WO2022100635A1 - Ngf抗体在cipn性疼痛中的应用 - Google Patents

Ngf抗体在cipn性疼痛中的应用 Download PDF

Info

Publication number
WO2022100635A1
WO2022100635A1 PCT/CN2021/129914 CN2021129914W WO2022100635A1 WO 2022100635 A1 WO2022100635 A1 WO 2022100635A1 CN 2021129914 W CN2021129914 W CN 2021129914W WO 2022100635 A1 WO2022100635 A1 WO 2022100635A1
Authority
WO
WIPO (PCT)
Prior art keywords
pain
monoclonal antibody
group
induced
chemotherapy
Prior art date
Application number
PCT/CN2021/129914
Other languages
English (en)
French (fr)
Inventor
王春河
林以均
谢作斌
丁华平
陈艺丽
李欢欢
Original Assignee
达石药业(广东)有限公司
上海迈石生物技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 达石药业(广东)有限公司, 上海迈石生物技术有限公司 filed Critical 达石药业(广东)有限公司
Priority to US18/036,548 priority Critical patent/US20240009304A1/en
Publication of WO2022100635A1 publication Critical patent/WO2022100635A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/395Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum
    • A61K39/39533Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum against materials from animals
    • A61K39/3955Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum against materials from animals against proteinaceous materials, e.g. enzymes, hormones, lymphokines
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/335Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
    • A61K31/337Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having four-membered rings, e.g. taxol
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/47Quinolines; Isoquinolines
    • A61K31/475Quinolines; Isoquinolines having an indole ring, e.g. yohimbine, reserpine, strychnine, vinblastine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K33/00Medicinal preparations containing inorganic active ingredients
    • A61K33/24Heavy metals; Compounds thereof
    • A61K33/243Platinum; Compounds thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • A61K45/06Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/02Drugs for disorders of the nervous system for peripheral neuropathies
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/22Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against growth factors ; against growth regulators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/505Medicinal preparations containing antigens or antibodies comprising antibodies
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/55Medicinal preparations containing antigens or antibodies characterised by the host/recipient, e.g. newborn with maternal antibodies
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/20Immunoglobulins specific features characterized by taxonomic origin
    • C07K2317/24Immunoglobulins specific features characterized by taxonomic origin containing regions, domains or residues from different species, e.g. chimeric, humanized or veneered
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/56Immunoglobulins specific features characterized by immunoglobulin fragments variable (Fv) region, i.e. VH and/or VL
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/70Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
    • C07K2317/76Antagonist effect on antigen, e.g. neutralization or inhibition of binding

