WO2022101895A1 - 航空機の位置制御システム、航空機及び航空機の位置制御方法 - Google Patents

航空機の位置制御システム、航空機及び航空機の位置制御方法 Download PDF

Info

Publication number
WO2022101895A1
WO2022101895A1 PCT/IB2022/050233 IB2022050233W WO2022101895A1 WO 2022101895 A1 WO2022101895 A1 WO 2022101895A1 IB 2022050233 W IB2022050233 W IB 2022050233W WO 2022101895 A1 WO2022101895 A1 WO 2022101895A1
Authority
WO
WIPO (PCT)
Prior art keywords
aircraft
target
relative position
landing point
sway
Prior art date
Application number
PCT/IB2022/050233
Other languages
English (en)
French (fr)
Inventor
小島徹
森智史
▲高▼木克実
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to US18/036,809 priority Critical patent/US20230406536A1/en
Priority to EP22723005.9A priority patent/EP4227216A4/en
Publication of WO2022101895A1 publication Critical patent/WO2022101895A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/04Control of altitude or depth
    • G05D1/06Rate of change of altitude or depth
    • G05D1/0607Rate of change of altitude or depth specially adapted for aircraft
    • G05D1/0653Rate of change of altitude or depth specially adapted for aircraft during a phase of take-off or landing
    • G05D1/0676Rate of change of altitude or depth specially adapted for aircraft during a phase of take-off or landing specially adapted for landing
    • G05D1/0684Rate of change of altitude or depth specially adapted for aircraft during a phase of take-off or landing specially adapted for landing on a moving platform, e.g. aircraft carrier
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C13/00Control systems or transmitting systems for actuating flying-control surfaces, lift-increasing flaps, air brakes, or spoilers
    • B64C13/02Initiating means
    • B64C13/16Initiating means actuated automatically, e.g. responsive to gust detectors
    • B64C13/18Initiating means actuated automatically, e.g. responsive to gust detectors using automatic pilot
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D45/00Aircraft indicators or protectors not otherwise provided for
    • B64D45/04Landing aids; Safety measures to prevent collision with earth's surface
    • B64D45/08Landing aids; Safety measures to prevent collision with earth's surface optical
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D47/00Equipment not otherwise provided for
    • B64D47/08Arrangements of cameras
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64FGROUND OR AIRCRAFT-CARRIER-DECK INSTALLATIONS SPECIALLY ADAPTED FOR USE IN CONNECTION WITH AIRCRAFT; DESIGNING, MANUFACTURING, ASSEMBLING, CLEANING, MAINTAINING OR REPAIRING AIRCRAFT, NOT OTHERWISE PROVIDED FOR; HANDLING, TRANSPORTING, TESTING OR INSPECTING AIRCRAFT COMPONENTS, NOT OTHERWISE PROVIDED FOR
    • B64F1/00Ground or aircraft-carrier-deck installations
    • B64F1/18Visual or acoustic landing aids
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/70Determining position or orientation of objects or cameras
    • G06T7/73Determining position or orientation of objects or cameras using feature-based methods
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10032Satellite or aerial image; Remote sensing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30204Marker
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30248Vehicle exterior or interior
    • G06T2207/30252Vehicle exterior; Vicinity of vehicle

