囲内となるように形成される。
 このような無線端末用カバーによれば、無線端末のアンテナに対して導体素子を共振器として動作させることができる。そして、本無線端末用カバーでは、複数の導体素子が並んで配置されるため、アンテナが無線端末のどこに設けられているか不明な場合でも、導体素子をアンテナの近傍に配置させる可能性を可及的に高めることができる。すなわち、本無線端末用カバーによれば、アンテナの配置位置が不明な無線端末についても、導体素子を共振器として動作させる可能性を高めることができ、ひいては、導体素子を共振器として動作させることで無線端末のアンテナの動作利得を向上させることもできる。
 以下、図面を参照して上記無線端末用カバーをスマートフォンカバーに適用した実施形態についてさらに説明する。図1は、実施形態に係るスマートフォンカバーの一例を示す図である。スマートフォンカバー100は、略直方体状(板状)に形成されたスマートフォンに装着され、当該スマートフォンを保護するケースである。スマートフォンカバー100は、底部101と、底部101の縁から立設する壁部102,103とを備える。以下、底部101から収容空間110の開口へ向かう方向を上、その逆方向を下とする。
 底部101は、スマートフォンカバー100が保護対象とするスマートフォンの底面を覆うとともに、スマートフォンの底面と接触する部材である。底部101は、スマートフォンカバー100が保護対象とするスマートフォンの底面に合わせて略長方形の板状に形成される。
 壁部102,103は、スマートフォンカバー100が保護対象とするスマートフォンの側面を囲むとともに、スマートフォンの側面と接触する部材である。壁部102,103は、底部101の縁から立設するように設けられる。壁部102は、略長方形に形成された底部101の短辺から立設するように設けられる。壁部103は、略長方形に形成された底部101の長辺から立設するように設けられる。すなわち、壁部102は、壁部103よりも短く形成される。
 底部101及び壁部102,103は、誘電体で形成される。底部101及び壁部102,103を形成する誘電体の比誘電率は、1から10程度のものが好ましい。このような誘電体としては、ABS樹脂、ポリカーボネート樹脂、シリコーンゴム、熱可塑性ポリウレタンエラストマー等を挙げることができる。
 底部101及び壁部102,103によって、保護対象とするスマートフォンを収容する収容空間110が形成される。収容空間110は、収容するスマートフォンの外形と略等しい形状に形成される。スマートフォンカバー100は、収容空間110に収容された(はめ込まれた)スマートフォンを外部からの衝撃等から保護する。
 底部101及び壁部102,103には、複数の導体素子120が並んで配置される。導体素子120は、金属等の導体を板状に加工した素子である。導体素子120は、底部101及び壁部102,103の収容空間110側の面(内側の面)に設けられてもよい。導体素子120は、底部101及び壁部102,103の収容空間110とは反対側の面(外側の面)に設けられてもよい。また、導体素子120は、底部101及び壁部102,103の内部に設けられてもよい。
 導体素子120の大きさは、スマートフォンカバー100に収容するスマートフォンが無線通信に使用する電波の波長及びスマートフォンカバー100を形成する誘電体の誘電率に応じて決定される。導体素子120は、例えば、スマートフォンカバー100を形成する誘電体内におけるスマートフォンの電波の実効波長をλとすると、対角線の長さが0.1λから0.4λである板状の多角形、または、直径の長さが0.1λから0.4λである円板である。また、隣り合った導体素子120のピッチ間隔は、0.5λとすることが好ましい。
 例えば、スマートフォンカバー100が保護対象とするスマートフォンがミリ波帯(周波数24から300GHz)の電波を用いて無線通信をする場合、比誘電率1から10の範囲の素材から選択されるスマートフォンカバー100内における実効波長λは、以下の式(1)によって決定できる。
Figure JPOXMLDOC01-appb-M000001
 上記式(1)において、cは光速、fは周波数、εは比誘電率である。式(1)により、実効波長λは0.32mm以上、12.5mm以下となる。そのため、スマートフォンがミリ波帯の電波を用いて無線通信をする場合、導体素子120は、対角線の長さが0.032から5mmの板状の多角形、または、直径の長さが0.032から5mmの円板とすることができる。また、隣り合った導体素子120のピッチ間隔は、0.16から6.25mmの範囲内とすることが好ましい。
