WO2022100166A1 - 一种以铁精矿粉为原料制备微米级球形加重材料的方法 - Google Patents

一种以铁精矿粉为原料制备微米级球形加重材料的方法 Download PDF

Info

Publication number
WO2022100166A1
WO2022100166A1 PCT/CN2021/111871 CN2021111871W WO2022100166A1 WO 2022100166 A1 WO2022100166 A1 WO 2022100166A1 CN 2021111871 W CN2021111871 W CN 2021111871W WO 2022100166 A1 WO2022100166 A1 WO 2022100166A1
Authority
WO
WIPO (PCT)
Prior art keywords
powder
density
concentrate powder
raw material
micron
Prior art date
Application number
PCT/CN2021/111871
Other languages
English (en)
French (fr)
Inventor
许传华
刘亚辉
柳雷
孙国权
彭丽芬
孙炳泉
高春庆
沈进杰
Original Assignee
中钢集团马鞍山矿山研究总院股份有限公司
中钢集团马鞍山矿院新材料科技有限公司
华唯金属矿产资源高效循环利用国家工程研究中心有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中钢集团马鞍山矿山研究总院股份有限公司, 中钢集团马鞍山矿院新材料科技有限公司, 华唯金属矿产资源高效循环利用国家工程研究中心有限公司 filed Critical 中钢集团马鞍山矿山研究总院股份有限公司
Publication of WO2022100166A1 publication Critical patent/WO2022100166A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/02Well-drilling compositions
    • C09K8/03Specific additives for general use in well-drilling compositions
    • C09K8/032Inorganic additives