Definitions

  • the invention belongs to the field of biomedicine, and in particular, the invention relates to the application of an NGF antibody in CIPN pain.
  • chemotherapy-induced peripheral neuropathy is a common adverse reaction of cancer treatment, and the proportion of chemotherapy-induced peripheral neuropathy (CIPN) pain in chemotherapy patients ranges from 40% to 70%.
  • Clinical manifestations include pain, numbness, and tingling.
  • CIPN chemotherapy-induced peripheral neuropathy
  • Medications commonly used to treat neuropathic pain such as amitriptyline, gabapentin, and pregaline, do not appear to be more effective than placebo in the treatment of pain in CIPN.
  • Duloxetine is the only non-opioid drug shown to be effective in the treatment of pain associated with CIPN.
  • Duloxetine is a selective serotonin (5-HT) and norepinephrine (NE) reuptake inhibitor.
  • 5-HT serotonin
  • NE norepinephrine
  • the results of preclinical studies have shown that duloxetine is a strong inhibitor of neuronal 5-HT and NE reuptake, and has a relatively weak inhibitory effect on dopamine reuptake.
  • the results of in vitro studies show that duloxetine has no significant affinity with dopaminergic receptors, adrenergic receptors, cholinergic receptors, histaminergic receptors, opioid receptors, glutamate receptors, and GABA receptors.
  • Duloxetine does not inhibit monoamine oxidase.
  • Duloxetine has clinical antidepressant effect, but the mechanism of its analgesic effect in CIPN is not clear
  • CIPN pain Based on the unsatisfactory effect of common clinical analgesics in the treatment of CIPN pain, the mechanism of CIPN pain may not be consistent with common acute and chronic pain. For this reason, drugs with obvious analgesic effects in other pains cannot be directly used for CIPN pain.
  • the pain caused by chemotherapeutic drugs is not caused by a single mechanism, but is the result of the mutual influence and interaction of multiple factors and links.
  • the corresponding treatment is also more complex, and there are many factors that affect the treatment effect.
  • the symptomatic treatment-based program in clinical practice can temporarily relieve the pain of patients with chemotherapy-induced neuropathic pain to a certain extent, but further research and exploration are needed to obtain satisfactory curative effect.
  • the purpose of the present invention is to provide a humanized recombinant monoclonal antibody targeting nerve growth factor (Nerve growth factor, NGF), which can effectively inhibit chemotherapy-induced peripheral neuropathy (CIPN) pain.
  • Nem growth factor Neve growth factor, NGF
  • CIPN chemotherapy-induced peripheral neuropathy
  • a monoclonal antibody targeting nerve growth factor for the preparation of a medicament for the treatment and/or prevention of chemotherapy-induced peripheral neuropathy pain, wherein the chemotherapy Induced peripheral neuropathy is caused by chemotherapeutic agents.
  • chemotherapy-induced peripheral neuropathy pain is ineffective after conventional analgesics, wherein the conventional analgesics are selected from the group consisting of morphine, cannabis, tetrahydrocannabinoid and derivatives Substances, Dermatin, Fentanyl, Codeine, Naproxen (Naproxen), Aspirin, Amitriptyline, Gabapentin, Acetaminophen, Diclofenac, Ibuprofen, Morphine such as duloxetine, or pregaline, marijuana, and non-steroidal anti-inflammatory analgesics.
  • the conventional analgesics are selected from the group consisting of morphine, cannabis, tetrahydrocannabinoid and derivatives Substances, Dermatin, Fentanyl, Codeine, Naproxen (Naproxen), Aspirin, Amitriptyline, Gabapentin, Acetaminophen, Diclofenac, Ibuprofen, Morphine such as duloxetine
  • the monoclonal antibody is a humanized recombinant monoclonal antibody.
  • the heavy chain variable region of the monoclonal antibody targeting nerve growth factor has the amino acid sequence shown in SEQ ID NO: 1.
  • the light chain variable region of the monoclonal antibody targeting nerve growth factor has the amino acid sequence shown in SEQ ID NO:2.
  • the heavy chain variable region of the monoclonal antibody targeting nerve growth factor has the amino acid sequence shown in SEQ ID NO:1
  • the light chain variable region has the amino acid sequence shown in SEQ ID NO:2 amino acid sequence shown.
  • the heavy chain and light chain sequences of the monoclonal antibody are shown in SEQ ID NO:3 and SEQ ID NO:4.
  • the chemotherapeutic agent is selected from the group consisting of taxanes, platinums, vinca alkaloids, gemcitabine, bortezomib, thalidomide, vinorelbine, or a combination thereof.
  • the chemotherapeutic agent is selected from the group consisting of paclitaxel, cisplatin, vincristine, or a combination thereof.
  • the one or more chemotherapeutic agents are used for cancer treatment.
  • the cancer is selected from: ovarian cancer, cervical cancer, colorectal cancer, prostate cancer, breast cancer, testicular cancer, leukemia, neuroblastoma, Hodgkin lymphoma, non-Hodgkin's lymphoma Gold lymphoma and non-small cell lung cancer.
  • the monoclonal antibody targeting nerve growth factor is administered before, during or after the administration of the chemotherapeutic agent.
  • the dosage of the monoclonal antibody targeting nerve growth factor is 50-2000mg/50kg.
  • the monoclonal antibody targeting nerve growth factor significantly increases the pain threshold of CIPN.
  • the monoclonal antibody targeting nerve growth factor significantly improves the CIPN pain score.
  • composition comprising i) one or more monoclonal antibodies targeting nerve growth factor;
  • the monoclonal antibody targeting nerve growth factor is DS002.
  • the pharmaceutical composition may further comprise other drugs for the treatment and/or prevention of chemotherapy-induced peripheral neuropathy, and the other drugs for the treatment and/or prevention of chemotherapy-induced peripheral neuropathy include small Molecular drugs (such as CXCR2 inhibitors, PARP inhibitors, etc.).
  • the pharmaceutical composition is an injection.
  • the monoclonal antibody targeting nerve growth factor or A pharmaceutical composition comprising the same, wherein the treatment cycle is 6 days, 1 week, 2 weeks, 3 weeks, 4 weeks, 5 weeks or 6 weeks.
  • a method of treating and/or preventing chemotherapy-induced peripheral neuropathy pain comprising administering to a subject in need thereof a therapeutically effective amount of a monoclonal antibody targeting a nerve growth factor.
  • kits of medicaments for the treatment and/or prevention of chemotherapy-induced peripheral neuropathy pain comprising a container in which a single drug targeting nerve growth factor is A cloned antibody or a pharmaceutical composition containing the same; and a label or instructions stating that the kit is used for the treatment and/or prevention of chemotherapy-induced peripheral neuropathy pain.
  • the kit further includes a companion diagnostic reagent for detecting NGF.
  • the diagnostic reagent is used to detect the quantity, activity and the like of NGF.
  • kits according to the third aspect for the treatment and/or prevention of chemotherapy-induced peripheral neuropathy pain.
  • Figure 1 shows a flow chart of the dosing of paclitaxel-induced rat neuropathic pain model.
  • Figure 2 shows a bar graph of changes in the threshold of mechanical paw withdrawal of animals in each group during the paclitaxel-induced model test.
  • Fig. 3 shows the change curve of the mechanical paw withdrawal threshold of animals in each group during the paclitaxel-induced model test.
  • Figure 4 shows the changes in the acetone-induced foot withdrawal response scores of animals in each group during the paclitaxel-induced model test.
  • Figure 5 shows the frequency of cold-triggered pain response in each group of animals during the paclitaxel-induced model test.
  • Figure 6 shows a bar graph of changes in the threshold of mechanical paw withdrawal of animals in each group during the vincristine-induced model test.
  • Fig. 7 shows the change curve of the mechanical paw withdrawal threshold of animals in each group during the vincristine-induced model test.
  • Figure 8 shows the changes in the acetone-induced foot withdrawal response scores of animals in each group during the vincristine-induced model test.
  • Fig. 9 shows the frequency of cold-triggered pain response of animals in each group during the vincristine-induced model test.
  • Figure 10 shows a histogram of changes in the threshold of mechanical paw withdrawal of animals in each group during the cisplatin-induced model test.
  • Fig. 11 shows the change curve of the mechanical paw withdrawal threshold of animals in each group during the cisplatin-induced model test.
  • Figure 12 shows the changes in the acetone-induced foot withdrawal response scores of animals in each group during the cisplatin-induced model test.
  • Figure 13 shows the frequency of cold-triggered pain response in each group of animals during the cisplatin-induced model test.
  • Figure 14 shows the amino acid sequence of the humanized recombinant monoclonal antibody DS002.
  • a humanized recombinant monoclonal antibody targeting nerve growth factor (such as DS002) can effectively inhibit chemotherapy-induced peripheral neuropathy (CIPN) pain with low side effects .
  • CIPN chemotherapy-induced peripheral neuropathy
  • conventional or potent analgesics cannot effectively relieve CIPN pain caused by chemotherapeutic agents (eg, taxanes, platinums, vincristines).
  • chemotherapeutic agents eg, taxanes, platinums, vincristines.
  • Invented antibodies can actually effectively relieve these refractory or intractable CIPN pains.
  • the inventors have completed the present invention.
  • treatment is meant to include any treatment of a disease and/or disorder in an animal, particularly a human, including: (i) inhibiting the disease and/or disorder, i.e. arresting its progression; (ii) alleviating the disease and/or /or condition, ie, leading to regression of the disease and/or condition.
  • treating CIPN pain includes preventing or alleviating CIPN pain, or alleviating or alleviating a condition of CIPN pain.
  • prevention refers to (i) preventing the development of a disease and/or disorder; and/or (ii) preventing the disease and/or disorder from getting worse in a state where the disease and/or disorder has already developed.
  • CIPN Chemotherapy-induced peripheral neuropathy
  • chemotherapy-induced peripheral neuropathy refers primarily to a group of dose-dependent tumor chemotherapeutic drugs-induced peripheral neuropathy.
  • the drugs that cause CIPN mainly include platinum chemotherapy drugs, anti-tubulin drugs, suramin sodium, thalidomide (TLD), epothilone and bortezomib.
  • TLD thalidomide
  • CIPN affects the life of patients with breast, colorectal, testicular and hematopoietic malignancies after chemotherapy.
  • CIPN chronic or intermittent, such as flashing or stabbing), burning, tingling ("pins and needles” or electric/shock-like pain), anesthesia ( It can be numbness or reduced ability to feel pressure, touch, heat or cold) etc.
  • “Chemotherapeutic agent” or “antineoplastic agent” refers to the use of an effective amount of a drug to reduce, prevent and/or delay metastasis or tumor growth, or to kill tumor cells by causing necrosis or apoptosis of tumor cells to reduce, prevent and/or delay An agent for the metastasis or growth of a tumor in a subject with a neoplastic disease.
  • Chemotherapy is currently one of the most effective means of treating cancer, and together with surgery and radiotherapy, it is called the three major cancer treatments. Surgery and radiotherapy are local treatments and are only effective for the tumor at the treatment site.
  • Chemotherapy is a means of systemic treatment. No matter what route of administration is used (oral, intravenous and body cavity administration, etc.), chemotherapy drugs will spread to most organs and tissues of the body along with blood circulation. Therefore, chemotherapy is the main treatment method for some tumors with a tendency of systemic dissemination and intermediate and advanced tumors that have metastasized.
  • chemotherapeutic agents of the present invention include taxanes (paclitaxel), platinums (eg, cisplatin, carboplatin, oxaliplatin), vinca alkaloids (vincristine), thalidomide, and the like.
  • Paclitaxel is an anticancer drug extracted from taxane, which mainly plays the role of inhibiting the malignant proliferation of tumor cells by promoting the polymerization of tubulin in cells, maintaining the stability of tubulin, and inhibiting cell mitosis.
  • Paclitaxel is widely used in the treatment of solid tumors, and two serious adverse reactions after paclitaxel chemotherapy are myelosuppression and neuropathic pain.
  • Neuropathic pain caused by paclitaxel is mainly manifested as peripheral sensory hyperalgesia, burning pain, irritation and numbness and other symptoms, which can last for several months to several years after paclitaxel is discontinued. , there is currently no effective treatment. Some cancer patients treated with paclitaxel even had to discontinue treatment due to severe pain.
  • Targeted nerve growth factor belongs to the neurotrophic factor family, originally extracted from mouse submandibular gland and snake venom, and exists in almost all vertebrates. NGF exists in different multimers (precursors) in different species, in which the ⁇ subunit has complete biological activity of NGF and is called ⁇ -NGF; the mature free ⁇ -NGF consists of two 118 amino acid polypeptides formed by non-covalent bonds. Current studies suggest that in embryos and juvenile animals, NGF promotes the growth, differentiation and loss repair of peripheral sensory and sympathetic neurons. In adult animals, NGF mainly regulates inflammatory responses and sensitizes nociceptors under conditions of injury and inflammation.
  • NGF binds to the NGF functional receptor TrkA on the surface of nociceptors, it activates signaling pathways such as cytoplasmic ERK and PLC/PKC, reduces the threshold of neuronal action potential, increases neuronal excitability, and sensitizes pain sensation.
  • the terms "antibody of the invention” or “anti-NGF antibody of the invention” are used interchangeably and refer to an antibody that specifically targets NGF, particularly human NGF.
  • the antibodies of the present invention are preferably monoclonal antibodies.
  • the antibody can be an intact antibody or an active fragment of an antibody. It should be understood that the term also includes single chain antibodies (scFv), Nanobodies.
  • the antibodies of the invention may be of animal origin (eg, murine origin), humanized, chimeric, fully human, or a combination thereof.
