WO2022100561A1 - 调顶信号传输控制方法、装置、系统和多通道光模块 - Google Patents

调顶信号传输控制方法、装置、系统和多通道光模块 Download PDF

Info

Publication number
WO2022100561A1
WO2022100561A1 PCT/CN2021/129469 CN2021129469W WO2022100561A1 WO 2022100561 A1 WO2022100561 A1 WO 2022100561A1 CN 2021129469 W CN2021129469 W CN 2021129469W WO 2022100561 A1 WO2022100561 A1 WO 2022100561A1
Authority
WO
WIPO (PCT)
Prior art keywords
channel
optical module
transmission control
channel optical
signal transmission
Prior art date
Application number
PCT/CN2021/129469
Other languages
English (en)
French (fr)
Inventor
刘昊
李俊杰
霍晓莉
唐建军
Original Assignee
中国电信股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国电信股份有限公司 filed Critical 中国电信股份有限公司
Publication of WO2022100561A1 publication Critical patent/WO2022100561A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0201Add-and-drop multiplexing
    • H04J14/0202Arrangements therefor
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/27Arrangements for networking
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/40Transceivers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • H04J14/0254Optical medium access
    • H04J14/0272Transmission of OAMP information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q11/0067Provisions for optical access or distribution networks, e.g. Gigabit Ethernet Passive Optical Network (GE-PON), ATM-based Passive Optical Network (A-PON), PON-Ring
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q2011/0086Network resource allocation, dimensioning or optimisation