Definitions

  • the invention belongs to the technical field of the preparation of weighting materials, and in particular relates to a method for preparing a micron-scale spherical weighting material by using iron concentrate powder as a raw material, which is particularly suitable for preparing a density of 4.8g/cm 3 -5.6g/cm 3 and a particle size distribution.
  • D90 is a micron-sized spherical weighting material of 2-20 ⁇ m, which can be widely used in high-density, ultra-high-density drilling fluid and cement slurry in the process of oil and gas field exploitation.
  • the drilling fluid density used during construction varies from 2.00g/ cm3 to 2.60g/ cm3 etc.; in the process of oil and gas field exploitation in the Tarim Basin, the high density requirement of drilling fluid has been higher than 2.6g/cm 3 , which requires us to provide weighted materials with a density greater than 4.8g/cm 3 to meet the requirement.
  • High-density drilling fluid and cement slurry refer to cement slurry with a density greater than 2.10g/cm 3 , and the density is increased by adding a weighting agent.
  • the commonly used weighting materials are as follows: 1) High-density minerals such as magnetite, lead oxide and siderite are screened according to API standards, and weighting materials with a density of ⁇ 4.8g/ cm3 can be obtained, but there is a problem with drilling tools.
  • a drilling system using formate as a weighting material this system can produce a drilling fluid with a density of 2.3g/ cm3 , and the effect is good, but the weighting effect is poor;
  • Recrystallization Stone weight material the density is 4.1 ⁇ 4.6g/cm 3 , the density of the prepared drilling fluid is not more than 2.30g/cm 3 , when the weight is increased to 2.4g/cm 3 , the fluidity and settlement stability of the system have become the main contradictions;
  • manganese tetroxide micropowder system the density of this material is 4.8g/cm 3 , the particle size distribution D90 ⁇ 5 ⁇ m, the sedimentation stability and the weighting performance are excellent, but none of them are imported from abroad, the price is high, and the density>4.8g/ cm 3 weighting material.
  • the micron-scale spherical weighting material prepared by the present invention has a density of 4.8g/cm 3 to 5.6g/cm 3 , a particle size distribution D90 of 2 to 40 ⁇ m, and a spherical weighting rate of ⁇ 96%.
  • the ultra-high-density drilling fluid with a density greater than 2.6 g/cm 3 is prepared, which has the advantages of good settlement stability, reduced drilling tool wear, corrosion resistance and low price. At present, there are no relevant patents and literature reports in China.
  • the purpose of the present invention is to solve the above problems existing in the prior art, and to provide an iron concentrate powder with a density range of 4.8-5.6 g/cm 3 , a particle size distribution D90 of 2-40 ⁇ m, and a particle sphericity ⁇ 96%.
  • the method for preparing micron-sized spherical weighting materials as raw materials The prepared high-density, micron-sized spherical weighting materials are used in drilling fluid and cement slurry. Compared with traditional weighting materials, it has good settlement stability, corrosion resistance, and reduced drilling tool wear. It is of great significance to replace foreign imported high-end weighting agent products.
  • the iron concentrate powder selected in step (1) is subjected to grinding-classification-sorting to obtain high-grade iron concentrate powder with a density of ⁇ 4.8g/ cm3 ;
  • the mineral powder is filtered, dried or air-dried, and then pulverized and classified by air flow, micro-powder particles with a particle size distribution D90 of 2 to 20 ⁇ m are obtained;
  • the purpose of the electric treatment is to solve the key technical problem of easy agglomeration of micron-sized powder materials, so that the particle size of the micron-sized powder after the subsequent high-temperature spheroidization process is basically the same as before spheroidization.
  • the particle size D90 is 2-20 ⁇ m, and the phenomenon that the particles increase significantly due to agglomeration does not appear.
  • the grinding-classification-sorting adopts wet operation, and controls the grading overflow particle size to be -0.074mm and the content is ⁇ 95%;
  • the pulverization can be jet pulverization or a combination of jet pulverization and Raymond mill, and the air classification preferably adopts cyclone classification.
  • High temperature spheroidization treatment The micropowder particles with the same electrical properties on the surface are transported to the high temperature spheroidizing furnace through the micropowder conveying system for spheroidization at 1400-1800°C.
  • the Fe 3 O 4 in the particles is oxidized to Fe 2 O 3 , the purpose is to solve the problem of magnetization of the micron spherical weighting material; then it is transported to the cooling device by the air flow to complete the surface homogenization of the spherical micropowder particles, and finally it passes through the micropowder collection device. Collection of micron-sized spherical weighting material.
  • the power application treatment adopts the paradigm generator, the paradigm generator adopts a closed space, and an external 24V or 36V safe power supply is used to make the evenly distributed charges in the wall of the paradigm generator fully contact with the micro-powder particles.
  • the surface of the micropowder particles has the same electrical properties.
  • the high temperature spheroidizing furnace is provided with an airflow pressure system, an oxidizing atmosphere gas distribution system and a heating system.
  • the invention adopts the combination of high temperature pressure spheroidization process and oxidizing atmosphere gas distribution process to oxidize Fe 3 O 4 existing in iron ore powder particles into Fe 2 O 3 , and solves the problem of magnetization of micron-scale spherical weighting materials.
  • the micropowder particles are transported into the high-temperature spheroidizing furnace through the air pressure system, and the oxidizing atmosphere is maintained under the action of the oxidizing atmosphere gas distribution system.
  • the micron-sized spherical weighting agent particles are prepared by cooling and forming of the micro-powder particles, which realizes the adjustment of the surface uniformity and sphericity of the spherical material.
  • the density of the spherical weighting material prepared by the above process is 4.8-5.6 g/cm 3 , the particle size distribution D90 is 2-40 ⁇ m, and the sphericity is ⁇ 96%.
  • high-grade iron ore concentrate powder with a density of ⁇ 4.8 g/cm 3 can also be directly selected as the raw material. This saves the steps involved.
