WO2022100129A1 - 一种空调控制方法、装置、设备及存储介质 - Google Patents

一种空调控制方法、装置、设备及存储介质 Download PDF

Info

Publication number
WO2022100129A1
WO2022100129A1 PCT/CN2021/106389 CN2021106389W WO2022100129A1 WO 2022100129 A1 WO2022100129 A1 WO 2022100129A1 CN 2021106389 W CN2021106389 W CN 2021106389W WO 2022100129 A1 WO2022100129 A1 WO 2022100129A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency
compressor
preset
speed
motor
Prior art date
Application number
PCT/CN2021/106389
Other languages
English (en)
French (fr)
Inventor
张�浩
Original Assignee
广东美的制冷设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东美的制冷设备有限公司 filed Critical 广东美的制冷设备有限公司
Publication of WO2022100129A1 publication Critical patent/WO2022100129A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/64Electronic processing using pre-stored data
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/88Electrical aspects, e.g. circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/89Arrangement or mounting of control or safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/24Means for preventing or suppressing noise
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • F25B49/022Compressor control arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/24Means for preventing or suppressing noise
    • F24F2013/247Active noise-suppression
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/10Temperature
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • the present application relates to the technical field of air conditioners, and in particular, to an air conditioner control method, device, device, and storage medium.
  • the existing method for suppressing the beat vibration suppresses the beat vibration by adjusting the rotational speed of the fan and controlling the frequency multiplication of the compressor to be equal to the frequency multiplication of the fan.
  • the inventor of the present application found that the above-mentioned technology has at least the following technical problems: the suppression effect on the beat noise is poor.
  • the embodiments of the present application solve the technical problem that the method for suppressing beat vibration in the prior art has poor suppression effect on beat vibration noise, and realizes the improvement of the control effect of beat vibration.
  • the technical effect of the noise suppression effect is provided.
  • An embodiment of the present application provides an air conditioner control method, the air conditioner includes a compressor and a fan, and the fan is connected to a drive motor; the air conditioner control method includes:
  • the compressor frequency is within the preset beat frequency range, and the motor speed of the drive motor is adjusted according to a preset rule, so as to control the air conditioner not to generate a beat frequency.
  • the preset beat frequency interval includes a first sub-frequency interval, and the first sub-frequency interval is obtained based on the rotational speed of the first target platform.
  • the preset rule includes: the motor speed and the compressor frequency satisfy a preset relationship
  • the determining that the compressor frequency is within the preset beat frequency range, and adjusting the motor speed of the drive motor according to a preset rule specifically includes:
  • the compressor frequency is within the first sub-frequency interval, and the motor speed of the drive motor is adjusted based on the preset relationship.
  • the preset rule further includes: the first discharge temperature of the compressor and the first safety temperature threshold satisfy a preset magnitude relationship;
  • the determining that the frequency of the compressor is within the first sub-frequency interval, and adjusting the motor speed of the drive motor based on the preset relationship specifically includes:
  • the compressor frequency is within the first sub-frequency interval, and the motor speed of the drive motor is adjusted based on the preset magnitude relationship and the preset relationship.
  • the determining that the compressor frequency is within the first sub-frequency interval, and adjusting the motor speed of the driving motor based on the preset relationship specifically includes:
  • the compressor frequency is up-converted or down-converted into the first sub-frequency interval, and in the first sub-frequency interval, the motor speed of the motor is adjusted based on one of the following relations:
  • p is the motor speed
  • f is the compressor frequency
  • the first sub-frequency interval is:
  • the first sub-frequency interval includes:
  • the method further includes:
  • the drive motor further includes a plurality of second target platform rotational speeds, and the preset beat frequency interval further includes a plurality of second sub-frequency intervals;
  • the determining that the compressor frequency is within the preset beat frequency range, and adjusting the motor speed of the drive motor based on a preset rule specifically includes:
  • the motor speed of the driving motor is controlled to enter the selected target platform speed in the target platform speed set; wherein the target platform speed set includes the first target a platform rotational speed and the plurality of second target platform rotational speeds.
  • the plurality of second target platform rotational speeds include: P 1 , P 2 , . . . , P n , where n is a positive integer greater than or equal to 2;
  • the second safe temperature threshold includes: T 1 , T 2 , . . . , T m , where m is a positive integer greater than or equal to 2.
  • an air conditioning control device the air conditioning control device includes:
  • a judgment module configured to judge whether the compressor frequency of the compressor is within a preset beat frequency range based on the compressor frequency of the compressor and the first target platform speed of the drive motor;
  • An adjustment module configured to adjust the motor speed of the drive motor according to a preset rule in response to the compressor frequency being within the preset beat frequency range, so as to control the air conditioner not to generate a beat frequency.
  • the present application also provides a computer-readable storage medium on which an air conditioning control program is stored, and when the air conditioning control program is executed by a processor, the foregoing method is implemented.
  • the present application also provides a device comprising a memory, a processor, and an air-conditioning control program stored in the memory and running on the processor, the processor implementing the above-mentioned air-conditioning control program when executing the air-conditioning control program method.
  • the present application provides an air-conditioning control method, device, equipment and storage medium.
  • the air-conditioning control method firstly determines the compression rate of the compressor based on the compressor frequency of the compressor and the first target platform speed of the drive motor. determine whether the compressor frequency is within the preset beat frequency range; determine that the compressor frequency is within the preset beat frequency range, and adjust the motor speed of the drive motor according to preset rules to control the air conditioner not to generate beats. frequency. It can be seen that the present application suppresses the beat frequency by adjusting the motor speed. Since the frequency of the fan is a multiplier of the motor frequency, as long as it is within the preset beat frequency range, the frequency of the motor controlled according to the preset rules does not match the compressor frequency.
  • the fan frequency which is a frequency multiplier of the motor frequency
  • the fan frequency will not generate a beat frequency with the compressor.
  • the judgment and control are realized by the compressor frequency and the fan frequency, and the motor frequency is not considered.
  • the beat frequency generated by the frequency and the compressor frequency solves the technical problem that the suppression effect of beat noise is poor, and achieves the technical effect of improving the suppression effect of beat noise.
  • FIG. 1 is a schematic flowchart of an embodiment of an air conditioning control method of the present application
  • FIG. 2 is a schematic flowchart of another embodiment of the air conditioning control method of the present application.
  • FIG. 3 is a schematic structural diagram of an air-conditioning control device of the present application.
  • the embodiment of the present application provides an air conditioner control method, which suppresses the beat frequency by adjusting the motor speed. Since the frequency of the fan is a frequency multiplier of the motor frequency, as long as the frequency range of the preset beat frequency is within the preset rule, the motor is controlled according to preset rules. If the frequency does not generate a beat frequency with the compressor frequency, the fan frequency, which is a frequency multiplier of the motor frequency, will not generate a beat frequency with the compressor. Compared with the existing beat frequency, the judgment and control are realized by the compressor frequency and the fan frequency. , the beat frequency generated by the frequency of the motor and the compressor frequency is not considered, which solves the technical problem that the suppression effect of the beat noise is poor, and achieves the technical effect of improving the suppression effect of the beat noise.
  • This embodiment provides an air conditioner control method, which is used for suppressing the "beat vibration" phenomenon generated by the external unit of the air conditioner.
  • the external unit of the air conditioner generally includes at least a compressor and a fan, the fan is connected to a drive motor, and the drive motor drives the fan to rotate. Therefore, both the fan and the motor have a certain rotational noise value when they are running.
  • the peak value of the rotational noise of the fan (or the drive motor) is close to the peak value of the compressor noise, discontinuous vibration noise will be generated, resulting in noise pollution. Therefore, it is necessary to suppress the flapping phenomenon.
  • the air conditioning control method of this embodiment includes:
  • the "beat vibration" in this embodiment may also be referred to as a beat frequency.
  • the operating frequency of the compressor will approach the set target platform frequency f0
  • the speed of the fan's drive motor will also approach the target platform speed.
  • the first target platform speed That is, the relationship between the first target platform speed and the compressor's target platform frequency is maintained in multiples to avoid beat frequency.
  • the air conditioner will increase and decrease the frequency of the compressor from the original f 0 according to the ambient temperature and the temperature set by the user. During this process, beat frequency may occur. In this case, the method of this embodiment needs to be executed to control the air conditioner.
  • S10 is executed, and based on the compressor frequency of the compressor and the first target platform speed of the drive motor, it is determined whether the compressor frequency of the compressor is within a preset beat frequency range.
  • the rotational speed of the first target platform is p 0 ;
  • the preset beat frequency interval is the compressor frequency interval in which the beat frequency may occur, which can be obtained from the historical monitoring data of the beat frequency of the air conditioner, or based on the The rotational speed of the first target platform is obtained.
  • the preset beat frequency interval includes a first sub-frequency interval, and the first sub-frequency interval is obtained based on the rotational speed of the first target platform.
  • the first sub-frequency interval is:
  • N 1 , N 2 are the beat frequency peak frequency multiplication order of the compressor and the driving motor respectively, and N 1 >N 2 , then N is also the frequency multiplication order;
  • x is the frequency band width coefficient, according to different
  • the actual beat frequency history of the product is set, usually between 3 and 10. It can be understood that NP 0 indicates that the frequency of the compressor is a multiplier of the rotational speed of the first target platform. Within the fluctuation range of the frequency band width coefficient, the frequency of the compressor is close to the multiplier of the drive motor, and a beat frequency is most likely to occur.
  • the first sub-frequency interval includes:
  • the value of f x is within the beat frequency control interval, and the value of f x can be selected according to the actual heat exchange performance of the air conditioner and the performance of the compressor.
  • perform S20 determine that the compressor frequency is within the preset beat frequency range, and adjust the motor speed of the drive motor according to a preset rule, so as to control the air conditioner not to generate a beat frequency.
  • the preset rule can be set according to historical data of the air conditioner, for example, the motor speed and the compressor frequency are set to satisfy the preset relationship, as long as the air conditioner does not generate a beat frequency.
