WO2022100649A1 - 风电叶片模具智能控制和监测系统及其应用 - Google Patents

风电叶片模具智能控制和监测系统及其应用 Download PDF

Info

Publication number
WO2022100649A1
WO2022100649A1 PCT/CN2021/130004 CN2021130004W WO2022100649A1 WO 2022100649 A1 WO2022100649 A1 WO 2022100649A1 CN 2021130004 W CN2021130004 W CN 2021130004W WO 2022100649 A1 WO2022100649 A1 WO 2022100649A1
Authority
WO
WIPO (PCT)
Prior art keywords
vacuum
resin
injection
sensor
mold shell
Prior art date
Application number
PCT/CN2021/130004
Other languages
English (en)
French (fr)
Inventor
金星刚
扎祖塔·乔治
Original Assignee
固瑞特模具(太仓)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202022594090.5U external-priority patent/CN214137416U/zh
Priority claimed from CN202011253006.1A external-priority patent/CN112208122A/zh
Application filed by 固瑞特模具(太仓)有限公司 filed Critical 固瑞特模具(太仓)有限公司
Publication of WO2022100649A1 publication Critical patent/WO2022100649A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C39/00Shaping by casting, i.e. introducing the moulding material into a mould or between confining surfaces without significant moulding pressure; Apparatus therefor
    • B29C39/22Component parts, details or accessories; Auxiliary operations
    • B29C39/42Casting under special conditions, e.g. vacuum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/40Shaping or impregnating by compression not applied
    • B29C70/42Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles
    • B29C70/44Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles using isostatic pressure, e.g. pressure difference-moulding, vacuum bag-moulding, autoclave-moulding or expanding rubber-moulding