  • the iron concentrate powder or high-grade iron concentrate powder in the method of the invention is preferably mirror iron ore concentrate powder, and natural gas is used for heating.
  • the experimental phenomenon shows that the spheroidization process is a weak reducing atmosphere, while the mirror iron ore concentrate has few strong magnetic substances. , the magnetism becomes stronger after spheroidization, so the subsequent increase in oxidation process demagnetization.
  • a method for preparing a micron-scale spherical weighting material using iron concentrate powder as a raw material of the present invention has the following advantages:
  • the selected iron ore concentrate powder with density ⁇ 4.5g/ cm3 is used as raw material, and high-grade iron ore concentrate powder with density ⁇ 4.8g/ cm3 is obtained through grinding-classification-sorting, and then crushed-air flow After classification, micropowder particles with a particle size distribution D90 of 2-40 ⁇ m are obtained.
  • This particle size distribution is beneficial to the close packing arrangement of the solid-phase constituent particles of the drilling fluid, and the purpose of increasing the weight of the drilling fluid is achieved without increasing the viscosity of the drilling fluid.
  • the same electrical charge is applied to the surface of the powder by the paradigm generator equipment, which solves the key technical problem of easy agglomeration of micron-sized powder materials, and makes the micron-sized powder spheroidized by a high-temperature spheroidization device.
  • the diameter is basically the same as before spheroidization, the particle diameter D90 is 2-40 ⁇ m, and there is no obvious increase of particles due to agglomeration.
  • the high temperature pressure spheroidization process is combined with the oxidizing atmosphere gas distribution process to oxidize the Fe 3 O 4 existing in the iron ore powder particles to Fe 2 O 3 , which solves the problem of the magnetization of the micron spherical weighting material.
  • the high-temperature spheroidization device realizes the adjustment of the surface uniformity and sphericity of the spherical material through the precise control of temperature, oxidizing atmosphere, and airflow delivery pressure.
  • the raw material is hematite and limonite mixed iron concentrate powder with a density of 4.5g/cm 3 as the raw material.
  • micropowder particles with a particle size distribution D90 of 26 ⁇ m are applied with a negative charge by a paradigm generator, so that the particle surface has a uniform negative charge, and is transported to a high temperature spheroidizing furnace through a micropowder conveying system, and the temperature in the furnace is adjusted.
  • the temperature reaches 1800°C
  • the sintering process is completed under the synergy of the pressure system, the oxidizing atmosphere distribution system and the heating system, and then it is transported to the rapid cooling device through the micropowder conveying system for homogenization and molding, and finally the micron-sized particles are collected by the micropowder particle collection equipment.
  • Spherical weight material is
  • the density of the prepared micron spherical weighting agent is 4.9 g/cm 3 , the particle size distribution D90 is 26 ⁇ m, and the spheroidization rate is 96.5%.
  • mirror iron ore concentrate powder with a density of 4.6 g/cm 3 is selected.
  • micropowder particles with a particle size distribution D90 of 22 ⁇ m are applied with a negative charge by a paradigm generator, so that the particle surface has a uniform negative charge, and is transported to a high temperature spheroidizing furnace through a micropowder conveying system, and the temperature in the furnace is adjusted.
  • the temperature reaches 1600°C
  • the sintering process is completed under the synergy of the pressure system, the oxidizing atmosphere distribution system and the heating system, and then it is transported to the rapid cooling device through the micropowder conveying system for homogenization molding, and finally the micron particle collection equipment is used to collect the micron size Spherical weight material.
  • the prepared micron spherical weighting agent has a density of 5.0 g/cm 3 , a particle size distribution D90 of 22 ⁇ m, and a spheroidization rate of 97.2%.
  • the raw material is magnetite concentrate powder with a density of 4.75g/ cm3 .
  • micropowder particles with a particle size distribution D90 of 16 ⁇ m are applied with a negative charge by a paradigm generator, so that the particle surface has a uniform negative charge, and is transported to a high temperature spheroidizing furnace through a micropowder conveying system, and the temperature in the furnace is adjusted.
  • the temperature reaches 1600°C
  • the sintering process is completed under the synergy of the pressure system, the oxidizing atmosphere distribution system and the heating system, and then it is transported to the rapid cooling device through the micropowder conveying system for homogenization molding, and finally the micron particle collection equipment is used to collect the micron size Spherical weight material.
  • the density of the prepared micron spherical weighting agent is 5.1 g/cm 3 , the particle size distribution D90 is 16 ⁇ m, and the spheroidization rate is 96.8%.
  • the raw material is selected as ilmenite concentrate powder with a density of 4.7 g/cm 3 .
  • micropowder particles with a particle size D90 of 5 ⁇ m are applied with a negative charge by a paradigm generator, so that the surface of the particles has a uniform positive charge, and is transported to a high temperature spheroidizing furnace through a micropowder conveying system, and the temperature in the furnace is adjusted to At 1600°C, the sintering process is completed under the synergy of the pressure system, the oxidizing atmosphere distribution system and the heating system, and then it is transported to the rapid cooling device through the micropowder conveying system for homogenization and molding, and finally the micron-sized spherical particles are collected by the micropowder particle collection equipment. Weighted material.
  • the density of the prepared micron spherical weighting agent is 5.4 g/cm 3 , the particle size D90 is 5 ⁇ m, and the spheroidization rate is 97.8%.
  • the upper and lower limit values and interval values of the raw materials and process parameters involved in the present invention can all realize the present invention, which will not be listed one by one here.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Powder Metallurgy (AREA)