  • the heavy chain variable region of the humanized recombinant monoclonal antibody targeting nerve growth factor has the amino acid sequence shown in SEQ ID NO: 1.
  • the light chain variable region of the humanized recombinant monoclonal antibody targeting nerve growth factor has the amino acid sequence shown in SEQ ID NO:2.
  • the heavy chain variable region of the humanized recombinant monoclonal antibody targeting nerve growth factor has the amino acid sequence shown in SEQ ID NO:1, and the light chain variable region has the amino acid sequence shown in SEQ ID NO:2 amino acid sequence shown.
  • DS002 is a humanized recombinant monoclonal antibody targeting nerve growth factor, which is a multi-domain complex composed of two heavy chains and two light chains linked by disulfide bonds, capable of interacting with The NGF protein molecule binds and blocks the binding of the NGF protein molecule to its receptor TrkA protein molecule.
  • DS002 structurally belongs to the IgG1 subtype of human IgG, and the light chain is of the kappa type.
  • the DS002 heavy chain sequence and light chain sequence are shown in SEQ ID NO:3 and SEQ ID NO:4
  • the heavy chain (a) and light chain (b) amino acid sequences of DS002 are shown in Figure 14.
  • the anti-NGF antibody can be used before, at the same time as, and after the use of the chemotherapeutic agent.
  • the antibody of the present invention also includes its conservative variants, which means that compared with the amino acid sequence of the antibody of the present invention, there are at most 10, preferably at most 8, more preferably at most 5, most preferably Up to 3 amino acids are replaced by amino acids of similar or similar nature to form a polypeptide.
  • conservatively variant polypeptides are best produced by amino acid substitutions according to Table A.
  • the dosage of anti-NGF antibody (such as DS002) is not particularly limited, and can be any safe and effective dosage.
  • a representative dose may be, for example, 50-2000 mg/50 kg body weight, preferably 100-1000 mg/50 kg body weight.
  • the present invention provides the use of the above-mentioned monoclonal antibody targeting nerve growth factor, for preparing a medicine or a pharmaceutical composition for the treatment and/or prevention of chemotherapy-induced peripheral neuropathy pain, wherein the chemotherapy-induced pain Peripheral neuropathy is caused by chemotherapeutic agents, wherein the chemotherapeutic agents are as described above.
  • amino acid sequence of the heavy chain variable region of the humanized recombinant monoclonal antibody targeting nerve growth factor is shown in SEQ ID NO: 1.
  • the light chain variable region of the humanized recombinant monoclonal antibody targeting nerve growth factor contains the amino acid sequence shown in SEQ ID NO:2.
  • the heavy chain variable region of the humanized recombinant monoclonal antibody targeting nerve growth factor contains the amino acid sequence set forth in SEQ ID NO: 1, and the light chain variable region contains the amino acid sequence set forth in SEQ ID NO: 2 sequence.
  • the monoclonal antibody is DS002, wherein the DS002 heavy chain sequence and light chain sequence are shown in SEQ ID NO:3 and SEQ ID NO:4.
  • the chemotherapeutic agent is selected from the group consisting of paclitaxel, cisplatin, vincristine, or a combination thereof.
  • the present invention also provides a composition.
  • the composition is a pharmaceutical composition, which contains the above-mentioned humanized recombinant monoclonal antibody targeting nerve growth factor (preferably DS002), and a pharmaceutically acceptable carrier.
  • these materials can be formulated in a non-toxic, inert and pharmaceutically acceptable aqueous carrier medium, usually at a pH of about 5-8, preferably at a pH of about 6-8, although the pH may vary depending on the This will vary depending on the nature of the formulation material and the condition to be treated.
  • the formulated pharmaceutical compositions can be administered by conventional routes including, but not limited to, intratumoral, intraperitoneal, intravenous, or topical administration.
  • the injection administration preferably includes intravenous injection, intramuscular injection, intraperitoneal injection, intradermal injection or subcutaneous injection.
  • the pharmaceutical composition is in various conventional dosage forms in the field, preferably in the form of solid, semi-solid or liquid, can be an aqueous solution, a non-aqueous solution or a suspension, more preferably a tablet, capsule, granule , injection or infusion, etc.
  • the pharmaceutical composition of the present invention is a pharmaceutical composition for preventing and/or treating pain caused by a) chemotherapy-induced peripheral neuropathy (CIPN).
  • CIPN chemotherapy-induced peripheral neuropathy
  • the pharmaceutical composition of the present invention can be directly used to bind NGF protein molecule and block the binding of NGF protein molecule to its receptor TrkA protein molecule, so it can be used to prevent and treat pain caused by chemotherapy-induced peripheral neuropathy (CIPN).
  • CIPN chemotherapy-induced peripheral neuropathy
  • the pharmaceutical composition of the present invention contains a safe and effective amount (such as 0.001-99wt%, preferably 0.01-90wt%, more preferably 0.1-80wt%) of the above-mentioned monoclonal antibody targeting nerve growth factor of the present invention (such as DS002 ) and a pharmaceutically acceptable carrier or excipient.
  • a pharmaceutically acceptable carrier or excipient include, but are not limited to, saline, buffers, dextrose, water, glycerol, ethanol, and combinations thereof.
  • the drug formulation should match the mode of administration.
  • the pharmaceutical composition of the present invention can be prepared in the form of injection, for example, prepared by conventional methods with physiological saline or an aqueous solution containing glucose and other adjuvants.
  • compositions such as injections and solutions are preferably manufactured under sterile conditions.
  • the active ingredient is administered in a therapeutically effective amount, eg, about 1 microgram/kg body weight to about 5 mg/kg body weight per day.
  • the polypeptides of the present invention may also be used with other therapeutic agents.
  • the pharmaceutical composition of the present invention further comprises one or more pharmaceutically acceptable carriers.
  • the pharmaceutical carrier is a conventional pharmaceutical carrier in the art, and the pharmaceutical carrier can be any suitable physiologically or pharmaceutically acceptable pharmaceutical adjuvant.
  • the pharmaceutical excipients are conventional pharmaceutical excipients in the art, preferably including pharmaceutically acceptable excipients, fillers or diluents and the like. More preferably, the pharmaceutical composition comprises 0.01-99.99% of the antibody of the present invention and 0.01-99.99% of a pharmaceutical carrier, and the percentage is the mass percentage of the pharmaceutical composition.
  • the administration amount of the pharmaceutical composition is an effective amount
  • the effective amount is an amount capable of alleviating or delaying the progression of a disease, degenerative or damaging condition.
  • the effective amount can be determined on an individual basis and will be based in part on consideration of the symptoms to be treated and the results sought. An effective amount can be determined by one skilled in the art using the above-mentioned factors on an individual basis and the like and using no more than routine experimentation.
  • a safe and effective amount of the immunoconjugate is administered to the mammal, wherein the safe and effective amount is generally at least about 10 micrograms/kg body weight, and in most cases no more than about 50 mg/kg body weight, Preferably the dose is about 100 micrograms/kg body weight to about 20 mg/kg body weight.
  • the specific dosage should also take into account the route of administration, the patient's health and other factors, which are all within the skill of the skilled physician.
  • the antibody of the present invention (eg DS002) can significantly increase the pain threshold of chemotherapy-induced peripheral neuropathy (CIPN).
  • CIPN chemotherapy-induced peripheral neuropathy
  • the antibody of the invention (eg DS002) is used in the treatment and/or prevention of chemotherapy-induced peripheral neuropathy (CIPN) pain with less side effects.
  • CIPN chemotherapy-induced peripheral neuropathy
  • SD rats were randomly divided into 5 groups, namely blank control group, vehicle control (Vehicle control), s.c., D-3/D3/D9 group, DS002 0.1 mg/kg, s.c., D- 3/D3/D9 group, DS002 0.5mg/kg, s.c., D-3/D3/D9 group, DS002 2.5mg/kg, s.c., D-3/D3/D9 group.
  • chemotherapeutic agent solution on D0, D2, D4 and D6, respectively, to establish a chemotherapeutic agent-induced neuropathic pain model in SD rats.
  • von Frey is a stimulating material for the measurement method of mechanical stimulation pain threshold
  • acetone is a stimulating material for the measurement method for cold pain threshold.
  • Subcutaneous administration of 0.1-2.5 mg/kg of DS002 every 6 days can preventatively increase the pain threshold in the taxane-induced rat neuropathic pain model, and showed a certain dose relationship and obvious time-effect relationship. .
  • the other groups of animals were injected with vincristine solution (0.1 mg/kg) in the intraperitoneal cavity from D0 to D9, respectively, to construct neuropathic pain in SD rats induced by vincristine. model, the CIPN pain model.
  • the mean total score of the animal's foot withdrawal behavior in the test sample DS002, 0.1mg/kg, s.c., D-3/D3/D9 group was 5.10 ⁇ 0.80, which was significantly different from that in the vehicle control group (P ⁇ 0.01);
  • the mean value of the reaction frequency was 58.00 ⁇ 6.96%, and there was no significant difference compared with the vehicle control group (P>0.05).
  • Test sample DS002, 0.5mg/kg, s.c., D-3/D3/D9 group and test sample DS002, 2.5mg/kg, s.c., D-3/D3/D9 group The total score of the animal's foot withdrawal behavior The mean values were 3.50 ⁇ 0.83 and 3.60 ⁇ 0.52, respectively, compared with the vehicle control group, there were significant differences (P ⁇ 0.0001); the mean values of the reaction frequencies were 44.00 ⁇ 7.77% and 44.00 ⁇ 4.99%, respectively. Compared with the vehicle control group, there were Significant difference (P ⁇ 0.01).
  • the other groups of animals were injected with cisplatin solution (4 mg/kg) in the tail veins of D0 and D6, respectively, to establish a cisplatin-induced SD rat neuropathic pain model, namely CIPN pain model.
  • the mechanical paw withdrawal thresholds of animals in 0.5mg/kg, s.c., D-3/D3/D9/D16 groups were 26.00 ⁇ 0.00g, 23.95 ⁇ 1.63g, 23.50 ⁇ 1.68g and 22.77 ⁇ 1.71g, respectively; acetone induced
  • the basic values of the total score of foot withdrawal behavior were 0.50 ⁇ 0.34, 0.55 ⁇ 0.31, 0.27 ⁇ 0.19 and 0.55 ⁇ 0.28; the basic values of the response frequency were 6.00 ⁇ 4.27%, 7.27 ⁇ 4.07%, 3.64 ⁇ 2.44% and 5.45 ⁇ 2.82%.
  • the thresholds of paw withdrawal were 8.87 ⁇ 1.98g and 7.62 ⁇ 1.18g respectively, and there was no significant difference compared with the vehicle control group (P>0.05).
  • the mean value of the mechanical paw withdrawal threshold of the animals in the test sample DS002, 0.02mg/kg, s.c., D-3/D3/D9/D16 group was 7.22 ⁇ 0.77g, and there was no significant difference compared with the vehicle control group (P>0.05) ;
  • the mean value of the mechanical paw withdrawal threshold of the animals in the test sample DS002, 0.5mg/kg, s.c., D-3/D3/D9/D16 group was 10.73 ⁇ 1.60g, and there was a significant difference compared with the vehicle control group (P ⁇ 0.05 ).
  • the mean value of the mechanical paw withdrawal threshold of the animals in the test sample DS002, 0.02mg/kg, s.c., D-3/D3/D9/D16 group was 14.22 ⁇ 2.63g, and there was a significant difference compared with the vehicle control group (P ⁇ 0.05)
  • the mean value of the mechanical paw withdrawal threshold of the animals in the test sample DS002, 0.5mg/kg, s.c., D-3/D3/D9/D16 group was 16.37 ⁇ 2.36g, and compared with the vehicle control group, there was a significant difference (P ⁇ 0.01 ).
  • the mean values of total withdrawal behavior scores were 0.55 ⁇ 0.31 and 0.45 ⁇ 0.25, respectively, and there was no significant difference compared with the vehicle control group (P>0.05). There was no significant difference between groups (P>0.05).
  • the mean values of total withdrawal behavior scores were 1.18 ⁇ 0.55 and 0.45 ⁇ 0.25, respectively, and there was no significant difference compared with the vehicle control group (P>0.05). There was no significant difference between groups (P>0.05).
  • the mean values of total withdrawal behavior scores were 0.64 ⁇ 0.31 and 0.73 ⁇ 0.30, respectively, and there was no significant difference compared with the vehicle control group (P>0.05). There was no significant difference between groups (P>0.05).
  • the humanized recombinant monoclonal antibody DS002 targeting nerve growth factor of the present invention can significantly improve the pain threshold.
  • analgesics and other drugs have significant effects in the treatment of other clinical pains, they are not effective in the treatment of CIPN pain.
  • Duloxetine is a selective serotonin (5-HT) and norepinephrine (NE) reuptake inhibitor. It is not a traditional analgesic in terms of mechanism, but it is used in the treatment of CIPN pain. has a certain effect. Therefore, effective analgesics proven in other clinical pain indications cannot be directly applied to pain caused by CIPN, and vice versa.
  • NGF antibodies have been proved by preclinical and clinical data to have obvious curative effects in indications such as osteoarthritis and chronic low back pain, there is no report on whether such drugs can be used in CIPN pain.
  • the inventors unexpectedly discovered for the first time that NGF antibodies have surprising curative effect on CIPN pain, and have a significant curative effect on CIPN pain ineffective or refractory to conventional analgesics, so this type of drug can be used as Anti-CIPN pain specific medicine for the prevention and/or treatment of CIPN pain.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Epidemiology (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Immunology (AREA)
  • Neurosurgery (AREA)
  • Neurology (AREA)
  • Biomedical Technology (AREA)
  • Microbiology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Inorganic Chemistry (AREA)
  • Molecular Biology (AREA)
  • Genetics & Genomics (AREA)
  • Biophysics (AREA)
  • Biochemistry (AREA)
  • Mycology (AREA)
  • Endocrinology (AREA)
  • Pain & Pain Management (AREA)
  • Rheumatology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

