WO2022100753A1 - 光固化组合物、光学膜及其制备方法和光学产品 - Google Patents

光固化组合物、光学膜及其制备方法和光学产品 Download PDF

Info

Publication number
WO2022100753A1
WO2022100753A1 PCT/CN2021/130908 CN2021130908W WO2022100753A1 WO 2022100753 A1 WO2022100753 A1 WO 2022100753A1 CN 2021130908 W CN2021130908 W CN 2021130908W WO 2022100753 A1 WO2022100753 A1 WO 2022100753A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
substituted
oxetane
unsubstituted
photocurable composition
Prior art date
Application number
PCT/CN2021/130908
Other languages
English (en)
French (fr)
Inventor
钱晓春
Original Assignee
常州强力先端电子材料有限公司
常州强力电子新材料股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 常州强力先端电子材料有限公司, 常州强力电子新材料股份有限公司 filed Critical 常州强力先端电子材料有限公司
Publication of WO2022100753A1 publication Critical patent/WO2022100753A1/zh

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/02Simple or compound lenses with non-spherical faces
    • G02B3/08Simple or compound lenses with non-spherical faces with discontinuous faces, e.g. Fresnel lens
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/04Prisms
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings

Definitions

  • the present invention relates to the technical field of photocurable materials, in particular, to a photocurable composition, an optical film, a preparation method thereof, and an optical product.
  • optical films used in these include prism sheets used in backlights of liquid crystal display devices and the like, lenticular lenses used in stereoscopic photographs and projection screens, and overhead projectors.
  • Such an optical film is also called a shaped film, and generally includes a base material and a shaped layer laminated on the base material. Desired optical properties can be imparted by transferring the fine shape to the shaping layer using a mold or the like.
  • the traditional optical film manufacturing process is mostly made by optical grinding or precision cutting with diamond tools, which is not only difficult to produce, low yield, time-consuming and labor-intensive, and expensive and easy to break. Therefore, the optical industry has developed a processing technology for molding optics to produce resins to meet the huge market demand. For example, in the current lens production, the current industry produces heat-cured resin lenses (such as CR-39) with a baking time of up to 20 hours, while light-cured resin lenses are cured much faster during production, only a few seconds to It can be completed in ten minutes, which greatly improves the production efficiency of resin lenses.
  • heat-cured resin lenses such as CR-39
  • the photo-curing polymerization is an exothermic reaction, and the reaction heat is accumulated in the lens.
  • the degree of thermal expansion of the effect of the lens is not the same, the greater the thickness (the edge part of the myopic lens, or the central part of the reading lens), the greater the degree of expansion; on the contrary, the thinner part of the lens, the degree of expansion is much lower. If the difference in swelling is too great, the larger part of the swelling will stretch the mold before curing is complete, causing the thinner part of the lens to break away from the mold prematurely, causing it to deform and even crack.
  • the main purpose of the present invention is to provide a photocurable composition, an optical film, a preparation method thereof, and an optical product, so as to solve the problems of low yield, variability and peeling of the optical film in the prior art.
  • a photocurable composition includes a monomer, a cationic photoinitiator, a photosensitive resin and an antioxidant, and the monomer is oxetane Monomer compounds, the structural formula of oxetane-based monomer compounds is Wherein, R 1 is selected from any one of C 1 -C 5 substituted or unsubstituted alkyl groups, and R 2 is selected from C 1 -C 40 substituted or unsubstituted straight-chain alkyl, C 3 -C 40 Any of the substituted or unsubstituted branched chain alkyl groups, and the carbon or hydrogen in the straight chain alkyl group, branched chain alkyl group can be replaced by one or more hydroxyl groups, ether bonds, ester groups, -S(O) 2- , C 6 -C 30 substituted or unsubstituted aryl, C 3 -C 10 substituted or
  • R 1 is ethyl
  • R 2 is selected from any one of C 1 -C 10 substituted or unsubstituted straight-chain alkyl, C 3 -C 10 substituted or unsubstituted branched-chain alkyl .
  • At least one carbon or hydrogen in the above-mentioned straight-chain alkyl group and branched-chain alkyl group is C 6 -C 25 substituted or unsubstituted aryl group, C 3 -C 5 substituted or unsubstituted azaaryl group One of them is substituted, preferably at least one carbon or hydrogen in straight-chain alkyl, branched-chain alkyl is substituted or unsubstituted phenyl, substituted or unsubstituted biphenyl, substituted or unsubstituted 9, One of the 9-diphenylfluorenyl groups is substituted, and it is further preferred that at least one carbon or hydrogen in the branched alkyl group is substituted by phenyl, tolyl, biphenyl, 9,9-diphenylfluorenyl replaced by one of them.
  • oxetane monomer compound is selected from
  • the oxetane-based monomer compound has a viscosity of 8-3000 cps, and preferably the oxetane-based monomer compound has a refractive index ⁇ 1.499.
  • the above-mentioned antioxidant is a phenolic antioxidant, preferably the phenolic antioxidant is selected from butylated hydroxyanisole, dibutylhydroxytoluene, propyl gallate, tert-butyl hydroquinone, tea polyphenols, 2, Any one or more of 4-dimethyl-6-styrenephenol.
  • the above-mentioned photocurable composition comprises 1-99 parts by weight of monomer, 0.1-10 parts by weight of cationic photoinitiator, 1-99 parts by weight of photosensitive resin and 1-30 parts by weight of antioxidant.
  • auxiliary agents are selected from stabilizers, mold release agents, wetting agents, dispersants, slip agents, rheology modifiers, defoaming agents Any one or more of agents and enhancers.
  • the above-mentioned cationic photoinitiator is selected from any one or more of iodonium salts or sulfonium salts.
  • the above-mentioned photosensitive resin is selected from any one or more of oxetane resin, epoxy resin, vinyl ether resin, amino resin compound, preferably oxetane resin is selected from bisphenol A type oxetane resin, bisphenol F type oxetane resin, biphenyl type oxetane resin, phenol novolac type oxetane resin, cresol novolac type oxetane resin , bisphenol A novolac oxetane resin, aliphatic polyoxetane compound, cycloaliphatic oxetane resin, rosin resin modified oxetane resin, oil-free alkyd Resin modified oxetane resin, oil alkyd resin modified oxetane resin, phenolic resin modified oxetane resin, amino resin modified oxetane resin, acrylic resin modified oxygen Any one or more of oxetan
  • an optical film prepared by using the aforementioned photocurable composition.
  • a preparation method of the aforementioned optical film comprising: step S1, mixing the aforementioned monomers in the photocurable composition and the cationic photoinitiator under ultraviolet light to form a the first mixed solution; step S2, at a temperature of 0-20° C., the first mixed solution, the photosensitive resin and the antioxidant are mixed to form a second mixed solution; step S3, the second mixed solution is defoamed to obtain defoaming post-mixed solution; and step S4, at a temperature of 0-25° C., put the degassed mixed solution into a molding die for molding to obtain an optical film.
  • an optical product is provided, the optical product includes an optical film, and the optical film is the above-mentioned optical film.
  • optical products are prism sheets, convex lens sheets, Fresnel lens sheets, and diffraction gratings.
  • the oxetane compounds have the advantages of low viscosity and small curing shrinkage