Definitions

  • the present disclosure relates to an aircraft position control system, an aircraft, and a position control method for an aircraft, and more particularly to a target point tracking hovering position control that follows the position of an aircraft according to the movement of a target landing point due to shaking. It has become.
  • the departure / arrival control device of Patent Document 1 includes a ship motion prediction device that predicts the hull motion of an aircraft carrier, a landing / landing state indicating device that calculates the landing / landing state of an aircraft to the aircraft carrier by receiving the output of the ship motion prediction device, and a landing / landing state. It includes an instruction transmitting device that transmits the output of the instruction device, an instruction receiving device that receives the output of the instruction transmitting device, and a flight motion control device that controls the flight motion by receiving the output of the instruction receiving device.
  • the hull motion prediction device, the departure / arrival state instruction device, and the instruction transmission device are provided on the aircraft carrier, and the instruction reception device and the flight motion control device are provided on the aircraft.
  • Patent Document 1 describes the landing technique for fixed-wing aircraft, but for rotary-wing aircraft, the following landing is performed.
  • an object of the present disclosure to provide an aircraft position control system, an aircraft, and an aircraft position control method capable of appropriately following the target landing point even when the target landing point is shaken. And.
  • the aircraft position control system of the present disclosure is an aircraft position control system that follows the position of an aircraft according to the movement of a target landing point due to shaking, and is an attitude correction acceleration corrected for the acceleration of the aircraft and the aircraft.
  • the sway amount estimation processing unit Based on the relative position between the target landing point and the target landing point, the sway amount estimation processing unit that estimates the sway amount of the target landing point, and the aircraft and the target landing point based on the estimated sway amount. It is provided with a target information generation unit that outputs a target relative position as a target between the two, and a target relative speed as a target between the aircraft and the target landing point.
  • the aircraft of the present disclosure includes an acceleration correction processing unit that acquires attitude correction acceleration that corrects the acceleration of the aircraft, a relative position acquisition unit that acquires a relative position between the aircraft and a target landing point, and the position of the above aircraft. It is equipped with a control system.
  • the position control method of the aircraft of the present disclosure is a position control method of an aircraft that follows the position of the aircraft according to the movement of the target landing point due to the shaking, and is a posture correction acceleration corrected for the acceleration of the aircraft and the aircraft.
  • the aircraft can be suitably followed according to the movement of the target landing point due to the shaking.
  • FIG. 1 is a schematic configuration diagram showing an example of an aircraft position control system according to the present embodiment.
  • FIG. 2 is an explanatory diagram showing how the aircraft according to the present embodiment heads for the target landing point.
  • FIG. 3 is an explanatory diagram showing an example of a marker provided at a target landing point.
  • FIG. 4 is a block diagram of an example of position control that causes an aircraft to follow a swaying target landing point.
  • FIG. 5 is a block diagram showing an example of the sway amount estimation process and the target information generation process.
  • FIG. 6 is a Bode diagram from the relative position of the second smoothing processing unit to the smoothing relative position.
  • FIG. 7 is a Bode diagram from the relative position of the sway amount estimation processing unit to the sway amount (estimated value).
  • FIG. 8 is a flowchart illustrating a calculation flow of the target relative position and the target relative speed.
  • FIG. 9 is a block diagram of another example of position control that causes an aircraft to follow a
  • FIG. 1 is a schematic configuration diagram showing an example of an aircraft position control system according to the present embodiment
  • FIG. 2 is an explanatory diagram showing how the aircraft according to the present embodiment is heading for a target landing point.
  • the aircraft 1 is a flying object (for example, a helicopter, a drone, etc.) as a rotary wing aircraft.
  • the aircraft 1 is an unmanned aerial vehicle.
  • the aircraft 1 may be a manned aircraft as long as it is an aircraft capable of forward, backward, lateral movement, turning, and hovering.
  • the aircraft 1 is equipped with a position control system 100, and the flight is controlled by the position control system 100 to land at the target landing point 2 shown in FIG.
  • the target landing point 2 is provided on the ship 5 as shown in FIG. Therefore, the aircraft 1 lands (més) on the ship 5 as a moving body that moves on the water.
  • the ship 5 is provided with a restraining device for restraining the aircraft 1 when the aircraft 1 lands at the target landing point 2.
  • the target landing point 2 is not limited to the ship 5, and may be provided on a vehicle or the like as a moving body that moves on the ground, or may be provided on equipment that does not move or on the ground.
  • the target landing point 2 is provided with a marker 7 for the aircraft 1 to capture the position of the target landing point 2.
  • FIG. 3 is an explanatory diagram showing an example of a marker provided at a target landing point.
  • the marker 7 is, for example, an AR marker color-coded in two colors, black and white, and is a square marker.
  • the marker 7 is not limited to the AR marker, and may be any marker that can capture the position of the target landing point 2 by image processing, and may be, for example, an H mark or an R mark indicating the landing point of the heliport. good.
  • the marker 7 may be provided with a plurality of markers having different shapes on the ship 5, and the aircraft 1 may be guided to the target landing point 2 corresponding to any of the different markers 7.
  • the marker 7 is provided on the ship 5 in order to capture the position of the target landing point 2, but the structure is not particularly limited as long as the position of the target landing point 2 can be acquired.
  • the aircraft position control system 100 is a system that controls the position of the aircraft 1 in order to land the aircraft 1 in flight at the target landing point 2.
  • the position control system 100 is mounted on the aircraft 1.
  • the position control system 100 includes a camera 10, a navigation device 20, and a control unit 30.
  • the camera 10 is a photographing device mounted on the aircraft 1 via a gimbal (not shown).
  • the camera 10 may be a monocular camera, a compound eye camera, an infrared camera, or the like as long as the marker 7 can be photographed.
  • the camera 10 is provided to photograph the marker 7 provided at the target landing point 2 from the aircraft 1.
  • the camera 10 is capable of adjusting the shooting direction via a gimbal (not shown).
  • the camera 10 is controlled by the control unit 30 so that the shooting range B (see FIG. 2) faces directly below in the vertical direction, for example.
  • the camera 10 may be controlled by the control unit 30 so that the shooting range B faces diagonally forward with respect to the vertical direction.
  • the camera 10 may omit the gimbal, and may be fixed directly below the body of the aircraft 1 so that the shooting direction faces the lower side in the vertical direction.
  • the navigation device 20 is, for example, an inertial navigation system (INS: Inertial Navigation System).
  • INS Inertial Navigation System
  • the navigation device 20 will be described by applying it to an inertial navigation system, but the navigation device 20 is not particularly limited, and any navigation device 20 may be used.
  • the navigation device 20 may be an inertial navigation system including GPS (Global Positioning System) in order to improve the accuracy of position measurement.
  • GPS Global Positioning System
  • the description will be given by applying to an inertial navigation system including GPS, but the present invention is not particularly limited to GPS, and any position measuring unit capable of accurately measuring the position may be used, for example, a quasi-zenith satellite system is used. If the position can be measured accurately only by the navigation device 20, the position measurement unit such as GPS may be omitted.
  • the navigation device 20 including GPS acquires the roll direction, the attitude angle in the yaw direction and the pitch direction of the aircraft 1, the aircraft speed, the inertial speed, the aircraft acceleration, the heading, the position coordinates in the earth coordinate system, and the like of the aircraft 1. ..
  • the navigation device 20 detects an attitude angle sensor that detects the attitude angle of the aircraft 1, a speed sensor that detects the aircraft speed of the aircraft 1, an acceleration sensor that detects the aircraft acceleration of the aircraft 1, and a nose orientation of the aircraft 1. It may have a sensor.
  • the navigation device 20 outputs the acquired attitude angle, airframe speed, inertial speed, airframe acceleration, heading and position coordinates of the aircraft 1 to the control unit 30.
  • the navigation device 20 functions as an acceleration acquisition unit for acquiring the acceleration of the aircraft 1, an attitude acquisition unit for acquiring the attitude of the aircraft 1, and an inertial speed acquisition unit for acquiring the inertial speed of the aircraft 1.
  • the position control system 100 includes an altitude sensor 25 that detects the altitude of the aircraft 1 from the ground surface or the water surface.
  • the altitude sensor 25 is, for example, a laser altimeter, and measures the relative altitude ⁇ h (see FIG. 2) from the aircraft 1 to the target landing point 2.
  • a radio wave altimeter may be used, a barometric altimeter may be used, or any altimeter may be used. Further, these altimeters may be appropriately combined and applied according to the usage environment, that is, in order to measure the altitude from the ground surface and the altitude from the sea surface.
  • the altitude sensor 25 outputs the detected relative altitude ⁇ h of the aircraft 1 to the control unit 30.
  • the altitude sensor 25 measures the altitude of the aircraft 1 and outputs it to the control unit 30, and the control unit 30 in the guidance calculation unit 34, which will be described later, is relative to the target landing point 2 based on the altitude of the aircraft 1.
  • the altitude ⁇ h may be calculated.
  • the position control system 100 is not limited to the altitude sensor 25, but the image processing unit 32 described later performs image processing on the image including the marker 7 taken by the camera 10, so that the relative altitude between the aircraft 1 and the ship 5 is increased. It may be the one that calculates ⁇ h.
  • the control unit 30 includes an image processing unit 32, a guidance calculation unit 34, and a flight control unit 36.
  • the control unit 30 includes a shooting control unit (not shown) that controls the shooting direction of the camera 10 via a gimbal (not shown) provided on the aircraft 1.
  • the shooting range B of the camera 10 is adjusted so as to face directly below in the vertical direction.
  • the image processing unit 32 performs image processing on the image taken by the camera 10 to calculate the marker 7, that is, the center (Cx, Cy) of the target landing point 2 (see FIG. 3).
  • the center (Cx, Cy) here is a coordinate point in the camera fixed coordinate system having the center of the image taken by the camera 10 as the origin, and can be calculated from the number of pixels from the center of the image.
  • the image processing unit 32 identifies two diagonal lines Ld extending between the corners of the marker 7 by image processing, and marks the intersection of the two specified diagonal lines Ld as the marker 7. Let it be the center of (Cx, Cy).
  • the target landing point 2 is not limited to the center of the marker 7 (Cx, Cy), and may be any of the four corners of the marker 7 or may be a position offset from the center of the marker 7.
  • the image processing unit 32 outputs the calculated center (Cx, Cy) of the marker 7 to the guidance calculation unit 34.
  • the image processing unit 32 identifies the direction of the marker 7 by performing image processing on the image including the marker 7 taken by the camera 10, and associates it with the heading of the aircraft 1 acquired by the navigation device 20. Therefore, the heading direction of the ship 5 may be calculated. As described above, the image processing unit 32 may calculate the relative altitude ⁇ h between the aircraft 1 and the ship 5 by performing image processing on the image including the marker 7 taken by the camera 10. ..
  • the guidance calculation unit 34 calculates the control amount of the aircraft 1 for guiding the aircraft 1 to the target landing point 2.
  • the control amount is a control amount for adjusting the aircraft speed, the attitude angle, the change rate of the attitude angle, and the like of the aircraft 1.
  • the guidance calculation unit 34 calculates the relative coordinate position between the aircraft 1 and the target landing point 2 in order to calculate the control amount. Specifically, the guidance calculation unit 34 calculates the relative position (X, Y) between the aircraft 1 and the target landing point 2 and the relative altitude ⁇ h between the aircraft 1 and the target landing point 2 as the relative coordinate positions. Further, the guidance calculation unit 34 calculates the relative speed between the aircraft 1 and the target landing point 2.
  • the relative position (X, Y) is the distance between the aircraft 1 and the target landing point 2 in the horizontal direction.
  • the relative altitude ⁇ h is the distance between the aircraft 1 and the target landing point 2 in the vertical direction.
  • the guidance calculation unit 34 includes the center (Cx, Cy) of the marker 7 calculated by the image processing unit 32, the direction of the camera 10, that is, the heading of the aircraft 1, and the altitude of the aircraft 1 (relative altitude to the target landing point 2). Based on ⁇ h), the relative position (X, Y) between the aircraft 1 and the target landing point 2 is calculated.
  • the direction of the camera 10 and the heading of the aircraft 1 are matched, but the orientation is not particularly limited, and the direction of the camera 10 and the heading of the aircraft 1 may not be the same. .. In this way, the image processing unit 32 and the guidance calculation unit 34 acquire the relative positions of the aircraft 1 and the target landing point 2.