Definitions

  • the invention relates to the field of wind turbine blade moulds, in particular to an intelligent control and monitoring system for wind turbine blade moulds and applications thereof.
  • wind energy As a clean and renewable energy, wind energy has been paid more and more attention by countries all over the world. Its reserves are huge.
  • the global wind energy is about 2.74 ⁇ 10 9 MW, of which the available wind energy is 2 ⁇ 10 7 MW, which is 10 times larger than the total amount of water energy that can be developed and utilized on the earth.
  • Wind has been used by people for a long time, mainly through windmills to pump water, grind noodles, etc. Now, people are interested in how to use wind to generate electricity.
  • the principle of wind power generation is to use wind to drive the blades of windmills to rotate, and then through the speed increase Increase the speed of rotation to prompt the generator to generate electricity. According to the current wind power generation technology, it is possible to start generating electricity at a breeze speed of about three meters per second. Wind power is becoming a craze in the world because wind power has no fuel issues and no radiation or air pollution.
  • the wind turbine blade is composed of glass fiber cloth, filling core material, resin and other materials.
  • the production of wind turbine blades relies on the wind turbine blade mold as the profile basis, and the production processes such as glass fiber laying, filling core material laying, resin vacuum injection, resin heating and curing are completed on the wind turbine blade mold to complete the production of wind turbine blades.
  • there is no detection system that can detect the process data in real time during the resin vacuum injection and resin heating and curing process, and cannot realize real-time monitoring and control.
  • the purpose of the present invention is to solve the deficiencies of the prior art, and to provide an intelligent control and monitoring system for wind turbine blade mould and its application.
  • the system collects and records the data of each sensor through computer software and outputs the collected data to the
  • the PLC control system realizes the heating step process of vacuuming, resin injection and heating and curing automatic switching.
  • an intelligent control and monitoring system for a wind turbine blade mold and its application includes a mold shell, and it also includes: a temperature sensor and a resistance sensor laid on the mold shell, a heating part located inside the mold shell, a vacuum part and a resin injection part located above the mold shell, and the vacuum part includes a surface vacuum sensor;
  • the temperature sensor, the resistance sensor and the surface vacuum sensor respectively send the signal to the computer terminal through the signal collector and the switch, and the signal collector transmits the signal from the temperature sensor, the resistance sensor and the surface vacuum sensor to the computer terminal through the switch;
  • the heating part, the vacuuming part and the resin injection part are respectively connected with the PLC circuit and then connected with the computer terminal through the exchanger.
  • the computer terminal sends out instructions to the PLC circuit according to the signal sent by the sensor, and the PLC circuit controls the work of each part after receiving the signal.
  • the heating part includes a heating wire layer evenly laid inside the mold shell, and the heating wire layer is used to heat the resin injected into the mold shell to accelerate the curing of the resin.
  • the vacuum extraction part further comprises: a resin injection port, a vacuum bag, an inner vacuum exhaust port A, a vacuum detection exhaust port B, a vacuum main pipeline, a vacuum detection pipeline, a vacuum electric control valve, a vacuum support Pipe A, vacuum branch pipe B and external vacuum exhaust port;
  • the vacuum main pipeline is located on one side of the mold shell, the surface vacuum sensor is installed on the upper surface of the vacuum main pipeline, one end of the vacuum detection pipeline is connected to the surface vacuum sensor, and the other end of the vacuum detection pipeline is connected to the interior of the vacuum bag.
  • the surface vacuum sensor here is used to detect the surface vacuum value of the mold shell;
  • the inner vacuum exhaust port A is located inside the vacuum bag covered on the outer surface of the mold shell and leans on the mold shell, and the inner vacuum exhaust port A is connected to the input end of the resin injection port through the vacuum branch pipe A.
  • the output end located at the top of the resin injection port is connected to the vacuum branch pipe B and connected to the vacuum main pipe, and the vacuum electric control valve is installed at the connection between the vacuum main pipe and the external vacuum exhaust port;
  • the gas in the vacuum bag enters the vacuum branch pipe A through the vacuum exhaust port, the gas in the vacuum branch pipe A enters from the input end of the resin collector, and is output from the output end at the top of the resin collector and passes through the vacuum.
  • the branch pipeline B then enters the main vacuum pipeline, and finally reaches the vacuum suction port of the docking vacuum pump.
  • the resin injection part includes: an injection electric control valve, an injection barrel, a vacuum injection pipe and a resin collector, one end of the vacuum injection pipe is connected to the injection barrel, and the other end of the vacuum injection pipe is connected to the injection barrel.
  • the resin injection port is connected to the interior of the vacuum bag
  • the injection electric control valve is installed at the connection between the injection barrel and the vacuum injection pipe
  • the resin collector is connected to the inner vacuum suction port A through the vacuum branch pipe.
  • the resin has been filled, and the overflowing part of the resin enters the vacuum branch pipe A from the inner vacuum exhaust port A and reaches the resin collector.