Definitions

  • the present application is based on the CN application number 202011268497.7 and the filing date is Nov. 13, 2020, and claims its priority.
  • the disclosure of the CN application is hereby incorporated into the present application as a whole.
  • the present disclosure relates to the field of optical communication, and in particular, to a method, device, system and multi-channel optical module for controlling the transmission of a top-adjusting signal.
  • Top modulation is a low-speed modulation technology that was mainly used in access networks with rates of 10G and below in the past.
  • WDM Widelength Division Multiplexing, wavelength division multiplexing
  • PON Passive Optical Network, passive optical network
  • top-adjustment technology which can configure the center wavelength of the remote optical module, and realize service opening at the central office.
  • a method for controlling the transmission of a top-adjusting signal comprising: determining a first channel for transmitting a top-adjusting signal through interaction between a first multi-channel optical module and a second multi-channel optical module; The channel optical module sends the optical module information to the second multi-channel optical module in the form of a top adjustment signal through the first channel.
  • determining the first channel for transmitting the top-adjusting signal includes: the first multi-channel optical module transmits the service signal carrying the pre-configured top-adjusting signal to the second multi-channel optical module through multiple channels; The two multi-channel optical modules analyze the service signal, select one channel as the first channel, and send the first channel information to the first multi-channel optical module in the form of a top-adjusting signal; and the first multi-channel optical module is based on the first channel. Channel information, turn off the top adjustment function of other channels except the first channel, and use the first channel as the main channel for transmitting the top adjustment signal.
  • selecting a channel as the first channel by the second multi-channel optical module includes: the second multi-channel optical module determines the bit error rate of each channel according to the service signal sent by each channel, and calculates the bit error rate The smallest channel is used as the first channel.
  • the first multi-channel optical module sends a channel switching request to switch the first channel to the second channel to the second multi-channel optical module; the second multi-channel optical module turns off the channel switching request of the first channel according to the channel switching request.
  • the top adjustment function is enabled, and a channel switching response is sent to the first multi-channel optical module through the second channel; and the first multi-channel optical module receives the channel switching response, and disables the top adjustment function of the first channel.
  • the second multi-channel optical module sends a channel switching request to the first multi-channel optical module to switch the first channel to the second channel when the first channel fails or the performance parameter of the first channel is less than a threshold;
  • the first multi-channel optical module sends a channel switching response to the second multi-channel optical module through the second channel; and after the second multi-channel optical module receives the channel switching response, the top adjustment function of the first channel is turned off.
  • the first multi-channel optical module when the first channel fails, the first multi-channel optical module enables the top adjustment function of each channel; the second multi-channel optical module sends a channel switching request to the first multi-channel optical module through the second channel; After a multi-channel optical module sends a channel switching response, the top adjustment function of other channels except the second channel is turned off.
  • the second multi-channel optical module when the performance parameter of the first channel is less than a threshold, sends a channel switching request to the first multi-channel optical module through the first channel; and the first multi-channel optical module sends a channel switching response After that, turn off the top function of the first channel.
  • the second multi-channel optical module sends a message to the first multi-channel optical module through the second channel to switch the second channel to the first channel when the first channel recovers from a fault or the performance parameter of the first channel is greater than or equal to a threshold.
  • the channel switching request of the channel the first multi-channel optical module sends the channel switching response to the second multi-channel optical module through the first channel; and after the second multi-channel optical module receives the channel switching response, the top adjustment function of the second channel is turned off.
  • a top-adjusting signal transmission control device which is located in the first multi-channel optical module and includes: a first determination unit configured to interact with the second multi-channel optical module to determine the transmission a first channel of the top-adjusting signal; and an information sending unit configured to send the optical module information to the second multi-channel optical module in the form of a top-adjusting signal through the first channel.
  • the first determining unit is configured to transmit the service signal carrying the preconfigured top-adjusting signal to the second multi-channel optical module through multiple channels, and receive the second multi-channel optical module in the form of the top-adjusting signal
  • the service signal is analyzed, and one channel is selected as the first channel.
  • the first determining unit is further configured to send a channel switching request for switching the first channel to the second channel to the second multi-channel optical module, and after receiving the channel switching response, disable the top adjustment function of the first channel .
  • the first determining unit is further configured to receive a channel switching request sent by the second multi-channel optical module to switch the first channel to the second channel, and send the channel to the second multi-channel optical module through the second channel Toggle response.
  • a top-adjusting signal transmission control device located in a second multi-channel optical module, comprising: a second determination unit configured to interact with the first multi-channel optical module to determine the transmission a first channel of a top-adjusting signal; and an information receiving unit configured to receive, through the first channel, optical module information sent by the first multi-channel optical module in the form of a top-adjusting signal.
  • the second determining unit is configured to receive a service signal carrying a preconfigured top-adjusting signal transmitted by the first multi-channel optical module through multiple channels, analyze the service signal, and select a channel as the first channel, Send the first channel information to the first multi-channel optical module in the form of a top adjustment signal, so that the first multi-channel optical module can turn off the top adjustment function of other channels except the first channel according to the first channel information, and use The first channel is used as the main channel for transmitting the top tuning signal.
  • the second determining unit is further configured to determine the bit error rate of each channel according to the service signal sent by each channel, and use the channel with the smallest bit error rate as the first channel.
  • the second determining unit is further configured to receive a channel switching request sent by the first multi-channel optical module to switch the first channel to the second channel, and disable the top adjustment function of the first channel according to the channel switching request , and send a channel switching response to the first multi-channel optical module through the second channel, so that after the first multi-channel optical module receives the channel switching response, the top adjustment function of the first channel is turned off.
  • the second determining unit is further configured to send a channel switch for switching the first channel to the second channel to the first multi-channel optical module when the first channel fails or the performance parameter of the first channel is less than a threshold value request, after receiving the channel switching response sent by the first multi-channel optical module through the second channel, turn off the top adjustment function of the first channel.
  • a multi-channel optical module including: a top-adjusting signal transmission control device located in the first multi-channel optical module; and a top-adjusting signal transmission control device located in the second multi-channel optical module device.
  • a top-up signal transmission control system comprising: a memory; and a processor coupled to the memory, the processor being configured to execute the above-mentioned top-up signal based on instructions stored in the memory Transmission control method.
  • a non-transitory computer-readable storage medium on which computer program instructions are stored, and when the instructions are executed by a processor, implement the above-mentioned method for controlling the transmission of a top-tuning signal.
  • FIG. 1 is a schematic flowchart of some embodiments of the disclosed top modulation signal transmission control method.
  • FIG. 2 is a schematic flowchart of other embodiments of the disclosed top modulation signal transmission control method.
  • FIG. 3 is a schematic diagram of an OAM transmission and reception processing circuit of the multi-channel optical module of the present disclosure.
  • FIG. 4 is a schematic diagram of an optical module based on mixed signal transmission of the present disclosure.
  • FIG. 5 is a schematic flowchart of other embodiments of the top-adjustment signal transmission control method of the present disclosure.
  • FIG. 6 is a schematic flowchart of other embodiments of the top-adjustment signal transmission control method of the present disclosure.
  • FIG. 7 is a schematic flowchart of other embodiments of the top-adjustment signal transmission control method of the present disclosure.
  • FIG. 8 is a schematic flowchart of some other embodiments of the top modulation signal transmission control method of the present disclosure.
  • FIG. 9 is a schematic flowchart of other embodiments of the top-adjustment signal transmission control method of the present disclosure.
  • FIG. 10 is a schematic structural diagram of some embodiments of the top-adjustment signal transmission control apparatus of the present disclosure.
  • FIG. 11 is a schematic structural diagram of other embodiments of the top-adjustment signal transmission control apparatus of the present disclosure.
  • FIG. 12 is a schematic structural diagram of some embodiments of the top modulation signal transmission control system of the present disclosure.
  • the related technology is based on a single-channel optical module, and the sending and receiving path of the top-adjusting signal cannot be adjusted.
  • multi-channel optical modules such as 100G ⁇ 400G client side, it faces the problem of invisible remote optical module information. How to use the top adjustment technology reasonably to solve the problem of remote optical module management is worth studying.
  • FIG. 1 is a schematic flowchart of some embodiments of the disclosed top modulation signal transmission control method.
  • step 110 the first multi-channel optical module and the second multi-channel optical module interact to determine the first channel for transmitting the top adjustment signal.
  • the first multi-channel optical module is an optical module located at the remote end
  • the second multi-channel optical module is an optical module located at the central office.
  • the first channel is the main channel that transmits the top tuning signal.
  • the first multi-channel optical module transmits the optical module information to the second multi-channel optical module in the form of a top-adjusting signal through the first channel.
  • the optical module information includes OAM (Operation Administration and Maintenance, operation and maintenance management) information.
  • OAM Operaation Administration and Maintenance, operation and maintenance management
  • the remote optical module sends the OAM information to the driver or modulator in a framed manner through an MCU (Microcontroller Unit, micro control unit), superimposes it on the main road data service in the form of a low-speed analog signal, and then Convert it into an optical signal and send the optical signal to the central office optical module.
  • the optical module at the central office converts the optical signal into an electrical signal, and then obtains the OAM signal after processing by one or more circuits of amplification, filtering, and amplitude limiting, and finally returns to the MCU, where the original data is parsed by the MCU.