  • the preset rule includes: the motor speed and the compressor frequency satisfy a preset relationship; the preset beat frequency interval includes a first sub-frequency interval;
  • determining that the compressor frequency is within the preset beat frequency range, and adjusting the motor speed of the drive motor according to a preset rule specifically includes:
  • the compressor frequency is within the first sub-frequency interval, and the motor speed of the drive motor is adjusted based on the preset relationship.
  • the preset relational expressions include:
  • p is the motor speed
  • f is the compressor frequency
  • the frequency of the compressor changes continuously according to the change of the set temperature and the ambient temperature. Therefore, the frequency of the compressor may enter the first sub-frequency range by increasing the frequency or decreasing the frequency. Therefore, determining that the frequency of the compressor is within the first sub-frequency interval, and adjusting the motor speed of the driving motor based on the preset relationship, specifically includes:
  • the compressor frequency is up-converted or down-converted into the first sub-frequency interval [NP 0 -x, NP 0 +x], within the preset beat frequency interval, based on one of the following relational expressions To adjust the motor speed of the motor:
  • the first sub-frequency interval may include: [NP 0 -x, f x ] and [f x , NP 0 +x], where f x is a preset intermediate beat frequency.
  • the determining that the frequency of the compressor is within the first sub-frequency interval, and adjusting the motor speed of the driving motor based on the preset relationship specifically includes:
  • the compressor frequency is up-converted or down-converted into the first sub-frequency interval [NP 0 -x, f x ] or [f x , NP 0 +x], and within the preset beat frequency interval,
  • the motor speed of the motor is adjusted based on one of the following relationships:
  • the control logic can be preset according to the actual noise of the air conditioner.
  • the control logic in this embodiment is that the motor speed is relatively reduced. At this time, the noise of the fan will also be reduced, which is conducive to reducing The overall noise level of the air conditioner. Therefore, the technical solution of this embodiment can better take into account the system reliability and noise comfort by reasonably presetting the f x value and adopting different control logics in each interval.
  • the preset rule further includes: the first discharge temperature of the compressor and the first safety temperature threshold satisfy a preset magnitude relationship;
  • the determining that the frequency of the compressor is within the first sub-frequency interval, and adjusting the motor speed of the drive motor based on the preset relationship specifically includes:
  • the compressor frequency is within the first sub-frequency interval, and the motor speed of the drive motor is adjusted based on the preset magnitude relationship and the preset relationship.
  • the first safe temperature threshold is a safe operating temperature value publicly set according to the air conditioner.
  • the first safe temperature threshold may include one or more.
  • the relationship between the discharge temperature of the compressor and the safety temperature threshold can also be considered.
  • Two first safety temperature standard values are preset, T 1 and T 2 , and T 2 >T 1 .
  • the pressure and reliability of the system are judged according to different exhaust temperatures, and different control schemes are adopted for different system pressures, and the reliability of the air conditioner is given priority under the premise of ensuring that no beat noise is generated; secondly , when the exhaust temperature is not high and the system reliability margin is large, the smaller motor speed control scheme is preferentially adopted, taking into account the noise level of the whole machine.
  • the frequency of the compressor is up-converted or down-converted beyond the preset beat frequency range, and the motor speed of the drive motor is adjusted to enter the first target platform speed.
  • the frequency of the compressor is increased or decreased beyond the preset beat frequency range, the operating frequency of the compressor is gradually approached and finally equal to the preset frequency f 0 of the platform, and the motor speed returns to the first target platform speed P 0 .
  • the beat frequency is suppressed by adjusting the motor speed. Since the frequency of the fan is a multiplier of the motor frequency, as long as the frequency of the motor is controlled according to the preset rules within the preset beat frequency range and does not generate a beat frequency with the compressor frequency, then The fan frequency, which is a frequency multiplier of the motor frequency, will not generate a beat frequency with the compressor. Compared with the existing beat frequency, the judgment and control are realized by the compressor frequency and the fan frequency, and the generation of the motor frequency and the compressor frequency is not considered. It solves the technical problem that the suppression effect of beat vibration noise is poor, and achieves the technical effect of improving the suppression effect of beat noise.
  • the drive motor of this embodiment further includes a plurality of second target platform rotational speeds, and the preset beat frequency interval further includes a plurality of second sub-frequency intervals;
  • the determining that the compressor frequency is within the preset beat frequency range, and adjusting the motor speed of the drive motor based on a preset rule specifically includes:
  • the rotational speed of the second target platform and the rotational speed of the first target platform in this embodiment are only named for convenience of description, and do not limit the rotational speed of the second target platform and the rotational speed of the first target platform to be different. It can be understood that the target platform rotational speed set includes multiple target platform rotational speeds, including the second target platform rotational speed and the first target platform rotational speed.
  • step S201 is performed to determine that the compressor frequency is within the first sub-frequency interval or the second sub-frequency interval, and obtain the exhaust gas temperature of the compressor.
  • the compressor frequency may be between the first sub-frequency interval and the plurality of second sub-frequency intervals during the frequency up or down process switch.
  • the exhaust temperature of the compressor is obtained first.
  • the second safety temperature threshold may include multiple, and according to the consignment relationship between the exhaust gas temperature and the multiple second safety temperature thresholds, the motor speed of the drive motor is controlled to enter the selected target platform where the speed of the target platform is concentrated. Rotating speed.
  • the plurality of second target platform rotational speeds include: P 1 , P 2 , . . . , P n , where n is a positive integer greater than or equal to 2;
  • the second safe temperature threshold includes: T 1 ', T 2 ',..., T' m , where m is a positive integer greater than or equal to 2.
  • the compressor starts to increase and decrease the frequency from the original f 0 until the compressor frequency f enters the P 0 control interval [NP 0 -x, NP 0 +x].
  • the actual speed of the motor will switch between multiple platform speeds (P 0 , P 1 , P 2 ,...,P n ) during the compressor frequency up and down process , until the system gradually tends to balance, the compressor returns to the platform operating frequency f 0 , and the motor platform speed P 0 .
  • the method of this embodiment presets a plurality of motor platform revolutions P 0 , P 1 , P 2 , .
  • the rotation speed can minimize the impact on the performance, and can suppress the beat noise, and the control logic is simple and easy to implement.
  • the embodiment of the present application also provides an air conditioner control device corresponding to the method in the first embodiment, see the third embodiment.
  • This embodiment provides an air conditioner control device, the air conditioner includes a compressor and a fan, and the fan is connected to a drive motor; please refer to FIG. 3 , the air conditioner control device includes:
  • a judgment module configured to judge whether the compressor frequency of the compressor is within a preset beat frequency range based on the compressor frequency of the compressor and the first target platform speed of the drive motor;
  • An adjustment module configured to adjust the motor speed of the drive motor according to a preset rule in response to the compressor frequency being within the preset beat frequency range, so as to control the air conditioner not to generate a beat frequency.
  • the air conditioner control device of this embodiment firstly uses the judgment module to judge whether the compressor frequency of the compressor is within the preset beat frequency range based on the compressor frequency of the compressor and the first target platform speed of the drive motor ; determine that the compressor frequency is within the preset beat frequency range, and use an adjustment module to adjust the motor speed of the drive motor according to a preset rule, so as to control the air conditioner not to generate a beat frequency. It can be seen that the device of this embodiment suppresses the beat frequency by adjusting the motor speed. Since the frequency of the fan is a multiplier of the motor frequency, as long as it is within the preset beat frequency range, the frequency of the motor is controlled according to the preset rules.
  • the fan frequency which is a frequency multiplier of the motor frequency, will not generate a beat frequency with the compressor.
  • the judgment and control are realized by the compressor frequency and the fan frequency. Considering the beat frequency generated by the frequency of the motor and the compressor frequency, the technical problem that the suppression effect of beat noise is poor is solved, and the technical effect of improving the suppression effect of beat noise is achieved.
  • the device introduced in the third embodiment of the present application is the device used to implement the method in the first embodiment of the present application, based on the method introduced in the first embodiment of the present application, those skilled in the art can understand the specific structure and deformation of the device. , so it is not repeated here. All devices used in the method of Embodiment 1 of the present application belong to the scope of protection of the present application.
  • the embodiments of the present application further provide a computer-readable storage medium on which an air-conditioning control program is stored, and when the air-conditioning control program is executed by a processor, the foregoing method is implemented.
  • an embodiment of the present application also provides a device, including a memory, a processor, and an air conditioning control program stored in the memory and running on the processor, the processor executing the air conditioning control program implement the aforementioned method.
  • the embodiments of the present application may be provided as a method, an apparatus, or a computer program product. Accordingly, the present application may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment combining software and hardware aspects. Furthermore, the present application may take the form of a computer program product embodied on one or more computer-usable storage media (including, but not limited to, disk storage, CD-ROM, optical storage, etc.) having computer-usable program code embodied therein.
  • computer-usable storage media including, but not limited to, disk storage, CD-ROM, optical storage, etc.
  • These computer program instructions may also be stored in a computer-readable memory capable of directing a computer or other programmable data processing apparatus to function in a particular manner, such that the instructions stored in the computer-readable memory result in an article of manufacture comprising instruction means, the instructions
  • the apparatus implements the functions specified in the flow or flow of the flowcharts and/or the block or blocks of the block diagrams.
  • any reference signs placed between parentheses shall not be construed as limiting the claim.
  • the word “comprising” does not exclude the presence of elements or steps not listed in a claim.
  • the word “a” or “an” preceding an element does not preclude the presence of a plurality of such elements.
  • the present application may be implemented by means of hardware comprising several different components and by means of a suitably programmed computer. In a unit claim enumerating several means, several of these means may be embodied by one and the same item of hardware.
  • the use of the words first, second, and third, etc. do not denote any order. These words can be interpreted as names.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Signal Processing (AREA)
  • Thermal Sciences (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Air Conditioning Control Device (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

