WO2022100087A1 - 一种微型燃气轮机联合循环系统 - Google Patents

一种微型燃气轮机联合循环系统 Download PDF

Info

Publication number
WO2022100087A1
WO2022100087A1 PCT/CN2021/099956 CN2021099956W WO2022100087A1 WO 2022100087 A1 WO2022100087 A1 WO 2022100087A1 CN 2021099956 W CN2021099956 W CN 2021099956W WO 2022100087 A1 WO2022100087 A1 WO 2022100087A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas turbine
heat exchange
heat exchanger
steam
fuel cell
Prior art date
Application number
PCT/CN2021/099956
Other languages
English (en)
French (fr)
Inventor
靳普
Original Assignee
至玥腾风科技集团有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 至玥腾风科技集团有限公司 filed Critical 至玥腾风科技集团有限公司
Publication of WO2022100087A1 publication Critical patent/WO2022100087A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C6/00Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas- turbine plants for special use
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01BMACHINES OR ENGINES, IN GENERAL OR OF POSITIVE-DISPLACEMENT TYPE, e.g. STEAM ENGINES
    • F01B1/00Reciprocating-piston machines or engines characterised by number or relative disposition of cylinders or by being built-up from separate cylinder-crankcase elements
    • F01B1/08Reciprocating-piston machines or engines characterised by number or relative disposition of cylinders or by being built-up from separate cylinder-crankcase elements with cylinders arranged oppositely relative to main shaft and of "flat" type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01BMACHINES OR ENGINES, IN GENERAL OR OF POSITIVE-DISPLACEMENT TYPE, e.g. STEAM ENGINES
    • F01B17/00Reciprocating-piston machines or engines characterised by use of uniflow principle
    • F01B17/02Engines
    • F01B17/04Steam engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01BMACHINES OR ENGINES, IN GENERAL OR OF POSITIVE-DISPLACEMENT TYPE, e.g. STEAM ENGINES
    • F01B23/00Adaptations of machines or engines for special use; Combinations of engines with devices driven thereby
    • F01B23/10Adaptations for driving, or combinations with, electric generators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K25/00Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K27/00Plants for converting heat or fluid energy into mechanical energy, not otherwise provided for
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C6/00Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas- turbine plants for special use
    • F02C6/04Gas-turbine plants providing heated or pressurised working fluid for other apparatus, e.g. without mechanical power output
    • F02C6/06Gas-turbine plants providing heated or pressurised working fluid for other apparatus, e.g. without mechanical power output providing compressed gas
    • F02C6/08Gas-turbine plants providing heated or pressurised working fluid for other apparatus, e.g. without mechanical power output providing compressed gas the gas being bled from the gas-turbine compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/08Heating air supply before combustion, e.g. by exhaust gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/26Starting; Ignition
    • F02C7/268Starting drives for the rotor, acting directly on the rotor of the gas turbine to be started
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22DPREHEATING, OR ACCUMULATING PREHEATED, FEED-WATER FOR STEAM GENERATION; FEED-WATER SUPPLY FOR STEAM GENERATION; CONTROLLING WATER LEVEL FOR STEAM GENERATION; AUXILIARY DEVICES FOR PROMOTING WATER CIRCULATION WITHIN STEAM BOILERS
    • F22D1/00Feed-water heaters, i.e. economisers or like preheaters
    • F22D1/003Feed-water heater systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S20/00Solar heat collectors specially adapted for particular uses or environments
    • F24S20/30Solar heat collectors for heating objects, e.g. solar cookers or solar furnaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04014Heat exchange using gaseous fluids; Heat exchange by combustion of reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • H01M8/04225Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells during start-up
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • H01M8/04268Heating of fuel cells during the start-up of the fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the invention belongs to the field of gas turbine technology and energy recovery and utilization technology, and in particular relates to a micro gas turbine combined cycle system with a multi-stage Tesla turbine.
  • Micro gas turbine is a newly developed small heat engine, its single engine power range is 25 ⁇ 300kW, the basic technical features are the use of radial impeller machinery and recuperation cycle.
  • a heat exchanger is usually used to recycle the heat of the exhaust gas of the micro gas turbine, and then the exhaust gas passing through the heat exchanger is discharged to the atmosphere; however, the exhaust gas passing through the heat exchanger still has a certain amount of waste heat.
  • rotating machinery such as a turbine, etc.
  • solar thermal power generation mainly includes trough thermal power generation, linear Fresnel thermal power generation, tower thermal power generation and dish thermal power generation technologies.
  • the principle is mainly to use concentrating parabolic reflectors to gather sunlight, generate steam through light-to-heat conversion and heat exchange devices or heat fluids to drive heat engines to generate electricity. And fuel replenishment to achieve continuous power generation day and night.
  • most of the reflectors in the current solar power generation systems are fixedly installed, and the sunlight is absorbed by the reflectors fixed at a fixed angle, which is the optimal angle after calculation.
  • the reflector is fixed and the sun is rotating, there is a problem that the sun does not always shine directly on the reflector. When the sun slants the reflector, the reflected sunlight is less, so that the solar energy cannot be fully utilized, resulting in Energy waste.
  • the gas turbine is fixed on the ground and cannot track sunlight, making it difficult to efficiently utilize solar energy.
  • the existing heat exchanger is two parallel plates with a large area.
  • the heat exchange between the heat exchange plate and the combustion chamber leads to a large temperature gradient from the inlet end to the outlet end; due to the large area of the heat exchange plate, there is no binding force on the periphery of the plate. , the high air pressure in the board is easy to cause the board to burst from the middle.
  • the two sides of the upper and lower plates on the heat exchange plate of the traditional heat exchanger are welded or riveted. Due to the excessive length of the plates, the long welding seam is easy to leak air, and the process requirements are high. Therefore, the service life of the existing heat exchanger is limited, it is difficult to operate stably for a long time in the field and other working conditions, and the manufacturing and maintenance costs are high.
  • the technical problem solved by the present invention is to overcome the deficiencies of the prior art and provide a micro gas turbine combined cycle system, which can further recover and utilize the energy carried in the exhaust gas of the heat exchanger, thereby improving the efficiency of the entire micro gas turbine.
  • the circulation system can solve the problem of recovery of SOFC power generation waste heat and heat exchanger exhaust waste heat at the same time. It occupies a small space, and in addition, the circulation system achieves efficient utilization of solar energy by tracking solar energy to improve the power generation efficiency of the system. In addition, it solves the problem of large temperature gradient and easy expansion and cracking of the existing heat exchanger.
  • the technical solution of the present invention is: a micro gas turbine combined cycle system, including a micro gas turbine, and the combined cycle system further includes at least one of a fuel cell system, a steam power generation system, and a solar receiver;
  • the micro gas turbine includes a combustion chamber 105, a heat exchanger 101, an air compressor 102, a Tesla turbine 100, and an inspired integrated motor 103.
  • the heat exchanger 101 is a multi-cavity heat exchange device.
  • the multi-cavity heat exchange device includes a combustion chamber 105, a heat exchanger 101, an air compressor 102, a Tesla turbine 100, and an integrated motor 103
  • the heat exchanger is a multi-cavity heat exchange device.
  • the heat exchange units include an input plate and an output plate, the sides of the input plate and the output plate are sealed and connected by a snap-fit device, and the pair of adjacent input plates and output plates A heat exchange cavity is formed between them.
  • the steam power generation system is a steam turbine system
  • the steam turbine system includes a heat exchange unit, a circulating water tank, an engine and a first generator, the outlet of the heat exchanger is connected to the air inlet of the heat exchange unit, and the water inlet of the heat exchange unit is connected to the water outlet of the circulating water tank , the steam outlet of the heat exchange unit is connected to the engine for providing power steam for the engine, the engine is connected to the first generator for driving the first generator to generate electricity, and the circulating water tank is connected to the engine for recovering the power steam and converting it into water or water vapor mixture.
  • the solar receiver includes a solar collector, a solar reflector, an installation platform and an adjustment device; the solar collector is arranged on the gas turbine and is used to heat the circulating medium on the working medium channel of the gas turbine, and the gas turbine is fixed above the solar reflector and the solar collector at the solar reflection focal point.
  • the fuel cell system further includes an afterburner
  • the exhaust gas outlet of the fuel cell is connected to the afterburner, and the air outlet of the afterburner is connected to the air inlet end of the air compressor impeller.
  • fins are provided on the inner walls of the input plate and the output plate.
  • the fins are integrally formed with the input plate or the output plate; or,
  • the fins are fixed to the input plate or the output plate.
  • the fins are corrugated plates or straight plates.
  • the micro gas turbine combined cycle system of the present invention uses the principle of using a piston engine to recover the heat in the exhaust gas of the micro gas turbine heat exchanger, which can solve the technical problem that the exhaust gas cannot be efficiently recovered due to the low calorific value and less heat in the prior art. .
  • the micro gas turbine combined cycle system of the present invention can solve the recovery problem of SOFC power generation waste heat and heat exchanger exhaust heat at the same time, and recycle the heat produced by each link in the system, and its recovery efficiency can reach 50%. %-80%; the steam power generation system in the triple combined system can choose the steam turbine system or the ORC system (organic Rankine cycle system), which has strong versatility.
  • the fuel cell needs to react at 900°C-1000°C, which is exactly the working temperature of the gas turbine combustion chamber, so the present invention replaces the traditional gas turbine combustion chamber with a fuel cell.
  • the fuel cell can be used as an independent power generation device, which can generate a large amount of heat, which not only plays the role of replacing the combustion chamber, but also can be used as one of the power sources of the circulation system.
  • the fuel cell and gas turbine systems promote each other, and the combined work effect is greater than the effect of the combined work of the original systems.
  • Low temperature cold start is one of the important factors affecting the commercial application of the fuel cell.
  • the present invention places the fuel cell in a complete set of circulation system, so that the fuel cell can be started only when the outlet air temperature of the heat exchanger reaches a suitable value. , so that the fuel cell is fully utilized, resources are saved, and the use efficiency is high, which is conducive to commercialization.
  • the circulating water of the steam power generation system can further recover the heat of the heating elements in the vehicle or the power generation system, such as the heat emitted by the engine casing, the battery pack, and the generator.
  • the micro gas turbine combined cycle system of the present invention combines solar energy, gas turbines and tracking sunlight technology, which can ensure that the solar gas turbine power generation system absorbs solar energy efficiently, so as to improve the utilization rate of energy.
  • the micro gas turbine combined cycle system of the present invention through the cooperation of the heat exchanger and the combustion chamber, can recycle the heat produced by each link in the system, and the energy recovery efficiency is high.
  • the heat exchanger of the micro gas turbine combined cycle system of the present invention is to make a larger heat exchange cavity into a plurality (at least 2) of smaller heat exchange cavity, and make the smaller heat exchange cavity into When connected, the deformation between the two large plates is transformed into small deformations of multiple small plates, and a pre-tightening force is added to the middle of the plates to reduce deformation and ensure long life and high reliability.
  • the heat exchange plate of the present invention is not simply reduced in size, but for any traditional heat exchange plate, the size of the heat exchange plate of the present invention is reduced to fraction or tenth.
  • the increase of the heat exchange cavity of the heat exchanger reduces the temperature gradient between adjacent plates, see Figure 4, reduces the air pressure in a single cavity, and prevents bursting.
  • the heat exchanger adopts a multi-cavity heat exchange plate, which can shorten the welding seam, the process is simple, and the gas leakage is not easy.
  • the pressure head of the heat exchanger exerts pressure in the direction perpendicular to the heat exchange plate, so as to prevent the heat exchange plate from bulging and deforming due to the action of air pressure, prevent the expansion and cracking, and improve the service life of the device, Reduce maintenance costs.