提供了NGF抗体在CIPN性疼痛中的应用,具体地,NGF抗体阻断神经生长因子(NGF)与其受体的相互作用,从而能够治疗和/或预防化疗诱导性神经周围病变(CIPN)性疼痛。

Description

NGF抗体在CIPN性疼痛中的应用 技术领域
本发明属于生物医药领域,具体地,本发明涉及一种NGF抗体在CIPN性疼痛中的应用。
背景技术
近年来,随着恶性肿瘤的发病率逐年上升,化疗药物的使用也日益广泛。而化疗药物所致疼痛严重影响患者生存质量,造成或加重抑郁、失眠、疲劳和其他症状,导致化疗剂量的改变,甚至化疗终止。其中,化疗诱导性周围神经病变(Chemotherapy-induced peripheral neuropathy,CIPN)是癌症治疗常见的不良反应,化疗患者发生化疗诱导性周围神经病变(CIPN)性疼痛的比例从40%到70%不等,临床表现有疼痛、麻木和刺痛。
迄今为止,临床尚没有找到理想的药物和方法能够在不影响化疗药抗肿瘤活性的前提下,有效控制或预防化疗诱导性周围神经病变(CIPN)性疼痛。目前,治疗化疗诱导性周围神经病变(CIPN)性疼痛主要依赖于阿片类药物,但效果不理想,且阿片类药物的使用受到诸多限制。通常用于治疗神经性疼痛的药物,如阿米替林、加巴喷丁和普瑞加林,在CIPN性疼痛治疗中似乎并不比安慰剂效果好。度洛西汀是唯一被证明能够有效治疗CIPN性疼痛的非阿片类药物。度洛西汀是一种选择性的5-羟色胺(5-HT)和去甲肾上腺素(NE)再摄取抑制药。临床前研究结果显示,度洛西汀是神经元5-HT与NE再摄取的强抑制剂,对多巴胺再摄取的抑制作用相对较弱。体外研究结果显示,度洛西汀与多巴胺能受体、肾上腺素受体、胆碱能受体、组胺能受体、阿片受体、谷氨酸受体、GABA受体无明显亲和力。度洛西汀不抑制单胺氧化酶。度洛西汀在临床上具有抗抑郁作用,但是其在CIPN镇痛作用的机制尚未明确
基于临床上常见的镇痛药在治疗CIPN性疼痛方面效果不理想,因此CIPN性疼痛的机制可能与常见的急慢性疼痛不一致。正因如此,在其它疼痛中具有明显镇痛作用的药物,也无法直接用于CIPN性疼痛。由于化疗药物所致疼痛并不是由单一机制引起的,而是多因素、多环节相互影响、相互作用的结果。相应的治疗也比较复杂,影响治疗效果的因素也较多。目前在临床实践中以对症治疗为主的方案,虽然能在一定程度上暂时减轻化疗诱导的神经病理性疼痛患者的痛苦,但要获得满意疗效还需要进一步的研究和探索。
综上,本领域迫切需要开发一种能够应用于化疗诱导性周围神经病变(CIPN)性疼痛的抑制剂。我们在研究中发现用抗体阻断神经生长因子(NGF)与其受体的结合可以显著地降低化疗诱导性周围神经病变(CIPN)性疼痛,这个机制与已知的度洛西汀的药理作用机制完全不同。
发明内容
本发明目的是提供一种靶向神经生长因子(Nerve growth factor,NGF)的人源化重组单克隆抗体,其能够有效抑制化疗诱导性周围神经病变(CIPN)性疼痛。
在本发明的第一方面,提供一种靶向神经生长因子的单克隆抗体的用途,用于制备治疗和/或预防化疗诱导性周围神经病变性疼痛的药物中的用途,其中,所述的化疗诱导性周围神经病变是由化疗剂引起的。
在另一优选例中,化疗诱导性周围神经病变性疼痛是经常规的镇痛剂治疗后无效的,其中,所述的常规镇痛剂选自下组:吗啡、大麻、四氢大麻碱及衍生物、杜冷丁、芬太尼、可待因、二氢可达因酮甲氧萘丙酸(奈普生)、阿司匹林、阿米替林、加巴喷丁、对乙酰氨基酚、双氯灭痛、布洛芬、度洛西汀、或普瑞加林等吗啡、大麻及非非甾体抗炎镇痛药物类等。
在另一优选例中,所述的单克隆抗体为人源化重组单克隆抗体。
在另一优选例中,所述的靶向神经生长因子的单克隆抗体的重链可变区具有SEQ ID NO:1所示的氨基酸序列。
在另一优选例中,所述的靶向神经生长因子的单克隆抗体的轻链可变区具有SEQ ID NO:2所示的氨基酸序列。
在另一优选例中,所述的靶向神经生长因子的单克隆抗体的重链可变区具有SEQ ID NO:1所示的氨基酸序列,并且轻链可变区具有SEQ ID NO:2所示的氨基酸序列。
在另一优选例中,所述的单克隆抗体的重链和轻链序列如SEQ ID NO:3和SEQ ID NO:4所示。
在另一优选例中,所述的化疗剂选自下组:紫杉烷类、铂类、长春花生物碱类、吉西他滨、硼替佐米、沙利度胺、长春瑞滨,或其组合。
在另一优选例中,所述的化疗剂选自下组:紫杉醇、顺铂、长春新碱,或其组合。
在另一优选例中,所述的一种或多种化疗剂用于癌症的治疗。
在另一优选例中,所述的癌症选自:卵巢癌、子宫颈癌、结直肠癌、前列腺癌、乳腺癌、睾丸癌、白血病、成神经细胞瘤、霍奇金淋巴瘤、非霍奇金淋巴瘤和非小细胞肺癌。
在另一优选例中,所述的靶向神经生长因子的单克隆抗体在所述化学治疗剂给药之前、给药期间或给药之后给予。
在另一优选例中,所述的靶向神经生长因子的单克隆抗体的用量为50-2000mg/50kg。
在另一优选例中,靶向神经生长因子的单克隆抗体对CIPN性疼痛阈值明显提升。
在另一优选例中,靶向神经生长因子的单克隆抗体对CIPN性疼痛评分明显改善。
在本发明第二方面,提供一种药物组合物,其包含i)一种或多种靶向神经生长因子的单克隆抗体;
ii)一种或多种所述的化学治疗剂;和
iii)药学上可接受的载体。
在另一优选例中,所述的药物组合物中,所述的靶向神经生长因子的单克隆抗体为DS002。
在另一优选例中,所述的药物组合物还可包含其他治疗和/或预防化疗诱导性周围神经病变的药物,所述的其他治疗和/或预防化疗诱导性周围神经病变的药物包括小分子药物(如CXCR2抑制剂、PARP抑制剂等)。
在另一优选例中,所述的药物组合物为注射剂。
在另一优选例中,在治疗周期过程中每3天、每4天、每5天、每6天、每10天、每2周给予1-5次靶向神经生长因子的单克隆抗体或包含其的药物组合物,其中,治疗周期为6天、1周、2周、3周、4周、5周或6周。
在另一方面,提供一种治疗和/或预防化疗诱导性周围神经病变性疼痛的方法,所述方法包括向需要治疗的受试者施用治疗有效量的靶向神经生长因子的单克隆抗体。
在本发明第三方面,提供一种用于治疗和/或预防化疗诱导性周围神经病变性疼痛的药物的试剂盒,所述的试剂盒含有一容器,所述容器中靶向神经生长因子的单克隆抗体或含有其的药物组合物;以及标签或说明书,所述标签或说明书注明所述试剂盒用于治疗和/或预防化疗诱导性周围神经病变性疼痛。
在另一优选例,所述试剂盒还包括伴随诊断试剂,其用于检测NGF的试剂。
在另一优选例中,所述诊断试剂用于检测NGF数量、活性等。
在本发明第四方面,提供一种如第三方面所述的试剂盒的用途,用于治疗和/或预防化疗诱导性周围神经病变性疼痛。
应理解,在本发明范围内中,本发明的上述各技术特征和在下文(如实施例)中具体描述的各技术特征之间都可以互相组合,从而构成新的或优选的技术方案。限于篇幅,在此不再一一累述。
附图说明
图1示出了向紫杉醇诱导的大鼠神经性疼痛模型给药的流程图。
图2示出了紫杉醇诱导模型试验期间各组动物机械性缩爪阈值变化柱状图。
图3示出了紫杉醇诱导模型试验期间各组动物机械性缩爪阈值变化曲线图。
图4示出了紫杉醇诱导模型试验期间各组动物丙酮诱发足部退缩反应评分变化。
图5示出了紫杉醇诱导模型试验期间各组动物冷触发痛反应频率。
图6示出了长春新碱诱导模型试验期间各组动物机械性缩爪阈值变化柱状图。
图7示出了长春新碱诱导模型试验期间各组动物机械性缩爪阈值变化曲线图。
图8示出了长春新碱诱导模型试验期间各组动物丙酮诱发足部退缩反应评分变化。
图9示出了长春新碱诱导模型试验期间各组动物冷触发痛反应频率。
图10示出了顺铂诱导模型试验期间各组动物机械性缩爪阈值变化柱状图。
图11示出了顺铂诱导模型试验期间各组动物机械性缩爪阈值变化曲线图。
图12示出了顺铂诱导模型试验期间各组动物丙酮诱发足部退缩反应评分变化。
图13示出了顺铂诱导模型试验期间各组动物冷触发痛反应频率。
图14示出了人源化重组单克隆抗体DS002的氨基酸序列。
具体实施方式
本发明人经过广泛而深入的研究,首次意外地发现,靶向神经生长因子的人源化重组单克隆抗体(如DS002)能够有效抑制化疗诱导性周围神经病变(CIPN)性疼痛,并且副作用低。实验表明,出乎意料的是,对于化疗剂(如紫杉烷类、铂类、长春新碱类)所导致的CIPN性疼痛,常规的或强效的止痛剂无法有效地缓解,然而,本发明抗体(如DS002)居然可以有效地缓解这些难治性或顽固性的CIPN性疼痛。在此基础上,发明人完成了本发明。
术语
如本发明所用,术语“治疗”是指包括对动物特别是人的疾病和/或病症的任何治疗,包括:(i)抑制疾病和/或病症,即阻止其发展;(ii)减轻疾病和/或病症,即导致疾病和/或病症的消退。例如,治疗CIPN性疼痛包括阻止或减轻CIPN性疼痛、或缓解或减轻CIPN性疼痛的病症。