 図2は、実施形態に係るスマートフォンカバーが保護対象とするスマートフォンの正面視の一例を示す図である。保護対象とするスマートフォン500は、スマートフォンカバー100が収容するスマートフォンということができる。図2では、スマートフォン500が実装するアンテナの位置が点線で例示される。スマートフォン500は、全体視矩形の板状に形成される。スマートフォン500は、4つのミリ波アンテナモジュール501,502,503,504を備える。ミリ波アンテナモジュール501,502,503,504は、ミリ波帯の電波を用いて無線通信を行うアンテナである。ミリ波アンテナモジュール501,502,503,504の夫々は、4つのパッチアンテナを有する4素子パッチアレーアンテナである。ミリ波アンテナモジュール501,503は、スマートフォン500の短辺を形成する側面512に電波の送受信の方向が向くように設けられる。ミリ波アンテナモジュール502は、スマートフォン500の長辺を形成する側面511に電波の送受信の方向が向くように設けられる。ミリ波アンテナモジュール504は、スマートフォン500の底面に電波の送受信方向が向くように設けられる。
 図3は、実施形態に係るスマートフォンカバーの導体素子とスマートフォンのアンテナの位置関係を模式的に示す図である。スマートフォンカバー100の底部101、壁部102,103には、複数の導体素子120が並んで配置されている。そのため、スマートフォン500がスマートフォンカバー100の収容空間110に収容されると、いずれかの導体素子120が、スマートフォン500のミリ波アンテナモジュール501,502,503,504の電波の出射方向付近に位置することになる。図3では、ミリ波アンテナモジュール502のパッチアンテナ5021の出射方向に導体素子120が位置する状態を例示する。導体素子120は実効波長λの電波で共振するため、図3のように、パッチアンテナ5021の電波の出射方向付近に位置する導体素子120は、共振器(いわゆるスタックドパッチ)として動作するようになる。導体素子120がスタックドパッチとして動作することで、スマートフォンカバー100は、収容したスマートフォン500のミリ波アンテナモジュール501,502,503,504の動作利得を向上させることができる。
 <シミュレーション>
 スマートフォンカバー100の効果について、シミュレーションで検証したので以下説明する。
 (第1シミュレーション)
 第1シミュレーションでは、スタックドパッチ1004夫々の一辺の長さを変動させるとともに、パッチアンテナ1003とスタックドパッチ1004との間の距離を変動させて、動作利得を検証した。
 図4は、第1シミュレーションで使用した第1モデルの一例を示す図である。図4に例示する第1モデルでは、グランド1001上に比誘電率12の基板1002が設けられる。基板1002上には、矩形に形成された4つのパッチアンテナ1003が一列に並んで配置される。4つのパッチアンテナ1003夫々の出射方向には、矩形に形成されたスタックドパッチ1004が配置される。
 図5は、第1シミュレーションのシミュレーション結果を例示する図である。図5の縦軸は動作利得(dBi)を例示し、横軸はスタックドパッチ1004の一辺の長さを例示する。パッチアンテナ1003とスタックドパッチ1004との間の距離よりも、スタックドパッチ1004の一辺の長さの方が動作利得への影響が大きいことが、図5を参照すると理解できる。また、スタックドパッチ1004の一辺の長さが、0.1λから0.4λの範囲であれば、動作利得向上の効果が大きいことが理解できる。なお、実効波長が0.32mmの場合、0.1λは0.032mm、0.4λは0.0128mmとなる。また、実効波長が12.5mmの場合、0.1λは1.25mm、0.4λは5mmとなる。
 (第2シミュレーション)
 第2シミュレーションでは、正面視においてスタックドパッチとパッチアンテナとの位置がずれていても効果があるか否かを検証した。また、第2シミュレーションでは、スタックドパッチの数を増加させても効果があるか否かを検証した。なお、第2シミュレーションでは、実効波長λを11.1mm、スタックドパッチ1004のピッチ間隔を0.51λとした。
 図6から図9は、第2シミュレーションで使用したモデルの一例を示す図である。図6では、第2-1モデルを例示する。第2-1モデルは、パッチアンテナ1003の正面にスタックドパッチ1004が配置されたモデルである。第2-1モデルでは、パッチアンテナ1003とその正面に配置されたスタックドパッチ1004とは、正面視において中心位置が一致する。
 図7は、第2-2モデルを例示する。第2-2モデルでは、第2-1モデルからスタックドパッチ1004の位置を図面に向かって右方向に0.17λ(略1.7mm)移動させた状態である。そのため、第2-2モデルでは、正面視において、複数並んだスタックドパッチ1004の間にパッチアンテナ1003の左側の一部が見える状態となる。
 図8は、第2-3モデルを例示する。第2-3モデルでは、第2-1モデルからスタックドパッチ1004の位置を図面に向かって右方向に0.256λ(略2.85mm)移動させた状態である。そのため、第2-3モデルでは、正面視において、複数並んだスタックドパッチ1004の間にパッチアンテナ1003が見える状態となる。
 図9は、第2-4モデルを例示する。第2-4モデルでは、第2-1モデルからスタックドパッチ1004の位置を図面に向かって右方向に0.34λ(略3.8mm)移動させた状態である。そのため、第2-4モデルでは、正面視において、複数並んだスタックドパッチ1004の間にパッチアンテナ1003の右側の一部が見える状態となる。