  • FIG. 1 is a schematic diagram of the working principle of the first combined cycle system of the micro gas turbine combined cycle system of the present invention
  • FIG. 2 is a schematic diagram of the working principle of the second type of combined cycle system of the micro gas turbine combined cycle system of the present invention
  • FIG. 3 is a schematic diagram of the working principle of the third type of combined cycle system of the micro gas turbine combined cycle system of the present invention.
  • FIG. 4 is a schematic diagram of the working principle of the fourth type of combined cycle system of the micro gas turbine combined cycle system of the present invention.
  • FIG. 5 is a schematic diagram of the structure of the heat exchange unit in which the fins of the heat exchanger are corrugated plates in the micro gas turbine combined cycle system of the present invention
  • FIG. 6 is a schematic diagram of the structure of the heat exchange unit in which the fins of the heat exchanger are straight plates in the micro gas turbine combined cycle system of the present invention
  • FIG. 7 is a schematic view of the end face position of an embodiment of the heat exchanger in the micro gas turbine combined cycle system of the present invention.
  • FIG. 8 is a schematic cross-sectional structural diagram of an embodiment of a heat exchanger in the micro gas turbine combined cycle system of the present invention.
  • FIG. 9 is a schematic diagram of the end face position of another embodiment of the heat exchanger in the micro gas turbine combined cycle system of the present invention.
  • FIG. 10 is a schematic cross-sectional structural diagram of another embodiment of the heat exchanger in the micro gas turbine combined cycle system of the present invention.
  • Fig. 11 is a schematic diagram of an engine structure in the micro gas turbine combined cycle system of the present invention.
  • FIG. 12 is a schematic diagram of the second engine structure in the micro gas turbine combined cycle system of the present invention.
  • Figure 13 is a schematic diagram of the third engine structure in the micro gas turbine combined cycle system of the present invention.
  • FIG. 14 is a schematic diagram of the fourth engine structure in the micro gas turbine combined cycle system of the present invention.
  • Fig. 15 is a schematic diagram of five engine structures in the micro gas turbine combined cycle system of the present invention.
  • 16 is a schematic diagram of the sixth engine structure in the micro gas turbine combined cycle system of the present invention.
  • Fig. 17 is the structural schematic diagram when the vacuum pump is arranged in Fig. 13 of the present invention.
  • Figure 18 is a schematic structural diagram of the present invention when the vacuum pump is set in Figure 16;
  • Fig. 19 is a schematic diagram of the adjustment device in the micro gas turbine combined cycle system of the present invention.
  • 20 is a schematic diagram of the distribution of expansion bottles on the top surface of the installation platform in the combined cycle system of the micro gas turbine of the present invention.
  • the terms “installed”, “connected” and “connected” should be understood in a broad sense, unless otherwise expressly specified and limited, for example, it may be a fixed connection or a detachable connection Connection, or integral connection; can be mechanical connection, can also be electrical connection; can be directly connected, can also be indirectly connected through an intermediate medium, can be internal communication between two elements.
  • installed should be understood in a broad sense, unless otherwise expressly specified and limited, for example, it may be a fixed connection or a detachable connection Connection, or integral connection; can be mechanical connection, can also be electrical connection; can be directly connected, can also be indirectly connected through an intermediate medium, can be internal communication between two elements.
  • a micro gas turbine combined cycle system with a turbine includes a micro gas turbine 1, the micro gas turbine combined cycle system further includes at least one of a fuel cell system, a steam power generation system, and a solar receiver.
  • the air compressor 102 When the air compressor 102 is started, it is driven by the heuristic integrated motor 103 .
  • the heuristic integrated motor 103 first acts as a motor to drive the air compressor 102 to rotate, and then acts as a generator to generate electricity after it is accelerated to be able to operate independently.
  • the micro gas turbine 1 includes a heat exchanger 101, an air compressor 102, a Tesla turbine 100, and an integrated motor 103.
  • the outlet of the air compressor 102 is connected to the inlet of the heat exchanger 101 to heat the air through the air compressor 102.
  • the compressed gas is output from the outlet.
  • the output is divided into two paths, one of which is passed to the fuel cell 201 to increase the temperature of the gas entering the fuel cell 201, thereby improving the utilization rate of the fuel; the other is led to the heat exchange in the steam power generation system.
  • unit 302 to convert the water in the circulating water tank 301 into steam.
  • the heat exchanger is a multi-cavity heat exchange device, which is to make a larger heat exchange cavity into a plurality (at least 2) of smaller heat exchange cavity, and make the smaller heat exchange cavity
  • the heat exchange chambers When the heat exchange chambers are connected, the deformation between the two large plates is transformed into small deformations of multiple small plates, and a pre-tightening force is added to the middle of the plates to reduce deformation and ensure long life and high reliability.
  • the heat exchange plate of the present invention is not simply reduced in size, but for any traditional heat exchange plate, the size of the heat exchange plate of the present invention is reduced to fraction or tenth.
  • a multi-chamber heat exchange device includes at least two heat exchange units, the heat exchange units include an input plate 10 and an output plate 20, and the input plate 10 and the output plate 20 have The sides are sealed and connected by the snap-fit device 30 , and a heat exchange cavity 50 is enclosed between the pair of adjacent input plates 10 and the output plates 20 .
  • fins 11 are provided on the inner walls of the input plate 10 and the output plate 20; the fins 11 are integrally formed with the input plate 10 or the output plate 20; or, the fins 11 It is fixed to the input board 10 or the output board 20 .
  • the fins 11 are corrugated plates or straight plates.
  • the snap-fit device 30 includes a first enclosure 31, a second enclosure 32 and a side enclosure 33 that are parallel to each other. type, the edges of the input plate 10 and the output plate 20 are embedded in the card slot 34 formed between the first enclosure 31 , the second enclosure 32 and the side enclosure 33 .
  • the tops of the first enclosure 31 and the second enclosure 32 are provided with screw holes, and the outer sides of the input plate 10 and the output plate 20 are provided with a pressure head 40, one end of the pressure head 40 is fitted to the input plate 10 or the output plate 20, and the other end is fixed to the beam 41 , both ends of the beam 41 are provided with adjustment bolts.
  • the adjusting bolt is connected with the screw hole and is used to adjust the preload force of the pressure head on the input plate and the output plate.
  • the plurality of heat exchange units are arranged on top of each other, and a sealing plate 35 is provided between the fastening devices 30 for sealing between adjacent heat exchange units.
  • the cross section of the heat exchange device is rectangular, fan-shaped or cylindrical.
  • the fastening device 30 is a disc-shaped flange, see FIGS. 6 and 7
  • the first enclosure 31 and the second enclosure 32 are flange end faces
  • the raised circular shells are parallel to each other, and the two adjacent circular shells and the flange end face are surrounded by the slot 34.
  • the flange end face is continuous and dense, it can be used for sealing. Therefore, there is no need to additionally dispose the sealing plate 35 .
  • the axis is gradually installed outward.
  • the input plate 10 and the output plate 20 belong to the heat exchange plate.
  • the heat exchange device when configured to receive solar heating, the part of the outer surface of the heat exchange device that does not receive reflected light is covered with a water tank to slow down heat loss.
  • the heat exchange process of the heat exchange device of the present invention is to heat the gas introduced into the heat exchange cavity 50 from the inlet of the heat exchanger 101 by heating the input plate 10, so as to achieve the purpose of heat exchange;
  • the output of the heater 101 exits.
  • the output temperature of the output plate 20 produces a temperature drop compared to the input plate 10 after heat exchange.
  • the heat exchange unit is multi-layered, the gas output from the output plate 20 of the first layer continues to be heated by the heat exchange method of the first layer of heat exchange unit until it is discharged from the last layer of heat exchange unit.
  • the heat exchange unit of the upper stage heats the heat exchange unit of the next stage by means of heat radiation.
  • the way of heating the input panel 10 includes heating by the thermal energy collected by the solar energy collecting device, heating by the radiation of nuclear energy, and the like.
  • the working process of the gas turbine of the present invention is as follows: after the working fluid enters the compressor 102 for compression, it enters the inlet of one end of the heat exchanger 101, and then enters the combustion chamber 105 from the outlet of the other end for combustion after heat exchange and temperature rise.
  • the Tesla turbine 100 is connected to push it to rotate to do work, and the Tesla turbine 100 drives the coaxial inspired integrated generator 103 to generate electricity; Together, they are passed into the heat exchanger 101 for circulation.
  • the inlet and outlet of the heat exchanger 101 can be respectively arranged on both ends of the heat exchange cavity; the inlet and outlet of the heat exchanger 101 are far away from each other, such as arranged on opposite sides, so as to extend the working fluid flow path.
  • the processing method of the multi-cavity heat exchange device includes the following steps:
  • the input board 10 and the output board 20 with the fins 11 are processed by EDM cutting, chemical etching or wire cutting from the original plate;
  • the input plate 10 and the output plate 20 are opposed to each other, the fins 11 are located in the heat exchange cavity 50, the edges of the input plate 10 and the output plate 20 are snapped into the slot 34, and the adjacent pair of input plates 10 is connected with the output board 20 as a whole;
  • a sealing plate 35 is provided between the adjacent fastening devices 30 for sealing.
  • the fuel cell system 2 includes a fuel cell 201 .
  • the outlet of the heat exchanger 101 is connected to the fuel cell 201 to provide the fuel cell 201 with high-temperature gas required for combustion.
  • the fuel cell 201 outputs electrical energy at the output end, and the high-temperature and high-pressure exhaust gas generated by the heat exchanger 101 drives the Tesla turbine 100 to do work, and the Tesla turbine 100 Drive the inspired integrated motor 103 to rotate at high speed to generate electricity.
  • the steam power generation system the steam turbine system 3 is selected, including a heat exchange unit 302, a circulating water tank 301, an engine 303, and a first generator 304.
  • a part of the gas discharged from the heat exchanger 101 is transported to the heat exchange unit 302, and the circulating water tank 301
  • the circulating water is sent to the heat exchange unit 302.
  • the circulating water absorbs the heat in the exhaust gas and gasifies in the heat exchange unit 302 to form high-pressure steam.
  • the high-pressure steam enters the engine 303 and drives the first generator 304 to generate electricity. After the high-pressure steam performs work, it becomes atmospheric steam or a water-steam mixture and enters the circulating water tank 301 to realize recycling. Therefore, the heat in the exhaust gas of the heat exchanger 101 is effectively utilized, and the overall efficiency of the circulation system is improved.
  • solar energy is interposed on the working medium channel from the heat exchanger 101 to the combustion chamber 105 , and a solar energy collecting device 21 can be provided on the heat exchanger 101 or the combustion chamber 105 , and the solar energy collecting device 21 is located at the solar light reflection concentrating point.
  • the integrated motor 103 Enlighten the integrated motor 103 first as a motor to drive the air compressor 102 to work, the outside air is passed into the air compressor 102, and after being compressed, it is passed into the heat exchanger 101 from the inlet of the heat exchanger 101, at this time from the air compressor 102
  • the temperature of the outgoing gas is 500-600°C.
  • the gas flowing out from the outlet of the heat exchanger 101 is divided into two paths, one enters the heat exchange unit 302 of the steam turbine system 3, and the other enters the fuel cell system 2, and together with the fuel gas, promotes the reaction of the fuel cell 201 to start and maintain:
  • a part of the gas discharged from the outlet of the heat exchanger 101 is transported to the heat exchange unit 302, while the circulating water tank 301 transports the circulating water to the heat exchange unit 302.
  • the unit 302 is gasified to form high-pressure steam, and the high-pressure steam enters the engine 303 to perform work and drive the first generator 304 to generate electricity. After the high-pressure steam performs work, it becomes atmospheric steam or a water-steam mixture and enters the circulating water tank 301 to realize recycling.
  • the fuel cell 201 After the fuel cell 201 is started, it gradually generates heat and generates a small amount of electric energy.
  • the exhaust gas generated by the fuel cell 201 is passed into the Tesla turbine 100, so that the Tesla turbine 100 rotates at a high speed and drives the inspired integrated motor 103, which is converted into a generator, to generate electricity.