如本发明所用,术语“预防”指(i)防止疾病和/或病症的发展;和/或(ii)在疾病和/或病症已经发展的状态中防止疾病和/或病症恶化。
化疗诱导性周围神经病变(CIPN)
如本文所用,“化疗诱导性周围神经病变(CIPN)”主要指一组剂量依赖性肿瘤化疗药物诱导的周围神经病变。导致CIPN的药物主要包括铂类化疗药物、抗微管蛋白药物、舒拉明钠、沙利度胺(TLD)、埃坡霉素及硼替佐米等。CIPN的发生率主要取决于所选药物种类及使用疗程。CIPN是影响乳腺癌、结肠直肠癌、睾丸癌及造血系统恶性肿瘤等患者化疗后生活。CIPN的最常见症状是疼痛(其可一直存在或可时有时无,如闪痛或刺痛)、灼烧感、刺痛感(“针刺”感觉或电/电击样疼痛)、感觉缺失(其可为麻木或者感觉压力、触摸、热或冷的能力减弱)等。
化疗剂
“化疗剂”或“抗肿瘤剂”是指使用有效量药物以减少、预防和/或延迟转移或肿瘤的生长,或使肿瘤细胞坏死或凋亡杀死肿瘤细胞从而减少、预防和/或延迟患有肿瘤疾病的受试者中肿瘤的转移或的生长的试剂。化疗是目前治疗癌症最有效的手段之一,和手术、放疗一起并称癌症的三大治疗手段。手术和放疗属于局部治疗,只对治疗部位的肿瘤有效,对于潜在的转移病灶(癌细胞实际已经发生转移,但因为目前技术手段的限制在临床上还不能发现和检测到)和已经发生临床转移的癌症就难以发挥有效治疗了。而化疗是一种全身治疗的手段,无论采用什么途径给药(口服、静脉和体腔给药等),化疗药物都会随着血液循环遍布全身的绝大部分器官和组织。因此,对一些有全身播撒倾向的肿瘤及已经转移的中晚期肿瘤,化疗都是主要的治疗手段。
本发明所述化疗剂包括紫杉烷类(紫杉醇)、铂类(例如,顺铂、卡铂、奥沙利铂)、长春花生物碱类(长春新碱)、沙利度胺等。
紫杉醇(Paclitaxel)是一种从紫衫中提取的抗癌药物,主要通过促进细胞内的微管蛋白发生聚合,保持微管蛋白稳定,抑制细胞的有丝分裂而发挥抑制肿瘤细胞的恶性增殖作用。紫杉醇广泛应用于实体瘤的治疗中,紫杉醇化疗后的两个严重不良反应是骨髓抑制和神经病理性疼痛。紫杉醇所致的神经病理性疼痛主要表现为外周感觉性的痛觉超敏、灼痛、刺激和麻木等症状,此症状可持续至紫杉醇停药后数月至数年,是一种难治性痛症,目前尚无有效的治疗措施。一些接受紫杉醇治疗的癌症病人甚至会因为严重的疼痛而不得不中断治疗。
有文献报告,间断重复腹腔注射紫杉醇可以成功建立SD大鼠外周神经病理性疼痛模型,组织结构上出现坐骨神经髓鞘肿胀,部分髓鞘空泡变,部分许旺细胞结构破坏,许旺细胞核增多;机械刺激痛阈下降。
靶向神经生长因子的人源化重组单克隆抗体
靶向神经生长因子(Nerve growth factor,NGF)属于神经营养因子家族,最初在小鼠颌下腺和蛇毒液中提取,几乎存在于所有的脊椎动物中。NGF在不同种属中以不同的多聚体(前体)存在,其中β亚基具有完整的NGF生物学活性,被称为β-NGF;成熟的游离β-NGF由两条118个氨基酸多肽通过非共价键组成。目前研究认为在胚胎和幼年动物体内,NGF促进外周感觉和交感神经元生长、分化和损失修复,在成年动物上,NGF主要在损伤、炎症等情况下调节炎症反应、敏化伤害性感受器。NGF结合伤害性感受器表面的NGF功能性受体TrkA后,激活胞浆ERK、PLC/PKC等信号通路,降低神经元动作电位阈值,提高神经元兴奋性,进而敏化痛觉。
如本文所用,术语“本发明抗体”或“本发明的抗NGF抗体”可互换使用,指特异性靶向NGF(尤其是人NGF)的抗体。本发明的抗体优选是单克隆抗体。所述的抗体可 以是完整的抗体或抗体活性片段。应理解,所述术语还包括单链抗体(scFv)、纳米抗体。此外,本发明抗体可以是动物源的(如鼠源)、人源化的、嵌合的、全人抗体、或其组合。
优选地,所述的靶向神经生长因子的人源化重组单克隆抗体的重链可变区的具有SEQ ID NO:1所示的氨基酸序列。
优选地,所述的靶向神经生长因子的人源化重组单克隆抗体的轻链可变区具有SEQ ID NO:2所示的氨基酸序列。
优选地,所述的靶向神经生长因子的人源化重组单克隆抗体的重链可变区具有SEQ ID NO:1所示的氨基酸序列,并且轻链可变区具有SEQ ID NO:2所示的氨基酸序列。
Figure PCTCN2021129914-appb-000001
如本文所用,“DS002”是一种靶向神经生长因子的人源化重组单克隆抗体是由两条重链和两条轻链通过二硫键连接而成的多结构域复合物,能够与NGF蛋白分子结合并阻断NGF蛋白分子与其受体TrkA蛋白分子的结合。DS002在结构上属于人IgG的IgG1亚型,轻链为κ型。
优选地,DS002重链序列和轻链序列如SEQ ID NO:3和SEQ ID NO:4所示
Figure PCTCN2021129914-appb-000002
优选地,DS002的重链(a)和轻链(b)氨基酸序列如图14所示。
在本发明中,抗NGF抗体可在化疗剂使用之前、同时及之后使用。
在本发明中,本发明的抗体还包括其保守性变异体,指与本发明抗体的氨基酸序列 相比,有至多10个,较佳地至多8个,更佳地至多5个,最佳地至多3个氨基酸被性质相似或相近的氨基酸所替换而形成多肽。这些保守性变异多肽最好根据表A进行氨基酸替换而产生。
表A
最初的残基 代表性的取代 优选的取代
Ala(A) Val;Leu;Ile Val
Arg(R) Lys;Gln;Asn Lys
Asn(N) Gln;His;Lys;Arg Gln
Asp(D) Glu Glu
Cys(C) Ser Ser
Gln(Q) Asn Asn
Glu(E) Asp Asp
Gly(G) Pro;Ala Ala
His(H) Asn;Gln;Lys;Arg Arg
Ile(I) Leu;Val;Met;Ala;Phe Leu
Leu(L) Ile;Val;Met;Ala;Phe Ile
Lys(K) Arg;Gln;Asn Arg
Met(M) Leu;Phe;Ile Leu
Phe(F) Leu;Val;Ile;Ala;Tyr Leu
Pro(P) Ala Ala
Ser(S) Thr Thr
Thr(T) Ser Ser
Trp(W) Tyr;Phe Tyr
Tyr(Y) Trp;Phe;Thr;Ser Phe
Val(V) Ile;Leu;Met;Phe;Ala Leu
在本发明中,抗NGF抗体(如DS002)用量没有特别限制,可以是任何安全有效剂量。代表性的剂量可以是例如50-2000mg/50kg体重,较佳地100-1000mg/50kg体重。
靶向神经生长因子的单克隆抗体的用途
本发明提供了如上所述的靶向神经生长因子的单克隆抗体的用途,用于制备治疗和/或预防化疗诱导性周围神经病变性疼痛的药物或药物组合物,其中,所述的化疗诱导性周围神经病变是由化疗剂引起的,其中,所述化疗剂如上所述。
优选地,靶向神经生长因子的人源化重组单克隆抗体的重链可变区的氨基酸序列如SEQ ID NO:1所示。
优选地,靶向神经生长因子的人源化重组单克隆抗体的轻链可变区含有SEQ ID NO:2所示的氨基酸序列。
优选地,靶向神经生长因子的人源化重组单克隆抗体的重链可变区含有SEQ ID NO:1所示的氨基酸序列,并且轻链可变区含有SEQ ID NO:2所示的氨基酸序列。
优选地,所述的单克隆抗体为DS002,其中,DS002重链序列和轻链序列如SEQ ID NO:3和SEQ ID NO:4所示。
优选地,所述的化疗剂选自下组:紫杉醇、顺铂、长春新碱,或其组合。
药物组合物
本发明还提供了一种组合物。在优选例中,所述的组合物是药物组合物,它含有上述的靶向神经生长因子的人源化重组单克隆抗体(优选地为DS002),以及药学上可接受的载体。通常,可将这些物质配制于无毒的、惰性的和药学上可接受的水性载体介质中,其中pH通常约为5-8,较佳地pH约为6-8,尽管pH值可随被配制物质的性质以及待治疗的病症而有所变化。
配制好的药物组合物可以通过常规途径进行给药,其中包括(但并不限于):瘤内、腹膜内、静脉内、或局部给药。所述注射给药较佳地包括静脉注射、肌肉注射、腹腔注射、皮内注射或皮下注射等途径。所述的药物组合物为本领域常规的各种剂型,较佳地为固体、半固体或液体的形式,可以为水溶液、非水溶液或混悬液,更佳地为片剂、胶囊、颗粒剂、注射剂或输注剂等。
本发明所述的药物组合物是用于预防和/或治疗与a)化疗诱导性周围神经病变(CIPN)引起的疼痛的药物组合物。
本发明的药物组合物可直接用于结合NGF蛋白分子并阻断NGF蛋白分子与其受体TrkA蛋白分子的结合,因而可用于预防和治疗化疗诱导性周围神经病变(CIPN)引起的疼痛。