Abstract

本发明公开了一种以铁精矿粉为原料制备微米级球形加重材料的方法,选择密度≥4.5g/cm 3的铁精矿粉作为原材料,原材料经过磨矿-分级-分选制得密度≥4.8g/cm 3的高品位铁精矿粉,对高品位铁精矿粉经过粉碎-气流分级后得到粒径分布D90为2~20μm的微粉颗粒;对微粉颗粒进行施电处理并输送系统输送至高温球化炉内进行球形化,加热系统将温度加热至1400~1800℃时颗粒熔融,最后通过微粉收集装置收集微米级球形加重材料,制备的球形加重材料密度为4.8g/cm 3~5.6g/cm 3,粒径分布D90为2~20μm,成球率>96%,可广泛应用于油气田开采过程中高密度、超高密度钻井液及水泥浆中。

Description

一种以铁精矿粉为原料制备微米级球形加重材料的方法 技术领域
本发明属于加重材料制备技术领域,具体涉及一种以铁精矿粉为原料制备微米级球形加重材料的方法,特别适于制备密度为4.8g/cm 3~5.6g/cm 3、粒径分布D90为2~20μm的微米级球形加重材料,可广泛应用于油气田开采过程中高密度、超高密度钻井液及水泥浆中。
背景技术
近年来,随着我国油气勘查工作的持续向着深海、深井、超深井等复杂地理环境扩展,使用高密度及超高密度钻井液、水泥浆需求量逐步增加。如,南海油气田储量占我国油气总资源量的1/3,其中70%蕴藏于153.7万平方公里的深海区域。在地理上位于山地和盆地边缘的油气田,如新疆准噶尔盆地和四川盆地油气田开采过程中已钻井多数遇到了异常高压带,施工时所用钻井液密度从2.00g/cm 3到2.60g/cm 3不等;在塔里木盆地油气田开采过程中,钻井液的高密度需求已高于2.6g/cm 3,这需要我们提供密度大于4.8g/cm 3的加重材料才能满足要求。
高密度钻井液、水泥浆是指密度大于2.10g/cm 3的水泥浆,通过添加加重剂来提高密度。常用的加重材料有以下几种:1)磁铁矿、氧化铅、菱铁矿等高密度矿物按照API标准进行筛选,可制得密度≥4.8g/cm 3的加重材料,但存在对钻具磨损严重、沉降稳定性差等问题;2)以甲酸盐作为加重材料的钻井体系,该体系可制得密度2.3g/cm 3的钻井液,效果好,但加重效果较差;3)重晶石类加重材料,密度为4.1~4.6g/cm 3,制备钻井液密度不超过2.30g/cm 3,加重至2.4g/cm 3时,体系的流动性和沉降稳定性已成为主要矛盾;4)四氧化三锰微粉体系,该材料密度为4.8g/cm 3,粒径分布D90≤5μm,沉降稳定性、 加重性能优异,然均未国外进口,价格昂贵,且无法提供密度>4.8g/cm 3的加重材料。例如,《采钻工艺》1997年第2期发表的“钻井液加重材料的综合评价”一文中,选用4种加重剂:青石粉、钦铁矿、重晶石、菱铁矿,其试验结果表明,青石粉加重钻井液的最大密度是1.52g/cm 3,钦铁矿加重的最大密度是1.96g/cm 3,重晶石加重钻井液的最大密度是1.96g/cm 3,菱铁矿加重钻井液的最大密度是2.12g/cm 3,都小于2.0g/cm 3,无法满足钻井液密度从2.00g/cm 3到2.60g/cm 3的要求。
针对上述问题,本发明所制备出的微米级球形加重材料密度为4.8g/cm 3~5.6g/cm 3,粒径分布D90为2~40μm,成球率≥96%的球形加重材料,可制备出密度大于2.6g/cm 3的超高密度钻井液,具有沉降稳定性好、降低钻具磨损、耐腐蚀及价格低廉等优点。目前国内未见相关专利及文献报道。
发明内容
本发明的目的就是针对现有技术中存在的上述问题,而提供一种密度范围为4.8~5.6g/cm 3、粒径分布D90为2~40μm、颗粒球形率≥96%以铁精矿粉为原料制备微米级球形加重材料的方法,制备的高密度、微米级球形加重材料应用于钻井液、水泥浆中,较于传统加重材料具有沉降稳定性好、耐腐蚀、降低钻具磨损等优良特性,对于取代国外进口高端加重剂产品具有重要意义。
为实现本发明的上述目的,本发明一种以铁精矿粉为原料制备微米级球形加重材料的方法采用的技术方案为:
(1)原材料的选择:选择密度≥4.5g/cm 3的铁精矿粉作为原材料;所述的铁精矿粉为镜铁矿、赤铁矿、褐铁矿、钛铁矿、磁铁矿中的一种或任意两种及任意两种以上的混合物,但优选镜铁矿、赤铁矿,如果是混合矿,在混合矿中的磁铁矿占有率越少越好,因为含有磁性矿会增加团聚现象,增加了后续处理的难度。
(2)原材料处理:将步骤(1)选择的铁精矿粉进行磨矿-分级-分选制得密度≥4.8g/cm 3的高品位铁精矿粉;对制得的高品位铁精矿粉经过过滤、烘干或晾干后,再经过粉碎-气流分级后得到粒径分布D90为2~20μm的微粉颗粒;对制得的微粉颗粒进行施电处理,使微粉颗粒表面带有电性相同的电荷;施电处理的目的是为了解决微米级粉体材料易团聚的关键技术难题,使得微米级粉体经过后续高温球化处理过程中颗粒的粒径与球形化之前保持基本一致,粒径D90为2~20μm,不出现颗粒因团聚而明显增大的现象。
所述的磨矿-分级-分选采用湿式作业,控制分级溢流粒度为-0.074mm含量≥95%;分选采用螺旋溜槽重选,一次粗选、一次精选。
所述的粉碎可以采用气流粉碎或气流粉碎与雷蒙磨的组合,所述的气流分级最好采用旋风分级。
(3)高温球化处理:将表面带有相同电性的微粉颗粒经微粉输送系统输送至高温球化炉内在1400~1800℃进行球形化,球化过程需在氧化气氛条件下进行,将微粉颗粒中的Fe 3O 4氧化成Fe 2O 3,其目的是为了解决微米级球形加重材料的磁化问题;然后经气流输送至冷却装置完成球形微粉颗粒的表面均质化,最后通过微粉收集装置收集微米级球形加重材料。
所述的施电处理采用范式起电机,范式起电机采用密闭式空间,外接24V或36V安全电源,使范式起电机的壁内均匀分布的电荷与微粉颗粒充分接触,经5~20min处理后使微粉颗粒表面带有相同的电性。
所述的高温球化炉设有气流压力系统、氧化气氛配气系统、加热系统。
本发明采用高温压力球形化工艺与氧化气氛配气工艺相结合,将铁矿粉颗粒中存在的Fe 3O 4氧化成Fe 2O 3,解决了微米级球形加重材料的磁性化问题。