  • the guidance calculation unit 34 calculates the relative altitude ⁇ h to the target landing point 2 based on the altitude of the aircraft 1 detected by the altitude sensor 25. Therefore, the altitude sensor 25 and the guidance calculation unit 34 acquire the relative altitude ⁇ h between the aircraft 1 and the target landing point 2.
  • the image processing unit 32 may calculate the relative altitude ⁇ h between the aircraft 1 and the ship 5 by performing image processing on the image including the marker 7 taken by the camera 10.
  • the guidance calculation unit 34 calculates the relative speed between the aircraft 1 and the target landing point 2. Therefore, the guidance calculation unit 34 acquires the relative speed between the aircraft 1 and the target landing point 2. More specifically, the guidance calculation unit 34 calculates the relative speed ( ⁇ Vx, ⁇ Vy) between the aircraft 1 and the target landing point 2 based on the relative position (X, Y) and the aircraft speed (Vx, Vy). Executes the relative velocity estimation process. Therefore, the guidance calculation unit 34 acquires the relative speed ( ⁇ Vx, ⁇ Vy) between the aircraft 1 and the target landing point 2.
  • the guidance calculation unit 34 calculates the control amount by feedback control (for example, PID control) based on the relative position (X, Y), relative altitude ⁇ h, relative velocity ( ⁇ Vx, ⁇ Vy) and aircraft acceleration.
  • the feedback control is not limited to PID control, but may be P control, PI control, PD control, or the like.
  • the guidance calculation unit 34 outputs the calculated control amount C'(see FIG. 4) to the flight control unit 36.
  • the flight control unit 36 controls each component of the aircraft 1 according to the control amount calculated by the guidance calculation unit 34 to fly the aircraft 1.
  • the flight control unit 36 controls the blade pitch angle, rotation speed, etc. of each rotor according to the control amount, and adjusts the airframe speed, attitude angle, change rate of attitude angle, etc. of the aircraft 1.
  • the aircraft 1 is guided to the target landing point 2.
  • the image processing unit 32 and the guidance calculation unit 34 are described as functional units different from the flight control unit 36, but the flight control unit 36, the image processing unit 32, and the guidance calculation unit 34 are integrated. It may be a functional unit. That is, the flight control unit 36 may process the image processing unit 32 and the guidance calculation unit 34.
  • FIG. 4 is a block diagram of an example of position control that causes an aircraft to follow a swaying target landing point.
  • the guidance calculation unit 34 performs position control related to target point tracking hovering to follow the position of the aircraft 1 according to the movement of the target landing point 2 due to the shaking based on the block diagram shown in FIG. Is going. Therefore, the guidance calculation unit 34 calculates the control amount C'of the aircraft 1 for executing the target point following hovering.
  • FIG. 4 is a block diagram of an example of position control that causes an aircraft to follow a swaying target landing point.
  • the guidance calculation unit 34 includes an acceleration correction processing unit 41, a second smoothing processing unit 43, a second Kalman filter 46, a relative velocity estimation processing unit 47, a sway amount estimation processing unit 51, and a target information generation processing unit ( It includes a target information generation unit) 52, a changeover switch (changeover unit) 53, a second subtraction circuit unit 54, and a feedback control unit 55.
  • the unit 54 and the feedback control unit 55 may be realized by the guidance calculation unit 34, may be realized by a processing unit separate from the guidance calculation unit 34, or may be realized by a combination thereof. Also, it is not particularly limited.
  • the acceleration correction processing unit 41 outputs a posture correction acceleration that corrects the acceleration of the aircraft 1 based on the acceleration of the aircraft 1 and the posture of the aircraft 1.
  • the attitude correction acceleration is the acceleration of the aircraft axis coordinate system converted into the acceleration of the inertial space coordinate system by performing coordinate conversion based on the attitude angle of the aircraft 1.
  • the acceleration of the aircraft 1 acquired by the navigation device 20 is input to the acceleration correction processing unit 41, and the attitude angle of the aircraft 1 acquired by the navigation device 20 is input to the acceleration correction processing unit 41.
  • the input accelerations are vertical (front-back direction in the aircraft coordinate system), horizontal direction (horizontal direction in the aircraft coordinate system), and vertical direction (vertical direction in the aircraft coordinate system).
  • the input posture angle is a posture angle on the pitch axis, the roll axis, and the yaw axis.
  • the acceleration correction processing unit 41 calculates the attitude correction acceleration corrected for the acceleration of the aircraft 1 in the vertical and horizontal directions.
  • the acceleration correction processing unit 41 outputs the calculated posture correction acceleration to the second smoothing processing unit 43, the sway amount estimation processing unit 51, and the feedback control unit 55.
  • the second Kalman filter 46 performs estimation based on the relative position (X, Y) and outputs the estimated relative position (X, Y) after the estimation. Specifically, the relative position (X, Y) calculated by the induction calculation unit 34 is input to the second Kalman filter 46. When the relative position (X, Y) is input, the second Kalman filter 46 calculates the estimated relative position (X, Y) by estimating the time change of the relative position (X, Y). The second Kalman filter 46 outputs the calculated estimated relative position (X, Y) toward the second smoothing processing unit 43.
  • the second smoothing processing unit 43 performs processing for calculating the smoothing relative position, which is an average relative position, even when the target landing point 2 changes due to shaking.
  • the second smoothing processing unit 43 outputs a smoothed relative position (X, Y) obtained by smoothing the estimated relative position (X, Y) based on the attitude correction acceleration and the estimated relative position (X, Y). are doing.
  • the posture correction acceleration output from the acceleration correction processing unit 41 is input to the second smoothing processing unit 43, and the estimated relative position (X, Y) calculated by the second Kalman filter 46 is input. Will be done.
  • the second smoothing processing unit 43 calculates the smoothing relative position (X, Y) when the posture correction acceleration and the estimated relative position (X, Y) are input. Then, the second smoothing processing unit 43 outputs the calculated smoothing relative position (X, Y) toward the second subtraction circuit unit 54, which will be described later.
  • FIG. 6 is a Bode diagram from the relative position of the second smoothing processing unit to the smoothing relative position.
  • the horizontal axis thereof is frequency
  • the vertical axis thereof is gain (dB) and phase (deg).
  • the band of the frequency at which the sway occurs is the sway frequency band f
  • the band having a frequency equal to or higher than the sway frequency band f including the sway frequency band f is defined as the frequency band f1 (first frequency band).
  • a band having a frequency lower than the sway frequency band f is defined as a frequency band f2 (second frequency band).
  • the second smoothing processing unit 43 applies a gain to the input signal to amplify the output signal.
  • the input signal is an estimated relative position (X, Y) and the output signal is a smoothed relative position (X, Y).
  • the frequency band f1 has a sufficiently low gain as compared with the frequency band f2
  • the influence of the sway in the frequency band f1 is reduced.
  • the frequency band f2 has a large attenuation coefficient ( ⁇ > 0.7) so that the low-frequency disturbance response does not become vibrational.
  • Increasing the value of the attenuation coefficient ⁇ suppresses overshoot, and if ⁇ > 0.7, the desired result is obtained.
  • the relative speed estimation processing unit 47 outputs the estimated relative speed based on the relative position (X, Y) and the aircraft speed of the aircraft 1. Specifically, the relative position (X, Y) calculated by the guidance calculation unit 34 is input to the relative speed estimation processing unit 47, and the aircraft 1 in the vertical and horizontal directions acquired by the navigation device 20. The aircraft speed is entered. The relative speed estimation processing unit 47 estimates the relative speed from the input relative positions (X, Y) and the aircraft speed, and outputs the estimated relative speed to the second subtraction circuit unit 54, which will be described later.
  • the sway amount estimation processing unit 51 performs processing for estimating the sway amount of the target landing point 2 that changes due to the sway.
  • the sway amount estimation processing unit 51 estimates the sway amount based on the posture correction acceleration and the relative positions (X, Y).
  • FIG. 5 is a block diagram showing an example of the sway amount estimation process and the target information generation process.
  • the shaking amount estimation processing unit 51 includes a first Kalman filter 61, a first smoothing processing unit 62, a low-pass filter 63, and a first subtraction circuit unit 66.
  • the first Kalman filter 61 performs estimation based on the relative position (X, Y) and outputs the estimated relative position (X, Y) after estimation. Specifically, the relative position (X, Y) calculated by the induction calculation unit 34 is input to the first Kalman filter 61. When the relative position (X, Y) is input, the first Kalman filter 61 calculates the estimated relative position (X, Y) by estimating the time change of the relative position (X, Y). The first Kalman filter 61 outputs the calculated estimated relative position (X, Y) toward the first smoothing processing unit 62 and the first subtraction circuit unit 66. Here, the first Kalman filter 61 has a smaller time delay in the output estimated relative position (X, Y) than the second Kalman filter 46.
  • the first smoothing processing unit 62 calculates the smoothing relative position, which is an average relative position, even when the target landing point 2 changes due to shaking. Is being processed.
  • the first smoothing processing unit 62 outputs a smoothed relative position (X, Y) obtained by smoothing the estimated relative position (X, Y) based on the attitude correction acceleration and the estimated relative position (X, Y). are doing.
  • the posture correction acceleration output from the acceleration correction processing unit 41 is input to the first smoothing processing unit 62, and the estimated relative position (X, Y) calculated by the first Kalman filter 61 is input. Will be done.
  • the first smoothing processing unit 62 calculates the smoothing relative position (X, Y) when the posture correction acceleration and the estimated relative position (X, Y) are input. Then, the first smoothing processing unit 62 outputs the calculated smoothing relative position (X, Y) toward the first subtraction circuit unit 66.
  • the first subtraction circuit unit 66 outputs the amount of shaking based on the estimated relative position (X, Y) and the smoothing relative position (X, Y). Specifically, the first subtraction circuit unit 66 takes a difference between the estimated relative position (X, Y) and the smoothing relative position (X, Y), and calculates the difference as the amount of shaking. Then, the first subtraction circuit unit 66 outputs the calculated amount of shaking toward the low-pass filter 63.
  • the low-pass filter 63 is a filter that attenuates a frequency equal to or higher than a predetermined cutoff frequency with respect to the amount of fluctuation input from the first subtraction circuit unit 66.
  • the low-pass filter 63 removes the high-frequency component of the sway amount, and outputs the low-frequency component included in the sway amount to the target information generation processing unit 52.
  • FIG. 7 is a Bode diagram from the relative position of the sway amount estimation processing unit to the sway amount (estimated value).
  • the horizontal axis thereof is frequency
  • the vertical axis thereof is gain (dB) and phase (deg).
  • the band of the frequency at which the sway occurs is the sway frequency band f
  • the band having a frequency equal to or higher than the sway frequency band f including the sway frequency band f is the frequency band f1 (the first). 1 frequency band)
  • a band having a frequency lower than the sway frequency band f is defined as a frequency band f2 (second frequency band).
  • the shaking amount estimation processing unit 51 applies a gain to the input signal to amplify the output signal.
  • the input signal is an estimated relative position (X, Y), and the output signal is a sway amount (estimated value).
  • the frequency band f1 has a gain of 1 (in FIG. 7, the gain is 0 because it is shown as a logarithmic value), and the estimated relative position (X, The amount of sway is extracted from Y), and the phase is advanced so that the sway can be detected early.
  • the frequency band f2 has a smaller gain than the frequency band f1, and the fluctuation amount other than the sway amount is attenuated from the estimated relative position (X, Y).
  • the target information generation processing unit 52 has a target relative position between the aircraft 1 and the target landing point 2 and a target target relative speed between the aircraft 1 and the target landing point 2 based on the amount of sway. And output. As shown in FIG. 5, the target information generation processing unit 52 includes a high-pass filter 64 and a pseudo-differential filter 65.
  • the high-pass filter 64 is a filter that converts the amount of sway into a target relative position and outputs the filter.
  • the relative position of the aircraft 1 is ⁇ y
  • the target position of the aircraft is y'
  • the current position of the aircraft 1 is y.
  • the following equation (1) can be obtained.
  • “s” is an operator
  • FL (s) is a low-pass filter
  • FL (s) is a high-pass filter.
  • ⁇ y' F H (s) ⁇ y' ⁇ ⁇ ⁇ (1)
  • the relative position ⁇ y can be derived by multiplying the target position y'by the high-pass filter HF (s). Therefore, the target relative position is derived by multiplying the amount of shaking by the high-pass filter 64.
  • the high-pass filter 64 outputs the calculated target relative position toward the second subtraction circuit unit 54, which will be described later.
  • the pseudo-differential filter 65 is a filter that applies pseudo-differentiation to the target relative position to obtain the target relative velocity. Specifically, the pseudo-differential filter 65 calculates the target relative velocity by pseudo-differentiating the target relative position input from the high-pass filter 64, and outputs the calculated target relative velocity to the second subtraction circuit unit 54, which will be described later. do.