  • the temperature sensor is laid on the mold shell and embedded in the heating wire layer, the outer surface of the temperature sensor is flush with the surface of the mold shell, and is used to detect the temperature of the resin at this point value, curing can be calculated.
  • resistors are respectively provided on the mold shell at a position flush with the mold surface, on the mold shell at a position relative to the resin injection port, and on the mold shell and at a position relative to the inner vacuum exhaust port A. sensor.
  • the resistance sensor is embedded and laid on the mold shell, and its surface is flush with the surface of the mold shell. It is used to detect the resistance value of the resin at this point, and can judge whether the resin has reached the point and the curing of the resin; the resistance sensor is embedded and laid on the surface of the mold shell.
  • the mold shell On the mold shell, it is located on the side of the resin injection port in the vacuum bag to detect whether the resin enters the vacuum bag; the resistance sensor is embedded in the mold shell and located on the side of the vacuum exhaust port B in the vacuum bag for detection. Whether the resin injection is complete.
  • connection between the vacuum branch pipeline B and the vacuum main pipeline is provided with a main pipeline vacuum sensor, and the main pipeline vacuum sensor is used to measure the vacuum value in the vacuum main pipeline.
  • Step 1 After the PLC circuit receives the signal that the computer terminal is powered on, it controls the vacuum electric control valve to open, and starts to vacuum the inside of the vacuum bag;
  • Step 2 After continuous vacuuming for 60min-90min, the surface vacuum sensor connected with the vacuum detection pipeline detects that the vacuum value in the vacuum bag 6 is ⁇ 20mbar, the surface vacuum sensor sends the signal to the computer terminal, and the computer terminal controls the PLC circuit to close the vacuum
  • the vacuum pressure test is carried out after the electric control valve. The said vacuum pressure test is within 15min-30min of starting the pressure test. When the vacuum pressure value rises ⁇ 15mbar, it is considered that there is no vacuum leakage. If the vacuum pressure test is within 15min to 30min , when the vacuum pressure value rises >15mbar, it is considered that there is still a vacuum leak and the vacuum pressure holding test needs to be repeated.
  • the surface vacuum sensor detects that there is no vacuum leakage in the vacuum bag
  • the surface vacuum sensor sends a signal to the computer terminal, and the computer terminal receives the signal.
  • the PLC circuit is controlled to open the vacuum electric control valve and the injection electric control valve in turn, and the vacuum bag is evacuated and resin is injected at the same time;
  • Step 3 After the injection electronic control valve is opened, the resin injected into the barrel enters the vacuum bag from the vacuum injection pipe through the vacuum injection port.
  • the resistance sensor installed on the mold shell and opposite to the resin injection port will inject the resin into
  • the signal of the vacuum bag is sent to the computer terminal.
  • the computer terminal After the computer terminal receives the signal, it controls the PLC circuit to continuously open the injection electric control valve;
  • Step 4 After the resistance sensor installed on the mold shell and located on the side of the vacuum exhaust port B in the vacuum bag detects that the resin has reached the designated position, the signal is sent to the computer terminal, and the computer terminal controls the PLC circuit to close the injection power. Control the valve to stop the injection of resin into the vacuum bag;
  • Step 5 After the injection barrel stops injecting resin into the vacuum bag, if part of the resin is still injected into the vacuum bag in the vacuum injection pipe, the overflowing part of the resin enters the multi-purpose vacuum pipe from the inner vacuum exhaust port A and reaches the resin collector;
  • Step 6 After the PLC circuit is closed and injected into the electric control valve, the power supply connected to the electric heating wire layer is turned on to cure the resin, and the resistance sensor laid on the mold shell 1 detects the resistance value of the resin on the mold shell 1 in real time;
  • Step 7 The resistance sensor sends the resistance value detected in real time to the computer terminal, and the computer terminal judges whether the resin at this point reaches the glass transition temperature value according to the two values of the temperature sensor and the resistance sensor. When the data reaches the set value, The computer terminal controls the PLC circuit to turn off the vacuum electric control valve and the power supply connected to the electric heating wire layer in turn;
  • Step 8 Remove the mold shell from the system
  • the vacuum pressure-holding test is considered as no leakage of vacuum when the vacuum pressure value rises ⁇ 15mbar within 15min-30min of starting the pressure-holding test.
  • the surface vacuum sensor detects that the vacuum value in the vacuum bag does not reach ⁇ 20mbar after vacuuming for 60min ⁇ 90min, or when the vacuum pressure value rises >15mbar within 15min ⁇ 30min of the vacuum pressure holding test, it is regarded as If there is a leak in the vacuum, find the vacuum leak point with a vacuum leak detector, and after repairing the vacuum leak point, continue the vacuum pressure test until there is no vacuum leak.
  • the system program is simple, easy to operate, real-time monitoring and control of vacuum, resin temperature, resin injection, resin arrival, resin curing process;
  • Fig. 1 is the installation schematic diagram of the present invention
  • Fig. 2 is a partial enlarged view of the heating part
  • Fig. 3 is the connection schematic diagram of each component
  • FIG. 4 is a working flow chart of the present invention.