 (ビームフォーミングの検証)
 図10から図15は、ビームフォーミングについて検証したシミュレーション結果を例示する図である。図10は、スタックドパッチ1004が無い状態、すなわち、スマートフォン500をスマートフォンカバー100に収容しない状態でビームフォーミングについてシミュレーションした結果を例示する。図11は、第1モデルのビームフォーミングについてシミュレーションした結果を例示する。図12は、第2-1モデルのビームフォーミングについてシミュレーションした結果を例示する。図13は、第2-2モデルのビームフォーミングについてシミュレーションした結果を例示する。図14は、第2-3モデルのビームフォーミングについてシミュレーションした結果を例示する。図15は、第2-4モデルのビームフォーミングについてシミュレーションした結果を例示する。
 図11を参照すると、第1モデル、すなわち、スタックドパッチ1004を4つ設けることで、2dB程度の動作利得向上が期待できることが理解できる。また、図11を参照すると、スタックドパッチ1004を4つ設けてもビームフォーミング可能であることが理解できる。図12から図15を参照すると、スタックドパッチ1004を4つより多い数設けても、ビームフォーミングが可能であることが理解できる。また、図12から図15を参照すると、パッチアンテナ1003とスタックドパッチ1004とが横方向にずれていても、当該ずれによる動作利得への影響は低いことが理解できる。これらのことから、スマートフォンカバー100に多数の導体素子120を配置することで、スマートフォン500の動作利得向上に資するものと考えられる。
 (第3シミュレーション)
 第2シミュレーションではパッチアンテナ1003とスタックドパッチ1004の横方向における位置ずれについて検証したので、第3シミュレーションではパッチアンテナ1003とスタックドパッチ1004を縦横にずらした場合についても検証する。
 図16は、第3シミュレーションで使用した第3モデルの一例を示す図である。第3モデルでは、パッチアンテナ1003のビッチは、5.7mmである。また、スタックドパッチ1004のピッチは、5.7mmである。縦方向のシフト量Hは、パッチアンテナ1003の中心とスタックドパッチ1004の中心間における上下の差である。図16においてスタックドパッチ1004の方がパッチアンテナ1003よりも上の場合には正の値、スタックドパッチ1004の方がパッチアンテナ1003よりも下の場合には負の値とする。また、横方向のシフト量Wは、パッチアンテナ1003の中心とスタックドパッチ1004の中心間における左右の差である。図16においてスタックドパッチ1004の方がパッチアンテナ1003よりも右の場合には正の値、スタックドパッチ1004の方がパッチアンテナ1003よりも左の場合には負の値とする。
 図17は、第3シミュレーションのシミュレーション結果を例示する図である。図17では、縦方向及び横方向のシフト量(mm)と、動作利得(dBi)とが対応付けて例示される。図17において、縦方向のシフト量0mmかつ横方向のシフト量0mmは、パッチアンテナ1003の中心とスタックドパッチ1004の中心とが、正面視において一致していることを例示する。なお、参考値として、スタックドパッチ1004が無い状態におけるパッチアンテナ1003の動作利得は8.8dBiである。
 図17を参照すると、縦方向のシフト量が+1.46mmから-1.46mmの範囲であれば、横方向のシフト量が-3.8mmから+3.8mmの範囲で動作利得を10dBiとすることができる。また、図17を参照すると、スタックドパッチ1004を採用した場合におけるパッチアンテナ1003の動作利得は、シミュレーションで検証した範囲において縦横のシフト量がいずれであっても、スタックドパッチ1004が無い状態におけるパッチアンテナ1003の動作利得8.8dBiよりも高い値とすることができる。
 (第4シミュレーション)
 第4シミュレーションでは、スタックドパッチ1004を上下方向2列に並べた場合についてシミュレーションで検証する。図18及び図19は、第4シミュレーションで使用したモデルの一例を示す図である。図18は、上下2列のスタックドパッチ1004の中心位置が左右方向にシフトしていない第4-1モデルを例示する。また、図19は、上下2列のスタックドパッチ1004の中心位置を左右方向にシフトしたい第4-2モデルを例示する。第4-2モデルは、千鳥配列とも称する。なお、モデル4-1及びモデル4-2いずれにおいても、上下2列のスタックドパッチ1004のピッチ間隔は0.55mm(0.05λ)である。
 図20及び図21は、第4シミュレーションのシミュレーション結果を例示する図である。図20は、第4-1モデルについてのシミュレーション結果を例示する。また、図21は、第4-2モデルについてのシミュレーション結果を例示する。第4-1モデルでシミュレーションを行った結果、パッチアンテナ1003の動作利得は、9.991dBiとなった。また、第4-2モデルでシミュレーションを行った結果、パッチアンテナ1003の動作利得は、10.03dBiとなった。