本发明的药物组合物含有安全有效量(如0.001-99wt%,较佳地0.01-90wt%,更佳地0.1-80wt%)的本发明上述的靶向神经生长因子的单克隆抗体(如DS002)以及药学上可接受的载体或赋形剂。这类载体包括(但并不限于):盐水、缓冲液、葡萄糖、水、甘油、乙醇、及其组合。药物制剂应与给药方式相匹配。本发明的药物组合物可以被制成针剂形式,例如用生理盐水或含有葡萄糖和其他辅剂的水溶液通过常规方法进行制备。药物组合物如针剂、溶液宜在无菌条件下制造。活性成分的给药量是治疗有效量,例如每天约1微克/千克体重-约5毫克/千克体重。此外,本发明的多肽还可与其他治疗剂一起使用。
本发明中,较佳地,本发明所述的药物组合物还包括一种或多种药用载体。所述的药用载体为本领域常规药用载体,所述的药用载体可以为任意合适的生理学或药学上可接受的药物辅料。所述的药物辅料为本领域常规的药物辅料,较佳的包括药学上可接受的赋形剂、填充剂或稀释剂等。更佳地,所述的药物组合物包括0.01~99.99%的本发明的抗体和0.01~99.99%的药用载体,所述百分比为占所述药物组合物的质量百分比。
本发明中,较佳地,所述的药物组合物的施用量为有效量,所述有效量为能够缓解或延迟疾病、退化性或损伤性病症进展的量。所述有效量可以以个体基础来测定,并将部分基于待治疗症状和所寻求结果的考虑。本领域技术人员可以通过使用个体基础等上述因素和使用不超过常规的实验来确定有效量。
使用药物组合物时,是将安全有效量的免疫偶联物施用于哺乳动物,其中该安全有效量通常至少约10微克/千克体重,而且在大多数情况下不超过约50毫克/千克体重,较佳地该剂量是约100微克/千克体重-约20毫克/千克体重。当然,具体剂量还应考虑给药途径、病人健康状况等因素,这些都是熟练医师技能范围之内的。
本发明的主要优点包括:
(a)本发明的抗体(如DS002)能够明显提高化疗诱导性周围神经病变(CIPN)性疼痛阈值。
(b)发明的抗体(如DS002)在治疗和/或预防化疗诱导性周围神经病变(CIPN)性疼痛,副作用小。
下面结合具体实施例,进一步阐述本发明。应理解,这些实施例仅用于说明本发明而不用于限制本发明的范围。下列实施例中未注明具体条件的实验方法,通常按照常规条件(如Sambrook等人,分子克隆:实验室手册(New York:Cold Spring Harbor Laboratory Press,1989)中所述的条件)或按照制造厂商所建议的条件。除非另外说明,否则百分比和份数是重量百分比和重量份数。
实施例
实验方法
所有雌性SD大鼠分别在第-5天(D-5)及第-4天(D-4)进行von Frey机械性诱发痛和丙酮冷触诱发痛基础值的测量(以紫杉醇正式造模给药当天记为D0)。根据体重将SD大鼠随机分为5组,分别为空白对照(Blank control)组、溶媒对照(Vehicle control),s.c.,D-3/D3/D9组、DS002 0.1mg/kg,s.c.,D-3/D3/D9组、DS002 0.5mg/kg,s.c.,D-3/D3/D9组、DS002 2.5mg/kg,s.c.,D-3/D3/D9组。除空白对照组外,其余各组动物分别在D0、D2、D4和D6腹腔注射化疗剂溶液,建立化疗剂诱导的SD大鼠神经性疼痛模型。其中,von Frey为机械刺激性痛阈测定方法的刺激材料;丙酮为一种冷痛阈测定方法的刺激物质。
除空白对照组,其他四组分别在D-3、D3和D9进行皮下给予DS002治疗,并分别于D7、D14及D8、D15进行von Frey机械性诱发痛和丙酮冷触诱发痛的测量,记录其相应时间点的机械性缩爪阈值以及丙酮诱发足部退缩行为的评分及频率(测试与计算方法参见Yoon等,pain,59(3),369–376.&Flatters等,pain,2004,109(1-2):150-161)。
实施例1 DS002对紫杉醇诱导的大鼠神经性疼痛的药效实验
1.紫杉醇诱导的大鼠神经性疼痛模型构建
使用上述实验方法,除空白对照组外,其余各组动物分别在D0、D2、D4和D6腹腔注射化疗剂溶液(4mg/kg),建立紫杉醇诱导的SD大鼠神经性疼痛模型,即CIPN疼痛模型。实验流程如图1所示。
2.实验结果
2.1对机械性触诱发痛的预防效应
试验期间各组动物机械性缩爪阈值变化柱状图及曲线图分别如图2(与溶媒对照组阈值的比,*表示0.01<P<0.05;**表示P<0.01;***表示<0.001)和图3所示,平均阀值如表1所示。
Figure PCTCN2021129914-appb-000003
注:1.以紫杉醇正式造模给药当天记为D0;
2.与Vehicle control组比较,“*”表示0.01<P<0.05,"**"表示P<0.01;“***”表示P<0.001。
结果表明:相较于溶媒对照(Vehicle control),注射本发明试剂DS002后,大鼠机械性缩爪阈值明显提升。
2.2对冷触诱发痛的预防效应
试验期间各组动物丙酮诱发足部退缩反应评分变化柱状图及冷触诱发痛反应频率柱状图分别如图4(与溶媒对照组阈值的比,*表示0.01<P<0.05;**表示P<0.01)和图5(与溶媒对照组阈值的比,*表示0.01<P<0.05;**表示P<0.01;***表示<0.001)所示,总评分数均值及反应频率平均值见表2。
表2试验期间各组动物丙酮诱发足部退缩反应评分及冷触诱发痛反应频率平均值
Figure PCTCN2021129914-appb-000004
Figure PCTCN2021129914-appb-000005
注:1.以紫杉醇正式造模给药当天记为D0;
2.与Vehicle对照组比较,“*”表示0.01<P<0.05;“**”表示P<0.01;“***”表示P<0.00l。
结果表明:
每隔6天,连续3次皮下给予0.1~2.5mg/kg的DS002在紫杉醉诱导的大鼠神经性疼痛模型上能够预防性提高疼痛阈值,且表现出一定的剂量关系和明显的时效关系。
实施例2 DS002对长春新碱诱导的SD大鼠神经性疼痛模型的药效实验
1.长春新碱诱导的大鼠神经性疼痛模型构建
参照上述实验方法及实施例1,除空白对照组外,其余各组动物分别在在D0至D9腹腔注射长春新碱溶液(0.1mg/kg),构建长春新碱诱导的SD大鼠神经性疼痛模型,即CIPN疼痛模型。
2.实验结果
2.1对机械性触诱发痛的预防效应
造模后第7天(D7)von Frey测试,空白对照组动物机械性缩爪阈值均值为14.63±0.28g;溶媒对照,s.c.,D-3/D3/D9组的机械性缩爪阈值均值为4.88±1.06g,与Blank control组比较,存在显著差异(P<0.0001),表明造模成功。受试样品DS002,0.1mg/kg,s.c.,D-3/D3/D9组动物机械性缩爪阈值分别为7.02±1.05g,与溶媒对照组比较,无显著差异(P>0.05)。受试样品DS002,0.5mg/kg,s.c.,D-3/D3/D9组及受试样品DS002,2.5mg/kg,s.c.,D-3/D3/D9组动物机械性缩爪阈值分别为8.20±1.78g及8.43±0.92g,与溶媒对照组比较,存在显著差异(P<0.05)。
试验期间各组动物机械性缩爪阈值变化柱状图及曲线图见图6和图7,平均阈值见表3。
表3机械性缩爪阈值
Figure PCTCN2021129914-appb-000006
注:1.以长春新碱正式造模给药当天记为D0;
2.与Vehicle control组比较,“*”表示0.01<P<0.05;“****”表示P<0.0001。
结果表明:相较于溶媒对照(Vehicle control),注射本发明试剂DS002后,大鼠机械性缩爪阈值明显提升。
2.2对冷触诱发痛的预防效应
造模后第8天(D8)丙酮测试,空白对照组动物丙酮诱发足部退缩行为总评分数均值为0.40±0.22,反应频率的均值为6.00±3.06%;溶媒对照,s.c.,D-3/D3/D9组的足部退缩行为总评分数均值为7.60±1.12,与空白对照组比较,存在显著差异(P<0.0001),反应频率的均值为68.00±8.54%,与空白对照组比较,存在显著差异(P<0.001),表明造模成功。受试样品DS002,0.1mg/kg,s.c.,D-3/D3/D9组动物足部退缩行为总评分数均值为5.10±0.80,与溶媒对照组比较,存在显著差异(P<0.01);其反应频率的均值为58.00±6.96%,与溶媒对照组比较,无显著差异(P>0.05)。受试样品DS002,0.5mg/kg,s.c.,D-3/D3/D9组及受试样品DS002,2.5mg/kg,s.c.,D-3/D3/D9组动物足部退缩行为总评分数均值分别为3.50±0.83及3.60±0.52,与溶媒对照组比较,存在显著差异(P<0.0001);其反应频率的均值分别为44.00±7.77%及44.00±4.99%,与溶媒对照组比较,存在显著差异(P<0.01)。试验期间各组动物丙酮诱发足部退缩反应评分变化柱状图及冷触诱发痛反应频率柱状图见图8、图9,总评分数均值及反应频率平均值见表4。