本申请公开了一种空调控制方法、装置、设备及存储介质,该方法首先基于所述压缩机的压缩机频率和所述驱动电机的第一目标平台转速,判断所述压缩机的压缩机频率是否在预设拍频频率区间内;确定所述压缩机频率在所述预设拍频频率区间内,按照预设规则调整所述驱动电机的电机转速,以控制所述空调不产生拍频。

Description

一种空调控制方法、装置、设备及存储介质
优先权信息
本申请要求于2020年11月10日申请的、申请号为202011250438.7的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及空调技术领域,尤其涉及一种空调控制方法、装置、设备及存储介质。
背景技术
空调外机有两大噪声源,风道系统和压缩机系统,在风机旋转噪声峰值与压缩机噪声峰值接近时会产生不连续拍振噪声,形成噪声污染。因此,需要对拍振现象进行抑制。
现有的抑制拍振的方法通过调整风机转速,控制压缩机的倍频与风机的倍频相等,以此来抑制拍振。但本申请发明人发现上述技术至少存在如下技术问题:对拍振噪声的抑制效果较差。
发明内容
本申请实施例通过提供一种空调控制方法、装置、设备及存储介质,解决了现有技术中的抑制拍振的方法对拍振噪声的抑制效果较差的技术问题,实现了提高对拍振噪声抑制效果的技术效果。
本申请实施例提供了一种空调控制方法,所述空调包括压缩机和风机,所述风机连接驱动电机;所述空调控制方法包括:
基于所述压缩机的压缩机频率和所述驱动电机的第一目标平台转速,判断所述压缩机的压缩机频率是否在预设拍频频率区间内;
确定所述压缩机频率在所述预设拍频频率区间内,按照预设规则调整所述驱动电机的电机转速,以控制所述空调不产生拍频。
在一实施例中,所述预设拍频频率区间包括第一子频率区间,所述第一子频率区间基于所述第一目标平台转速获得。
在一实施例中,所述预设规则包括:所述电机转速与所述压缩机频率满足预设关系式;
所述确定所述压缩机频率在所述预设拍频频率区间内,按照预设规则调整所述驱动电机的电机转速,具体包括:
确定所述压缩机频率在所述第一子频率区间内,基于所述预设关系式调整所述驱动电机的电机转速。
在一实施例中,所述预设规则还包括:所述压缩机的第一排气温度与第一安全温度阈值满足预设大小关系;
所述确定所述压缩机频率在所述第一子频率区间内,基于所述预设关系式调整所述驱动电机的电机转速,具体包括:
确定所述压缩机频率在所述第一子频率区间内,基于所述预设大小关系和所述预设关系式调整所述驱动电机的电机转速。
在一实施例中,所述确定所述压缩机频率在所述第一子频率区间内,基于所述预设关系式调整所述驱动电机的电机转速,具体包括:
确定所述压缩机频率升频或降频进入所述第一子频率区间,在所述第一子频率区间内,基于如下关系式中的一种调整所述电机的电机转速:
Figure PCTCN2021106389-appb-000001
Figure PCTCN2021106389-appb-000002
其中,p为电机转速;f为压缩机频率;N 1,N 2分别为所述压缩机和所述驱 动电机的拍频峰值倍频阶次,N 1>N 2,x=3~10。
在一实施例中,所述第一子频率区间为:
[NP 0-x,NP 0+x],其中,P 0为所述驱动电机的第一目标平台转速,
Figure PCTCN2021106389-appb-000003
x=3~10。
在一实施例中,所述第一子频率区间包括:
[NP 0-x,f x]和[f x,NP 0+x],其中,f x为预设中间拍频频率。
在一实施例中,所述判断所述压缩机的压缩机频率是否在预设拍频频率区间内之后,所述方法还包括:
确定所述压缩机频率升频或降频超出所述预设拍频频率区间范围,调整所述驱动电机的电机转速进入所述第一目标平台转速。
在一实施例中,所述驱动电机还包括多个第二目标平台转速,所述预设拍频频率区间还包括多个第二子频率区间;
所述确定所述压缩机频率在所述预设拍频频率区间内,基于预设规则调整所述驱动电机的电机转速,具体包括:
确定所述压缩机频率在所述第一子频率区间或第二子频率区间内,获取所述压缩机的排气温度;
根据所述排气温度与第二安全温度阈值的大小关系,控制所述驱动电机的电机转速进入目标平台转速集中的选定目标平台转速;其中,所述目标平台转速集包括所述第一目标平台转速和所述多个第二目标平台转速。
在一实施例中,所述多个第二目标平台转速包括:P 1,P 2,...,P n,其中n为大于等于2的正整数;
所述多个第二子频率区间包括:[NP i-x,NP i+x],其中,i=1,2,...,n,
Figure PCTCN2021106389-appb-000004
N 1,N 2分别为所述压缩机和所述驱动电机的拍频峰值倍频阶次,x=3~10;
所述第二安全温度阈值包括:T 1,T 2,...,T m,m为大于等于2的正整数。
此外,为实现上述目的,基于同样的发明原理,本申请的另一实施例提供了一种空调控制装置,所述空调控制装置包括:
判断模块,用于基于所述压缩机的压缩机频率和所述驱动电机的第一目标平台转速,判断所述压缩机的压缩机频率是否在预设拍频频率区间内;
调整模块,用于响应所述压缩机频率在所述预设拍频频率区间内,按照预设规则调整所述驱动电机的电机转速,以控制所述空调不产生拍频。
此外,为实现上述目的,本申请还提供一种计算机可读存储介质,其上存储有空调控制程序,该空调控制程序被处理器执行时实现前述方法。
此外,为实现上述目的,本申请还提供一种设备,包括存储器、处理器及存储在存储器上并可在处理器上运行的空调控制程序,所述处理器执行所述空调控制程序时实现前述方法。
本申请实施例中提供的一个或多个技术方案,至少具有如下技术效果或优点:
本申请提供一种空调控制方法、装置、设备及存储介质,所述空调控制方法首先基于所述压缩机的压缩机频率和所述驱动电机的第一目标平台转速,判断所述压缩机的压缩机频率是否在预设拍频频率区间内;确定所述压缩机频率在所述预设拍频频率区间内,按照预设规则调整所述驱动电机的电机转速,以控制所述空调不产生拍频。由此可见,本申请通过调整电机转速来抑制拍频,由于风机的频率为电机频率的倍频,因此,只要在预设拍频频率区间内,按照预设规则控制电机的频率不与压缩机频率产生拍频,则作为电机频率倍频的风机频率也不会与压缩机产生拍频,相比于现有拍频的判断和控制都是通过压缩机频率和风机频率实现,未考虑电机的频率与压缩机频率产生的拍频,解决了拍振噪声的抑制效果较差的技术问题,达到了提高对拍频噪声的抑制效果的技术效果。
附图说明
图1为本申请空调控制方法一种实施例的流程示意图;
图2为本申请空调控制方法另一种实施例的流程示意图;
图3为本申请空调控制装置的结构示意图。
具体实施方式