 第4-1モデル及び第4-2モデルのいずれも、第2シミュレーションで検証した各モデルと比較すると、動作利得が低下してしまっている。しかしながら、スマートフォンにおけるミリ波アンテナモジュールの配置位置は、メーカー毎、製品毎に異なっている。そのため、動作利得が多少低下するとしても、スマートフォンカバー100の壁部102,103等に導体素子120を上下方向2列に配置することで、導体素子120とスマートフォンのパッチアンテナとの位置ずれを可及的に抑制することは有効であると考えられる。
 (第5シミュレーション)
 第5シミュレーションでは、パッチアンテナ1003の法線方向にスタックドパッチ1004を2列積層させて配置するモデルについてシミュレーションを行った。図22は、第5シミュレーションで使用した第5モデルの一例を示す図である。第5モデルでは、第1モデルに対して、さらに、パッチアンテナ1003の法線方向に距離Lだけ離れた位置にもスタックドパッチ1004を配置した。第5シミュレーションでは、2列積層させたスタックドパッチ1004間の距離Lを様々に変えてシミュレーションを行った。
 図23は、第5シミュレーションのシミュレーション結果を例示する図である。図23では、パッチアンテナ1003が放射する電波が27GHzであるとしてシミュレーションを行った。図23を参照すると、スタックドパッチ1004間の距離Lが0.4mmのときに動作利得が最大になることが理解できる。ここで、スタックドパッチ1004を積層させていないモデル1における動作利得が11.05dBiであることから、距離Lを1.5mm以上とすると、スタックドパッチ1004を積層させることによる動作利得の向上は期待できなくなることが理解できる。ここで、1.5mmという距離は、周波数27GHzの電波の波長の0.135倍となる。すなわち、電波の波長の0.135倍が距離Lの上限と考えられる。
 ミリ波帯における実効波長λの最大値は、上記の通り、12.5mmである。λが12.5mmの場合には、距離Lは12.5mmの0.135倍である1.7mm以下とすることで動作利得の向上が期待できると考えられる。
 <実施形態の作用効果>
 スマートフォンを誘電体で形成されるスマートフォンカバーに収容すると、スマートフォンの動作利得が低下することがある。このような問題は、ミリ波帯の電波を活用する5Gに適合するスマートフォンにおいて顕著に生じるようになる。
 本実施形態では、スマートフォンカバー100に導体素子120を配置し、導体素子120をスタックドパッチとして動作させることで、スマートフォンカバーをスマートフォンに収容してもスマートフォンの動作利得低下を抑制することができる。
 本実施形態では、導体素子120の形状をミリ波帯の電波に対して最適化する。すなわち、矩形に形成される導体素子120の一辺を0.1λから0.4λ(0.032から5mm)とすることで、導体素子120がミリ波帯の電波に対し好適な共振器として動作させることができる。その結果、本実施形態によれば、スマートフォンカバー100に収容したスマートフォンの動作利得向上が期待できる。
 本実施形態では、複数並んで配置した導体素子120間の距離をミリ波帯の電波に対して最適化する。すなわち、導体素子120のピッチ間隔を0.5λ(0.16から6.25mm)とすることで、導体素子120とスマートフォン500のミリ波アンテナモジュール501,502,503,504が備えるパッチアンテナとの間に位置ずれが生じても、導体素子120をミリ波帯の電波に対し好適な共振器として動作させることができる。
 また、本実施形態では、第5シミュレーションでも例示したように、壁部102,103や底部101の厚さ方向に導体素子120を並べてもよい。導体素子120間の厚み方向における距離を0.135(1.7mm)以下とすることで、スマートフォンの動作利得のさらなる向上を期待できる。
 また、本実施形態では、壁部102,103や底部101の全体に複数の導体素子120を配置した。このように導体素子120が配置されることで、スマートフォン内におけるミリ波アンテナモジュールの位置が不明であっても、いずれかの導体素子120がミリ波アンテナモジュールのパッチアンテナ近傍に位置することになる。そのため、本実施形態によれば、スマートフォン内におけるミリ波アンテナモジュールの位置が不明な場合であっても、スマートフォンの動作利得向上を期待できる。
 <変形例>