  • an intelligent control and monitoring system for a wind turbine blade mold includes a mold shell 1, a temperature sensor 2, a resistance sensor 3, a surface vacuum sensor 4, and a main pipeline.
  • the temperature sensor 2 is laid on the mold shell 1 and embedded in the heating wire layer 14, and is used to detect the temperature value of the resin at this point, and the curing condition can be calculated;
  • the resistance sensor 3 is embedded and laid on the mold shell 1, and its surface is flush with the surface of the mold shell 1. It is used to detect the resistance value of the resin at this point, and it can be judged whether the resin reaches the point and the curing of the resin; the resistance sensor 3 is embedded and laid on the mold shell 1, located on the side of the resin injection port 5 in the vacuum bag 6, to detect whether the resin enters the vacuum bag 6; the resistance sensor 3 is embedded and laid on the mold shell 1, located in the vacuum bag 6.
  • the vacuum detection suction port B71 side is used to detect whether the resin injection is completed.
  • the surface vacuum sensor 4 is installed on the main vacuum pipeline 8, and the surface vacuum sensor 4 detects the vacuum value in the vacuum bag 6 through the vacuum detection pipeline 81; the connection between the vacuum branch pipeline B101 and the vacuum main pipeline 8 is provided with a main pipeline vacuum sensor 41, The main pipeline vacuum sensor 41 is used to measure the vacuum value in the vacuum main pipeline 8 .
  • the signal collector transmits the signals from the temperature sensor 2, the resistance sensor 3 and the surface vacuum sensor 4 to the computer terminal through the switch.
  • the computer terminal sends out instructions to the PLC circuit based on the signals from the temperature sensor 2, the resistance sensor 3 and the surface vacuum sensor 4. After the PLC circuit receives the signals, it controls the heating part, the vacuuming part and the resin injection part to work.
  • Step 1 the PLC circuit controls the vacuum electric control valve 9 to open after receiving the signal that the computer terminal power supply is turned on, and starts to vacuumize the inside of the vacuum bag 6.
  • the external vacuum exhaust port 16 connected with the vacuum pump is opened.
  • the gas in the vacuum bag 6 enters the vacuum branch pipe A10 through the inner vacuum suction port A7, the gas in the vacuum branch pipe A10 enters from the input end of the resin collector 15, and is output from the output end of the top of the resin collector 15.
  • the pipeline B101 enters into the main vacuum pipeline 8, and finally reaches the vacuum exhaust port 16;
  • Step 2 When the vacuum sensor 4 connected to the vacuum detection pipeline 81 detects that the vacuum value in the vacuum bag 6 is less than or equal to 20 mbar, the surface vacuum sensor 4 sends a signal to the computer terminal, and the computer terminal controls After the PLC circuit closes the vacuum electronic control valve 9, the vacuum pressure test is carried out. The vacuum pressure test is performed within 15 minutes to 30 minutes after the start of the pressure maintenance test. When the vacuum pressure value rises ⁇ 15mbar, it is considered that there is no vacuum leakage. If the vacuum pressure is maintained Within 15min-30min of the test, when the vacuum pressure value rises >15mbar, it is considered that there is still a vacuum leak and the vacuum pressure holding test needs to be repeated.
  • the surface vacuum sensor 4 When the surface vacuum sensor 4 detects that there is no vacuum leak in the vacuum bag 6, the surface vacuum sensor 4 will signal Send to the computer terminal, after the computer terminal receives the signal, it controls the PLC circuit to open the vacuum electric control valve 9 and the injection electric control valve 11 in turn, and starts to vacuum the vacuum bag 6 and inject resin at the same time;
  • Step 3 After the injection electronic control valve 11 is opened, the resin injected into the barrel 12 enters the vacuum bag 6 from the vacuum injection pipe 13 through the vacuum injection port 5.
  • the opposite resistance sensor 3 sends the signal that the resin enters the vacuum bag to the computer terminal.
  • the computer terminal After the computer terminal receives the signal, it controls the PLC circuit to continuously open the injection electronic control valve 11;
  • Step 4 After the resistance sensor 3, which is laid on the mold shell 1 and is located on the side of the vacuum exhaust port A7 in the vacuum bag 6, detects that the resin has reached the designated position, the signal is sent to the computer terminal, and the computer terminal controls the PLC circuit. Close the injection electronic control valve 11, and stop injecting resin into the vacuum bag 6;
  • Step 5 After the injection barrel 12 stops injecting resin into the vacuum bag 6, if part of the resin is still injected into the vacuum bag 6 in the vacuum injection pipe 13, the overflowing part of the resin enters the multi-purpose vacuum pipe 10 from the inner vacuum exhaust port A7 to reach the resin. collector 15;
  • Step 6 After the PLC circuit closes the injection electric control valve 11, the power supply connected to the electric heating wire layer 14 is turned on to cure the resin, and the resistance sensor 3 laid on the mold shell 1 detects the resistance value of the resin on the mold shell 1 in real time. ;
  • Step 7 The resistance sensor 3 sends the resistance value detected in real time to the computer terminal, and the computer terminal judges whether the resin at this point reaches the glass transition temperature value according to the two values of the temperature sensor 2 and the resistance sensor 3. When the data reaches the set value When the value is reached, the computer terminal controls the PLC circuit to turn off the vacuum electric control valve 9 and the power supply connected to the electric heating wire layer 14 in turn;
  • Step 8 Remove the mold shell from the system, as shown in Figure 4.