  • the second subtraction circuit unit 54 calculates the position difference between the smoothing relative position (X, Y) input from the second smoothing processing unit 43 and the target relative position input from the target information generation processing unit 52. .. Then, the second subtraction circuit unit 54 outputs the calculated position difference to the feedback control unit 55. Further, the second subtraction circuit unit 54 calculates the speed difference between the estimated relative speed input from the relative speed estimation processing unit 47 and the target relative speed input from the target information generation processing unit 52. Then, the second subtraction circuit unit 54 outputs the calculated speed difference to the feedback control unit 55.
  • the feedback control unit 55 calculates the control amount C'based on the position difference and velocity difference input from the second subtraction circuit unit 54 and the attitude correction acceleration input from the acceleration correction processing unit 41. Then, the feedback control unit 55 outputs the calculated control amount C'to the flight control unit 36.
  • the flight control unit 36 executes flight control based on the control amount C'.
  • flight control by the flight control unit 36, when the aircraft 1 is a helicopter, hovering following a target point is executed by performing flight control in which the main rotor of the helicopter is tilted in the vertical direction and the horizontal direction.
  • the changeover switch 53 switches whether or not the target point tracking hovering is executed. Specifically, the changeover switch 53 switches whether or not the target relative position and the target relative speed are input to the second subtraction circuit unit 54.
  • the changeover switch 53 allows the input of the target relative position and the target relative speed to the second subtraction circuit unit 54, thereby enabling the execution of the target point tracking hovering.
  • the changeover switch 53 blocks the input of the target relative position and the target relative speed to the second subtraction circuit unit 54, thereby making it impossible to execute the target point tracking hovering and enabling the execution of the spatially stable hovering.
  • Space-stable hovering is flight control based on the smoothing relative position, and is position control related to space-stable hovering in which the aircraft 1 is held at the target relative position in space with respect to the target landing point 2.
  • the smoothing relative position (X, Y) is input to the flight control unit 36, so that the flight control The unit 36 executes flight control for space-stable hovering.
  • the changeover control by the changeover switch 53 may be performed by using, for example, the amount of shaking or the altitude.
  • the switching control when the amount of sway is used, if the amount of sway is equal to or more than a preset threshold value, the flight control of space stable hovering is executed, and if the amount of sway is smaller than the threshold value, the flight control of hovering following the target point is performed. You may switch to do so.
  • the switching control when the altitude is used, if the altitude is equal to or higher than the preset threshold value, the flight control of space stable hovering is executed, and if the altitude is smaller than the threshold value, the flight control of hovering following the target point is performed. You may switch to do so.
  • FIG. 8 is a flowchart illustrating a calculation flow of the target relative position and the target relative speed. Note that FIG. 8 is a position control method from the target information generation processing unit 52 to outputting the target relative position and the target relative speed.
  • the acceleration correction processing unit 41 outputs the attitude correction acceleration based on the input acceleration of the aircraft 1 and the attitude of the aircraft 1 (step S1).
  • step S1 since the position is controlled with respect to the relative position (X, Y), the acceleration correction processing unit 41 outputs the posture correction acceleration in the vertical direction and the horizontal direction.
  • the sway amount estimation processing unit 51 calculates and outputs the sway amount based on the attitude correction acceleration and the relative position (X, Y) (step S2).
  • step S2 the difference between the estimated relative position (X, Y) and the smoothing relative position (X, Y) is taken, and the difference is calculated as the amount of shaking.
  • the target information generation processing unit 52 calculates and outputs the target relative position and the target relative speed based on the calculated amount of shaking (step S3).
  • the output target relative position and target relative speed are input to the second subtraction circuit unit 54.
  • the position difference between the smoothed relative position (X, Y) and the target relative position is calculated, and the speed difference between the estimated relative speed and the target relative speed is calculated.
  • the feedback control unit 55 calculates the control amount C'based on the position difference, the speed difference, and the attitude correction acceleration.
  • the calculated control amount C' is input to the flight control unit 36, and the flight control unit 36 changes the aircraft speed, attitude angle, and attitude angle of the aircraft 1 according to the control amount C'. Adjust the rate etc.
  • the flight control in the flight control unit 36 may be executed by, for example, the PID control and the multi-value control described in Japanese Patent Application Laid-Open No. 2021-062720.
  • FIG. 9 is a block diagram of another example of position control regarding the relative position of the aircraft based on the amount of sway.
  • the second smoothing processing unit 43 calculates the smoothing relative position (X, Y), and the position between the smoothing relative position (X, Y) and the target relative position.
  • the control amount C' was derived based on the difference, the velocity difference between the estimated relative velocity and the target relative velocity, and the attitude correction acceleration.
  • the control amount C' is derived based on the velocity difference between the velocity and the target relative velocity and the attitude correction acceleration.
  • the posture correction acceleration is used in estimating the amount of sway, but the posture correction acceleration is not particularly limited, and any parameter can be used as long as it is a posture correction parameter for correcting the posture of the aircraft 1. good.
  • the position control system 100 of the aircraft 1, the aircraft 1 and the position control method of the aircraft 1 described in the embodiment are grasped as follows, for example.
  • the position control system 100 of the aircraft 1 is the position control system 100 of the aircraft 1 that follows the position of the aircraft 1 according to the movement of the target landing point 2 due to the shaking, and is the acceleration of the aircraft 1.
  • the sway amount estimation processing unit 51 that estimates the sway amount of the target landing point 2 based on the attitude correction acceleration corrected for and the relative position (X, Y) between the aircraft 1 and the target landing point 2. Based on the estimated amount of sway, the target relative position between the aircraft 1 and the target landing point 2 and the target target relative position between the aircraft 1 and the target landing point 2
  • a target information generation unit 52 that outputs the speed and the like are provided.
  • the target relative position and the target relative velocity can be calculated and output based on the amount of sway estimated using the posture correction acceleration and the relative position (X, Y). Therefore, by executing the flight control of the aircraft 1 using the target relative position and the target relative speed, even if the target landing point 2 is shaken, the aircraft is adjusted to the movement of the target landing point 2 due to the shaking. 1 can be suitably followed. In this way, since the aircraft 1 can be made to follow the target landing point 2, if the aircraft 1 is stable, the aircraft 1 can be landed on the ship at an arbitrary timing. Even when landing, the aircraft 1 can be grounded regardless of the magnitude of the sway, as in the case of landing on the ground, so the degree of freedom of operation can be increased.
  • the sway amount estimation processing unit 51 includes a first Kalman filter 61 that outputs an estimated relative position (X, Y) estimated based on the relative position (X, Y), and the posture correction acceleration.
  • the first smoothing processing unit 62 that outputs a smoothing relative position (X, Y) that smoothes the relative position (X, Y) based on the estimated relative position (X, Y), and the smoothing.
  • a first subtraction circuit unit 66 that calculates the difference between the smoothed relative position (X, Y) and the estimated relative position (X, Y) as the amount of shaking is provided.
  • the difference between the smoothed relative position (X, Y) and the estimated relative position (X, Y) can be calculated as the amount of sway, so that an appropriate amount of sway can be estimated.
  • the target information generation unit converts the amount of sway into the target relative position and outputs the high-pass filter, and pseudo-differentiates the converted target relative position to obtain the target relative speed. It has a pseudo-differential filter to output.
  • the target relative position can be quickly calculated from the amount of shaking with a simple filter.
  • the target relative velocity can be quickly calculated from the target relative position by a simple filter.
  • the second Kalman filter 46 that outputs the estimated relative position based on the relative position, the posture correction acceleration, and the smoothing of the relative position based on the estimated relative position.
  • the second smoothing processing unit 43 that outputs the relative position
  • the relative speed estimation processing unit 47 that estimates the relative speed between the aircraft 1 and the target landing point 2 and outputs the estimated relative speed
  • the target relative A second subtraction circuit unit 54 that outputs a position difference between the position and the smoothed relative position and a speed difference between the target relative speed and the estimated relative speed is further provided, and is based on the position difference and the speed difference. Then, the flight control of the aircraft 1 is performed.
  • the flight control of the aircraft 1 can be executed by using the position difference between the target relative position and the smoothing relative position and the speed difference between the target relative speed and the estimated relative speed. Therefore, it is possible to accurately execute the target point tracking hovering of the aircraft 1 with respect to the target landing point 2.
  • a switching unit (changeover switch 53) for switching whether or not the target relative position and the target relative speed are input to the second subtraction circuit unit 54 is further provided.
  • the switching unit can switch whether or not flight control for hovering following the target point of the aircraft 1 is executed.
  • the first smoothing processing unit 62 applies a gain to the relative position to output the smoothing relative position, and outputs a band having a frequency equal to or higher than the shaking frequency band f in which the shaking occurs. If the first frequency band f1 and the band having a frequency lower than the sway frequency band f is the second frequency band f2, the gain in the first frequency band f1 is the second frequency band f2.
  • the attenuation coefficient ⁇ in the second frequency band f2 is ⁇ > 0.7, which is lower than the gain in.
  • the gain of the first frequency band f1 is sufficiently lower than that of the second frequency band, so that the influence of the sway in the first frequency band f1 is reduced. be able to. Further, since the attenuation coefficient of the second frequency band f2 is large ( ⁇ > 0.7), it is possible to prevent the low frequency disturbance response from becoming vibrational.
  • the sway amount estimation processing unit 51 applies a gain to the relative position to output the sway amount, and a band having a frequency equal to or higher than the sway frequency band f in which the sway occurs is the first. If the frequency band f1 of the above and the band of the frequency lower than the sway frequency band is the second frequency band, the gain in the first frequency band f1 is set to 1, and the second frequency band is set to 1. The gain in the frequency band f2 is lower than the gain in the first frequency band f1.
  • the gain of the first frequency band f1 is 1, when the amount of sway is extracted from the estimated relative position (X, Y), the phase is advanced so that the sway can be detected early. I have to. Further, since the second frequency band f2 has a smaller gain than the first frequency band f1, it is possible to attenuate the amount of fluctuation other than the amount of shaking from the estimated relative position (X, Y). ..
  • the first Kalman filter 61 has a smaller time delay of the output estimated relative position (X, Y) than the second Kalman filter 46.
  • the time delay of the estimated relative position (X, Y) becomes small, so that the estimation of the amount of sway can be calculated more accurately.
  • the aircraft 1 has an acceleration correction processing unit 41 that acquires a posture correction acceleration that corrects the acceleration of the aircraft 1, and a relative position acquisition that acquires a relative position between the aircraft 1 and the target landing point 2.
  • the unit (navigation device 20) and the above-mentioned aircraft position control system are provided.
  • the position control method of the aircraft 1 according to the tenth aspect is a position control method of the aircraft 1 that follows the position of the aircraft 1 according to the movement of the target landing point 2 due to the shaking, and corrects the acceleration of the aircraft 1.
  • the step (step S2) of estimating the amount of sway of the target landing point 2 based on the attitude correction acceleration and the relative position (X, Y) between the aircraft 1 and the target landing point 2 is estimated. Based on the amount of sway, the target relative position between the aircraft 1 and the target landing point 2 and the target relative speed between the aircraft 1 and the target landing point 2 are determined.
  • a step (step S3) for output is provided.
  • the target relative position and the target relative velocity can be calculated and output based on the amount of sway estimated using the posture correction acceleration and the relative position (X, Y). Therefore, by executing the flight control of the aircraft 1 using the target relative position and the target relative speed, the aircraft 1 can be suitably followed by the target landing point 2 even when the target landing point 2 is shaken. Can be done.