 図24は、第1変形例に係るスマートフォンカバーの一例を示す図である。実施形態では、導体素子120のピッチ間隔は0.5λ(0.16から6.25mm)とされたが、導体素子120のピッチ間隔が等間隔に限定されるわけではない。図24に例示するように導体素子120は上記の間隔(0.16から6.25mm)内で不均等に設けられてもよい。不均等に設けられた導体素子120のうち、第1のピッチ間隔で配置された導体素子120の組は、「第1のピッチ間隔で配置される導体素子の組」の一例である。不均等に設けられた導体素子120のうち、第2のピッチ間隔で配置された導体素子120の組は、「第2のピッチ間隔で配置される導体素子の組」の一例である。第1のピッチ間隔及び第2のピッチ間隔は、いずもれ0.5λ(0.16から6.25mm)の範囲内から選択されることが好ましい。導体素子120は、例えば、スマートフォンカバー100Aの全体に配置されなくとも、保護対象とするスマートフォンにおいてミリ波アンテナモジュールが存在する蓋然性が高い位置に複数配置されてもよい。すなわち、導体素子120は、図24に例示するように、スマートフォンカバー100Aの一部の領域に複数配置されてもよい。
 図25から図28は、第1変形例における導体素子とパッチアンテナとの位置関係のバリエーションを示す図である。スマートフォン100Aでは、ミリ波アンテナモジュールが存在する蓋然性が高い位置に導体素子120が複数配置される。そのため、配置された複数の導体素子120のいずれかは、ミリ波アンテナモジュールに設けられたパッチアンテナの正面またはその近傍に配置される蓋然性が高い。そのため、第1変形例によっても、スマートフォンの動作利得向上を期待できる。また、導体素子120の数とパッチアンテナ1003の数とは、同じであってもよいし異なっていてもよい。
 実施形態では、導体素子120の形状は矩形とされたが、導体素子120の形状は矩形に限定されるわけではない。導体素子120は、円形や矩形以外の多角形であってもよい。図29から図32は、矩形以外の形状を採用した導体素子の配置を例示する図である。図29では、楕円形に形成された導体素子120が例示される。導体素子120が楕円形の場合、その長径が0.1λから0.4λ(0.032から5mm)とされればよい。また、導体素子120が正円形の場合、その直径が0.1λから0.4λ(0.032から5mm)とされればよい。また、図30は五角形に形成された導体素子120を例示し、図31は長方形に形成された導体素子120を例示する。導体素子120が長方形を含む多角形の場合、その一辺または対角線のうち最も長い線分が0.1λから0.4λ(0.032から5mm)とされればよい。すなわち、導体素子120は、板状に形成されるとともに、その正面視における形状は様々に形成可能である。そして、様々な形状に形成された導体素子120は、導体素子120の任意の2点を結んで導体素子120上に形成される線分のうち、最も長い線分(最長線分とも称する)の長さが、0.1λから0.4λ(0.032から5mm)とされればよい。
 図32は、様々な形状の導体素子が配置された状態を例示する図である。図32に例示するように、スマートフォンカバー100では、円形や楕円形の導体素子120と多角形の導体素子120の夫々が混在して設けられてもよい。すなわち、スマートフォンカバー100では、複数の異なる形状の導体素子120が設けられてもよい。
 図22では、2列積層させたスタックドパッチ1004間の距離Lは12.5mmの0.135倍である1.7mm以下とした上で距離Lを一定としたが、距離Lは1.7mm以下であれば不均等であってもよい。図33は、パッチアンテナと導体素子間の距離を不均等とした構成を例示する図である。図33では、スタックドパッチ1004間の距離が、距離L1、距離L2、距離L3、距離L4と夫々異なっている。なお、距離L1、距離L2、距離L3、距離L4は、いずれも1.7mm以下となっている。このようにスタックドパッチ1004間の距離が互いにスタックドパッチの組夫々で異なっていても、スタックドパッチ1004間の距離が1.7mm以下となっていれば、スマートフォンの動作利得向上を期待できる。
 導体素子120は、壁部102,103や底部101の収容空間110側の表面に設けられてもよい。この場合、導体素子120は、真空蒸着や印刷、はめ込み等によってスマートフォンカバー100に設けられてもよい。
 導体素子120は、壁部102,103や底部101を形成する誘電体の内部に埋め込まれてもよい。このように導体素子120が設けられると、導体素子120に入射する電波の実効波長を短くすることができることから、導体素子120の小型化が可能となる。
 なお、実施形態において、ミリ波アンテナモジュール501,502,503,504の夫々は、4つのパッチアンテナを有する4素子パッチアレーアンテナであったが、スマートフォンカバー100が保護対象とするスマートフォンのミリ波アンテナモジュールに限定はない。ミリ波アンテナモジュールは、例えば、パッチアンテナ以外のアンテナ(例えば、ダイポールアレーアンテナ)を有してもよい。
 以上で開示した実施形態や変形例はそれぞれ組み合わせることができる。
 100:スマートフォンカバー
 1001:グランド
 1002:基板
 1003:パッチアンテナ
 1004:スタックドパッチ
 101:底部
 102,103:壁部
 110:収容空間
 120:導体素子
 500:スマートフォン
 501,502,503,504:ミリ波アンテナモジュール
 5021:パッチアンテナ
 511,512:側面