本发明高温球化处理工艺中,微粉颗粒经气流压力系统输送至高温球化炉内,在氧化气氛配气系统的作用下保持氧化气氛,加热系统将温度加热至1400~1800℃时颗粒熔融,最后微粉颗粒冷却成型制备出微米级球形加重剂颗粒,实现了对球形材料表面均匀性、球形率的调节,制备的微米级球形加重材料成球率≥96%。
通过上述工艺制备的球形加重材料密度为4.8~5.6g/cm 3,粒径分布D90为2~40μm,球形率≥96%。
当然,本发明也可以直接选择密度≥4.8g/cm 3的高品位铁精矿粉作为原材。这样就可以省去有关步骤。
本发明方法中的铁精矿粉或高品位铁精矿粉优选镜铁矿精矿粉,加热使用天然气,试验现象表明球形化过程为弱还原气氛,而镜铁矿精矿强磁性物质很少,球形化后磁性变强,所以后续增加氧化过程脱磁。
与现有技术相比,本发明一种以铁精矿粉为原料制备微米级球形加重材料的方法具有如下优点:
(1)以密度≥4.5g/cm 3的铁精矿粉作为原材料为基础原料,原料易得,价格低廉,绿色无污染,降低了微米级球形加重材料的生产成本。
(2)选取的密度≥4.5g/cm 3的铁精矿粉作为原材料,经过磨矿-分级-分选制得密度≥4.8g/cm 3的高品位铁精矿粉,再经过粉碎-气流分级后得到粒径分布D90为2~40μm的微粉颗粒,该粒径分布有利于钻井液固相组成颗粒的紧密堆积排列,完成钻井液加重目的的同时并不增加钻井液的粘度。
(3)采用范式起电机设备对粉体表面施加相同电性电荷,解决了微米级粉体材料易团聚的关键技术难题,使得微米级粉体经过高温球形化装置球形化的过程中颗粒的粒径与球形化之前保持基本一致,粒径D90为2~40μm,未出现颗粒因团聚而明显增大的情况。
(4)采用高温压力球形化工艺与氧化气氛配气工艺相结合,将铁矿粉颗粒中存在的Fe 3O 4氧化为Fe 2O 3,解决了微米级球形加重材料的磁性化问题。
(5)高温球形化装置通过温度、氧化气氛、气流输送压力的精准控制,实现了对球形材料表面均匀性、球形率的调节,制备的微米级球形加重材料成球率≥96%。
具体实施方式
为描述本发明,下面结合实施例对本发明一种以铁精矿粉为原料制备微米级球形加重材料的方法做进一步详细说明。实施例中步骤、数据为实验室试验结果。
实施例1
原材料选择密度为4.5g/cm 3的赤铁矿、褐铁矿混合铁精矿粉作为原材料。
(1)选取密度为4.5g/cm 3的赤铁矿、褐铁矿混合铁精矿粉,经过磨矿-分级-螺旋溜槽一粗、一精分选制得密度4.9g/cm 3的高品位赤铁矿、褐铁矿混合铁精矿粉;对制得的高品位赤铁矿、褐铁矿混合铁精矿粉经过过滤、烘干或晒干后,经过碎磨处理、200目物理筛过筛,再经过雷蒙磨研磨,可制得粒径分布D90为26μm的微粉颗粒。
(2)将制得的粒径分布D90为26μm的微粉颗粒采用范式起电机施加负电荷,使颗粒表面带有均匀的负电荷,经微粉输送系统输送至高温球化炉中,炉内温度调节至1800℃,在压力系统、氧化气氛配气系统、加热系统的协同作用下完成烧结过程,然后经微粉输送系统输送至快速冷却装置中进行均质化成型,最后通过微粉颗粒收集设备收集微米级球形加重材料。
(3)制备的微米级球形加重剂密度为4.9g/cm 3,粒径分布D90为26μm,成球率为96.5%。
实施例2
原材料选择密度为4.6g/cm 3的镜铁矿精矿粉。
(1)选取密度为4.6g/cm 3的镜铁矿精矿粉,经过磨矿-分级-螺旋溜槽一粗、一精分选制得密度5.0g/cm 3的高品位镜铁矿精矿粉;对制得的高品位镜铁矿精矿粉经过过滤、烘干或晒干后,经过碎磨处理、200目物理筛过筛,再经过雷蒙磨研磨,可制得粒径分布D90为22μm的微粉颗粒。
(2)将制得的粒径分布D90为22μm的微粉颗粒采用范式起电机施加负电荷,使颗粒表面带有均匀的负电荷,经微粉输送系统输送至高温球化炉中,炉内温度调节至1600℃,在压力系统、氧化气氛配气系统、加热系统的协同作用下完成烧结过程,然后经微粉输送系统输送至快速冷却装置中进行均质化成型,最后通过微粉颗粒收集设备收集微米级球形加重材料。
(3)制备的微米级球形加重剂密度为5.0g/cm 3,粒径分布D90为22μm,成球率为97.2%。
实施例3
原材料选择密度为4.75g/cm 3的磁铁矿精矿粉。
(1)选取密度为4.75g/cm 3的磁铁矿精矿粉作为原材料,经过磨矿-分级-螺旋溜槽一粗、一精分选制得密度5.1g/cm 3的高品位磁铁矿精矿粉;对制得的高品位磁铁矿精矿粉经过过滤、烘干或晒干后,经过碎磨处理、200目物理筛过筛,再经过雷蒙磨研磨,可制得粒径分布D90为16μm的微粉颗粒。
(2)将制得的粒径分布D90为16μm的微粉颗粒采用范式起电机施加负电荷,使颗粒表面带有均匀的负电荷,经微粉输送系统输送至高温球化炉中,炉内温度调节至1600℃,在压力系统、氧化气氛配气系统、加热系统的协同作用下完成烧结过程,然后经微粉输送系统输送至快速冷却装置中进行均质化成型,最后通过微粉颗粒收集设备收集微米级球形加重材料。
(3)制备的微米级球形加重剂密度为5.1g/cm 3,粒径分布D90为16μm,成球率为96.8%。
实施例4
原材料选择密度为4.7g/cm 3的钛铁矿精矿粉。
(1)选取密度为4.7g/cm 3的钛铁矿精矿粉作为原材料,经过磨矿-分级-螺旋溜槽一粗、一精分选制得密度5.4g/cm 3的高品位钛铁矿精矿粉;对制得的高品位钛铁矿精矿粉经过过滤、烘干或晒干后,经过碎磨处理、240目物理筛过筛,再经过雷蒙磨研磨,可制得粒径分布D90为5μm的微粉颗粒。
(2)将制得的粒径D90为5μm的微粉颗粒采用范式起电机施加负电荷,使颗粒表面带有均匀的正电荷,经微粉输送系统输送至高温球化炉中,炉内温度调节至1600℃,在压力系统、氧化气氛配气系统、加热系统的协同作用下完成烧结过程,然后经微粉输送系统输送至快速冷却装置中进行均质化成型,最后通过微粉颗粒收集设备收集微米级球形加重材料。
(3)制备的微米级球形加重剂密度为5.4g/cm 3,粒径D90为5μm,成球率为97.8%。
本发明涉及的各原材料、工艺参数的上下限取值、区间值均能实现本发明,在此不一一列举。