  • the high-temperature gas discharged from the Tesla turbine 100 is re-introduced into the heat exchanger 101 from the inlet of the heat exchanger 101, and the cycle is repeated until the fuel cell 201 reacts stably at the optimum temperature.
  • the fuel cell 201 generates heat after starting, and gradually rises to the optimal reaction temperature, and reacts stably at 800-950° C.
  • the turbine 100 repeats the cycle, and the temperature at the outlet end of the Tesla turbine 100 reaches 550°C-700°C, (preferably, 650°C); the temperature in the heat exchanger 101 is maintained at 500°C-600°C.
  • the steam power generation system in the three combined cycle system of gas turbine, fuel cell and steam power generation provided by this embodiment adopts the steam turbine system, and the three combined system can solve the problem of recovery of SOFC power generation waste heat and heat exchanger exhaust heat at the same time.
  • the heat produced by each link is recycled, and the recovery efficiency can reach 50%-80%.
  • the fuel cell 201 can be connected to the afterburner 202 to prevent insufficient combustion.
  • the fuel cell 201 outputs electric energy and partially reacted gas is sent to the afterburner 202.
  • the exhaust gas The outlet of the afterburner 202 is transported to the intake end of the Tesla turbine 100, one way makes the Tesla turbine 100 rotate at a high speed and drives the inspired integrated motor 103 converted into a generator to generate electricity, and the other way of high temperature gas flows from the heat exchanger 101
  • the second inlet is passed into the heat exchanger 101, and the cycle is repeated.
  • the supplementary combustion device 202 adopts an existing supplementary combustion device, such as a supplementary combustion furnace.
  • the integrated motor 103 Enlighten the integrated motor 103 first as a motor to drive the air compressor 102 to work, the outside air is passed into the air compressor 102, and after being compressed, it is passed into the heat exchanger 101 from the inlet of the heat exchanger 101, at this time from the air compressor 102
  • the temperature of the outgoing gas is 500-600°C.
  • the gas flowing out from the outlet of the heat exchanger 101 is divided into two paths, one enters the heat exchange unit 302 of the steam turbine system 3, and the other enters the fuel cell system 2, and together with the fuel gas, promotes the reaction of the fuel cell 201 to start and maintain:
  • a part of the gas discharged from the outlet of the heat exchanger 101 is transported to the heat exchange unit 302, while the circulating water tank 301 transports the circulating water to the heat exchange unit 302.
  • the unit 302 is gasified to form high-pressure steam, and the high-pressure steam enters the engine 303 to perform work and drive the first generator 304 to generate electricity. After the high-pressure steam performs work, it becomes atmospheric steam or a water-steam mixture and enters the circulating water tank 301 to realize recycling.
  • the fuel cell 201 After the fuel cell 201 is started, it gradually generates heat and generates a small amount of electric energy.
  • the exhaust gas produced by the fuel cell 201 is passed into the afterburner 202, and the gas discharged from the afterburner 202 is passed into the Tesla turbine 100 to make the Tesla.
  • the turbine 100 rotates at a high speed and drives the inspired integrated motor 103 that is converted into a generator to generate electricity.
  • the high-temperature gas discharged from the Tesla turbine 100 is re-introduced into the heat exchanger 101 from the inlet of the heat exchanger 101, and the cycle is repeated until the fuel cell 201 is at its maximum. Optimum temperature stable reaction.
  • the fuel cell 201 generates heat after starting, and gradually rises to the optimum reaction temperature, and reacts stably at 800-950° C. (preferably, 900° C.), and outputs electrical energy stably; the generated exhaust gas is fed into the Tesla
  • the turbine 100 repeats the cycle, and the temperature at the outlet end of the Tesla turbine 100 reaches 550°C-700°C, (preferably, 650°C); the temperature in the heat exchanger 101 is maintained at 500°C-600°C.
  • the supplementary burner 202 is added to ensure sufficient combustion of the fuel and improve the energy recovery rate.
  • the engine 303 can be a piston engine.
  • the structure of the piston engine can be realized by various structures, such as, but not limited to, the following structures.
  • the engine 303 adopts a single-side intake spring-return piston engine 310 .
  • the piston 312 is installed in the cylinder block 311 , and one end of the piston rod 314 is connected to the piston 312 , the other end extends out of the cylinder block 311 and is connected with the crank-slider mechanism 315, the crank-slider mechanism 315 is connected with the output shaft 316, the rodless cavity side of the cylinder block 311 is provided with a first air inlet 311-1, An exhaust port 311-2, the first intake port 311-1 is connected to the heat exchange unit 302, the first exhaust port 311-2 is connected to the circulating water tank 301, the output shaft 316 is connected to the first generator 304;
  • a spring 313 is arranged on the side of the rod cavity
  • an on-off valve 321 can be set between the first intake port 311-1, the first exhaust port 311-2, and the cylinder block 311, and the on-off valve 321 can be controlled according to the specific working state of the piston engine, In order to realize the control of the piston engine action.
  • the on-off valve 321 may be a mechanical on-off valve or an electric on-off valve.
  • the electric on-off valve is relatively simple in principle, and only needs to meet the high-frequency on-off, but it needs to be able to withstand higher temperature and pressure; the mechanical on-off valve needs to combine the movement of its own piston, and the mutual Link between them, eliminating the frequency limitation of program control, but its structure will be a little more complicated.
  • the high-pressure steam enters the rodless cavity of the piston engine from the heat exchange unit 302 through the first air inlet 311-1, and pushes the piston 312 to perform linear motion.
  • the piston 312 converts the linear motion of the piston 312 through the crank connecting rod mechanism 315.
  • the output shaft 316 drives the first generator 304 to generate electricity; after the work is done, the spring 313 pushes the piston 312 to reset, and the depleted gas or the soda-water mixture in the rodless cavity of the piston engine passes through the first exhaust port 311- 2 Enter the circulating water tank 301 for recycling.
  • the engine 303 adopts the piston engine 320 with air intake on both sides.
  • the spring 313 is omitted, and at the same time, a second air inlet 311-3, a second air outlet 311-4, and a second air inlet are provided on the side of the cylinder block 311 with the rod cavity.
  • 311-3 is connected to the heat exchange unit 302, and the second exhaust port 311-4 is connected to the circulating water tank 301.
  • Other structures are the same as those of the first structure, and will not be described and marked again here.
  • the high-pressure steam enters the rodless cavity of the piston engine from the heat exchange unit 302 through the first air inlet 311-1, and pushes the piston 312 to perform linear motion.
  • the piston 312 converts the linear motion of the piston 312 through the crank connecting rod mechanism 315.
  • the output shaft 316 drives the first generator 304; after doing work, the high-pressure steam enters the rod cavity of the piston engine through the second air inlet 311-3, and pushes the piston 312 to move to the side of the rodless cavity.
  • the depleted gas or soda-water mixture in the rodless cavity of the piston engine enters the circulating water tank 301 through the first exhaust port 311-2, and then enters the next cycle, and the high-pressure steam enters the piston engine through the first air inlet 311-1.
  • the rodless cavity pushes the piston 312 to do work, and the exhaust gas or soda-water mixture in the rod cavity of the piston engine enters the circulating water tank 301 for circulation through the second exhaust port 311-4.
  • an on-off valve may be provided between the first intake port 311-1, the first exhaust port 311-2, the second intake port 311-3, the second exhaust port 311-4 and the cylinder block 311 321 , control the on-off of the on-off valve 321 according to the specific working state of the piston engine to realize the control of the reciprocating motion of the piston engine; the on-off valve 321 may be a mechanical on-off valve or an electric on-off valve.
  • the structure saves the spring, realizes the reciprocating motion of the piston through the intake and exhaust on both sides, improves the reliability of the control of the piston engine, and simplifies the structure.
  • the engine 303 is a horizontally opposed two-cylinder controlled piston engine 330 .
  • the two-cylinder controlled piston engine 330 includes a crank-slider mechanism 335 and a first cylinder and a second cylinder which are oppositely arranged on both sides of the crank-slider mechanism 335 .
  • the crank-slider mechanism 335 is a double-slider structure, which includes a crank 335-1, a first slider 335-2, a first connecting rod 335-3, a second slider 335-4, and a second connecting rod 335- 5 and the output shaft 316; the output shaft 316 passes through the center of the crank 335-1, and one end of the first connecting rod 335-3 and one end of the second connecting rod 335-5 are respectively connected to the two end faces of the crank 335-1 , and the connection points are distributed on both sides of the output shaft 316, the other end of the first connecting rod 335-3 is connected to the first sliding block 335-2, and the other end of the second connecting rod 335-5 is connected to the second sliding block 335-4 .
  • the first cylinder includes: a first cylinder block 331, a first piston 332, a first piston rod 334, the first piston 332 is installed in the first cylinder block 331, one end of the first piston rod 334 is connected to the first piston 332, and the other One end extends out of the first cylinder block 331 and is connected with the first slider 335-2; the rodless cavity side of the first cylinder block 331 is provided with a first intake port 311-1, and a first exhaust port 311- 2.
  • the first air inlet 311-1 is connected to the heat exchange unit 302, and the first air outlet 311-2 is connected to the circulating water tank 301.
  • the second cylinder includes: a second cylinder block 337, a second piston 338, a second piston rod 339, the second piston rod 339 is installed in the second cylinder block 337, and one end of the second piston rod 338 is connected to the second piston 338, The other end protrudes out of the second cylinder block 337 and is connected with the second slider 335-4; the side of the rod cavity of the second cylinder block 337 is provided with a second intake port 311-3 and a second exhaust port 311 -4, the second air inlet 311-3 is connected to the heat exchange unit 302, and the second air outlet 311-4 is connected to the circulating water tank 301.
  • the high-pressure steam enters the rodless cavity of the first cylinder from the heat exchange unit 302 through the first air inlet 311-1, and pushes the first piston 332 to perform linear motion.
  • the linear motion of the first piston 332 is converted into the rotational motion of the output shaft 316, and the output shaft 316 drives the first generator 304; after performing work, the high-pressure steam enters the rod cavity of the second cylinder through the second air inlet 311-3, and pushes the first generator 304.
  • the second piston 338 moves to the side of the rodless cavity, the depleted gas or the soda-water mixture in the rodless cavity of the first cylinder enters the circulating water tank 301 through the first exhaust port 311-2, and after the second cylinder performs work, the high-pressure steam enters the second cylinder again.
  • One cylinder continues to perform work and repeats the cycle to realize the continuous operation of the output shaft 316 .
  • the first piston rod 334 drives the crank 335-1 of the crank-slider mechanism 335 to rotate, and the crank 335-1 rotates counterclockwise.
  • the second piston rod 339 drives the second piston 338 to move towards the crank 335-1 side, when it rotates to a predetermined angle, high pressure steam enters the second cylinder to do work, the second piston 338 drives the second piston rod 339 to move to the side away from the crank 335-1, and the crank 335-1 continues to rotate counterclockwise.
  • the air port 311-2 enters the circulating water tank 301. That is, in the process of continuous work, when the first cylinder takes in to do work, the second cylinder exhausts, and when the second cylinder takes in to do work, the first cylinder exhausts, so as to realize cyclic work.
  • an on-off valve 321 is provided between the first intake port 311-1, the first exhaust port 311-2, the second intake port 311-3, the second exhaust port 311-4 and the cylinder block.
  • the specific working state of the piston engine controls the on-off of the switch valve 321 to realize the control of the reciprocating motion of the piston engine.
  • the on-off valve 321 may be a mechanical on-off valve or an electric on-off valve.
  • the interior of the heat exchange unit 302 can be connected to the first air inlet 311-1 and the second air inlet 311-3 through electromagnetic reversing valves, and the first air outlet 311-2, the second row
  • the air port 311-4 is connected to the circulating water tank 301 through an electromagnetic reversing valve, and the actions of the first cylinder and the second cylinder can be controlled by the action control of the electromagnetic reversing valve, which makes the control of the piston engine simpler and more accurate.
  • the specific structure of the engine 303 is that the cylinder drives the crank connecting rod, that is, the linear reciprocating motion of the piston is converted into the rotational motion of the crank, and then the first generator 304 is driven;
  • the present invention can also use a linear motor, that is, the first generator 304 is a linear generator, the piston rod is directly connected to the linear motor, and the linear motion of the piston directly drives the linear motor to generate electricity. This further simplifies the overall structure.
  • the specific structure principle is as follows:
  • the engine 303 is a single-side intake spring-return piston engine 310, including:
  • the piston 312 is installed in the cylinder block 311, one end of the piston rod 314 is connected to the piston 312, and the other end extends out of the cylinder block 311 and is connected to the first generator 304;
  • a first intake port 311-1 and a first exhaust port 311-2 are provided on one side of the rodless cavity of the cylinder block 311, the first intake port 311-1 is connected to the heat exchange unit 302, and the first exhaust port 311 -2 is connected to the circulating water tank 301, and a spring 313 is provided on the side of the cylinder block 311 with the rod cavity, which is used for the reset of the piston 312 after performing work.
  • the engine 303 is a double-side intake piston engine 320, including:
  • the piston 312 is installed in the cylinder block 311, one end of the piston rod 314 is connected to the piston 312, and the other end extends out of the cylinder block 311 and is connected to the first generator 304;
  • a first intake port 311-1 and a first exhaust port 311-2 are provided on one side of the rodless cavity of the cylinder block 311, and a second intake port 311-3 is provided on the side of the rod cavity of the cylinder block 311 , the second exhaust port 311-4, the first intake port 311-1, the second intake port 311-3 are connected to the heat exchange unit 302, the first exhaust port 311-2, the second exhaust port 311-4 Connect the circulating water tank 301.
  • the engine 303 is a horizontally opposed two-cylinder controlled piston engine 330, including:
  • the first cylinder includes a first cylinder block 331, a first piston 332, and a first piston rod 334.
  • the first piston 332 is installed in the first cylinder block 331, and one end of the first piston rod 334 is connected to the first piston 332.
  • the other end protrudes out of the first cylinder block 331 and is connected to one end of the first generator 304;
  • the rodless cavity side of the first cylinder block is provided with a first intake port 311-1 and a first exhaust port 311-2 , the first air inlet 311-1 is connected to the heat exchange unit 302, and the first air outlet 311-2 is connected to the circulating water tank 301;
  • the second cylinder includes a second cylinder block 337, a second piston 338, a second piston rod 339, and the second piston rod 339 is installed in the second cylinder block 337.
  • One end of the second piston rod 339 is connected to the second piston 338, and the other is connected to the second piston 338.
  • One end protrudes out of the second cylinder block 337 and is connected to the other end of the first generator 304; the rod cavity side of the second cylinder block 337 is provided with a second intake port 311-3, and a second exhaust port 311- 4.
  • the second air inlet 311-3 is connected to the heat exchange unit 302, and the second air outlet 311-4 is connected to the circulating water tank 301.
  • the specific selection of the structure of the power generation device can be optimized according to the working conditions and usage scenarios.
  • a single group of piston engines are provided to drive the operation of the generator, and the present invention can also be provided with multiple groups of piston engines to drive the generator to operate. That is, the piston engines are arranged in multiple groups, and the multiple groups of engines simultaneously drive multiple groups of cranks to rotate, and the multiple groups of cranks are installed on the same output shaft, and the output shaft is connected to the engine. In this way, the operation reliability of the power generation device can be improved, and the power generation efficiency can be improved at the same time.
  • the first vacuum pump P1 and the second vacuum pump P2 are connected to the rod chamber of the first cylinder and the rodless chamber of the second cylinder.
  • the corresponding vacuum pump also starts to work at the same time, pumping the corresponding chamber to a negative pressure state.
  • the water vapor is used to perform the piston expansion work
  • the exhaust pressure is reduced by vacuuming, and the water vapor in the work part will condense more liquid water, thereby producing more improve the power generation efficiency of the whole machine.
  • the pressure in the rod cavity of the first cylinder is normal pressure
  • the pressure of the steam in the rodless cavity of the first cylinder after work is 0.1 MPa
  • the pressure of the rod cavity of the first cylinder is passed through the vacuum pump.
  • 0.005MPa back pressure will release more energy than normal pressure back pressure, thereby increasing the overall work efficiency by 5- 8%.
  • the steam turbine system 3 of the steam power generation system is replaced with the ORC system 4, (ie the organic Rankine cycle system):
  • ORC system 4 (ie, organic Rankine cycle system), includes a condenser 401 , an evaporator 402 , a second generator 403 , a turboexpander 404 , and a liquid pump 405 .
  • the exhaust gas from the outlet of the heat exchanger 101 of the micro gas turbine 1 with a turbine is sent to the fuel cell 201 in one way and the evaporator 402 in the other way.
  • the condensed water absorbs the heat in the exhaust gas and is vaporized in the evaporator 402 to form high-pressure steam, and the high-pressure steam passes through the turbo expander 404 to drive the second generator 403 to generate electricity.
  • the high-pressure steam After the high-pressure steam performs work, it becomes atmospheric steam or a water-steam mixture and enters the condenser 401 to realize recycling. Therefore, the heat in the exhaust gas of the heat exchanger 101 is effectively utilized, and the overall efficiency of the cycle is improved.
  • the integrated motor 103 Enlighten the integrated motor 103 first as a motor to drive the air compressor 102 to work, the outside air is passed into the air compressor 102, and after being compressed, it is passed into the heat exchanger 101 from the inlet of the heat exchanger 101, at this time from the air compressor 102
  • the temperature of the outgoing gas is 500-600°C.
  • the gas flowing out from the outlet of the heat exchanger 101 is divided into two paths, one enters the evaporator 402 of the ORC system 4, and the other enters the fuel cell system 2, and together with the fuel gas, the reaction of the fuel cell 201 is started and maintained. :
  • a part of the gas discharged from the outlet of the heat exchanger 101 is sent to the evaporator 402, and the condenser 401 sends the condensed water to the evaporator 402 through the liquid pump 405.
  • the condensed water absorbs the heat in the exhaust gas and evaporates.
  • the high-pressure steam is gasified in the device 402, and the high-pressure steam passes through the turboexpander 404 to drive the second generator 403 to generate electricity. After the high-pressure steam performs work, it becomes atmospheric steam or a water-steam mixture and enters the condenser 401 to realize recycling.
  • the fuel cell 201 After the fuel cell 201 is started, it gradually generates heat and generates a small amount of electric energy, and the exhaust gas generated by the fuel cell 201 is passed into the Tesla turbine 100, so that the Tesla turbine 100 rotates at a high speed and drives the inspired integrated motor 103, which is converted into a generator, to generate electricity. , the high-temperature gas discharged from the Tesla turbine 100 is re-introduced into the heat exchanger 101 from the inlet of the heat exchanger 101, and the cycle is repeated until the fuel cell 201 reacts stably at the optimum temperature. In this step, the fuel cell 201 generates heat after starting, and gradually rises to the optimal reaction temperature, and reacts stably at 800-950° C.
  • the turbine 100 repeats the cycle, and the temperature at the outlet end of the Tesla turbine 100 reaches 550°C-700°C, (preferably, 650°C); the temperature in the heat exchanger 101 is maintained at 500°C-600°C.
  • the ORC system is selected for the steam power generation system, which can solve the recovery problem of SOFC power generation waste heat and heat exchanger exhaust waste heat at the same time, and the heat generated by each link in the system can be recycled, and the recovery efficiency can reach 50%-80%.
  • the fuel cell 201 outputs electrical energy and partially reacted gas is sent to the afterburner 202, and after the combustion reaction occurs in the afterburner 202 , the gas is transported from the outlet of the afterburner 202 to the intake end of the Tesla turbine 100, so that the Tesla turbine 100 rotates at a high speed and drives the inspired integrated motor 103 converted into a generator to generate electricity, and the high-temperature gas discharged from the Tesla turbine 100 From the inlet of the heat exchanger 101, it is passed into the heat exchanger 101 again, and the cycle is repeated.
  • the supplementary combustion device 202 adopts an existing supplementary combustion device, such as a supplementary combustion furnace.
  • the inspired integrated motor 103 first drives the air compressor 102 to work as a motor, and the outside air is passed into the air compressor 102. After being compressed, it is passed into the heat exchanger 101 from the inlet of the heat exchanger 101.
  • the temperature of the gas flowing out of 102 is 500-600°C.
  • the gas flowing out from the outlet of the heat exchanger 101 is divided into two paths, one enters the evaporator 402 of the ORC system 4, and the other enters the fuel cell system 2, and together with the fuel gas, the reaction of the fuel cell 201 is activated and maintained:
  • a part of the gas discharged from the outlet of the heat exchanger 101 is sent to the evaporator 402, and the condenser 401 sends the condensed water to the evaporator 402 through the liquid pump 405.
  • the condensed water absorbs the heat in the exhaust gas and evaporates.
  • the high-pressure steam is gasified in the device 402, and the high-pressure steam passes through the turboexpander 404 to drive the second generator 403 to generate electricity. After the high-pressure steam performs work, it becomes atmospheric steam or a water-steam mixture and enters the condenser 401 to realize recycling.
  • the fuel cell 201 After the fuel cell 201 is started, heat is gradually generated and a small amount of electric energy is generated, the exhaust gas generated by the fuel cell 201 is passed into the afterburner 202, and the gas discharged from the afterburner 202 is passed into the Tesla turbine 100, so that the Tesla turbine 100
  • the high-speed rotation drives the inspired integrated motor 103 converted into a generator to generate electricity, and the high-temperature gas discharged from the Tesla turbine 100 is passed into the heat exchanger 101 again, and the cycle is repeated until the fuel cell 201 reacts stably at the optimum temperature.
  • the fuel cell 201 generates heat after starting, and gradually rises to the optimal reaction temperature, and reacts stably at 800-950° C.
  • the turbine 100 repeats the cycle, and the temperature at the outlet end of the Tesla turbine 100 reaches 550°C-700°C, (preferably, 650°C); the temperature in the heat exchanger 101 is maintained at 500°C-600°C.
  • the supplementary burner 202 is added to ensure sufficient combustion of the fuel and improve the energy recovery rate.
  • a radial turbine can be selected as the air compressor 102 of the present invention.
  • the fuel cell 201 is a solid fuel cell (such as a carbonate fuel cell) or a proton exchange membrane fuel cell.
  • the micro gas turbine 1 with a turbine is fixed above the solar reflector 61 through the fixing rod 6, and the solar collector 65 is located at the sunlight reflection focus.
  • the solar energy collecting device 65 is a heat absorbing plate arranged on the gas turbine, and the heat absorbing plate can be wrapped on the outer wall of the heat exchanger 101 or the combustion chamber 105, and can also be used as a part of the heat exchanger 101 or the combustion chamber 105 or All outer walls.
  • the solar reflector 61 is a reflector with a fixed focus point, and specifically, a dish-type solar reflector can be selected.
  • the installation platform 62 is a flat plate fixed on the ground or embedded in the ground, and a steel plate can be selected.
  • the adjusting device 64 specifically includes an ejector rod 631 , a sleeve rod 632 , a hinge 633 , a base 634 , an expansion bottle 635 , and a pipe 636 .
  • a plurality of pedestals 634 are fixed on the top of the mounting table 62, the pedestals 634 are even, arranged symmetrically in pairs, and distributed along a circumference (preferably, the pedestals 634 are evenly distributed along the circumference), and the pedestals 634 are connected to solar reflectors through telescopic rods
  • the telescopic rod includes a top rod 631 and a sleeve rod 632, the top rod 631 can slide in the sleeve rod 632, the bottom of the sleeve rod 632 is set on the base 634 through a hinge 633, and the bottom of the top rod 631 is sleeved into the sleeve rod 632 2.
  • the top is connected to the bottom of the solar reflector 61 (preferably, the ejector rods 631 are evenly distributed along a circumference at the bottom of the solar reflector 61); Fill the expansion liquid (optional expansion kerosene), and connect it to the sleeve rod 632 on the base 634 on the opposite side through the pipeline 636.
  • the expansion liquid optional expansion kerosene
  • the expansion oil expands and pushes up the opposite side ejector rod 631, thereby reflecting the solar energy
  • the mirror 61 is raised on the opposite side so as to absorb light from the side where the light is strong.
  • each expansion bottle 635 is heated to the same degree, and the axis of the solar reflector 61 is perpendicular to the ground at this moment.
  • Each expansion bottle 635 can be nested in the bottle holder 637 to fix the bottle holder 637 on the mounting table 62 .
  • the power generation system of this embodiment can automatically track the sunlight under the action of the adjusting device 64 to ensure that the solar reflector 61 always receives the side with stronger sunlight.
  • the telescopic rods are arranged in three pairs, and the solar mirror 61 can be adjusted from three angles.
  • the telescopic rods can also be set as one pair, two pairs, four pairs, five pairs...etc. The more telescopic rods are set, the more precise the angle of the solar mirror 61 can be adjusted.