  • the addition of oxetane monomers to the photocurable composition can significantly reduce the viscosity and the viscosity of the photocurable composition. reaction time, while also improving control over polymer flexibility.
  • the inventors surprisingly found that the photo-curing separation technology was adopted, and the delayed curing property of oxetane was used to break through the defects of the photo-curing technology that the stress could not be fully released, the thickness of the lens was uneven, and the yield of the optical film was low.
  • the oxetane compound of the present application contains an aryl or heteroaryl rigid group and has a relatively high refractive index
  • the optical film containing the oxetane compound is used in the manufacture of optical products , which can greatly reduce the thickness of the lens in the optical product, obtain a lightweight optical product, and overcome the problems of high production energy consumption and harsh production environment.
  • the present invention provides a photocurable composition, an optical film, a preparation method thereof, and an optical product .
  • a photocurable composition in a typical embodiment of the present application, includes a monomer, a cationic photoinitiator, a photosensitive resin and an antioxidant, and the monomer is oxetine Alkane monomer compounds, the structural formula of oxetane monomer compounds is Wherein, R 1 is selected from any one of C 1 -C 5 substituted or unsubstituted alkyl groups, and R 2 is selected from C 1 -C 40 substituted or unsubstituted straight-chain alkyl, C 3 -C 40 Any of the substituted or unsubstituted branched chain alkyl groups, and the carbon or hydrogen in the straight chain alkyl group, branched chain alkyl group can be replaced by one or more hydroxyl groups, ether bonds, ester groups, -S(O) 2- , C 6 -C 30 substituted or unsubstituted aryl, C 3 -C 10 substituted or unsubstituted heteroary
  • oxetane compounds have the advantages of low viscosity and small curing shrinkage
  • adding oxetane monomer to the photocurable composition can significantly reduce the viscosity and reaction time of the photocurable composition, and at the same time improve the Control over polymer flexibility.
  • the inventor surprisingly found that the photo-curing separation technology was adopted, and the delayed curing property of oxetane was used to break through the defects of the photo-curing technology that the stress could not be fully released, the thickness of the lens was uneven, and the yield of the optical film was low. .
  • the oxetane compound of the present application contains an aryl or heteroaryl rigid group and has a relatively high refractive index
  • the optical film containing the oxetane compound is used in the manufacture of optical products , which can greatly reduce the thickness of the lens in the optical product, obtain a lightweight optical product, and overcome the problems of high production energy consumption and harsh production environment.
  • R 1 is ethyl
  • R 2 is selected from C 1 -C 10 substituted or unsubstituted straight chain alkyl, C 3 -C 10 substituted or unsubstituted branched Any of the alkane groups.
  • At least one carbon or hydrogen in the straight-chain alkyl group and branched-chain alkyl group is substituted or unsubstituted by C 6 -C 25 substituted with one of the aryl group, C 3 -C 5 substituted or unsubstituted azaaryl group, preferably at least one carbon or hydrogen in the straight-chain alkyl group and branched-chain alkyl group is substituted or unsubstituted
  • One of phenyl, substituted or unsubstituted biphenyl, substituted or unsubstituted 9,9-diphenylfluorenyl is substituted, more preferably at least one carbon or hydrogen in branched alkyl is substituted by benzene It is substituted with one of the group consisting of: base, tolyl, biphenyl and 9,9-diphenylfluorenyl.
  • the above-mentioned oxetane-based monomer compound is selected from
  • the oxetane-based monomer compound has a viscosity of 8-3000 cps, and preferably the oxetane-based monomer compound has a refractive index ⁇ 1.499.
  • the above-mentioned oxetane-based monomer compound can more fully exert the improvement effect on properties such as flexibility of the polymer, thereby improving the yield of the optical film.
  • Controlling the viscosity of the oxetane-based monomer compound within the above range is more advantageous for controlling the viscosity of the photocurable composition, thereby facilitating the production of the optical film.
  • the control of the refractive index of the oxetane-based monomer compound is beneficial to obtain an optical film that meets the requirements of optical properties.
  • the antioxidant is preferably a phenolic antioxidant, and the phenolic antioxidant is preferably selected from the group consisting of butylated hydroxyanisole, dibutylhydroxytoluene, Any one or more of propyl gallate, tert-butyl hydroquinone, tea polyphenol, 2,4-dimethyl-6-styrene phenol.
  • the above-mentioned photocurable composition includes 1-99 parts by weight of a monomer, 0.1-10 parts by weight of a cationic photoinitiator, 1-99 parts by weight of a photosensitive resin, and 1-30 parts by weight servings of antioxidants.
  • Controlling the content of each component in the above-mentioned photocurable composition within the above-mentioned range is beneficial to improve the synergistic effect between the various components, thereby obtaining a photocurable composition with better performance.
  • the above-mentioned photocurable composition further comprises 0.1 to 100 parts by weight of auxiliary agents, preferably the auxiliary agents are selected from stabilizers, mold release agents, wetting agents, dispersing agents, slip agents, Any one or more of rheology modifiers, antifoaming agents, and reinforcing agents.
  • auxiliary agents are selected from stabilizers, mold release agents, wetting agents, dispersing agents, slip agents, Any one or more of rheology modifiers, antifoaming agents, and reinforcing agents.
  • Cationic photoinitiator as an important component in cationic photocurable coatings, will photolyze to generate active groups after being exposed to light, and can maintain activity for a long time after being mixed with the above monomers.
  • Active preferably the above-mentioned cationic photoinitiator is selected from any one or more of iodonium salts or sulfonium salts.
  • the cationic part of the above-mentioned iodonium salt and sulfonium salt type photoinitiator can enumerate the following structures:
  • the anion moiety of the above-mentioned iodonium salt and sulfonium salt-based photoinitiator includes: Cl - , Br - , PF 6 - , SbF 6 - , AsF 6 - , BF 4 - , C 4 F 9 SO 3 - , B(C 6 H 5 ) 4 - , C 8 F 17 SO 3 - , CF 3 SO 3 - , Al[OC(CF 3 ) 3 ] 4 - , (CF 3 CF 2 ) 2 PF 4 - , ( CF 3 CF 2 ) 3 PF 3 - , [(CF 3 ) 2 CF 2 ] 2 PF 4 - , [(CF 3 ) 2 CF 2 ] 3 PF 3 - , [(CF 3 ) 2 CFCF 2 ] 2 PF 4 - , [(CF 3 ) 2 CF 2 ] 3 PF 3 - , [(CF 3 ) 2
  • cationic photoinitiators with the same structure can also be used for component (C) of the present invention, examples include (but are not limited to): PAG20001, PAG20001s, PAG20002, PAG20002s, PAG30201, PAG30101, etc. produced by Trolly Company, Irgacure250 produced by BASF company, etc.
  • Resin-based composite materials have the advantages of light weight, high strength, and designable mechanical properties.
  • the above-mentioned photosensitive resin is selected from oxetane resin, epoxy resin, vinyl ether resin, and amino resin compounds.
  • oxetane resin is selected from bisphenol A type oxetane resin, bisphenol F type oxetane resin, biphenyl type oxetane resin, Phenol novolac oxetane resin, cresol novolac oxetane resin, bisphenol A novolac oxetane resin, aliphatic polyoxetane compound, cycloaliphatic oxygen oxetane resin, rosin resin modified oxetane resin, oil-free alkyd resin modified oxetane resin, oil alkyd resin modified oxetane resin, phenolic resin modified oxetane resin Cyclobutane resin, amino resin modified oxetane resin, acrylic resin modified oxetane resin, nitrocellulose modified oxetane resin, silicone resin modified oxetane resin Any one or more of; preferably