  • the central office optical module After receiving the instruction of reading the information of the remote optical module sent by the host device, the central office optical module can send the information of the remote optical module to the host device, so that the host device can complete the central office optical module and the remote optical module. Data collection and monitoring of end optical modules.
  • one channel is determined as the main channel for transmitting the top modulation signal, and then the optical module information is transmitted to the opposite end through the single channel, which can ensure that the main channel data is not affected.
  • the interaction of optical module information is realized.
  • FIG. 2 is a schematic flowchart of other embodiments of the disclosed top modulation signal transmission control method.
  • the first multi-channel optical module transmits the service signal carrying the preconfigured top-adjustment signal to the second multi-channel optical module through multiple channels.
  • each sub-channel inside the multi-channel optical module is equipped with a set of sending and receiving processing circuits for top-adjustment signals, ie, top-adjustment circuits, which are centrally controlled and scheduled by the MCU.
  • top-adjustment circuits which are centrally controlled and scheduled by the MCU.
  • the remote optical module turns on the top adjustment circuit of each channel, generates a top adjustment signal with a certain frame format for handshake, and transmits it to the central office optical fiber through each channel together with the service data signal. module.
  • the second multi-channel optical module analyzes the service signal, selects one channel as the first channel, and sends the first channel information to the first multi-channel optical module in the form of a top-adjusting signal.
  • the optical module at the central office determines the bit error rate of each channel according to the service signal sent by each channel, and uses the channel with the smallest bit error rate as the first channel, that is, as the main channel for transmitting the top modulation signal .
  • the optical module is equipped with a PRBS (Pseudo-Random Binary Sequence, pseudo-random binary sequence) sending unit and a PRBS detection unit.
  • the remote optical module transmits PRBS signals of the specified code type (such as PRBS7/PRBS15/PRBS23/PRBS31, etc.), and the central optical module receives and detects these PRBS signals, and calculates the bit error rate of each channel separately.
  • the code patterns of the PRBS signals set by the optical modules at both ends must be consistent to ensure the accuracy of the bit error rate calculation.
  • the single-channel bit error rate is equal to the ratio of the number of erroneous data bits received by the channel to the total number of received data bits.
  • the fiber link loss can be increased.
  • the optical module at the central office finds a channel with the smallest bit error rate, and uses this channel as the channel with the best performance under the interference of the top-adjusted signal, and it is also the most suitable path for receiving information from the remote optical module.
  • the central office optical module sends the first channel information to the remote optical module through the first channel, and turns off the top adjustment circuits of other channels except the first channel.
  • the first multi-channel optical module disables the top adjustment function of other channels except the first channel according to the first channel information, and uses the first channel as the main channel for transmitting the top adjustment signal.
  • the remote optical module receives the first channel information through the first channel, and turns off the top adjustment circuits of other channels except the first channel. At this time, both the remote optical module and the central optical module only retain a paired channel with the top adjustment function.
  • the first multi-channel optical module transmits the optical module information to the second multi-channel optical module in the form of a top-adjusting signal through the first channel.
  • the optical module can select a channel to transmit optical module information, which not only ensures the optimal overall performance of the module , and avoid the increase of power consumption and cost caused by excessive waste of resources.
  • FIG. 5 is a schematic flowchart of other embodiments of the top-adjustment signal transmission control method of the present disclosure.
  • the first multi-channel optical module sends a channel switching request to switch the first channel to the second channel to the second multi-channel optical module.
  • the remote optical module in a normal communication state, actively sends a request to switch to the second channel to the central office optical module, and enables the top adjustment circuit of the second channel.
  • the second channel is any other channel except the first channel.
  • the second multi-channel optical module turns off the top adjustment function of the first channel according to the channel switching request, and sends a channel switching response to the first multi-channel optical module through the second channel.
  • the central office optical module closes the top adjustment circuit of the first channel, turns on the top adjustment circuit of the second channel, and sends a channel switching response to the remote optical module through the second channel.
  • step 530 after receiving the channel switching response, the first multi-channel optical module turns off the top adjustment function of the first channel.
  • the optical modules at both ends use the only main channel to transmit and exchange the top modulation signal, and active switching of channels can be performed.
  • FIG. 6 is a schematic flowchart of other embodiments of the top-adjustment signal transmission control method of the present disclosure.
  • the second multi-channel optical module sends a channel switching request to the first multi-channel optical module to switch the first channel to the second channel when the first channel fails or the performance parameter of the first channel is less than the threshold.
  • the optical module at the central office cannot receive the optical module information sent by the remote optical module, so a channel switching request is sent to the remote optical module, which can be based on the channel Bit error rate, select the channel with the second best performance as the switching channel.
  • the receiving sensitivity of the channel drops to the point that it does not meet the index requirement, it means that the performance of the channel decreases.
  • step 620 the first multi-channel optical module sends a channel switching response to the second multi-channel optical module through the second channel.
  • the remote optical module turns on the top adjustment circuit of the second channel, and performs a switching response through the second channel, while turning off the top adjustment circuit of the first channel.
  • step 630 after receiving the channel switching response, the second multi-channel optical module turns off the top adjustment function of the first channel.
  • the central office optical module when the working top adjustment channel fails or the performance is degraded, so that the central office optical module cannot receive valid optical module information, the central office optical module will allocate the top adjustment circuits of other channels to ensure the optical module information. continue transmission.
  • FIG. 7 is a schematic flowchart of other embodiments of the top-adjustment signal transmission control method of the present disclosure.
  • step 710 when the first channel fails, the first multi-channel optical module enables the top adjustment function of each channel.
  • the remote optical module when sensing the failure of the first channel, the remote optical module will briefly turn on the top adjustment circuit of each channel to receive the request message.
  • step 720 the second multi-channel optical module sends a channel switching request to the first multi-channel optical module through the second channel.
  • the central office optical module cannot receive the optical module information sent by the remote optical module due to the failure of the first channel.
  • the standby channel sends a switching request to the remote optical module.
  • step 730 after sending the channel switching response, the first multi-channel optical module turns off the top adjustment function of the other channels except the second channel.
  • the remote optical module receives the switching request, responds to the central office optical module through the second channel, and turns off the top adjustment circuits of other channels except the second channel.
  • step 740 after receiving the channel switching response, the second multi-channel optical module turns off the top adjustment function of the first channel.
  • the central office optical module when the main adjustment top channel fails, the central office optical module sends a command message to trigger the channel switching mechanism, which ensures the continuous transmission of the optical module information.
  • FIG. 8 is a schematic flowchart of some other embodiments of the top modulation signal transmission control method of the present disclosure.
  • step 810 when the performance parameter of the first channel is less than the threshold, the second multi-channel optical module sends a channel switching request to the first multi-channel optical module through the first channel.
  • the optical module has the ability to detect the channel in the whole life cycle. When the performance of the main adjustment top channel is deteriorated, causing the central office optical module to fail to receive the information sent by the remote optical module, according to the channel bit error rate, select The channel with the next best performance is used as the second channel, that is, the backup channel.
  • step 820 the first multi-channel optical module turns off the top adjustment function of the first channel after sending the channel switching response.
  • the remote optical module after receiving the channel switching request, turns on the top-adjustment circuit of the second channel, sends a pass-through switching request through the top-adjustment circuit, and closes the top-adjustment circuit of the first channel.
  • step 830 after receiving the channel switching response, the second multi-channel optical module turns off the top adjustment function of the first channel to complete the channel switching.
  • the central office optical module when the performance of the main tuner top channel is degraded, the central office optical module sends a command message to trigger the channel switching mechanism, which ensures the continuous transmission of the optical module information.
  • FIG. 9 is a schematic flowchart of other embodiments of the top-adjustment signal transmission control method of the present disclosure.
  • the second multi-channel optical module sends a message for switching the second channel to the first channel to the first multi-channel optical module through the second channel when the first channel fails to recover or the performance parameter of the first channel is greater than or equal to the threshold.
  • Channel switch request the second multi-channel optical module sends a message for switching the second channel to the first channel to the first multi-channel optical module through the second channel when the first channel fails to recover or the performance parameter of the first channel is greater than or equal to the threshold.
  • the central office optical module turns on the top adjustment circuit of the first channel after sensing that the fault of the first channel is recovered, or after the problem of performance degradation of the first channel is recovered.
  • the first multi-channel optical module sends a channel switching response to the second multi-channel optical module through the first channel.
  • the remote optical module after receiving the switching request, turns on the top adjustment circuit of the first channel, sends a channel switching response to the central office optical module through the channel, and closes the top adjustment circuit of the second channel.
  • step 930 after receiving the channel switching response, the second multi-channel optical module turns off the top adjustment function of the second channel.
  • the optical module when the main top channel recovers from a fault or performance degradation problem, the optical module can still use the original main channel for information transmission, so that the overall performance of the optical module is optimized.
  • FIG. 10 is a schematic structural diagram of some embodiments of the top-adjustment signal transmission control apparatus of the present disclosure.
  • the apparatus is located in the first multi-channel optical module, and includes a first determining unit 1010 and an information sending unit 1020.
  • the first determining unit 1010 is configured to interact with the second multi-channel optical module to determine the first channel for transmitting the top-adjusting signal.
  • the first multi-channel optical module is an optical module located at the remote end
  • the second multi-channel optical module is an optical module located at the central office.
  • the first determining unit 1010 is configured to transmit the service signal carrying the preconfigured top-adjusting signal to the second multi-channel optical module through multiple channels, and receive the second multi-channel optical module to obtain the top-adjusting signal