Claims (6)

  1. 一种以铁精矿粉为原料制备微米级球形加重材料的方法,其特征在于采用以下步骤:
    (1)原材料的选择:选择密度≥4.5g/cm 3的铁精矿粉作为原材料;
    (2)原材料处理:将步骤(1)选择的铁精矿粉进行磨矿-分级-分选制得密度≥4.8g/cm 3的高品位铁精矿粉;对制得的高品位铁精矿粉经过过滤、烘干或晾干后,经过粉碎-气流分级后得到粒径分布D90为2~20μm的微粉颗粒;对制得的微粉颗粒进行施电处理,使微粉颗粒表面带有电性相同的电荷;
    (3)高温球化处理:将表面带有相同电性的微粉颗粒经微粉输送系统输送至高温球化炉内在1400~1800℃进行球形化,球化过程需在氧化气氛条件下进行,将微粉颗粒中的Fe 3O 4氧化成Fe 2O 3;然后经气流输送至冷却装置完成球形微粉颗粒的表面均质化,最后通过微粉收集装置收集微米级球形加重材料。
  2. 如权利要求1所述的一种以铁精矿粉为原料制备微米级球形加重材料的方法,其特征在于:所述的密度≥4.5g/cm 3的铁精矿粉为镜铁矿、赤铁矿、褐铁矿、钛铁矿、磁铁矿中的一种或任意两种及任意两种以上的混合物。
  3. 如权利要求2所述的一种以铁精矿粉为原料制备微米级球形加重材料的方法,其特征在于:在步骤(2)中,所述的磨矿-分级-分选采用湿式作业,控制分级溢流粒度为-0.074mm含量≥95%;分选采用螺旋溜槽重选,一次粗选、一次精选。
  4. 如权利要求1、2或3所述的一种以铁精矿粉为原料制备微米级球形加重材料的方法,其特征在于:所述的粉碎采用气流粉碎或气流粉碎与雷蒙磨的组合,所述的气流分级采用旋风分级。
  5. 如权利要4求所述的一种以铁精矿粉为原料制备微米级球形加重材料的方法,其特征在于:所述的施电处理采用范式起电机,范 式起电机采用密闭式空间,外接24V或36V安全电源,使范式起电机的壁内均匀分布的电荷与微粉颗粒充分接触,经5~20min处理后使微粉颗粒表面带有相同的电性。
  6. 如权利要求5所述的一种以铁精矿粉为原料制备微米级球形加重材料的方法,其特征在于:所述的高温球化炉设有气流压力系统、氧化气氛配气系统、加热系统。
PCT/CN2021/111871 2020-11-10 2021-08-10 一种以铁精矿粉为原料制备微米级球形加重材料的方法 WO2022100166A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011245464.0 2020-11-10
CN202011245464.0A CN112500840B (zh) 2020-11-10 2020-11-10 一种以铁精矿粉为原料制备微米级球形加重材料的方法