  • an optical film is provided, and the optical film is prepared by using the aforementioned photocurable composition.
  • the above-mentioned photocurable composition has the advantages of low viscosity and small curing shrinkage due to the oxetane compounds. Adding oxetane monomer to the photocurable composition can significantly reduce the viscosity and reaction of the photocurable composition. time, while also improving control over polymer flexibility. Through painstaking research, the inventors surprisingly found that the photo-curing separation technology was adopted, and the delayed curing property of oxetane was used to break through the defects of the photo-curing technology that the stress could not be fully released, the thickness of the lens was uneven, and the yield of the optical film was low. .
  • the photocurable composition containing this oxetane-type compound is applied to the manufacture of an optical film, and the optical film excellent in optical performance is obtained.
  • a preparation method of the aforementioned optical film comprising: step S1, under ultraviolet light, the monomers and cations in the aforementioned photocurable composition are The photoinitiators are mixed to form a first mixed solution; in step S2, at a temperature of 0 to 20° C., the first mixed solution, the photosensitive resin and the antioxidant are mixed to form a second mixed solution; in step S3, the second mixed solution is dehydrated foaming to obtain a mixed solution after defoaming; and in step S4, at a temperature of 0-25° C., placing the mixed solution after defoaming into a molding die for molding to obtain an optical film.
  • a second mixed solution is obtained. Carrying out the defoaming treatment of the second mixed solution is beneficial to obtain an optical film with better compactness, thereby being more conducive to obtaining an optical product with better uniformity, and then being conducive to exerting its excellent optical properties.
  • the application preferably puts the degassed mixed solution into a molding die and sets the temperature of the molding die at 25-100°C, and the molded optical film is obtained after a constant temperature of 1-5min.
  • the molded optical film is preferably demolded, edged, cleaned and dried to obtain the final optical film.
  • an optical product is provided, the optical product includes an optical film, and the optical film is the above-mentioned optical film.
  • the excellent properties of the optical film of the present application can be further exerted, and an optical product with excellent optical properties can be obtained.
  • the above-mentioned optical product is a prism sheet, a convex lens sheet, a Fresnel lens sheet, and a diffraction grating.
  • the optical film of the present application is used for prism sheets used for backlights of liquid crystal display devices, etc., lenticular lens sheets used for stereoscopic photographs and projection screens, etc., Fresnel lens sheets used for condenser lenses of projectors, etc., Diffraction gratings used in color filters, optical sheets used in game machines, toys, home appliances, etc., or optical sheets used in in-vehicle displays.
  • Example 1 As an example to illustrate the preparation of the optical film
  • A-1 The refractive index is 1.4999 and the viscosity is 8.1cps;
  • A-2 The refractive index is 1.5011 and the viscosity is 30.6cps;
  • A-3 The refractive index is 1.5069 and the viscosity is 240cps;
  • A-4 The refractive index is 1.5048 and the viscosity is 53.2cps;
  • A-5 The refractive index is 1.5325 and the viscosity is 503cps;
  • A-6 The refractive index is 1.5109 and the viscosity is 276cps;
  • B-1 tris(3-fluoro-4-methylphenyl) sulfonium hexafluorophosphate
  • B-2 4,4'-xylyl iodonium tetrakis (pentafluorophenyl) borate
  • C-1 oxetane-modified bisphenol F epoxy resin
  • C-2 oxetane-modified bisphenol S epoxy resin
  • D-1 tea polyphenol
  • D-2 2,4-dimethyl-6-styrene phenol
  • E-1 Acryloyl-containing polyether-modified polydimethylsilane (mold release agent).
  • Example 11 The difference between Example 11 and Example 1 is that the cationic photoinitiator is B-2, and an optical film is finally obtained.
  • Example 12 The difference between Example 12 and Example 1 is that the photosensitive resin is C-2, and an optical film is finally obtained.
  • Example 13 The difference between Example 13 and Example 1 is that the antioxidant is D-2, and an optical film is finally obtained.
  • Example 14 The difference between Example 14 and Example 6 is that A-5 is 99 parts by weight, B-1 is 10 parts by weight, C-1 is 99 parts by weight, D-2 is 30 parts by weight, and E-1 is 1 part by weight , and finally obtain the optical film.
  • Example 15 The difference between Example 15 and Example 6 is that A-5 is 1 part by weight, B-1 is 1 part by weight, C-1 is 1 part by weight, D-2 is 1 part by weight, and E-1 is 0.1 part by weight , and finally obtain the optical film.
  • Example 16 The difference between Example 16 and Example 1 is that the components C-1, D-1, and E-1 were added to the first mixed solution at 20° C. and stirred uniformly to form a second mixed solution.
  • the degassed mixed solution was filled into the lens forming mold, the air in the mold was removed, and the film was closed with an apron or tape.
  • Put the mold into the constant temperature equipment raise the temperature of the mold to 10 °C, and place it at a constant temperature for 1 min, then raise the temperature to 25 °C for a second time, and then keep the constant temperature for 1 min; raise the temperature to 35 °C three times, and keep the temperature constant for 1 min, take out the mold, and demold it. , edging, cleaning and drying, the optical film is finally obtained, the quality of the product after the optical film is peeled off, and the performance test is carried out.
  • Comparative Example 2 The difference between Comparative Example 2 and Example 1 is that 3,4-epoxycyclohexylmethyl-3,4-epoxycyclohexylcarboxylate and B-1 were mixed uniformly and stirred under a mercury lamp light source (5000mJ /cm 2 , 3min), partial curing occurs, and subsequent evaluation and testing operations cannot be performed.
  • a mercury lamp light source 5000mJ /cm 2 , 3min
  • UV moldability of the optical films of Examples 1 to 16, Comparative Example 1, and Comparative Example 2 was evaluated by the naked eye, and the judgment criteria were as follows: ⁇ : Completely cured; x: Incompletely cured.
  • oxetane compounds have the advantages of low viscosity and small curing shrinkage
  • adding oxetane monomer to the photocurable composition can significantly reduce the viscosity and reaction time of the photocurable composition, and at the same time improve the Control over polymer flexibility.
  • the inventors surprisingly found that the photo-curing separation technology was adopted, and the delayed curing property of oxetane was used to break through the defects of the photo-curing technology that the stress could not be fully released, the thickness of the lens was uneven, and the yield of the optical film was low.
  • the oxetane compound of the present application contains an aryl or heteroaryl rigid group and has a relatively high refractive index
  • the optical film containing the oxetane compound is used in the manufacture of optical products , which can greatly reduce the thickness of the lens in the optical product, obtain a lightweight optical product, and overcome the problems of high production energy consumption and harsh production environment.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Polyethers (AREA)
  • Epoxy Resins (AREA)