Abstract

本发明公开了一种风电叶片模具智能控制和监测系统及其应用,该系统包括模具壳体,它还包括:敷设在模具壳体上的温度传感器和电阻传感器,位于模具壳体内部的加热部,位于模具壳体上方的抽真空部和树脂注入部,所述的抽真空部包括表面真空传感器,该方法通过电脑软件采集和记录各个传感器的数据并将采集的数据输出至PLC控制系统,实现抽真空,树脂注入和加热固化自动切换的步骤流程。

Description

风电叶片模具智能控制和监测系统及其应用 技术领域
本发明涉及风轮机叶片模具领域,具体是一种风电叶片模具智能控制和监测系统及其应用。
背景技术
风能作为一种清洁的可再生能源,越来越受到世界各国的重视。其蕴量巨大,全球的风能约为2.74×10 9MW,其中可利用的风能为2×10 7MW,比地球上可开发利用的水能总量还要大10倍。风很早就被人们利用,主要是通过风车来抽水、磨面等,而现在,人们感兴趣的是如何利用风来发电,风力发电的原理是利用风力带动风车叶片旋转,再通过增速机将旋转的速度提升,来促使发电机发电。依据目前的风力发电的技术,大约是每秒三公尺的微风速度,便可以开始发电。风力发电正在世界上形成一股热潮,因为风力发电没有燃料问题,也不会产生辐射或空气污染。
随着国家对清洁能源的大力发展,风电行业也随之迅速发展,风电叶片的兆瓦级别越来越大,风电叶片的长度从原有的二三十米到现在的一百多米,这使得在制作叶片模具时,制作时的成本变高而且操作工序繁琐。
现有技术中,风轮机叶片是由玻璃纤维布、填充芯材、树脂等材料组成。风轮机叶片的生产是依靠风轮机叶片模具作为型面基础,在风轮机叶片模具上进行玻璃纤维铺设、填充芯材铺设、树脂真空注入、树脂加热固化等生产工艺流程完成风轮机叶片的生产。而现有的制作和生产工序中,树脂真空注入到达和树脂加热固化过程都没有检测系统可以实时检测过程数据,无法实现实时监测和控制。
发明内容
发明目的:本发明的目的是为了解决现有技术的不足,提供一种风电叶片模具智能控制和监测系统及其应用,该系统通过电脑软件采集和记录各个传感器的数据并将采集的数据输出至PLC控制系统,实现抽真空,树脂注入和加热固化自动切换的加热步骤流程。
技术方案:为了实现以上目的,本发明所述的一种风电叶片模具智能控制和监测系统及其应用,它包括模具壳体,它还包括:敷设在模具壳体上的温度传感器和电阻传感器,位于模具壳体内部的加热部,位于模具壳体上方的抽真空部和树脂注入部,所述的抽真空部包括表面真空传感器;
所述的温度传感器、电阻传感器和表面真空传感器分别通过信号采集器并经交换器将信号发送至电脑终端,信号采集器将温度传感器、电阻传感器和表面真空传感器发出的信号经交换机传递电脑终端;
加热部、抽真空部和树脂注入部分别与PLC电路相连后经交换器与电脑终端相连,电脑终端根据传感器发出的信号为依据向PLC电路发出指令,PLC电路收到信号后控制各个部分工作。
作为本发明的进一步优选,所述的加热部包括均匀敷设在模具壳体内部的加热丝层,加热丝层用于加热已注入模具壳体上的树脂,使树脂加速固化。
作为本发明的进一步优选,所述的抽真部还包括:树脂注入口、真空袋、内真空抽气口A、真空检测抽气口B、真空主管道、真空检测管道、真空电控阀、真空支管道A、真空支管道B和外真空抽气口;
所述的真空主管道位于模具壳体的一侧,表面真空传感器安装在真空主管道的上表面,真空检测管道的一端与表面真空传感器相连,真空检测管道的另一端与真空袋的内部接通,此处的表面真空传感器用于检测模具壳体表面真空值;
所述的内真空抽气口A位于包覆在模具壳体外表面的真空袋的内部且靠在模具壳体上,所述的内真空抽气口A通过真空支管道A与树脂注入口的输入端接通,位于树脂注入口顶部的输出端与真空支管道B接通并与真空主管道相连,真空电控阀安装在真空主管道与外真空抽气口的连接处;
真空电控阀打开后,真空袋内的气体经真空抽气口进入真空支管道A,真空支管道A内的气体从树脂收集器的输入端进入,从树脂收集器顶部的输出端输出后经过真空支管道B后进入到真空主管道内,最终到达对接真空泵的真空抽气口。
作为本发明的进一步优选,所述的树脂注入部包括:注入电控阀、注入桶、真空注入管和树脂收集器,所述的真空注入管的一端与注入桶相连,真空注入管的另一端通过树脂注入口与真空袋的内部接通,所述的注入电控阀安装在注入桶和真空注入管的连接处,树脂收集器通过真空支管道与内真空抽气口A相连,当真空袋内树脂已经注满,溢出部分树脂从内真空抽气口A进入真空支管道A到达树脂收集器,该设计保证了该系统的安全性和工作的稳定性。
作为本发明的进一步优选,所述的温度传感器敷设在模具壳体上并嵌入加热丝层内,所述的温度传感器的外表面与模具壳体表面齐平,用于检测该点的树脂的温度值,可以计算固化情况。
作为本发明的进一步优选,在模具壳体上且与模具表面齐平位置、在模具壳体上与树脂注入口相对位置、在模具壳体上且与内真空抽气口A相对位置分别 设有电阻传感器。电阻传感器嵌入敷设在模具壳体上,其表面与模具壳体的表面齐平,用于检测该点的树脂的电阻值,可以判断该点树脂是否到达和树脂的固化情况;电阻传感器嵌入敷设在模具壳体上,位于真空袋内的树脂注入口一侧,用于检测树脂是否进入真空袋;电阻传感器嵌入敷设在模具壳体上,位于真空袋内的真空抽气口B一侧,用于检测树脂是否注入完成。
作为本发明的进一步优选,所述的真空支管道B和真空主管道的连接处设有主管道真空传感器,所述的主管道真空传感器用于测量真空主管道内真空值。
一种风电模具智能控制和监测方法,该方法的具体步骤如下:
步骤一、PLC电路收到电脑终端电源接通的信号后控制真空电控阀开启,开始对真空袋内部进行抽真空;
步骤二、当持续抽真空60min~90min后,与真空检测管道相连的表面真空传感器检测到真空袋6内的真空值≤20mbar,表面真空传感器将信号发送至电脑终端,电脑终端控制PLC电路关闭真空电控阀后进行真空保压测试,所述的真空保压测试为启动保压测试15min~30min内,真空压力值上升≯15mbar时,视为真空无泄漏,若真空保压测试15min~30min内,真空压力值上升>15mbar时,视为依然有真空泄漏并需要重复真空保压测试,当表面真空传感器检测到真空袋内真空无泄漏后,表面真空传感器将信号发送至电脑终端,电脑终端收到信号后控制PLC电路依次打开真空电控阀和注入电控阀,开始对真空袋抽真空的同时注入树脂;
步骤三、注入电控阀被打开后,注入桶内的树脂从真空注入管经真空注入口进入到真空袋内,当安装在模具壳体上且与树脂注入口位置相对的电阻传感器将树脂进入真空袋的信号发送至电脑终端,电脑终端收到信号后,控制PLC电路持续打开注入电控阀;