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Theoretical Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Image Analysis (AREA)
  • Feedback Control In General (AREA)

Abstract

動揺による目標着地点の動きに合わせて、航空機の位置を追従させる航空機の位置制御システムであって、前記航空機の姿勢を補正するための姿勢補正加速度と、前記航空機と前記目標着地点との間の相対位置とに基づいて、前記目標着地点の動揺量を推定する動揺量推定処理部と、推定した前記動揺量に基づいて、前記航空機と前記目標着地点との間の目標となる目標相対位置と、前記航空機と前記目標着地点との間の目標となる目標相対速度とを出力する目標情報生成部と、を備える。

Description

航空機の位置制御システム、航空機及び航空機の位置制御方法
 本開示は、航空機の位置制御システム、航空機及び航空機の位置制御方法に関するものであり、特に、動揺による目標着地点の動きに合わせて、航空機の位置を追従させる目標点追従ホバリングの位置制御に関するものとなっている。
 従来、航空母艦に航空機を発着させるための発着艦管制装置が知られている(例えば、特許文献1参照)。特許文献1の発着艦管制装置は、航空母艦の船体運動を予測する船体運動予測装置と、船体運動予測装置の出力を受け、航空母艦への航空機の発着状態を算出する発着状態指示装置と、発着状態指示装置の出力を送信する指示送信装置と、指示送信装置の出力を受信する指示受信装置と、指示受信装置の出力を受けて飛行運動を制御する飛行運動制御装置とを備えている。船体運動予測装置、発着状態指示装置及び指示送信装置は、航空母艦に設けられ、指示受信装置及び飛行運動制御装置は、航空機に設けられている。
特開平4−71998号公報
 特許文献1は、固定翼機における着艦の技術についてであるが、回転翼機においては、下記のような着艦を行っている。
 大きな動揺がある状況で回転翼航空機が着艦を行う場合、動揺による甲板の動きに追従を行わずに、所定の位置でホバリングを行い、動揺が小さくなったタイミングで着艦を行っている。この場合、例えば、5分に1回程度で、10秒程度の間だけ着艦可能となる。このような短い時間を狙って回転翼航空機の着艦を行う必要があった。回転翼航空機の着艦ができなかった場合には、次の動揺が収まるタイミングを待つ必要がある。このように、任意のタイミングで回転翼航空機の発着艦を繰り返すことが難しく、運用上の制限となっていた。
 そこで、本開示は、目標着地点が動揺する場合であっても、航空機を目標着地点に好適に追従させることができる航空機の位置制御システム、航空機及び航空機の位置制御方法を提供することを課題とする。
 本開示の航空機の位置制御システムは、動揺による目標着地点の動きに合わせて、航空機の位置を追従させる航空機の位置制御システムであって、前記航空機の加速度を補正した姿勢補正加速度と、前記航空機と前記目標着地点との間の相対位置とに基づいて、前記目標着地点の動揺量を推定する動揺量推定処理部と、推定した前記動揺量に基づいて、前記航空機と前記目標着地点との間の目標となる目標相対位置と、前記航空機と前記目標着地点との間の目標となる目標相対速度とを出力する目標情報生成部と、を備える。
 本開示の航空機は、航空機の加速度を補正した姿勢補正加速度を取得する加速度補正処理部と、前記航空機と目標着地点との間の相対位置を取得する相対位置取得部と、上記の航空機の位置制御システムと、を備える。
 本開示の航空機の位置制御方法は、動揺による目標着地点の動きに合わせて、航空機の位置を追従させる航空機の位置制御方法であって、前記航空機の加速度を補正した姿勢補正加速度と、前記航空機と前記目標着地点との間の相対位置とに基づいて、前記目標着地点の動揺量を推定するステップと、推定した前記動揺量に基づいて、前記航空機と前記目標着地点との間の目標となる目標相対位置と、前記航空機と前記目標着地点との間の目標となる目標相対速度とを出力するステップと、を備える。
 本開示によれば、目標着地点が動揺する場合であっても、動揺による目標着地点の動きに合わせて、航空機を好適に追従させることができる。
図1は、本実施形態にかかる航空機の位置制御システムの一例を示す概略構成図である。 図2は、本実施形態にかかる航空機が目標着地点に向かう様子を示す説明図である。 図3は、目標着地点に設けられるマーカーの一例を示す説明図である。 図4は、動揺する目標着地点に航空機を追従させる位置制御の一例のブロック図である。 図5は、動揺量推定処理及び目標情報生成処理の一例を示すブロック図である。 図6は、第2平滑化処理部の相対位置から平滑化相対位置までのボード線図である。 図7は、動揺量推定処理部の相対位置から動揺量(推定値)までのボード線図である。 図8は、目標相対位置及び目標相対速度の算出フローを説明するフローチャートである。 図9は、動揺する目標着地点に航空機を追従させる位置制御の他の一例のブロック図である。
 以下に、本開示に係る実施形態を図面に基づいて詳細に説明する。なお、この実施形態によりこの発明が限定されるものではない。また、下記実施形態における構成要素には、当業者が置換可能かつ容易なもの、あるいは実質的に同一のものが含まれる。さらに、以下に記載した構成要素は適宜組み合わせることが可能であり、また、実施形態が複数ある場合には、各実施形態を組み合わせることも可能である。
[実施形態]
 図1は、本実施形態にかかる航空機の位置制御システムの一例を示す概略構成図であり、図2は、本実施形態にかかる航空機が目標着地点に向かう様子を示す説明図である。
 図1に示すように、航空機1は、回転翼機としての飛行体(例えばヘリコプタ、ドローン等)である。本実施形態において、航空機1は、無人機である。なお、航空機1は、前進、後進、横進、旋回、ホバリングが可能な飛行体であればよく、有人機であってもよい。航空機1は、位置制御システム100を搭載しており、位置制御システム100により飛行が制御され、図2に示す目標着地点2に着地する。
(目標着地点)
 本実施形態において、目標着地点2は、図2に示すように、船舶5上に設けられている。このため、航空機1は、水上を移動する移動体としての船舶5に着地(着艦)する。なお、船舶5には、図示省略するが、目標着地点2に航空機1を着地させた際に、航空機1を拘束するための拘束装置が設けられている。ただし、目標着地点2は、船舶5に限らず、地上を移動する移動体としての車両等に設けられてもよいし、移動しない設備、地面に設けられてもよい。
 目標着地点2には、航空機1が目標着地点2の位置を捕捉するためのマーカー7が設けられている。図3は、目標着地点に設けられるマーカーの一例を示す説明図である。図示するように、マーカー7は、例えば白黒の2色で色分けされたARマーカーであり、正方形状のマーカーである。なお、マーカー7は、ARマーカーに限らず、画像処理により目標着地点2の位置を捕捉することができるマーカーであればよく、例えばヘリポートの着地点を示すHマーク、Rマーク等であってもよい。また、マーカー7は、船舶5に異なる形状のマーカーが複数設けられてもよく、航空機1は、異なるマーカー7のいずれかに対応した目標着地点2に誘導されるものであってもよい。また、本実施形態では、目標着地点2の位置を捕捉するために、船舶5にマーカー7を設けたが、目標着地点2の位置を取得可能な構成であれば、特に限定されない。
(位置制御システム)
 本実施形態にかかる航空機の位置制御システム100は、飛行中の航空機1を目標着地点2に着地させるために、航空機1の位置を制御するシステムである。位置制御システム100は、航空機1に搭載される。位置制御システム100は、図1に示すように、カメラ10と、航法装置20と、制御部30とを備える。
 カメラ10は、航空機1に図示しないジンバルを介して搭載された撮影装置である。カメラ10は、マーカー7を撮影することができれば、単眼カメラ、複眼カメラ、赤外線カメラ等であってもよい。カメラ10は、航空機1から目標着地点2に設けられたマーカー7を撮影するために設けられる。カメラ10は、図示しないジンバルを介して撮影方向を調整可能とされている。本実施形態において、カメラ10は、その撮影範囲B(図2参照)が、一例として、鉛直方向の真下を向くように制御部30によって制御される。なお、カメラ10は、撮影範囲Bが、鉛直方向に対して斜め前方側を向くように制御部30によって制御されてもよい。また、カメラ10は、ジンバルを省いてもよく、撮影方向が鉛直方向の下方側を向くように、航空機1の機体直下に固定してもよい。
 航法装置20は、例えば、慣性航法装置(INS:Inertial Navigation System)である。なお、本実施形態において、航法装置20は、慣性航法装置に適用して説明するが、特に限定されず、いずれの航法装置20を用いてもよい。また、航法装置20は、位置の計測精度を向上させるために、GPS(Global Positioning System)を含んだ慣性航法装置としてもよい。本実施形態では、GPSを含んだ慣性航法装置に適用して説明するが、GPSに特に限定されず、精度よく位置を計測可能な位置計測部であればよく、例えば、準天頂衛星システムを用いたものであってもよいし、航法装置20のみで精度よく位置を計測可能であれば、GPS等の位置計測部を省いた構成であってもよい。
 GPSを含んだ航法装置20は、航空機1のロール方向、ヨー方向およびピッチ方向の姿勢角、航空機1の機体速度、慣性速度、機体加速度、機首方位および地球座標系における位置座標等を取得する。なお、航法装置20は、航空機1の姿勢角を検出する姿勢角センサ、航空機1の機体速度を検出する速度センサ、航空機1の機体加速度を検出する加速度センサ、航空機1の機首方位を検出するセンサを有するものであってもよい。航法装置20は、取得した航空機1の姿勢角、機体速度、慣性速度、機体加速度、機首方位および位置座標を、制御部30に出力する。このように、航法装置20は、航空機1の加速度を取得する加速度取得部、航空機1の姿勢を取得する姿勢取得部、航空機1の慣性速度を取得する慣性速度取得部として機能している。
 また、位置制御システム100は、図1に示すように、航空機1の地表面または水面からの高度を検出する高度センサ25を備えている。高度センサ25は、例えば、レーザ高度計であり、航空機1から目標着地点2までの相対高度Δh(図2参照)を計測している。なお、高度センサ25としては、電波高度計を用いてもよいし、気圧高度計を用いてもよく、いずれの高度計を用いてもよい。また、これらの高度計を、使用環境に応じて、すなわち地表面からの高度、海面からの高度を計測するために、適宜組み合わせて適用してもよい。高度センサ25は、検出した航空機1の相対高度Δhを制御部30に出力する。なお、高度センサ25は、航空機1の高度を計測して制御部30に出力し、制御部30は、後述する誘導演算部34において、航空機1の高度に基づいて、目標着地点2までの相対高度Δhを算出するものであってもよい。また、位置制御システム100は、高度センサ25に限らず、後述する画像処理部32において、カメラ10で撮影したマーカー7を含む画像に画像処理を施すことで、航空機1と船舶5との相対高度Δhを算出するものであってもよい。
(制御部)
 制御部30は、画像処理部32と、誘導演算部34と、飛行制御部36とを有する。なお、制御部30は、航空機1に設けられた図示しないジンバルを介して、カメラ10の撮影方向を制御する図示しない撮影制御部を備えている。本実施形態では、上述したように、カメラ10の撮影範囲Bが鉛直方向の真下を向くように調整される。
(画像処理部)
 画像処理部32は、カメラ10で撮影された画像に画像処理を施して、マーカー7すなわち目標着地点2の中心(Cx、Cy)(図3参照)を算出する。ここでの中心(Cx、Cy)は、カメラ10で撮影された画像の中心を原点とするカメラ固定座標系における座標点であり、画像中心からの画素数により算出することができる。具体的には、画像処理部32は、図3に示すように、画像処理によってマーカー7の角部同士の間を延びる対角線Ldを2つ特定し、特定した2つの対角線Ldの交点をマーカー7の中心(Cx、Cy)とする。なお、目標着地点2は、マーカー7の中心(Cx、Cy)に限定されず、マーカー7の四隅のいずれかであってもよいし、マーカー7の中心からオフセットした位置であってもよい。画像処理部32は、算出したマーカー7の中心(Cx、Cy)を誘導演算部34に出力する。
 また、画像処理部32は、カメラ10で撮影したマーカー7を含む画像に画像処理を施すことで、マーカー7の向きを特定し、航法装置20で取得される航空機1の機首方位と対応づけることで、船舶5の船首方位を算出してもよい。なお、画像処理部32は、上述したように、カメラ10で撮影したマーカー7を含む画像に画像処理を施すことで、航空機1と船舶5との相対高度Δhを算出するものであってもよい。
(誘導演算部)
 誘導演算部34は、航空機1を目標着地点2に誘導するための航空機1の制御量を算出する。制御量は、航空機1の機体速度、姿勢角、姿勢角の変化レート等を調整するための制御量である。誘導演算部34は、制御量を算出するために、航空機1と目標着地点2との相対座標位置を算出する。具体的に、誘導演算部34は、相対座標位置として、航空機1と目標着地点2との相対位置(X、Y)、航空機1と目標着地点2との相対高度Δhを算出する。また、誘導演算部34は、航空機1と目標着地点2との相対速度等を算出する。相対位置(X、Y)は、水平方向における航空機1と目標着地点2との距離となる。相対高度Δhは、鉛直方向における航空機1と目標着地点2との距離となる。