  • the first channel information sent by the method according to the first channel information, the top adjustment function of other channels except the first channel is turned off, and the first channel is used as the main channel for transmitting the top adjustment signal, wherein the second multi-channel optical module Analyze the service signal and select a channel as the first channel.
  • the optical module at the central office determines the bit error rate of each channel according to the service signal sent by each channel, and uses the channel with the smallest bit error rate as the first channel, that is, as the main channel for transmitting the top modulation signal .
  • the information sending unit 1020 is configured to send the optical module information to the second multi-channel optical module in the form of a top-adjusting signal through the first channel.
  • the optical module information includes OAM information.
  • one channel is determined as the main channel for transmitting the top modulation signal, and then the optical module information is transmitted to the opposite end through the single channel, which can ensure that the main channel data is not affected.
  • the interaction of optical module information is realized.
  • the first determining unit 1010 is further configured to send a channel switching request for switching the first channel to the second channel to the second multi-channel optical module, and after receiving the channel switching response, close the first channel Channel top function.
  • the remote optical module in a normal communication state, actively sends a request to switch to the second channel to the central office optical module, and enables the top adjustment circuit of the second channel.
  • the central office optical module closes the top adjustment circuit of the first channel, turns on the top adjustment circuit of the second channel, and sends a channel switching response to the remote optical module through the second channel.
  • the remote optical module receives the channel switching response, the top adjustment function of the first channel is turned off.
  • the remote optical module can implement active switching of channels.
  • the first determining unit 1010 is further configured to receive a channel switching request sent by the second multi-channel optical module to switch the first channel to the second channel, and send the request to the second multi-channel through the second channel.
  • the channel optical module sends a channel switching response.
  • the remote optical module when the first channel fails, the remote optical module enables the top adjustment function of each channel, the central optical module sends a channel switching request to the remote optical module through the second channel, and the remote optical module switches the transmission channel. After the response, close the top adjustment function of other channels except the second channel. After the optical module at the central office receives the channel switching response, it closes the top adjustment function of the first channel to complete the channel switching.
  • the channel with the second best performance is selected according to the channel bit error rate as the second channel, that is, Alternate channel.
  • the remote optical module After receiving the channel switching request, the remote optical module turns on the top adjustment circuit of the second channel, sends a pass switching request through the circuit, and closes the top adjustment circuit of the first channel. After receiving the channel switching response, the optical module at the central office closes the top adjustment function of the first channel to complete the channel switching.
  • the remote optical module can implement passive switching of channels.
  • the first determining unit 1010 is further configured to receive, through the second channel, a channel switching request sent by the second multi-channel optical module to switch the second channel to the first channel, and send the request to the second channel through the first channel to the second channel.
  • the multi-channel optical module sends a channel switching response, wherein after the second multi-channel optical module receives the channel switching response, the top adjustment function of the second channel is turned off.
  • the optical module when the main top channel recovers from the fault or performance degradation problem, the optical module can still use the original main channel for information transmission, so that the overall performance of the optical module is optimized.
  • FIG. 11 is a schematic structural diagram of other embodiments of the top-adjustment signal transmission control apparatus of the present disclosure.
  • the apparatus is located in the second multi-channel optical module, and includes a second determining unit 1110 and an information receiving unit 1120 .
  • the second determining unit 1110 is configured to interact with the first multi-channel optical module to determine the first channel for transmitting the top-adjusting signal.
  • the first multi-channel optical module is an optical module located at the remote end
  • the second multi-channel optical module is an optical module located at the central office.
  • the second determining unit 1110 is configured to receive a service signal carrying a preconfigured top-adjustment signal transmitted by the first multi-channel optical module through multiple channels, analyze the service signal, and select a channel as the first channel , and send the first channel information to the first multi-channel optical module in the form of a top adjustment signal, so that the first multi-channel optical module can turn off the top adjustment function of other channels except the first channel according to the first channel information, and The first channel is used as the main channel for transmitting the top tuning signal.
  • the optical module at the central office determines the bit error rate of each channel according to the service signal sent by each channel, and uses the channel with the smallest bit error rate as the first channel, that is, as the main channel for transmitting the top modulation signal .
  • the central office optical module sends the first channel information to the remote optical module through the first channel, and turns off the top adjustment circuits of other channels except the first channel.
  • the remote optical module receives the first channel information through the first channel, and closes the top adjustment circuits of other channels except the first channel. At this time, both the remote optical module and the central optical module only retain a paired channel with the top adjustment function.
  • the information receiving unit 1120 is configured to receive, through the first channel, optical module information sent by the first multi-channel optical module in the form of a top-adjusting signal.
  • the optical module can select a channel to transmit optical module information, which not only ensures the optimal overall performance of the module , and avoid the increase of power consumption and cost caused by excessive waste of resources.
  • the second determining unit 1110 is further configured to receive a channel switching request sent by the first multi-channel optical module to switch the first channel to the second channel, and close the first channel according to the channel switching request.
  • the top adjustment function of the channel is enabled, and a channel switching response is sent to the first multi-channel optical module through the second channel, so that after the first multi-channel optical module receives the channel switching response, the top adjustment function of the first channel is turned off.
  • the remote optical module in a normal communication state, actively sends a request to switch to the second channel to the central office optical module, and enables the top adjustment circuit of the second channel.
  • the central office optical module closes the top adjustment circuit of the first channel, turns on the top adjustment circuit of the second channel, and sends a channel switching response to the remote optical module through the second channel.
  • the optical modules at both ends use the only main channel to transmit and exchange the top-adjusting signal, and the remote optical module and the central office module have the ability to switch to other alternative channels.
  • the second determining unit 1110 is further configured to send a message to the first multi-channel optical module to switch the first channel to the first channel when the first channel is faulty or the performance parameter of the first channel is less than a threshold
  • the top adjustment function of the first channel is turned off.
  • the first multi-channel optical module when the first channel fails, the first multi-channel optical module enables the top adjustment function of each channel, and the second determining unit 1110 sends a channel switching request to the first multi-channel optical module through the second channel, and after receiving the After the first multi-channel optical module responds to the channel switching sent by the second channel, the top adjustment function of the first channel is turned off.
  • the second determining unit 1110 when the performance parameter of the first channel is less than the threshold, the second determining unit 1110 sends a channel switching request to the first multi-channel optical module through the first channel, and after the first multi-channel optical module sends the channel switching response, To disable the top adjustment function of the first channel, the second determining unit 1110 is further configured to disable the top adjustment function of the first channel after receiving the channel switching response, and complete the channel switching.
  • the central office optical module when the working top adjustment channel fails or the performance is degraded, so that the central office optical module cannot receive valid optical module information, the central office optical module will allocate the top adjustment circuits of other channels to ensure the optical module information. continue transmission.
  • a multi-channel optical module is protected, and the optical module includes a top-adjusting signal transmission control device located in a first multi-channel optical module, and a top-adjusting signal transmission located in a second multi-channel optical module control device. That is to say, the multi-channel optical module of the present disclosure can be used as both the central office optical module and the remote optical module, so it has the functions of two types of optical modules.
  • FIG. 12 is a schematic structural diagram of some embodiments of the top modulation signal transmission control system of the present disclosure.
  • the system includes memory 1210 and processor 1220.
  • the memory 1210 may be a magnetic disk, flash memory or any other non-volatile storage medium.
  • the memory is used to store the instructions in the embodiments corresponding to FIGS. 1, 2, and 5-9.
  • the processor 1220 is coupled to the memory 1210 and may be implemented as one or more integrated circuits, such as a microprocessor or microcontroller.
  • the processor 1220 is used to execute instructions stored in the memory.
  • processor 1220 is coupled to memory 1210 through BUS bus 1230 .
  • the system 1200 can also be connected to an external storage system 1250 through a storage interface 1240 for recalling external data, and can also be connected to a network or another computer system (not shown) through a network interface 1260 . It will not be described in detail here.
  • the data instructions are stored in the memory, and the above-mentioned instructions are processed by the processor, which can ensure that the information interaction of the optical modules can be realized without affecting the data service of the main road.
  • a computer-readable storage medium has computer program instructions stored thereon that, when executed by a processor, implement the steps of the methods in the embodiments corresponding to Figures 1, 2, and 5-9.
  • embodiments of the present disclosure may be provided as a method, apparatus, or computer program product. Accordingly, the present disclosure may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment combining software and hardware aspects. Furthermore, the present disclosure may take the form of a computer program product embodied on one or more computer-usable non-transitory storage media (including, but not limited to, disk storage, CD-ROM, optical storage, etc.) having computer-usable program code embodied therein .
  • These computer program instructions may also be stored in a computer-readable memory capable of directing a computer or other programmable data processing apparatus to function in a particular manner, such that the instructions stored in the computer-readable memory result in an article of manufacture comprising instruction means, the instructions
  • the apparatus implements the functions specified in the flow or flow of the flowcharts and/or the block or blocks of the block diagrams.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Computing Systems (AREA)
  • Optical Communication System (AREA)