本申请实施例提供一种空调控制方法,通过调整电机转速来抑制拍频,由于风机的频率为电机频率的倍频,因此,只要在预设拍频频率区间内,按照预设规则控制电机的频率不与压缩机频率产生拍频,则作为电机频率倍频的风机频率也不会与压缩机产生拍频,相比于现有拍频的判断和控制都是通过压缩机频率和风机频率实现,未考虑电机的频率与压缩机频率产生的拍频,解决了拍振噪声的抑制效果较差的技术问题,达到了提高对拍频噪声的抑制效果的技术效果。
为了更好的理解上述技术方案,下面将参照附图更详细地描述本公开的示例性实施例。虽然附图中显示了本公开的示例性实施例,然而应当理解,可以以各种形式实现本公开而不应被这里阐述的实施例所限制。相反,提供这些实施例是为了能够更透彻地理解本公开,并且能够将本公开的范围完整的传达给本领域的技术人员。
为了更好的理解上述技术方案,下面将结合说明书附图以及具体的实施方式对上述技术方案进行详细的说明。
实施例一
本实施例提供一种空调控制方法,用于对空调外机产生的“拍振”现象进行抑制。
可以理解的是,空调外机一般至少包括压缩机和风机,风机连接驱动电机,驱动电机驱动风机旋转。因此,风机和电机在运行时,都有一定的旋转噪声值。 在风机旋转噪声峰值(或驱动电机)与压缩机噪声峰值接近时会产生不连续拍振噪声,形成噪声污染。因此,需要对拍振现象进行抑制。
请参见图1,本实施例的空调控制方法,包括:
S10、基于所述压缩机的压缩机频率和所述驱动电机的第一目标平台转速,判断所述压缩机的压缩机频率是否在预设拍频频率区间内;
S20、确定所述压缩机频率在所述预设拍频频率区间内,按照预设规则调整所述驱动电机的电机转速,以控制所述空调不产生拍频。
需要说明的是,本实施例中的“拍振”,也可以称为拍频。正常情况下,变频空调开机运行时,依据环境温度,压缩机运行频率会朝设定的目标平台频率f 0接近,风机的驱动电机转速也会朝目标平台转速接近。本实施例中,为了避免正常运行情况发生拍频,假设压缩机运行频率设定的目标平台频率f 0,则第一目标平台转速
Figure PCTCN2021106389-appb-000005
即第一目标平台转速与压缩机的目标平台频率的保持倍数关系,以避免拍频。
但实际情况是,在运行一段时间后,当发生用户重新设定空调温度时,空调会依据环境温度和用户设定温度,压缩机从原来的f 0开始升降频。在这个过程中,则可能发生拍频。此时,则需要执行本实施例的方法来对空调进行控制。
下面结合图1来具体描述各步骤的执行过程。
首先,执行S10,基于所述压缩机的压缩机频率和所述驱动电机的第一目标平台转速,判断所述压缩机的压缩机频率是否在预设拍频频率区间内。
在具体实施过程中,第一目标平台转速即为p 0;预设拍频频率区间是可能发生拍频的压缩机频率区间,可以通过对该空调的拍频历史监测数据获得,也可以基于所述第一目标平台转速获得。
作为一种可选的实施方式,所述预设拍频频率区间包括第一子频率区间,所述第一子频率区间基于所述第一目标平台转速获得。
具体的,所述第一子频率区间为:
[NP 0-x,NP 0+x],其中,P 0为所述驱动电机的第一目标平台转速,
Figure PCTCN2021106389-appb-000006
x=3~10。
其中,N 1,N 2分别为所述压缩机和所述驱动电机的拍频峰值倍频阶次,N 1>N 2,则N也为倍频阶次;x为频段宽度系数,根据不同产品的实际拍频历史情况设置,一般3~10之间取数。可以理解的是,NP 0表示压缩机的频率为第一目标平台转速的倍频,在频段宽度系数的波动范围内,压缩机的频率与驱动电机的倍频接近,最可能发生拍频。
此外,作为另一种实施方式,所述第一子频率区间包括:
[NP 0-x,f x]和[f x,NP 0+x],其中,f x为预设中间拍频频率。
在具体实施过程中,f x取值在拍频控制区间内,f x可以根据空调实际的换热性能,压缩机性能表现来取值。
接下来,执行S20,确定所述压缩机频率在所述预设拍频频率区间内,按照预设规则调整所述驱动电机的电机转速,以控制所述空调不产生拍频。
在具体实施过程中,预设规则可以根据空调的历史数据进行设置,例如,设置电机转速与所述压缩机频率满足预设关系式,只要满足空调不产生拍频即可。
作为一种可选的实施例,所述预设规则包括:所述电机转速与所述压缩机频率满足预设关系式;预设拍频频率区间包括第一子频率区间;
则相应的,所述确定所述压缩机频率在所述预设拍频频率区间内,按照预设规则调整所述驱动电机的电机转速,具体包括:
确定所述压缩机频率在所述第一子频率区间内,基于所述预设关系式调整所述驱动电机的电机转速。
具体的,预设关系式包括:
Figure PCTCN2021106389-appb-000007
其中,p为电机转速;f为压缩机频率;N 1,N 2分别为所述压缩机和所述驱 动电机的拍频峰值倍频阶次,N 1>N 2,x=3~10。
有上述关系式可知,本实施例中的电机转速与压缩机频率联动,即电机转速随压缩机频率的变化实时跟随调整,以实现“风频联动”。
通常来说,根据设定温度和环境温度的变化,压缩机频率是连续变化的,因此,压缩机频率可能是升频进入或者是降频进入第一子频率区间。因此,所述确定所述压缩机频率在所述第一子频率区间内,基于所述预设关系式调整所述驱动电机的电机转速,具体包括:
确定所述压缩机频率升频或降频进入所述第一子频率区间[NP 0-x,NP 0+x],在所述预设拍频频率区间内,基于如下关系式中的一种调整所述电机的电机转速:
Figure PCTCN2021106389-appb-000008
需要说明的是,在本实施例中,根据压缩机频率升频或降频进入所述第一子频率区间,可以选择不同的上述关系式。
具体的,压缩机频率升频或降频进入所述第一子频率区间,可以排列组合上述关系式,举例来说:
当压缩机频率降频进入所述第一子频率区间,此时电机转速
Figure PCTCN2021106389-appb-000009
当压缩机频率升频进入所述第一子频率区间,此时电机转速
Figure PCTCN2021106389-appb-000010
或,
当压缩机频率降频进入所述第一子频率区间,此时电机转速
Figure PCTCN2021106389-appb-000011
当压缩机频率升频进入所述第一子频率区间,此时电机转速
Figure PCTCN2021106389-appb-000012
需要说明的是,这里的排列组合形式不再一一列举,但不代表没有其他组合方式。
此外,在S10中提到,第一子频率区间可以包括:[NP 0-x,f x]和[f x,NP 0+x],其中,f x为预设中间拍频频率。
此时,所述确定所述压缩机频率在所述第一子频率区间内,基于所述预设关系式调整所述驱动电机的电机转速,具体包括:
确定所述压缩机频率升频或降频进入所述第一子频率区间[NP 0-x,f x]或[f x,NP 0+x],在所述预设拍频频率区间内,基于如下关系式中的一种调整所述电机的电机转速:
Figure PCTCN2021106389-appb-000013
举例来说:
假设针对某款空调设备,P 0=15转/秒,x=7。
根据空调的系统性能和噪音表现,假设驱动电机和压缩机拍频峰值分别为6倍频和1倍频,即N 2=1,N 1=6,则
Figure PCTCN2021106389-appb-000014
预设中间拍频频率f x=NP 0-3。
当压缩机运行频率进入区间[6P 0-7,6P 0-3],电机转速
Figure PCTCN2021106389-appb-000015
即在区间【83,87】时,电机转速
Figure PCTCN2021106389-appb-000016
当压缩机运行频率进入区间[6P 0-3,6P 0+7],电机转速
Figure PCTCN2021106389-appb-000017
即在区间【87,97】时,电机转速
Figure PCTCN2021106389-appb-000018
由此可见,如果空调的可靠性裕量较大时,压缩机频率进入[NP 0-x,f x]区间时驱动电机转速随着压缩机频率同步变大或变小,系统的稳定性更好;而当压缩机运行频率大于f x后可以根据空调实际噪音情况来预设控制逻辑,本实施例中的控制逻辑为电机转速相对减小,此时,风机噪音也会降低,有利于降低空调的整体噪音水平。因此,本实施例的技术方案通过合理的预设f x值,并在各区间采用不同的控制逻辑能够较好的兼顾系统可靠性和噪声舒适性。
再例如:
假设针对某款空调设备,P 0=15转/秒,x=6;
根据空调的系统性能和噪音表现,假设驱动电机和压缩机拍频峰值分别为6倍频和1倍频,即N 2=1,N 1=6,则
Figure PCTCN2021106389-appb-000019
预设中间拍频频率f x=NP 0
当压缩机运行频率进入区间[6P 0-6,6P 0],电机转速
Figure PCTCN2021106389-appb-000020
即在区间【84,90】时,电机转速
Figure PCTCN2021106389-appb-000021
分别对应转速【15,16】;
当压缩机运行频率进入区间[6P 0,6P 0+6],电机转速
Figure PCTCN2021106389-appb-000022
即在区间【90,96】时,电机转速
Figure PCTCN2021106389-appb-000023
分别对应转速【14,15】。
由此可见,无论压缩机频率是升频或者降频进入控制区间,电机转速都是从原来的平台转速15转/秒缓降14转/秒,然后再缓升为15转每秒,直到出区间[NP 0-x,NP 0+x],这样使得电机的转速波动最小,对电机的可靠性更好,且风频联动响应的准确性和控制精度最好。
在另一实施例中,所述预设规则还包括:所述压缩机的第一排气温度与第一安全温度阈值满足预设大小关系;
所述确定所述压缩机频率在所述第一子频率区间内,基于所述预设关系式调整所述驱动电机的电机转速,具体包括:
确定所述压缩机频率在所述第一子频率区间内,基于所述预设大小关系和所述预设关系式调整所述驱动电机的电机转速。
在具体实施过程中,第一安全温度阈值是根据空调公开设置的安全运行温度值。第一安全温度阈值可以包括一个或多个。在按照前述实施方式调整驱动电机的基础上,还可以考虑压缩机的排气温度与安全温度阈值的关系。
举例来说:
假设针对某款空调设备,P 0=15转/秒,x=6;
根据空调的系统性能和噪音表现,假设驱动电机和压缩机拍频峰值分别为6倍频和1倍频,即N 2=1,N 1=6,则
Figure PCTCN2021106389-appb-000024
同时监测压缩机排气温度T。预设两个第一安全温度标准值,T 1和T 2,且T 2>T 1
当压缩机运行频率升频进入区间[NP 0-x,NP 0+x]时,此时排气感温包反馈温度值T;
当T<T 1时,电机转速
Figure PCTCN2021106389-appb-000025
即电机运行转速范围[13,15];
当T 1<T<T 2时,电机转速
Figure PCTCN2021106389-appb-000026
即电机运行转速范围[14,16];
当T>T 2时,电机转速
Figure PCTCN2021106389-appb-000027
即电机运行转速范围[15,16]。
本实施例的技术方案,根据不同的排气温度判断系统的压力和可靠性,针对不同的系统压力采用不同的控制方案,在保证不产生拍频噪音的前提下优先兼顾空调的可靠性;其次,在排气温度不高系统可靠性裕量较大的情况下优先采用较小的电机转速控制方案,兼顾整机的噪声水平。
此外,在一种实施例中,确定所述压缩机频率升频或降频超出所述预设拍频频率区间范围,调整所述驱动电机的电机转速进入所述第一目标平台转速。
在具体实施过程中,压缩机频率升频或降频超出所述预设拍频频率区间范围,压缩机运行频率慢慢接近最终等于平台预设频率f 0,电机转速变回第一目标平台转速P 0
由此可见,上述本申请实施例中的技术方案,至少具有如下的技术效果或优点:
通过调整电机转速来抑制拍频,由于风机的频率为电机频率的倍频,因此,只要在预设拍频频率区间内,按照预设规则控制电机的频率不与压缩机频率产生拍频,则作为电机频率倍频的风机频率也不会与压缩机产生拍频,相比于现 有拍频的判断和控制都是通过压缩机频率和风机频率实现,未考虑电机的频率与压缩机频率产生的拍频,解决了拍振噪声的抑制效果较差的技术问题,达到了提高对拍频噪声的抑制效果的技术效果。
此外,通过对拍频区间进行细分,同时考虑排气温度,实现了在抑制拍频的基础上,兼顾空调运行稳定性和避免整机非拍频噪音污染。
实施例二
在前述实施方式的基础上,本实施例的驱动电机还包括多个第二目标平台转速,所述预设拍频频率区间还包括多个第二子频率区间;
所述确定所述压缩机频率在所述预设拍频频率区间内,基于预设规则调整所述驱动电机的电机转速,具体包括:
S201、确定所述压缩机频率在所述第一子频率区间或第二子频率区间内,获取所述压缩机的排气温度;
S202、根据所述排气温度与第二安全温度阈值的大小关系,控制所述驱动电机的电机转速进入目标平台转速集中的选定目标平台转速;其中,所述目标平台转速集包括所述第一目标平台转速和所述多个第二目标平台转速。
需要说明的是,本实施例中的第二目标平台转速与第一目标平台转速只是为了方便描述而进行的命名,并不是限定第二目标平台转速与第一目标平台转速一定不同。可以理解为目标平台转速集包括多个目标平台转速,其中就包括第二目标平台转速与第一目标平台转速。