步骤四、敷设在模具壳体上且位于真空袋内的真空抽气口B一侧的电阻传感器检测到树脂已经到达指定位置后,将该信号发送至电脑终端,由电脑终端控制PLC电路关闭注入电控阀,停止对真空袋内进行注入树脂;
步骤五、当注入桶停止向真空袋内注入树脂后,如真空注入管内依然有部分树脂向真空袋内注入时,溢出部分树脂从内真空抽气口A进入多用真空管到达树脂收集器;
步骤六、PLC电路关闭注入电控阀后,开启与电加热丝层相连的电源对树脂进行固化,敷设在模具壳体1上的电阻传感器实时检测模具壳体1上树脂的电阻值;
步骤七、电阻传感器将实时检测的电阻值发送至电脑终端,由电脑终端根据温度传感器和电阻传感器的两个值,来判断该点树脂是否达到玻璃化温度值,当数据达到设定值时,电脑终端控制PLC电路依次关闭真空电控阀和与电加热丝层相连的电源;
步骤八、将模具壳体从本系统上移除即可,
作为本发明的进一步优选,所述的真空保压测试为启动保压测试15min~30min内,真空压力值上升≯15mbar时,视为真空无泄漏
作为本发明的进一步优选,当抽真空60min~90min后,表面真空传感器检测到真空袋内真空值没有达到≤20mbar时,或真空保压测试15min~30min内,真空压力值上升>15mbar时视为真空有泄漏,通过真空测漏仪找出真空泄漏点,并修复真空泄漏点后,继续真空保压测试,直至真空无泄漏。
有益效果:本发明所述的一种风电叶片模具智能控制和监测系统及其应用,与现有技术相比,具有以下优点:
(1):叶片生产树脂注入时,真空值数据、电阻值数据和温度值数据可实时监测;
(2):该系统显示和记录以上各种数据值,实现数据可追溯;
(3):通过软件收集各个传感器的数据并计算,得到叶片生产树脂注入时的树脂到达情况,待各个设定点的树脂都到达时,可以自动启动加热系统的加热固化程序;
(4):通过软件收集各个传感器的数据并计算,得到叶片加热固化过程的中的固化完成情况,待各个测定点的都完成固化时,可以自动停止加热系统的加热固化程序;
(5):该系统程序简单,操作方便,实时监测和控制抽真空、树脂温度、树脂注入、树脂到达、树脂固化工艺过程;
(6)当真空袋内树脂已经注满,溢出部分树脂将从内真空抽气口A进入多用真空管到达树脂收集器,该设计保证了该系统的安全性和工作的稳定性。
附图说明
图1为本发明的安装示意图;
图2为加热部的局部放大图;
图3为各部件的连接示意图;
图4为本发明的工作流程图。
具体实施方式
下面结合附图,进一步阐明本发明。
如图1、图2、图3所示,本发明所述的一种风电叶片模具智能控制和监测系统,它包括模具壳体1,温度传感器2,电阻传感器3,表面真空传感器4,主管道真空传感器41,树脂注入口5、真空袋6、内真空抽气口A7、真空检测抽气口B71、真空主管道8、真空检测管道81、真空电控阀9、真空支管道10,真空支管道B101,注入电控阀11、注入桶12、真空注入管13、加热丝层14、树脂收集器15和外真空抽气口16。
温度传感器2敷设在模具壳体1上并嵌入加热丝层14内,用于检测该点的树脂的温度值,可以计算固化情况;
电阻传感器3嵌入敷设在模具壳体1上,其表面与模具壳体1的表面齐平,用于检测该点的树脂的电阻值,可以判断该点树脂是否到达和树脂的固化情况;电阻传感器3嵌入敷设在模具壳体1上,位于真空袋6内的树脂注入口5一侧,用于检测树脂是否进入真空袋6;电阻传感器3嵌入敷设在模具壳体1上,位于真空袋6内的真空检测抽气口B71一侧,用于检测树脂是否注入完成。
表面真空传感器4安装在真空主管道8上,表面真空传感器4通过真空检测管道81检测真空袋6内的真空值;真空支管道B101和真空主管道8的连接处设有主管道真空传感器41,所述的主管道真空传感器41用于测量真空主管道8内真空值。
信号采集器将温度传感器2、电阻传感器3和表面真空传感器4发出的信号经交换机传递电脑终端。
电脑终端根据温度传感器2、电阻传感器3和表面真空传感器4发出的信号为依据向PLC电路发出指令,PLC电路收到信号后控制加热部、抽真空部和树脂注入部工作。
实施例
步骤一、PLC电路收到电脑终端电源接通的信号后控制真空电控阀9开启,开始对真空袋6内部进行抽真空,此时,与真空泵相连的外真空抽气口16被打开,此时,真空袋6内的气体经内真空抽气口A7进入真空支管道A10,真空支管道A10内的气体从树脂收集器15的输入端进入,从树脂收集器15顶部的输出端输出后经过真空支管道B101后进入到真空主管道8内,最终到达真空抽气口16;
步骤二、当持续抽真空60min~90min后,与真空检测管道81相连的表面真空传感器4检测到真空袋6内的真空值≤20mbar时,表面真空传感器4将信号发送至电脑终端,电脑终端控制PLC电路关闭真空电控阀9后进行真空保压测试,所述的真空保压测试为启动保压测试15min~30min内,真空压力值上升≯15mbar 时,视为真空无泄漏,若真空保压测试15min~30min内,真空压力值上升>15mbar时,视为依然有真空泄漏并需要重复真空保压测试,当表面真空传感器4检测到真空袋6内真空无泄漏后,表面真空传感器4将信号发送至电脑终端,电脑终端收到信号后控制PLC电路依次打开真空电控阀9和注入电控阀11,开始对真空袋6抽真空的同时注入树脂;
步骤三、注入电控阀11被打开后,注入桶12内的树脂从真空注入管13经真空注入口5进入到真空袋6内,当安装在模具壳体1上且与树脂注入口5位置相对的电阻传感器3将树脂进入真空袋的信号发送至电脑终端,电脑终端收到信号后,控制PLC电路持续打开注入电控阀11;
步骤四、敷设在模具壳体1上且位于真空袋6内的真空抽气口A7一侧的电阻传感器3检测到树脂已经到达指定位置后,将该信号发送至电脑终端,由电脑终端控制PLC电路关闭注入电控阀11,停止对真空袋6内进行注入树脂;
步骤五、当注入桶12停止向真空袋6内注入树脂后,如真空注入管13内依然有部分树脂向真空袋6内注入时,溢出部分树脂从内真空抽气口A7进入多用真空管10到达树脂收集器15;
步骤六、PLC电路关闭注入电控阀11后,开启与电加热丝层14相连的电源对树脂进行固化,敷设在模具壳体1上的电阻传感器3实时检测模具壳体1上树脂的电阻值;
步骤七、电阻传感器3将实时检测的电阻值发送至电脑终端,由电脑终端根据温度传感器2和电阻传感器3的两个值,来判断该点树脂是否达到玻璃化温度值,当数据达到设定值时,电脑终端控制PLC电路依次关闭真空电控阀9和与电加热丝层14相连的电源;
步骤八、将模具壳体从本系统上移除即可,如图4所示。
上述实施方式只为说明本发明的技术构思及特点,其目的是让熟悉该技术领域的技术人员能够了解本发明的内容并据以实施,并不能以此来限制本发明的保护范围。凡根据本发明精神实质所做出的等同变换或修饰,都应涵盖在本发明的保护范围之内。