Abstract

本公开公开了一种调顶信号传输控制方法、装置、系统和多通道光模块,涉及光通信领域。该方法包括:第一多通道光模块和第二多通道光模块通过交互,确定用于传输调顶信号的第一通道;以及第一多通道光模块通过第一通道,将光模块信息以调顶信号的方式发送至第二多通道光模块。

Description

调顶信号传输控制方法、装置、系统和多通道光模块
相关申请的交叉引用
本申请是以CN申请号为202011268497.7,申请日为2020年11月13的申请为基础,并主张其优先权,该CN申请的公开内容在此作为整体引入本申请中。
技术领域
本公开涉及光通信领域,尤其涉及一种调顶信号传输控制方法、装置、系统和多通道光模块。
背景技术
调顶是一种低速调制技术,过去主要应用于10G及以下速率的接入网。WDM(Wavelength Division Multiplexing,波分复用)-PON(Passive Optical Network,无源光纤网络)系统中使用调顶技术,可以配置远端光模块中心波长,在局端实现业务开通。
发明内容
根据本公开一方面,提出一种调顶信号传输控制方法,包括:第一多通道光模块和第二多通道光模块通过交互,确定用于传输调顶信号的第一通道;以及第一多通道光模块通过第一通道,将光模块信息以调顶信号的方式发送至第二多通道光模块。
在一些实施例中,确定用于传输调顶信号的第一通道包括:第一多通道光模块将携带预配置调顶信号的业务信号,通过多个通道传输至第二多通道光模块;第二多通道光模块对业务信号进行分析,选择一路通道作为第一通道,并将第一通道信息以调顶信号的方式发送至第一多通道光模块;以及第一多通道光模块根据第一通道信息,关闭除第一通道外的其他通道的调顶功能,并以第一通道作为传输调顶信号的主通道。
在一些实施例中,第二多通道光模块选择一路通道作为第一通道包括:第二多通道光模块根据每个通道发送的业务信号,确定每个通道的误码率,并将误码率最小的通道作为第一通道。
在一些实施例中,第一多通道光模块向第二多通道光模块发送将第一通道切换到 第二通道的通道切换请求;第二多通道光模块根据通道切换请求,关闭第一通道的调顶功能,并通过第二通道向第一多通道光模块发送通道切换响应;以及第一多通道光模块接收通道切换响应后,关闭第一通道的调顶功能。
在一些实施例中,第二多通道光模块在第一通道故障或者第一通道的性能参数小于阈值时,向第一多通道光模块发送将第一通道切换到第二通道的通道切换请求;第一多通道光模块通过第二通道向第二多通道光模块发送通道切换响应;以及第二多通道光模块接收通道切换响应后,关闭第一通道的调顶功能。
在一些实施例中,第一通道故障时,第一多通道光模块开启各个通道的调顶功能;第二多通道光模块通过第二通道向第一多通道光模块发送通道切换请求;以及第一多通道光模块在发送通道切换响应后,关闭除第二通道外的其他通道的调顶功能。
在一些实施例中,第一通道的性能参数小于阈值时,第二多通道光模块通过第一通道向第一多通道光模块发送通道切换请求;以及第一多通道光模块在发送通道切换响应后,关闭第一通道的调顶功能。
在一些实施例中,第二多通道光模块在第一通道故障恢复或者第一通道的性能参数大于等于阈值时,通过第二通道向第一多通道光模块发送将第二通道切换到第一通道的通道切换请求;第一多通道光模块通过第一通道向第二多通道光模块发送通道切换响应;以及第二多通道光模块接收通道切换响应后,关闭第二通道的调顶功能。
根据本公开的另一方面,还提出一种调顶信号传输控制装置,位于第一多通道光模块,包括:第一确定单元,被配置为与第二多通道光模块交互,确定用于传输调顶信号的第一通道;以及信息发送单元,被配置为通过第一通道,将光模块信息以调顶信号的方式发送至第二多通道光模块。
在一些实施例中,第一确定单元被配置为将携带预配置调顶信号的业务信号通过多个通道传输至第二多通道光模块,并接收第二多通道光模块以调顶信号的方式发送的第一通道信息,根据第一通道信息,关闭除第一通道外的其他通道的调顶功能,并以第一通道作为传输调顶信号的主通道,其中,第二多通道光模块对业务信号进行分析,选择一路通道作为第一通道。
在一些实施例中,第一确定单元还被配置为向第二多通道光模块发送将第一通道切换到第二通道的通道切换请求,接收通道切换响应后,关闭第一通道的调顶功能。
在一些实施例中,第一确定单元还被配置为接收第二多通道光模块发送的将第一通道切换到第二通道的通道切换请求,通过第二通道向第二多通道光模块发送通道切 换响应。
根据本公开的另一方面,还提出一种调顶信号传输控制装置,位于第二多通道光模块,包括:第二确定单元,被配置为与第一多通道光模块交互,确定用于传输调顶信号的第一通道;以及信息接收单元,被配置为通过第一通道,接收第一多通道光模块以调顶信号的方式发送的光模块信息。
在一些实施例中,第二确定单元被配置为接收第一多通道光模块通过多个通道传输的携带预配置调顶信号的业务信号,对业务信号进行分析,选择一路通道作为第一通道,并将第一通道信息以调顶信号的方式发送至第一多通道光模块,以便第一多通道光模块根据第一通道信息,关闭除第一通道外的其他通道的调顶功能,并以第一通道作为传输调顶信号的主通道。
在一些实施例中,第二确定单元还被配置为根据每个通道发送的业务信号,确定每个通道的误码率,并将误码率最小的通道作为第一通道。
在一些实施例中,第二确定单元还被配置为接收第一多通道光模块发送的将第一通道切换到第二通道的通道切换请求,根据通道切换请求,关闭第一通道的调顶功能,并通过第二通道向第一多通道光模块发送通道切换响应,以便第一多通道光模块接收通道切换响应后,关闭第一通道的调顶功能。
在一些实施例中,第二确定单元还被配置为在第一通道故障或者第一通道的性能参数小于阈值时,向第一多通道光模块发送将第一通道切换到第二通道的通道切换请求,接收第一多通道光模块通过第二通道发送的通道切换响应后,关闭第一通道的调顶功能。
根据本公开的另一方面,还提出一种多通道光模块,包括:位于第一多通道光模块内的调顶信号传输控制装置;以及位于第二多通道光模块内的调顶信号传输控制装置。
根据本公开的另一方面,还提出一种调顶信号传输控制系统,包括:存储器;以及耦接至存储器的处理器,处理器被配置为基于存储在存储器的指令执行如上述的调顶信号传输控制方法。
根据本公开的另一方面,还提出一种非瞬时性计算机可读存储介质,其上存储有计算机程序指令,该指令被处理器执行时实现上述的调顶信号传输控制方法。
通过以下参照附图对本公开的示例性实施例的详细描述,本公开的其它特征及其优点将会变得清楚。
附图说明
构成说明书的一部分的附图描述了本公开的实施例,并且连同说明书一起用于解释本公开的原理。
参照附图,根据下面的详细描述,可以更加清楚地理解本公开,其中:
图1为本公开的调顶信号传输控制方法的一些实施例的流程示意图。
图2为本公开的调顶信号传输控制方法的另一些实施例的流程示意图。
图3为本公开的多通道光模块的OAM发送和接收处理电路示意图。
图4为本公开的基于混合信号传输的光模块的示意图。
图5为本公开的调顶信号传输控制方法的另一些实施例的流程示意图。
图6为本公开的调顶信号传输控制方法的另一些实施例的流程示意图。
图7为本公开的调顶信号传输控制方法的另一些实施例的流程示意图。
图8为本公开的调顶信号传输控制方法的另一些实施例的流程示意图。
图9为本公开的调顶信号传输控制方法的另一些实施例的流程示意图。
图10为本公开的调顶信号传输控制装置的一些实施例的结构示意图。
图11为本公开的调顶信号传输控制装置的另一些实施例的结构示意图。
图12为本公开的调顶信号传输控制系统的一些实施例的结构示意图。
具体实施方式
现在将参照附图来详细描述本公开的各种示例性实施例。应注意到:除非另外具体说明,否则在这些实施例中阐述的部件和步骤的相对布置、数字表达式和数值不限制本公开的范围。
同时,应当明白,为了便于描述,附图中所示出的各个部分的尺寸并不是按照实际的比例关系绘制的。
以下对至少一个示例性实施例的描述实际上仅仅是说明性的,决不作为对本公开及其应用或使用的任何限制。
对于相关领域普通技术人员已知的技术、方法和设备可能不作详细讨论,但在适当情况下,所述技术、方法和设备应当被视为授权说明书的一部分。
在这里示出和讨论的所有示例中,任何具体值应被解释为仅仅是示例性的,而不是作为限制。因此,示例性实施例的其它示例可以具有不同的值。
应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步讨论。
为使本公开的目的、技术方案和优点更加清楚明白,以下结合具体实施例,并参照附图,对本公开进一步详细说明。
相关技术基于单通道光模块,调顶信号的收发路径无法调整。对于如100G\400G客户侧的多通道光模块,面临远端光模块信息不可见的问题。如何合理的使用调顶技术,解决远端光模块管理问题值得研究。
图1为本公开的调顶信号传输控制方法的一些实施例的流程示意图。