请参照图2。
首先,执行步骤S201,确定所述压缩机频率在所述第一子频率区间或第二子频率区间内,获取所述压缩机的排气温度。
在具体实施过程中,正常情况下,变频空调开机运行时,依据环境温度,压缩机运行频率会朝设定的目标平台频率f 0接近,风机的驱动电机转速也会朝目标平台转速接近。由于本实施例包括多个第二子频率区间,以及第一子频率 区间,因此,压缩机频率在升频或降频过程中可能在第一子频率区间和多个第二子频率区间之间切换。
因此,为了兼顾空调的性能最优,首先获取所述压缩机的排气温度。
接下来,执行S202,根据所述排气温度与第二安全温度阈值的大小关系,控制所述驱动电机的电机转速进入目标平台转速集中的选定目标平台转速;其中,所述目标平台转速集包括所述第一目标平台转速和所述多个第二目标平台转速。
在具体实施过程中,第二安全温度阈值可以包括多个,根据排气温度与多个第二安全温度阈值的代销关系,控制所述驱动电机的电机转速进入目标平台转速集中的选定目标平台转速。
具体的,所述多个第二目标平台转速包括:P 1,P 2,...,P n,其中n为大于等于2的正整数;
所述多个第二子频率区间包括:[NP i-x,NP i+x],其中,i=1,2,...,n,
Figure PCTCN2021106389-appb-000028
N 1,N 2分别为所述压缩机和所述驱动电机的拍频峰值倍频阶次,x=3~10;
所述第二安全温度阈值包括:T 1',T 2',...,T' m,m为大于等于2的正整数。
在具体实施过程中,当空调运行一段时间后,依据环境温度,用户设定温度,压缩机从原来的f 0开始升降频,直到压缩机频率f进入P 0控制区间[NP 0-x,NP 0+x]。
此时,获得排气感温包反馈温度值T';
当T'>T 1'时,电机进入平台转速P 1;预设电机平台转速NP 1>NP 0+x;压缩机继续升降频,进入P 1的控制区间[NP 1-x,NP 1+x]。该种情况包括:当T'>T 2'时,电机进入平台转速P 3;预设电机平台转速NP 3>NP 1+x;当T'<T 2'时,电机进入平台转速P 1
当T'<T 1'时,电机进入平台转速P 2;预设电机平台转速NP 2>NP 0-x;压缩机继续升降频,进入P 2的控制区间[NP 2-x,NP 2+x];
当T'>T 3'时,电机进入平台转速P 0
当T'<T 3'时,电机进入平台转速P 4;预设电机平台转速NP 4>NP 2-x。
依此类推,依据实际的环境温度和用户设定温度,压缩机升降频过程中电机实际转速会在多个平台转速(P 0,P 1,P 2,...,P n)之间切换,直到系统逐渐趋于平衡,压缩机返回平台运行频率f 0,电机平台转速P 0
需要说明的是,本实施中未描述的实施方式均可参照实施例一,这里不再赘述。
由此可见,上述本申请实施例中的技术方案,至少具有如下的技术效果或优点:
本实施例的方法预设多个电机平台转数P 0,P 1,P 2,...,P n(转/秒),结合拍频噪声公式和压缩机排气温度T'综合控制电机转速,最大程度的降低对能力的影响,且能起到抑制拍频噪声的效果,且控制逻辑简单,易于实现。
基于同一发明构思,本申请实施例还提供了实施例一中方法对应的一种空调控制装置,见实施例三。
实施例三
本实施例提供一种空调控制装置,所述空调包括压缩机和风机,所述风机连接驱动电机;请参照图3,所述空调控制装置包括:
判断模块,用于基于所述压缩机的压缩机频率和所述驱动电机的第一目标平台转速,判断所述压缩机的压缩机频率是否在预设拍频频率区间内;
调整模块,用于响应所述压缩机频率在所述预设拍频频率区间内,按照预设规则调整所述驱动电机的电机转速,以控制所述空调不产生拍频。
上述本申请实施例中的技术方案,至少具有如下的技术效果或优点:
本实施例的空调控制装置首先通过判断模块基于所述压缩机的压缩机频率和所述驱动电机的第一目标平台转速,判断所述压缩机的压缩机频率是否在 预设拍频频率区间内;确定所述压缩机频率在所述预设拍频频率区间内,利用调整模块按照预设规则调整所述驱动电机的电机转速,以控制所述空调不产生拍频。由此可见,本实施例的装置通过调整电机转速来抑制拍频,由于风机的频率为电机频率的倍频,因此,只要在预设拍频频率区间内,按照预设规则控制电机的频率不与压缩机频率产生拍频,则作为电机频率倍频的风机频率也不会与压缩机产生拍频,相比于现有拍频的判断和控制都是通过压缩机频率和风机频率实现,未考虑电机的频率与压缩机频率产生的拍频,解决了拍振噪声的抑制效果较差的技术问题,达到了提高对拍频噪声的抑制效果的技术效果。
由于本申请实施例三所介绍的装置,为实施本申请实施例一的方法所采用的装置,故而基于本申请实施例一所介绍的方法,本领域所属人员能够了解该装置的具体结构及变形,故而在此不再赘述。凡是本申请实施例一的方法所采用的装置都属于本申请所欲保护的范围。
此外,基于同一发明构思,本申请的实施例还提供一种计算机可读存储介质,其上存储有空调控制程序,该空调控制程序被处理器执行时实现前述方法。
此外,基于同一发明构思,本申请的实施例还提供一种设备,包括存储器、处理器及存储在存储器上并可在处理器上运行的空调控制程序,所述处理器执行所述空调控制程序时实现前述方法。
本领域内的技术人员应明白,本申请的实施例可提供为方法、装置、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请实施例的方法、设备(装置)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/ 或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
应当注意的是,在权利要求中,不应将位于括号之间的任何参考符号构造成对权利要求的限制。单词“包含”不排除存在未列在权利要求中的部件或步骤。位于部件之前的单词“一”或“一个”不排除存在多个这样的部件。本申请可以借助于包括有若干不同部件的硬件以及借助于适当编程的计算机来实现。在列举了若干装置的单元权利要求中,这些装置中的若干个可以是通过同一个硬件项来具体体现。单词第一、第二、以及第三等的使用不表示任何顺序。可将这些单词解释为名称。
尽管已描述了本申请的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例作出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本申请范围的所有变更和修改。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (13)