Abstract

一种光固化组合物、光学膜及其制备方法和光学产品。光固化组合物包括单体、阳离子光引发剂、感光性树脂以及抗氧化剂,单体为氧杂环丁烷类单体化合物,氧杂环丁烷类单体化合物的结构式为(I) ,其中,R 1选自C 1~C 5的取代或非取代的烷基中的任意一种,R 2选自C 1~C 40的取代或非取代的直链烷基、C 3~C 40的取代或非取代的支链烷基中的任意一种,且直链烷基、支链烷基中的至少一个碳或氢被C 6~C 30的取代或非取代的芳基、C 3~C 10的取代或非取代的杂芳基中的其中之一所取代。将包含氧杂环丁烷类化合物的光固化组合物应用于光学膜的制作中,具有易脱模、良产率较高等优势。

Description

光固化组合物、光学膜及其制备方法和光学产品 技术领域
本发明涉及光固化材料技术领域,具体而言,涉及一种光固化组合物、光学膜及其制备方法和光学产品。
背景技术
随着液晶显示装置等显示器技术的急速发展,对于其中使用的光学膜,可举出液晶显示装置等的背光中使用的棱镜片,立体照片、投影屏等中使用的双凸透镜片,高架投影仪的聚光透镜等中使用的菲涅尔透镜片,滤色器等中使用的衍射格栅,游戏机、玩具、家电等中使用的照明用赋形膜等。这种光学膜也被称作赋形膜,通常具备基材和层叠在该基材上的赋形层。通过利用模具等将微细形状转印至赋形层,可赋予所希望的光学特性。
传统的光学膜制程多由光学研磨或是以钻石刀具作精密切削而制得,不仅生产难度高、良率低、耗时费工且成本高昂、容易破损。因此,光学业者开发出模造光学的加工技术生产树脂以满足庞大的市场需求。例如现行的镜片制作中,目前行业生产热固化树脂镜片(例如商品名CR-39)烘烤时间长达20小时,而光固化树脂镜片,在生产时固化速度快得多,只需几秒到十分钟便可完成,大大提升了树脂镜片的生产效率。由于光固化在极短时间(几秒到十分钟)内完成,光固化聚合为放热反应,反应热累积在镜片内,由于厚薄不同而达加强放大(近视镜片)缩小(老花镜片)光学效果的镜片热膨胀度不一样,厚度越大(近视镜片的边缘部分,或老花镜片的中心部分),膨胀度越大;反之镜片较薄的部分,膨胀度亦低得多。如果膨胀度差异太大的话,在固化还没有完成前,较大膨胀度部分便会把模具撑开,令镜片较薄的部分过早脱离模具,从而导致其变形,甚至碎裂。
发明内容
本发明的主要目的在于提供一种光固化组合物、光学膜及其制备方法和光学产品,以解决现有技术中光学膜良率低、易变性和脱落的问题。
为了实现上述目的,根据本发明的一个方面,提供了一种光固化组合物,该光固化组合物包括单体、阳离子光引发剂、感光性树脂以及抗氧化剂,单体为氧杂环丁烷类单体化合物,氧杂环丁烷类单体化合物的结构式为
Figure PCTCN2021130908-appb-000001
其中,R 1选自C 1~C 5的取代或非取代的烷基中的任意一种,R 2选自C 1~C 40的取代或非取代的直链烷基、C 3~C 40的取代或非取代的支链烷基中的任意一种,且直链烷基、支链烷基中的碳或氢可被一个或多个羟基、醚键、酯基、-S(O) 2-、 C 6~C 30的取代或非取代的芳基、C 3~C 10的取代或非取代的杂芳基或
Figure PCTCN2021130908-appb-000002
取代,且直链烷基、支链烷基中的至少一个碳或氢被C 6~C 30的取代或非取代的芳基、C 3~C 10的取代或非取代的杂芳基中的其中之一所取代。
进一步地,上述R 1为乙基,R 2选自C 1~C 10的取代或非取代的直链烷基、C 3~C 10的取代或非取代的支链烷基中的任意一种。
进一步地,上述直链烷基、支链烷基中的至少一个碳或氢被C 6~C 25的取代或非取代的芳基、C 3~C 5的取代或非取代的氮杂芳基中的其中之一所取代,优选直链烷基、支链烷基中的至少一个碳或氢被取代或非取代的苯基、取代或非取代的联苯基、取代或非取代的9,9-二苯基芴基中的其中之一所取代,进一步地优选支链烷基中的至少一个碳或氢被苯基、甲苯基、联苯基、9,9-二苯基芴基中的其中之一所取代。
进一步地,上述氧杂环丁烷类单体化合物选自
Figure PCTCN2021130908-appb-000003
Figure PCTCN2021130908-appb-000004
Figure PCTCN2021130908-appb-000005
中的任意一种或多种,优选氧杂环丁烷类单体化合物的粘度为8~3000cps,优选氧杂环丁烷类单体化合物的折射率≥1.499。
进一步地,上述抗氧化剂为酚系抗氧化剂,优选酚系抗氧化剂选自丁基羟基茴香醚、二丁基羟基甲苯、没食子酸丙酯、叔丁基对苯二酚、茶多酚、2,4-二甲基-6-苯乙烯苯酚中的任意一种或多种。
进一步地,上述光固化组合物包括1~99重量份的单体、0.1~10重量份的阳离子光引发剂、1~99重量份的感光性树脂以及1~30重量份的抗氧化剂。
进一步地,上述光固化组合物还包括0.1~100重量份的助剂,优选助剂选自稳定剂、脱模剂、润湿剂、分散剂、爽滑剂、流变改性剂、消泡剂、增强剂中的任意一种或多种。
进一步地,上述阳离子光引发剂选自碘鎓盐或硫鎓盐中的任意一种或多种。
进一步地,上述感光性树脂选自氧杂环丁烷树脂、环氧树脂、乙烯基醚树脂、氨基树脂类化合物中的任意一种或多种,优选氧杂环丁烷树脂选自双酚A型氧杂环丁烷树脂、双酚F型氧杂环丁烷树脂、联苯型氧杂环丁烷树脂、苯酚酚醛清漆型氧杂环丁烷树脂、甲酚酚醛型氧杂环丁烷树脂、双酚A酚醛清漆型氧杂环丁烷树脂、脂肪族聚氧杂环丁烷化合物、环式脂肪族氧杂环丁烷树脂、松香树脂改性氧杂环丁烷树脂、无油醇酸树脂改性氧杂环丁烷树脂、油醇酸树脂改性氧杂环丁烷树脂、酚醛树脂改性氧杂环丁烷树脂、氨基树脂改性氧杂环丁烷 树脂、丙烯酸树脂改性氧杂环丁烷树脂、硝酸纤维素改性氧杂环丁烷树脂、有机硅树脂改性氧杂环丁烷树脂中的任意一种或多种;优选环氧树脂选自双酚A型环氧树脂、双酚F型环氧树脂、缩水甘油醚型环氧树脂、缩水甘油酯型环氧树脂、联苯型环氧树脂、苯酚酚醛清漆型环氧树脂、甲酚酚醛清漆型环氧树脂、双酚A酚醛清漆型环氧树脂、脂肪族聚缩水甘油醚化合物、环式脂肪族环氧树脂、具有硅氧烷键结部位的环氧化合物中的任意一种或多种,且环氧树脂的环氧当量大于200。
根据本发明的另一个方面,提供了一种光学膜,该光学膜采用前述的光固化组合物制备而成。
根据本发明的又一个方面,提供了一种前述的光学膜的制备方法,该制备方法包括:步骤S1,在紫外光照下将前述的光固化组合物中的单体和阳离子光引发剂混合形成第一混合液;步骤S2,0~20℃的温度下,将第一混合液、感光性树脂以及抗氧化剂混合形成第二混合液;步骤S3,将第二混合液进行脱泡,得到脱泡后混合液;以及步骤S4,0~25℃的温度下,将脱泡后混合液放入成型模具进行成型,得到光学膜。
根据本发明的又一个方面,提供了一种光学产品,该光学产品包括光学膜,该光学膜为上述的光学膜。
进一步地,上述光学产品为棱镜片、凸透镜片、菲涅尔透镜片、衍射格栅。
应用本发明的技术方案,由于氧杂环丁烷类化合物具有粘度低、固化收缩小等优点,在光固化组合物中加入氧杂环丁烷单体可以显著地降低光固化组合物的粘度和反应时间,同时还能提高对聚合物柔韧性的控制。本发明人通过潜心的研究,惊喜的发现采用光-固化分离技术,利用氧杂环丁烷延迟固化特性,突破了光固化技术应力不能完全释放、镜片薄厚不均、光学膜良率低的缺陷。因此,即使将具有芳基或杂芳基结构的氧杂环丁烷类化合物单独使用,也不用担心光学元件快速固化应力无法释放造成的早脱模、良率低、形变等问题,从而降低对生产环境(热固化场所)和生产技术(光源设备、热固化设备)的要求,进而降低光固化树脂镜片的生产成本。尤其本申请的氧杂环丁烷类化合物包含有芳基或杂芳基刚性基团,具有较高的折射率,将包含该氧杂环丁烷类化合物的光学膜用于光学产品的制作中,可以极大地降低光学产品中镜片的厚度,得到轻便的光学产品,且克服了生产能耗大、生产环境恶劣等问题。
具体实施方式
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将结合实施例来详细说明本发明。