Abstract

一种微型燃气轮机联合循环系统,包括微型燃气轮机(1),联合循环系统还包括燃料电池系统(2),蒸汽发电系统,太阳能接收器中的至少一个;微型燃气轮机(1),包括燃烧室(105)、换热器(101)、空压机(102)、特斯拉涡轮机(100)、启发一体式电机(103),换热器(101)为多腔体式换热装置。

Description

一种微型燃气轮机联合循环系统 技术领域
本发明属于燃气轮机技术及能量回收和利用技术领域,具体涉及一种具有多级特斯拉涡轮机的微型燃气轮机联合循环系统。
背景技术
微型燃气轮机是一类新近发展起来的小型热力发动机,其单机功率范围为25~300kW,基本技术特征是采用径流式叶轮机械以及回热循环。现有技术中通常采用换热器对微型燃气轮机排气的热量进行回收利用,然后将经过换热器的尾气排向大气;然而通过换热器的尾气依旧具有一定的余热,现有技术中,也有对于换热器排出的尾气能量进行回收利用的,通常采用的都是旋转机械,例如涡轮等,以对尾气能量进行回收利用。但是对于小功率的微型燃气轮机,由于换热器排出的尾气温度相对较低,同时尾气量又少,旋转机械无法有效回收这部分能量。
同时,太阳能热发电主要有槽式热发电、线性菲涅尔热发电、塔式热发电和碟式热发电技术。原理主要是利用聚光抛物面反射镜将太阳光聚集起来,通过光热转换及换热装置产生蒸汽或加热流体驱动热机进行发电:其优点在于该技术可吸收全波段的太阳光、可通过蓄热以及燃料补充实现昼夜连续发电。但是目前的太阳能发电系统中的反射镜大多是固定安装,通过固定在某一固定角度的反射镜来吸收太阳光,该角度是经过计算的最优角度。但是,由于反射镜固定,而太阳是转动的,就会存在太阳并不总是直射反射镜的问题,在太阳斜射反射镜时,其反射的太阳光较少,使太阳能不能被充分利用,造成能源浪费。现有技术中,燃气轮机是固定在地面上,无法进行追踪太阳光,难以做到太阳能的高效利用。
此外,现有换热器为平行的面积较大的两片板,换热板因与燃烧室换热导致入口端至出口端温度梯度大;由于换热板面积大,板的外围没有约束力,板内空气压力大容易使板从中部胀裂。传统换热器的换热板上下两板的两侧通过焊接或铆接,由于板过长导致焊缝长容易漏气,对工艺要求高。因此,现有换热器的使用寿命有限,难以在野外等工况条件下长期、稳定运行,制造和维护成本高。
发明内容
本发明的技术解决问题是:克服现有技术的不足,提供一种微型燃气轮机联合循环系统,该循环系统能够更进一步地回收利用换热器排气中携带的能量,进而提高整个微型燃气轮机的效率,同时,该循环系统可同时解决SOFC发电余热和换热器排气余热的回收问题,将系统中各环节产出的热量循环利用,可提高整个系统的发电和回收效率,同时可集成设置,占用空间小,此外,该循环系统通过对太阳能的追踪,做到太阳能的高效利用,以提高系统发电效率,另外,解决现有换热器温度梯度大、易胀裂的问题。
本发明的技术解决方案是:一种微型燃气轮机联合循环系统,包括微型燃气轮机,所述联合循环系统还包括燃料电池系统,蒸汽发电系统,太阳能接收器中的至少一个;
所述微型燃气轮机,包括燃烧室105,换热器101、空压机102、特斯拉涡轮机100、启发一体式电机103,所述换热器101为多腔体式换热装置。
进一步的,所述多腔体式换热装置包括燃烧室105,换热器101、空压机102、特斯拉涡轮机100、启发一体式电机103,所述换热器为多腔体式换热装置,其包括至少两个换热单元,所述换热单元包括输入板和输出板,所述输入板和输出板的侧面通过扣合装置密封连接,所述一对相邻的输入板和输出板之间围成换热腔体。
进一步的,所述燃料电池系统,包括燃料电池,所述换热器的出口连接燃料电池进口用于为燃料电池提供燃烧气体,所述燃料电池尾气出口连接多级特斯拉涡轮机进口用于为多级特斯拉涡轮机提供做功气体。
进一步的,所述蒸汽发电系统为汽轮机系统;
所述汽轮机系统包括换热单元、循环水箱、发动机以及第一发电机,所述换热器的出口与换热单元进气口连接,所述换热单元的进水口与循环水箱的出水口连接,换热单元的蒸汽出口与发动机连接用于为发动机提供做功蒸汽,所述发动机连接第一发电机用于驱动第一发电机发电,所述循环水箱连接发动机用于回收做功蒸汽做功后转化成的水或者水汽混合物。
进一步的,所述蒸汽发电系统为有机朗肯循环系统;
所述有机朗肯循环系统包括冷凝器、蒸发器、第二发电机、多级特斯拉涡轮机膨胀机以及液体泵, 所述换热器的出口与蒸发器进气口连接,所述冷凝器通过液体泵连接蒸发器的进水口,所述蒸发器的蒸汽出口与多级特斯拉涡轮机膨胀机连接用于为多级特斯拉涡轮机膨胀机提供做功蒸汽,所述多级特斯拉涡轮机膨胀机连接第二发电机用于驱动第二发电机发电,所述冷凝器连接多级特斯拉涡轮机膨胀机用于回收做功蒸汽做功后转化成的水或者水汽混合物。
进一步的,所述太阳能接收器包括太阳能收集装置、太阳能反射镜、安装台以及调节装置;所述太阳能收集装置设置于所述燃气轮机上用于加热燃气轮机工质通道上的循环介质,所述燃气轮机固定于所述太阳能反射镜上方并使所述太阳能收集装置位于太阳光反射聚点。
进一步的,所述燃料电池系统还包括补燃器;
所述燃料电池尾气出口连接所述补燃器,所述补燃器出气口连接空压叶轮进气端。
进一步的,换热腔体内,位于输入板和输出板的内壁上均设有翅片。
进一步的,所述翅片与输入板或输出板一体成型;或者,
所述翅片与输入板或输出板固定。
进一步的,所述翅片为波浪形板或直板。
本发明与现有技术相比的优点在于:
1、本发明的微型燃气轮机联合循环系统,使用活塞发动机回收微型燃气轮机换热器排气中的热量的原理,可解决现有技术中由于废气热值较低、热量较少无法高效回收的技术问题。
2、本发明的本发明的微型燃气轮机联合循环系统,其可以同时解决SOFC发电余热和换热器排气余热的回收问题,将系统中各环节产出的热量循环利用,其回收效率可达到50%-80%;该三联合系统中的蒸汽发电系统可选择汽轮机系统或者ORC系统(有机朗肯循环系统),通用性强。
3、燃料电池需要在900℃-1000℃进行反应,这恰好是燃气轮机燃烧室工作时的温度,因此本发明用燃料电池替代了传统的燃气轮机燃烧室。与此同时,燃料电池可以作为独立的发电装置,可以产生大量的热,既起到了替代燃烧室的作用,又可作为循环系统的动力源之一。燃料电池与燃气轮机系统互相促进,联合后的工作效果大于原有各系统各自工作叠加的效果。
4、低温冷启动是影响燃料电池商业化应用的重要因素之一,本发明将燃料电池置于一整套循环系统之中,可以使燃料电池在换热器出气温度达到一个合适的值时才启动,使燃料电池被充分利用,节约资源,使用效率高,利于商业化。
5、本发明的微型燃气轮机联合循环系统,通过蒸汽发电系统的循环水可进一步回收交通工具或发电系统中发热元件的热量,例如发动机壳体、电池组,发电机散发的热量等。
6、本发明的微型燃气轮机联合循环系统,将太阳能、燃气轮机和追踪太阳光技术进行结合,能够保证太阳能燃气轮机发电系统高效的吸收太阳能,以提高能源的利用率。
7、本发明的微型燃气轮机联合循环系统,通过换热器、燃烧室的配合,能够将系统中各环节产出的热量循环利用,能量回收效率高。
8、本发明的微型燃气轮机联合循环系统,其换热器是将一个较大的换热腔体做成多个(至少2个)较小的换热腔体,将较小的换热腔体连接起来,两片大板之间的变形转化为多片小板的小变形,并在板的中部加了预紧力,减少变形,确保长寿命、高可靠性。需要说明的是,本发明换热板并不是简单地减小尺寸,而是对于任意的传统换热板,本发明换热板大小均在其原有的、应有的设计尺寸基础上减为几分之一或几十分之一。
9、本发明的微型燃气轮机联合循环系统,其换热器换热腔体的增加,使相邻板之间温度梯度降低,参见图4,减小单个腔体内的气压,防止胀裂。
10、本发明的微型燃气轮机联合循环系统,其换热器采用多腔体式换热板,会使焊缝变短,工艺简单且不易漏气。
11、本发明的微型燃气轮机联合循环系统,其换热器压头在垂直于换热板的方向上施加压力,防止换热板因受气压作用凸起变形,防止胀裂,提高装置使用寿命,减少维护成本。
附图说明
图1是本发明的微型燃气轮机联合循环系统的第一种联合循环系统的工作原理示意图;
图2是本发明的微型燃气轮机联合循环系统的第二种联合循环系统的工作原理示意图;
图3是本发明的微型燃气轮机联合循环系统的第三种联合循环系统的工作原理示意图;
图4是本发明的微型燃气轮机联合循环系统的第四种联合循环系统的工作原理示意图;
图5是本发明的微型燃气轮机联合循环系统中,换热器的翅片为波浪形板的换热单元结构示意图;
图6是本发明的微型燃气轮机联合循环系统中,换热器的翅片为直板的换热单元结构示意图;
图7是本发明的微型燃气轮机联合循环系统中,换热器的一种实施方式的端面位置结构示意图;
图8是本发明的微型燃气轮机联合循环系统中,换热器的一种实施方式的横截面结构示意图;
图9是本发明的微型燃气轮机联合循环系统中,换热器的另一种实施方式的端面位置结构示意图;
图10是本发明的微型燃气轮机联合循环系统中,换热器的另一种实施方式的横截面结构示意图。
图11是本发明的微型燃气轮机联合循环系统中,发动机结构一示意图;
图12是本发明的微型燃气轮机联合循环系统中,发动机结构二示意图;
图13是本发明的微型燃气轮机联合循环系统中,发动机结构三示意图;
图14是本发明的微型燃气轮机联合循环系统中,发动机结构四示意图;
图15是本发明的微型燃气轮机联合循环系统中,发动机结构五示意图;
图16是本发明的微型燃气轮机联合循环系统中,发动机结构六示意图;
图17是本发明图13设置真空泵时结构示意图;
图18是本发明图16设置真空泵时结构示意图;
图19是本发明的微型燃气轮机联合循环系统中,调节装置示意图;
图20是本发明的微型燃气轮机联合循环系统中,安装台顶面膨胀瓶分布示意图。
具体实施方式
在本发明的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本发明的描述中,除非另有说明,“多个”的含义是两个或两个以上。
在本发明的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本发明中的具体含义。
一种具有透平的微型燃气轮机联合循环系统,包括微型燃气轮机1,所述微型燃气轮机联合循环系统还包括燃料电池系统,蒸汽发电系统,太阳能接收器中的至少一个。
空压机102启动时由启发一体式电机103带动。所述启发一体式电机103先作为电动机带动空压机102旋转,待加速到能独立运行后则作为发电机发电。
所述微型燃气轮机1,包括换热器101、空压机102、特斯拉涡轮机100、启发一体式电机103,所述空压机102出口连通换热器101入口,以加热经空压机102压缩的气体并将其从出口输出,该输出分两路,一路通入燃料电池201,提高进入燃料电池201气体的温度,进而提高燃料的利用率;另一路通入蒸汽发电系统中的换热单元302,以将循环水箱301的水转化为蒸汽。
对于换热器,所述换热器为多腔体式换热装置,其是将一个较大的换热腔体做成多个(至少2个)较小的换热腔体,将较小的换热腔体连接起来,两片大板之间的变形转化为多片小板的小变形,并在板的中部加了预紧力,减少变形,确保长寿命、高可靠性。需要说明的是,本发明换热板并不是简单地减小尺寸,而是对于任意的传统换热板,本发明换热板大小均在其原有的、应有的设计尺寸基础上减为几分之一或几十分之一。具体如图2-7所示,一种多腔体式换热装置,包括至少两个换热单元,所述换热单元包括输入板10和输出板20,所述输入板10和输出板20的侧面通过扣合装置30密封连接,所述一对相邻的输入板10和输出板20之间围成换热腔体50。
所述换热腔体50内,位于输入板10和输出板20的内壁上均设有翅片11;所述翅片11与输入板10或输出板20一体成型;或者,所述翅片11与输入板10或输出板20固定。优选的,所述翅片11为波浪形板或直板。
所述扣合装置30包括相互平行的围挡一31、围挡二32和与之垂直的侧围33,所述围挡一31、围挡二32和侧围33的截面构成“凹”字型,所述输入板10和输出板20边缘嵌入围挡一31、围挡二32和侧围33之间构成的卡槽34里。所述围挡一31和围挡二32顶部设置螺孔,输入板10和输出板20外侧设置压头40,压头40一端贴合所述输入板10或输出板20,另一头固定横梁41,所述横梁41的两头均设置调节螺栓。调节螺栓与螺孔螺纹连接,用于调节压头对输入板和输出板的预紧力。
优选的,所述多个换热单元叠摞设置,相邻的换热单元之间在所述扣合装置30之间设置密封板35密封。
优选的,换热装置横截面为长方形、扇形或圆柱形。当所述输入板10和输出板20横截面为圆形时,扣合装置30为圆盘形法兰,参见图6、7,所述围挡一31和围挡二32为法兰端面上凸起的相互平行的圆形壳体,相邻的两个圆形壳体及法兰端面之间围成所述卡槽34,此时由于法兰端面是连续、密实的,可起到密封作用,不需要再额外设置密封板35。安装换热板时由轴线逐渐向外安装,本发明中的输入板10、 输出板20都属于换热板。