Publications (1)

Publication Number Publication Date
WO2022100166A1 true WO2022100166A1 (zh) 2022-05-19

Family

ID=74956123

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/111871 WO2022100166A1 (zh) 2020-11-10 2021-08-10 一种以铁精矿粉为原料制备微米级球形加重材料的方法

Country Status (3)

Country Link
CN (1) CN112500840B (zh)
WO (1) WO2022100166A1 (zh)
ZA (1) ZA202110815B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112226214B (zh) * 2020-11-10 2021-11-12 中钢集团马鞍山矿山研究总院股份有限公司 一种微米级球形加重材料的制备方法
CN112500840B (zh) * 2020-11-10 2021-11-12 中钢集团马鞍山矿山研究总院股份有限公司 一种以铁精矿粉为原料制备微米级球形加重材料的方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4246208A (en) * 1979-03-22 1981-01-20 Xerox Corporation Dust-free plasma spheroidization
CN101209861A (zh) * 2006-12-25 2008-07-02 石家智 气体分离法制备氧化铁纳米材料
CN101491784A (zh) * 2009-01-19 2009-07-29 西北工业大学 一种采用射流静电复合制备超微粉体的方法及装置
CN201404841Y (zh) * 2009-01-19 2010-02-17 西北工业大学 一种射流静电复合制备超微粉体的装置
TW201334892A (zh) * 2012-02-23 2013-09-01 Taiwan Powder Technologies Co Ltd 細還原鐵粉的製造方法
CN106753280A (zh) * 2016-12-30 2017-05-31 天津泽希矿产加工有限公司 一种球形氧化铁及球形氧化铁为加重剂的超高密度钻井液
CN112226214A (zh) * 2020-11-10 2021-01-15 中钢集团马鞍山矿山研究总院股份有限公司 一种微米级球形加重材料的制备方法
CN112276102A (zh) * 2019-12-02 2021-01-29 唐山龙源节能科技有限公司 球形金属矿粉及其制备方法与应用以及水泥浆组合物
CN112500840A (zh) * 2020-11-10 2021-03-16 中钢集团马鞍山矿山研究总院股份有限公司 一种以铁精矿粉为原料制备微米级球形加重材料的方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4246208A (en) * 1979-03-22 1981-01-20 Xerox Corporation Dust-free plasma spheroidization
CN101209861A (zh) * 2006-12-25 2008-07-02 石家智 气体分离法制备氧化铁纳米材料
CN101491784A (zh) * 2009-01-19 2009-07-29 西北工业大学 一种采用射流静电复合制备超微粉体的方法及装置
CN201404841Y (zh) * 2009-01-19 2010-02-17 西北工业大学 一种射流静电复合制备超微粉体的装置
TW201334892A (zh) * 2012-02-23 2013-09-01 Taiwan Powder Technologies Co Ltd 細還原鐵粉的製造方法
CN106753280A (zh) * 2016-12-30 2017-05-31 天津泽希矿产加工有限公司 一种球形氧化铁及球形氧化铁为加重剂的超高密度钻井液
CN112276102A (zh) * 2019-12-02 2021-01-29 唐山龙源节能科技有限公司 球形金属矿粉及其制备方法与应用以及水泥浆组合物
CN112226214A (zh) * 2020-11-10 2021-01-15 中钢集团马鞍山矿山研究总院股份有限公司 一种微米级球形加重材料的制备方法
CN112500840A (zh) * 2020-11-10 2021-03-16 中钢集团马鞍山矿山研究总院股份有限公司 一种以铁精矿粉为原料制备微米级球形加重材料的方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
HU JIAN-CHANG, ZHANG RONG,YIN PENG-FEI, LI YIN-BING: "Study on particle size distribution of CaCO3 in jet milling/electrostatic dispersion", JOURNAL OF FUNCTIONAL MATERIALS, GAI-KAN BIANJIBU , CHONGQING, CN, vol. 44, no. 13, 1 July 2013 (2013-07-01), CN , pages 1928 - 1931, XP055928924, ISSN: 1001-9731 *
YIN PENGFEI, ZHANG RONG, DENG YU, QI YALI, LI YOUHONGYU, LI CHENBO: "Comparative Study of Particle Size Distribution of Micropowder Prepared by Jet Milling/Electrostatic Dispersion and Ball Milling ", CHINA CERAMICS, vol. 54, no. 5, 5 May 2018 (2018-05-05), pages 21 - 27, XP055928933, ISSN: 1001-9642 *
YIN PENGFEI, ZHANG RONG, LI YINBING, LI NING, SHEN DUO, HU JIANCHANG: "Numerical Simulation of the Dynamic Process of Micropowder during Jet Milling/Electrostatic Dispersion", RARE METAL MATERIALS AND ENGINEERING, XIBEI YOUSE JINSHU YANJIUYUAN, BAOJI, CN, vol. 43, no. 12, 15 December 2014 (2014-12-15), CN , pages 3052 - 3057, XP055928928, ISSN: 1002-185X *
YIN PENG-FEI, ZHANG RONG, LI YIN-BING, LI NING, WANG JIA-JIA, HU JIAN-CHANG: "The charging property of the micropowder during jet milling/electrostatic dispersion process", JOURNAL OF FUNCTIONAL MATERIALS, GAI-KAN BIANJIBU , CHONGQING, CN, vol. 45, no. 5, 13 February 2014 (2014-02-13), CN , pages 5102 - 5105, 5111, XP055928919, ISSN: 1001-9731 *
YIN PENG-FEIPENG-FEI, ZHANG RONG, DENG YU, ZHOU LIN: "Investigation on the electric charge decay of micropowder prepared by jet milling/electrostatic dispersion", FENMO YEJIN JISHU = POWDER METALLURGY TECHNOLOGY, FENMO YEJIN JISHU, CN, vol. 36, no. 1, 27 February 2018 (2018-02-27), CN , pages 43 - 47, XP055928931, ISSN: 1001-3784 *