如背景技术所分析的,现有技术中存在光学膜良率低、易变性和脱落的问题,为解决该问题,本发明提供了一种光固化组合物、光学膜及其制备方法和光学产品。
在本申请的一种典型的实施方式中,提供了一种光固化组合物,该光固化组合物包括单体、阳离子光引发剂、感光性树脂以及抗氧化剂,该单体为氧杂环丁烷类单体化合物,氧杂环丁烷类单体化合物的结构式为
Figure PCTCN2021130908-appb-000006
其中,R 1选自C 1~C 5的取代或非取代的烷基中的任意一种,R 2选自C 1~C 40的取代或非取代的直链烷基、C 3~C 40的取代或非取代的支链烷基中的任意一种,且直链烷基、支链烷基中的碳或氢可被一个或多个羟基、醚键、酯基、-S(O) 2-、C 6~C 30的取代或非取代的芳基、C 3~C 10的取代或非取代的杂芳基或
Figure PCTCN2021130908-appb-000007
取代,且直链烷基、支链烷基中的至少一个碳或氢被C 6~C 30的取代或非取代的芳基、C 3~C 10的取代或非取代的杂芳基中的其中之一所取代。
由于氧杂环丁烷类化合物具有粘度低、固化收缩小等优点,在光固化组合物中加入氧杂环丁烷单体可以显著地降低光固化组合物的粘度和反应时间,同时还能提高对聚合物柔韧性的控制。本发明人通过潜心的研究,惊喜的发现采用光-固化分离技术,利用氧杂环丁烷延迟固化特性,突破了光固化技术应力不能完全释放、镜片薄厚不均、光学膜良率低的缺陷。因此,即使将具有芳基或杂芳基结构的氧杂环丁烷类化合物单独使用,也不用担心光学元件快速固化应力无法释放造成的早脱模、良率低、形变等问题,从而降低对生产环境(热固化场所)和生产技术(光源设备、热固化设备)的要求,进而降低光固化树脂镜片的生产成本。尤其本申请的氧杂环丁烷类化合物包含有芳基或杂芳基刚性基团,具有较高的折射率,将包含该氧杂环丁烷类化合物的光学膜用于光学产品的制作中,可以极大地降低光学产品中镜片的厚度,得到轻便的光学产品,且克服了生产能耗大、生产环境恶劣等问题。
为提高氧杂环丁烷类化合物,优选上述R 1为乙基,R 2选自C 1~C 10的取代或非取代的直链烷基、C 3~C 10的取代或非取代的支链烷基中的任意一种。
为进一步提高氧杂环丁烷类化合物折射率,从而做出更薄的镜片,优选上述直链烷基、支链烷基中的至少一个碳或氢被C 6~C 25的取代或非取代的芳基、C 3~C 5的取代或非取代的氮杂芳基中的其中之一所取代,优选直链烷基、支链烷基中的至少一个碳或氢被取代或非取代的苯基、取代或非取代的联苯基、取代或非取代的9,9-二苯基芴基中的其中之一所取代,进一步地优选支链烷基中的至少一个碳或氢被苯基、甲苯基、联苯基、9,9-二苯基芴基中的其中之一所取代。
在本申请的一种实施例中,上述氧杂环丁烷类单体化合物选自
Figure PCTCN2021130908-appb-000008
Figure PCTCN2021130908-appb-000009
中的任意一种或多种,优选氧杂环丁烷类单体化合物的粘度为8~3000cps,优选氧杂环丁烷类单体化合物的折射率≥1.499。
上述氧杂环丁烷类单体化合物可以更充分的发挥对聚合物柔韧性等性能的改善作用,从而提高了光学膜良率。将氧杂环丁烷类单体化合物的粘度控制在上述范围内更有利于控制光固化组合物的粘度,从而便于光学膜的制作。氧杂环丁烷类单体化合物的折射率的控制有利于得到符合光学性能要求的光学膜。
为提高光固化组合物的抗氧化性,从而得到抗氧化性优良的光学膜,优选上述抗氧化剂为酚系抗氧化剂,优选酚系抗氧化剂选自丁基羟基茴香醚、二丁基羟基甲苯、没食子酸丙酯、叔丁基对苯二酚、茶多酚、2,4-二甲基-6-苯乙烯苯酚中的任意一种或多种。
在本申请的一种实施例中,上述光固化组合物包括1~99重量份的单体、0.1~10重量份的阳离子光引发剂、1~99重量份的感光性树脂以及1~30重量份的抗氧化剂。
将上述光固化组合物中各成分的含量控制在上述范围内,有利于提高各成分之间的协同作用,从而得到性能更好的光固化组合物。
为进一步地得到性能多样的光学膜,优选上述光固化组合物还包括0.1~100重量份的助剂,优选助剂选自稳定剂、脱模剂、润湿剂、分散剂、爽滑剂、流变改性剂、消泡剂、增强剂中的任意一种或多种。
阳离子光引发剂作为阳离子光固化涂料中重要的组成成分,在受到光照后会光解产生活性基团,在与上述单体混合后可以长期保持活性,为了保证光解剂在光解后长期保持活性,优选上述阳离子光引发剂选自碘鎓盐或硫鎓盐中的任意一种或多种。作为举例,上述碘鎓盐和硫鎓盐类光引发剂的阳离子部分可列举出如下结构:
Figure PCTCN2021130908-appb-000010
Figure PCTCN2021130908-appb-000011
Figure PCTCN2021130908-appb-000012
作为举例,上述碘鎓盐和硫鎓盐类光引发剂的阴离子部分可列举出:Cl -、Br -、PF 6 -、SbF 6 -、AsF 6 -、BF 4 -、C 4F 9SO 3 -、B(C 6H 5) 4 -、C 8F 17SO 3 -、CF 3SO 3 -、Al[OC(CF 3) 3] 4 -、(CF 3CF 2) 2PF 4 -、(CF 3CF 2) 3PF 3 -、[(CF 3) 2CF 2] 2PF 4 -、[(CF 3) 2CF 2] 3PF 3 -、[(CF 3) 2CFCF 2] 2PF 4 -、(CF 3) 2CFCF 2] 3PF 3 -
具有同类结构的市售阳离子型光引发剂也可用于本发明的组分(C),实例包括(但不限于此):由Tronly公司生产的PAG20001、PAG20001s、PAG20002、PAG20002s、PAG30201、PAG30101等,由BASF公司生产的Irgacure250等。
树脂基复合材料具有质轻、强度高、力学性能可设计等优点,为了发挥上述优点,优选上述感光性树脂选自氧杂环丁烷树脂、环氧树脂、乙烯基醚树脂、氨基树脂类化合物中的任意一种或多种,优选氧杂环丁烷树脂选自双酚A型氧杂环丁烷树脂、双酚F型氧杂环丁烷树脂、联苯型氧杂环丁烷树脂、苯酚酚醛清漆型氧杂环丁烷树脂、甲酚酚醛型氧杂环丁烷树脂、双酚A酚醛清漆型氧杂环丁烷树脂、脂肪族聚氧杂环丁烷化合物、环式脂肪族氧杂环丁烷树脂、松香树脂改性氧杂环丁烷树脂、无油醇酸树脂改性氧杂环丁烷树脂、油醇酸树脂改性氧杂环丁烷树脂、酚醛树脂改性氧杂环丁烷树脂、氨基树脂改性氧杂环丁烷树脂、丙烯酸树脂改性氧杂环丁烷树脂、硝酸纤维素改性氧杂环丁烷树脂、有机硅树脂改性氧杂环丁烷树脂中的任意一种或多种;优选环氧树脂选自双酚A型环氧树脂、双酚F型环氧树脂、缩水甘油醚型环氧树脂、缩水甘油酯型环氧树脂、联苯型环氧树脂、苯酚酚醛清漆型环氧树脂、甲酚酚醛清漆型环氧树脂、双酚A酚醛清漆型环氧树脂、脂肪族聚缩水甘油醚化合物、环式脂肪族环氧树脂、具有硅氧烷键结部位的环氧化合物中的任意一种或多种,且环氧树脂的环氧当量大于200。
在本申请的另一种典型的实施方式中,提供了一种光学膜,该光学膜采用前述的光固化组合物制备而成。
上述的光固化组合物由于氧杂环丁烷类化合物具有粘度低、固化收缩小等优点,在光固化组合物中加入氧杂环丁烷单体可以显著地降低光固化组合物的粘度和反应时间,同时还能提高对聚合物柔韧性的控制。本发明人通过潜心的研究,惊喜的发现采用光-固化分离技术,利用氧杂环丁烷延迟固化特性,突破了光固化技术应力不能完全释放、镜片薄厚不均、光学膜良率低的缺陷。因此,即使将具有芳基或杂芳基结构的氧杂环丁烷类化合物单独使用,也不用担心光学元件快速固化应力无法释放造成的早脱模、良率低、形变等问题,从而降低对生产环境(热固化场所)和生产技术(光源设备、热固化设备)的要求,进而降低了光固化树脂镜片的生产成本,尤其本申请的氧杂环丁烷类化合物包含有芳基或杂芳基刚性基团,具有较高的折射率,将包含该氧杂环丁烷类化合物的光学膜用于光学产品的制作中,可以极大地降低光学产品中光学膜(如镜片)的厚度,得到轻便的光学产品,且克服了生产能耗大、生产环境恶劣等问题。
将包含该氧杂环丁烷类化合物的光固化组合物应用于光学膜的制作中,得到光学性能优良的光学膜。