优选的,当所述换热装置设置为接收太阳能加热时,换热装置外表面不接收反射光的部分覆有水箱,以减缓热量损失。
进一步地,本发明换热装置的换热过程是通过加热输入板10,加热从换热器101入口通入换热腔体50内的气体,从而达到换热目的的;加热后的气体从换热器101出口输出。输出板20的输出温度在换热后相较于输入板10产生温降。如果换热单元为多层,则第一层的输出板20输出的气体通过前述第一层换热单元的换热方式继续加热,直至从最后一层换热单元排出。具体地,上一级换热单元通过热辐射的方式加热下一级换热单元。加热输入板10的方式包括太阳能收集装置收集的热能加热、核能散发加热等。
参见图1,本发明的燃气轮机的工作过程为:工质进入压气机102压缩后,通入换热器101一头的入口,经换热升温后从另一头的出口进入到燃烧室105内燃烧,之后通入特斯拉涡轮机100推动其转动做功,特斯拉涡轮机100带动同轴的启发一体式发电机103发电;而特斯拉涡轮100排出的气体可以和经压气机102加压后的气体一起再通入换热器101内循环。换热器101的入口和出口可分别设置在换热腔体的两端面上;所述换热器101的入口和出口相互远离,比如设置在对侧,以延长工质流通路径。
所述多腔体式换热装置的加工方法,包括如下步骤:
S100)、将输入板10或输出板20固定在3D打印机工作台上,启动已载入翅片模型的3D打印机,调节打印方向及位置,逐个打印翅片11;
或者,
工作台上,启动已载入带翅片11的输入板10或输出板20模型的3D打印机,调节打印方向及位置,打印带翅片11的输入板10和输出板20;
或者,
对原始板材通过电火花切割或化学刻蚀或线切割加工出带有翅片11的输入板10和输出板20;
S200)、将输入板10与输出板20相对、使翅片11位于换热腔体50内,将输入板10和输出板20的边缘卡入卡槽34内,将相邻的一对输入板10和输出板20连为一体;
S300)、将压头40抵在一对输入板10和输出板20的外壁,将横梁41上的螺栓拧入螺孔内,施加预定预紧力;
S400)、重复步骤S200)-S300,安装其他换热单元,直至将各个换热单元叠摞设置。
优选的,所述换热装置横截面为长方形或扇形时,在相邻扣合装置30之间设置密封板35密封。
所述燃料电池系统2,包括燃料电池201。换热器101出口连接至燃料电池201、为燃料电池201提供燃烧所需的高温气体,燃料电池201输出端输出电能,其产生的高温高压尾气推动特斯拉涡轮机100做功,特斯拉涡轮机100带动启发一体式电机103高速旋转发电。
所述蒸汽发电系统:选用汽轮机系统3,包括换热单元302、循环水箱301、发动机303、第一发电机304,换热器101排出的一部分气体输送到换热单元302,同时循环水箱301将循环水输送到换热单元302,在换热单元302内,循环水吸收尾气中的热量并在换热单元302内气化形成高压蒸汽,高压蒸汽进入发动机303做功驱动第一发电机304发电。高压蒸汽做功后成为常压蒸汽或者水汽混合物进入循环水箱301,以实现循环利用。从而有效利用了换热器101的排气中的热量,提高循环系统整体效率。
优选的,在换热器101至燃烧室105的工质通道上介入太阳能,可在换热器101或燃烧室105上设置太阳能收集装置21,且太阳能收集装置21位于太阳光反射聚点。
此时,所述联合循环系统的循环过程为:
1.启发一体式电机103先作为电动机带动空压机102工作,外界气体通入空压机102,经压缩后从换热器101入口通入换热器101内,此时从空压机102中流出的气体温度为500-600℃。
2.从换热器101出口中流出的气体分为两路,一路进入汽轮机系统3的换热单元302中,另一路进入燃料电池系统2中,与燃料气一起促使燃料电池201的反应启动及维持:
1)换热器101出口排出的一部分气体输送到换热单元302,同时循环水箱301将循环水输送到换热单元302,在换热单元302内,循环水吸收尾气中的热量并在换热单元302内气化形成高压蒸汽,高压蒸汽进入发动机303做功带动第一发电机304发电。高压蒸汽做功后成为常压蒸汽或者水汽混合物进入循环水箱301,以实现循环利用。
2)燃料电池201启动后,逐渐产生热量并产生少部分电能,其产生的尾气通入特斯拉涡轮机100,使特斯拉涡轮机100高速旋转并带动转化为发电机的启发一体式电机103发电,特斯拉涡轮机100排出的高温气体从换热器101入口再次通入换热器101内,重复循环直至燃料电池201在最佳温度稳定反应。该步骤中,燃料电池201启动后产生热量,并逐渐升至最佳反应温度,在800-950℃稳定反应,(优选地,为900℃),稳定输出电能;产生的尾气通入特斯拉涡轮机100重复循环,此时特斯拉涡轮机100出气端温度达到550℃-700℃,(优选地,为650℃);换热器101中的温度保持在500℃-600℃。
本实施例提供的燃气轮机、燃料电池和蒸汽发电三联合循环系统中的蒸汽发电系统采用汽轮机系统,本三联合系统其可以同时解决SOFC发电余热和换热器排气余热的回收问题,将系统中各环节产出的热量循环利用,其回收效率可达到50%-80%。
优选的,燃料电池201后可以连接补燃器202,以防止燃烧不充分,燃料电池201输出电能、未完全反应的部分气体输送至补燃器202,补燃器202内产生燃烧反应后,尾气自补燃器202出口输送至特斯拉涡轮机100进气端,一路使特斯拉涡轮机100高速旋转并带动转化为发电机的启发一体式电机103发电,另一路高温气体从换热器101第二进口通入换热器101内,重复循环。
进一步地,所述补燃器202采用现有补燃装置,如补燃炉等。
此时,所述联合循环系统的循环过程为:
1.启发一体式电机103先作为电动机带动空压机102工作,外界气体通入空压机102,经压缩后从换热器101入口通入换热器101内,此时从空压机102中流出的气体温度为500-600℃。
2.从换热器101出口中流出的气体分为两路,一路进入汽轮机系统3的换热单元302中,另一路进入燃料电池系统2中,与燃料气一起促使燃料电池201的反应启动及维持:
1)换热器101出口排出的一部分气体输送到换热单元302,同时循环水箱301将循环水输送到换热单元302,在换热单元302内,循环水吸收尾气中的热量并在换热单元302内气化形成高压蒸汽,高压蒸汽进入发动机303做功带动第一发电机304发电。高压蒸汽做功后成为常压蒸汽或者水汽混合物进入循环水箱301,以实现循环利用。
2)燃料电池201启动后,逐渐产生热量并产生少部分电能,其产生的尾气通入通入补燃器202,补燃器202中排出的气体通入特斯拉涡轮机100,使特斯拉涡轮机100高速旋转并带动转化为发电机的启发一体式电机103发电,特斯拉涡轮机100排出的高温气体从换热器101入口再次通入换热器101内,重复循环直至燃料电池201在最佳温度稳定反应。该步骤中,燃料电池201启动后产生热量,并逐渐升至最佳反应温度,在800-950℃稳定反应,(优选地,为900℃),稳定输出电能;产生的尾气通入特斯拉涡轮机100重复循环,此时特斯拉涡轮机100出气端温度达到550℃-700℃,(优选地,为650℃);换热器101中的温度保持在500℃-600℃。
本实施例,通过增加补燃器202的方式,以保证燃料的充分燃烧,提高能量回收率。
进一步的,所述发动机303可以采用活塞发动机。活塞发动机的结构可以通过多种结构实现,例如、但不限于以下几种结构。
结构一:
本结构中,发动机303采用单侧进气弹簧复位式活塞发动机310。如图3所示,其包括气缸缸体311,活塞312,弹簧313,活塞杆314,曲柄滑块机构315以及输出轴316,活塞312安装于气缸缸体311内,活塞杆314一端连接活塞312,另一端伸出气缸缸体311并与曲柄滑块机构315连接,曲柄滑块机构315连接输出轴316,气缸缸体311的无杆腔一侧设置有第一进气口311-1,第一排气口311-2,第一进气口311-1连接换热单元302,第一排气口311-2连接循环水箱301,输出轴316连接第一发电机304;气缸缸体311的有杆腔一侧设置有弹簧313,用于活塞312做功后的复位。
作为优选,可在第一进气口311-1,第一排气口311-2、与气缸缸体311之间设置开关阀321,根据活塞发动机的具体工作状态控制开关阀321的通断,以实现对活塞发动机动作的控制。
具体地,开关阀321可以是机械式开关阀或者电动式开关阀。其中电动式开关阀从原理上讲,较为简单,仅需满足高频通断即可,但是其需要能够承受较高的温度和压力;机械式开关阀,则需要结合本身活塞的运动,彼此之间进行联动,省去了程序控制的频率限制,但其结构上会稍复杂一些。
工作状态下,高压蒸汽由换热单元302经第一进气口311-1进入活塞发动机的无杆腔,推动活塞312做直线运动,活塞312通过曲柄连杆机构315将活塞312的直线运动转化为输出轴316的旋转运动,输出轴316带动第一发电机304发电;做功后,弹簧313推动活塞312复位,活塞发动机的无杆腔内的乏气或者汽水混合物经第一排气口311-2进入循环水箱301循环使用。
结构二:
本结构中,发动机303采用双侧进气的活塞发动机320。其在结构一的基础上,省去弹簧313,同时在气缸缸体311的有杆腔一侧设置有第二进气口311-3,第二排气口311-4,第二进气口311-3连接换热单元302,第二排气口311-4连接循环水箱301,其它结构与结构一相同,在此不做重复说明和标注。
工作状态下,高压蒸汽由换热单元302经第一进气口311-1进入活塞发动机的无杆腔,推动活塞312做直线运动,活塞312通过曲柄连杆机构315将活塞312的直线运动转化为输出轴316的旋转运动,输出轴316带动第一发电机304;做功后,高压蒸汽经第二进气口311-3进入活塞发动机的有杆腔,推动活塞312向无杆腔一侧运动,活塞发动机的无杆腔内的乏气或者汽水混合物经第一排气口311-2进入循环水箱301,然后进入下一个循环周期,高压蒸汽经第一进气口311-1进入活塞发动机的无杆腔,推动活塞 312做功,活塞发动机有杆腔内的乏气或者汽水混合物经第二排气口311-4进入循环水箱301循环。
作为优选,可在第一进气口311-1,第一排气口311-2、第二进气口311-3,第二排气口311-4与气缸缸体311之间设置开关阀321,根据活塞发动机的具体工作状态控制开关阀321的通断,以实现活塞发动机往复运动的控制;开关阀321可以是机械式开关阀或者电动式开关阀。
本结构与结构一相比,其省去了弹簧,通过两侧进气和排气实现了活塞的往复运动,提高了活塞发动机控制的可靠性,并简化了结构。
结构三:
本结构中,发动机303采用水平对置的双缸控制式活塞发动机330。双缸控制式活塞发动机330包括曲柄滑块机构335和相对设置于曲柄滑块机构335两侧的第一气缸和第二气缸。
其中,曲柄滑块机构335为双滑块结构,其包括曲柄335-1,第一滑块335-2、第一连接杆335-3,第二滑块335-4,第二连接杆335-5以及输出轴316;输出轴316穿设于于曲柄335-1的中心,第一连接杆335-3的一端、第二连接杆335-5的一端分别连接于曲柄335-1的两个端面,且连接点分布于输出轴316的两侧,第一连接杆335-3的另一端连接第一滑块335-2、第二连接杆335-5的另一端连接第二滑块335-4。
第一气缸包括:第一气缸缸体331,第一活塞332,第一活塞杆334,第一活塞332安装于第一气缸缸体331内,第一活塞杆334一端连接第一活塞332,另一端伸出第一气缸缸体331并与第一滑块335-2连接;第一气缸缸体331的无杆腔一侧设置有第一进气口311-1,第一排气口311-2,第一进气口311-1连接换热单元302,第一排气口311-2连接循环水箱301。
第二气缸包括:第二气缸缸体337、第二活塞338、第二活塞杆339、第二活塞杆339安装于第二气缸缸体337内,第二活塞杆338一端连接第二活塞338,另一端伸出第二气缸缸体337并与第二滑块335-4连接;第二气缸缸体337的有杆腔一侧设置有第二进气口311-3,第二排气口311-4,第二进气口311-3连接换热单元302,第二排气口311-4连接循环水箱301。
工作状态下,高压蒸汽由换热单元302经第一进气口311-1进入第一气缸的无杆腔,推动第一活塞332做直线运动,第一活塞332通过曲柄连杆机构335将第一活塞332的直线运动转化为输出轴316的旋转运动,输出轴316带动第一发电机304;做功后,高压蒸汽经第二进气口311-3进入第二气缸的有杆腔,推动第二活塞338向无杆腔一侧运动,第一气缸的无杆腔内的乏气或者汽水混合物经第一排气口311-2进入循环水箱301,第二气缸做功后,高压蒸汽再进入第一气缸继续做功,重复循环,实现输出轴316的连续工作。