Claims (9)

  1.  板状に形成された無線端末に装着される無線端末用カバーであって、
     装着された前記無線端末の背面を覆うように前記背面と接触し、比誘電率が1から10の範囲内である誘電体で形成される底部と、
     装着された前記無線端末の側面を囲むように前記側面と接触し、前記誘電体で形成される壁部と、
     前記底部及び前記壁部の少なくとも一方に並んで配置される複数の導体素子と、を備え、
     前記導体素子は、前記導体素子上の任意の二点間を結んで前記導体素子上に形成される線分のうち最も長い最長線分の長さが前記無線端末が無線通信に使用する電波の前記誘電体内における実効波長の長さの0.1倍から0.4倍の範囲内となるように形成される、
     無線端末用カバー。
  2.  前記複数の導体素子は、正面視において多角形に形成された導体素子を含み、
     前記最長線分は、前記多角形に形成された導体素子の一辺の長さ、または、前記多角形に形成された導体素子の対角線のうち最も長い線分である、
     請求項1に記載の無線端末用カバー。
  3.  前記複数の導体素子は、正面視において円形に形成された導体素子を含み、
     前記最長線分は、前記円形に形成された導体素子の直径である、
     請求項1または2に記載の無線端末用カバー。
  4.  前記複数の導体素子は、等間隔で配置される、
     請求項1から3のいずれか一項に記載の無線端末用カバー。
  5.  前記複数の導体素子は、隣り合った導体素子が第1のピッチ間隔で配置される導体素子の組と、隣り合った導体素子が前記第1のピッチ間隔とは異なる第2のピッチ間隔で配置される導体素子の組と、を含む、
     請求項1から3のいずれか一項に記載の無線端末用カバー。
  6.  前記複数の導体素子の夫々は、前記誘電体内に設けられる、
     請求項1から5のいずれか一項に記載の無線端末用カバー。
  7.  前記複数の導体素子は、隣り合った導体素子のピッチ間隔が前記実効波長の0.5倍である、
     請求項4に記載の無線端末用カバー。
  8.  前記電波はミリ波帯の電波であり、
     前記ピッチ間隔は、0.16mmから6.25mmの範囲内である、
     請求項7に記載の無線端末用カバー。
  9.  前記電波はミリ波帯の電波であり、
     前記最長線分の長さは、0.032mmから5mmの範囲内である、
     請求項1から8のいずれか一項に記載の無線端末用カバー。
PCT/JP2020/042518 2020-11-13 2020-11-13 無線端末用カバー WO2022102102A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2021537817A JP6940726B1 (ja) 2020-11-13 2020-11-13 無線端末用カバー
PCT/JP2020/042518 WO2022102102A1 (ja) 2020-11-13 2020-11-13 無線端末用カバー
JP2021143215A JP2022078946A (ja) 2020-11-13 2021-09-02 無線端末用カバー
US17/560,704 US11456770B2 (en) 2020-11-13 2021-12-23 Wireless terminal cover