在步骤110,第一多通道光模块和第二多通道光模块通过交互,确定用于传输调顶信号的第一通道。
在一些实施例中,第一多通道光模块为位于远端的光模块,第二多通道光模块为位于局端的光模块。
第一通道即为传输调顶信号的主通道。
在步骤120,第一多通道光模块通过第一通道,将光模块信息以调顶信号的方式发送至第二多通道光模块。
在一些实施例中,光模块信息包括OAM(Operation Administration and Maintenance,操作维护管理)信息。
在一些实施例中,远端光模块将OAM信息以成帧的方式通过MCU(Microcontroller Unit,微控制单元)发送给驱动器或者调制器,以低速模拟信号的形式叠加在主路数据业务上,再转换成光信号,将光信号发送至局端光模块。局端光模块将光信号转换成电信号,再经过放大、滤波、限幅的一种或多种电路处理后获得OAM信号,并最终回到MCU,由MCU解析出原始数据。局端光模块在接收到主机端设备发送的读取远端光模块信息的指令后,能够将远端光模块的信息发送至主机端设备,从而使得主机端设备能够完成局端光模块和远端光模块的数据的采集和监控。
在该实施例中,通过两端的多通道光模块的交互,确定一路通道作为传输调顶信号的主通道,然后通过该单一通道将光模块信息传输至对端,能够保证在不影响主路数据业务的同时,实现光模块信息的交互。
图2为本公开的调顶信号传输控制方法的另一些实施例的流程示意图。
在步骤210,第一多通道光模块将携带预配置调顶信号的业务信号,通过多个通道传输至第二多通道光模块。
在一些实施例中,如图3所示,在多通道光模块内部的每个子通道下都配置一套调顶信号的发送和接收处理电路,即调顶电路,由MCU集中控制和调度。在传输光模块信息之前,需要完成调顶通道预配置,选择单个子通道用来传输光模块信息,并且关闭其他通道的调顶电路。
在该步骤中,如图4所示,远端光模块开启每个通道的调顶电路,生成具备一定帧格式的调顶信号用于握手,随业务数据信号一起通过各个通道传输到局端光模块。
在步骤220,第二多通道光模块对业务信号进行分析,选择一路通道作为第一通道,并将第一通道信息以调顶信号的方式发送至第一多通道光模块。
在一些实施例中,局端光模块根据每个通道发送的业务信号,确定每个通道的误码率,并将误码率最小的通道作为第一通道,即作为传输调顶信号的主通道。
例如,光模块内部配有PRBS(Pseudo-Random Binary Sequence,伪随机二进制序列)发送单元和PRBS检测单元。远端光模块传输指定码型的PRBS信号(如PRBS7/PRBS15/PRBS23/PRBS31等),局端光模块接收并检测这些PRBS信号,并分别计算各通道误码率。其中,两端光模块设置的PRBS信号的码型必须一致,保证误码率计算的准确性。单通道误码率等于通道接收到的错误数据比特数与总接收数据比特数的比值。对于误码率为0的系统,可以增加光纤链路损耗。局端光模块找到误码率最小的一个通道,将该通道作为在调顶信号干扰下性能最优的通道,也是最适合用作接收远端光模块信息的路径。
在一些实施例中,局端光模块将第一通道信息通过第一通道发送至远端光模块,并关闭除第一通道外的其他通道的调顶电路。
在步骤230,第一多通道光模块根据第一通道信息,关闭除第一通道外的其他通道的调顶功能,并以第一通道作为传输调顶信号的主通道。
在一些实施例中,远端光模块通过第一通道接收该第一通道信息,并关闭除第一通道外的其他通道的调顶电路。此时,远端光模块和局端光模块都只保留配对的一个具备调顶功能的通道。
在步骤240,第一多通道光模块通过第一通道,将光模块信息以调顶信号的方式发送至第二多通道光模块。
在上述实施例中,在能够解决远端客户设备或跨专业设备上的多通道光模块信息实时监控问题的基础上,光模块能够择优选择一个通道传输光模块信息,既保证模块整体性能最优,又避免资源过度浪费引起的功耗和成本增加。
图5为本公开的调顶信号传输控制方法的另一些实施例的流程示意图。
在步骤510,第一多通道光模块向第二多通道光模块发送将第一通道切换到第二通道的通道切换请求。
在一些实施例中,在通信正常状态下,远端光模块主动向局端光模块发送切换到第二通道的请求,并开启第二通道的调顶电路。第二通道为除第一通道外的任意一个其他通道。
在步骤520,第二多通道光模块根据通道切换请求,关闭第一通道的调顶功能,并通过第二通道向第一多通道光模块发送通道切换响应。
在一些实施例中,局端光模块接收到通道切换请求后,关闭第一通道的调顶电路,开启第二通道的调顶电路,并通过第二通道向远端光模块发送通道切换响应。
在步骤530,第一多通道光模块接收通道切换响应后,关闭第一通道的调顶功能。
在上述实施例中,在正常工作模式,两端的光模块使用唯一主通道进行调顶信号传输和交换,并且,可以进行通道的主动切换。
图6为本公开的调顶信号传输控制方法的另一些实施例的流程示意图。
在步骤610,第二多通道光模块在第一通道故障或者第一通道的性能参数小于阈值时,向第一多通道光模块发送将第一通道切换到第二通道的通道切换请求。
在一些实施例中,在第一通道故障或性能下降时,局端光模块无法接收到远端光模块发送的光模块信息,因此,向远端光模块发送通道切换请求,其中,可以根据通道误码率,选择性能次优的通道作为切换通道。
在一些实施例中,通道的接收灵敏度下降到不满足指标要求,则说明通道性能下降。
在步骤620,第一多通道光模块通过第二通道向第二多通道光模块发送通道切换响应。
在一些实施例中,远端光模块开启第二通道的调顶电路,并通过该第二通道进行切换响应,同时关闭第一通道的调顶电路。
在步骤630,第二多通道光模块接收通道切换响应后,关闭第一通道的调顶功能。
在该实施例中,当正在工作的调顶通道发生故障或性能下降,导致局端光模块无法接收有效的光模块信息时,局端光模块会分配其他通道的调顶电路,保证光模块信息的继续传输。
图7为本公开的调顶信号传输控制方法的另一些实施例的流程示意图。
在步骤710,第一通道故障时,第一多通道光模块开启各个通道的调顶功能。
在一些实施例中,远端光模块在感知第一通道故障时,会短暂开启各个通道的调顶电路,用于接收请求报文。
在步骤720,第二多通道光模块通过第二通道向第一多通道光模块发送通道切换请求。
在一些实施例中,局端光模块因第一通道故障无法接收远端光模块发送的光模块信息,根据通道误码率,选择性能次优的通道作为第二通道,即备用通道,并通过该备用通道向远端光模块发送切换请求。
在步骤730,第一多通道光模块在发送通道切换响应后,关闭除第二通道外的其他通道的调顶功能。
在一些实施例中,远端光模块接收到切换请求,通过第二通道向局端光模块进行响应,并关闭除第二通道外的其他通道的调顶电路。
在步骤740,第二多通道光模块接收通道切换响应后,关闭第一通道的调顶功能。
在上述实施例中,主调顶通道故障时,局端光模块发送命令报文触发通道切换机制,保证了光模块信息的继续传输。
图8为本公开的调顶信号传输控制方法的另一些实施例的流程示意图。
在步骤810,第一通道的性能参数小于阈值时,第二多通道光模块通过第一通道向第一多通道光模块发送通道切换请求。
在一些实施例中,光模块具备在全生命周期内检测通道的能力,在主调顶通道性能劣化,引起局端光模块无法接收远端光模块发送的信息时,根据通道误码率,选择性能次优的通道作为第二通道,即备用通道。
在步骤820,第一多通道光模块在发送通道切换响应后,关闭第一通道的调顶功能。
在一些实施例中,远端光模块接收到通道切换请求后,开启第二通道的调顶电路,通过该调顶电路发送通过切换请求,并关闭第一通道的调顶电路。
在步骤830,第二多通道光模块接收通道切换响应后,关闭第一通道的调顶功能,完成通道切换。
在上述实施例中,主调顶通道性能劣化时,局端光模块发送命令报文触发通道切换机制,保证了光模块信息的继续传输。
图9为本公开的调顶信号传输控制方法的另一些实施例的流程示意图。
在步骤910,第二多通道光模块在第一通道故障恢复或者第一通道的性能参数大于等于阈值时,通过第二通道向第一多通道光模块发送将第二通道切换到第一通道的通道切换请求。
在一些实施例中,局端光模块感知第一通道故障恢复后,或者,第一通道性能劣化问题恢复后,开启第一通道的调顶电路。
在步骤920,第一多通道光模块通过第一通道向第二多通道光模块发送通道切换响应。
在一些实施例中,远端光模块接收到切换请求后,开启第一通道的调顶电路,通过该通道向局端光模块发送通道切换响应,并关闭第二通道的调顶电路。
在步骤930,第二多通道光模块接收通道切换响应后,关闭第二通道的调顶功能。
在上述实施例中,在主调顶通道从故障或性能劣化问题恢复时,光模块仍可以沿用原始主通道进行信息发送,从而使得光模块整体性能最优。
图10为本公开的调顶信号传输控制装置的一些实施例的结构示意图。该装置位于第一多通道光模块,包括第一确定单元1010和信息发送单元1020。
第一确定单元1010被配置为与第二多通道光模块交互,确定用于传输调顶信号的第一通道。