表4试验期间各组动物丙酮诱发足部退缩反应评分及冷触诱发痛反应频率平均值
Figure PCTCN2021129914-appb-000007
注:1.以长春新碱正式造模给药当天记为D0;
2.与Vehicle control组比较,“*”表示0.01<P<0.05;“**”表示P<0.01;“***”表示P<0.001;“****”表示P<0.0001。
实施例3
1.顺铂诱导的大鼠神经性疼痛模型构建
参照上述实验方法及实施例1,除空白对照组外,其余各组动物分别在D0和D6尾静脉注射顺铂溶液(4mg/kg),建立顺铂诱导的SD大鼠神经性疼痛模型,即CIPN疼痛模型。
2.实验结果
2.1对机械性触诱发痛的预防效应
造模前第-5天(D-5)和第-4天(D-4)分别机械性触诱发痛及冷触诱发痛基础值测定后,第-3天(D-3)根据动物体重,采用随机区组法将正常大鼠分为4组并开始给药,分组后各组动物平均体重约为250g。空白对照组、溶媒对照,s.c.,D-3/D3/D9/D16组、受试样品DS002,0.02mg/kg,s.c.,D-3/D3/D9/D16组及受试样品DS002,0.5mg/kg,s.c.,D-3/D3/D9/D16组动物的机械性缩爪阈值基础值分别为26.00±0.00g、23.95±1.63g、23.50±1.68g及22.77±1.71g;丙酮诱发足部退缩行为总评分数基础值分别为0.50±0.34、0.55±0.31、0.27±0.19及0.55±0.28;其反应频率基础值分别为6.00±4.27%、7.27±4.07%、3.64±2.44%及5.45±2.82%。
造模后第7天(D7)von Frey测试,空白对照组动物机械性缩爪阈值均值为23.20±1.41g;溶媒对照,s.c.,D-3/D3/D9/D16组的机械性缩爪阈值均值为8.00±1.60g,与空白对 照组比较,存在显著差异(P<0.0001),表明造模成功。受试样品DS002,0.02mg/kg,s.c.,D-3/D3/D9/D16组及受试样品DS002,0.5mg/kg,s.c.,D-3/D3/D9/D16组动物机械性缩爪阈值分别为8.87±1.98g及7.62±1.18g,与溶媒对照组比较,无显著差异(P>0.05)。
造模后第14天(D14)von Frey测试,空白对照组动物机械性缩爪阈值均值为18.87±2.17g;溶媒对照,s.c.,D-3/D3/D9/D16组的机械性缩爪阈值均值为5.32±0.89g,与空白对照组比较,存在显著差异(P<0.001),表明造模成功。受试样品DS002,0.02mg/kg,s.c.,D-3/D3/D9/D16组动物机械性缩爪阈值均值为7.22±0.77g,与溶媒对照组比较,无显著差异(P>0.05);受试样品DS002,0.5mg/kg,s.c.,D-3/D3/D9/D16组动物机械性缩爪阈值均值为10.73±1.60g,与溶媒对照组比较,存在显著差异(P<0.05)。
造模后第21天(D21)von Frey测试,空白对照组动物机械性缩爪阈值均值为19.50±2.38g;溶媒对照,s.c.,D-3/D3/D9/D16组的机械性缩爪阈值均值为6.22±0.88g,与空白对照组比较,存在显著差异(P<0.001),表明造模成功。受试样品DS002,0.02mg/kg,s.c.,D-3/D3/D9/D16组动物机械性缩爪阈值均值为14.22±2.63g,与溶媒对照组比较,存在显著差异(P<0.05);受试样品DS002,0.5mg/kg,s.c.,D-3/D3/D9/D16组动物机械性缩爪阈值均值为16.37±2.36g,与溶媒对照组比较,存在显著差异(P<0.01)。
试验期间各组动物机械性缩爪阈值变化柱状图及曲线图见图10(与溶媒对照组阈值的比,*表示0.01<P<0.05;**表示P<0.01;***表示P<0.001,****表示P<0.0001)、图11,平均阈值见表5。
表5机械性缩爪阈值
Figure PCTCN2021129914-appb-000008
结果表明:相较于溶媒对照(Vehicle control),注射本发明试剂DS002后,大鼠机械性缩爪阈值明显提升。
2.2对冷触诱发痛的预防效应
造模后第8天(D8)丙酮测试,空白对照组动物丙酮诱发足部退缩行为总评分数均值为0.70±0.42,反应频率的均值为8.00±4.42%;溶媒对照,s.c.,D-3/D3/D9/D16组的足部退缩行为总评分数均值为0.73±0.27,与空白对照组比较,无显著差异(P>0.05),反应 频率的均值为10.91±4.15%,与空白对照组比较,无显著差异(P>0.05)。受试样品DS002,0.02mg/kg,s.c.,D-3/D3/D9/D16组及受试样品DS002,0.5mg/kg,s.c.,D-3/D3/D9/D16组动物足部退缩行为总评分数均值分别为0.55±0.31及0.45±0.25,与溶媒对照组比较,无显著差异(P>0.05);其反应频率的均值分别为7.27±4.07%及7.27±4.07%,与溶媒对照组比较,无显著差异(P>0.05)。
造模后第15天(D15)丙酮测试,空白对照组动物丙酮诱发足部退缩行为总评分数均值为0.80±0.49,反应频率的均值为12.00±6.11%;溶媒对照,s.c.,D-3/D3/D9/D16组的足部退缩行为总评分数均值为0.91±0.37,与空白对照组比较,无显著差异(P>0.05),反应频率的均值为14.55±5.45%,与空白对照组比较,无显著差异(P>0.05)。受试样品DS002,0.02mg/kg,s.c.,D-3/D3/D9/D16组及受试样品DS002,0.5mg/kg,s.c.,D-3/D3/D9/D16组动物足部退缩行为总评分数均值分别为1.18±0.55及0.45±0.25,与溶媒对照组比较,无显著差异(P>0.05);其反应频率的均值分别为16.36±5.92%及7.27±4.07%,与溶媒对照组比较,无显著差异(P>0.05)。
造模后第22天(D22)丙酮测试,空白对照组动物丙酮诱发足部退缩行为总评分数均值为0.60±0.27,反应频率的均值为10.00±4.47%;溶媒对照,s.c.,D-3/D3/D9/D16组的足部退缩行为总评分数均值为1.00±0.40,与空白对照组比较,无显著差异(P>0.05),反应频率的均值为14.55±4.74%,与空白对照组比较,无显著差异(P>0.05)。受试样品DS002,0.02mg/kg,s.c.,D-3/D3/D9/D16组及受试样品DS002,0.5mg/kg,s.c.,D-3/D3/D9/D16组动物足部退缩行为总评分数均值分别为0.64±0.31及0.73±0.30,与溶媒对照组比较,无显著差异(P>0.05);其反应频率的均值分别为9.09±4.15%及10.91±4.15%,与溶媒对照组比较,无显著差异(P>0.05)。
试验期间各组动物丙酮诱发足部退缩反应评分变化柱状图及冷触诱发痛反应频率柱状图见图12、图13,总评分数均值及反应频率平均值见表6。
Figure PCTCN2021129914-appb-000009
结果表明:相较于溶媒对照(Vehicle control),注射本发明试剂DS002后,大鼠冷痛阈值无明显提升。
综上,本发明的靶向神经生长因子的人源化重组单克隆抗体DS002能够明显提高疼痛阈值。
讨论
由于化疗药物所致疼痛并不是由单一机制引起的,而是多因素、多环节相互影响、相互作用的结果,因此临床上常见的镇痛药如吗啡等阿片类镇痛药以及非甾体类镇痛药等尽管在治疗其它临床疼痛中有显著疗效,然而在治疗CIPN性疼痛方面效果不理想。
度洛西汀是一种选择性的5-羟色胺(5-HT)和去甲肾上腺素(NE)再摄取抑制药,从机制尚看并不是一个传统的镇痛药,但是在治疗CIPN性疼痛方面有一定的效果。因此无法直接将在其它临床疼痛适应症中被证明的有效镇痛药直接应用于CIPN引起的疼痛中,反之亦反。
NGF抗体虽然已经被临床前和临床数据证明在骨关节炎、慢性下腰痛等适应症中具有明显的疗效,然而该类药品是否能应用于CIPN疼痛并无报道。在本发明的研究中,本发明人首次意外地发现,NGF抗体对CIPN疼痛具有令人惊奇的疗效,对于常规止痛药无效的或难治性CIPN疼痛具有显著的疗效,因此该类药物可作为抗CIPN疼痛的特效药,用于预防和/或治疗CIPN性疼痛。
在本发明提及的所有文献都在本申请中引用作为参考,就如同每一篇文献被单独引用作为参考那样。此外应理解,在阅读了本发明的上述讲授内容之后,本领域技术人员可以对本发明作各种改动或修改,这些等价形式同样落于本申请所附权利要求书所限定的范围。