在本申请的又一种典型的实施方式中,提供了一种前述的光学膜的制备方法,该制备方法包括:步骤S1,在紫外光照下将前述的光固化组合物中的单体和阳离子光引发剂混合形成第一混合液;步骤S2,0~20℃的温度下,将第一混合液、感光性树脂以及抗氧化剂混合形成第二混合液;步骤S3,将第二混合液进行脱泡,得到脱泡后混合液;以及步骤S4,0~25℃的温度下,将脱泡后混合液放入成型模具进行成型,得到光学膜。
上述单体以及感光性树脂在阳离子光引发剂作用下聚合之后,得到第二混合液。将第二混合液进行脱泡处理后成型有利于得到密实性更好的光学膜,从而更有利于得到均匀性较好 的光学产品,进而有利于发挥其优良的光学性能。为提高成型的效率,本申请优选将脱泡后混合液放入成型模具后设置成型模具的温度为25~100℃,恒温1~5min后,得到成型的光学膜。当然,为得到更精致的光学膜,优选对成型的光学膜脱模、磨边、清洗烘干,得到最终的光学膜。
在本申请的又一种典型的实施方式中,提供了一种光学产品,该光学产品包括光学膜,该光学膜为上述的光学膜。
将本申请的光学膜应用于上述光学产品中,可以进一步地发挥本申请光学膜的优良性能,得到光学性能优良的光学产品。
在本申请的一中实施例中,上述光学产品为棱镜片、凸透镜片、菲涅尔透镜片、衍射格栅。
将本申请的上述光学膜应用于上述种类的光学产品,可以更充分的发挥本申请的光学膜的光学性能。如将本申请的光学膜用于液晶显示装置等的背光中使用的棱镜片、立体照片及投影屏等中使用的双凸透镜片、投影仪的聚光透镜等中使用的菲涅尔透镜片、滤色器中使用的衍射格栅、用于游戏机、玩具、家电等中使用的光学片或作为车载显示器中使用的光学片进行使用。
以下将结合具体是实施例和对比例,对本申请的有益效果进行说明。
光学膜的制备
以实施例1为例说明光学膜的制备
实施例1
在常温下,将A-1、B-1混合均匀,在汞灯光源下搅拌(5000mJ/cm 2,3min)形成第一混合液,接着在0℃下往形成第一混合液中加入组分C-1、D-1、E-1搅拌均匀形成第二混合液,将第二混合液进行15min的超声脱泡,得到脱泡后混合液。随后在25℃下,将脱泡后混合液充填充至镜片成型模具内,排除模具内空气,利用胶圈或胶带予以合膜。将模具放入恒温设备中,升高模具温度至10℃,恒温放置1min后,二次升高温度至25℃,再恒温1min;三次升高温度至35℃,恒温1min后取出模具,脱模、磨边、清洗烘干后,得到光学膜,观察光学膜剥离后产品优劣,并进行性能测试。
通过改变各组分的种类以及各组分含量(各组分含量的单位为重量份数),设置下述实施例2~10,如表1所示。
表1
Figure PCTCN2021130908-appb-000013
Figure PCTCN2021130908-appb-000014
其中,A-1:
Figure PCTCN2021130908-appb-000015
折射率为1.4999、粘度为8.1cps;
A-2:
Figure PCTCN2021130908-appb-000016
折射率为1.5011、粘度为30.6cps;
A-3:
Figure PCTCN2021130908-appb-000017
折射率为1.5069、粘度为240cps;
A-4:
Figure PCTCN2021130908-appb-000018
折射率为1.5048、粘度为53.2cps;
A-5:
Figure PCTCN2021130908-appb-000019
折射率为1.5325、粘度为503cps;
A-6:
Figure PCTCN2021130908-appb-000020
折射率为1.5109、粘度为276cps;
B-1:三(3-氟-4-甲基苯基)锍六氟磷酸盐;B-2:4,4'-二甲苯基碘鎓四(五氟苯基)硼酸盐;
C-1:氧杂环丁烷改性双酚F环氧树脂;C-2:氧杂环丁烷改性双酚S环氧树脂;
D-1:茶多酚;D-2:2,4-二甲基-6-苯乙烯苯酚;
E-1:含丙烯酰基的聚醚改性聚二甲基硅烷(脱模剂)。
实施例11
实施例11与实施例1的区别在于,阳离子光引发剂为B-2,最终得到光学膜。
实施例12
实施例12与实施例1的区别在于,感光性树脂为C-2,最终得到光学膜。
实施例13
实施例13与实施例1的区别在于,抗氧化剂为D-2,最终得到光学膜。
实施例14
实施例14与实施例6的区别在于,A-5为99重量份,B-1为10重量份,C-1为99重量份,D-2为30重量份,E-1为1重量份,最终得到光学膜。
实施例15
实施例15与实施例6的区别在于,A-5为1重量份,B-1为1重量份,C-1为1重量份,D-2为1重量份,E-1为0.1重量份,最终得到光学膜。
实施例16
实施例16与实施例1的区别在于,在20℃下往形成第一混合液中加入组分C-1、D-1、E-1搅拌均匀形成第二混合液。在0℃下,将脱泡后混合液充填充至镜片成型模具内,排除模具内空气,利用胶圈或胶带予以合膜。将模具放入恒温设备中,升高模具温度至10℃,恒温放置1min后,二次升高温度至25℃,再恒温1min;三次升高温度至35℃,恒温1min后取出模具,脱模、磨边、清洗烘干后,最终得到光学膜,观察光学膜剥离后产品优劣,并进行性能测试。
对比例1
对比例1与实施例1的区别在于,氧杂环丁烷类单体化合物为
Figure PCTCN2021130908-appb-000021
最终得到光学膜。
对比例2
对比例2与实施例1的区别在于,将3,4-环氧环己基甲基-3,4-环氧环已基甲酸酯、B-1混合均匀,在汞灯光源下搅拌(5000mJ/cm 2,3min),出现部分固化,无法进行后续评价测试操作。
性能评价
(1)UV成型性
根据肉眼评估实施例1至16、对比例1和对比例2的光学膜的UV成型性,其判断基准如下:○:完全固化;×:不完全固化。
(2)光学膜的离型力(可脱模性)
根据肉眼评估实施例1至16、对比例1和对比例2的光学膜的可脱模性,其判断基准如下:○:可完整脱模;×:不完全脱模或光学膜自身有破损。
(3)应力纹
将实施例1至16、对比例1和对比例2的光学膜分别置于扩散膜上后肉眼评估其透明性,其判断基准如下:○:无应力纹;×:有应力纹。
(4)透明性
使用紫外光-可见光亮度计分别测试实施例1至16、对比例1和对比例2的光学膜的透明性,其判断基准如下:○:穿透率≥92%;×:穿透率<92%。
(5)黄变性
根据肉眼评估实施例1至16、对比例1和对比例2的光学膜的黄变性,其判断基准如下:○:无黄变;○+:微黄变。
(6)折射率与阿贝数
使用多波长折射率机(SCHMIDT HAENSCH)分别测试实施例1至16、对比例1和对比例2的光学膜折射率及阿贝数。
(7)抗冲击性
参照国标GB/T5891-1986防冲击眼眼护具实验方法分别测试实施例1至16、对比例1和对比例2的光学膜的抗冲击性:○:光学膜无破损;×:光学膜碎裂或有裂痕。
将上述测试结果列于表2。
表2
Figure PCTCN2021130908-appb-000022
从以上的描述中,可以看出,本发明上述的实施例实现了如下技术效果:
由于氧杂环丁烷类化合物具有粘度低、固化收缩小等优点,在光固化组合物中加入氧杂环丁烷单体可以显著地降低光固化组合物的粘度和反应时间,同时还能提高对聚合物柔韧性的控制。本发明人通过潜心的研究,惊喜的发现采用光-固化分离技术,利用氧杂环丁烷延迟固化特性,突破了光固化技术应力不能完全释放、镜片薄厚不均、光学膜良率低的缺陷。因此,即使将具有芳基或杂芳基结构的氧杂环丁烷类化合物单独使用,也不用担心光学元件快速固化应力无法释放造成的早脱模、良率低、形变等问题,从而降低对生产环境(热固化场所)和生产技术(光源设备、热固化设备)的要求,进而降低光固化树脂镜片的生产成本。尤其本申请的氧杂环丁烷类化合物包含有芳基或杂芳基刚性基团,具有较高的折射率,将包含该氧杂环丁烷类化合物的光学膜用于光学产品的制作中,可以极大地降低光学产品中镜片的厚度,得到轻便的光学产品,且克服了生产能耗大、生产环境恶劣等问题。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (13)