 誘導演算部34は、画像処理部32で算出されたマーカー7の中心(Cx、Cy)と、カメラ10の方位すなわち航空機1の機首方位と、航空機1の高度(目標着地点2に対する相対高度Δh)とに基づいて、航空機1と目標着地点2との相対位置(X、Y)を算出する。なお、本実施形態では、カメラ10の方位と航空機1の機首方位とを一致させているが、特に限定されず、カメラ10の方位と航空機1の機首方位とを一致させなくてもよい。このように、画像処理部32および誘導演算部34は、航空機1と目標着地点2との相対位置を取得する。
 また、誘導演算部34は、高度センサ25で検出された航空機1の高度に基づいて、目標着地点2までの相対高度Δhを算出する。したがって、高度センサ25および誘導演算部34は、航空機1と目標着地点2との相対高度Δhを取得する。なお、画像処理部32において、カメラ10で撮影したマーカー7を含む画像に画像処理を施すことで、航空機1と船舶5との相対高度Δhを算出してもよい。
 また、誘導演算部34は、航空機1と目標着地点2との相対速度を算出する。したがって、誘導演算部34は、航空機1と目標着地点2との相対速度を取得する。より詳細には、誘導演算部34は、相対位置(X、Y)と機体速度(Vx、Vy)とに基づいて、航空機1と目標着地点2との相対速度(ΔVx、ΔVy)を算出する相対速度推定処理を実行する。したがって、誘導演算部34は、航空機1と目標着地点2との相対速度(ΔVx、ΔVy)を取得する。
 そして、誘導演算部34は、相対位置(X、Y)、相対高度Δh、相対速度(ΔVx、ΔVy)および機体加速度に基づいて、フィードバック制御(例えばPID制御)により制御量を算出する。なお、フィードバック制御は、PID制御に限らず、P制御、PI制御、PD制御等であってもよい。誘導演算部34は、算出した制御量C´(図4参照)を飛行制御部36に出力する。
(飛行制御部)
 飛行制御部36は、誘導演算部34で算出された制御量にしたがって、航空機1の各構成要素を制御して航空機1を飛行させる。飛行制御部36は、制御量にしたがって各回転翼のブレードピッチ角、回転数等を制御し、航空機1の機体速度、姿勢角、姿勢角の変化レート等を調整する。それにより、航空機1は、目標着地点2へと誘導される。なお、本実施形態では、画像処理部32および誘導演算部34を飛行制御部36とは別の機能部として説明するが、飛行制御部36、画像処理部32および誘導演算部34は、一体の機能部であってもよい。すなわち、飛行制御部36において画像処理部32および誘導演算部34の処理を行ってもよい。
(航空機の位置制御)
 次に、図4を参照して、本実施形態にかかる航空機1の位置制御について説明する。図4は、動揺する目標着地点に航空機を追従させる位置制御の一例のブロック図である。航空機1の位置制御では、誘導演算部34が、図4に示すブロック図に基づいて、動揺による目標着地点2の動きに合わせて、航空機1の位置を追従させる目標点追従ホバリングに関する位置制御を行っている。このため、誘導演算部34は、目標点追従ホバリングを実行するための航空機1の制御量C’を算出している。なお、図4では、ピッチ軸の方向となるX方向の成分と、ロール軸の方向となるY方向の成分とを併記して図示しており、誘導演算部34により各成分の制御量をそれぞれ算出している。
(相対位置に関する目標点追従ホバリング)
 図4では、航空機1が動揺により変化する目標着地点2に追従するように、目標点追従ホバリングに関する位置制御を実行している。誘導演算部34は、加速度補正処理部41と、第2平滑化処理部43と、第2カルマンフィルタ46と、相対速度推定処理部47と、動揺量推定処理部51と、目標情報生成処理部(目標情報生成部)52と、切替スイッチ(切替部)53と、第2減算回路部54と、フィードバック制御部55と、を備えている。なお、加速度補正処理部41、第2平滑化処理部43、第2カルマンフィルタ46、相対速度推定処理部47、動揺量推定処理部51、目標情報生成処理部52、切替スイッチ53、第2減算回路部54及びフィードバック制御部55は、誘導演算部34により実現されていてもよいし、誘導演算部34とは別体の処理部によって実現されていてもよいし、それらの組み合わせによって実現されていてもよく、特に限定されない。
 加速度補正処理部41は、航空機1の加速度と航空機1の姿勢とに基づいて、航空機1の加速度を補正した姿勢補正加速度を出力している。姿勢補正加速度とは、機体軸座標系の加速度を、航空機1の姿勢角に基づいて座標変換を行い、慣性空間座標系の加速度に変換したものである。具体的に、加速度補正処理部41には、航法装置20において取得された航空機1の加速度が入力され、また、航法装置20において取得された航空機1の姿勢角が入力される。入力される加速度としては、縦方向(機体座標系における前後方向)、横方向(機体座標系における左右方向)、及び垂直方向(機体座標系における上下方向)の加速度である。また、入力される姿勢角としては、ピッチ軸、ロール軸及びヨー軸における姿勢角である。加速度補正処理部41は、航空機1の加速度と航空機1の姿勢角とが入力されると、縦方向及び横方向における航空機1の加速度を補正した姿勢補正加速度を算出する。加速度補正処理部41は、算出した姿勢補正加速度を第2平滑化処理部43、動揺量推定処理部51及びフィードバック制御部55へ向けて出力する。
 第2カルマンフィルタ46は、相対位置(X,Y)に基づく推定を行い、推定後の推定相対位置(X,Y)を出力している。具体的に、第2カルマンフィルタ46には、誘導演算部34により算出された相対位置(X,Y)が入力される。第2カルマンフィルタ46は、相対位置(X,Y)が入力されると、相対位置(X,Y)の時間変化を推定することで、推定相対位置(X,Y)を算出する。第2カルマンフィルタ46は、算出した推定相対位置(X,Y)を第2平滑化処理部43へ向けて出力する。
 第2平滑化処理部43は、目標着地点2が動揺により変化する場合であっても、平均的な相対位置である平滑化相対位置を算出するための処理を行っている。第2平滑化処理部43は、姿勢補正加速度と、推定相対位置(X,Y)とに基づいて、推定相対位置(X,Y)を平滑化した平滑化相対位置(X,Y)を出力している。具体的に、第2平滑化処理部43には、加速度補正処理部41から出力された姿勢補正加速度が入力され、また、第2カルマンフィルタ46により算出された推定相対位置(X,Y)が入力される。第2平滑化処理部43は、姿勢補正加速度と推定相対位置(X,Y)とが入力されると、平滑化相対位置(X,Y)を算出する。そして、第2平滑化処理部43は、算出した平滑化相対位置(X,Y)を後述する第2減算回路部54へ向けて出力する。
 ここで、図6を参照して、第2平滑化処理部43の相対位置に関する信号処理について説明する。図6は、第2平滑化処理部の相対位置から平滑化相対位置までのボード線図である。図6は、その横軸が周波数となっており、その縦軸が、ゲイン(dB)及び位相(deg)となっている。図6において、動揺が発生する周波数の帯域が、動揺周波数帯域fとなっており、動揺周波数帯域fを含む動揺周波数帯域f以上の周波数の帯域を、周波数帯f1(第1の周波数帯)とし、動揺周波数帯域fよりも低い周波数の帯域を、周波数帯f2(第2の周波数帯)とする。
 第2平滑化処理部43は、入力信号にゲインをかけて出力信号を増幅している。入力信号は、推定相対位置(X,Y)であり、出力信号は、平滑化相対位置(X,Y)である。図6に示すように、周波数帯f1は、周波数帯f2に比して、十分にゲインが低いものとなっていることから、周波数帯f1における動揺の影響を低減している。また、周波数帯f2は、減衰係数が大きく(ζ>0.7)なっており、低周波の外乱応答が振動的にならないようにしている。減衰係数ζの値を大きくすると、オーバーシュートは抑えられ、ζ>0.7であれば、望ましい結果が得られる。
 相対速度推定処理部47は、相対位置(X,Y)と航空機1の機体速度とに基づいて、推定相対速度を出力している。具体的に、相対速度推定処理部47には、誘導演算部34により算出された相対位置(X,Y)が入力され、また、航法装置20において取得された縦方向及び横方向における航空機1の機体速度が入力される。相対速度推定処理部47は、入力された相対位置(X,Y)と機体速度とから、相対速度を推定し、推定相対速度として後述する第2減算回路部54へ向けて出力する。
 動揺量推定処理部51は、動揺により変化する目標着地点2の動揺量を推定するための処理を行っている。動揺量推定処理部51は、姿勢補正加速度と、相対位置(X,Y)とに基づいて、動揺量を推定している。図5は、動揺量推定処理及び目標情報生成処理の一例を示すブロック図である。図5に示すように、動揺量推定処理部51は、第1カルマンフィルタ61と、第1平滑化処理部62と、ローパスフィルタ63と、第1減算回路部66と、を含んでいる。
 第1カルマンフィルタ61は、第2カルマンフィルタ46と同様に、相対位置(X,Y)に基づく推定を行い、推定後の推定相対位置(X,Y)を出力している。具体的に、第1カルマンフィルタ61には、誘導演算部34により算出された相対位置(X,Y)が入力される。第1カルマンフィルタ61は、相対位置(X,Y)が入力されると、相対位置(X,Y)の時間変化を推定することで、推定相対位置(X,Y)を算出する。第1カルマンフィルタ61は、算出した推定相対位置(X,Y)を第1平滑化処理部62及び第1減算回路部66へ向けて出力する。ここで、第1カルマンフィルタ61は、第2カルマンフィルタ46に比して、出力される推定相対位置(X,Y)の時間遅れが小さいものとなっている。
 第1平滑化処理部62は、第2平滑化処理部43と同様に、目標着地点2が動揺により変化する場合であっても、平均的な相対位置である平滑化相対位置を算出するための処理を行っている。第1平滑化処理部62は、姿勢補正加速度と、推定相対位置(X,Y)とに基づいて、推定相対位置(X,Y)を平滑化した平滑化相対位置(X,Y)を出力している。具体的に、第1平滑化処理部62には、加速度補正処理部41から出力された姿勢補正加速度が入力され、また、第1カルマンフィルタ61により算出された推定相対位置(X,Y)が入力される。第1平滑化処理部62は、姿勢補正加速度と推定相対位置(X,Y)とが入力されると、平滑化相対位置(X,Y)を算出する。そして、第1平滑化処理部62は、算出した平滑化相対位置(X,Y)を第1減算回路部66へ向けて出力する。
 第1減算回路部66は、推定相対位置(X,Y)と、平滑化相対位置(X,Y)とに基づいて、動揺量を出力している。具体的に、第1減算回路部66は、推定相対位置(X,Y)と、平滑化相対位置(X,Y)との差分をとり、その差分を動揺量として算出している。そして、第1減算回路部66は、算出した動揺量をローパスフィルタ63へ向けて出力する。
 ローパスフィルタ63は、第1減算回路部66から入力される動揺量に対し、所定のカットオフ周波数以上の周波数を減衰させるフィルタである。ローパスフィルタ63は、動揺量の高周波成分を除去し、動揺量に含まれる低周波成分を目標情報生成処理部52へ向けて出力する。
 ここで、図7を参照して、動揺量推定処理部の相対位置に関する信号処理について説明する。図7は、動揺量推定処理部の相対位置から動揺量(推定値)までのボード線図である。図7は、その横軸が周波数となっており、その縦軸が、ゲイン(dB)及び位相(deg)となっている。図7において、図6と同様に、動揺が発生する周波数の帯域が、動揺周波数帯域fとなっており、動揺周波数帯域fを含む動揺周波数帯域f以上の周波数の帯域を、周波数帯f1(第1の周波数帯)とし、動揺周波数帯域fよりも低い周波数の帯域を、周波数帯f2(第2の周波数帯)とする。
 動揺量推定処理部51は、入力信号にゲインをかけて出力信号を増幅している。入力信号は、推定相対位置(X,Y)であり、出力信号は、動揺量(推定値)である。図7に示すように、周波数帯f1は、ゲインが1となるようにしており(図7では、ゲインは対数値として図示されているため、0となっている)、推定相対位置(X,Y)から動揺量を抽出し、また、位相を進めて、動揺を早めに検出できるようにしている。また、図7に示すように、周波数帯f2は、周波数帯f1に比して、ゲインを小さくしており、推定相対位置(X,Y)から動揺量以外の変動量を減衰している。
 目標情報生成処理部52は、動揺量に基づいて、航空機1と目標着地点2との間の目標となる目標相対位置と、航空機1と目標着地点2との間の目標となる目標相対速度とを出力する。図5に示すように、目標情報生成処理部52は、ハイパスフィルタ64と、擬似微分フィルタ65と、を含んでいる。
 ハイパスフィルタ64は、動揺量を、目標相対位置に変換して出力するフィルタとなっている。ここで、航空機1の相対位置を、Δyとし、航空機の目標位置をy’とし、航空機1の現在位置をyとする。また、現在位置yは、目標位置y’に遅れて追従すると仮定すると、下記する(1)式が得られる。なお、式(1)中の“s”は、演算子であり、F(s)は、ローパスフィルタであり、F(s)は、ハイパスフィルタである。
 Δy=y’−y=(1−F(s))・y’=F(s)・y’ ・・・(1)
 (1)式に示すように、相対位置Δyは、目標位置y’にハイパスフィルタF(s)を乗算すれば導出できる。このため、目標相対位置は、動揺量にハイパスフィルタ64を乗算することで導出している。ハイパスフィルタ64は、算出した目標相対位置を、後述する第2減算回路部54へ向けて出力する。
 擬似微分フィルタ65は、目標相対位置に擬似微分を施して、目標相対速度とするフィルタである。具体的に、擬似微分フィルタ65は、ハイパスフィルタ64から入力される目標相対位置を擬似微分して目標相対速度を算出し、算出した目標相対速度を後述する第2減算回路部54へ向けて出力する。