Claims (11)

  1. 靶向神经生长因子的单克隆抗体的用途,其特征在于,用于制备治疗和/或预防化疗诱导性周围神经病变性疼痛的药物中的用途,其中,所述的化疗诱导性周围神经病变是由化疗剂引起的。
  2. 如权利要求1所述的用途,其特征在于,所述的单克隆抗体为人源化重组单克隆抗体。
  3. 如权利要求1所述的用途,其特征在于,所述的单克隆抗体的重链和轻链序列如SEQ ID NO:3和SEQ ID NO:4所示。
  4. 如权利要求1所述的用途,其特征在于,所述的化疗剂选自下组:紫杉烷类、铂类、长春花生物碱类、吉西他滨、硼替佐米、沙利度胺、长春瑞滨,或其组合。
  5. 如权利要求1所述的用途,其特征在于,所述的化疗剂选自下组:紫杉醇、顺铂、长春新碱,或其组合。
  6. 如权利要求1所述的用途,其特征在于,所述的靶向神经生长因子的单克隆抗体在所述化学治疗剂给药之前、给药期间或给药之后给予。
  7. 如权利要求1所述的用途,其特征在于,所述的靶向神经生长因子的单克隆抗体的用量为50-2000mg/50kg。
  8. 一种药物组合物,其包含i)靶向神经生长因子的单克隆抗体;
    ii)一种或多种所述的化学治疗剂;和
    iii)药学上可接受的载体。
  9. 如权利要求8所述的药物组合物,其特征在于,所述的药物组合物为注射剂。
  10. 一种用于治疗和/或预防化疗诱导性周围神经病变性疼痛的药物的试剂盒,其特征在于,所述的试剂盒含有一容器,所述容器中靶向神经生长因子的单克隆抗体或含有其的药物组合物;以及标签或说明书,所述标签或说明书注明所述试剂盒用于治疗和/或预防化疗诱导性周围神经病变性疼痛。
  11. 如权利要求10所述的试剂盒,其特征在于,所述试剂盒还包括伴随诊断试剂,其用于检测NGF。
PCT/CN2021/129914 2020-11-12 2021-11-10 Ngf抗体在cipn性疼痛中的应用 WO2022100635A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/036,548 US20240009304A1 (en) 2020-11-12 2021-11-10 Use of ngf antibody in cipn pain

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011263674.2A CN114470189B (zh) 2020-11-12 2020-11-12 Ngf抗体在cipn性疼痛中的应用
CN202011263674.2 2020-11-12

Publications (1)

Publication Number Publication Date
WO2022100635A1 true WO2022100635A1 (zh) 2022-05-19

Family

ID=81489777

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/129914 WO2022100635A1 (zh) 2020-11-12 2021-11-10 Ngf抗体在cipn性疼痛中的应用

Country Status (3)

Country Link
US (1) US20240009304A1 (zh)
CN (1) CN114470189B (zh)
WO (1) WO2022100635A1 (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1740199B1 (en) * 2004-04-29 2014-01-01 Yeda Research And Development Co., Ltd. Il6r/il6 chimera for therapy of chemotherapy-induced peripheral neuropathy
CN106336400A (zh) * 2008-12-08 2017-01-18 萌蒂制药国际有限公司 酪氨酸激酶蛋白受体拮抗剂

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PL2187964T3 (pl) * 2007-08-10 2015-03-31 Regeneron Pharma Ludzkie przeciwciała o wysokim powinowactwie przeciw ludzkiemu czynnikowi wzrostu nerwu
CN108348563A (zh) * 2015-05-12 2018-07-31 韩国韩医学研究院 含有紫草根提取物作为有效成分的用于预防、改善或治疗周围神经病变的组合物
CN108623687A (zh) * 2018-04-17 2018-10-09 中山康方生物医药有限公司 神经生长因子的单克隆抗体及其编码基因和应用

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1740199B1 (en) * 2004-04-29 2014-01-01 Yeda Research And Development Co., Ltd. Il6r/il6 chimera for therapy of chemotherapy-induced peripheral neuropathy
CN106336400A (zh) * 2008-12-08 2017-01-18 萌蒂制药国际有限公司 酪氨酸激酶蛋白受体拮抗剂

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
VELASCO ROSER; NAVARRO XAVIER; GIL-GIL MIGUEL; HERRANDO-GRABULOSA MIREIA; CALLS AINA; BRUNA JORDI: "Neuropathic Pain and Nerve Growth Factor in Chemotherapy-Induced Peripheral Neuropathy: Prospective Clinical-Pathological Study", JOURNAL OF PAIN AND SYMPTOM MANAGEMENT., ELSEVIER, NEW YORK, NY., US, vol. 54, no. 6, 1 January 1900 (1900-01-01), US , pages 815 - 825, XP085254587, ISSN: 0885-3924, DOI: 10.1016/j.jpainsymman.2017.04.021 *
YAN BING, WENLING DAI, JIHUA LIU: "R esearch Advance in NGF in Neuropathic Pain and Related Drugs", PROGRESS IN PHARMACEUTICAL SCIENCES, CHINA PHARMACEUTICAL UNIVERSITY, CN, vol. 43, no. 2, 28 February 2019 (2019-02-28), CN , pages 111 - 117, XP055930033, ISSN: 1001-5094 *
ZHONG MINYU: "Relationship between Vascular Endothelial Growth Factor and Chemotherapy-Induced Neuropathic Pain", JOURNAL OF CLINICAL NEUROLOGY, vol. 32, no. 2, 30 April 2019 (2019-04-30), pages 156 - 158, XP055930034, ISSN: 1004-1648 *

Also Published As

Publication number Publication date
CN114470189B (zh) 2024-01-16
US20240009304A1 (en) 2024-01-11
CN114470189A (zh) 2022-05-13

Similar Documents

Publication Publication Date Title
Burgess et al. Chemotherapy-induced peripheral neuropathy: epidemiology, pathomechanisms and treatment
JP6411523B2 (ja) プリナブリン及びタキサンの組合せがん治療
JP7160345B2 (ja) がんの治療のための組合せ調製物
TWI762784B (zh) Cdk4/6抑制劑與egfr抑制劑聯合在製備治療腫瘤疾病的藥物中的用途
JP2019203034A (ja) 癌治療
JP2022058654A (ja) 神経障害及び疼痛のegfr標的治療
US20210008177A1 (en) Elapidae neurotoxin enhances opioid analgesic effect and inhibits opioid induced hyperalgesia and tolerance
KR20140146114A (ko) Mek 억제제 및 igf1r 억제제의 병용 요법
JP2020524129A (ja) 再発膠芽腫(rgbm)の治療方法
KR20110089402A (ko) 종양의 치료를 위한 화학요법제와 병용된 알카노일 엘 카르니틴의 용도
Peters et al. Histamine: metabolism, physiology, and pathophysiology with applications in veterinary medicine
JP2005530735A (ja) 癌の処置のための併用療法
WO2022100635A1 (zh) Ngf抗体在cipn性疼痛中的应用
US20230414712A1 (en) Pharmaceutical composition for preventing or treating cancer comprising recombinant stabilized galectin 9 protein
TW201204360A (en) Treatment of multiple sclerosis with MASITINIB
Huang et al. Research progress of opioid growth factor in immune-related diseases and cancer diseases
Zhang et al. Ameliorative effects of escin on neuropathic pain induced by chronic constriction injury of sciatic nerve
WO2024120523A1 (zh) 一种治疗前列腺癌的药物组合及其应用
CN107921105B (zh) Il-8抑制剂用于治疗某些泌尿疾病的用途
Chida et al. The role of lidocaine in cancer progression and patient survival
WO2021175326A1 (zh) CTB006与Ponatinib联合应用
CN104547289B (zh) 一种具有治疗顺铂引起肾损伤作用的中药组合物
Xie et al. Monoclonal Antibody Targeting CGRP Relieves Cisplatin-Induced Neuropathic Pain by Attenuating Neuroinflammation
JP2014515393A (ja) 腫瘍性疾患治療の組合せ医薬組成物
JP6861162B2 (ja) アポエクオリン含有組成物および神経細胞の炎症を治療するためのアポエクオリンの使用方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21891155

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18036548

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21891155

Country of ref document: EP

Kind code of ref document: A1