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/042518 WO2022102102A1 (ja) 2020-11-13 2020-11-13 無線端末用カバー

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/560,704 Continuation US11456770B2 (en) 2020-11-13 2021-12-23 Wireless terminal cover

Publications (1)

Publication Number Publication Date
WO2022102102A1 true WO2022102102A1 (ja) 2022-05-19

Family

ID=77846993

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/042518 WO2022102102A1 (ja) 2020-11-13 2020-11-13 無線端末用カバー

Country Status (3)

Country Link
US (1) US11456770B2 (ja)
JP (2) JP6940726B1 (ja)
WO (1) WO2022102102A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11877842B1 (en) * 2012-09-25 2024-01-23 Micro Mobio Corporation Personal cloud with a plurality of modular capabilities
USD994625S1 (en) * 2021-06-10 2023-08-08 Rad Power Bikes Inc. Terminal protector

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6470174B1 (en) * 1997-10-01 2002-10-22 Telefonaktiebolaget Lm Ericsson (Publ) Radio unit casing including a high-gain antenna
CN106921023A (zh) * 2016-10-25 2017-07-04 瑞声科技(新加坡)有限公司 天线装置
CN109659670A (zh) * 2019-02-25 2019-04-19 昆山联滔电子有限公司 天线组件
KR102079751B1 (ko) * 2019-01-10 2020-02-20 성균관대학교 산학협력단 5g 스마트폰 성능 향상을 위한 보조 케이스
JP2020065245A (ja) * 2018-10-16 2020-04-23 株式会社村田製作所 スマートフォンケース