 第2減算回路部54は、第2平滑化処理部43から入力される平滑化相対位置(X,Y)と、目標情報生成処理部52から入力される目標相対位置との位置差分を算出する。そして、第2減算回路部54は、算出した位置差分をフィードバック制御部55へ向けて出力する。また、第2減算回路部54は、相対速度推定処理部47から入力される推定相対速度と、目標情報生成処理部52から入力される目標相対速度との速度差分を算出する。そして、第2減算回路部54は、算出した速度差分をフィードバック制御部55へ向けて出力する。
 フィードバック制御部55は、第2減算回路部54から入力された位置差分及び速度差分と、加速度補正処理部41から入力された姿勢補正加速度とに基づいて、制御量C´を算出する。そして、フィードバック制御部55は、算出した制御量C´を飛行制御部36へ向けて出力する。
 飛行制御部36は、制御量C’に基づいて飛行制御を実行する。なお、飛行制御部36による飛行制御の一例として、航空機1がヘリコプタである場合、ヘリコプタのメインロータを縦方向及び横方向に傾ける飛行制御を行うことで、目標点追従ホバリングを実行する。
 切替スイッチ53は、目標点追従ホバリングの実行の有無を切り替えている。具体的に、切替スイッチ53は、第2減算回路部54への目標相対位置及び目標相対速度の入力の有無を切り替える。切替スイッチ53は、第2減算回路部54へ目標相対位置及び目標相対速度の入力を許容することで、目標点追従ホバリングの実行を可能とする。一方で、切替スイッチ53は、第2減算回路部54へ目標相対位置及び目標相対速度の入力を遮断することで、目標点追従ホバリングの実行を不能とし、空間安定ホバリングの実行を可能とする。空間安定ホバリングは、平滑化相対位置に基づく飛行制御であり、目標着地点2に対して、空間上の目標相対位置に航空機1を保持させる空間安定ホバリングに関する位置制御である。切替スイッチ53により、第2減算回路部54へ目標相対位置及び目標相対速度の入力を遮断すると、飛行制御部36には、平滑化相対位置(X,Y)が入力されることから、飛行制御部36は、空間安定ホバリングの飛行制御を実行する。
 ここで、切替スイッチ53による切替制御は、例えば、動揺量または高度を用いて、切替を行ってもよい。切替制御では、動揺量を用いる場合、動揺量が、予め設定されたしきい値以上であれば空間安定ホバリングの飛行制御を実行し、しきい値よりも小さければ目標点追従ホバリングの飛行制御を実行するように、切り替えを行ってもよい。また、切替制御では、高度を用いる場合、高度が、予め設定されたしきい値以上であれば空間安定ホバリングの飛行制御を実行し、しきい値よりも小さければ目標点追従ホバリングの飛行制御を実行するように、切り替えを行ってもよい。
(航空機の位置制御方法)
 次に、図8を参照して、本実施形態にかかる航空機1の位置制御システム100を用いた位置制御方法について説明する。図8は、目標相対位置及び目標相対速度の算出フローを説明するフローチャートである。なお、図8では、目標情報生成処理部52から目標相対位置及び目標相対速度を出力するまでの位置制御方法となっている。
 航空機1の位置制御方法では、先ず、加速度補正処理部41が、入力される航空機1の加速度と航空機1の姿勢とに基づいて、姿勢補正加速度を出力する(ステップS1)。ステップS1では、相対位置(X,Y)に関する位置制御であるため、加速度補正処理部41が、縦方向及び横方向における姿勢補正加速度を出力する。
 続いて、航空機1の位置制御方法では、動揺量推定処理部51が、姿勢補正加速度と相対位置(X,Y)とに基づいて、動揺量を算出し出力する(ステップS2)。ステップS2では、推定相対位置(X,Y)と平滑化相対位置(X,Y)との差分をとり、その差分を動揺量として算出している。
 この後、航空機1の位置制御方法では、目標情報生成処理部52が、算出した動揺量に基づいて、目標相対位置及び目標相対速度を算出して出力する(ステップS3)。
 なお、航空機1の位置制御方法では、ステップS3の実行後、出力された目標相対位置及び目標相対速度は、第2減算回路部54に入力される。そして、位置制御方法では、第2減算回路部54において、平滑化相対位置(X,Y)と目標相対位置との位置差分が算出され、また、推定相対速度と目標相対速度との速度差分が算出される。この後、位置制御方法では、フィードバック制御部55において、位置差分、速度差分及び姿勢補正加速度に基づいて、制御量C’が算出される。この後、位置制御方法では、算出された制御量C’が飛行制御部36に入力され、飛行制御部36は、制御量C’にしたがって、航空機1の機体速度、姿勢角、姿勢角の変化レート等を調整する。飛行制御部36における飛行制御は、例えば、特開2021−062720号公報に記載されたPID制御及び多値制御により実行してもよい。
(変形例)
 次に、図9を参照して、航空機1の位置制御システム100及び位置制御方法の他の一例について説明する。図9は、動揺量に基づく航空機の相対位置に関する位置制御の他の一例のブロック図である。図4に示す航空機1の位置制御システム100では、第2平滑化処理部43において平滑化相対位置(X,Y)を算出し、平滑化相対位置(X,Y)と目標相対位置との位置差分、推定相対速度と目標相対速度との速度差分、及び姿勢補正加速度に基づいて、制御量C’を導出した。図9に示す航空機1の位置制御システム100では、第2平滑化処理部43を省いた構成となっており、第2カルマンフィルタ46で推定した推定相対位置と目標相対位置との位置差分、推定相対速度と目標相対速度との速度差分、及び姿勢補正加速度に基づいて、制御量C’を導出している。
 また、本実施形態では、動揺量を推定するにあたって、姿勢補正加速度を用いたが、特に限定されず、航空機1の姿勢を補正するための姿勢補正パラメータであれば、いずれのパラメータであってもよい。
 以上のように、実施形態に記載の航空機1の位置制御システム100、航空機1及び航空機1の位置制御方法は、例えば、以下のように把握される。
 第1の態様に係る航空機1の位置制御システム100は、動揺による目標着地点2の動きに合わせて、航空機1の位置を追従させる航空機1の位置制御システム100であって、前記航空機1の加速度を補正した姿勢補正加速度と、前記航空機1と前記目標着地点2との間の相対位置(X,Y)とに基づいて、前記目標着地点2の動揺量を推定する動揺量推定処理部51と、推定した前記動揺量に基づいて、前記航空機1と前記目標着地点2との間の目標となる目標相対位置と、前記航空機1と前記目標着地点2との間の目標となる目標相対速度とを出力する目標情報生成部52と、を備える。
 この構成によれば、姿勢補正加速度と相対位置(X,Y)とを用いて推定される動揺量に基づいて、目標相対位置及び目標相対速度を算出して出力することができる。このため、目標相対位置及び目標相対速度を用いた航空機1の飛行制御を実行することで、目標着地点2が動揺する場合であっても、動揺による目標着地点2の動きに合わせて、航空機1を好適に追従させることができる。このように、航空機1を目標着地点2に追従させることができるため、航空機1の機体が安定していれば、任意のタイミングで航空機1を船舶上に着艦させることができる。着艦においても、地上での着陸のように、動揺の大小にかかわらず、航空機1の機体を接地させることができることから、運用の自由度を高めることができる。
 第2の態様として、前記動揺量推定処理部51は、前記相対位置(X,Y)に基づいて推定した推定相対位置(X,Y)を出力する第1カルマンフィルタ61と、前記姿勢補正加速度と、前記推定相対位置(X,Y)とに基づいて、前記相対位置(X,Y)を平滑化した平滑化相対位置(X,Y)を出力する第1平滑化処理部62と、前記平滑化相対位置(X,Y)と前記推定相対位置(X,Y)との差分を、前記動揺量として算出する第1減算回路部66と、を備える。
 この構成によれば、平滑化相対位置(X,Y)と推定相対位置(X,Y)との差分を動揺量として算出することができるため、適切な動揺量を推定することができる。
 第3の態様として、前記目標情報生成部は、前記動揺量を、前記目標相対位置に変換して出力するハイパスフィルタと、変換された前記目標相対位置を擬似微分して、前記目標相対速度を出力する擬似微分フィルタと、を有する。
 この構成によれば、ハイパスフィルタを用いることで、簡易なフィルタにより、動揺量から目標相対位置を迅速に算出することができる。また、擬似微分フィルタを用いることで、簡易なフィルタにより、目標相対位置から目標相対速度を迅速に算出することができる。
 第4の態様として、前記相対位置に基づいて推定した推定相対位置を出力する第2カルマンフィルタ46と、前記姿勢補正加速度と、前記推定相対位置とに基づいて、前記相対位置を平滑化した平滑化相対位置を出力する第2平滑化処理部43と、前記航空機1と前記目標着地点2との間の相対速度を推定して推定相対速度を出力する相対速度推定処理部47と、前記目標相対位置と前記平滑化相対位置との位置差分、及び前記目標相対速度と前記推定相対速度との速度差分を出力する第2減算回路部54と、をさらに備え、前記位置差分及び前記速度差分に基づいて、前記航空機1を飛行制御する。
 この構成によれば、目標相対位置と平滑化相対位置との位置差分、及び目標相対速度と推定相対速度との速度差分を用いて、航空機1の飛行制御を実行することができる。このため、目標着地点2に対する、航空機1の目標点追従ホバリングを精度よく実行することができる。
 第5の態様として、前記第2減算回路部54への前記目標相対位置及び前記目標相対速度の入力の有無を切り替える切替部(切替スイッチ53)を、さらに備える。
 この構成によれば、切替部により、航空機1の目標点追従ホバリングに関する飛行制御の実行の有無を切り替えることができる。
 第6の態様として、前記第1平滑化処理部62は、前記相対位置にゲインをかけて前記平滑化相対位置を出力しており、前記動揺が発生する動揺周波数帯域f以上の周波数の帯域を、第1の周波数帯f1とし、前記動揺周波数帯域fよりも低い周波数の帯域を、第2の周波数帯f2とすると、前記第1の周波数帯f1における前記ゲインは、前記第2の周波数帯f2における前記ゲインに対して低く、前記第2の周波数帯f2における減衰係数ζが、ζ>0.7となっている。
 この構成によれば、第1の周波数帯f1は、第2の周波数帯に比して、十分にゲインが低いものとなっていることから、第1の周波数帯f1における動揺の影響を低減することができる。また、第2の周波数帯f2は、減衰係数が大きく(ζ>0.7)なることから、低周波の外乱応答が振動的にならないようにすることができる。
 第7の態様として、前記動揺量推定処理部51は、前記相対位置にゲインをかけて前記動揺量を出力しており、前記動揺が発生する動揺周波数帯域f以上の周波数の帯域を、第1の周波数帯f1とし、前記動揺周波数帯域よりも低い周波数の帯域を、第2の周波数帯とすると、前記第1の周波数帯f1における前記ゲインは、1となるようにしており、前記第2の周波数帯f2における前記ゲインは、前記第1の周波数帯f1における前記ゲインに対して低くなっている。
 この構成によれば、第1の周波数帯f1は、ゲインが1となるため、推定相対位置(X,Y)から動揺量を抽出する際に、位相を進めて、動揺を早めに検出できるようにしている。また、第2の周波数帯f2は、第1の周波数帯f1に比して、ゲインを小さくしているため、推定相対位置(X,Y)から動揺量以外の変動量を減衰することができる。
 第8の態様として、前記第1カルマンフィルタ61は、前記第2カルマンフィルタ46に比して、出力される前記推定相対位置(X,Y)の時間遅れが小さいものとなっている。
 この構成によれば、推定相対位置(X,Y)の時間遅れが小さくなるため、動揺量の推定をより正確に算出することができる。
 第9の態様に係る航空機1は、航空機1の加速度を補正した姿勢補正加速度を取得する加速度補正処理部41と、前記航空機1と目標着地点2との間の相対位置を取得する相対位置取得部(航法装置20)と、上記の航空機の位置制御システムと、を備える。
 この構成によれば、目標着地点2が動揺する場合であっても、目標着地点2に対して好適に追従するように、飛行制御される航空機1を提供することができる。
 第10の態様に係る航空機1の位置制御方法は、動揺による目標着地点2の動きに合わせて、航空機1の位置を追従させる航空機1の位置制御方法であって、前記航空機1の加速度を補正した姿勢補正加速度と、前記航空機1と前記目標着地点2との間の相対位置(X,Y)とに基づいて、前記目標着地点2の動揺量を推定するステップ(ステップS2)と、推定した前記動揺量に基づいて、前記航空機1と前記目標着地点2との間の目標となる目標相対位置と、前記航空機1と前記目標着地点2との間の目標となる目標相対速度とを出力するステップ(ステップS3)と、を備える。
 この構成によれば、姿勢補正加速度と相対位置(X,Y)とを用いて推定される動揺量に基づいて、目標相対位置及び目標相対速度を算出して出力することができる。このため、目標相対位置及び目標相対速度を用いた航空機1の飛行制御を実行することで、目標着地点2が動揺する場合であっても、航空機1を目標着地点2に好適に追従させることができる。
 1 航空機
 2 目標着地点
 5 船舶
 7 マーカー
 10 カメラ
 20 航法装置
 30 制御部
 32 画像処理部
 34 誘導演算部
 36 飛行制御部
 41 加速度補正処理部
 43 第2平滑化処理部
 46 第2カルマンフィルタ
 47 相対速度推定処理部
 51 動揺量推定処理部
 52 目標情報生成処理部
 53 切替スイッチ
 54 第2減算回路部
 61 第1カルマンフィルタ
 62 第1平滑化処理部
 63 ローパスフィルタ
 64 ハイパスフィルタ
 65 擬似微分フィルタ
 66 第1減算回路部
 100 位置制御システム