  1. 一种空调控制方法,其中,所述空调包括压缩机和风机,所述风机连接驱动电机;所述空调控制方法包括:
    基于所述压缩机的压缩机频率和所述驱动电机的第一目标平台转速,判断所述压缩机的压缩机频率是否在预设拍频频率区间内;
    确定所述压缩机频率在所述预设拍频频率区间内,按照预设规则调整所述驱动电机的电机转速,以控制所述空调不产生拍频。
  2. 如权利要求1所述的方法,其中,所述预设拍频频率区间包括第一子频率区间,所述第一子频率区间基于所述第一目标平台转速获得。
  3. 如权利要求2所述的方法,其中,所述预设规则包括:所述电机转速与所述压缩机频率满足预设关系式;
    所述确定所述压缩机频率在所述预设拍频频率区间内,按照预设规则调整所述驱动电机的电机转速,具体包括:
    确定所述压缩机频率在所述第一子频率区间内,基于所述预设关系式调整所述驱动电机的电机转速。
  4. 如权利要求3所述的方法,其中,所述预设规则还包括:所述压缩机的第一排气温度与第一安全温度阈值满足预设大小关系;
    所述确定所述压缩机频率在所述第一子频率区间内,基于所述预设关系式调整所述驱动电机的电机转速,具体包括:
    确定所述压缩机频率在所述第一子频率区间内,基于所述预设大小关系和所述预设关系式调整所述驱动电机的电机转速。
  5. 如权利要求3所述的方法,其中,所述确定所述压缩机频率在所述第 一子频率区间内,基于所述预设关系式调整所述驱动电机的电机转速,具体包括:
    确定所述压缩机频率升频或降频进入所述第一子频率区间,在所述第一子频率区间内,基于如下关系式中的一种调整所述电机的电机转速:
    Figure PCTCN2021106389-appb-100001
    Figure PCTCN2021106389-appb-100002
    其中,p为电机转速;f为压缩机频率;N 1,N 2分别为所述压缩机和所述驱动电机的拍频峰值倍频阶次,N 1>N 2,x=3~10。
  6. 如权利要求5所述的方法,其中,所述第一子频率区间为:
    [NP 0-x,NP 0+x],其中,P 0为所述驱动电机的第一目标平台转速,
    Figure PCTCN2021106389-appb-100003
    x=3~10。
  7. 如权利要求6所述的方法,其中,所述第一子频率区间包括:
    [NP 0-x,f x]和[f x,NP 0+x],其中,f x为预设中间拍频频率。
  8. 如权利要求1所述的方法,其中,所述判断所述压缩机的压缩机频率是否在预设拍频频率区间内之后,所述方法还包括:
    确定所述压缩机频率升频或降频超出所述预设拍频频率区间范围,调整所述驱动电机的电机转速进入所述第一目标平台转速。
  9. 如权利要求2所述的方法,其中,所述驱动电机还包括多个第二目标平台转速,所述预设拍频频率区间还包括多个第二子频率区间;
    所述确定所述压缩机频率在所述预设拍频频率区间内,基于预设规则调整所述驱动电机的电机转速,具体包括:
    确定所述压缩机频率在所述第一子频率区间或第二子频率区间内,获取所述压缩机的排气温度;
    根据所述排气温度与第二安全温度阈值的大小关系,控制所述驱动电机的电机转速进入目标平台转速集中的选定目标平台转速;其中,所述目标平台转速集包括所述第一目标平台转速和所述多个第二目标平台转速。
  10. 如权利要求9所述的方法,其中,所述多个第二目标平台转速包括:P 1,P 2,...,P n,其中n为大于等于2的正整数;
    所述多个第二子频率区间包括:[NP i-x,NP i+x],其中,i=1,2,...,n,
    Figure PCTCN2021106389-appb-100004
    N 1,N 2分别为所述压缩机和所述驱动电机的拍频峰值倍频阶次,x=3~10;
    所述第二安全温度阈值包括:T 1′,T 2′,...,T′ m,m为大于等于2的正整数。
  11. 一种空调控制装置,其中,所述空调包括压缩机和风机,所述风机连接驱动电机;所述空调控制装置包括:
    判断模块,用于基于所述压缩机的压缩机频率和所述驱动电机的第一目标平台转速,判断所述压缩机的压缩机频率是否在预设拍频频率区间内;
    调整模块,用于响应所述压缩机频率在所述预设拍频频率区间内,按照预设规则调整所述驱动电机的电机转速,以控制所述空调不产生拍频。
  12. 一种计算机可读存储介质,其中,其上存储有空调控制程序,其中,该空调控制程序被处理器执行时实现权利要求1-10任一所述的方法。
  13. 一种设备,其中,包括存储器、处理器及存储在存储器上并可在处理器上运行的空调控制程序,所述处理器执行所述空调控制程序时实现权利要求1-10任一所述的方法。
PCT/CN2021/106389 2020-11-10 2021-07-15 一种空调控制方法、装置、设备及存储介质 WO2022100129A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011250438.7 2020-11-10
CN202011250438.7A CN114459131B (zh) 2020-11-10 2020-11-10 一种空调控制方法、装置、设备及存储介质