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008011377A (ja) * 2006-06-30 2008-01-17 Nec Corp 携帯型無線装置
US8344836B2 (en) * 2010-09-17 2013-01-01 Apple Inc. Protective cover for a tablet computer
US20120212896A1 (en) * 2011-02-15 2012-08-23 Daniel Helmut Schulz Integrated computer case
US8907752B2 (en) * 2011-09-12 2014-12-09 Justin Richard Wodrich Integrated inductive charging in protective cover
US9729685B2 (en) * 2011-09-28 2017-08-08 Apple Inc. Cover for a tablet device
US9086847B2 (en) * 2012-09-25 2015-07-21 Micro Mobio Corporation Personal cloud case cover with a plurality of modular capabilities
US10437295B1 (en) * 2012-09-25 2019-10-08 Micro Mobio Corporation Personal cloud case cover with a plurality of modular capabilities
KR20140112325A (ko) 2013-03-13 2014-09-23 삼성전자주식회사 전자 장치 및 이의 제작 방법
EP3545587B1 (en) 2016-11-25 2021-07-21 Sony Group Corporation Vertical antenna patch in cavity region
US11133574B2 (en) * 2018-10-16 2021-09-28 Murata Manufacturing Co., Ltd. Communication device
US10840964B2 (en) * 2018-10-16 2020-11-17 Murata Manufacturing Co., Ltd. Smartphone case
JP2020065246A (ja) * 2018-10-16 2020-04-23 株式会社村田製作所 通信装置
CN111146583B (zh) * 2020-01-20 2021-10-08 Oppo广东移动通信有限公司 天线组件及电子设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6470174B1 (en) * 1997-10-01 2002-10-22 Telefonaktiebolaget Lm Ericsson (Publ) Radio unit casing including a high-gain antenna
CN106921023A (zh) * 2016-10-25 2017-07-04 瑞声科技(新加坡)有限公司 天线装置
JP2020065245A (ja) * 2018-10-16 2020-04-23 株式会社村田製作所 スマートフォンケース
KR102079751B1 (ko) * 2019-01-10 2020-02-20 성균관대학교 산학협력단 5g 스마트폰 성능 향상을 위한 보조 케이스
CN109659670A (zh) * 2019-02-25 2019-04-19 昆山联滔电子有限公司 天线组件

Also Published As

Publication number Publication date
US20220158680A1 (en) 2022-05-19
JP2022078946A (ja) 2022-05-25
JP6940726B1 (ja) 2021-09-29
US11456770B2 (en) 2022-09-27
JPWO2022102102A1 (ja) 2022-05-19

Similar Documents

Publication Publication Date Title
EP2826097B1 (en) Phased array antenna
US8542151B2 (en) Antenna module and antenna unit thereof
CN107925168B (zh) 无线电子设备
CN109066055B (zh) 一种终端设备
US10381880B2 (en) Integrated antenna structure arrays for wireless power transmission
EP3375044B1 (en) Directive fixed beam ramp ebg antenna mounted within a cavity
US11545761B2 (en) Dual-band cross-polarized 5G mm-wave phased array antenna
US20090322642A1 (en) Resonant cap loaded high gain patch antenna
US10910732B2 (en) Collocated end-fire antenna and low-frequency antenna systems, devices, and methods
US7999745B2 (en) Dual polarization antenna element with dielectric bandwidth compensation and improved cross-coupling
WO2022102102A1 (ja) 無線端末用カバー
CN108987905B (zh) 一种终端设备
EP3465823B1 (en) C-fed antenna formed on multi-layer printed circuit board edge
JP7013586B2 (ja) 基板集積型導波路アンテナ
EP3905435B1 (en) Antenna structure and terminal
US7307587B2 (en) High-gain radiating element structure using multilayered metallic disk array
US20190089057A1 (en) Concentric, co-located and interleaved dual band antenna array
US20230231319A1 (en) Antenna device, array of antenna devices
WO2022105999A1 (en) A low profile device comprising layers of coupled resonance structures
US20210273343A1 (en) Antenna device, wireless communication device, and radar device
WO2023002612A1 (ja) 無線端末のディスプレイ用カバー
US11682846B2 (en) Antenna device with cell structure and array of antenna devices
JP7161626B2 (ja) 積層アンテナ構造を有するアンテナ・システム
CN101162798A (zh) 天线辐射单元的去耦阵列
WO2023056150A1 (en) Fence structure and base station antenna comprising the same

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021537817

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20961630

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20961630

Country of ref document: EP

Kind code of ref document: A1