  1. 一种光固化组合物,所述光固化组合物包括单体、阳离子光引发剂、感光性树脂以及抗氧化剂,其特征在于,所述单体为氧杂环丁烷类单体化合物,所述氧杂环丁烷类单体化合物的结构式为
    Figure PCTCN2021130908-appb-100001
    其中,R 1选自C 1~C 5的取代或非取代的烷基中的任意一种,R 2选自C 1~C 40的取代或非取代的直链烷基、C 3~C 40的取代或非取代的支链烷基中的任意一种,且所述直链烷基、所述支链烷基中的碳或氢可被一个或多个羟基、醚键、酯基、-S(O) 2-、C 6~C 30的取代或非取代的芳基、C 3~C 10的取代或非取代的杂芳基或
    Figure PCTCN2021130908-appb-100002
    取代,且所述直链烷基、所述支链烷基中的至少一个碳或氢被C 6~C 30的取代或非取代的芳基、C 3~C 10的取代或非取代的杂芳基中的其中之一所取代。
  2. 根据权利要求1所述的光固化组合物,其特征在于,所述R 1为乙基,所述R 2选自C 1~C 10的取代或非取代的所述直链烷基、C 3~C 10的取代或非取代的所述支链烷基中的任意一种。
  3. 根据权利要求1或2所述的光固化组合物,其特征在于,所述直链烷基、所述支链烷基中的至少一个碳或氢被C 6~C 25的取代或非取代的芳基、C 3~C 5的取代或非取代的氮杂芳基中的其中之一所取代,优选所述直链烷基、所述支链烷基中的至少一个碳或氢被取代或非取代的苯基、取代或非取代的联苯基、取代或非取代的9,9-二苯基芴基中的其中之一所取代,进一步地优选所述支链烷基中的至少一个碳或氢被苯基、甲苯基、联苯基、9,9-二苯基芴基中的其中之一所取代。
  4. 根据权利要求1至3中任一项所述的光固化组合物,其特征在于,所述氧杂环丁烷类单体化合物选自
    Figure PCTCN2021130908-appb-100003
    Figure PCTCN2021130908-appb-100004
    Figure PCTCN2021130908-appb-100005
    中的任意一种或多种,优选所述氧杂环丁烷类单体化合物的粘度为8~3000cps,优选所述氧杂环丁烷类单体化合物的折射率≥1.499。
  5. 根据权利要求1至4中任一项所述的光固化组合物,其特征在于,所述抗氧化剂为酚系抗氧化剂,优选所述酚系抗氧化剂选自丁基羟基茴香醚、二丁基羟基甲苯、没食子酸丙酯、叔丁基对苯二酚、茶多酚、2,4-二甲基-6-苯乙烯苯酚中的任意一种或多种。
  6. 根据权利要求1至5中任一项所述的光固化组合物,其特征在于,所述光固化组合物包括1~99重量份的所述单体、0.1~10重量份的所述阳离子光引发剂、1~99重量份的所述感光性树脂以及1~30重量份的所述抗氧化剂。
  7. 根据权利要求1至6中任一项所述的光固化组合物,其特征在于,所述光固化组合物还包括0.1~100重量份的助剂,优选所述助剂选自稳定剂、脱模剂、润湿剂、分散剂、爽滑剂、流变改性剂、消泡剂、增强剂中的任意一种或多种。
  8. 根据权利要求1所述的光固化组合物,其特征在于,所述阳离子光引发剂选自碘鎓盐或硫鎓盐中的任意一种或多种。
  9. 根据权利要求1所述的光固化组合物,其特征在于,所述感光性树脂选自氧杂环丁烷树脂、环氧树脂、乙烯基醚树脂、氨基树脂类化合物中的任意一种或多种,优选所述氧杂环丁烷树脂选自双酚A型氧杂环丁烷树脂、双酚F型氧杂环丁烷树脂、联苯型氧杂环丁烷树脂、苯酚酚醛清漆型氧杂环丁烷树脂、甲酚酚醛型氧杂环丁烷树脂、双酚A酚醛清漆型氧杂环丁烷树脂、脂肪族聚氧杂环丁烷化合物、环式脂肪族氧杂环丁烷树脂、松香树脂改性氧杂环丁烷树脂、无油醇酸树脂改性氧杂环丁烷树脂、油醇酸树脂改性氧杂环丁烷树脂、酚醛树脂改性氧杂环丁烷树脂、氨基树脂改性氧杂环丁烷树脂、丙烯酸树脂改性氧杂环丁烷树脂、硝酸纤维素改性氧杂环丁烷树脂、有机硅树脂改性氧杂环丁烷树脂中的任意一种或多种;优选所述环氧树脂选自双酚A型环氧树脂、双酚F型环氧树脂、缩水甘油醚型环氧树脂、缩水甘油酯型环氧树脂、联苯型环氧树脂、苯酚酚醛清漆型环氧树脂、甲酚酚醛清漆型环氧树脂、双酚A酚醛清漆型环氧树脂、脂肪族聚缩水甘油醚化合物、环式脂肪族环氧树脂、具有硅氧烷键结部位的环氧化合物中的任意一种或多种,且所述环氧树脂的环氧当量大于200。
  10. 一种光学膜,其特征在于,所述光学膜采用权利要求1至9中任一项所述的光固化组合物制备而成。
  11. 一种权利要求10所述的光学膜的制备方法,其特征在于,所述制备方法包括:
    步骤S1,在紫外光照下将权利要求1至9中任一项所述的光固化组合物中的单体和阳离子光引发剂混合形成第一混合液;
    步骤S2,0~20℃的温度下,将所述第一混合液、感光性树脂以及抗氧化剂混合形成第二混合液;
    步骤S3,将所述第二混合液进行脱泡,得到脱泡后混合液;以及
    步骤S4,0~25℃的温度下,将所述脱泡后混合液放入成型模具进行成型,得到光学膜。
  12. 一种光学产品,所述光学产品包括光学膜,其特征在于,所述光学膜为权利要求10所述的光学膜。
  13. 根据权利要求12所述的光学产品,其特征在于,所述光学产品为棱镜片、凸透镜片、菲涅尔透镜片、衍射格栅。
PCT/CN2021/130908 2020-11-16 2021-11-16 光固化组合物、光学膜及其制备方法和光学产品 WO2022100753A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011280793.9A CN114509914A (zh) 2020-11-16 2020-11-16 光固化组合物、光学膜及其制备方法和光学产品
CN202011280793.9 2020-11-16