在一些实施例中,第一多通道光模块为位于远端的光模块,第二多通道光模块为位于局端的光模块。
在一些实施例中,第一确定单元1010被配置为将携带预配置调顶信号的业务信号通过多个通道传输至第二多通道光模块,并接收第二多通道光模块以调顶信号的方式发送的第一通道信息,根据第一通道信息,关闭除第一通道外的其他通道的调顶功能,并以第一通道作为传输调顶信号的主通道,其中,第二多通道光模块对业务信号进行分析,选择一路通道作为第一通道。
在一些实施例中,局端光模块根据每个通道发送的业务信号,确定每个通道的误码率,并将误码率最小的通道作为第一通道,即作为传输调顶信号的主通道。
信息发送单元1020被配置为通过第一通道,将光模块信息以调顶信号的方式发送至第二多通道光模块。
在一些实施例中,光模块信息包括OAM信息。
在该实施例中,通过两端的多通道光模块的交互,确定一路通道作为传输调顶信号的主通道,然后通过该单一通道将光模块信息传输至对端,能够保证在不影响主路 数据业务的同时,实现光模块信息的交互。
在本公开的另一些实施例中,第一确定单元1010还被配置为向第二多通道光模块发送将第一通道切换到第二通道的通道切换请求,接收通道切换响应后,关闭第一通道的调顶功能。
在一些实施例中,在通信正常状态下,远端光模块主动向局端光模块发送切换到第二通道的请求,并开启第二通道的调顶电路。局端光模块接收到通道切换请求后,关闭第一通道的调顶电路,开启第二通道的调顶电路,并通过第二通道向远端光模块发送通道切换响应。远端光模块接收通道切换响应后,关闭第一通道的调顶功能。
在该实施例中,远端光模块能够实现通道的主动切换。
在本公开的另一些实施例中,第一确定单元1010还被配置为接收第二多通道光模块发送的将第一通道切换到第二通道的通道切换请求,通过第二通道向第二多通道光模块发送通道切换响应。
在一些实施例中,第一通道故障时,远端光模块开启各个通道的调顶功能,局端光模块通过第二通道向远端光模块发送通道切换请求,远端光模块在发送通道切换响应后,关闭除第二通道外的其他通道的调顶功能,局端光模块接收通道切换响应后,关闭第一通道的调顶功能,完成通道切换。
在另一些实施例中,第一通道的性能参数小于阈值时,局端光模块无法接收远端光模块发送的信息时,根据通道误码率,选择性能次优的通道作为第二通道,即备用通道。远端光模块接收到通道切换请求后,开启第二通道的调顶电路,通过该电路发送通过切换请求,并关闭第一通道的调顶电路。局端光模块接收通道切换响应后,关闭第一通道的调顶功能,完成通道切换。
在上述实施例中,远端光模块能够实现通道的被动切换。
在另一些实施例中,第一确定单元1010还被配置为通过第二通道接收第二多通道光模块发送的将第二通道切换到第一通道的通道切换请求,通过第一通道向第二多通道光模块发送通道切换响应,其中,第二多通道光模块接收通道切换响应后,关闭第二通道的调顶功能。
在该实施例中,在主调顶通道从故障或性能劣化问题恢复时,光模块仍可以沿用原始主通道进行信息发送,从而使得光模块整体性能最优。
图11为本公开的调顶信号传输控制装置的另一些实施例的结构示意图。该装置位于第二多通道光模块内,包括第二确定单元1110和信息接收单元1120。
第二确定单元1110被配置为与第一多通道光模块交互,确定用于传输调顶信号的第一通道。
在一些实施例中,第一多通道光模块为位于远端的光模块,第二多通道光模块为位于局端的光模块。
在一些实施例中,第二确定单元1110被配置为接收第一多通道光模块通过多个通道传输的携带预配置调顶信号的业务信号,对业务信号进行分析,选择一路通道作为第一通道,并将第一通道信息以调顶信号的方式发送至第一多通道光模块,以便第一多通道光模块根据第一通道信息,关闭除第一通道外的其他通道的调顶功能,并以第一通道作为传输调顶信号的主通道。
在一些实施例中,局端光模块根据每个通道发送的业务信号,确定每个通道的误码率,并将误码率最小的通道作为第一通道,即作为传输调顶信号的主通道。
在一些实施例中,局端光模块将第一通道信息通过第一通道发送至远端光模块,并关闭除第一通道外的其他通道的调顶电路。远端光模块通过第一通道接收该第一通道信息,并关闭除第一通道外的其他通道的调顶电路。此时,远端光模块和局端光模块都只保留配对的一个具备调顶功能的通道。
信息接收单元1120被配置为通过第一通道,接收第一多通道光模块以调顶信号的方式发送的光模块信息。
在上述实施例中,在能够解决远端客户设备或跨专业设备上的多通道光模块信息实时监控问题的基础上,光模块能够择优选择一个通道传输光模块信息,既保证模块整体性能最优,又避免资源过度浪费引起的功耗和成本增加。
在本公开的另一些实施例中,第二确定单元1110还被配置为接收第一多通道光模块发送的将第一通道切换到第二通道的通道切换请求,根据通道切换请求,关闭第一通道的调顶功能,并通过第二通道向第一多通道光模块发送通道切换响应,以便第一多通道光模块接收通道切换响应后,关闭第一通道的调顶功能。
在一些实施例中,在通信正常状态下,远端光模块主动向局端光模块发送切换到第二通道的请求,并开启第二通道的调顶电路。局端光模块接收到通道切换请求后,关闭第一通道的调顶电路,开启第二通道的调顶电路,并通过第二通道向远端光模块发送通道切换响应。
在上述实施例中,在正常工作模式,两端的光模块使用唯一主通道进行调顶信号传输和交换,远端光模块和局端模块具有切换到其他备选通道的能力。
在本公开的另一些实施例中,第二确定单元1110还被配置为在第一通道故障或者第一通道的性能参数小于阈值时,向第一多通道光模块发送将第一通道切换到第二通道的通道切换请求,接收第一多通道光模块通过第二通道发送的通道切换响应后,关闭第一通道的调顶功能。
在一些实施例中,第一通道故障时,第一多通道光模块开启各个通道的调顶功能,第二确定单元1110通过第二通道向第一多通道光模块发送通道切换请求,在接收到第一多通道光模块通过第二通道发送的通道切换响应后,关闭第一通道的调顶功能。
在一些实施例中,第一通道的性能参数小于阈值时,第二确定单元1110通过第一通道向第一多通道光模块发送通道切换请求,第一多通道光模块在发送通道切换响应后,关闭第一通道的调顶功能,第二确定单元1110还被配置为接收通道切换响应后,关闭第一通道的调顶功能,完成通道切换。
在该实施例中,当正在工作的调顶通道发生故障或性能下降,导致局端光模块无法接收有效的光模块信息时,局端光模块会分配其他通道的调顶电路,保证光模块信息的继续传输。
在本公开的另一些实施例中,保护一种多通道光模块,该光模块包括位于第一多通道光模块的调顶信号传输控制装置,以及位于第二多通道光模块的调顶信号传输控制装置。也就是说,本公开的多通道光模块即可作为局端光模块又可作为远端光模块,因此,具有两种光模块的功能。
图12为本公开的调顶信号传输控制系统的一些实施例的结构示意图。该系统包括存储器1210和处理器1220。其中:存储器1210可以是磁盘、闪存或其它任何非易失性存储介质。存储器用于存储图1、2、5-9所对应实施例中的指令。处理器1220耦接至存储器1210,可以作为一个或多个集成电路来实施,例如微处理器或微控制器。该处理器1220用于执行存储器中存储的指令。
在一些实施例中,处理器1220通过BUS总线1230耦合至存储器1210。该系统1200还可以通过存储接口1240连接至外部存储系统1250以便调用外部数据,还可以通过网络接口1260连接至网络或者另外一台计算机系统(未标出)。此处不再进行详细介绍。
在该实施例中,通过存储器存储数据指令,再通过处理器处理上述指令,能够保证在不影响主路数据业务的同时,实现光模块信息的交互。
在另一些实施例中,一种计算机可读存储介质,其上存储有计算机程序指令,该 指令被处理器执行时实现图1、2、5-9所对应实施例中的方法的步骤。本领域内的技术人员应明白,本公开的实施例可提供为方法、装置、或计算机程序产品。因此,本公开可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本公开可采用在一个或多个其中包含有计算机可用程序代码的计算机可用非瞬时性存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本公开是参照根据本公开实施例的方法、设备(系统)和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
至此,已经详细描述了本公开。为了避免遮蔽本公开的构思,没有描述本领域所公知的一些细节。本领域技术人员根据上面的描述,完全可以明白如何实施这里公开的技术方案。
虽然已经通过示例对本公开的一些特定实施例进行了详细说明,但是本领域的技术人员应该理解,以上示例仅是为了进行说明,而不是为了限制本公开的范围。本领域的技术人员应该理解,可在不脱离本公开的范围和精神的情况下,对以上实施例进行修改。本公开的范围由所附权利要求来限定。