在图示结构中,高压蒸汽进入第一气缸做功时,第一活塞杆334带动曲柄滑块机构335的曲柄335-1旋转,曲柄335-1按逆时针方向旋转,在此过程中,曲柄335-1同时带动第二活塞杆339运动,第二活塞杆339带动第二活塞338向曲柄335-1一侧运动,当其旋转到预定角度后,高压蒸汽进入第二气缸做功时,第二活塞338带动第二活塞杆339向远离曲柄335-1一侧运动,曲柄335-1则继续按逆时针方向旋转,此时,第一气缸的无杆腔内的乏气或者汽水混合物经第一排气口311-2进入循环水箱301。即在连续做功过程中,第一气缸进气做功时,第二气缸排气,第二气缸进气做功时,第一气缸排气,以此实现循环做功。
当然,上述说明只是针对具体工作过程的一个说明,并不构成对本发明的实现过程和其结构的限制。
作为优选,第一进气口311-1,第一排气口311-2、第二进气口311-3,第二排气口311-4与缸体之间设置有开关阀321,根据活塞发动机的具体工作状态控制开关阀321的通断,以实现活塞发动机往复运动的控制。具体地,开关阀321可以是机械式开关阀或者电动式开关阀。
作为优选,可以将换热单元302内与第一进气口311-1、第二进气口311-3之间通过电磁换向阀连接,将第一排气口311-2、第二排气口311-4通过电磁换向阀与循环水箱301连接,通过电磁换向阀的动作控制即可控制第一气缸和第二气缸的动作,使得活塞发动机的控制更为简单和准确。
在结构一、二、三所公开的三种结构中,发动机303的具体结构为气缸带动曲柄连杆的结构,即将活塞的直线往复运动转换为曲柄的旋转运动,然后带动第一发电机304;除上述结构外,本发明也可以使用直线电机,即第一发电机304为直线发电机,将活塞杆直接连接到直线电机,活塞的直线运动直接驱动直线电机发电。这样可进一步简化整体结构。当其使用场景受限不适合上述三种结构的情况下,可以使用以下结构的结构。具体结构原理如下:
结构四:
在本结构中,发动机303为单侧进气弹簧复位式活塞发动机310,包括:
气缸缸体311、活塞312、弹簧313、活塞杆314;
其中,所述活塞312安装于气缸缸体311内,活塞杆314一端连接活塞312,另一端伸出气缸缸体311并连接第一发电机304;
气缸缸体311的无杆腔一侧设置有第一进气口311-1,第一排气口311-2,第一进气口311-1连接换热单元302,第一排气口311-2连接循环水箱301,气缸缸体311的有杆腔一侧设置弹簧313,用于活塞312做功后的复位。
结构五:
在本结构中,发动机303为双侧进气式活塞发动机320,包括:
气缸缸体311、活塞312、活塞杆314;
其中,所述活塞312安装于气缸缸体311内,活塞杆314一端连接活塞312,另一端伸出气缸缸体311并连接第一发电机304;
气缸缸体311的无杆腔一侧设置有第一进气口311-1,第一排气口311-2,气缸缸体311的有杆腔一侧设置有第二进气口311-3,第二排气口311-4,第一进气口311-1、第二进气口311-3连接换热单元302,第一排气口311-2、第二排气口311-4连接循环水箱301。
结构六:
在本结构中,发动机303为水平对置的双缸控制式活塞发动机330,包括:
第一气缸、第二气缸;
其中,第一气缸包括第一气缸缸体331,第一活塞332,第一活塞杆334,第一活塞332安装于第一气缸缸体331内,第一活塞杆334一端连接第一活塞332,另一端伸出第一气缸缸体331并与第一发电机304一端连接;第一气缸缸体的无杆腔一侧设置有第一进气口311-1、第一排气口311-2,第一进气口311-1连接换热单元302,第一排气口311-2连接循环水箱301;
第二气缸包括第二气缸缸体337、第二活塞338、第二活塞杆339、第二活塞杆339安装于第二气缸缸体337内,第二活塞杆339一端连接第二活塞338,另一端伸出第二气缸缸体337并与第一发电机304另一端连接;第二气缸缸体337的有杆腔一侧设置有第二进气口311-3,第二排气口311-4,第二进气口311-3连接换热单元302,第二排气口311-4连接循环水箱301。
根据上述结构公开的技术,发电装置的结构的具体选择可以根据工况和使用场景做出最优化的选择。
上述6中结构中,均设置了单组的活塞发动机来驱动发电装置的工作,本发明同样可设置多组活塞发动机来驱动发电装置工作。即,活塞发动机设置为多组,多组发动机同时对应驱动多组曲柄旋转,而多组曲柄安装于同一输出轴,输出轴与发动装置连接。这样可以提高发电装置运行可靠性,同时提高发电效率。
可选地,在第一气缸的有杆腔和第二气缸的无杆腔连接第一真空泵P1,第二真空泵P2。当第一气缸或者第二气缸做功时,对应的真空泵也同时开始工作,将相应的腔室抽到负压状态。
因为采用的是水蒸汽进行活塞膨胀做功,因此,当背压降低后,即采用抽真空的方法降低排气压力,则做功部分的水蒸汽会有更多的液态水凝结出来,从而产生更多的做功能量,提高整机的发电效率。例如,在第一缸体的有杆腔内的压力为常压时,第一缸体的无杆腔内的蒸汽做功后压力为0.1MPa,而将第一气缸的有杆腔的压力通过真空泵抽到0.005MPa后,两种不同的背压条件,在等熵条件下,0.005MPa背压相比于常压背压,水蒸汽将释放更多的能量,从而将整体的做功效率提高5-8%。
此外,由于本发明中使用循环水来吸收换热器排出的废热,然后推动活塞做功,因此在活塞做功过程中,活塞和缸体之间是不需要添加润滑油和润滑脂的,直接由水润滑即可,因此不需要额外的润滑结构和润滑油供给结构和系统,简化了活塞发动机的结构。
优选的,将蒸汽发电系统的汽轮机系统3更换为ORC系统4,(即有机朗肯循环系统):
ORC系统4,(即有机朗肯循环系统),包括冷凝器401、蒸发器402、第二发电机403、透平膨胀机404,液体泵405。具有透平的微型燃气轮机1的换热器101出口排出气体一路输送到燃料电池201,另一路输送到蒸发器402,同时冷凝器401通过液体泵405将冷凝水输送到蒸发器402,在蒸发器402内,冷凝水吸收尾气中的热量并在蒸发器402内气化形成高压蒸汽,高压蒸汽经过透平膨胀机404带动第二发电机403发电。高压蒸汽做功后成为常压蒸汽或者水汽混合物进入冷凝器401,以实现循环利用。从而有效利用了换热器101的排气中的热量,提高循环的整体效率。
此时,所述联合循环系统的循环过程为:
1.启发一体式电机103先作为电动机带动空压机102工作,外界气体通入空压机102,经压缩后从换热器101入口通入换热器101内,此时从空压机102中流出的气体温度为500-600℃。
2.从换热器101出口中流出的气体分为两路,一路进入ORC系统4的蒸发器402中,另一路进入燃料电池系统2中,与燃料气一起促使燃料电池201的反应启动及维持:
1)换热器101出口排出的一部分气体输送到蒸发器402,同时冷凝器401通过液体泵405将冷凝水输送到蒸发器402,在蒸发器402内,冷凝水吸收尾气中的热量并在蒸发器402内气化形成高压蒸汽,高压蒸汽经过透平膨胀机404带动第二发电机403发电。高压蒸汽做功后成为常压蒸汽或者水汽混合物进 入冷凝器401,以实现循环利用。
2)燃料电池201启动后,逐渐产生热量并产生少部分电能,其产生的尾气通入特斯拉涡轮机100,使特斯拉涡轮机100高速旋转并带动转化为发电机的启发一体式电机103发电,特斯拉涡轮机100排出的高温气体从换热器101入口再次通入换热器101内,重复循环直至燃料电池201在最佳温度稳定反应。该步骤中,燃料电池201启动后产生热量,并逐渐升至最佳反应温度,在800-950℃稳定反应,(优选地,为900℃),稳定输出电能;产生的尾气通入特斯拉涡轮机100重复循环,此时特斯拉涡轮机100出气端温度达到550℃-700℃,(优选地,为650℃);换热器101中的温度保持在500℃-600℃。
优选的,蒸汽发电系统选择ORC系统,可以同时解决SOFC发电余热和换热器排气余热的回收问题,将系统中各环节产出的热量循环利用,其回收效率可达到50%-80%。
进一步优选的,在燃料电池201后可以连接补燃器202,以防止燃烧不充分,燃料电池201输出电能、未完全反应的部分气体输送至补燃器202,补燃器202内产生燃烧反应后,气体自补燃器202出口输送至特斯拉涡轮机100进气端,使特斯拉涡轮机100高速旋转并带动转化为发电机的启发一体式电机103发电,特斯拉涡轮机100排出的高温气体从换热器101的入口再次通入换热器101内,重复循环。
进一步地,所述补燃器202采用现有补燃装置,如补燃炉等。
此时,所述联合循环系统的循环过程为:
1.启发一体式电机103先作为电动机带动空压机102工作,外界气体通入空压机102,经压缩后从换热器101的入口通入换热器101内,此时从空压机102中流出的气体温度为500-600℃。
2.从换热器101出口流出的气体分为两路,一路进入ORC系统4的蒸发器402中,另一路进入燃料电池系统2中,与燃料气一起促使燃料电池201的反应启动及维持:
1)换热器101出口排出的一部分气体输送到蒸发器402,同时冷凝器401通过液体泵405将冷凝水输送到蒸发器402,在蒸发器402内,冷凝水吸收尾气中的热量并在蒸发器402内气化形成高压蒸汽,高压蒸汽经过透平膨胀机404带动第二发电机403发电。高压蒸汽做功后成为常压蒸汽或者水汽混合物进入冷凝器401,以实现循环利用。
2)燃料电池201启动后,逐渐产生热量并产生少部分电能,其产生的尾气通入补燃器202,补燃器202中排出的气体通入特斯拉涡轮机100,使特斯拉涡轮机100高速旋转并带动转化为发电机的启发一体式电机103发电,特斯拉涡轮机100排出的高温气体再次通入换热器101内,重复循环直至燃料电池201在最佳温度稳定反应。该步骤中,燃料电池201启动后产生热量,并逐渐升至最佳反应温度,在800-950℃稳定反应,(优选地,为900℃),稳定输出电能;产生的尾气通入特斯拉涡轮机100重复循环,此时特斯拉涡轮机100出气端温度达到550℃-700℃,(优选地,为650℃);换热器101中的温度保持在500℃-600℃。
通过增加补燃器202的方式,以保证燃料的充分燃烧,提高能量回收率。
由于燃料电池201所需流量较小,而空压机102可输出的流量较大,因此可选用径流式涡轮作为本发明的空压机102。
优选的,燃料电池201为固体燃料电池(如碳酸盐燃料电池)或质子交换膜燃料电池。
优选的,所述具有透平的微型燃气轮机1通过固定杆6固定在太阳能反射镜61上方,并使太阳能收集装置65位于太阳光反射聚点。具体地,太阳能收集装置65是设置在燃气轮机上的吸热板,该吸热板可包覆在换热器101或燃烧室105外壁上,也可作为换热器101或燃烧室105的部分或全部外壁。
优选的,太阳能反射镜61为有固定聚点的反射镜,具体地,可选用碟式太阳能反射镜。
优选的,安装台62为一固定在地表或者镶嵌在地面内的平板,可选用钢板。
优选的,调节装置64,其具体包括顶杆631、套杆632、铰链633、基座634、膨胀瓶635、管道636。
安装台62顶部固定多个基座634,基座634为偶数个,成对对称设置,并沿一圆周分布(优选地,基座634沿圆周均匀分布),基座634通过伸缩杆连接太阳能反射镜61底部,伸缩杆包括顶杆631和套杆632,顶杆631可在套杆632内滑动,套杆632底部通过铰链633设置在基座634上,顶杆631底部套入套杆632内、顶部连接在太阳能反射镜61底部(优选地,顶杆631在太阳能反射镜61底部沿一圆周均匀分布);各基座634外侧位于安装台62顶面固定有膨胀瓶635,膨胀瓶635内装填膨胀液(可选膨胀煤油),通过管道636连接至其对侧的基座634上的套杆632,膨胀瓶635受热时,膨胀油膨胀,顶起对侧顶杆631,进而使太阳能反射镜61在对侧抬高,以便吸收光照强烈的一侧光线。
进一步地,当太阳光恰好垂直射向地面时,各膨胀瓶635受热程度相同,该时刻太阳能反射镜61轴心垂直于地面。各膨胀瓶635可以嵌套在瓶座637内,将瓶座637固定在安装台62上。
优选的,调节装置64结构中,假设强光位于左侧,则右侧的伸缩杆长度长于左侧,太阳能反射镜61右侧高于左侧,以便接受左侧较强的光照;反之则可以接受右侧较强的光照。因此,本实施例的发电系统在调节装置64作用下能够实现自动跟踪太阳光,以保证太阳能反射镜61始终接收较强光照的一侧。
优选的,伸缩杆设置为三对,可以从三个角度调节太阳能反射镜61。伸缩杆也可以设置为一对、两对、四对、五对……等整数对。伸缩杆设置越多,可以越精准地调节太阳能反射镜61的角度。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示意性实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
尽管已经示出和描述了本发明的实施例,本领域的普通技术人员可以理解:在不脱离本发明的原理和宗旨的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范围由权利要求及其等同物限定。