Publications (1)

Publication Number Publication Date
WO2022100753A1 true WO2022100753A1 (zh) 2022-05-19

Family

ID=81546175

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/130908 WO2022100753A1 (zh) 2020-11-16 2021-11-16 光固化组合物、光学膜及其制备方法和光学产品

Country Status (2)

Country Link
CN (1) CN114509914A (zh)
WO (1) WO2022100753A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115926577A (zh) * 2022-12-14 2023-04-07 广州励宝新材料科技有限公司 一种延迟固化水性双组份防锈漆及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001022165A1 (fr) * 1999-09-17 2001-03-29 Hitachi Chemical Co., Ltd. Compositions a base de resine photosensibles, element photosensible contenant ces compositions, procede de production d'un motif de reserve et procede de production de carte a circuit imprime
WO2007048819A1 (en) * 2005-10-27 2007-05-03 Huntsman Advanced Materials (Switzerland) Gmbh Antimony-free photocurable resin composition and three dimensional article
US20080234455A1 (en) * 2007-03-23 2008-09-25 Daicel Chemical Industries, Ltd. Vinyl ether compounds and polymerizable compositions
CN107533957A (zh) * 2015-05-29 2018-01-02 株式会社大赛璐 纳米压印用光固化性组合物
CN107614562A (zh) * 2015-05-27 2018-01-19 株式会社大赛璐 光固化性组合物、使用其的固化物及光学部件
CN110488569A (zh) * 2018-05-15 2019-11-22 北京化工大学 一种光固化组合物及其成型材料的制备方法
CN113574086A (zh) * 2019-07-12 2021-10-29 三井化学株式会社 光固化性组合物、凹凸结构体的制造方法、形成微细凹凸图案的方法及凹凸结构体

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001022165A1 (fr) * 1999-09-17 2001-03-29 Hitachi Chemical Co., Ltd. Compositions a base de resine photosensibles, element photosensible contenant ces compositions, procede de production d'un motif de reserve et procede de production de carte a circuit imprime
WO2007048819A1 (en) * 2005-10-27 2007-05-03 Huntsman Advanced Materials (Switzerland) Gmbh Antimony-free photocurable resin composition and three dimensional article
US20080234455A1 (en) * 2007-03-23 2008-09-25 Daicel Chemical Industries, Ltd. Vinyl ether compounds and polymerizable compositions
CN107614562A (zh) * 2015-05-27 2018-01-19 株式会社大赛璐 光固化性组合物、使用其的固化物及光学部件
CN107533957A (zh) * 2015-05-29 2018-01-02 株式会社大赛璐 纳米压印用光固化性组合物
CN110488569A (zh) * 2018-05-15 2019-11-22 北京化工大学 一种光固化组合物及其成型材料的制备方法
CN113574086A (zh) * 2019-07-12 2021-10-29 三井化学株式会社 光固化性组合物、凹凸结构体的制造方法、形成微细凹凸图案的方法及凹凸结构体

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115926577A (zh) * 2022-12-14 2023-04-07 广州励宝新材料科技有限公司 一种延迟固化水性双组份防锈漆及其制备方法
CN115926577B (zh) * 2022-12-14 2023-11-21 广州励宝新材料科技有限公司 一种延迟固化水性双组份防锈漆及其制备方法

Also Published As

Publication number Publication date
CN114509914A (zh) 2022-05-17

Similar Documents

Publication Publication Date Title
CN104745104B (zh) 光固化性粘接剂组合物、偏光板及其制造方法、光学构件以及液晶显示装置
CN105985750B (zh) Uv-湿气双固化液态光学胶及其制备方法与应用
JP2017122936A (ja) 偏光板保護フィルム、偏光板、液晶表示装置および偏光板保護フィルムの製造方法
JP2014224205A (ja) 光学部品用光硬化型樹脂組成物およびそれを用いた光学部品、並びに光学部品の製法
TWI249555B (en) Resin composition for hybrid lens, method for producing hybrid lens, hybrid lens and lens system
CN110128955A (zh) 触摸屏用光热双重固化光学胶膜
WO2022100753A1 (zh) 光固化组合物、光学膜及其制备方法和光学产品
TWI740804B (zh) 接著劑、接著體、及接著體之製造方法
TWI427113B (zh) 可硬化樹脂及由其製造之物件
CN109799555A (zh) 一种耐弯折的防窥膜
CN108219608A (zh) 一种白石墨烯复合树脂硬化液及pet硬化层的制备方法
JP5415371B2 (ja) 光学レンズ用光硬化型樹脂組成物およびそれを用いた光学レンズ
TW202045568A (zh) 光硬化性樹脂組成物及使用其之三維光造形物
CN111748312B (zh) 阳离子自由基双固化胶粘剂及其制备方法
CN112011301A (zh) 一种紫外-热双固化胶粘剂及其用途
CN104755525A (zh) 放射线固化性组合物、粘接剂及偏振片
JP6807081B2 (ja) 相溶組成物、接着剤組成物、複合構造物並びに複合構造物の製造方法及び解体方法
JP5573329B2 (ja) 感光性樹脂組成物、感光性樹脂ワニス、感光性樹脂フィルム、感光性樹脂硬化物、及び可視光導光路
TWI707910B (zh) 光固化型樹脂組合物及其製備的光學器件
CN111849394B (zh) 光固化粘接剂组合物、光固化粘接剂、偏光板及光学设备
JP2015194546A (ja) 光学部品用樹脂組成物およびそれを用いた光学部品
JP5415370B2 (ja) 光硬化型樹脂組成物およびそれを用いた光学部品
JP5573405B2 (ja) 感光性樹脂組成物、感光性樹脂ワニス、感光性樹脂フィルム、感光性樹脂硬化物、及び可視光導光路
KR20090121895A (ko) 광중합성 조성물 및 이로부터 형성된 수지 경화층을포함하는 광학시트
JP2016102188A (ja) 光硬化性樹脂組成物及び高屈折性樹脂硬化体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21891273

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21891273

Country of ref document: EP

Kind code of ref document: A1