Claims (20)

  1. 一种调顶信号传输控制方法,包括:
    第一多通道光模块和第二多通道光模块通过交互,确定用于传输调顶信号的第一通道;以及
    所述第一多通道光模块通过所述第一通道,将光模块信息以调顶信号的方式发送至所述第二多通道光模块。
  2. 根据权利要求1所述的调顶信号传输控制方法,其中,确定用于传输调顶信号的第一通道包括:
    所述第一多通道光模块将携带预配置调顶信号的业务信号,通过多个通道传输至所述第二多通道光模块;
    所述第二多通道光模块对所述业务信号进行分析,选择一路通道作为所述第一通道,并将第一通道信息以调顶信号的方式发送至所述第一多通道光模块;以及
    所述第一多通道光模块根据所述第一通道信息,关闭除所述第一通道外的其他通道的调顶功能,并以所述第一通道作为传输调顶信号的主通道。
  3. 根据权利要求2所述的调顶信号传输控制方法,其中,所述第二多通道光模块选择一路通道作为所述第一通道包括:
    所述第二多通道光模块根据每个通道发送的业务信号,确定每个通道的误码率,并将误码率最小的通道作为所述第一通道。
  4. 根据权利要求1至3任一所述的调顶信号传输控制方法,还包括:
    所述第一多通道光模块向所述第二多通道光模块发送将第一通道切换到第二通道的通道切换请求;
    所述第二多通道光模块根据所述通道切换请求,关闭所述第一通道的调顶功能,并通过所述第二通道向所述第一多通道光模块发送通道切换响应;以及
    所述第一多通道光模块接收所述通道切换响应后,关闭所述第一通道的调顶功能。
  5. 根据权利要求1至3任一所述的调顶信号传输控制方法,还包括:
    所述第二多通道光模块在所述第一通道故障或者所述第一通道的性能参数小于阈值时,向所述第一多通道光模块发送将第一通道切换到第二通道的通道切换请求;
    所述第一多通道光模块通过所述第二通道向所述第二多通道光模块发送通道切换响应;以及
    所述第二多通道光模块接收所述通道切换响应后,关闭所述第一通道的调顶功能。
  6. 根据权利要求5所述的调顶信号传输控制方法,其中,
    所述第一通道故障时,所述第一多通道光模块开启各个通道的调顶功能;
    所述第二多通道光模块通过所述第二通道向所述第一多通道光模块发送通道切换请求;以及
    所述第一多通道光模块在发送通道切换响应后,关闭除所述第二通道外的其他通道的调顶功能。
  7. 根据权利要求5所述的调顶信号传输控制方法,其中,
    所述第一通道的性能参数小于阈值时,所述第二多通道光模块通过所述第一通道向所述第一多通道光模块发送通道切换请求;以及
    所述第一多通道光模块在发送通道切换响应后,关闭所述第一通道的调顶功能。
  8. 根据权利要求5所述的调顶信号传输控制方法,其中,
    所述第二多通道光模块在所述第一通道故障恢复或者所述第一通道的性能参数大于等于阈值时,通过所述第二通道向所述第一多通道光模块发送将第二通道切换到第一通道的通道切换请求;
    所述第一多通道光模块通过所述第一通道向所述第二多通道光模块发送通道切换响应;以及
    所述第二多通道光模块接收所述通道切换响应后,关闭所述第二通道的调顶功能。
  9. 一种调顶信号传输控制装置,位于第一多通道光模块,包括:
    第一确定单元,被配置为与第二多通道光模块交互,确定用于传输调顶信号的第一通道;以及
    信息发送单元,被配置为通过所述第一通道,将光模块信息以调顶信号的方式发送至所述第二多通道光模块。
  10. 根据权利要求9所述的调顶信号传输控制装置,其中,
    所述第一确定单元被配置为将携带预配置调顶信号的业务信号通过多个通道传输至所述第二多通道光模块,并接收所述第二多通道光模块以调顶信号的方式发送的第一通道信息,根据所述第一通道信息,关闭除所述第一通道外的其他通道的调顶功能,并以所述第一通道作为传输调顶信号的主通道,其中,所述第二多通道光模块对所述业务信号进行分析,选择一路通道作为所述第一通道。
  11. 根据权利要求9或10所述的调顶信号传输控制装置,其中,
    所述第一确定单元还被配置为向所述第二多通道光模块发送将第一通道切换到第二通道的通道切换请求,接收所述第二多通道光模块通过所述第二通道发送的通道切换响应后,关闭所述第一通道的调顶功能。
  12. 根据权利要求9或10所述的调顶信号传输控制装置,其中,
    所述第一确定单元还被配置为接收所述第二多通道光模块发送的将第一通道切换到第二通道的通道切换请求,通过所述第二通道向所述第二多通道光模块发送通道切换响应。
  13. 一种调顶信号传输控制装置,位于第二多通道光模块,包括:
    第二确定单元,被配置为与第一多通道光模块交互,确定用于传输调顶信号的第一通道;以及
    信息接收单元,被配置为通过所述第一通道,接收所述第一多通道光模块以调顶信号的方式发送的光模块信息。
  14. 根据权利要求13所述的调顶信号传输控制装置,其中,
    所述第二确定单元被配置为接收所述第一多通道光模块通过多个通道传输的携 带预配置调顶信号的业务信号,对所述业务信号进行分析,选择一路通道作为所述第一通道,并将第一通道信息以调顶信号的方式发送至所述第一多通道光模块,以便所述第一多通道光模块根据所述第一通道信息,关闭除所述第一通道外的其他通道的调顶功能,并以所述第一通道作为传输调顶信号的主通道。
  15. 根据权利要求14所述的调顶信号传输控制装置,其中,
    所述第二确定单元还被配置为根据每个通道发送的业务信号,确定每个通道的误码率,并将误码率最小的通道作为所述第一通道。
  16. 根据权利要求13至15任一所述的调顶信号传输控制装置,其中,
    所述第二确定单元还被配置为接收所述第一多通道光模块发送的将第一通道切换到第二通道的通道切换请求,根据所述通道切换请求,关闭所述第一通道的调顶功能,并通过所述第二通道向所述第一多通道光模块发送通道切换响应,以便所述第一多通道光模块接收所述通道切换响应后,关闭所述第一通道的调顶功能。
  17. 根据权利要求13至15任一所述的调顶信号传输控制装置,其中,
    所述第二确定单元还被配置为在所述第一通道故障或者所述第一通道的性能参数小于阈值时,向所述第一多通道光模块发送将第一通道切换到第二通道的通道切换请求,接收所述第一多通道光模块通过所述第二通道发送的通道切换响应后,关闭所述第一通道的调顶功能。
  18. 一种多通道光模块,包括:
    权利要求9至12任一所述的调顶信号传输控制装置;以及
    权利要求13至17任一所述的调顶信号传输控制装置。
  19. 一种调顶信号传输控制系统,包括:
    存储器;以及
    耦接至所述存储器的处理器,所述处理器被配置为基于存储在所述存储器的指令执行如权利要求1至8任一项所述的调顶信号传输控制方法。
  20. 一种非瞬时性计算机可读存储介质,其上存储有计算机程序指令,该指令被处理器执行时实现权利要求1至8任一项所述的调顶信号传输控制方法。
PCT/CN2021/129469 2020-11-13 2021-11-09 调顶信号传输控制方法、装置、系统和多通道光模块 WO2022100561A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011268497.7 2020-11-13
CN202011268497.7A CN114499738A (zh) 2020-11-13 2020-11-13 调顶信号传输控制方法、装置、系统和多通道光模块

Publications (1)

Publication Number Publication Date
WO2022100561A1 true WO2022100561A1 (zh) 2022-05-19

Family

ID=81490241

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/129469 WO2022100561A1 (zh) 2020-11-13 2021-11-09 调顶信号传输控制方法、装置、系统和多通道光模块

Country Status (2)

Country Link
CN (1) CN114499738A (zh)
WO (1) WO2022100561A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024027435A1 (zh) * 2022-08-05 2024-02-08 华为技术有限公司 光发送模块、光发送设备和调整调顶深度的方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117061011A (zh) * 2023-08-17 2023-11-14 中天通信技术有限公司 具有调顶功能的光模块和数据传输系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7088495B2 (en) * 2002-06-03 2006-08-08 Sparta, Inc. Method and apparatus for time-division multiplexing to improve the performance of multi-channel non-linear optical systems
CN111404602A (zh) * 2020-03-24 2020-07-10 东莞铭普光磁股份有限公司 一种低光功率下调顶信号的通信方法及系统、光模块
CN111541509A (zh) * 2016-04-07 2020-08-14 华为技术有限公司 多信道无源光网络(pon)中的选择性信道控制

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200059356A (ko) * 2018-11-20 2020-05-29 주식회사 오이솔루션 멀티채널 양방향 광통신 모듈

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7088495B2 (en) * 2002-06-03 2006-08-08 Sparta, Inc. Method and apparatus for time-division multiplexing to improve the performance of multi-channel non-linear optical systems
CN111541509A (zh) * 2016-04-07 2020-08-14 华为技术有限公司 多信道无源光网络(pon)中的选择性信道控制
CN111404602A (zh) * 2020-03-24 2020-07-10 东莞铭普光磁股份有限公司 一种低光功率下调顶信号的通信方法及系统、光模块

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024027435A1 (zh) * 2022-08-05 2024-02-08 华为技术有限公司 光发送模块、光发送设备和调整调顶深度的方法

Also Published As

Publication number Publication date
CN114499738A (zh) 2022-05-13

Similar Documents

Publication Publication Date Title
WO2022100561A1 (zh) 调顶信号传输控制方法、装置、系统和多通道光模块
US9391693B2 (en) Protection for distributed radio access networks
US8699354B2 (en) Method and apparatus for detecting a fault on an optical fiber
CN110445533B (zh) 一种双冗余光纤以太网传输系统
JPH05219146A (ja) 広帯域光ネットワーク用インテリジェント相互接続およびデータ伝送方法
US10554296B2 (en) Optical network system
US10296407B2 (en) Method to detect and to handle failures in the communication in a computer network
US20170187452A1 (en) Method and apparatus for processing upstream data anomaly
CN108259068B (zh) 光伏系统安全控制方法、设备及系统
CN102801467A (zh) 一种基于onu实现双光纤保护倒换的装置及方法
US9166868B2 (en) Distributed control plane for link aggregation
US9025950B2 (en) Communication system and optical transmission device
CN103986524A (zh) 一种单纤双向光模块、通信设备及连接错误检测方法
CN102265640B (zh) 光线路传输保护系统和方法
CN101808043A (zh) 端口汇聚trunk成员业务报文转发状态的检测方法及装置
CN113094316A (zh) 一种ncsi信号的在线切换装置及方法
US20110076012A1 (en) Optical network terminal and method for detecting transmission error in optical network terminal
CN105915286B (zh) 数据分流方法及分流器
CN201571076U (zh) 用于以太网的备份系统
SE524167C2 (sv) Förfarande och arrangemang för signalering i nät med optiska portar
JP2503947B2 (ja) 通信網の保守システム
WO2024139591A1 (zh) 一种光波长保护组倒换方法以及相关装置
CN110166854B (zh) 用于光通信终端设备的接入设备及光通信终端设备
JP2012501121A (ja) 仮想スイッチの絶対的制御
WO2011145540A1 (ja) 無線通信装置及び無線通信方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21891085

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 04/09/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 21891085

Country of ref document: EP

Kind code of ref document: A1