Publications (1)

Publication Number Publication Date
WO2022100129A1 true WO2022100129A1 (zh) 2022-05-19

Family

ID=81404320

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/106389 WO2022100129A1 (zh) 2020-11-10 2021-07-15 一种空调控制方法、装置、设备及存储介质

Country Status (2)

Country Link
CN (1) CN114459131B (zh)
WO (1) WO2022100129A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115111711A (zh) * 2022-06-30 2022-09-27 四川长虹空调有限公司 变频空调的室外电机转速控制方法及装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106016625A (zh) * 2016-07-01 2016-10-12 海信(山东)空调有限公司 变频空调压缩机与风扇拍振的控制方法和装置
CN108386973A (zh) * 2018-03-05 2018-08-10 奥克斯空调股份有限公司 空调外机控制方法及装置
CN110529938A (zh) * 2019-09-05 2019-12-03 珠海格力电器股份有限公司 一种多噪声源设备防拍振的控制方法及控制装置
CN110848932A (zh) * 2019-11-26 2020-02-28 广东美的制冷设备有限公司 空调器及其空调控制方法、控制装置和可读存储介质
CN111197843A (zh) * 2018-10-30 2020-05-26 日立江森自控空调有限公司 一种空调风机控制方法及其系统和空调

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2783065B2 (ja) * 1992-06-17 1998-08-06 ダイキン工業株式会社 空気調和装置の運転制御装置
KR20050074706A (ko) * 2004-01-14 2005-07-19 엘지전자 주식회사 멀티형 공기조화기의 인버터 압축기의 예열운전 제어 방법
JP4042787B2 (ja) * 2006-02-17 2008-02-06 ダイキン工業株式会社 回転数制御装置、空気調和装置及び回転数制御方法
JP5804774B2 (ja) * 2011-05-30 2015-11-04 三菱電機株式会社 冷凍サイクル装置
CN107101270B (zh) * 2017-05-12 2020-04-17 广东美的制冷设备有限公司 空调器的控制方法、控制装置和计算机可读存储介质
CN108548269B (zh) * 2018-03-31 2020-09-25 青岛海尔空调器有限总公司 空调的控制方法
CN109915990B (zh) * 2019-02-22 2020-10-09 珠海格力电器股份有限公司 控制风机的方法、装置和空调系统
CN111854086A (zh) * 2019-04-26 2020-10-30 青岛海尔空调器有限总公司 变频空调器的控制方法及装置和变频空调器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106016625A (zh) * 2016-07-01 2016-10-12 海信(山东)空调有限公司 变频空调压缩机与风扇拍振的控制方法和装置
CN108386973A (zh) * 2018-03-05 2018-08-10 奥克斯空调股份有限公司 空调外机控制方法及装置
CN111197843A (zh) * 2018-10-30 2020-05-26 日立江森自控空调有限公司 一种空调风机控制方法及其系统和空调
CN110529938A (zh) * 2019-09-05 2019-12-03 珠海格力电器股份有限公司 一种多噪声源设备防拍振的控制方法及控制装置
CN110848932A (zh) * 2019-11-26 2020-02-28 广东美的制冷设备有限公司 空调器及其空调控制方法、控制装置和可读存储介质

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115111711A (zh) * 2022-06-30 2022-09-27 四川长虹空调有限公司 变频空调的室外电机转速控制方法及装置
CN115111711B (zh) * 2022-06-30 2023-10-24 四川长虹空调有限公司 变频空调的室外电机转速控制方法及装置

Also Published As

Publication number Publication date
CN114459131A (zh) 2022-05-10
CN114459131B (zh) 2023-01-24

Similar Documents

Publication Publication Date Title
WO2020052281A1 (zh) 变频压缩机的控制方法、控制系统以及空调器
WO2019148771A1 (zh) 风电机组的一次调频方法和设备
CN106705353B (zh) 一种多联机空调控制方法
CN108071607B (zh) 激光投影设备散热控制方法和装置
CN103062086B (zh) 散热系统及其控制方法
CN107166642A (zh) 一种变频空调室外直流风机控制方法
WO2023273346A1 (zh) 一种空调器控制方法、控制装置与存储介质
WO2022100129A1 (zh) 一种空调控制方法、装置、设备及存储介质
EP2998659A1 (en) Method for controlling outdoor fan motor of air conditioner
CN112178889B (zh) 一种空调的温度和湿度控制方法及空调
CN110529938B (zh) 一种多噪声源设备防拍振的控制方法及控制装置
CN106679088A (zh) 一种空调器及其控制方法和装置
WO2023197694A1 (zh) 空调器变频控制方法、装置、空调器及存储介质
CN111828296B (zh) 压缩机控制方法、控制器、空气调节设备及存储介质
CN111895624B (zh) 一种空调温湿度控制方法、装置、存储介质及空调
WO2024046077A1 (zh) 一种串联空调冷凝器的独立散热系统的控制方法及系统
WO2023035629A1 (zh) 空调器压缩机频率调节的控制方法及装置
CN108088048B (zh) 多联机风机控制方法、控制装置及空调器
CN109405208A (zh) 空调器的控制方法、装置、空调器及计算机可读存储介质
CN111765045B (zh) 风力发电机组的控制方法及装置
TWI494748B (zh) 風扇控制方法及其筆記型電腦
JPH09264564A (ja) 熱交換装置
WO2023024543A1 (zh) 空调器及其控制方法、计算机可读存储介质
WO2021208650A1 (zh) 空调器的静音运行控制方法
CN115111711B (zh) 变频空调的室外电机转速控制方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21890660

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 28/09/2023)