Claims (10)

  1. 一种风电叶片模具智能控制和监测系统,它包括模具壳体(1),特征在于:它还包括:敷设在模具壳体(1)上的温度传感器(2)和电阻传感器(3),位于模具壳体(1)内部的加热部,位于模具壳体(1)上方的抽真空部和树脂注入部,所述的抽真空部包括表面真空传感器(4);
    所述的温度传感器(2)、电阻传感器(3)和表面真空传感器(4)分别通过信号采集器并经交换器将信号发送至电脑终端;
    加热部、抽真空部和树脂注入部分别与PLC电路相连后经交换器与电脑终端相连。
  2. 根据权利要求1所述的一种风电叶片模具智能控制和监测系统,其特征在于:所述的加热部包括均匀敷设在模具壳体(1)内部的加热丝层(14)。
  3. 根据权利要求1所述的一种风电叶片模具智能控制和监测系统,其特征在于:所述的抽真部还包括:树脂注入口(5)、真空袋(6)、内真空抽气口A(7)、真空检测抽气口B(71)、真空主管道(8)、真空检测管道(81)、真空电控阀(9)、真空支管道A(10)、真空支管道B(101)和外真空抽气口(16);
    所述的真空主管道(8)位于模具壳体(1)的一侧,真空检测管道(81)的一端与真空袋(6)的内部接通,真空检测管道(81)的另一端与表面真空传感器(4)相连;
    所述的内真空抽气口A(7)位于包覆在模具壳体(1)外表面的真空袋(6)的内部且靠在模具壳体(1)上,所述的内真空抽气口A(7)通过真空支管道A(10)与树脂收集器(15)的输入端接通,位于树脂收集器(15)顶部的输出端与真空支管道B(101)接通并与真空主管道(8)相连,真空电控阀(9)安装在真空主管道(8)与外真空抽气口(16)的连接处。
  4. 根据权利要求1所述的一种风电叶片模具智能控制和监测系统,其特征在于:所述的树脂注入部包括:注入电控阀(11)、注入桶(12)、真空注入管(13)和树脂收集器(15),所述的真空注入管(13)的一端与注入桶(12)相连,真空注入管(13)的另一端通过树脂注入口(5)与真空袋(6)的内部接通,所述的注入电控阀(11)安装在注入桶(12)和真空注入管(13)的连接处,树脂收集器(15)通过真空支管道A(10)与内真空抽气口A(7)相连。
  5. 根据权利要求1所述的一种风电叶片模具智能控制和监测系统,其特征在于:所述的温度传感器(2)敷设在模具壳体(1)上并嵌入加热丝层(14)内,所述的温度传感器(2)的外表面与模具壳体(1)表面齐平。
  6. 根据权利要求1所述的一种风电叶片模具智能控制和监测系统,其特征在于:在模具壳体(1)上且与模具表面齐平位置、在模具壳体(1)上与树脂注 入口(5)相对位置、在模具壳体(1)上且与内真空抽气口A(7)相对位置分别设有电阻传感器(3)。
  7. 根据权利要求3所述的一种风电叶片模具智能控制和监测系统,其特征在于:所述的真空支管道B(101)和真空主管道(8)的连接处设有主管道真空传感器(41)。
  8. 一种风电模具智能控制和监测方法,其特征在于:该方法的具体步骤如下:
    步骤一、PLC电路收到电脑终端电源接通的信号后控制真空电控阀(9)开启,开始对真空袋(6)内部进行抽真空;
    步骤二、当持续抽真空60min~90min后,表面真空传感器(4)检测到真空袋6内的真空值≤20mbar时,表面真空传感器(4)将信号发送至电脑终端,电脑终端控制PLC电路关闭真空电控阀(9)后进行真空保压测试,若真空保压测试15min~30min内,真空压力值上升>15mbar时,视为依然有真空泄漏并需要重复真空保压测试,当表面真空传感器(4)检测到真空袋(6)内真空无泄漏后,表面真空传感器(4)将信号发送至电脑终端,电脑终端收到信号后控制PLC电路依次打开真空电控阀(9)和注入电控阀(11),开始对真空袋(6)抽真空的同时注入树脂;
    步骤三、注入电控阀(11)被打开后,注入桶(12)内的树脂从真空注入管(13)经真空注入口(5)进入到真空袋(6)内,当安装在模具壳体(1)上且与树脂注入口(5)位置相对的电阻传感器(3)将树脂进入真空袋的信号发送至电脑终端,电脑终端收到信号后,控制PLC电路持续打开注入电控阀(11);
    步骤四、敷设在模具壳体(1)上且位于真空袋(6)内的真空抽气口A(7)一侧的电阻传感器(3)检测到树脂已经到达指定位置后,将该信号发送至电脑终端,由电脑终端控制PLC电路关闭注入电控阀(11),停止对真空袋(6)内进行注入树脂;
    步骤五、当注入桶(12)停止向真空袋(6)内注入树脂后,如真空注入管(13)内依然有部分树脂向真空袋(6)内注入时,溢出部分树脂从内真空抽气口A(7)进入多用真空管(10)到达树脂收集器(15);
    步骤六、PLC电路关闭注入电控阀(11)后,开启与电加热丝层(14)相连的电源对树脂进行固化,敷设在模具壳体1上的电阻传感器(3)实时检测模具壳体1上树脂的电阻值;
    步骤七、电阻传感器(3)将实时检测的电阻值发送至电脑终端,由电脑终端根据温度传感器(2)和电阻传感器(3)的两个值,来判断该点树脂是否达到 玻璃化温度值,当数据达到设定值时,电脑终端控制PLC电路依次关闭真空电控阀(9)和与电加热丝层(14)相连的电源;
    步骤八、将模具壳体从本系统上移除即可,
  9. 根据权利要求8所述的一种风电叶片模具智能控制和监测系统,其特征在于:所述的真空保压测试为启动保压测试15min~30min内,真空压力值上升≯15mbar时,视为真空无泄漏
  10. 根据权利要求8所述的一种风电叶片模具智能控制和监测系统,其特征在于:当抽真空60min~90min后,表面真空传感器(4)检测到真空袋(6)内真空值没有达到≤20mbar时,或真空保压测试15min~30min内,真空压力值上升>15mbar时视为真空有泄漏,通过真空测漏仪找出真空泄漏点,并修复真空泄漏点后,继续真空保压测试,直至真空无泄漏。
PCT/CN2021/130004 2020-11-11 2021-11-11 风电叶片模具智能控制和监测系统及其应用 WO2022100649A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202022594090.5 2020-11-11
CN202022594090.5U CN214137416U (zh) 2020-11-11 2020-11-11 风电叶片模具智能控制和监测系统
CN202011253006.1A CN112208122A (zh) 2020-11-11 2020-11-11 风电叶片模具智能控制和监测系统及其应用
CN202011253006.1 2020-11-11