Also Published As

Publication number Publication date
CN112500840A (zh) 2021-03-16
CN112500840B (zh) 2021-11-12
ZA202110815B (en) 2022-03-30

Similar Documents

Publication Publication Date Title
WO2022100166A1 (zh) 一种以铁精矿粉为原料制备微米级球形加重材料的方法
WO2022100167A1 (zh) 一种微米级球形加重材料的制备方法
CN101480632B (zh) 一种磁铁矿的选矿方法
CN100493724C (zh) 难选氧化铁矿石的旋流悬浮闪速磁化焙烧—磁选方法
CN108531717B (zh) 一种基于分级联合磁化焙烧处理难选红铁矿的方法
AU741669B2 (en) Method for direct reduction and upgrading of fine-grained refractory and earthy iron ores and slags
CN105132670B (zh) 一种复杂难选铁矿石分级悬浮焙烧装置
CN103435278B (zh) 一种提高钢渣水化活性的方法
WO2014117300A1 (zh) 一种钛铁矿选铁尾矿的预处理方法
CN103773355B (zh) 一种页岩气开采压裂支撑剂及其制备方法
CN105907947B (zh) 制备铁粉的方法和制备铁粉的系统
CN103484098B (zh) 低密度高强度的陶粒支撑剂及其制备方法
CN103951412B (zh) 一种软磁锰锌铁氧体材料的制法
CN104131156B (zh) 微细晶粒赤铁矿的磁化焙烧-磁选选矿方法
CN103537366A (zh) 从高炉干渣中回收高品位铁的方法
CN110976077A (zh) 一种磁铁矿伴生粒状石英制备高纯石英砂铁精矿的方法
CN110314763A (zh) 一种利用粉矿制备球团原料的方法
CN106396624B (zh) 一种煤矸石支撑剂及其制备方法
CN108822796B (zh) 一种利用镍渣制备吸波材料的方法及吸波材料
CN109652055B (zh) 含假蓝宝石晶体的复相陶粒石油压裂支撑剂及其制备方法
CN211412329U (zh) 低品位微细粒嵌布磁铁矿提质降杂选矿装置
CN205650331U (zh) 干式多磁系永磁辊筒磁选机
CN113798054A (zh) 一种处理铁尾矿的预选-流态化焙烧-磨矿磁选工艺
US6355088B1 (en) Method for direct reduction and upgrading of fine-grained refractory and earthy iron ores and slags
CN108753252A (zh) 一种利用铜渣制备吸波材料的方法及吸波材料

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21890695

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21890695

Country of ref document: EP

Kind code of ref document: A1