Claims (10)

  1.  動揺による目標着地点の動きに合わせて、航空機の位置を追従させる航空機の位置制御システムであって、
     前記航空機の加速度を補正した姿勢補正加速度と、前記航空機と前記目標着地点との間の相対位置とに基づいて、前記目標着地点の動揺量を推定する動揺量推定処理部と、
     推定した前記動揺量に基づいて、前記航空機と前記目標着地点との間の目標となる目標相対位置と、前記航空機と前記目標着地点との間の目標となる目標相対速度とを出力する目標情報生成部と、を備える航空機の位置制御システム。
  2.  前記動揺量推定処理部は、
     前記相対位置に基づいて推定した推定相対位置を出力する第1カルマンフィルタと、
     前記姿勢補正加速度と、前記推定相対位置とに基づいて、前記相対位置を平滑化した平滑化相対位置を出力する第1平滑化処理部と、
     前記平滑化相対位置と前記推定相対位置との差分を、前記動揺量として算出する第1減算回路部と、を備える請求項1に記載の航空機の位置制御システム。
  3.  前記目標情報生成部は、
     前記動揺量を、前記目標相対位置に変換して出力するハイパスフィルタと、
     変換された前記目標相対位置を擬似微分して、前記目標相対速度を出力する擬似微分フィルタと、を有する請求項1または2に記載の航空機の位置制御システム。
  4.  前記相対位置に基づいて推定した推定相対位置を出力する第2カルマンフィルタと、
     前記姿勢補正加速度と、前記推定相対位置とに基づいて、前記相対位置を平滑化した平滑化相対位置を出力する第2平滑化処理部と、
     前記航空機と前記目標着地点との間の相対速度を推定して推定相対速度を出力する相対速度推定処理部と、
     前記目標相対位置と前記平滑化相対位置との位置差分、及び前記目標相対速度と前記推定相対速度との速度差分を出力する第2減算回路部と、をさらに備え、
     前記位置差分及び前記速度差分に基づいて、前記航空機を飛行制御する請求項2または3に記載の航空機の位置制御システム。
  5.  前記第2減算回路部への前記目標相対位置及び前記目標相対速度の入力の有無を切り替える切替部を、さらに備える請求項4に記載の航空機の位置制御システム。
  6.  前記第1平滑化処理部は、
     前記相対位置にゲインをかけて前記平滑化相対位置を出力しており、
     前記動揺が発生する動揺周波数帯域以上の周波数の帯域を、第1の周波数帯とし、
     前記動揺周波数帯域よりも低い周波数の帯域を、第2の周波数帯とすると、
     前記第1の周波数帯における前記ゲインは、前記第2の周波数帯における前記ゲインに対して低く、
     前記第2の周波数帯における減衰係数ζが、ζ>0.7となっている請求項4または5に記載の航空機の位置制御システム。
  7.  前記動揺量推定処理部は、
     前記相対位置にゲインをかけて前記動揺量を出力しており、
     前記動揺が発生する動揺周波数帯域以上の周波数の帯域を、第1の周波数帯とし、
     前記動揺周波数帯域よりも低い周波数の帯域を、第2の周波数帯とすると、
     前記第1の周波数帯における前記ゲインは、1となるようにしており、
     前記第2の周波数帯における前記ゲインは、前記第1の周波数帯における前記ゲインに対して低くなっている請求項1から6のいずれか1項に記載の航空機の位置制御システム。
  8.  前記第1カルマンフィルタは、前記第2カルマンフィルタに比して、出力される前記推定相対位置の時間遅れが小さいものとなっている請求項4から7のいずれか1項に記載の航空機の位置制御システム。
  9.  航空機の加速度を補正した姿勢補正加速度を取得する加速度補正処理部と、
     前記航空機と目標着地点との間の相対位置を取得する相対位置取得部と、
     請求項1から8のいずれか1項に記載の航空機の位置制御システムと、を備える航空機。
  10.  動揺による目標着地点の動きに合わせて、航空機の位置を追従させる航空機の位置制御方法であって、
     前記航空機の加速度を補正した姿勢補正加速度と、前記航空機と前記目標着地点との間の相対位置とに基づいて、前記目標着地点の動揺量を推定するステップと、
     推定した前記動揺量に基づいて、前記航空機と前記目標着地点との間の目標となる目標相対位置と、前記航空機と前記目標着地点との間の目標となる目標相対速度とを出力するステップと、を備える航空機の位置制御方法。
PCT/IB2022/050233 2020-11-13 2022-01-13 航空機の位置制御システム、航空機及び航空機の位置制御方法 WO2022101895A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US18/036,809 US20230406536A1 (en) 2020-11-13 2022-01-13 Aircraft position control system, aircraft, and aircraft position control method
EP22723005.9A EP4227216A4 (en) 2020-11-13 2022-01-13 AIRCRAFT POSITION CONTROL SYSTEM, AIRCRAFT AND AIRCRAFT POSITION CONTROL METHOD

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020189572A JP2022078702A (ja) 2020-11-13 2020-11-13 航空機の位置制御システム、航空機及び航空機の位置制御方法
JP2020-189572 2020-11-13

Publications (1)

Publication Number Publication Date
WO2022101895A1 true WO2022101895A1 (ja) 2022-05-19

Family

ID=81600886

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2022/050233 WO2022101895A1 (ja) 2020-11-13 2022-01-13 航空機の位置制御システム、航空機及び航空機の位置制御方法

Country Status (4)

Country Link
US (1) US20230406536A1 (ja)
EP (1) EP4227216A4 (ja)
JP (1) JP2022078702A (ja)
WO (1) WO2022101895A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0471998A (ja) 1990-07-10 1992-03-06 Mitsubishi Heavy Ind Ltd 発着艦管制装置
JPH07304500A (ja) * 1994-05-11 1995-11-21 Tech Res & Dev Inst Of Japan Def Agency 航空機用学習型着船時期判定装置
JP2005059656A (ja) * 2003-08-08 2005-03-10 Fuji Heavy Ind Ltd 飛行体の着陸制御装置および飛行体の着陸制御方法
CN105059558A (zh) * 2015-07-16 2015-11-18 珠海云洲智能科技有限公司 无人船载无人机起降系统
US20170267374A1 (en) * 2014-11-24 2017-09-21 Sikorsky Aircraft Corporation Multispectral sensor fusion system for platform state estimation
JP2021062720A (ja) 2019-10-11 2021-04-22 三菱重工業株式会社 航空機の位置制御システム、航空機および航空機の位置制御方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9158306B2 (en) * 2009-06-12 2015-10-13 Saab Ab Centering above a predetermined area of a landing platform
US9547991B2 (en) * 2013-05-23 2017-01-17 Honeywell International Inc. Aircraft precision approach and shipboard landing control system and method
US9759809B2 (en) * 2014-07-08 2017-09-12 Sikorsky Aircraft Corporation LIDAR-based shipboard tracking and state estimation for autonomous landing
US20160034607A1 (en) * 2014-07-31 2016-02-04 Aaron Maestas Video-assisted landing guidance system and method
US10705541B2 (en) * 2015-03-27 2020-07-07 Planck Aerosystems Inc. Unmanned aircraft navigation system and method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0471998A (ja) 1990-07-10 1992-03-06 Mitsubishi Heavy Ind Ltd 発着艦管制装置
JPH07304500A (ja) * 1994-05-11 1995-11-21 Tech Res & Dev Inst Of Japan Def Agency 航空機用学習型着船時期判定装置
JP2005059656A (ja) * 2003-08-08 2005-03-10 Fuji Heavy Ind Ltd 飛行体の着陸制御装置および飛行体の着陸制御方法
US20170267374A1 (en) * 2014-11-24 2017-09-21 Sikorsky Aircraft Corporation Multispectral sensor fusion system for platform state estimation
CN105059558A (zh) * 2015-07-16 2015-11-18 珠海云洲智能科技有限公司 无人船载无人机起降系统
JP2021062720A (ja) 2019-10-11 2021-04-22 三菱重工業株式会社 航空機の位置制御システム、航空機および航空機の位置制御方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4227216A4

Also Published As

Publication number Publication date
EP4227216A4 (en) 2024-02-28
US20230406536A1 (en) 2023-12-21
JP2022078702A (ja) 2022-05-25
EP4227216A1 (en) 2023-08-16

Similar Documents

Publication Publication Date Title
JP4253239B2 (ja) 画像認識を用いた航法装置
KR101157484B1 (ko) 무인항공기 자동회수 방법
US20230027342A1 (en) Automatic landing system for vertical takeoff/landing aircraft, vertical takeoff/landing aircraft, and control method for landing of vertical takeoff/landing aircraft
KR100842104B1 (ko) Ads―b와 영상정보를 이용한 무인항공기의 자동 착륙유도 제어 방법
WO2021070518A1 (ja) 航空機の位置制御システム、航空機および航空機の位置制御方法
EP2118713A2 (en) Precision approach control
KR20160086467A (ko) 무인 항공기의 카메라 조종정보를 이용한 무인 항공기 유도제어 방법
KR101769602B1 (ko) 옵티컬 플로우와 imu 및 초음파센서를 이용한 호버링용 위치보정장치 및 위치보정방법
WO2019168410A1 (en) Drone control system
WO2022101893A1 (ja) 航空機の制御システム、航空機、航空機の制御方法及びプログラム
US20180164122A1 (en) Electronic Control Device for Controlling a Drone, Related Drone, Controlling Method and Computer Program
WO2022101895A1 (ja) 航空機の位置制御システム、航空機及び航空機の位置制御方法
EP2598841A1 (en) Method for compensating drift in a position measuring device
WO2022101894A1 (ja) 航空機の位置制御システム、航空機、及び航空機の位置制御方法
US20220308597A1 (en) System and method for tilt dead reckoning
KR101769603B1 (ko) 호버링용 위치보정장치
KR20130079881A (ko) 고정 표적을 이용한 무인항공기의 표적 위치 보정 방법 및 컴퓨터 판독 가능한 기록매체
AU2020364556B2 (en) Aircraft position control system, aircraft, and aircraft position control method
WO2023127289A1 (ja) 垂直離着陸機の自動発着システム、垂直離着陸機および垂直離着陸機の発着制御方法
AU2024204194A1 (en) Aircraft position control system, aircraft, and aircraft position control method
US20230418310A1 (en) Automatic landing system for vertical take-off and landing aircraft, vertical take-off and landing aircraft, and landing control method for vertical take-off and landing aircraft

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22723005

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18036809

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2022723005

Country of ref document: EP

Effective date: 20230512

NENP Non-entry into the national phase

Ref country code: DE