Claims (10)

  1. 一种微型燃气轮机联合循环系统,包括微型燃气轮机,其特征在于,所述联合循环系统还包括燃料电池系统,蒸汽发电系统,太阳能接收器中的至少一个;
    所述微型燃气轮机,包括燃烧室,换热器、空压机、特斯拉涡轮机、启发一体式电机,所述换热器为多腔体式换热装置。
  2. 根据权利要求1所述的微型燃气轮机联合循环系统,其特征在于,所述换热器为多腔体式换热装置,其包括至少两个换热单元,所述换热单元包括输入板和输出板,所述输入板和输出板的侧面通过扣合装置密封连接,所述一对相邻的输入板和输出板之间围成换热腔体。
  3. 根据权利要求1所述的微型燃气轮机联合循环系统,其特征在于,所述燃料电池系统,包括燃料电池,所述换热器的出口连接燃料电池进口用于为燃料电池提供燃烧气体,所述燃料电池尾气出口连接多级特斯拉涡轮机进口用于为多级特斯拉涡轮机提供做功气体。
  4. 根据权利要求1所述的微型燃气轮机联合循环系统,其特征在于,所述蒸汽发电系统为汽轮机系统;
    所述汽轮机系统包括换热单元、循环水箱、发动机以及第一发电机,所述换热器的出口分支与换热单元进气口连接,所述换热单元的进水口与循环水箱的出水口连接,换热单元的蒸汽出口与发动机连接用于为发动机提供做功蒸汽,所述发动机连接第一发电机用于驱动第一发电机发电,所述循环水箱连接发动机用于回收做功蒸汽做功后转化成的水或者水汽混合物。
  5. 根据权利要求1所述的微型燃气轮机联合循环系统,其特征在于,所述蒸汽发电系统为有机朗肯循环系统;
    所述有机朗肯循环系统包括冷凝器、蒸发器、第二发电机、多级特斯拉涡轮机膨胀机以及液体泵,所述换热器的出口与蒸发器进气口连接,所述冷凝器通过液体泵连接蒸发器的进水口,所述蒸发器的蒸汽出口与多级特斯拉涡轮机 膨胀机连接用于为多级特斯拉涡轮机膨胀机提供做功蒸汽,所述多级特斯拉涡轮机膨胀机连接第二发电机用于驱动第二发电机发电,所述冷凝器连接多级特斯拉涡轮机膨胀机用于回收做功蒸汽做功后转化成的水或者水汽混合物。
  6. 根据权利要求1所述的微型燃气轮机联合循环系统,其特征在于,所述太阳能接收器包括太阳能收集装置、太阳能反射镜、安装台以及调节装置;所述太阳能收集装置设置于所述燃气轮机上用于加热燃气轮机工质通道上的循环介质,所述燃气轮机固定于所述太阳能反射镜上方并使所述太阳能收集装置位于太阳光反射聚点。
  7. 根据权利要求3所述的微型燃气轮机联合循环系统,其特征在于,所述燃料电池系统还包括补燃器;
    所述燃料电池尾气出口连接所述补燃器,所述补燃器出气口连接空压叶轮进气端。
  8. 根据权利要求2所述的微型燃气轮机联合循环系统,其特征在于,换热腔体内,位于输入板和输出板的内壁上均设有翅片。
  9. 根据权利要求8所述的微型燃气轮机联合循环系统,其特征在于,所述翅片与输入板或输出板一体成型;或者,
    所述翅片与输入板或输出板固定。。
  10. 根据权利要求8所述的微型燃气轮机联合循环系统,其特征在于,所述翅片为波浪形板或直板。
PCT/CN2021/099956 2020-11-13 2021-06-15 一种微型燃气轮机联合循环系统 WO2022100087A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011263685.0A CN112502836A (zh) 2020-11-13 2020-11-13 一种微型燃气轮机联合循环系统
CN202011263685.0 2020-11-13

Publications (1)

Publication Number Publication Date
WO2022100087A1 true WO2022100087A1 (zh) 2022-05-19

Family

ID=74956234

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/099956 WO2022100087A1 (zh) 2020-11-13 2021-06-15 一种微型燃气轮机联合循环系统

Country Status (2)

Country Link
CN (1) CN112502836A (zh)
WO (1) WO2022100087A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112502836A (zh) * 2020-11-13 2021-03-16 至玥腾风科技集团有限公司 一种微型燃气轮机联合循环系统
CN112503977A (zh) * 2020-11-13 2021-03-16 至玥腾风科技集团有限公司 一种多腔体式换热装置及加工方法
CN115014784A (zh) * 2022-06-17 2022-09-06 中国核电工程有限公司 一种闭式布雷顿循环性能实验系统

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2188117A1 (en) * 1995-10-23 1997-04-24 Paul L. Micheli Indirect-fired gas turbine dual fuel cell power cycle
CN107621180A (zh) * 2017-10-25 2018-01-23 至玥腾风科技投资集团有限公司 一种换热器、燃气轮机、锅炉及换热器制备方法
CN208010411U (zh) * 2018-01-12 2018-10-26 至玥腾风科技投资集团有限公司 一种发电系统
CN111022187A (zh) * 2019-12-27 2020-04-17 至玥腾风科技集团有限公司 一种三联合循环系统、交通工具、充电系统
CN111042919A (zh) * 2019-12-27 2020-04-21 至玥腾风科技集团有限公司 一种三联合循环系统、交通工具、充电系统
CN111156139A (zh) * 2020-01-19 2020-05-15 至玥腾风科技集团有限公司 一种基于光热原理的太阳能燃气轮机发电系统
CN211474267U (zh) * 2019-12-27 2020-09-11 至玥腾风科技集团有限公司 一种微型燃气轮机的联合循环系统、交通工具、充电系统
CN112502836A (zh) * 2020-11-13 2021-03-16 至玥腾风科技集团有限公司 一种微型燃气轮机联合循环系统

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2188117A1 (en) * 1995-10-23 1997-04-24 Paul L. Micheli Indirect-fired gas turbine dual fuel cell power cycle
CN107621180A (zh) * 2017-10-25 2018-01-23 至玥腾风科技投资集团有限公司 一种换热器、燃气轮机、锅炉及换热器制备方法
CN208010411U (zh) * 2018-01-12 2018-10-26 至玥腾风科技投资集团有限公司 一种发电系统
CN111022187A (zh) * 2019-12-27 2020-04-17 至玥腾风科技集团有限公司 一种三联合循环系统、交通工具、充电系统
CN111042919A (zh) * 2019-12-27 2020-04-21 至玥腾风科技集团有限公司 一种三联合循环系统、交通工具、充电系统
CN211474267U (zh) * 2019-12-27 2020-09-11 至玥腾风科技集团有限公司 一种微型燃气轮机的联合循环系统、交通工具、充电系统
CN111156139A (zh) * 2020-01-19 2020-05-15 至玥腾风科技集团有限公司 一种基于光热原理的太阳能燃气轮机发电系统
CN112502836A (zh) * 2020-11-13 2021-03-16 至玥腾风科技集团有限公司 一种微型燃气轮机联合循环系统

Also Published As

Publication number Publication date
CN112502836A (zh) 2021-03-16

Similar Documents

Publication Publication Date Title
WO2022100087A1 (zh) 一种微型燃气轮机联合循环系统
CN101504199A (zh) 低成本太阳能跟踪及新的热力循环方法
WO2022166384A1 (zh) 基于二氧化碳气液相变的热能转化机械能储能装置
US20240084972A1 (en) Co2 gas-liquid phase transition-based multistage compression energy storage apparatus for converting thermal energy into mechanical energy
WO2021129424A1 (zh) 一种微型燃气轮机的联合循环系统、交通工具、充电系统
EP3964709B1 (en) Solar gas turbine power generation system employing photothermal principle
CN103470461A (zh) 碟式太阳能-燃气蒸汽联合循环发电系统
CN203532174U (zh) 碟式太阳能-燃气蒸汽联合循环发电系统
CN101968042A (zh) 多级全效太阳能热发电方法
CN102094772A (zh) 一种太阳能驱动的联供装置
CN107061201A (zh) 一种光伏光热耦合热电联产系统及方法
CN107587984B (zh) 一种基于可再生能源的冷热电联供系统
WO2021129429A1 (zh) 一种三联合循环系统、交通工具、充电系统
WO2021129430A1 (zh) 一种三联合循环系统、交通工具、充电系统
CN108954854A (zh) 基于有机朗肯循环的冷热电联产系统
CN219242005U (zh) 一种光热发电耦合压缩空气储能的调峰系统
CN102536367A (zh) 斯特林发动机余热发电方法
CN214577381U (zh) 一种微型燃气轮机联合循环系统
CN112502801A (zh) 具有多级特斯拉涡轮机的微型燃气轮机联合循环系统
CN115773215A (zh) 耦合orc的太阳能光热补热式压缩空气储能系统及方法
CN214366253U (zh) 具有多级特斯拉涡轮机的微型燃气轮机联合循环系统
CN214366252U (zh) 具有串联式特斯拉涡轮机的微型燃气轮机联合循环系统
CN212563461U (zh) 一种三联合循环系统、交通工具、充电系统
CN112502802A (zh) 具有串联式特斯拉涡轮机的微型燃气轮机联合循环系统
CN205823357U (zh) 热管式真空内循环热动装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21890618

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21890618

Country of ref document: EP

Kind code of ref document: A1