Publications (1)

Publication Number Publication Date
WO2022100649A1 true WO2022100649A1 (zh) 2022-05-19

Family

ID=81600767

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/130004 WO2022100649A1 (zh) 2020-11-11 2021-11-11 风电叶片模具智能控制和监测系统及其应用

Country Status (1)

Country Link
WO (1) WO2022100649A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5432435A (en) * 1992-09-22 1995-07-11 Brigham Young University Detection of cross-linking in pre-cure stage polymeric materials by measuring their impedance
JP2004130723A (ja) * 2002-10-11 2004-04-30 Mitsubishi Heavy Ind Ltd 繊維強化樹脂構造体の製造方法及び、その製造装置
US20090011063A1 (en) * 2006-07-06 2009-01-08 Comtek Advanced Structures Limited System for resin curing
CN107953575A (zh) * 2017-10-25 2018-04-24 甘肃重通成飞新材料有限公司 一种风电叶片成型用真空灌注装置
CN108145993A (zh) * 2016-12-02 2018-06-12 山东双科技股份有限公司 智能化叶片模具
CN109189015A (zh) * 2018-08-31 2019-01-11 国电联合动力技术(连云港)有限公司 一种大型风电叶片生产过程智能控制系统
CN110328868A (zh) * 2019-07-05 2019-10-15 国电联合动力技术(连云港)有限公司 一种风机叶片的全自动智能化真空灌注系统及灌注方法
CN112208122A (zh) * 2020-11-11 2021-01-12 固瑞特模具(太仓)有限公司 风电叶片模具智能控制和监测系统及其应用

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5432435A (en) * 1992-09-22 1995-07-11 Brigham Young University Detection of cross-linking in pre-cure stage polymeric materials by measuring their impedance
JP2004130723A (ja) * 2002-10-11 2004-04-30 Mitsubishi Heavy Ind Ltd 繊維強化樹脂構造体の製造方法及び、その製造装置
US20090011063A1 (en) * 2006-07-06 2009-01-08 Comtek Advanced Structures Limited System for resin curing
CN108145993A (zh) * 2016-12-02 2018-06-12 山东双科技股份有限公司 智能化叶片模具
CN107953575A (zh) * 2017-10-25 2018-04-24 甘肃重通成飞新材料有限公司 一种风电叶片成型用真空灌注装置
CN109189015A (zh) * 2018-08-31 2019-01-11 国电联合动力技术(连云港)有限公司 一种大型风电叶片生产过程智能控制系统
CN110328868A (zh) * 2019-07-05 2019-10-15 国电联合动力技术(连云港)有限公司 一种风机叶片的全自动智能化真空灌注系统及灌注方法
CN112208122A (zh) * 2020-11-11 2021-01-12 固瑞特模具(太仓)有限公司 风电叶片模具智能控制和监测系统及其应用

Similar Documents

Publication Publication Date Title
CN103526761B (zh) 大体积混凝土自动温控、养护装置及方法
CN106440583A (zh) 空调热泵热水机及其防冻控制方法
CN214137416U (zh) 风电叶片模具智能控制和监测系统
WO2022100649A1 (zh) 风电叶片模具智能控制和监测系统及其应用
CN112208122A (zh) 风电叶片模具智能控制和监测系统及其应用
CN107676272A (zh) 一种离心泵运行工况的快速调节装置
CN205807847U (zh) 一种防冻燃气热水器
CN219618983U (zh) 一种应急移动救援车
CN112349194A (zh) 一种新型多功能水泵教学综合实验装置及综合实验方法
CN108544771B (zh) 用于风力发电机组的叶片裂纹的修复方法
CN202994395U (zh) 模具水路渗漏检测装置
CN206235430U (zh) 一种蒸汽管路压力测量装置的防冻结构
CN107219045A (zh) 一种燃气轮机的燃料阀门泄漏测试方法和系统
CN108915958A (zh) 风力发电水冷系统性能实验平台与其测试方法
CN204064591U (zh) 集热器流道立式自动试压机
CN209937761U (zh) 风电叶片模具用管道加热式系统
CN217030449U (zh) 一种用于压力供水管道修复的蒸汽发生器
CN206346831U (zh) 一种能源节约型电热联动发电机组
CN217993178U (zh) 一种风电叶片模具用加热设备
CN206022524U (zh) 可在低温下快速开启的质子交换膜燃料电池排氢系统
CN205808648U (zh) 火电厂真空系统严密性在线监测结构
CN204142432U (zh) 集热器流道卧式自动试压机
CN210603520U (zh) 一种基于热扩散原理的乏池液位计
CN202114891U (zh) 一种多功能模温机
CN220151658U (zh) 一种用于线聚焦液压驱动系统的可靠性试验装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21891169

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21891169

Country of ref document: EP

Kind code of ref document: A1